1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #ifdef CONFIG_F2FS_FS_ENCRYPTION 26 #include <linux/fscrypt_supp.h> 27 #else 28 #include <linux/fscrypt_notsupp.h> 29 #endif 30 #include <crypto/hash.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_ALLOC_NID, 49 FAULT_ORPHAN, 50 FAULT_BLOCK, 51 FAULT_DIR_DEPTH, 52 FAULT_EVICT_INODE, 53 FAULT_TRUNCATE, 54 FAULT_IO, 55 FAULT_CHECKPOINT, 56 FAULT_MAX, 57 }; 58 59 struct f2fs_fault_info { 60 atomic_t inject_ops; 61 unsigned int inject_rate; 62 unsigned int inject_type; 63 }; 64 65 extern char *fault_name[FAULT_MAX]; 66 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 67 #endif 68 69 /* 70 * For mount options 71 */ 72 #define F2FS_MOUNT_BG_GC 0x00000001 73 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 74 #define F2FS_MOUNT_DISCARD 0x00000004 75 #define F2FS_MOUNT_NOHEAP 0x00000008 76 #define F2FS_MOUNT_XATTR_USER 0x00000010 77 #define F2FS_MOUNT_POSIX_ACL 0x00000020 78 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 79 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 80 #define F2FS_MOUNT_INLINE_DATA 0x00000100 81 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 82 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 83 #define F2FS_MOUNT_NOBARRIER 0x00000800 84 #define F2FS_MOUNT_FASTBOOT 0x00001000 85 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 86 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 87 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 88 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 89 #define F2FS_MOUNT_ADAPTIVE 0x00020000 90 #define F2FS_MOUNT_LFS 0x00040000 91 92 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) 93 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) 94 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) 95 96 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 97 typecheck(unsigned long long, b) && \ 98 ((long long)((a) - (b)) > 0)) 99 100 typedef u32 block_t; /* 101 * should not change u32, since it is the on-disk block 102 * address format, __le32. 103 */ 104 typedef u32 nid_t; 105 106 struct f2fs_mount_info { 107 unsigned int opt; 108 }; 109 110 #define F2FS_FEATURE_ENCRYPT 0x0001 111 #define F2FS_FEATURE_BLKZONED 0x0002 112 113 #define F2FS_HAS_FEATURE(sb, mask) \ 114 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 115 #define F2FS_SET_FEATURE(sb, mask) \ 116 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 117 #define F2FS_CLEAR_FEATURE(sb, mask) \ 118 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 119 120 /* 121 * For checkpoint manager 122 */ 123 enum { 124 NAT_BITMAP, 125 SIT_BITMAP 126 }; 127 128 #define CP_UMOUNT 0x00000001 129 #define CP_FASTBOOT 0x00000002 130 #define CP_SYNC 0x00000004 131 #define CP_RECOVERY 0x00000008 132 #define CP_DISCARD 0x00000010 133 #define CP_TRIMMED 0x00000020 134 135 #define DEF_BATCHED_TRIM_SECTIONS 2048 136 #define BATCHED_TRIM_SEGMENTS(sbi) \ 137 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 138 #define BATCHED_TRIM_BLOCKS(sbi) \ 139 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 140 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 141 #define DISCARD_ISSUE_RATE 8 142 #define DEF_CP_INTERVAL 60 /* 60 secs */ 143 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 144 145 struct cp_control { 146 int reason; 147 __u64 trim_start; 148 __u64 trim_end; 149 __u64 trim_minlen; 150 __u64 trimmed; 151 }; 152 153 /* 154 * For CP/NAT/SIT/SSA readahead 155 */ 156 enum { 157 META_CP, 158 META_NAT, 159 META_SIT, 160 META_SSA, 161 META_POR, 162 }; 163 164 /* for the list of ino */ 165 enum { 166 ORPHAN_INO, /* for orphan ino list */ 167 APPEND_INO, /* for append ino list */ 168 UPDATE_INO, /* for update ino list */ 169 MAX_INO_ENTRY, /* max. list */ 170 }; 171 172 struct ino_entry { 173 struct list_head list; /* list head */ 174 nid_t ino; /* inode number */ 175 }; 176 177 /* for the list of inodes to be GCed */ 178 struct inode_entry { 179 struct list_head list; /* list head */ 180 struct inode *inode; /* vfs inode pointer */ 181 }; 182 183 /* for the bitmap indicate blocks to be discarded */ 184 struct discard_entry { 185 struct list_head list; /* list head */ 186 block_t start_blkaddr; /* start blockaddr of current segment */ 187 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 188 }; 189 190 /* max discard pend list number */ 191 #define MAX_PLIST_NUM 512 192 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 193 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 194 195 enum { 196 D_PREP, 197 D_SUBMIT, 198 D_DONE, 199 }; 200 201 struct discard_info { 202 block_t lstart; /* logical start address */ 203 block_t len; /* length */ 204 block_t start; /* actual start address in dev */ 205 }; 206 207 struct discard_cmd { 208 struct rb_node rb_node; /* rb node located in rb-tree */ 209 union { 210 struct { 211 block_t lstart; /* logical start address */ 212 block_t len; /* length */ 213 block_t start; /* actual start address in dev */ 214 }; 215 struct discard_info di; /* discard info */ 216 217 }; 218 struct list_head list; /* command list */ 219 struct completion wait; /* compleation */ 220 struct block_device *bdev; /* bdev */ 221 unsigned short ref; /* reference count */ 222 unsigned char state; /* state */ 223 int error; /* bio error */ 224 }; 225 226 struct discard_cmd_control { 227 struct task_struct *f2fs_issue_discard; /* discard thread */ 228 struct list_head entry_list; /* 4KB discard entry list */ 229 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 230 struct list_head wait_list; /* store on-flushing entries */ 231 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 232 struct mutex cmd_lock; 233 unsigned int nr_discards; /* # of discards in the list */ 234 unsigned int max_discards; /* max. discards to be issued */ 235 unsigned int undiscard_blks; /* # of undiscard blocks */ 236 atomic_t issued_discard; /* # of issued discard */ 237 atomic_t issing_discard; /* # of issing discard */ 238 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 239 struct rb_root root; /* root of discard rb-tree */ 240 }; 241 242 /* for the list of fsync inodes, used only during recovery */ 243 struct fsync_inode_entry { 244 struct list_head list; /* list head */ 245 struct inode *inode; /* vfs inode pointer */ 246 block_t blkaddr; /* block address locating the last fsync */ 247 block_t last_dentry; /* block address locating the last dentry */ 248 }; 249 250 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 251 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 252 253 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 254 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 255 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 256 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 257 258 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 259 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 260 261 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 262 { 263 int before = nats_in_cursum(journal); 264 265 journal->n_nats = cpu_to_le16(before + i); 266 return before; 267 } 268 269 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 270 { 271 int before = sits_in_cursum(journal); 272 273 journal->n_sits = cpu_to_le16(before + i); 274 return before; 275 } 276 277 static inline bool __has_cursum_space(struct f2fs_journal *journal, 278 int size, int type) 279 { 280 if (type == NAT_JOURNAL) 281 return size <= MAX_NAT_JENTRIES(journal); 282 return size <= MAX_SIT_JENTRIES(journal); 283 } 284 285 /* 286 * ioctl commands 287 */ 288 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 289 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 290 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 291 292 #define F2FS_IOCTL_MAGIC 0xf5 293 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 294 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 295 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 296 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 297 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 298 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 299 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 300 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 301 struct f2fs_defragment) 302 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 303 struct f2fs_move_range) 304 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 305 struct f2fs_flush_device) 306 307 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 308 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 309 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 310 311 /* 312 * should be same as XFS_IOC_GOINGDOWN. 313 * Flags for going down operation used by FS_IOC_GOINGDOWN 314 */ 315 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 316 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 317 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 318 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 319 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 320 321 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 322 /* 323 * ioctl commands in 32 bit emulation 324 */ 325 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 326 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 327 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 328 #endif 329 330 struct f2fs_defragment { 331 u64 start; 332 u64 len; 333 }; 334 335 struct f2fs_move_range { 336 u32 dst_fd; /* destination fd */ 337 u64 pos_in; /* start position in src_fd */ 338 u64 pos_out; /* start position in dst_fd */ 339 u64 len; /* size to move */ 340 }; 341 342 struct f2fs_flush_device { 343 u32 dev_num; /* device number to flush */ 344 u32 segments; /* # of segments to flush */ 345 }; 346 347 /* 348 * For INODE and NODE manager 349 */ 350 /* for directory operations */ 351 struct f2fs_dentry_ptr { 352 struct inode *inode; 353 const void *bitmap; 354 struct f2fs_dir_entry *dentry; 355 __u8 (*filename)[F2FS_SLOT_LEN]; 356 int max; 357 }; 358 359 static inline void make_dentry_ptr_block(struct inode *inode, 360 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 361 { 362 d->inode = inode; 363 d->max = NR_DENTRY_IN_BLOCK; 364 d->bitmap = &t->dentry_bitmap; 365 d->dentry = t->dentry; 366 d->filename = t->filename; 367 } 368 369 static inline void make_dentry_ptr_inline(struct inode *inode, 370 struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t) 371 { 372 d->inode = inode; 373 d->max = NR_INLINE_DENTRY; 374 d->bitmap = &t->dentry_bitmap; 375 d->dentry = t->dentry; 376 d->filename = t->filename; 377 } 378 379 /* 380 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 381 * as its node offset to distinguish from index node blocks. 382 * But some bits are used to mark the node block. 383 */ 384 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 385 >> OFFSET_BIT_SHIFT) 386 enum { 387 ALLOC_NODE, /* allocate a new node page if needed */ 388 LOOKUP_NODE, /* look up a node without readahead */ 389 LOOKUP_NODE_RA, /* 390 * look up a node with readahead called 391 * by get_data_block. 392 */ 393 }; 394 395 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 396 397 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 398 399 /* vector size for gang look-up from extent cache that consists of radix tree */ 400 #define EXT_TREE_VEC_SIZE 64 401 402 /* for in-memory extent cache entry */ 403 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 404 405 /* number of extent info in extent cache we try to shrink */ 406 #define EXTENT_CACHE_SHRINK_NUMBER 128 407 408 struct rb_entry { 409 struct rb_node rb_node; /* rb node located in rb-tree */ 410 unsigned int ofs; /* start offset of the entry */ 411 unsigned int len; /* length of the entry */ 412 }; 413 414 struct extent_info { 415 unsigned int fofs; /* start offset in a file */ 416 unsigned int len; /* length of the extent */ 417 u32 blk; /* start block address of the extent */ 418 }; 419 420 struct extent_node { 421 struct rb_node rb_node; 422 union { 423 struct { 424 unsigned int fofs; 425 unsigned int len; 426 u32 blk; 427 }; 428 struct extent_info ei; /* extent info */ 429 430 }; 431 struct list_head list; /* node in global extent list of sbi */ 432 struct extent_tree *et; /* extent tree pointer */ 433 }; 434 435 struct extent_tree { 436 nid_t ino; /* inode number */ 437 struct rb_root root; /* root of extent info rb-tree */ 438 struct extent_node *cached_en; /* recently accessed extent node */ 439 struct extent_info largest; /* largested extent info */ 440 struct list_head list; /* to be used by sbi->zombie_list */ 441 rwlock_t lock; /* protect extent info rb-tree */ 442 atomic_t node_cnt; /* # of extent node in rb-tree*/ 443 }; 444 445 /* 446 * This structure is taken from ext4_map_blocks. 447 * 448 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 449 */ 450 #define F2FS_MAP_NEW (1 << BH_New) 451 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 452 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 453 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 454 F2FS_MAP_UNWRITTEN) 455 456 struct f2fs_map_blocks { 457 block_t m_pblk; 458 block_t m_lblk; 459 unsigned int m_len; 460 unsigned int m_flags; 461 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 462 }; 463 464 /* for flag in get_data_block */ 465 #define F2FS_GET_BLOCK_READ 0 466 #define F2FS_GET_BLOCK_DIO 1 467 #define F2FS_GET_BLOCK_FIEMAP 2 468 #define F2FS_GET_BLOCK_BMAP 3 469 #define F2FS_GET_BLOCK_PRE_DIO 4 470 #define F2FS_GET_BLOCK_PRE_AIO 5 471 472 /* 473 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 474 */ 475 #define FADVISE_COLD_BIT 0x01 476 #define FADVISE_LOST_PINO_BIT 0x02 477 #define FADVISE_ENCRYPT_BIT 0x04 478 #define FADVISE_ENC_NAME_BIT 0x08 479 #define FADVISE_KEEP_SIZE_BIT 0x10 480 481 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 482 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 483 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 484 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 485 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 486 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 487 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 488 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 489 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 490 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 491 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 492 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 493 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 494 495 #define DEF_DIR_LEVEL 0 496 497 struct f2fs_inode_info { 498 struct inode vfs_inode; /* serve a vfs inode */ 499 unsigned long i_flags; /* keep an inode flags for ioctl */ 500 unsigned char i_advise; /* use to give file attribute hints */ 501 unsigned char i_dir_level; /* use for dentry level for large dir */ 502 unsigned int i_current_depth; /* use only in directory structure */ 503 unsigned int i_pino; /* parent inode number */ 504 umode_t i_acl_mode; /* keep file acl mode temporarily */ 505 506 /* Use below internally in f2fs*/ 507 unsigned long flags; /* use to pass per-file flags */ 508 struct rw_semaphore i_sem; /* protect fi info */ 509 atomic_t dirty_pages; /* # of dirty pages */ 510 f2fs_hash_t chash; /* hash value of given file name */ 511 unsigned int clevel; /* maximum level of given file name */ 512 struct task_struct *task; /* lookup and create consistency */ 513 nid_t i_xattr_nid; /* node id that contains xattrs */ 514 loff_t last_disk_size; /* lastly written file size */ 515 516 struct list_head dirty_list; /* dirty list for dirs and files */ 517 struct list_head gdirty_list; /* linked in global dirty list */ 518 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 519 struct mutex inmem_lock; /* lock for inmemory pages */ 520 struct extent_tree *extent_tree; /* cached extent_tree entry */ 521 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 522 }; 523 524 static inline void get_extent_info(struct extent_info *ext, 525 struct f2fs_extent *i_ext) 526 { 527 ext->fofs = le32_to_cpu(i_ext->fofs); 528 ext->blk = le32_to_cpu(i_ext->blk); 529 ext->len = le32_to_cpu(i_ext->len); 530 } 531 532 static inline void set_raw_extent(struct extent_info *ext, 533 struct f2fs_extent *i_ext) 534 { 535 i_ext->fofs = cpu_to_le32(ext->fofs); 536 i_ext->blk = cpu_to_le32(ext->blk); 537 i_ext->len = cpu_to_le32(ext->len); 538 } 539 540 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 541 u32 blk, unsigned int len) 542 { 543 ei->fofs = fofs; 544 ei->blk = blk; 545 ei->len = len; 546 } 547 548 static inline bool __is_discard_mergeable(struct discard_info *back, 549 struct discard_info *front) 550 { 551 return back->lstart + back->len == front->lstart; 552 } 553 554 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 555 struct discard_info *back) 556 { 557 return __is_discard_mergeable(back, cur); 558 } 559 560 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 561 struct discard_info *front) 562 { 563 return __is_discard_mergeable(cur, front); 564 } 565 566 static inline bool __is_extent_mergeable(struct extent_info *back, 567 struct extent_info *front) 568 { 569 return (back->fofs + back->len == front->fofs && 570 back->blk + back->len == front->blk); 571 } 572 573 static inline bool __is_back_mergeable(struct extent_info *cur, 574 struct extent_info *back) 575 { 576 return __is_extent_mergeable(back, cur); 577 } 578 579 static inline bool __is_front_mergeable(struct extent_info *cur, 580 struct extent_info *front) 581 { 582 return __is_extent_mergeable(cur, front); 583 } 584 585 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 586 static inline void __try_update_largest_extent(struct inode *inode, 587 struct extent_tree *et, struct extent_node *en) 588 { 589 if (en->ei.len > et->largest.len) { 590 et->largest = en->ei; 591 f2fs_mark_inode_dirty_sync(inode, true); 592 } 593 } 594 595 enum nid_list { 596 FREE_NID_LIST, 597 ALLOC_NID_LIST, 598 MAX_NID_LIST, 599 }; 600 601 struct f2fs_nm_info { 602 block_t nat_blkaddr; /* base disk address of NAT */ 603 nid_t max_nid; /* maximum possible node ids */ 604 nid_t available_nids; /* # of available node ids */ 605 nid_t next_scan_nid; /* the next nid to be scanned */ 606 unsigned int ram_thresh; /* control the memory footprint */ 607 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 608 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 609 610 /* NAT cache management */ 611 struct radix_tree_root nat_root;/* root of the nat entry cache */ 612 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 613 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 614 struct list_head nat_entries; /* cached nat entry list (clean) */ 615 unsigned int nat_cnt; /* the # of cached nat entries */ 616 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 617 unsigned int nat_blocks; /* # of nat blocks */ 618 619 /* free node ids management */ 620 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 621 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ 622 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ 623 spinlock_t nid_list_lock; /* protect nid lists ops */ 624 struct mutex build_lock; /* lock for build free nids */ 625 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 626 unsigned char *nat_block_bitmap; 627 unsigned short *free_nid_count; /* free nid count of NAT block */ 628 629 /* for checkpoint */ 630 char *nat_bitmap; /* NAT bitmap pointer */ 631 632 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 633 unsigned char *nat_bits; /* NAT bits blocks */ 634 unsigned char *full_nat_bits; /* full NAT pages */ 635 unsigned char *empty_nat_bits; /* empty NAT pages */ 636 #ifdef CONFIG_F2FS_CHECK_FS 637 char *nat_bitmap_mir; /* NAT bitmap mirror */ 638 #endif 639 int bitmap_size; /* bitmap size */ 640 }; 641 642 /* 643 * this structure is used as one of function parameters. 644 * all the information are dedicated to a given direct node block determined 645 * by the data offset in a file. 646 */ 647 struct dnode_of_data { 648 struct inode *inode; /* vfs inode pointer */ 649 struct page *inode_page; /* its inode page, NULL is possible */ 650 struct page *node_page; /* cached direct node page */ 651 nid_t nid; /* node id of the direct node block */ 652 unsigned int ofs_in_node; /* data offset in the node page */ 653 bool inode_page_locked; /* inode page is locked or not */ 654 bool node_changed; /* is node block changed */ 655 char cur_level; /* level of hole node page */ 656 char max_level; /* level of current page located */ 657 block_t data_blkaddr; /* block address of the node block */ 658 }; 659 660 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 661 struct page *ipage, struct page *npage, nid_t nid) 662 { 663 memset(dn, 0, sizeof(*dn)); 664 dn->inode = inode; 665 dn->inode_page = ipage; 666 dn->node_page = npage; 667 dn->nid = nid; 668 } 669 670 /* 671 * For SIT manager 672 * 673 * By default, there are 6 active log areas across the whole main area. 674 * When considering hot and cold data separation to reduce cleaning overhead, 675 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 676 * respectively. 677 * In the current design, you should not change the numbers intentionally. 678 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 679 * logs individually according to the underlying devices. (default: 6) 680 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 681 * data and 8 for node logs. 682 */ 683 #define NR_CURSEG_DATA_TYPE (3) 684 #define NR_CURSEG_NODE_TYPE (3) 685 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 686 687 enum { 688 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 689 CURSEG_WARM_DATA, /* data blocks */ 690 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 691 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 692 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 693 CURSEG_COLD_NODE, /* indirect node blocks */ 694 NO_CHECK_TYPE, 695 }; 696 697 struct flush_cmd { 698 struct completion wait; 699 struct llist_node llnode; 700 int ret; 701 }; 702 703 struct flush_cmd_control { 704 struct task_struct *f2fs_issue_flush; /* flush thread */ 705 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 706 atomic_t issued_flush; /* # of issued flushes */ 707 atomic_t issing_flush; /* # of issing flushes */ 708 struct llist_head issue_list; /* list for command issue */ 709 struct llist_node *dispatch_list; /* list for command dispatch */ 710 }; 711 712 struct f2fs_sm_info { 713 struct sit_info *sit_info; /* whole segment information */ 714 struct free_segmap_info *free_info; /* free segment information */ 715 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 716 struct curseg_info *curseg_array; /* active segment information */ 717 718 block_t seg0_blkaddr; /* block address of 0'th segment */ 719 block_t main_blkaddr; /* start block address of main area */ 720 block_t ssa_blkaddr; /* start block address of SSA area */ 721 722 unsigned int segment_count; /* total # of segments */ 723 unsigned int main_segments; /* # of segments in main area */ 724 unsigned int reserved_segments; /* # of reserved segments */ 725 unsigned int ovp_segments; /* # of overprovision segments */ 726 727 /* a threshold to reclaim prefree segments */ 728 unsigned int rec_prefree_segments; 729 730 /* for batched trimming */ 731 unsigned int trim_sections; /* # of sections to trim */ 732 733 struct list_head sit_entry_set; /* sit entry set list */ 734 735 unsigned int ipu_policy; /* in-place-update policy */ 736 unsigned int min_ipu_util; /* in-place-update threshold */ 737 unsigned int min_fsync_blocks; /* threshold for fsync */ 738 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 739 740 /* for flush command control */ 741 struct flush_cmd_control *fcc_info; 742 743 /* for discard command control */ 744 struct discard_cmd_control *dcc_info; 745 }; 746 747 /* 748 * For superblock 749 */ 750 /* 751 * COUNT_TYPE for monitoring 752 * 753 * f2fs monitors the number of several block types such as on-writeback, 754 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 755 */ 756 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 757 enum count_type { 758 F2FS_DIRTY_DENTS, 759 F2FS_DIRTY_DATA, 760 F2FS_DIRTY_NODES, 761 F2FS_DIRTY_META, 762 F2FS_INMEM_PAGES, 763 F2FS_DIRTY_IMETA, 764 F2FS_WB_CP_DATA, 765 F2FS_WB_DATA, 766 NR_COUNT_TYPE, 767 }; 768 769 /* 770 * The below are the page types of bios used in submit_bio(). 771 * The available types are: 772 * DATA User data pages. It operates as async mode. 773 * NODE Node pages. It operates as async mode. 774 * META FS metadata pages such as SIT, NAT, CP. 775 * NR_PAGE_TYPE The number of page types. 776 * META_FLUSH Make sure the previous pages are written 777 * with waiting the bio's completion 778 * ... Only can be used with META. 779 */ 780 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 781 enum page_type { 782 DATA, 783 NODE, 784 META, 785 NR_PAGE_TYPE, 786 META_FLUSH, 787 INMEM, /* the below types are used by tracepoints only. */ 788 INMEM_DROP, 789 INMEM_INVALIDATE, 790 INMEM_REVOKE, 791 IPU, 792 OPU, 793 }; 794 795 struct f2fs_io_info { 796 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 797 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 798 int op; /* contains REQ_OP_ */ 799 int op_flags; /* req_flag_bits */ 800 block_t new_blkaddr; /* new block address to be written */ 801 block_t old_blkaddr; /* old block address before Cow */ 802 struct page *page; /* page to be written */ 803 struct page *encrypted_page; /* encrypted page */ 804 bool submitted; /* indicate IO submission */ 805 bool need_lock; /* indicate we need to lock cp_rwsem */ 806 }; 807 808 #define is_read_io(rw) ((rw) == READ) 809 struct f2fs_bio_info { 810 struct f2fs_sb_info *sbi; /* f2fs superblock */ 811 struct bio *bio; /* bios to merge */ 812 sector_t last_block_in_bio; /* last block number */ 813 struct f2fs_io_info fio; /* store buffered io info. */ 814 struct rw_semaphore io_rwsem; /* blocking op for bio */ 815 }; 816 817 #define FDEV(i) (sbi->devs[i]) 818 #define RDEV(i) (raw_super->devs[i]) 819 struct f2fs_dev_info { 820 struct block_device *bdev; 821 char path[MAX_PATH_LEN]; 822 unsigned int total_segments; 823 block_t start_blk; 824 block_t end_blk; 825 #ifdef CONFIG_BLK_DEV_ZONED 826 unsigned int nr_blkz; /* Total number of zones */ 827 u8 *blkz_type; /* Array of zones type */ 828 #endif 829 }; 830 831 enum inode_type { 832 DIR_INODE, /* for dirty dir inode */ 833 FILE_INODE, /* for dirty regular/symlink inode */ 834 DIRTY_META, /* for all dirtied inode metadata */ 835 NR_INODE_TYPE, 836 }; 837 838 /* for inner inode cache management */ 839 struct inode_management { 840 struct radix_tree_root ino_root; /* ino entry array */ 841 spinlock_t ino_lock; /* for ino entry lock */ 842 struct list_head ino_list; /* inode list head */ 843 unsigned long ino_num; /* number of entries */ 844 }; 845 846 /* For s_flag in struct f2fs_sb_info */ 847 enum { 848 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 849 SBI_IS_CLOSE, /* specify unmounting */ 850 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 851 SBI_POR_DOING, /* recovery is doing or not */ 852 SBI_NEED_SB_WRITE, /* need to recover superblock */ 853 SBI_NEED_CP, /* need to checkpoint */ 854 }; 855 856 enum { 857 CP_TIME, 858 REQ_TIME, 859 MAX_TIME, 860 }; 861 862 struct f2fs_sb_info { 863 struct super_block *sb; /* pointer to VFS super block */ 864 struct proc_dir_entry *s_proc; /* proc entry */ 865 struct f2fs_super_block *raw_super; /* raw super block pointer */ 866 int valid_super_block; /* valid super block no */ 867 unsigned long s_flag; /* flags for sbi */ 868 869 #ifdef CONFIG_BLK_DEV_ZONED 870 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 871 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 872 #endif 873 874 /* for node-related operations */ 875 struct f2fs_nm_info *nm_info; /* node manager */ 876 struct inode *node_inode; /* cache node blocks */ 877 878 /* for segment-related operations */ 879 struct f2fs_sm_info *sm_info; /* segment manager */ 880 881 /* for bio operations */ 882 struct f2fs_bio_info read_io; /* for read bios */ 883 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 884 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ 885 int write_io_size_bits; /* Write IO size bits */ 886 mempool_t *write_io_dummy; /* Dummy pages */ 887 888 /* for checkpoint */ 889 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 890 int cur_cp_pack; /* remain current cp pack */ 891 spinlock_t cp_lock; /* for flag in ckpt */ 892 struct inode *meta_inode; /* cache meta blocks */ 893 struct mutex cp_mutex; /* checkpoint procedure lock */ 894 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 895 struct rw_semaphore node_write; /* locking node writes */ 896 struct rw_semaphore node_change; /* locking node change */ 897 wait_queue_head_t cp_wait; 898 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 899 long interval_time[MAX_TIME]; /* to store thresholds */ 900 901 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 902 903 /* for orphan inode, use 0'th array */ 904 unsigned int max_orphans; /* max orphan inodes */ 905 906 /* for inode management */ 907 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 908 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 909 910 /* for extent tree cache */ 911 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 912 struct mutex extent_tree_lock; /* locking extent radix tree */ 913 struct list_head extent_list; /* lru list for shrinker */ 914 spinlock_t extent_lock; /* locking extent lru list */ 915 atomic_t total_ext_tree; /* extent tree count */ 916 struct list_head zombie_list; /* extent zombie tree list */ 917 atomic_t total_zombie_tree; /* extent zombie tree count */ 918 atomic_t total_ext_node; /* extent info count */ 919 920 /* basic filesystem units */ 921 unsigned int log_sectors_per_block; /* log2 sectors per block */ 922 unsigned int log_blocksize; /* log2 block size */ 923 unsigned int blocksize; /* block size */ 924 unsigned int root_ino_num; /* root inode number*/ 925 unsigned int node_ino_num; /* node inode number*/ 926 unsigned int meta_ino_num; /* meta inode number*/ 927 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 928 unsigned int blocks_per_seg; /* blocks per segment */ 929 unsigned int segs_per_sec; /* segments per section */ 930 unsigned int secs_per_zone; /* sections per zone */ 931 unsigned int total_sections; /* total section count */ 932 unsigned int total_node_count; /* total node block count */ 933 unsigned int total_valid_node_count; /* valid node block count */ 934 loff_t max_file_blocks; /* max block index of file */ 935 int active_logs; /* # of active logs */ 936 int dir_level; /* directory level */ 937 938 block_t user_block_count; /* # of user blocks */ 939 block_t total_valid_block_count; /* # of valid blocks */ 940 block_t discard_blks; /* discard command candidats */ 941 block_t last_valid_block_count; /* for recovery */ 942 u32 s_next_generation; /* for NFS support */ 943 944 /* # of pages, see count_type */ 945 atomic_t nr_pages[NR_COUNT_TYPE]; 946 /* # of allocated blocks */ 947 struct percpu_counter alloc_valid_block_count; 948 949 /* writeback control */ 950 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 951 952 /* valid inode count */ 953 struct percpu_counter total_valid_inode_count; 954 955 struct f2fs_mount_info mount_opt; /* mount options */ 956 957 /* for cleaning operations */ 958 struct mutex gc_mutex; /* mutex for GC */ 959 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 960 unsigned int cur_victim_sec; /* current victim section num */ 961 962 /* threshold for converting bg victims for fg */ 963 u64 fggc_threshold; 964 965 /* maximum # of trials to find a victim segment for SSR and GC */ 966 unsigned int max_victim_search; 967 968 /* 969 * for stat information. 970 * one is for the LFS mode, and the other is for the SSR mode. 971 */ 972 #ifdef CONFIG_F2FS_STAT_FS 973 struct f2fs_stat_info *stat_info; /* FS status information */ 974 unsigned int segment_count[2]; /* # of allocated segments */ 975 unsigned int block_count[2]; /* # of allocated blocks */ 976 atomic_t inplace_count; /* # of inplace update */ 977 atomic64_t total_hit_ext; /* # of lookup extent cache */ 978 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 979 atomic64_t read_hit_largest; /* # of hit largest extent node */ 980 atomic64_t read_hit_cached; /* # of hit cached extent node */ 981 atomic_t inline_xattr; /* # of inline_xattr inodes */ 982 atomic_t inline_inode; /* # of inline_data inodes */ 983 atomic_t inline_dir; /* # of inline_dentry inodes */ 984 atomic_t aw_cnt; /* # of atomic writes */ 985 atomic_t vw_cnt; /* # of volatile writes */ 986 atomic_t max_aw_cnt; /* max # of atomic writes */ 987 atomic_t max_vw_cnt; /* max # of volatile writes */ 988 int bg_gc; /* background gc calls */ 989 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 990 #endif 991 spinlock_t stat_lock; /* lock for stat operations */ 992 993 /* For sysfs suppport */ 994 struct kobject s_kobj; 995 struct completion s_kobj_unregister; 996 997 /* For shrinker support */ 998 struct list_head s_list; 999 int s_ndevs; /* number of devices */ 1000 struct f2fs_dev_info *devs; /* for device list */ 1001 struct mutex umount_mutex; 1002 unsigned int shrinker_run_no; 1003 1004 /* For write statistics */ 1005 u64 sectors_written_start; 1006 u64 kbytes_written; 1007 1008 /* Reference to checksum algorithm driver via cryptoapi */ 1009 struct crypto_shash *s_chksum_driver; 1010 1011 /* For fault injection */ 1012 #ifdef CONFIG_F2FS_FAULT_INJECTION 1013 struct f2fs_fault_info fault_info; 1014 #endif 1015 }; 1016 1017 #ifdef CONFIG_F2FS_FAULT_INJECTION 1018 #define f2fs_show_injection_info(type) \ 1019 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1020 KERN_INFO, fault_name[type], \ 1021 __func__, __builtin_return_address(0)) 1022 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1023 { 1024 struct f2fs_fault_info *ffi = &sbi->fault_info; 1025 1026 if (!ffi->inject_rate) 1027 return false; 1028 1029 if (!IS_FAULT_SET(ffi, type)) 1030 return false; 1031 1032 atomic_inc(&ffi->inject_ops); 1033 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1034 atomic_set(&ffi->inject_ops, 0); 1035 return true; 1036 } 1037 return false; 1038 } 1039 #endif 1040 1041 /* For write statistics. Suppose sector size is 512 bytes, 1042 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1043 */ 1044 #define BD_PART_WRITTEN(s) \ 1045 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1046 (s)->sectors_written_start) >> 1) 1047 1048 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1049 { 1050 sbi->last_time[type] = jiffies; 1051 } 1052 1053 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1054 { 1055 struct timespec ts = {sbi->interval_time[type], 0}; 1056 unsigned long interval = timespec_to_jiffies(&ts); 1057 1058 return time_after(jiffies, sbi->last_time[type] + interval); 1059 } 1060 1061 static inline bool is_idle(struct f2fs_sb_info *sbi) 1062 { 1063 struct block_device *bdev = sbi->sb->s_bdev; 1064 struct request_queue *q = bdev_get_queue(bdev); 1065 struct request_list *rl = &q->root_rl; 1066 1067 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1068 return 0; 1069 1070 return f2fs_time_over(sbi, REQ_TIME); 1071 } 1072 1073 /* 1074 * Inline functions 1075 */ 1076 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1077 unsigned int length) 1078 { 1079 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 1080 u32 *ctx = (u32 *)shash_desc_ctx(shash); 1081 u32 retval; 1082 int err; 1083 1084 shash->tfm = sbi->s_chksum_driver; 1085 shash->flags = 0; 1086 *ctx = F2FS_SUPER_MAGIC; 1087 1088 err = crypto_shash_update(shash, address, length); 1089 BUG_ON(err); 1090 1091 retval = *ctx; 1092 barrier_data(ctx); 1093 return retval; 1094 } 1095 1096 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1097 void *buf, size_t buf_size) 1098 { 1099 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1100 } 1101 1102 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1103 { 1104 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1105 } 1106 1107 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1108 { 1109 return sb->s_fs_info; 1110 } 1111 1112 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1113 { 1114 return F2FS_SB(inode->i_sb); 1115 } 1116 1117 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1118 { 1119 return F2FS_I_SB(mapping->host); 1120 } 1121 1122 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1123 { 1124 return F2FS_M_SB(page->mapping); 1125 } 1126 1127 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1128 { 1129 return (struct f2fs_super_block *)(sbi->raw_super); 1130 } 1131 1132 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1133 { 1134 return (struct f2fs_checkpoint *)(sbi->ckpt); 1135 } 1136 1137 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1138 { 1139 return (struct f2fs_node *)page_address(page); 1140 } 1141 1142 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1143 { 1144 return &((struct f2fs_node *)page_address(page))->i; 1145 } 1146 1147 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1148 { 1149 return (struct f2fs_nm_info *)(sbi->nm_info); 1150 } 1151 1152 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1153 { 1154 return (struct f2fs_sm_info *)(sbi->sm_info); 1155 } 1156 1157 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1158 { 1159 return (struct sit_info *)(SM_I(sbi)->sit_info); 1160 } 1161 1162 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1163 { 1164 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1165 } 1166 1167 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1168 { 1169 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1170 } 1171 1172 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1173 { 1174 return sbi->meta_inode->i_mapping; 1175 } 1176 1177 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1178 { 1179 return sbi->node_inode->i_mapping; 1180 } 1181 1182 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1183 { 1184 return test_bit(type, &sbi->s_flag); 1185 } 1186 1187 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1188 { 1189 set_bit(type, &sbi->s_flag); 1190 } 1191 1192 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1193 { 1194 clear_bit(type, &sbi->s_flag); 1195 } 1196 1197 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1198 { 1199 return le64_to_cpu(cp->checkpoint_ver); 1200 } 1201 1202 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1203 { 1204 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1205 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1206 } 1207 1208 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1209 { 1210 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1211 1212 return ckpt_flags & f; 1213 } 1214 1215 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1216 { 1217 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1218 } 1219 1220 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1221 { 1222 unsigned int ckpt_flags; 1223 1224 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1225 ckpt_flags |= f; 1226 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1227 } 1228 1229 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1230 { 1231 spin_lock(&sbi->cp_lock); 1232 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1233 spin_unlock(&sbi->cp_lock); 1234 } 1235 1236 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1237 { 1238 unsigned int ckpt_flags; 1239 1240 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1241 ckpt_flags &= (~f); 1242 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1243 } 1244 1245 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1246 { 1247 spin_lock(&sbi->cp_lock); 1248 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1249 spin_unlock(&sbi->cp_lock); 1250 } 1251 1252 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1253 { 1254 set_sbi_flag(sbi, SBI_NEED_FSCK); 1255 1256 if (lock) 1257 spin_lock(&sbi->cp_lock); 1258 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1259 kfree(NM_I(sbi)->nat_bits); 1260 NM_I(sbi)->nat_bits = NULL; 1261 if (lock) 1262 spin_unlock(&sbi->cp_lock); 1263 } 1264 1265 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1266 struct cp_control *cpc) 1267 { 1268 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1269 1270 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1271 } 1272 1273 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1274 { 1275 down_read(&sbi->cp_rwsem); 1276 } 1277 1278 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1279 { 1280 up_read(&sbi->cp_rwsem); 1281 } 1282 1283 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1284 { 1285 down_write(&sbi->cp_rwsem); 1286 } 1287 1288 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1289 { 1290 up_write(&sbi->cp_rwsem); 1291 } 1292 1293 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1294 { 1295 int reason = CP_SYNC; 1296 1297 if (test_opt(sbi, FASTBOOT)) 1298 reason = CP_FASTBOOT; 1299 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1300 reason = CP_UMOUNT; 1301 return reason; 1302 } 1303 1304 static inline bool __remain_node_summaries(int reason) 1305 { 1306 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1307 } 1308 1309 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1310 { 1311 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1312 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1313 } 1314 1315 /* 1316 * Check whether the given nid is within node id range. 1317 */ 1318 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1319 { 1320 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1321 return -EINVAL; 1322 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1323 return -EINVAL; 1324 return 0; 1325 } 1326 1327 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1328 1329 /* 1330 * Check whether the inode has blocks or not 1331 */ 1332 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1333 { 1334 if (F2FS_I(inode)->i_xattr_nid) 1335 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1336 else 1337 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1338 } 1339 1340 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1341 { 1342 return ofs == XATTR_NODE_OFFSET; 1343 } 1344 1345 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); 1346 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1347 struct inode *inode, blkcnt_t *count) 1348 { 1349 blkcnt_t diff; 1350 1351 #ifdef CONFIG_F2FS_FAULT_INJECTION 1352 if (time_to_inject(sbi, FAULT_BLOCK)) { 1353 f2fs_show_injection_info(FAULT_BLOCK); 1354 return false; 1355 } 1356 #endif 1357 /* 1358 * let's increase this in prior to actual block count change in order 1359 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1360 */ 1361 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1362 1363 spin_lock(&sbi->stat_lock); 1364 sbi->total_valid_block_count += (block_t)(*count); 1365 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { 1366 diff = sbi->total_valid_block_count - sbi->user_block_count; 1367 *count -= diff; 1368 sbi->total_valid_block_count = sbi->user_block_count; 1369 if (!*count) { 1370 spin_unlock(&sbi->stat_lock); 1371 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1372 return false; 1373 } 1374 } 1375 spin_unlock(&sbi->stat_lock); 1376 1377 f2fs_i_blocks_write(inode, *count, true); 1378 return true; 1379 } 1380 1381 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1382 struct inode *inode, 1383 blkcnt_t count) 1384 { 1385 spin_lock(&sbi->stat_lock); 1386 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1387 f2fs_bug_on(sbi, inode->i_blocks < count); 1388 sbi->total_valid_block_count -= (block_t)count; 1389 spin_unlock(&sbi->stat_lock); 1390 f2fs_i_blocks_write(inode, count, false); 1391 } 1392 1393 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1394 { 1395 atomic_inc(&sbi->nr_pages[count_type]); 1396 1397 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1398 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1399 return; 1400 1401 set_sbi_flag(sbi, SBI_IS_DIRTY); 1402 } 1403 1404 static inline void inode_inc_dirty_pages(struct inode *inode) 1405 { 1406 atomic_inc(&F2FS_I(inode)->dirty_pages); 1407 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1408 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1409 } 1410 1411 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1412 { 1413 atomic_dec(&sbi->nr_pages[count_type]); 1414 } 1415 1416 static inline void inode_dec_dirty_pages(struct inode *inode) 1417 { 1418 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1419 !S_ISLNK(inode->i_mode)) 1420 return; 1421 1422 atomic_dec(&F2FS_I(inode)->dirty_pages); 1423 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1424 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1425 } 1426 1427 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1428 { 1429 return atomic_read(&sbi->nr_pages[count_type]); 1430 } 1431 1432 static inline int get_dirty_pages(struct inode *inode) 1433 { 1434 return atomic_read(&F2FS_I(inode)->dirty_pages); 1435 } 1436 1437 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1438 { 1439 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1440 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1441 sbi->log_blocks_per_seg; 1442 1443 return segs / sbi->segs_per_sec; 1444 } 1445 1446 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1447 { 1448 return sbi->total_valid_block_count; 1449 } 1450 1451 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1452 { 1453 return sbi->discard_blks; 1454 } 1455 1456 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1457 { 1458 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1459 1460 /* return NAT or SIT bitmap */ 1461 if (flag == NAT_BITMAP) 1462 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1463 else if (flag == SIT_BITMAP) 1464 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1465 1466 return 0; 1467 } 1468 1469 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1470 { 1471 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1472 } 1473 1474 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1475 { 1476 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1477 int offset; 1478 1479 if (__cp_payload(sbi) > 0) { 1480 if (flag == NAT_BITMAP) 1481 return &ckpt->sit_nat_version_bitmap; 1482 else 1483 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1484 } else { 1485 offset = (flag == NAT_BITMAP) ? 1486 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1487 return &ckpt->sit_nat_version_bitmap + offset; 1488 } 1489 } 1490 1491 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1492 { 1493 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1494 1495 if (sbi->cur_cp_pack == 2) 1496 start_addr += sbi->blocks_per_seg; 1497 return start_addr; 1498 } 1499 1500 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1501 { 1502 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1503 1504 if (sbi->cur_cp_pack == 1) 1505 start_addr += sbi->blocks_per_seg; 1506 return start_addr; 1507 } 1508 1509 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1510 { 1511 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1512 } 1513 1514 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1515 { 1516 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1517 } 1518 1519 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1520 struct inode *inode) 1521 { 1522 block_t valid_block_count; 1523 unsigned int valid_node_count; 1524 1525 spin_lock(&sbi->stat_lock); 1526 1527 valid_block_count = sbi->total_valid_block_count + 1; 1528 if (unlikely(valid_block_count > sbi->user_block_count)) { 1529 spin_unlock(&sbi->stat_lock); 1530 return false; 1531 } 1532 1533 valid_node_count = sbi->total_valid_node_count + 1; 1534 if (unlikely(valid_node_count > sbi->total_node_count)) { 1535 spin_unlock(&sbi->stat_lock); 1536 return false; 1537 } 1538 1539 if (inode) 1540 f2fs_i_blocks_write(inode, 1, true); 1541 1542 sbi->total_valid_node_count++; 1543 sbi->total_valid_block_count++; 1544 spin_unlock(&sbi->stat_lock); 1545 1546 percpu_counter_inc(&sbi->alloc_valid_block_count); 1547 return true; 1548 } 1549 1550 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1551 struct inode *inode) 1552 { 1553 spin_lock(&sbi->stat_lock); 1554 1555 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1556 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1557 f2fs_bug_on(sbi, !inode->i_blocks); 1558 1559 f2fs_i_blocks_write(inode, 1, false); 1560 sbi->total_valid_node_count--; 1561 sbi->total_valid_block_count--; 1562 1563 spin_unlock(&sbi->stat_lock); 1564 } 1565 1566 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1567 { 1568 return sbi->total_valid_node_count; 1569 } 1570 1571 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1572 { 1573 percpu_counter_inc(&sbi->total_valid_inode_count); 1574 } 1575 1576 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1577 { 1578 percpu_counter_dec(&sbi->total_valid_inode_count); 1579 } 1580 1581 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1582 { 1583 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1584 } 1585 1586 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1587 pgoff_t index, bool for_write) 1588 { 1589 #ifdef CONFIG_F2FS_FAULT_INJECTION 1590 struct page *page = find_lock_page(mapping, index); 1591 1592 if (page) 1593 return page; 1594 1595 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1596 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1597 return NULL; 1598 } 1599 #endif 1600 if (!for_write) 1601 return grab_cache_page(mapping, index); 1602 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1603 } 1604 1605 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1606 { 1607 char *src_kaddr = kmap(src); 1608 char *dst_kaddr = kmap(dst); 1609 1610 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1611 kunmap(dst); 1612 kunmap(src); 1613 } 1614 1615 static inline void f2fs_put_page(struct page *page, int unlock) 1616 { 1617 if (!page) 1618 return; 1619 1620 if (unlock) { 1621 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1622 unlock_page(page); 1623 } 1624 put_page(page); 1625 } 1626 1627 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1628 { 1629 if (dn->node_page) 1630 f2fs_put_page(dn->node_page, 1); 1631 if (dn->inode_page && dn->node_page != dn->inode_page) 1632 f2fs_put_page(dn->inode_page, 0); 1633 dn->node_page = NULL; 1634 dn->inode_page = NULL; 1635 } 1636 1637 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1638 size_t size) 1639 { 1640 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1641 } 1642 1643 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1644 gfp_t flags) 1645 { 1646 void *entry; 1647 1648 entry = kmem_cache_alloc(cachep, flags); 1649 if (!entry) 1650 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1651 return entry; 1652 } 1653 1654 static inline struct bio *f2fs_bio_alloc(int npages) 1655 { 1656 struct bio *bio; 1657 1658 /* No failure on bio allocation */ 1659 bio = bio_alloc(GFP_NOIO, npages); 1660 if (!bio) 1661 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1662 return bio; 1663 } 1664 1665 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1666 unsigned long index, void *item) 1667 { 1668 while (radix_tree_insert(root, index, item)) 1669 cond_resched(); 1670 } 1671 1672 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1673 1674 static inline bool IS_INODE(struct page *page) 1675 { 1676 struct f2fs_node *p = F2FS_NODE(page); 1677 1678 return RAW_IS_INODE(p); 1679 } 1680 1681 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1682 { 1683 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1684 } 1685 1686 static inline block_t datablock_addr(struct page *node_page, 1687 unsigned int offset) 1688 { 1689 struct f2fs_node *raw_node; 1690 __le32 *addr_array; 1691 1692 raw_node = F2FS_NODE(node_page); 1693 addr_array = blkaddr_in_node(raw_node); 1694 return le32_to_cpu(addr_array[offset]); 1695 } 1696 1697 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1698 { 1699 int mask; 1700 1701 addr += (nr >> 3); 1702 mask = 1 << (7 - (nr & 0x07)); 1703 return mask & *addr; 1704 } 1705 1706 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1707 { 1708 int mask; 1709 1710 addr += (nr >> 3); 1711 mask = 1 << (7 - (nr & 0x07)); 1712 *addr |= mask; 1713 } 1714 1715 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1716 { 1717 int mask; 1718 1719 addr += (nr >> 3); 1720 mask = 1 << (7 - (nr & 0x07)); 1721 *addr &= ~mask; 1722 } 1723 1724 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1725 { 1726 int mask; 1727 int ret; 1728 1729 addr += (nr >> 3); 1730 mask = 1 << (7 - (nr & 0x07)); 1731 ret = mask & *addr; 1732 *addr |= mask; 1733 return ret; 1734 } 1735 1736 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1737 { 1738 int mask; 1739 int ret; 1740 1741 addr += (nr >> 3); 1742 mask = 1 << (7 - (nr & 0x07)); 1743 ret = mask & *addr; 1744 *addr &= ~mask; 1745 return ret; 1746 } 1747 1748 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1749 { 1750 int mask; 1751 1752 addr += (nr >> 3); 1753 mask = 1 << (7 - (nr & 0x07)); 1754 *addr ^= mask; 1755 } 1756 1757 /* used for f2fs_inode_info->flags */ 1758 enum { 1759 FI_NEW_INODE, /* indicate newly allocated inode */ 1760 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1761 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1762 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1763 FI_INC_LINK, /* need to increment i_nlink */ 1764 FI_ACL_MODE, /* indicate acl mode */ 1765 FI_NO_ALLOC, /* should not allocate any blocks */ 1766 FI_FREE_NID, /* free allocated nide */ 1767 FI_NO_EXTENT, /* not to use the extent cache */ 1768 FI_INLINE_XATTR, /* used for inline xattr */ 1769 FI_INLINE_DATA, /* used for inline data*/ 1770 FI_INLINE_DENTRY, /* used for inline dentry */ 1771 FI_APPEND_WRITE, /* inode has appended data */ 1772 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1773 FI_NEED_IPU, /* used for ipu per file */ 1774 FI_ATOMIC_FILE, /* indicate atomic file */ 1775 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 1776 FI_VOLATILE_FILE, /* indicate volatile file */ 1777 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1778 FI_DROP_CACHE, /* drop dirty page cache */ 1779 FI_DATA_EXIST, /* indicate data exists */ 1780 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1781 FI_DO_DEFRAG, /* indicate defragment is running */ 1782 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1783 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 1784 FI_HOT_DATA, /* indicate file is hot */ 1785 }; 1786 1787 static inline void __mark_inode_dirty_flag(struct inode *inode, 1788 int flag, bool set) 1789 { 1790 switch (flag) { 1791 case FI_INLINE_XATTR: 1792 case FI_INLINE_DATA: 1793 case FI_INLINE_DENTRY: 1794 if (set) 1795 return; 1796 case FI_DATA_EXIST: 1797 case FI_INLINE_DOTS: 1798 f2fs_mark_inode_dirty_sync(inode, true); 1799 } 1800 } 1801 1802 static inline void set_inode_flag(struct inode *inode, int flag) 1803 { 1804 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1805 set_bit(flag, &F2FS_I(inode)->flags); 1806 __mark_inode_dirty_flag(inode, flag, true); 1807 } 1808 1809 static inline int is_inode_flag_set(struct inode *inode, int flag) 1810 { 1811 return test_bit(flag, &F2FS_I(inode)->flags); 1812 } 1813 1814 static inline void clear_inode_flag(struct inode *inode, int flag) 1815 { 1816 if (test_bit(flag, &F2FS_I(inode)->flags)) 1817 clear_bit(flag, &F2FS_I(inode)->flags); 1818 __mark_inode_dirty_flag(inode, flag, false); 1819 } 1820 1821 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1822 { 1823 F2FS_I(inode)->i_acl_mode = mode; 1824 set_inode_flag(inode, FI_ACL_MODE); 1825 f2fs_mark_inode_dirty_sync(inode, false); 1826 } 1827 1828 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1829 { 1830 if (inc) 1831 inc_nlink(inode); 1832 else 1833 drop_nlink(inode); 1834 f2fs_mark_inode_dirty_sync(inode, true); 1835 } 1836 1837 static inline void f2fs_i_blocks_write(struct inode *inode, 1838 blkcnt_t diff, bool add) 1839 { 1840 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1841 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1842 1843 inode->i_blocks = add ? inode->i_blocks + diff : 1844 inode->i_blocks - diff; 1845 f2fs_mark_inode_dirty_sync(inode, true); 1846 if (clean || recover) 1847 set_inode_flag(inode, FI_AUTO_RECOVER); 1848 } 1849 1850 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1851 { 1852 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1853 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1854 1855 if (i_size_read(inode) == i_size) 1856 return; 1857 1858 i_size_write(inode, i_size); 1859 f2fs_mark_inode_dirty_sync(inode, true); 1860 if (clean || recover) 1861 set_inode_flag(inode, FI_AUTO_RECOVER); 1862 } 1863 1864 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1865 { 1866 F2FS_I(inode)->i_current_depth = depth; 1867 f2fs_mark_inode_dirty_sync(inode, true); 1868 } 1869 1870 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1871 { 1872 F2FS_I(inode)->i_xattr_nid = xnid; 1873 f2fs_mark_inode_dirty_sync(inode, true); 1874 } 1875 1876 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1877 { 1878 F2FS_I(inode)->i_pino = pino; 1879 f2fs_mark_inode_dirty_sync(inode, true); 1880 } 1881 1882 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1883 { 1884 struct f2fs_inode_info *fi = F2FS_I(inode); 1885 1886 if (ri->i_inline & F2FS_INLINE_XATTR) 1887 set_bit(FI_INLINE_XATTR, &fi->flags); 1888 if (ri->i_inline & F2FS_INLINE_DATA) 1889 set_bit(FI_INLINE_DATA, &fi->flags); 1890 if (ri->i_inline & F2FS_INLINE_DENTRY) 1891 set_bit(FI_INLINE_DENTRY, &fi->flags); 1892 if (ri->i_inline & F2FS_DATA_EXIST) 1893 set_bit(FI_DATA_EXIST, &fi->flags); 1894 if (ri->i_inline & F2FS_INLINE_DOTS) 1895 set_bit(FI_INLINE_DOTS, &fi->flags); 1896 } 1897 1898 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1899 { 1900 ri->i_inline = 0; 1901 1902 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1903 ri->i_inline |= F2FS_INLINE_XATTR; 1904 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1905 ri->i_inline |= F2FS_INLINE_DATA; 1906 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1907 ri->i_inline |= F2FS_INLINE_DENTRY; 1908 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1909 ri->i_inline |= F2FS_DATA_EXIST; 1910 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 1911 ri->i_inline |= F2FS_INLINE_DOTS; 1912 } 1913 1914 static inline int f2fs_has_inline_xattr(struct inode *inode) 1915 { 1916 return is_inode_flag_set(inode, FI_INLINE_XATTR); 1917 } 1918 1919 static inline unsigned int addrs_per_inode(struct inode *inode) 1920 { 1921 if (f2fs_has_inline_xattr(inode)) 1922 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1923 return DEF_ADDRS_PER_INODE; 1924 } 1925 1926 static inline void *inline_xattr_addr(struct page *page) 1927 { 1928 struct f2fs_inode *ri = F2FS_INODE(page); 1929 1930 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1931 F2FS_INLINE_XATTR_ADDRS]); 1932 } 1933 1934 static inline int inline_xattr_size(struct inode *inode) 1935 { 1936 if (f2fs_has_inline_xattr(inode)) 1937 return F2FS_INLINE_XATTR_ADDRS << 2; 1938 else 1939 return 0; 1940 } 1941 1942 static inline int f2fs_has_inline_data(struct inode *inode) 1943 { 1944 return is_inode_flag_set(inode, FI_INLINE_DATA); 1945 } 1946 1947 static inline int f2fs_exist_data(struct inode *inode) 1948 { 1949 return is_inode_flag_set(inode, FI_DATA_EXIST); 1950 } 1951 1952 static inline int f2fs_has_inline_dots(struct inode *inode) 1953 { 1954 return is_inode_flag_set(inode, FI_INLINE_DOTS); 1955 } 1956 1957 static inline bool f2fs_is_atomic_file(struct inode *inode) 1958 { 1959 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 1960 } 1961 1962 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 1963 { 1964 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 1965 } 1966 1967 static inline bool f2fs_is_volatile_file(struct inode *inode) 1968 { 1969 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 1970 } 1971 1972 static inline bool f2fs_is_first_block_written(struct inode *inode) 1973 { 1974 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 1975 } 1976 1977 static inline bool f2fs_is_drop_cache(struct inode *inode) 1978 { 1979 return is_inode_flag_set(inode, FI_DROP_CACHE); 1980 } 1981 1982 static inline void *inline_data_addr(struct page *page) 1983 { 1984 struct f2fs_inode *ri = F2FS_INODE(page); 1985 1986 return (void *)&(ri->i_addr[1]); 1987 } 1988 1989 static inline int f2fs_has_inline_dentry(struct inode *inode) 1990 { 1991 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 1992 } 1993 1994 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1995 { 1996 if (!f2fs_has_inline_dentry(dir)) 1997 kunmap(page); 1998 } 1999 2000 static inline int is_file(struct inode *inode, int type) 2001 { 2002 return F2FS_I(inode)->i_advise & type; 2003 } 2004 2005 static inline void set_file(struct inode *inode, int type) 2006 { 2007 F2FS_I(inode)->i_advise |= type; 2008 f2fs_mark_inode_dirty_sync(inode, true); 2009 } 2010 2011 static inline void clear_file(struct inode *inode, int type) 2012 { 2013 F2FS_I(inode)->i_advise &= ~type; 2014 f2fs_mark_inode_dirty_sync(inode, true); 2015 } 2016 2017 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2018 { 2019 if (dsync) { 2020 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2021 bool ret; 2022 2023 spin_lock(&sbi->inode_lock[DIRTY_META]); 2024 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2025 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2026 return ret; 2027 } 2028 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2029 file_keep_isize(inode) || 2030 i_size_read(inode) & PAGE_MASK) 2031 return false; 2032 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 2033 } 2034 2035 static inline int f2fs_readonly(struct super_block *sb) 2036 { 2037 return sb->s_flags & MS_RDONLY; 2038 } 2039 2040 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2041 { 2042 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2043 } 2044 2045 static inline bool is_dot_dotdot(const struct qstr *str) 2046 { 2047 if (str->len == 1 && str->name[0] == '.') 2048 return true; 2049 2050 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2051 return true; 2052 2053 return false; 2054 } 2055 2056 static inline bool f2fs_may_extent_tree(struct inode *inode) 2057 { 2058 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2059 is_inode_flag_set(inode, FI_NO_EXTENT)) 2060 return false; 2061 2062 return S_ISREG(inode->i_mode); 2063 } 2064 2065 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2066 size_t size, gfp_t flags) 2067 { 2068 #ifdef CONFIG_F2FS_FAULT_INJECTION 2069 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2070 f2fs_show_injection_info(FAULT_KMALLOC); 2071 return NULL; 2072 } 2073 #endif 2074 return kmalloc(size, flags); 2075 } 2076 2077 #define get_inode_mode(i) \ 2078 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2079 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2080 2081 /* 2082 * file.c 2083 */ 2084 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2085 void truncate_data_blocks(struct dnode_of_data *dn); 2086 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2087 int f2fs_truncate(struct inode *inode); 2088 int f2fs_getattr(const struct path *path, struct kstat *stat, 2089 u32 request_mask, unsigned int flags); 2090 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2091 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2092 int truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2093 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2094 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2095 2096 /* 2097 * inode.c 2098 */ 2099 void f2fs_set_inode_flags(struct inode *inode); 2100 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2101 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2102 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2103 int update_inode(struct inode *inode, struct page *node_page); 2104 int update_inode_page(struct inode *inode); 2105 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2106 void f2fs_evict_inode(struct inode *inode); 2107 void handle_failed_inode(struct inode *inode); 2108 2109 /* 2110 * namei.c 2111 */ 2112 struct dentry *f2fs_get_parent(struct dentry *child); 2113 2114 /* 2115 * dir.c 2116 */ 2117 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2118 unsigned char get_de_type(struct f2fs_dir_entry *de); 2119 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2120 f2fs_hash_t namehash, int *max_slots, 2121 struct f2fs_dentry_ptr *d); 2122 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2123 unsigned int start_pos, struct fscrypt_str *fstr); 2124 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2125 struct f2fs_dentry_ptr *d); 2126 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2127 const struct qstr *new_name, 2128 const struct qstr *orig_name, struct page *dpage); 2129 void update_parent_metadata(struct inode *dir, struct inode *inode, 2130 unsigned int current_depth); 2131 int room_for_filename(const void *bitmap, int slots, int max_slots); 2132 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2133 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2134 struct fscrypt_name *fname, struct page **res_page); 2135 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2136 const struct qstr *child, struct page **res_page); 2137 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2138 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2139 struct page **page); 2140 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2141 struct page *page, struct inode *inode); 2142 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2143 const struct qstr *name, f2fs_hash_t name_hash, 2144 unsigned int bit_pos); 2145 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2146 const struct qstr *orig_name, 2147 struct inode *inode, nid_t ino, umode_t mode); 2148 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2149 struct inode *inode, nid_t ino, umode_t mode); 2150 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2151 struct inode *inode, nid_t ino, umode_t mode); 2152 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2153 struct inode *dir, struct inode *inode); 2154 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2155 bool f2fs_empty_dir(struct inode *dir); 2156 2157 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2158 { 2159 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2160 inode, inode->i_ino, inode->i_mode); 2161 } 2162 2163 /* 2164 * super.c 2165 */ 2166 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2167 void f2fs_inode_synced(struct inode *inode); 2168 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2169 int f2fs_sync_fs(struct super_block *sb, int sync); 2170 extern __printf(3, 4) 2171 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2172 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2173 2174 /* 2175 * hash.c 2176 */ 2177 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2178 struct fscrypt_name *fname); 2179 2180 /* 2181 * node.c 2182 */ 2183 struct dnode_of_data; 2184 struct node_info; 2185 2186 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2187 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2188 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2189 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2190 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2191 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2192 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2193 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2194 int truncate_xattr_node(struct inode *inode, struct page *page); 2195 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2196 int remove_inode_page(struct inode *inode); 2197 struct page *new_inode_page(struct inode *inode); 2198 struct page *new_node_page(struct dnode_of_data *dn, 2199 unsigned int ofs, struct page *ipage); 2200 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2201 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2202 struct page *get_node_page_ra(struct page *parent, int start); 2203 void move_node_page(struct page *node_page, int gc_type); 2204 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2205 struct writeback_control *wbc, bool atomic); 2206 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc); 2207 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2208 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2209 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2210 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2211 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2212 void recover_inline_xattr(struct inode *inode, struct page *page); 2213 int recover_xattr_data(struct inode *inode, struct page *page, 2214 block_t blkaddr); 2215 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2216 int restore_node_summary(struct f2fs_sb_info *sbi, 2217 unsigned int segno, struct f2fs_summary_block *sum); 2218 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2219 int build_node_manager(struct f2fs_sb_info *sbi); 2220 void destroy_node_manager(struct f2fs_sb_info *sbi); 2221 int __init create_node_manager_caches(void); 2222 void destroy_node_manager_caches(void); 2223 2224 /* 2225 * segment.c 2226 */ 2227 void register_inmem_page(struct inode *inode, struct page *page); 2228 void drop_inmem_pages(struct inode *inode); 2229 void drop_inmem_page(struct inode *inode, struct page *page); 2230 int commit_inmem_pages(struct inode *inode); 2231 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2232 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2233 int f2fs_issue_flush(struct f2fs_sb_info *sbi); 2234 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2235 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2236 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2237 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2238 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new); 2239 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2240 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2241 void release_discard_addrs(struct f2fs_sb_info *sbi); 2242 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2243 void allocate_new_segments(struct f2fs_sb_info *sbi); 2244 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2245 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2246 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2247 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2248 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page); 2249 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2250 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2251 int rewrite_data_page(struct f2fs_io_info *fio); 2252 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2253 block_t old_blkaddr, block_t new_blkaddr, 2254 bool recover_curseg, bool recover_newaddr); 2255 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2256 block_t old_addr, block_t new_addr, 2257 unsigned char version, bool recover_curseg, 2258 bool recover_newaddr); 2259 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2260 block_t old_blkaddr, block_t *new_blkaddr, 2261 struct f2fs_summary *sum, int type); 2262 void f2fs_wait_on_page_writeback(struct page *page, 2263 enum page_type type, bool ordered); 2264 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 2265 block_t blkaddr); 2266 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2267 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2268 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2269 unsigned int val, int alloc); 2270 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2271 int build_segment_manager(struct f2fs_sb_info *sbi); 2272 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2273 int __init create_segment_manager_caches(void); 2274 void destroy_segment_manager_caches(void); 2275 2276 /* 2277 * checkpoint.c 2278 */ 2279 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2280 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2281 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2282 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2283 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2284 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2285 int type, bool sync); 2286 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2287 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2288 long nr_to_write); 2289 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2290 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2291 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2292 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2293 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2294 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2295 void release_orphan_inode(struct f2fs_sb_info *sbi); 2296 void add_orphan_inode(struct inode *inode); 2297 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2298 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2299 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2300 void update_dirty_page(struct inode *inode, struct page *page); 2301 void remove_dirty_inode(struct inode *inode); 2302 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2303 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2304 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2305 int __init create_checkpoint_caches(void); 2306 void destroy_checkpoint_caches(void); 2307 2308 /* 2309 * data.c 2310 */ 2311 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 2312 int rw); 2313 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 2314 struct inode *inode, nid_t ino, pgoff_t idx, 2315 enum page_type type, int rw); 2316 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi); 2317 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2318 int f2fs_submit_page_mbio(struct f2fs_io_info *fio); 2319 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2320 block_t blk_addr, struct bio *bio); 2321 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2322 void set_data_blkaddr(struct dnode_of_data *dn); 2323 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2324 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2325 int reserve_new_block(struct dnode_of_data *dn); 2326 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2327 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2328 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2329 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2330 int op_flags, bool for_write); 2331 struct page *find_data_page(struct inode *inode, pgoff_t index); 2332 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2333 bool for_write); 2334 struct page *get_new_data_page(struct inode *inode, 2335 struct page *ipage, pgoff_t index, bool new_i_size); 2336 int do_write_data_page(struct f2fs_io_info *fio); 2337 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2338 int create, int flag); 2339 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2340 u64 start, u64 len); 2341 void f2fs_set_page_dirty_nobuffers(struct page *page); 2342 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2343 unsigned int length); 2344 int f2fs_release_page(struct page *page, gfp_t wait); 2345 #ifdef CONFIG_MIGRATION 2346 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2347 struct page *page, enum migrate_mode mode); 2348 #endif 2349 2350 /* 2351 * gc.c 2352 */ 2353 int start_gc_thread(struct f2fs_sb_info *sbi); 2354 void stop_gc_thread(struct f2fs_sb_info *sbi); 2355 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2356 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2357 unsigned int segno); 2358 void build_gc_manager(struct f2fs_sb_info *sbi); 2359 2360 /* 2361 * recovery.c 2362 */ 2363 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2364 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2365 2366 /* 2367 * debug.c 2368 */ 2369 #ifdef CONFIG_F2FS_STAT_FS 2370 struct f2fs_stat_info { 2371 struct list_head stat_list; 2372 struct f2fs_sb_info *sbi; 2373 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2374 int main_area_segs, main_area_sections, main_area_zones; 2375 unsigned long long hit_largest, hit_cached, hit_rbtree; 2376 unsigned long long hit_total, total_ext; 2377 int ext_tree, zombie_tree, ext_node; 2378 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2379 int inmem_pages; 2380 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2381 int nats, dirty_nats, sits, dirty_sits; 2382 int free_nids, avail_nids, alloc_nids; 2383 int total_count, utilization; 2384 int bg_gc, nr_wb_cp_data, nr_wb_data; 2385 int nr_flushing, nr_flushed, nr_discarding, nr_discarded; 2386 int nr_discard_cmd; 2387 unsigned int undiscard_blks; 2388 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2389 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2390 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2391 unsigned int bimodal, avg_vblocks; 2392 int util_free, util_valid, util_invalid; 2393 int rsvd_segs, overp_segs; 2394 int dirty_count, node_pages, meta_pages; 2395 int prefree_count, call_count, cp_count, bg_cp_count; 2396 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2397 int bg_node_segs, bg_data_segs; 2398 int tot_blks, data_blks, node_blks; 2399 int bg_data_blks, bg_node_blks; 2400 int curseg[NR_CURSEG_TYPE]; 2401 int cursec[NR_CURSEG_TYPE]; 2402 int curzone[NR_CURSEG_TYPE]; 2403 2404 unsigned int segment_count[2]; 2405 unsigned int block_count[2]; 2406 unsigned int inplace_count; 2407 unsigned long long base_mem, cache_mem, page_mem; 2408 }; 2409 2410 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2411 { 2412 return (struct f2fs_stat_info *)sbi->stat_info; 2413 } 2414 2415 #define stat_inc_cp_count(si) ((si)->cp_count++) 2416 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2417 #define stat_inc_call_count(si) ((si)->call_count++) 2418 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2419 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2420 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2421 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2422 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2423 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2424 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2425 #define stat_inc_inline_xattr(inode) \ 2426 do { \ 2427 if (f2fs_has_inline_xattr(inode)) \ 2428 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2429 } while (0) 2430 #define stat_dec_inline_xattr(inode) \ 2431 do { \ 2432 if (f2fs_has_inline_xattr(inode)) \ 2433 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2434 } while (0) 2435 #define stat_inc_inline_inode(inode) \ 2436 do { \ 2437 if (f2fs_has_inline_data(inode)) \ 2438 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2439 } while (0) 2440 #define stat_dec_inline_inode(inode) \ 2441 do { \ 2442 if (f2fs_has_inline_data(inode)) \ 2443 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2444 } while (0) 2445 #define stat_inc_inline_dir(inode) \ 2446 do { \ 2447 if (f2fs_has_inline_dentry(inode)) \ 2448 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2449 } while (0) 2450 #define stat_dec_inline_dir(inode) \ 2451 do { \ 2452 if (f2fs_has_inline_dentry(inode)) \ 2453 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2454 } while (0) 2455 #define stat_inc_seg_type(sbi, curseg) \ 2456 ((sbi)->segment_count[(curseg)->alloc_type]++) 2457 #define stat_inc_block_count(sbi, curseg) \ 2458 ((sbi)->block_count[(curseg)->alloc_type]++) 2459 #define stat_inc_inplace_blocks(sbi) \ 2460 (atomic_inc(&(sbi)->inplace_count)) 2461 #define stat_inc_atomic_write(inode) \ 2462 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2463 #define stat_dec_atomic_write(inode) \ 2464 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2465 #define stat_update_max_atomic_write(inode) \ 2466 do { \ 2467 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2468 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2469 if (cur > max) \ 2470 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2471 } while (0) 2472 #define stat_inc_volatile_write(inode) \ 2473 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 2474 #define stat_dec_volatile_write(inode) \ 2475 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 2476 #define stat_update_max_volatile_write(inode) \ 2477 do { \ 2478 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 2479 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 2480 if (cur > max) \ 2481 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 2482 } while (0) 2483 #define stat_inc_seg_count(sbi, type, gc_type) \ 2484 do { \ 2485 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2486 si->tot_segs++; \ 2487 if ((type) == SUM_TYPE_DATA) { \ 2488 si->data_segs++; \ 2489 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2490 } else { \ 2491 si->node_segs++; \ 2492 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2493 } \ 2494 } while (0) 2495 2496 #define stat_inc_tot_blk_count(si, blks) \ 2497 ((si)->tot_blks += (blks)) 2498 2499 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2500 do { \ 2501 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2502 stat_inc_tot_blk_count(si, blks); \ 2503 si->data_blks += (blks); \ 2504 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2505 } while (0) 2506 2507 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2508 do { \ 2509 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2510 stat_inc_tot_blk_count(si, blks); \ 2511 si->node_blks += (blks); \ 2512 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2513 } while (0) 2514 2515 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2516 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2517 int __init f2fs_create_root_stats(void); 2518 void f2fs_destroy_root_stats(void); 2519 #else 2520 #define stat_inc_cp_count(si) do { } while (0) 2521 #define stat_inc_bg_cp_count(si) do { } while (0) 2522 #define stat_inc_call_count(si) do { } while (0) 2523 #define stat_inc_bggc_count(si) do { } while (0) 2524 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 2525 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 2526 #define stat_inc_total_hit(sb) do { } while (0) 2527 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 2528 #define stat_inc_largest_node_hit(sbi) do { } while (0) 2529 #define stat_inc_cached_node_hit(sbi) do { } while (0) 2530 #define stat_inc_inline_xattr(inode) do { } while (0) 2531 #define stat_dec_inline_xattr(inode) do { } while (0) 2532 #define stat_inc_inline_inode(inode) do { } while (0) 2533 #define stat_dec_inline_inode(inode) do { } while (0) 2534 #define stat_inc_inline_dir(inode) do { } while (0) 2535 #define stat_dec_inline_dir(inode) do { } while (0) 2536 #define stat_inc_atomic_write(inode) do { } while (0) 2537 #define stat_dec_atomic_write(inode) do { } while (0) 2538 #define stat_update_max_atomic_write(inode) do { } while (0) 2539 #define stat_inc_volatile_write(inode) do { } while (0) 2540 #define stat_dec_volatile_write(inode) do { } while (0) 2541 #define stat_update_max_volatile_write(inode) do { } while (0) 2542 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 2543 #define stat_inc_block_count(sbi, curseg) do { } while (0) 2544 #define stat_inc_inplace_blocks(sbi) do { } while (0) 2545 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 2546 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 2547 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 2548 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 2549 2550 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2551 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2552 static inline int __init f2fs_create_root_stats(void) { return 0; } 2553 static inline void f2fs_destroy_root_stats(void) { } 2554 #endif 2555 2556 extern const struct file_operations f2fs_dir_operations; 2557 extern const struct file_operations f2fs_file_operations; 2558 extern const struct inode_operations f2fs_file_inode_operations; 2559 extern const struct address_space_operations f2fs_dblock_aops; 2560 extern const struct address_space_operations f2fs_node_aops; 2561 extern const struct address_space_operations f2fs_meta_aops; 2562 extern const struct inode_operations f2fs_dir_inode_operations; 2563 extern const struct inode_operations f2fs_symlink_inode_operations; 2564 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2565 extern const struct inode_operations f2fs_special_inode_operations; 2566 extern struct kmem_cache *inode_entry_slab; 2567 2568 /* 2569 * inline.c 2570 */ 2571 bool f2fs_may_inline_data(struct inode *inode); 2572 bool f2fs_may_inline_dentry(struct inode *inode); 2573 void read_inline_data(struct page *page, struct page *ipage); 2574 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 2575 int f2fs_read_inline_data(struct inode *inode, struct page *page); 2576 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 2577 int f2fs_convert_inline_inode(struct inode *inode); 2578 int f2fs_write_inline_data(struct inode *inode, struct page *page); 2579 bool recover_inline_data(struct inode *inode, struct page *npage); 2580 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 2581 struct fscrypt_name *fname, struct page **res_page); 2582 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 2583 struct page *ipage); 2584 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 2585 const struct qstr *orig_name, 2586 struct inode *inode, nid_t ino, umode_t mode); 2587 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 2588 struct inode *dir, struct inode *inode); 2589 bool f2fs_empty_inline_dir(struct inode *dir); 2590 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 2591 struct fscrypt_str *fstr); 2592 int f2fs_inline_data_fiemap(struct inode *inode, 2593 struct fiemap_extent_info *fieinfo, 2594 __u64 start, __u64 len); 2595 2596 /* 2597 * shrinker.c 2598 */ 2599 unsigned long f2fs_shrink_count(struct shrinker *shrink, 2600 struct shrink_control *sc); 2601 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 2602 struct shrink_control *sc); 2603 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 2604 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 2605 2606 /* 2607 * extent_cache.c 2608 */ 2609 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 2610 struct rb_entry *cached_re, unsigned int ofs); 2611 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 2612 struct rb_root *root, struct rb_node **parent, 2613 unsigned int ofs); 2614 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 2615 struct rb_entry *cached_re, unsigned int ofs, 2616 struct rb_entry **prev_entry, struct rb_entry **next_entry, 2617 struct rb_node ***insert_p, struct rb_node **insert_parent, 2618 bool force); 2619 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 2620 struct rb_root *root); 2621 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 2622 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 2623 void f2fs_drop_extent_tree(struct inode *inode); 2624 unsigned int f2fs_destroy_extent_node(struct inode *inode); 2625 void f2fs_destroy_extent_tree(struct inode *inode); 2626 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 2627 struct extent_info *ei); 2628 void f2fs_update_extent_cache(struct dnode_of_data *dn); 2629 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2630 pgoff_t fofs, block_t blkaddr, unsigned int len); 2631 void init_extent_cache_info(struct f2fs_sb_info *sbi); 2632 int __init create_extent_cache(void); 2633 void destroy_extent_cache(void); 2634 2635 /* 2636 * crypto support 2637 */ 2638 static inline bool f2fs_encrypted_inode(struct inode *inode) 2639 { 2640 return file_is_encrypt(inode); 2641 } 2642 2643 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2644 { 2645 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2646 file_set_encrypt(inode); 2647 #endif 2648 } 2649 2650 static inline bool f2fs_bio_encrypted(struct bio *bio) 2651 { 2652 return bio->bi_private != NULL; 2653 } 2654 2655 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2656 { 2657 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2658 } 2659 2660 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 2661 { 2662 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 2663 } 2664 2665 #ifdef CONFIG_BLK_DEV_ZONED 2666 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 2667 struct block_device *bdev, block_t blkaddr) 2668 { 2669 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 2670 int i; 2671 2672 for (i = 0; i < sbi->s_ndevs; i++) 2673 if (FDEV(i).bdev == bdev) 2674 return FDEV(i).blkz_type[zno]; 2675 return -EINVAL; 2676 } 2677 #endif 2678 2679 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 2680 { 2681 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 2682 2683 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 2684 } 2685 2686 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2687 { 2688 clear_opt(sbi, ADAPTIVE); 2689 clear_opt(sbi, LFS); 2690 2691 switch (mt) { 2692 case F2FS_MOUNT_ADAPTIVE: 2693 set_opt(sbi, ADAPTIVE); 2694 break; 2695 case F2FS_MOUNT_LFS: 2696 set_opt(sbi, LFS); 2697 break; 2698 } 2699 } 2700 2701 static inline bool f2fs_may_encrypt(struct inode *inode) 2702 { 2703 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2704 umode_t mode = inode->i_mode; 2705 2706 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2707 #else 2708 return 0; 2709 #endif 2710 } 2711 2712 #endif 2713