1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #ifdef CONFIG_F2FS_FS_ENCRYPTION 26 #include <linux/fscrypt_supp.h> 27 #else 28 #include <linux/fscrypt_notsupp.h> 29 #endif 30 #include <crypto/hash.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_ALLOC_NID, 49 FAULT_ORPHAN, 50 FAULT_BLOCK, 51 FAULT_DIR_DEPTH, 52 FAULT_EVICT_INODE, 53 FAULT_IO, 54 FAULT_CHECKPOINT, 55 FAULT_MAX, 56 }; 57 58 struct f2fs_fault_info { 59 atomic_t inject_ops; 60 unsigned int inject_rate; 61 unsigned int inject_type; 62 }; 63 64 extern char *fault_name[FAULT_MAX]; 65 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type))) 66 #endif 67 68 /* 69 * For mount options 70 */ 71 #define F2FS_MOUNT_BG_GC 0x00000001 72 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 73 #define F2FS_MOUNT_DISCARD 0x00000004 74 #define F2FS_MOUNT_NOHEAP 0x00000008 75 #define F2FS_MOUNT_XATTR_USER 0x00000010 76 #define F2FS_MOUNT_POSIX_ACL 0x00000020 77 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 78 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 79 #define F2FS_MOUNT_INLINE_DATA 0x00000100 80 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 81 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 82 #define F2FS_MOUNT_NOBARRIER 0x00000800 83 #define F2FS_MOUNT_FASTBOOT 0x00001000 84 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 85 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 86 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 87 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 88 #define F2FS_MOUNT_ADAPTIVE 0x00020000 89 #define F2FS_MOUNT_LFS 0x00040000 90 91 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 92 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 93 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 94 95 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 96 typecheck(unsigned long long, b) && \ 97 ((long long)((a) - (b)) > 0)) 98 99 typedef u32 block_t; /* 100 * should not change u32, since it is the on-disk block 101 * address format, __le32. 102 */ 103 typedef u32 nid_t; 104 105 struct f2fs_mount_info { 106 unsigned int opt; 107 }; 108 109 #define F2FS_FEATURE_ENCRYPT 0x0001 110 #define F2FS_FEATURE_BLKZONED 0x0002 111 112 #define F2FS_HAS_FEATURE(sb, mask) \ 113 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 114 #define F2FS_SET_FEATURE(sb, mask) \ 115 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 116 #define F2FS_CLEAR_FEATURE(sb, mask) \ 117 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 118 119 /* 120 * For checkpoint manager 121 */ 122 enum { 123 NAT_BITMAP, 124 SIT_BITMAP 125 }; 126 127 enum { 128 CP_UMOUNT, 129 CP_FASTBOOT, 130 CP_SYNC, 131 CP_RECOVERY, 132 CP_DISCARD, 133 }; 134 135 #define DEF_BATCHED_TRIM_SECTIONS 2048 136 #define BATCHED_TRIM_SEGMENTS(sbi) \ 137 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 138 #define BATCHED_TRIM_BLOCKS(sbi) \ 139 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 140 #define MAX_DISCARD_BLOCKS(sbi) \ 141 ((1 << (sbi)->log_blocks_per_seg) * (sbi)->segs_per_sec) 142 #define DISCARD_ISSUE_RATE 8 143 #define DEF_CP_INTERVAL 60 /* 60 secs */ 144 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 145 146 struct cp_control { 147 int reason; 148 __u64 trim_start; 149 __u64 trim_end; 150 __u64 trim_minlen; 151 __u64 trimmed; 152 }; 153 154 /* 155 * For CP/NAT/SIT/SSA readahead 156 */ 157 enum { 158 META_CP, 159 META_NAT, 160 META_SIT, 161 META_SSA, 162 META_POR, 163 }; 164 165 /* for the list of ino */ 166 enum { 167 ORPHAN_INO, /* for orphan ino list */ 168 APPEND_INO, /* for append ino list */ 169 UPDATE_INO, /* for update ino list */ 170 MAX_INO_ENTRY, /* max. list */ 171 }; 172 173 struct ino_entry { 174 struct list_head list; /* list head */ 175 nid_t ino; /* inode number */ 176 }; 177 178 /* for the list of inodes to be GCed */ 179 struct inode_entry { 180 struct list_head list; /* list head */ 181 struct inode *inode; /* vfs inode pointer */ 182 }; 183 184 /* for the list of blockaddresses to be discarded */ 185 struct discard_entry { 186 struct list_head list; /* list head */ 187 block_t blkaddr; /* block address to be discarded */ 188 int len; /* # of consecutive blocks of the discard */ 189 }; 190 191 enum { 192 D_PREP, 193 D_SUBMIT, 194 D_DONE, 195 }; 196 197 struct discard_cmd { 198 struct list_head list; /* command list */ 199 struct completion wait; /* compleation */ 200 block_t lstart; /* logical start address */ 201 block_t len; /* length */ 202 struct bio *bio; /* bio */ 203 int state; /* state */ 204 }; 205 206 struct discard_cmd_control { 207 struct task_struct *f2fs_issue_discard; /* discard thread */ 208 struct list_head discard_entry_list; /* 4KB discard entry list */ 209 int nr_discards; /* # of discards in the list */ 210 struct list_head discard_cmd_list; /* discard cmd list */ 211 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 212 struct mutex cmd_lock; 213 int max_discards; /* max. discards to be issued */ 214 atomic_t submit_discard; /* # of issued discard */ 215 }; 216 217 /* for the list of fsync inodes, used only during recovery */ 218 struct fsync_inode_entry { 219 struct list_head list; /* list head */ 220 struct inode *inode; /* vfs inode pointer */ 221 block_t blkaddr; /* block address locating the last fsync */ 222 block_t last_dentry; /* block address locating the last dentry */ 223 }; 224 225 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 226 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 227 228 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 229 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 230 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 231 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 232 233 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 234 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 235 236 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 237 { 238 int before = nats_in_cursum(journal); 239 240 journal->n_nats = cpu_to_le16(before + i); 241 return before; 242 } 243 244 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 245 { 246 int before = sits_in_cursum(journal); 247 248 journal->n_sits = cpu_to_le16(before + i); 249 return before; 250 } 251 252 static inline bool __has_cursum_space(struct f2fs_journal *journal, 253 int size, int type) 254 { 255 if (type == NAT_JOURNAL) 256 return size <= MAX_NAT_JENTRIES(journal); 257 return size <= MAX_SIT_JENTRIES(journal); 258 } 259 260 /* 261 * ioctl commands 262 */ 263 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 264 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 265 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 266 267 #define F2FS_IOCTL_MAGIC 0xf5 268 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 269 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 270 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 271 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 272 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 273 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 274 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 275 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 276 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 277 struct f2fs_move_range) 278 279 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 280 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 281 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 282 283 /* 284 * should be same as XFS_IOC_GOINGDOWN. 285 * Flags for going down operation used by FS_IOC_GOINGDOWN 286 */ 287 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 288 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 289 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 290 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 291 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 292 293 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 294 /* 295 * ioctl commands in 32 bit emulation 296 */ 297 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 298 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 299 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 300 #endif 301 302 struct f2fs_defragment { 303 u64 start; 304 u64 len; 305 }; 306 307 struct f2fs_move_range { 308 u32 dst_fd; /* destination fd */ 309 u64 pos_in; /* start position in src_fd */ 310 u64 pos_out; /* start position in dst_fd */ 311 u64 len; /* size to move */ 312 }; 313 314 /* 315 * For INODE and NODE manager 316 */ 317 /* for directory operations */ 318 struct f2fs_dentry_ptr { 319 struct inode *inode; 320 const void *bitmap; 321 struct f2fs_dir_entry *dentry; 322 __u8 (*filename)[F2FS_SLOT_LEN]; 323 int max; 324 }; 325 326 static inline void make_dentry_ptr(struct inode *inode, 327 struct f2fs_dentry_ptr *d, void *src, int type) 328 { 329 d->inode = inode; 330 331 if (type == 1) { 332 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 333 334 d->max = NR_DENTRY_IN_BLOCK; 335 d->bitmap = &t->dentry_bitmap; 336 d->dentry = t->dentry; 337 d->filename = t->filename; 338 } else { 339 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 340 341 d->max = NR_INLINE_DENTRY; 342 d->bitmap = &t->dentry_bitmap; 343 d->dentry = t->dentry; 344 d->filename = t->filename; 345 } 346 } 347 348 /* 349 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 350 * as its node offset to distinguish from index node blocks. 351 * But some bits are used to mark the node block. 352 */ 353 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 354 >> OFFSET_BIT_SHIFT) 355 enum { 356 ALLOC_NODE, /* allocate a new node page if needed */ 357 LOOKUP_NODE, /* look up a node without readahead */ 358 LOOKUP_NODE_RA, /* 359 * look up a node with readahead called 360 * by get_data_block. 361 */ 362 }; 363 364 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 365 366 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 367 368 /* vector size for gang look-up from extent cache that consists of radix tree */ 369 #define EXT_TREE_VEC_SIZE 64 370 371 /* for in-memory extent cache entry */ 372 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 373 374 /* number of extent info in extent cache we try to shrink */ 375 #define EXTENT_CACHE_SHRINK_NUMBER 128 376 377 struct extent_info { 378 unsigned int fofs; /* start offset in a file */ 379 u32 blk; /* start block address of the extent */ 380 unsigned int len; /* length of the extent */ 381 }; 382 383 struct extent_node { 384 struct rb_node rb_node; /* rb node located in rb-tree */ 385 struct list_head list; /* node in global extent list of sbi */ 386 struct extent_info ei; /* extent info */ 387 struct extent_tree *et; /* extent tree pointer */ 388 }; 389 390 struct extent_tree { 391 nid_t ino; /* inode number */ 392 struct rb_root root; /* root of extent info rb-tree */ 393 struct extent_node *cached_en; /* recently accessed extent node */ 394 struct extent_info largest; /* largested extent info */ 395 struct list_head list; /* to be used by sbi->zombie_list */ 396 rwlock_t lock; /* protect extent info rb-tree */ 397 atomic_t node_cnt; /* # of extent node in rb-tree*/ 398 }; 399 400 /* 401 * This structure is taken from ext4_map_blocks. 402 * 403 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 404 */ 405 #define F2FS_MAP_NEW (1 << BH_New) 406 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 407 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 408 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 409 F2FS_MAP_UNWRITTEN) 410 411 struct f2fs_map_blocks { 412 block_t m_pblk; 413 block_t m_lblk; 414 unsigned int m_len; 415 unsigned int m_flags; 416 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 417 }; 418 419 /* for flag in get_data_block */ 420 #define F2FS_GET_BLOCK_READ 0 421 #define F2FS_GET_BLOCK_DIO 1 422 #define F2FS_GET_BLOCK_FIEMAP 2 423 #define F2FS_GET_BLOCK_BMAP 3 424 #define F2FS_GET_BLOCK_PRE_DIO 4 425 #define F2FS_GET_BLOCK_PRE_AIO 5 426 427 /* 428 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 429 */ 430 #define FADVISE_COLD_BIT 0x01 431 #define FADVISE_LOST_PINO_BIT 0x02 432 #define FADVISE_ENCRYPT_BIT 0x04 433 #define FADVISE_ENC_NAME_BIT 0x08 434 #define FADVISE_KEEP_SIZE_BIT 0x10 435 436 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 437 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 438 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 439 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 440 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 441 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 442 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 443 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 444 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 445 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 446 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 447 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 448 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 449 450 #define DEF_DIR_LEVEL 0 451 452 struct f2fs_inode_info { 453 struct inode vfs_inode; /* serve a vfs inode */ 454 unsigned long i_flags; /* keep an inode flags for ioctl */ 455 unsigned char i_advise; /* use to give file attribute hints */ 456 unsigned char i_dir_level; /* use for dentry level for large dir */ 457 unsigned int i_current_depth; /* use only in directory structure */ 458 unsigned int i_pino; /* parent inode number */ 459 umode_t i_acl_mode; /* keep file acl mode temporarily */ 460 461 /* Use below internally in f2fs*/ 462 unsigned long flags; /* use to pass per-file flags */ 463 struct rw_semaphore i_sem; /* protect fi info */ 464 atomic_t dirty_pages; /* # of dirty pages */ 465 f2fs_hash_t chash; /* hash value of given file name */ 466 unsigned int clevel; /* maximum level of given file name */ 467 struct task_struct *task; /* lookup and create consistency */ 468 nid_t i_xattr_nid; /* node id that contains xattrs */ 469 loff_t last_disk_size; /* lastly written file size */ 470 471 struct list_head dirty_list; /* dirty list for dirs and files */ 472 struct list_head gdirty_list; /* linked in global dirty list */ 473 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 474 struct mutex inmem_lock; /* lock for inmemory pages */ 475 struct extent_tree *extent_tree; /* cached extent_tree entry */ 476 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 477 }; 478 479 static inline void get_extent_info(struct extent_info *ext, 480 struct f2fs_extent *i_ext) 481 { 482 ext->fofs = le32_to_cpu(i_ext->fofs); 483 ext->blk = le32_to_cpu(i_ext->blk); 484 ext->len = le32_to_cpu(i_ext->len); 485 } 486 487 static inline void set_raw_extent(struct extent_info *ext, 488 struct f2fs_extent *i_ext) 489 { 490 i_ext->fofs = cpu_to_le32(ext->fofs); 491 i_ext->blk = cpu_to_le32(ext->blk); 492 i_ext->len = cpu_to_le32(ext->len); 493 } 494 495 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 496 u32 blk, unsigned int len) 497 { 498 ei->fofs = fofs; 499 ei->blk = blk; 500 ei->len = len; 501 } 502 503 static inline bool __is_extent_mergeable(struct extent_info *back, 504 struct extent_info *front) 505 { 506 return (back->fofs + back->len == front->fofs && 507 back->blk + back->len == front->blk); 508 } 509 510 static inline bool __is_back_mergeable(struct extent_info *cur, 511 struct extent_info *back) 512 { 513 return __is_extent_mergeable(back, cur); 514 } 515 516 static inline bool __is_front_mergeable(struct extent_info *cur, 517 struct extent_info *front) 518 { 519 return __is_extent_mergeable(cur, front); 520 } 521 522 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 523 static inline void __try_update_largest_extent(struct inode *inode, 524 struct extent_tree *et, struct extent_node *en) 525 { 526 if (en->ei.len > et->largest.len) { 527 et->largest = en->ei; 528 f2fs_mark_inode_dirty_sync(inode, true); 529 } 530 } 531 532 enum nid_list { 533 FREE_NID_LIST, 534 ALLOC_NID_LIST, 535 MAX_NID_LIST, 536 }; 537 538 struct f2fs_nm_info { 539 block_t nat_blkaddr; /* base disk address of NAT */ 540 nid_t max_nid; /* maximum possible node ids */ 541 nid_t available_nids; /* # of available node ids */ 542 nid_t next_scan_nid; /* the next nid to be scanned */ 543 unsigned int ram_thresh; /* control the memory footprint */ 544 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 545 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 546 547 /* NAT cache management */ 548 struct radix_tree_root nat_root;/* root of the nat entry cache */ 549 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 550 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 551 struct list_head nat_entries; /* cached nat entry list (clean) */ 552 unsigned int nat_cnt; /* the # of cached nat entries */ 553 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 554 unsigned int nat_blocks; /* # of nat blocks */ 555 556 /* free node ids management */ 557 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 558 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ 559 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ 560 spinlock_t nid_list_lock; /* protect nid lists ops */ 561 struct mutex build_lock; /* lock for build free nids */ 562 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 563 unsigned char *nat_block_bitmap; 564 unsigned short *free_nid_count; /* free nid count of NAT block */ 565 spinlock_t free_nid_lock; /* protect updating of nid count */ 566 567 /* for checkpoint */ 568 char *nat_bitmap; /* NAT bitmap pointer */ 569 570 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 571 unsigned char *nat_bits; /* NAT bits blocks */ 572 unsigned char *full_nat_bits; /* full NAT pages */ 573 unsigned char *empty_nat_bits; /* empty NAT pages */ 574 #ifdef CONFIG_F2FS_CHECK_FS 575 char *nat_bitmap_mir; /* NAT bitmap mirror */ 576 #endif 577 int bitmap_size; /* bitmap size */ 578 }; 579 580 /* 581 * this structure is used as one of function parameters. 582 * all the information are dedicated to a given direct node block determined 583 * by the data offset in a file. 584 */ 585 struct dnode_of_data { 586 struct inode *inode; /* vfs inode pointer */ 587 struct page *inode_page; /* its inode page, NULL is possible */ 588 struct page *node_page; /* cached direct node page */ 589 nid_t nid; /* node id of the direct node block */ 590 unsigned int ofs_in_node; /* data offset in the node page */ 591 bool inode_page_locked; /* inode page is locked or not */ 592 bool node_changed; /* is node block changed */ 593 char cur_level; /* level of hole node page */ 594 char max_level; /* level of current page located */ 595 block_t data_blkaddr; /* block address of the node block */ 596 }; 597 598 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 599 struct page *ipage, struct page *npage, nid_t nid) 600 { 601 memset(dn, 0, sizeof(*dn)); 602 dn->inode = inode; 603 dn->inode_page = ipage; 604 dn->node_page = npage; 605 dn->nid = nid; 606 } 607 608 /* 609 * For SIT manager 610 * 611 * By default, there are 6 active log areas across the whole main area. 612 * When considering hot and cold data separation to reduce cleaning overhead, 613 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 614 * respectively. 615 * In the current design, you should not change the numbers intentionally. 616 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 617 * logs individually according to the underlying devices. (default: 6) 618 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 619 * data and 8 for node logs. 620 */ 621 #define NR_CURSEG_DATA_TYPE (3) 622 #define NR_CURSEG_NODE_TYPE (3) 623 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 624 625 enum { 626 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 627 CURSEG_WARM_DATA, /* data blocks */ 628 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 629 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 630 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 631 CURSEG_COLD_NODE, /* indirect node blocks */ 632 NO_CHECK_TYPE, 633 }; 634 635 struct flush_cmd { 636 struct completion wait; 637 struct llist_node llnode; 638 int ret; 639 }; 640 641 struct flush_cmd_control { 642 struct task_struct *f2fs_issue_flush; /* flush thread */ 643 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 644 atomic_t submit_flush; /* # of issued flushes */ 645 struct llist_head issue_list; /* list for command issue */ 646 struct llist_node *dispatch_list; /* list for command dispatch */ 647 }; 648 649 struct f2fs_sm_info { 650 struct sit_info *sit_info; /* whole segment information */ 651 struct free_segmap_info *free_info; /* free segment information */ 652 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 653 struct curseg_info *curseg_array; /* active segment information */ 654 655 block_t seg0_blkaddr; /* block address of 0'th segment */ 656 block_t main_blkaddr; /* start block address of main area */ 657 block_t ssa_blkaddr; /* start block address of SSA area */ 658 659 unsigned int segment_count; /* total # of segments */ 660 unsigned int main_segments; /* # of segments in main area */ 661 unsigned int reserved_segments; /* # of reserved segments */ 662 unsigned int ovp_segments; /* # of overprovision segments */ 663 664 /* a threshold to reclaim prefree segments */ 665 unsigned int rec_prefree_segments; 666 667 /* for batched trimming */ 668 unsigned int trim_sections; /* # of sections to trim */ 669 670 struct list_head sit_entry_set; /* sit entry set list */ 671 672 unsigned int ipu_policy; /* in-place-update policy */ 673 unsigned int min_ipu_util; /* in-place-update threshold */ 674 unsigned int min_fsync_blocks; /* threshold for fsync */ 675 676 /* for flush command control */ 677 struct flush_cmd_control *fcc_info; 678 679 /* for discard command control */ 680 struct discard_cmd_control *dcc_info; 681 }; 682 683 /* 684 * For superblock 685 */ 686 /* 687 * COUNT_TYPE for monitoring 688 * 689 * f2fs monitors the number of several block types such as on-writeback, 690 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 691 */ 692 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 693 enum count_type { 694 F2FS_DIRTY_DENTS, 695 F2FS_DIRTY_DATA, 696 F2FS_DIRTY_NODES, 697 F2FS_DIRTY_META, 698 F2FS_INMEM_PAGES, 699 F2FS_DIRTY_IMETA, 700 F2FS_WB_CP_DATA, 701 F2FS_WB_DATA, 702 NR_COUNT_TYPE, 703 }; 704 705 /* 706 * The below are the page types of bios used in submit_bio(). 707 * The available types are: 708 * DATA User data pages. It operates as async mode. 709 * NODE Node pages. It operates as async mode. 710 * META FS metadata pages such as SIT, NAT, CP. 711 * NR_PAGE_TYPE The number of page types. 712 * META_FLUSH Make sure the previous pages are written 713 * with waiting the bio's completion 714 * ... Only can be used with META. 715 */ 716 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 717 enum page_type { 718 DATA, 719 NODE, 720 META, 721 NR_PAGE_TYPE, 722 META_FLUSH, 723 INMEM, /* the below types are used by tracepoints only. */ 724 INMEM_DROP, 725 INMEM_REVOKE, 726 IPU, 727 OPU, 728 }; 729 730 struct f2fs_io_info { 731 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 732 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 733 int op; /* contains REQ_OP_ */ 734 int op_flags; /* req_flag_bits */ 735 block_t new_blkaddr; /* new block address to be written */ 736 block_t old_blkaddr; /* old block address before Cow */ 737 struct page *page; /* page to be written */ 738 struct page *encrypted_page; /* encrypted page */ 739 bool submitted; /* indicate IO submission */ 740 }; 741 742 #define is_read_io(rw) (rw == READ) 743 struct f2fs_bio_info { 744 struct f2fs_sb_info *sbi; /* f2fs superblock */ 745 struct bio *bio; /* bios to merge */ 746 sector_t last_block_in_bio; /* last block number */ 747 struct f2fs_io_info fio; /* store buffered io info. */ 748 struct rw_semaphore io_rwsem; /* blocking op for bio */ 749 }; 750 751 #define FDEV(i) (sbi->devs[i]) 752 #define RDEV(i) (raw_super->devs[i]) 753 struct f2fs_dev_info { 754 struct block_device *bdev; 755 char path[MAX_PATH_LEN]; 756 unsigned int total_segments; 757 block_t start_blk; 758 block_t end_blk; 759 #ifdef CONFIG_BLK_DEV_ZONED 760 unsigned int nr_blkz; /* Total number of zones */ 761 u8 *blkz_type; /* Array of zones type */ 762 #endif 763 }; 764 765 enum inode_type { 766 DIR_INODE, /* for dirty dir inode */ 767 FILE_INODE, /* for dirty regular/symlink inode */ 768 DIRTY_META, /* for all dirtied inode metadata */ 769 NR_INODE_TYPE, 770 }; 771 772 /* for inner inode cache management */ 773 struct inode_management { 774 struct radix_tree_root ino_root; /* ino entry array */ 775 spinlock_t ino_lock; /* for ino entry lock */ 776 struct list_head ino_list; /* inode list head */ 777 unsigned long ino_num; /* number of entries */ 778 }; 779 780 /* For s_flag in struct f2fs_sb_info */ 781 enum { 782 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 783 SBI_IS_CLOSE, /* specify unmounting */ 784 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 785 SBI_POR_DOING, /* recovery is doing or not */ 786 SBI_NEED_SB_WRITE, /* need to recover superblock */ 787 SBI_NEED_CP, /* need to checkpoint */ 788 }; 789 790 enum { 791 CP_TIME, 792 REQ_TIME, 793 MAX_TIME, 794 }; 795 796 struct f2fs_sb_info { 797 struct super_block *sb; /* pointer to VFS super block */ 798 struct proc_dir_entry *s_proc; /* proc entry */ 799 struct f2fs_super_block *raw_super; /* raw super block pointer */ 800 int valid_super_block; /* valid super block no */ 801 unsigned long s_flag; /* flags for sbi */ 802 803 #ifdef CONFIG_BLK_DEV_ZONED 804 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 805 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 806 #endif 807 808 /* for node-related operations */ 809 struct f2fs_nm_info *nm_info; /* node manager */ 810 struct inode *node_inode; /* cache node blocks */ 811 812 /* for segment-related operations */ 813 struct f2fs_sm_info *sm_info; /* segment manager */ 814 815 /* for bio operations */ 816 struct f2fs_bio_info read_io; /* for read bios */ 817 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 818 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ 819 int write_io_size_bits; /* Write IO size bits */ 820 mempool_t *write_io_dummy; /* Dummy pages */ 821 822 /* for checkpoint */ 823 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 824 int cur_cp_pack; /* remain current cp pack */ 825 spinlock_t cp_lock; /* for flag in ckpt */ 826 struct inode *meta_inode; /* cache meta blocks */ 827 struct mutex cp_mutex; /* checkpoint procedure lock */ 828 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 829 struct rw_semaphore node_write; /* locking node writes */ 830 wait_queue_head_t cp_wait; 831 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 832 long interval_time[MAX_TIME]; /* to store thresholds */ 833 834 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 835 836 /* for orphan inode, use 0'th array */ 837 unsigned int max_orphans; /* max orphan inodes */ 838 839 /* for inode management */ 840 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 841 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 842 843 /* for extent tree cache */ 844 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 845 struct mutex extent_tree_lock; /* locking extent radix tree */ 846 struct list_head extent_list; /* lru list for shrinker */ 847 spinlock_t extent_lock; /* locking extent lru list */ 848 atomic_t total_ext_tree; /* extent tree count */ 849 struct list_head zombie_list; /* extent zombie tree list */ 850 atomic_t total_zombie_tree; /* extent zombie tree count */ 851 atomic_t total_ext_node; /* extent info count */ 852 853 /* basic filesystem units */ 854 unsigned int log_sectors_per_block; /* log2 sectors per block */ 855 unsigned int log_blocksize; /* log2 block size */ 856 unsigned int blocksize; /* block size */ 857 unsigned int root_ino_num; /* root inode number*/ 858 unsigned int node_ino_num; /* node inode number*/ 859 unsigned int meta_ino_num; /* meta inode number*/ 860 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 861 unsigned int blocks_per_seg; /* blocks per segment */ 862 unsigned int segs_per_sec; /* segments per section */ 863 unsigned int secs_per_zone; /* sections per zone */ 864 unsigned int total_sections; /* total section count */ 865 unsigned int total_node_count; /* total node block count */ 866 unsigned int total_valid_node_count; /* valid node block count */ 867 loff_t max_file_blocks; /* max block index of file */ 868 int active_logs; /* # of active logs */ 869 int dir_level; /* directory level */ 870 871 block_t user_block_count; /* # of user blocks */ 872 block_t total_valid_block_count; /* # of valid blocks */ 873 block_t discard_blks; /* discard command candidats */ 874 block_t last_valid_block_count; /* for recovery */ 875 u32 s_next_generation; /* for NFS support */ 876 877 /* # of pages, see count_type */ 878 atomic_t nr_pages[NR_COUNT_TYPE]; 879 /* # of allocated blocks */ 880 struct percpu_counter alloc_valid_block_count; 881 882 /* valid inode count */ 883 struct percpu_counter total_valid_inode_count; 884 885 struct f2fs_mount_info mount_opt; /* mount options */ 886 887 /* for cleaning operations */ 888 struct mutex gc_mutex; /* mutex for GC */ 889 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 890 unsigned int cur_victim_sec; /* current victim section num */ 891 892 /* threshold for converting bg victims for fg */ 893 u64 fggc_threshold; 894 895 /* maximum # of trials to find a victim segment for SSR and GC */ 896 unsigned int max_victim_search; 897 898 /* 899 * for stat information. 900 * one is for the LFS mode, and the other is for the SSR mode. 901 */ 902 #ifdef CONFIG_F2FS_STAT_FS 903 struct f2fs_stat_info *stat_info; /* FS status information */ 904 unsigned int segment_count[2]; /* # of allocated segments */ 905 unsigned int block_count[2]; /* # of allocated blocks */ 906 atomic_t inplace_count; /* # of inplace update */ 907 atomic64_t total_hit_ext; /* # of lookup extent cache */ 908 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 909 atomic64_t read_hit_largest; /* # of hit largest extent node */ 910 atomic64_t read_hit_cached; /* # of hit cached extent node */ 911 atomic_t inline_xattr; /* # of inline_xattr inodes */ 912 atomic_t inline_inode; /* # of inline_data inodes */ 913 atomic_t inline_dir; /* # of inline_dentry inodes */ 914 atomic_t aw_cnt; /* # of atomic writes */ 915 atomic_t max_aw_cnt; /* max # of atomic writes */ 916 int bg_gc; /* background gc calls */ 917 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 918 #endif 919 unsigned int last_victim[2]; /* last victim segment # */ 920 spinlock_t stat_lock; /* lock for stat operations */ 921 922 /* For sysfs suppport */ 923 struct kobject s_kobj; 924 struct completion s_kobj_unregister; 925 926 /* For shrinker support */ 927 struct list_head s_list; 928 int s_ndevs; /* number of devices */ 929 struct f2fs_dev_info *devs; /* for device list */ 930 struct mutex umount_mutex; 931 unsigned int shrinker_run_no; 932 933 /* For write statistics */ 934 u64 sectors_written_start; 935 u64 kbytes_written; 936 937 /* Reference to checksum algorithm driver via cryptoapi */ 938 struct crypto_shash *s_chksum_driver; 939 940 /* For fault injection */ 941 #ifdef CONFIG_F2FS_FAULT_INJECTION 942 struct f2fs_fault_info fault_info; 943 #endif 944 }; 945 946 #ifdef CONFIG_F2FS_FAULT_INJECTION 947 #define f2fs_show_injection_info(type) \ 948 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 949 KERN_INFO, fault_name[type], \ 950 __func__, __builtin_return_address(0)) 951 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 952 { 953 struct f2fs_fault_info *ffi = &sbi->fault_info; 954 955 if (!ffi->inject_rate) 956 return false; 957 958 if (!IS_FAULT_SET(ffi, type)) 959 return false; 960 961 atomic_inc(&ffi->inject_ops); 962 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 963 atomic_set(&ffi->inject_ops, 0); 964 return true; 965 } 966 return false; 967 } 968 #endif 969 970 /* For write statistics. Suppose sector size is 512 bytes, 971 * and the return value is in kbytes. s is of struct f2fs_sb_info. 972 */ 973 #define BD_PART_WRITTEN(s) \ 974 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 975 s->sectors_written_start) >> 1) 976 977 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 978 { 979 sbi->last_time[type] = jiffies; 980 } 981 982 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 983 { 984 struct timespec ts = {sbi->interval_time[type], 0}; 985 unsigned long interval = timespec_to_jiffies(&ts); 986 987 return time_after(jiffies, sbi->last_time[type] + interval); 988 } 989 990 static inline bool is_idle(struct f2fs_sb_info *sbi) 991 { 992 struct block_device *bdev = sbi->sb->s_bdev; 993 struct request_queue *q = bdev_get_queue(bdev); 994 struct request_list *rl = &q->root_rl; 995 996 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 997 return 0; 998 999 return f2fs_time_over(sbi, REQ_TIME); 1000 } 1001 1002 /* 1003 * Inline functions 1004 */ 1005 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1006 unsigned int length) 1007 { 1008 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 1009 u32 *ctx = (u32 *)shash_desc_ctx(shash); 1010 int err; 1011 1012 shash->tfm = sbi->s_chksum_driver; 1013 shash->flags = 0; 1014 *ctx = F2FS_SUPER_MAGIC; 1015 1016 err = crypto_shash_update(shash, address, length); 1017 BUG_ON(err); 1018 1019 return *ctx; 1020 } 1021 1022 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1023 void *buf, size_t buf_size) 1024 { 1025 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1026 } 1027 1028 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1029 { 1030 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1031 } 1032 1033 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1034 { 1035 return sb->s_fs_info; 1036 } 1037 1038 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1039 { 1040 return F2FS_SB(inode->i_sb); 1041 } 1042 1043 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1044 { 1045 return F2FS_I_SB(mapping->host); 1046 } 1047 1048 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1049 { 1050 return F2FS_M_SB(page->mapping); 1051 } 1052 1053 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1054 { 1055 return (struct f2fs_super_block *)(sbi->raw_super); 1056 } 1057 1058 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1059 { 1060 return (struct f2fs_checkpoint *)(sbi->ckpt); 1061 } 1062 1063 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1064 { 1065 return (struct f2fs_node *)page_address(page); 1066 } 1067 1068 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1069 { 1070 return &((struct f2fs_node *)page_address(page))->i; 1071 } 1072 1073 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1074 { 1075 return (struct f2fs_nm_info *)(sbi->nm_info); 1076 } 1077 1078 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1079 { 1080 return (struct f2fs_sm_info *)(sbi->sm_info); 1081 } 1082 1083 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1084 { 1085 return (struct sit_info *)(SM_I(sbi)->sit_info); 1086 } 1087 1088 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1089 { 1090 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1091 } 1092 1093 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1094 { 1095 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1096 } 1097 1098 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1099 { 1100 return sbi->meta_inode->i_mapping; 1101 } 1102 1103 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1104 { 1105 return sbi->node_inode->i_mapping; 1106 } 1107 1108 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1109 { 1110 return test_bit(type, &sbi->s_flag); 1111 } 1112 1113 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1114 { 1115 set_bit(type, &sbi->s_flag); 1116 } 1117 1118 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1119 { 1120 clear_bit(type, &sbi->s_flag); 1121 } 1122 1123 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1124 { 1125 return le64_to_cpu(cp->checkpoint_ver); 1126 } 1127 1128 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1129 { 1130 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1131 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1132 } 1133 1134 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1135 { 1136 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1137 1138 return ckpt_flags & f; 1139 } 1140 1141 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1142 { 1143 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1144 } 1145 1146 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1147 { 1148 unsigned int ckpt_flags; 1149 1150 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1151 ckpt_flags |= f; 1152 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1153 } 1154 1155 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1156 { 1157 spin_lock(&sbi->cp_lock); 1158 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1159 spin_unlock(&sbi->cp_lock); 1160 } 1161 1162 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1163 { 1164 unsigned int ckpt_flags; 1165 1166 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1167 ckpt_flags &= (~f); 1168 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1169 } 1170 1171 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1172 { 1173 spin_lock(&sbi->cp_lock); 1174 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1175 spin_unlock(&sbi->cp_lock); 1176 } 1177 1178 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1179 { 1180 set_sbi_flag(sbi, SBI_NEED_FSCK); 1181 1182 if (lock) 1183 spin_lock(&sbi->cp_lock); 1184 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1185 kfree(NM_I(sbi)->nat_bits); 1186 NM_I(sbi)->nat_bits = NULL; 1187 if (lock) 1188 spin_unlock(&sbi->cp_lock); 1189 } 1190 1191 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1192 struct cp_control *cpc) 1193 { 1194 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1195 1196 return (cpc) ? (cpc->reason == CP_UMOUNT) && set : set; 1197 } 1198 1199 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1200 { 1201 down_read(&sbi->cp_rwsem); 1202 } 1203 1204 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1205 { 1206 up_read(&sbi->cp_rwsem); 1207 } 1208 1209 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1210 { 1211 down_write(&sbi->cp_rwsem); 1212 } 1213 1214 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1215 { 1216 up_write(&sbi->cp_rwsem); 1217 } 1218 1219 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1220 { 1221 int reason = CP_SYNC; 1222 1223 if (test_opt(sbi, FASTBOOT)) 1224 reason = CP_FASTBOOT; 1225 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1226 reason = CP_UMOUNT; 1227 return reason; 1228 } 1229 1230 static inline bool __remain_node_summaries(int reason) 1231 { 1232 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1233 } 1234 1235 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1236 { 1237 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1238 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1239 } 1240 1241 /* 1242 * Check whether the given nid is within node id range. 1243 */ 1244 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1245 { 1246 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1247 return -EINVAL; 1248 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1249 return -EINVAL; 1250 return 0; 1251 } 1252 1253 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1254 1255 /* 1256 * Check whether the inode has blocks or not 1257 */ 1258 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1259 { 1260 if (F2FS_I(inode)->i_xattr_nid) 1261 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1262 else 1263 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1264 } 1265 1266 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1267 { 1268 return ofs == XATTR_NODE_OFFSET; 1269 } 1270 1271 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); 1272 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1273 struct inode *inode, blkcnt_t *count) 1274 { 1275 blkcnt_t diff; 1276 1277 #ifdef CONFIG_F2FS_FAULT_INJECTION 1278 if (time_to_inject(sbi, FAULT_BLOCK)) { 1279 f2fs_show_injection_info(FAULT_BLOCK); 1280 return false; 1281 } 1282 #endif 1283 /* 1284 * let's increase this in prior to actual block count change in order 1285 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1286 */ 1287 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1288 1289 spin_lock(&sbi->stat_lock); 1290 sbi->total_valid_block_count += (block_t)(*count); 1291 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { 1292 diff = sbi->total_valid_block_count - sbi->user_block_count; 1293 *count -= diff; 1294 sbi->total_valid_block_count = sbi->user_block_count; 1295 if (!*count) { 1296 spin_unlock(&sbi->stat_lock); 1297 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1298 return false; 1299 } 1300 } 1301 spin_unlock(&sbi->stat_lock); 1302 1303 f2fs_i_blocks_write(inode, *count, true); 1304 return true; 1305 } 1306 1307 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1308 struct inode *inode, 1309 blkcnt_t count) 1310 { 1311 spin_lock(&sbi->stat_lock); 1312 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1313 f2fs_bug_on(sbi, inode->i_blocks < count); 1314 sbi->total_valid_block_count -= (block_t)count; 1315 spin_unlock(&sbi->stat_lock); 1316 f2fs_i_blocks_write(inode, count, false); 1317 } 1318 1319 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1320 { 1321 atomic_inc(&sbi->nr_pages[count_type]); 1322 1323 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1324 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1325 return; 1326 1327 set_sbi_flag(sbi, SBI_IS_DIRTY); 1328 } 1329 1330 static inline void inode_inc_dirty_pages(struct inode *inode) 1331 { 1332 atomic_inc(&F2FS_I(inode)->dirty_pages); 1333 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1334 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1335 } 1336 1337 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1338 { 1339 atomic_dec(&sbi->nr_pages[count_type]); 1340 } 1341 1342 static inline void inode_dec_dirty_pages(struct inode *inode) 1343 { 1344 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1345 !S_ISLNK(inode->i_mode)) 1346 return; 1347 1348 atomic_dec(&F2FS_I(inode)->dirty_pages); 1349 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1350 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1351 } 1352 1353 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1354 { 1355 return atomic_read(&sbi->nr_pages[count_type]); 1356 } 1357 1358 static inline int get_dirty_pages(struct inode *inode) 1359 { 1360 return atomic_read(&F2FS_I(inode)->dirty_pages); 1361 } 1362 1363 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1364 { 1365 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1366 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1367 sbi->log_blocks_per_seg; 1368 1369 return segs / sbi->segs_per_sec; 1370 } 1371 1372 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1373 { 1374 return sbi->total_valid_block_count; 1375 } 1376 1377 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1378 { 1379 return sbi->discard_blks; 1380 } 1381 1382 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1383 { 1384 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1385 1386 /* return NAT or SIT bitmap */ 1387 if (flag == NAT_BITMAP) 1388 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1389 else if (flag == SIT_BITMAP) 1390 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1391 1392 return 0; 1393 } 1394 1395 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1396 { 1397 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1398 } 1399 1400 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1401 { 1402 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1403 int offset; 1404 1405 if (__cp_payload(sbi) > 0) { 1406 if (flag == NAT_BITMAP) 1407 return &ckpt->sit_nat_version_bitmap; 1408 else 1409 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1410 } else { 1411 offset = (flag == NAT_BITMAP) ? 1412 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1413 return &ckpt->sit_nat_version_bitmap + offset; 1414 } 1415 } 1416 1417 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1418 { 1419 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1420 1421 if (sbi->cur_cp_pack == 2) 1422 start_addr += sbi->blocks_per_seg; 1423 return start_addr; 1424 } 1425 1426 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1427 { 1428 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1429 1430 if (sbi->cur_cp_pack == 1) 1431 start_addr += sbi->blocks_per_seg; 1432 return start_addr; 1433 } 1434 1435 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1436 { 1437 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1438 } 1439 1440 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1441 { 1442 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1443 } 1444 1445 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1446 struct inode *inode) 1447 { 1448 block_t valid_block_count; 1449 unsigned int valid_node_count; 1450 1451 spin_lock(&sbi->stat_lock); 1452 1453 valid_block_count = sbi->total_valid_block_count + 1; 1454 if (unlikely(valid_block_count > sbi->user_block_count)) { 1455 spin_unlock(&sbi->stat_lock); 1456 return false; 1457 } 1458 1459 valid_node_count = sbi->total_valid_node_count + 1; 1460 if (unlikely(valid_node_count > sbi->total_node_count)) { 1461 spin_unlock(&sbi->stat_lock); 1462 return false; 1463 } 1464 1465 if (inode) 1466 f2fs_i_blocks_write(inode, 1, true); 1467 1468 sbi->total_valid_node_count++; 1469 sbi->total_valid_block_count++; 1470 spin_unlock(&sbi->stat_lock); 1471 1472 percpu_counter_inc(&sbi->alloc_valid_block_count); 1473 return true; 1474 } 1475 1476 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1477 struct inode *inode) 1478 { 1479 spin_lock(&sbi->stat_lock); 1480 1481 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1482 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1483 f2fs_bug_on(sbi, !inode->i_blocks); 1484 1485 f2fs_i_blocks_write(inode, 1, false); 1486 sbi->total_valid_node_count--; 1487 sbi->total_valid_block_count--; 1488 1489 spin_unlock(&sbi->stat_lock); 1490 } 1491 1492 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1493 { 1494 return sbi->total_valid_node_count; 1495 } 1496 1497 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1498 { 1499 percpu_counter_inc(&sbi->total_valid_inode_count); 1500 } 1501 1502 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1503 { 1504 percpu_counter_dec(&sbi->total_valid_inode_count); 1505 } 1506 1507 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1508 { 1509 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1510 } 1511 1512 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1513 pgoff_t index, bool for_write) 1514 { 1515 #ifdef CONFIG_F2FS_FAULT_INJECTION 1516 struct page *page = find_lock_page(mapping, index); 1517 1518 if (page) 1519 return page; 1520 1521 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1522 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1523 return NULL; 1524 } 1525 #endif 1526 if (!for_write) 1527 return grab_cache_page(mapping, index); 1528 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1529 } 1530 1531 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1532 { 1533 char *src_kaddr = kmap(src); 1534 char *dst_kaddr = kmap(dst); 1535 1536 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1537 kunmap(dst); 1538 kunmap(src); 1539 } 1540 1541 static inline void f2fs_put_page(struct page *page, int unlock) 1542 { 1543 if (!page) 1544 return; 1545 1546 if (unlock) { 1547 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1548 unlock_page(page); 1549 } 1550 put_page(page); 1551 } 1552 1553 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1554 { 1555 if (dn->node_page) 1556 f2fs_put_page(dn->node_page, 1); 1557 if (dn->inode_page && dn->node_page != dn->inode_page) 1558 f2fs_put_page(dn->inode_page, 0); 1559 dn->node_page = NULL; 1560 dn->inode_page = NULL; 1561 } 1562 1563 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1564 size_t size) 1565 { 1566 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1567 } 1568 1569 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1570 gfp_t flags) 1571 { 1572 void *entry; 1573 1574 entry = kmem_cache_alloc(cachep, flags); 1575 if (!entry) 1576 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1577 return entry; 1578 } 1579 1580 static inline struct bio *f2fs_bio_alloc(int npages) 1581 { 1582 struct bio *bio; 1583 1584 /* No failure on bio allocation */ 1585 bio = bio_alloc(GFP_NOIO, npages); 1586 if (!bio) 1587 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1588 return bio; 1589 } 1590 1591 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1592 unsigned long index, void *item) 1593 { 1594 while (radix_tree_insert(root, index, item)) 1595 cond_resched(); 1596 } 1597 1598 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1599 1600 static inline bool IS_INODE(struct page *page) 1601 { 1602 struct f2fs_node *p = F2FS_NODE(page); 1603 1604 return RAW_IS_INODE(p); 1605 } 1606 1607 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1608 { 1609 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1610 } 1611 1612 static inline block_t datablock_addr(struct page *node_page, 1613 unsigned int offset) 1614 { 1615 struct f2fs_node *raw_node; 1616 __le32 *addr_array; 1617 1618 raw_node = F2FS_NODE(node_page); 1619 addr_array = blkaddr_in_node(raw_node); 1620 return le32_to_cpu(addr_array[offset]); 1621 } 1622 1623 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1624 { 1625 int mask; 1626 1627 addr += (nr >> 3); 1628 mask = 1 << (7 - (nr & 0x07)); 1629 return mask & *addr; 1630 } 1631 1632 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1633 { 1634 int mask; 1635 1636 addr += (nr >> 3); 1637 mask = 1 << (7 - (nr & 0x07)); 1638 *addr |= mask; 1639 } 1640 1641 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1642 { 1643 int mask; 1644 1645 addr += (nr >> 3); 1646 mask = 1 << (7 - (nr & 0x07)); 1647 *addr &= ~mask; 1648 } 1649 1650 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1651 { 1652 int mask; 1653 int ret; 1654 1655 addr += (nr >> 3); 1656 mask = 1 << (7 - (nr & 0x07)); 1657 ret = mask & *addr; 1658 *addr |= mask; 1659 return ret; 1660 } 1661 1662 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1663 { 1664 int mask; 1665 int ret; 1666 1667 addr += (nr >> 3); 1668 mask = 1 << (7 - (nr & 0x07)); 1669 ret = mask & *addr; 1670 *addr &= ~mask; 1671 return ret; 1672 } 1673 1674 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1675 { 1676 int mask; 1677 1678 addr += (nr >> 3); 1679 mask = 1 << (7 - (nr & 0x07)); 1680 *addr ^= mask; 1681 } 1682 1683 /* used for f2fs_inode_info->flags */ 1684 enum { 1685 FI_NEW_INODE, /* indicate newly allocated inode */ 1686 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1687 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1688 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1689 FI_INC_LINK, /* need to increment i_nlink */ 1690 FI_ACL_MODE, /* indicate acl mode */ 1691 FI_NO_ALLOC, /* should not allocate any blocks */ 1692 FI_FREE_NID, /* free allocated nide */ 1693 FI_NO_EXTENT, /* not to use the extent cache */ 1694 FI_INLINE_XATTR, /* used for inline xattr */ 1695 FI_INLINE_DATA, /* used for inline data*/ 1696 FI_INLINE_DENTRY, /* used for inline dentry */ 1697 FI_APPEND_WRITE, /* inode has appended data */ 1698 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1699 FI_NEED_IPU, /* used for ipu per file */ 1700 FI_ATOMIC_FILE, /* indicate atomic file */ 1701 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 1702 FI_VOLATILE_FILE, /* indicate volatile file */ 1703 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1704 FI_DROP_CACHE, /* drop dirty page cache */ 1705 FI_DATA_EXIST, /* indicate data exists */ 1706 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1707 FI_DO_DEFRAG, /* indicate defragment is running */ 1708 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1709 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 1710 }; 1711 1712 static inline void __mark_inode_dirty_flag(struct inode *inode, 1713 int flag, bool set) 1714 { 1715 switch (flag) { 1716 case FI_INLINE_XATTR: 1717 case FI_INLINE_DATA: 1718 case FI_INLINE_DENTRY: 1719 if (set) 1720 return; 1721 case FI_DATA_EXIST: 1722 case FI_INLINE_DOTS: 1723 f2fs_mark_inode_dirty_sync(inode, true); 1724 } 1725 } 1726 1727 static inline void set_inode_flag(struct inode *inode, int flag) 1728 { 1729 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1730 set_bit(flag, &F2FS_I(inode)->flags); 1731 __mark_inode_dirty_flag(inode, flag, true); 1732 } 1733 1734 static inline int is_inode_flag_set(struct inode *inode, int flag) 1735 { 1736 return test_bit(flag, &F2FS_I(inode)->flags); 1737 } 1738 1739 static inline void clear_inode_flag(struct inode *inode, int flag) 1740 { 1741 if (test_bit(flag, &F2FS_I(inode)->flags)) 1742 clear_bit(flag, &F2FS_I(inode)->flags); 1743 __mark_inode_dirty_flag(inode, flag, false); 1744 } 1745 1746 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1747 { 1748 F2FS_I(inode)->i_acl_mode = mode; 1749 set_inode_flag(inode, FI_ACL_MODE); 1750 f2fs_mark_inode_dirty_sync(inode, false); 1751 } 1752 1753 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1754 { 1755 if (inc) 1756 inc_nlink(inode); 1757 else 1758 drop_nlink(inode); 1759 f2fs_mark_inode_dirty_sync(inode, true); 1760 } 1761 1762 static inline void f2fs_i_blocks_write(struct inode *inode, 1763 blkcnt_t diff, bool add) 1764 { 1765 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1766 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1767 1768 inode->i_blocks = add ? inode->i_blocks + diff : 1769 inode->i_blocks - diff; 1770 f2fs_mark_inode_dirty_sync(inode, true); 1771 if (clean || recover) 1772 set_inode_flag(inode, FI_AUTO_RECOVER); 1773 } 1774 1775 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1776 { 1777 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1778 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1779 1780 if (i_size_read(inode) == i_size) 1781 return; 1782 1783 i_size_write(inode, i_size); 1784 f2fs_mark_inode_dirty_sync(inode, true); 1785 if (clean || recover) 1786 set_inode_flag(inode, FI_AUTO_RECOVER); 1787 } 1788 1789 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1790 { 1791 F2FS_I(inode)->i_current_depth = depth; 1792 f2fs_mark_inode_dirty_sync(inode, true); 1793 } 1794 1795 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1796 { 1797 F2FS_I(inode)->i_xattr_nid = xnid; 1798 f2fs_mark_inode_dirty_sync(inode, true); 1799 } 1800 1801 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1802 { 1803 F2FS_I(inode)->i_pino = pino; 1804 f2fs_mark_inode_dirty_sync(inode, true); 1805 } 1806 1807 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1808 { 1809 struct f2fs_inode_info *fi = F2FS_I(inode); 1810 1811 if (ri->i_inline & F2FS_INLINE_XATTR) 1812 set_bit(FI_INLINE_XATTR, &fi->flags); 1813 if (ri->i_inline & F2FS_INLINE_DATA) 1814 set_bit(FI_INLINE_DATA, &fi->flags); 1815 if (ri->i_inline & F2FS_INLINE_DENTRY) 1816 set_bit(FI_INLINE_DENTRY, &fi->flags); 1817 if (ri->i_inline & F2FS_DATA_EXIST) 1818 set_bit(FI_DATA_EXIST, &fi->flags); 1819 if (ri->i_inline & F2FS_INLINE_DOTS) 1820 set_bit(FI_INLINE_DOTS, &fi->flags); 1821 } 1822 1823 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1824 { 1825 ri->i_inline = 0; 1826 1827 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1828 ri->i_inline |= F2FS_INLINE_XATTR; 1829 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1830 ri->i_inline |= F2FS_INLINE_DATA; 1831 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1832 ri->i_inline |= F2FS_INLINE_DENTRY; 1833 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1834 ri->i_inline |= F2FS_DATA_EXIST; 1835 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 1836 ri->i_inline |= F2FS_INLINE_DOTS; 1837 } 1838 1839 static inline int f2fs_has_inline_xattr(struct inode *inode) 1840 { 1841 return is_inode_flag_set(inode, FI_INLINE_XATTR); 1842 } 1843 1844 static inline unsigned int addrs_per_inode(struct inode *inode) 1845 { 1846 if (f2fs_has_inline_xattr(inode)) 1847 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1848 return DEF_ADDRS_PER_INODE; 1849 } 1850 1851 static inline void *inline_xattr_addr(struct page *page) 1852 { 1853 struct f2fs_inode *ri = F2FS_INODE(page); 1854 1855 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1856 F2FS_INLINE_XATTR_ADDRS]); 1857 } 1858 1859 static inline int inline_xattr_size(struct inode *inode) 1860 { 1861 if (f2fs_has_inline_xattr(inode)) 1862 return F2FS_INLINE_XATTR_ADDRS << 2; 1863 else 1864 return 0; 1865 } 1866 1867 static inline int f2fs_has_inline_data(struct inode *inode) 1868 { 1869 return is_inode_flag_set(inode, FI_INLINE_DATA); 1870 } 1871 1872 static inline void f2fs_clear_inline_inode(struct inode *inode) 1873 { 1874 clear_inode_flag(inode, FI_INLINE_DATA); 1875 clear_inode_flag(inode, FI_DATA_EXIST); 1876 } 1877 1878 static inline int f2fs_exist_data(struct inode *inode) 1879 { 1880 return is_inode_flag_set(inode, FI_DATA_EXIST); 1881 } 1882 1883 static inline int f2fs_has_inline_dots(struct inode *inode) 1884 { 1885 return is_inode_flag_set(inode, FI_INLINE_DOTS); 1886 } 1887 1888 static inline bool f2fs_is_atomic_file(struct inode *inode) 1889 { 1890 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 1891 } 1892 1893 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 1894 { 1895 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 1896 } 1897 1898 static inline bool f2fs_is_volatile_file(struct inode *inode) 1899 { 1900 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 1901 } 1902 1903 static inline bool f2fs_is_first_block_written(struct inode *inode) 1904 { 1905 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 1906 } 1907 1908 static inline bool f2fs_is_drop_cache(struct inode *inode) 1909 { 1910 return is_inode_flag_set(inode, FI_DROP_CACHE); 1911 } 1912 1913 static inline void *inline_data_addr(struct page *page) 1914 { 1915 struct f2fs_inode *ri = F2FS_INODE(page); 1916 1917 return (void *)&(ri->i_addr[1]); 1918 } 1919 1920 static inline int f2fs_has_inline_dentry(struct inode *inode) 1921 { 1922 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 1923 } 1924 1925 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1926 { 1927 if (!f2fs_has_inline_dentry(dir)) 1928 kunmap(page); 1929 } 1930 1931 static inline int is_file(struct inode *inode, int type) 1932 { 1933 return F2FS_I(inode)->i_advise & type; 1934 } 1935 1936 static inline void set_file(struct inode *inode, int type) 1937 { 1938 F2FS_I(inode)->i_advise |= type; 1939 f2fs_mark_inode_dirty_sync(inode, true); 1940 } 1941 1942 static inline void clear_file(struct inode *inode, int type) 1943 { 1944 F2FS_I(inode)->i_advise &= ~type; 1945 f2fs_mark_inode_dirty_sync(inode, true); 1946 } 1947 1948 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 1949 { 1950 if (dsync) { 1951 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1952 bool ret; 1953 1954 spin_lock(&sbi->inode_lock[DIRTY_META]); 1955 ret = list_empty(&F2FS_I(inode)->gdirty_list); 1956 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1957 return ret; 1958 } 1959 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 1960 file_keep_isize(inode) || 1961 i_size_read(inode) & PAGE_MASK) 1962 return false; 1963 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 1964 } 1965 1966 static inline int f2fs_readonly(struct super_block *sb) 1967 { 1968 return sb->s_flags & MS_RDONLY; 1969 } 1970 1971 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1972 { 1973 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 1974 } 1975 1976 static inline bool is_dot_dotdot(const struct qstr *str) 1977 { 1978 if (str->len == 1 && str->name[0] == '.') 1979 return true; 1980 1981 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1982 return true; 1983 1984 return false; 1985 } 1986 1987 static inline bool f2fs_may_extent_tree(struct inode *inode) 1988 { 1989 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1990 is_inode_flag_set(inode, FI_NO_EXTENT)) 1991 return false; 1992 1993 return S_ISREG(inode->i_mode); 1994 } 1995 1996 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 1997 size_t size, gfp_t flags) 1998 { 1999 #ifdef CONFIG_F2FS_FAULT_INJECTION 2000 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2001 f2fs_show_injection_info(FAULT_KMALLOC); 2002 return NULL; 2003 } 2004 #endif 2005 return kmalloc(size, flags); 2006 } 2007 2008 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 2009 { 2010 void *ret; 2011 2012 ret = kmalloc(size, flags | __GFP_NOWARN); 2013 if (!ret) 2014 ret = __vmalloc(size, flags, PAGE_KERNEL); 2015 return ret; 2016 } 2017 2018 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 2019 { 2020 void *ret; 2021 2022 ret = kzalloc(size, flags | __GFP_NOWARN); 2023 if (!ret) 2024 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 2025 return ret; 2026 } 2027 2028 #define get_inode_mode(i) \ 2029 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2030 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2031 2032 /* get offset of first page in next direct node */ 2033 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 2034 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 2035 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 2036 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 2037 2038 /* 2039 * file.c 2040 */ 2041 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2042 void truncate_data_blocks(struct dnode_of_data *dn); 2043 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2044 int f2fs_truncate(struct inode *inode); 2045 int f2fs_getattr(const struct path *path, struct kstat *stat, 2046 u32 request_mask, unsigned int flags); 2047 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2048 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2049 int truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2050 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2051 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2052 2053 /* 2054 * inode.c 2055 */ 2056 void f2fs_set_inode_flags(struct inode *inode); 2057 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2058 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2059 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2060 int update_inode(struct inode *inode, struct page *node_page); 2061 int update_inode_page(struct inode *inode); 2062 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2063 void f2fs_evict_inode(struct inode *inode); 2064 void handle_failed_inode(struct inode *inode); 2065 2066 /* 2067 * namei.c 2068 */ 2069 struct dentry *f2fs_get_parent(struct dentry *child); 2070 2071 /* 2072 * dir.c 2073 */ 2074 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2075 unsigned char get_de_type(struct f2fs_dir_entry *de); 2076 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2077 f2fs_hash_t namehash, int *max_slots, 2078 struct f2fs_dentry_ptr *d); 2079 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2080 unsigned int start_pos, struct fscrypt_str *fstr); 2081 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2082 struct f2fs_dentry_ptr *d); 2083 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2084 const struct qstr *new_name, 2085 const struct qstr *orig_name, struct page *dpage); 2086 void update_parent_metadata(struct inode *dir, struct inode *inode, 2087 unsigned int current_depth); 2088 int room_for_filename(const void *bitmap, int slots, int max_slots); 2089 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2090 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2091 struct fscrypt_name *fname, struct page **res_page); 2092 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2093 const struct qstr *child, struct page **res_page); 2094 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2095 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2096 struct page **page); 2097 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2098 struct page *page, struct inode *inode); 2099 int update_dent_inode(struct inode *inode, struct inode *to, 2100 const struct qstr *name); 2101 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2102 const struct qstr *name, f2fs_hash_t name_hash, 2103 unsigned int bit_pos); 2104 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2105 const struct qstr *orig_name, 2106 struct inode *inode, nid_t ino, umode_t mode); 2107 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2108 struct inode *inode, nid_t ino, umode_t mode); 2109 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2110 struct inode *inode, nid_t ino, umode_t mode); 2111 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2112 struct inode *dir, struct inode *inode); 2113 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2114 bool f2fs_empty_dir(struct inode *dir); 2115 2116 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2117 { 2118 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2119 inode, inode->i_ino, inode->i_mode); 2120 } 2121 2122 /* 2123 * super.c 2124 */ 2125 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2126 void f2fs_inode_synced(struct inode *inode); 2127 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2128 int f2fs_sync_fs(struct super_block *sb, int sync); 2129 extern __printf(3, 4) 2130 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2131 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2132 2133 /* 2134 * hash.c 2135 */ 2136 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info); 2137 2138 /* 2139 * node.c 2140 */ 2141 struct dnode_of_data; 2142 struct node_info; 2143 2144 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2145 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2146 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2147 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2148 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2149 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2150 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2151 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2152 int truncate_xattr_node(struct inode *inode, struct page *page); 2153 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2154 int remove_inode_page(struct inode *inode); 2155 struct page *new_inode_page(struct inode *inode); 2156 struct page *new_node_page(struct dnode_of_data *dn, 2157 unsigned int ofs, struct page *ipage); 2158 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2159 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2160 struct page *get_node_page_ra(struct page *parent, int start); 2161 void move_node_page(struct page *node_page, int gc_type); 2162 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2163 struct writeback_control *wbc, bool atomic); 2164 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc); 2165 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2166 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2167 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2168 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2169 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2170 void recover_inline_xattr(struct inode *inode, struct page *page); 2171 int recover_xattr_data(struct inode *inode, struct page *page, 2172 block_t blkaddr); 2173 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2174 int restore_node_summary(struct f2fs_sb_info *sbi, 2175 unsigned int segno, struct f2fs_summary_block *sum); 2176 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2177 int build_node_manager(struct f2fs_sb_info *sbi); 2178 void destroy_node_manager(struct f2fs_sb_info *sbi); 2179 int __init create_node_manager_caches(void); 2180 void destroy_node_manager_caches(void); 2181 2182 /* 2183 * segment.c 2184 */ 2185 void register_inmem_page(struct inode *inode, struct page *page); 2186 void drop_inmem_pages(struct inode *inode); 2187 int commit_inmem_pages(struct inode *inode); 2188 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2189 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2190 int f2fs_issue_flush(struct f2fs_sb_info *sbi); 2191 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2192 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2193 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2194 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2195 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new); 2196 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr); 2197 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2198 void release_discard_addrs(struct f2fs_sb_info *sbi); 2199 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2200 void allocate_new_segments(struct f2fs_sb_info *sbi); 2201 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2202 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2203 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2204 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2205 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page); 2206 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2207 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2208 void rewrite_data_page(struct f2fs_io_info *fio); 2209 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2210 block_t old_blkaddr, block_t new_blkaddr, 2211 bool recover_curseg, bool recover_newaddr); 2212 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2213 block_t old_addr, block_t new_addr, 2214 unsigned char version, bool recover_curseg, 2215 bool recover_newaddr); 2216 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2217 block_t old_blkaddr, block_t *new_blkaddr, 2218 struct f2fs_summary *sum, int type); 2219 void f2fs_wait_on_page_writeback(struct page *page, 2220 enum page_type type, bool ordered); 2221 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 2222 block_t blkaddr); 2223 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2224 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2225 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2226 unsigned int val, int alloc); 2227 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2228 int build_segment_manager(struct f2fs_sb_info *sbi); 2229 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2230 int __init create_segment_manager_caches(void); 2231 void destroy_segment_manager_caches(void); 2232 2233 /* 2234 * checkpoint.c 2235 */ 2236 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2237 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2238 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2239 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2240 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2241 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2242 int type, bool sync); 2243 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2244 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2245 long nr_to_write); 2246 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2247 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2248 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2249 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2250 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2251 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2252 void release_orphan_inode(struct f2fs_sb_info *sbi); 2253 void add_orphan_inode(struct inode *inode); 2254 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2255 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2256 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2257 void update_dirty_page(struct inode *inode, struct page *page); 2258 void remove_dirty_inode(struct inode *inode); 2259 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2260 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2261 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2262 int __init create_checkpoint_caches(void); 2263 void destroy_checkpoint_caches(void); 2264 2265 /* 2266 * data.c 2267 */ 2268 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 2269 int rw); 2270 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 2271 struct inode *inode, nid_t ino, pgoff_t idx, 2272 enum page_type type, int rw); 2273 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi); 2274 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2275 int f2fs_submit_page_mbio(struct f2fs_io_info *fio); 2276 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2277 block_t blk_addr, struct bio *bio); 2278 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2279 void set_data_blkaddr(struct dnode_of_data *dn); 2280 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2281 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2282 int reserve_new_block(struct dnode_of_data *dn); 2283 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2284 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2285 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2286 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2287 int op_flags, bool for_write); 2288 struct page *find_data_page(struct inode *inode, pgoff_t index); 2289 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2290 bool for_write); 2291 struct page *get_new_data_page(struct inode *inode, 2292 struct page *ipage, pgoff_t index, bool new_i_size); 2293 int do_write_data_page(struct f2fs_io_info *fio); 2294 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2295 int create, int flag); 2296 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2297 u64 start, u64 len); 2298 void f2fs_set_page_dirty_nobuffers(struct page *page); 2299 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2300 unsigned int length); 2301 int f2fs_release_page(struct page *page, gfp_t wait); 2302 #ifdef CONFIG_MIGRATION 2303 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2304 struct page *page, enum migrate_mode mode); 2305 #endif 2306 2307 /* 2308 * gc.c 2309 */ 2310 int start_gc_thread(struct f2fs_sb_info *sbi); 2311 void stop_gc_thread(struct f2fs_sb_info *sbi); 2312 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2313 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background); 2314 void build_gc_manager(struct f2fs_sb_info *sbi); 2315 2316 /* 2317 * recovery.c 2318 */ 2319 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2320 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2321 2322 /* 2323 * debug.c 2324 */ 2325 #ifdef CONFIG_F2FS_STAT_FS 2326 struct f2fs_stat_info { 2327 struct list_head stat_list; 2328 struct f2fs_sb_info *sbi; 2329 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2330 int main_area_segs, main_area_sections, main_area_zones; 2331 unsigned long long hit_largest, hit_cached, hit_rbtree; 2332 unsigned long long hit_total, total_ext; 2333 int ext_tree, zombie_tree, ext_node; 2334 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2335 int inmem_pages; 2336 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2337 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids; 2338 int total_count, utilization; 2339 int bg_gc, nr_wb_cp_data, nr_wb_data, nr_flush, nr_discard; 2340 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2341 int aw_cnt, max_aw_cnt; 2342 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2343 unsigned int bimodal, avg_vblocks; 2344 int util_free, util_valid, util_invalid; 2345 int rsvd_segs, overp_segs; 2346 int dirty_count, node_pages, meta_pages; 2347 int prefree_count, call_count, cp_count, bg_cp_count; 2348 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2349 int bg_node_segs, bg_data_segs; 2350 int tot_blks, data_blks, node_blks; 2351 int bg_data_blks, bg_node_blks; 2352 int curseg[NR_CURSEG_TYPE]; 2353 int cursec[NR_CURSEG_TYPE]; 2354 int curzone[NR_CURSEG_TYPE]; 2355 2356 unsigned int segment_count[2]; 2357 unsigned int block_count[2]; 2358 unsigned int inplace_count; 2359 unsigned long long base_mem, cache_mem, page_mem; 2360 }; 2361 2362 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2363 { 2364 return (struct f2fs_stat_info *)sbi->stat_info; 2365 } 2366 2367 #define stat_inc_cp_count(si) ((si)->cp_count++) 2368 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2369 #define stat_inc_call_count(si) ((si)->call_count++) 2370 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2371 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2372 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2373 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2374 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2375 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2376 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2377 #define stat_inc_inline_xattr(inode) \ 2378 do { \ 2379 if (f2fs_has_inline_xattr(inode)) \ 2380 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2381 } while (0) 2382 #define stat_dec_inline_xattr(inode) \ 2383 do { \ 2384 if (f2fs_has_inline_xattr(inode)) \ 2385 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2386 } while (0) 2387 #define stat_inc_inline_inode(inode) \ 2388 do { \ 2389 if (f2fs_has_inline_data(inode)) \ 2390 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2391 } while (0) 2392 #define stat_dec_inline_inode(inode) \ 2393 do { \ 2394 if (f2fs_has_inline_data(inode)) \ 2395 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2396 } while (0) 2397 #define stat_inc_inline_dir(inode) \ 2398 do { \ 2399 if (f2fs_has_inline_dentry(inode)) \ 2400 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2401 } while (0) 2402 #define stat_dec_inline_dir(inode) \ 2403 do { \ 2404 if (f2fs_has_inline_dentry(inode)) \ 2405 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2406 } while (0) 2407 #define stat_inc_seg_type(sbi, curseg) \ 2408 ((sbi)->segment_count[(curseg)->alloc_type]++) 2409 #define stat_inc_block_count(sbi, curseg) \ 2410 ((sbi)->block_count[(curseg)->alloc_type]++) 2411 #define stat_inc_inplace_blocks(sbi) \ 2412 (atomic_inc(&(sbi)->inplace_count)) 2413 #define stat_inc_atomic_write(inode) \ 2414 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2415 #define stat_dec_atomic_write(inode) \ 2416 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2417 #define stat_update_max_atomic_write(inode) \ 2418 do { \ 2419 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2420 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2421 if (cur > max) \ 2422 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2423 } while (0) 2424 #define stat_inc_seg_count(sbi, type, gc_type) \ 2425 do { \ 2426 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2427 (si)->tot_segs++; \ 2428 if (type == SUM_TYPE_DATA) { \ 2429 si->data_segs++; \ 2430 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2431 } else { \ 2432 si->node_segs++; \ 2433 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2434 } \ 2435 } while (0) 2436 2437 #define stat_inc_tot_blk_count(si, blks) \ 2438 (si->tot_blks += (blks)) 2439 2440 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2441 do { \ 2442 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2443 stat_inc_tot_blk_count(si, blks); \ 2444 si->data_blks += (blks); \ 2445 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2446 } while (0) 2447 2448 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2449 do { \ 2450 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2451 stat_inc_tot_blk_count(si, blks); \ 2452 si->node_blks += (blks); \ 2453 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2454 } while (0) 2455 2456 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2457 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2458 int __init f2fs_create_root_stats(void); 2459 void f2fs_destroy_root_stats(void); 2460 #else 2461 #define stat_inc_cp_count(si) 2462 #define stat_inc_bg_cp_count(si) 2463 #define stat_inc_call_count(si) 2464 #define stat_inc_bggc_count(si) 2465 #define stat_inc_dirty_inode(sbi, type) 2466 #define stat_dec_dirty_inode(sbi, type) 2467 #define stat_inc_total_hit(sb) 2468 #define stat_inc_rbtree_node_hit(sb) 2469 #define stat_inc_largest_node_hit(sbi) 2470 #define stat_inc_cached_node_hit(sbi) 2471 #define stat_inc_inline_xattr(inode) 2472 #define stat_dec_inline_xattr(inode) 2473 #define stat_inc_inline_inode(inode) 2474 #define stat_dec_inline_inode(inode) 2475 #define stat_inc_inline_dir(inode) 2476 #define stat_dec_inline_dir(inode) 2477 #define stat_inc_atomic_write(inode) 2478 #define stat_dec_atomic_write(inode) 2479 #define stat_update_max_atomic_write(inode) 2480 #define stat_inc_seg_type(sbi, curseg) 2481 #define stat_inc_block_count(sbi, curseg) 2482 #define stat_inc_inplace_blocks(sbi) 2483 #define stat_inc_seg_count(sbi, type, gc_type) 2484 #define stat_inc_tot_blk_count(si, blks) 2485 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2486 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2487 2488 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2489 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2490 static inline int __init f2fs_create_root_stats(void) { return 0; } 2491 static inline void f2fs_destroy_root_stats(void) { } 2492 #endif 2493 2494 extern const struct file_operations f2fs_dir_operations; 2495 extern const struct file_operations f2fs_file_operations; 2496 extern const struct inode_operations f2fs_file_inode_operations; 2497 extern const struct address_space_operations f2fs_dblock_aops; 2498 extern const struct address_space_operations f2fs_node_aops; 2499 extern const struct address_space_operations f2fs_meta_aops; 2500 extern const struct inode_operations f2fs_dir_inode_operations; 2501 extern const struct inode_operations f2fs_symlink_inode_operations; 2502 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2503 extern const struct inode_operations f2fs_special_inode_operations; 2504 extern struct kmem_cache *inode_entry_slab; 2505 2506 /* 2507 * inline.c 2508 */ 2509 bool f2fs_may_inline_data(struct inode *inode); 2510 bool f2fs_may_inline_dentry(struct inode *inode); 2511 void read_inline_data(struct page *page, struct page *ipage); 2512 bool truncate_inline_inode(struct page *ipage, u64 from); 2513 int f2fs_read_inline_data(struct inode *inode, struct page *page); 2514 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 2515 int f2fs_convert_inline_inode(struct inode *inode); 2516 int f2fs_write_inline_data(struct inode *inode, struct page *page); 2517 bool recover_inline_data(struct inode *inode, struct page *npage); 2518 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 2519 struct fscrypt_name *fname, struct page **res_page); 2520 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 2521 struct page *ipage); 2522 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 2523 const struct qstr *orig_name, 2524 struct inode *inode, nid_t ino, umode_t mode); 2525 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 2526 struct inode *dir, struct inode *inode); 2527 bool f2fs_empty_inline_dir(struct inode *dir); 2528 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 2529 struct fscrypt_str *fstr); 2530 int f2fs_inline_data_fiemap(struct inode *inode, 2531 struct fiemap_extent_info *fieinfo, 2532 __u64 start, __u64 len); 2533 2534 /* 2535 * shrinker.c 2536 */ 2537 unsigned long f2fs_shrink_count(struct shrinker *shrink, 2538 struct shrink_control *sc); 2539 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 2540 struct shrink_control *sc); 2541 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 2542 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 2543 2544 /* 2545 * extent_cache.c 2546 */ 2547 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 2548 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 2549 void f2fs_drop_extent_tree(struct inode *inode); 2550 unsigned int f2fs_destroy_extent_node(struct inode *inode); 2551 void f2fs_destroy_extent_tree(struct inode *inode); 2552 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 2553 struct extent_info *ei); 2554 void f2fs_update_extent_cache(struct dnode_of_data *dn); 2555 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2556 pgoff_t fofs, block_t blkaddr, unsigned int len); 2557 void init_extent_cache_info(struct f2fs_sb_info *sbi); 2558 int __init create_extent_cache(void); 2559 void destroy_extent_cache(void); 2560 2561 /* 2562 * crypto support 2563 */ 2564 static inline bool f2fs_encrypted_inode(struct inode *inode) 2565 { 2566 return file_is_encrypt(inode); 2567 } 2568 2569 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2570 { 2571 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2572 file_set_encrypt(inode); 2573 #endif 2574 } 2575 2576 static inline bool f2fs_bio_encrypted(struct bio *bio) 2577 { 2578 return bio->bi_private != NULL; 2579 } 2580 2581 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2582 { 2583 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2584 } 2585 2586 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 2587 { 2588 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 2589 } 2590 2591 #ifdef CONFIG_BLK_DEV_ZONED 2592 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 2593 struct block_device *bdev, block_t blkaddr) 2594 { 2595 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 2596 int i; 2597 2598 for (i = 0; i < sbi->s_ndevs; i++) 2599 if (FDEV(i).bdev == bdev) 2600 return FDEV(i).blkz_type[zno]; 2601 return -EINVAL; 2602 } 2603 #endif 2604 2605 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 2606 { 2607 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 2608 2609 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 2610 } 2611 2612 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2613 { 2614 clear_opt(sbi, ADAPTIVE); 2615 clear_opt(sbi, LFS); 2616 2617 switch (mt) { 2618 case F2FS_MOUNT_ADAPTIVE: 2619 set_opt(sbi, ADAPTIVE); 2620 break; 2621 case F2FS_MOUNT_LFS: 2622 set_opt(sbi, LFS); 2623 break; 2624 } 2625 } 2626 2627 static inline bool f2fs_may_encrypt(struct inode *inode) 2628 { 2629 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2630 umode_t mode = inode->i_mode; 2631 2632 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2633 #else 2634 return 0; 2635 #endif 2636 } 2637 2638 #endif 2639