xref: /openbmc/linux/fs/f2fs/f2fs.h (revision f3a8b664)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27 
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition)					\
32 	do {								\
33 		if (unlikely(condition)) {				\
34 			WARN_ON(1);					\
35 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
36 		}							\
37 	} while (0)
38 #endif
39 
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_PAGE_ALLOC,
44 	FAULT_ALLOC_NID,
45 	FAULT_ORPHAN,
46 	FAULT_BLOCK,
47 	FAULT_DIR_DEPTH,
48 	FAULT_EVICT_INODE,
49 	FAULT_IO,
50 	FAULT_CHECKPOINT,
51 	FAULT_MAX,
52 };
53 
54 struct f2fs_fault_info {
55 	atomic_t inject_ops;
56 	unsigned int inject_rate;
57 	unsigned int inject_type;
58 };
59 
60 extern char *fault_name[FAULT_MAX];
61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
62 #endif
63 
64 /*
65  * For mount options
66  */
67 #define F2FS_MOUNT_BG_GC		0x00000001
68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
69 #define F2FS_MOUNT_DISCARD		0x00000004
70 #define F2FS_MOUNT_NOHEAP		0x00000008
71 #define F2FS_MOUNT_XATTR_USER		0x00000010
72 #define F2FS_MOUNT_POSIX_ACL		0x00000020
73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
74 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
75 #define F2FS_MOUNT_INLINE_DATA		0x00000100
76 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
77 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
78 #define F2FS_MOUNT_NOBARRIER		0x00000800
79 #define F2FS_MOUNT_FASTBOOT		0x00001000
80 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
81 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
82 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
83 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
84 #define F2FS_MOUNT_ADAPTIVE		0x00020000
85 #define F2FS_MOUNT_LFS			0x00040000
86 
87 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
88 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
89 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
90 
91 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
92 		typecheck(unsigned long long, b) &&			\
93 		((long long)((a) - (b)) > 0))
94 
95 typedef u32 block_t;	/*
96 			 * should not change u32, since it is the on-disk block
97 			 * address format, __le32.
98 			 */
99 typedef u32 nid_t;
100 
101 struct f2fs_mount_info {
102 	unsigned int	opt;
103 };
104 
105 #define F2FS_FEATURE_ENCRYPT	0x0001
106 #define F2FS_FEATURE_HMSMR	0x0002
107 
108 #define F2FS_HAS_FEATURE(sb, mask)					\
109 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
110 #define F2FS_SET_FEATURE(sb, mask)					\
111 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
112 #define F2FS_CLEAR_FEATURE(sb, mask)					\
113 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
114 
115 /*
116  * For checkpoint manager
117  */
118 enum {
119 	NAT_BITMAP,
120 	SIT_BITMAP
121 };
122 
123 enum {
124 	CP_UMOUNT,
125 	CP_FASTBOOT,
126 	CP_SYNC,
127 	CP_RECOVERY,
128 	CP_DISCARD,
129 };
130 
131 #define DEF_BATCHED_TRIM_SECTIONS	2
132 #define BATCHED_TRIM_SEGMENTS(sbi)	\
133 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
134 #define BATCHED_TRIM_BLOCKS(sbi)	\
135 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
136 #define DEF_CP_INTERVAL			60	/* 60 secs */
137 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
138 
139 struct cp_control {
140 	int reason;
141 	__u64 trim_start;
142 	__u64 trim_end;
143 	__u64 trim_minlen;
144 	__u64 trimmed;
145 };
146 
147 /*
148  * For CP/NAT/SIT/SSA readahead
149  */
150 enum {
151 	META_CP,
152 	META_NAT,
153 	META_SIT,
154 	META_SSA,
155 	META_POR,
156 };
157 
158 /* for the list of ino */
159 enum {
160 	ORPHAN_INO,		/* for orphan ino list */
161 	APPEND_INO,		/* for append ino list */
162 	UPDATE_INO,		/* for update ino list */
163 	MAX_INO_ENTRY,		/* max. list */
164 };
165 
166 struct ino_entry {
167 	struct list_head list;	/* list head */
168 	nid_t ino;		/* inode number */
169 };
170 
171 /* for the list of inodes to be GCed */
172 struct inode_entry {
173 	struct list_head list;	/* list head */
174 	struct inode *inode;	/* vfs inode pointer */
175 };
176 
177 /* for the list of blockaddresses to be discarded */
178 struct discard_entry {
179 	struct list_head list;	/* list head */
180 	block_t blkaddr;	/* block address to be discarded */
181 	int len;		/* # of consecutive blocks of the discard */
182 };
183 
184 struct bio_entry {
185 	struct list_head list;
186 	struct bio *bio;
187 	struct completion event;
188 	int error;
189 };
190 
191 /* for the list of fsync inodes, used only during recovery */
192 struct fsync_inode_entry {
193 	struct list_head list;	/* list head */
194 	struct inode *inode;	/* vfs inode pointer */
195 	block_t blkaddr;	/* block address locating the last fsync */
196 	block_t last_dentry;	/* block address locating the last dentry */
197 };
198 
199 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
200 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
201 
202 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
203 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
204 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
205 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
206 
207 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
208 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
209 
210 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
211 {
212 	int before = nats_in_cursum(journal);
213 	journal->n_nats = cpu_to_le16(before + i);
214 	return before;
215 }
216 
217 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
218 {
219 	int before = sits_in_cursum(journal);
220 	journal->n_sits = cpu_to_le16(before + i);
221 	return before;
222 }
223 
224 static inline bool __has_cursum_space(struct f2fs_journal *journal,
225 							int size, int type)
226 {
227 	if (type == NAT_JOURNAL)
228 		return size <= MAX_NAT_JENTRIES(journal);
229 	return size <= MAX_SIT_JENTRIES(journal);
230 }
231 
232 /*
233  * ioctl commands
234  */
235 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
236 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
237 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
238 
239 #define F2FS_IOCTL_MAGIC		0xf5
240 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
241 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
242 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
243 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
244 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
245 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
246 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
247 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
248 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
249 						struct f2fs_move_range)
250 
251 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
252 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
253 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
254 
255 /*
256  * should be same as XFS_IOC_GOINGDOWN.
257  * Flags for going down operation used by FS_IOC_GOINGDOWN
258  */
259 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
260 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
261 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
262 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
263 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
264 
265 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
266 /*
267  * ioctl commands in 32 bit emulation
268  */
269 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
270 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
271 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
272 #endif
273 
274 struct f2fs_defragment {
275 	u64 start;
276 	u64 len;
277 };
278 
279 struct f2fs_move_range {
280 	u32 dst_fd;		/* destination fd */
281 	u64 pos_in;		/* start position in src_fd */
282 	u64 pos_out;		/* start position in dst_fd */
283 	u64 len;		/* size to move */
284 };
285 
286 /*
287  * For INODE and NODE manager
288  */
289 /* for directory operations */
290 struct f2fs_dentry_ptr {
291 	struct inode *inode;
292 	const void *bitmap;
293 	struct f2fs_dir_entry *dentry;
294 	__u8 (*filename)[F2FS_SLOT_LEN];
295 	int max;
296 };
297 
298 static inline void make_dentry_ptr(struct inode *inode,
299 		struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 	d->inode = inode;
302 
303 	if (type == 1) {
304 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 		d->max = NR_DENTRY_IN_BLOCK;
306 		d->bitmap = &t->dentry_bitmap;
307 		d->dentry = t->dentry;
308 		d->filename = t->filename;
309 	} else {
310 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 		d->max = NR_INLINE_DENTRY;
312 		d->bitmap = &t->dentry_bitmap;
313 		d->dentry = t->dentry;
314 		d->filename = t->filename;
315 	}
316 }
317 
318 /*
319  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320  * as its node offset to distinguish from index node blocks.
321  * But some bits are used to mark the node block.
322  */
323 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 				>> OFFSET_BIT_SHIFT)
325 enum {
326 	ALLOC_NODE,			/* allocate a new node page if needed */
327 	LOOKUP_NODE,			/* look up a node without readahead */
328 	LOOKUP_NODE_RA,			/*
329 					 * look up a node with readahead called
330 					 * by get_data_block.
331 					 */
332 };
333 
334 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
335 
336 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
337 
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE	64
340 
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
343 
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER	128
346 
347 struct extent_info {
348 	unsigned int fofs;		/* start offset in a file */
349 	u32 blk;			/* start block address of the extent */
350 	unsigned int len;		/* length of the extent */
351 };
352 
353 struct extent_node {
354 	struct rb_node rb_node;		/* rb node located in rb-tree */
355 	struct list_head list;		/* node in global extent list of sbi */
356 	struct extent_info ei;		/* extent info */
357 	struct extent_tree *et;		/* extent tree pointer */
358 };
359 
360 struct extent_tree {
361 	nid_t ino;			/* inode number */
362 	struct rb_root root;		/* root of extent info rb-tree */
363 	struct extent_node *cached_en;	/* recently accessed extent node */
364 	struct extent_info largest;	/* largested extent info */
365 	struct list_head list;		/* to be used by sbi->zombie_list */
366 	rwlock_t lock;			/* protect extent info rb-tree */
367 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
368 };
369 
370 /*
371  * This structure is taken from ext4_map_blocks.
372  *
373  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374  */
375 #define F2FS_MAP_NEW		(1 << BH_New)
376 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 				F2FS_MAP_UNWRITTEN)
380 
381 struct f2fs_map_blocks {
382 	block_t m_pblk;
383 	block_t m_lblk;
384 	unsigned int m_len;
385 	unsigned int m_flags;
386 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
387 };
388 
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ		0
391 #define F2FS_GET_BLOCK_DIO		1
392 #define F2FS_GET_BLOCK_FIEMAP		2
393 #define F2FS_GET_BLOCK_BMAP		3
394 #define F2FS_GET_BLOCK_PRE_DIO		4
395 #define F2FS_GET_BLOCK_PRE_AIO		5
396 
397 /*
398  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
399  */
400 #define FADVISE_COLD_BIT	0x01
401 #define FADVISE_LOST_PINO_BIT	0x02
402 #define FADVISE_ENCRYPT_BIT	0x04
403 #define FADVISE_ENC_NAME_BIT	0x08
404 
405 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
406 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
407 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
408 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
409 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
410 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
411 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
412 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
413 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
414 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
415 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
416 
417 #define DEF_DIR_LEVEL		0
418 
419 struct f2fs_inode_info {
420 	struct inode vfs_inode;		/* serve a vfs inode */
421 	unsigned long i_flags;		/* keep an inode flags for ioctl */
422 	unsigned char i_advise;		/* use to give file attribute hints */
423 	unsigned char i_dir_level;	/* use for dentry level for large dir */
424 	unsigned int i_current_depth;	/* use only in directory structure */
425 	unsigned int i_pino;		/* parent inode number */
426 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
427 
428 	/* Use below internally in f2fs*/
429 	unsigned long flags;		/* use to pass per-file flags */
430 	struct rw_semaphore i_sem;	/* protect fi info */
431 	struct percpu_counter dirty_pages;	/* # of dirty pages */
432 	f2fs_hash_t chash;		/* hash value of given file name */
433 	unsigned int clevel;		/* maximum level of given file name */
434 	nid_t i_xattr_nid;		/* node id that contains xattrs */
435 	unsigned long long xattr_ver;	/* cp version of xattr modification */
436 	loff_t	last_disk_size;		/* lastly written file size */
437 
438 	struct list_head dirty_list;	/* dirty list for dirs and files */
439 	struct list_head gdirty_list;	/* linked in global dirty list */
440 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
441 	struct mutex inmem_lock;	/* lock for inmemory pages */
442 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
443 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
444 };
445 
446 static inline void get_extent_info(struct extent_info *ext,
447 					struct f2fs_extent *i_ext)
448 {
449 	ext->fofs = le32_to_cpu(i_ext->fofs);
450 	ext->blk = le32_to_cpu(i_ext->blk);
451 	ext->len = le32_to_cpu(i_ext->len);
452 }
453 
454 static inline void set_raw_extent(struct extent_info *ext,
455 					struct f2fs_extent *i_ext)
456 {
457 	i_ext->fofs = cpu_to_le32(ext->fofs);
458 	i_ext->blk = cpu_to_le32(ext->blk);
459 	i_ext->len = cpu_to_le32(ext->len);
460 }
461 
462 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
463 						u32 blk, unsigned int len)
464 {
465 	ei->fofs = fofs;
466 	ei->blk = blk;
467 	ei->len = len;
468 }
469 
470 static inline bool __is_extent_same(struct extent_info *ei1,
471 						struct extent_info *ei2)
472 {
473 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
474 						ei1->len == ei2->len);
475 }
476 
477 static inline bool __is_extent_mergeable(struct extent_info *back,
478 						struct extent_info *front)
479 {
480 	return (back->fofs + back->len == front->fofs &&
481 			back->blk + back->len == front->blk);
482 }
483 
484 static inline bool __is_back_mergeable(struct extent_info *cur,
485 						struct extent_info *back)
486 {
487 	return __is_extent_mergeable(back, cur);
488 }
489 
490 static inline bool __is_front_mergeable(struct extent_info *cur,
491 						struct extent_info *front)
492 {
493 	return __is_extent_mergeable(cur, front);
494 }
495 
496 extern void f2fs_mark_inode_dirty_sync(struct inode *);
497 static inline void __try_update_largest_extent(struct inode *inode,
498 			struct extent_tree *et, struct extent_node *en)
499 {
500 	if (en->ei.len > et->largest.len) {
501 		et->largest = en->ei;
502 		f2fs_mark_inode_dirty_sync(inode);
503 	}
504 }
505 
506 struct f2fs_nm_info {
507 	block_t nat_blkaddr;		/* base disk address of NAT */
508 	nid_t max_nid;			/* maximum possible node ids */
509 	nid_t available_nids;		/* maximum available node ids */
510 	nid_t next_scan_nid;		/* the next nid to be scanned */
511 	unsigned int ram_thresh;	/* control the memory footprint */
512 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
513 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
514 
515 	/* NAT cache management */
516 	struct radix_tree_root nat_root;/* root of the nat entry cache */
517 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
518 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
519 	struct list_head nat_entries;	/* cached nat entry list (clean) */
520 	unsigned int nat_cnt;		/* the # of cached nat entries */
521 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
522 
523 	/* free node ids management */
524 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
525 	struct list_head free_nid_list;	/* a list for free nids */
526 	spinlock_t free_nid_list_lock;	/* protect free nid list */
527 	unsigned int fcnt;		/* the number of free node id */
528 	struct mutex build_lock;	/* lock for build free nids */
529 
530 	/* for checkpoint */
531 	char *nat_bitmap;		/* NAT bitmap pointer */
532 	int bitmap_size;		/* bitmap size */
533 };
534 
535 /*
536  * this structure is used as one of function parameters.
537  * all the information are dedicated to a given direct node block determined
538  * by the data offset in a file.
539  */
540 struct dnode_of_data {
541 	struct inode *inode;		/* vfs inode pointer */
542 	struct page *inode_page;	/* its inode page, NULL is possible */
543 	struct page *node_page;		/* cached direct node page */
544 	nid_t nid;			/* node id of the direct node block */
545 	unsigned int ofs_in_node;	/* data offset in the node page */
546 	bool inode_page_locked;		/* inode page is locked or not */
547 	bool node_changed;		/* is node block changed */
548 	char cur_level;			/* level of hole node page */
549 	char max_level;			/* level of current page located */
550 	block_t	data_blkaddr;		/* block address of the node block */
551 };
552 
553 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
554 		struct page *ipage, struct page *npage, nid_t nid)
555 {
556 	memset(dn, 0, sizeof(*dn));
557 	dn->inode = inode;
558 	dn->inode_page = ipage;
559 	dn->node_page = npage;
560 	dn->nid = nid;
561 }
562 
563 /*
564  * For SIT manager
565  *
566  * By default, there are 6 active log areas across the whole main area.
567  * When considering hot and cold data separation to reduce cleaning overhead,
568  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
569  * respectively.
570  * In the current design, you should not change the numbers intentionally.
571  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
572  * logs individually according to the underlying devices. (default: 6)
573  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
574  * data and 8 for node logs.
575  */
576 #define	NR_CURSEG_DATA_TYPE	(3)
577 #define NR_CURSEG_NODE_TYPE	(3)
578 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
579 
580 enum {
581 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
582 	CURSEG_WARM_DATA,	/* data blocks */
583 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
584 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
585 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
586 	CURSEG_COLD_NODE,	/* indirect node blocks */
587 	NO_CHECK_TYPE,
588 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
589 };
590 
591 struct flush_cmd {
592 	struct completion wait;
593 	struct llist_node llnode;
594 	int ret;
595 };
596 
597 struct flush_cmd_control {
598 	struct task_struct *f2fs_issue_flush;	/* flush thread */
599 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
600 	atomic_t submit_flush;			/* # of issued flushes */
601 	struct llist_head issue_list;		/* list for command issue */
602 	struct llist_node *dispatch_list;	/* list for command dispatch */
603 };
604 
605 struct f2fs_sm_info {
606 	struct sit_info *sit_info;		/* whole segment information */
607 	struct free_segmap_info *free_info;	/* free segment information */
608 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
609 	struct curseg_info *curseg_array;	/* active segment information */
610 
611 	block_t seg0_blkaddr;		/* block address of 0'th segment */
612 	block_t main_blkaddr;		/* start block address of main area */
613 	block_t ssa_blkaddr;		/* start block address of SSA area */
614 
615 	unsigned int segment_count;	/* total # of segments */
616 	unsigned int main_segments;	/* # of segments in main area */
617 	unsigned int reserved_segments;	/* # of reserved segments */
618 	unsigned int ovp_segments;	/* # of overprovision segments */
619 
620 	/* a threshold to reclaim prefree segments */
621 	unsigned int rec_prefree_segments;
622 
623 	/* for small discard management */
624 	struct list_head discard_list;		/* 4KB discard list */
625 	struct list_head wait_list;		/* linked with issued discard bio */
626 	int nr_discards;			/* # of discards in the list */
627 	int max_discards;			/* max. discards to be issued */
628 
629 	/* for batched trimming */
630 	unsigned int trim_sections;		/* # of sections to trim */
631 
632 	struct list_head sit_entry_set;	/* sit entry set list */
633 
634 	unsigned int ipu_policy;	/* in-place-update policy */
635 	unsigned int min_ipu_util;	/* in-place-update threshold */
636 	unsigned int min_fsync_blocks;	/* threshold for fsync */
637 
638 	/* for flush command control */
639 	struct flush_cmd_control *cmd_control_info;
640 
641 };
642 
643 /*
644  * For superblock
645  */
646 /*
647  * COUNT_TYPE for monitoring
648  *
649  * f2fs monitors the number of several block types such as on-writeback,
650  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
651  */
652 enum count_type {
653 	F2FS_DIRTY_DENTS,
654 	F2FS_DIRTY_DATA,
655 	F2FS_DIRTY_NODES,
656 	F2FS_DIRTY_META,
657 	F2FS_INMEM_PAGES,
658 	F2FS_DIRTY_IMETA,
659 	NR_COUNT_TYPE,
660 };
661 
662 /*
663  * The below are the page types of bios used in submit_bio().
664  * The available types are:
665  * DATA			User data pages. It operates as async mode.
666  * NODE			Node pages. It operates as async mode.
667  * META			FS metadata pages such as SIT, NAT, CP.
668  * NR_PAGE_TYPE		The number of page types.
669  * META_FLUSH		Make sure the previous pages are written
670  *			with waiting the bio's completion
671  * ...			Only can be used with META.
672  */
673 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
674 enum page_type {
675 	DATA,
676 	NODE,
677 	META,
678 	NR_PAGE_TYPE,
679 	META_FLUSH,
680 	INMEM,		/* the below types are used by tracepoints only. */
681 	INMEM_DROP,
682 	INMEM_REVOKE,
683 	IPU,
684 	OPU,
685 };
686 
687 struct f2fs_io_info {
688 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
689 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
690 	int op;			/* contains REQ_OP_ */
691 	int op_flags;		/* rq_flag_bits */
692 	block_t new_blkaddr;	/* new block address to be written */
693 	block_t old_blkaddr;	/* old block address before Cow */
694 	struct page *page;	/* page to be written */
695 	struct page *encrypted_page;	/* encrypted page */
696 };
697 
698 #define is_read_io(rw) (rw == READ)
699 struct f2fs_bio_info {
700 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
701 	struct bio *bio;		/* bios to merge */
702 	sector_t last_block_in_bio;	/* last block number */
703 	struct f2fs_io_info fio;	/* store buffered io info. */
704 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
705 };
706 
707 enum inode_type {
708 	DIR_INODE,			/* for dirty dir inode */
709 	FILE_INODE,			/* for dirty regular/symlink inode */
710 	DIRTY_META,			/* for all dirtied inode metadata */
711 	NR_INODE_TYPE,
712 };
713 
714 /* for inner inode cache management */
715 struct inode_management {
716 	struct radix_tree_root ino_root;	/* ino entry array */
717 	spinlock_t ino_lock;			/* for ino entry lock */
718 	struct list_head ino_list;		/* inode list head */
719 	unsigned long ino_num;			/* number of entries */
720 };
721 
722 /* For s_flag in struct f2fs_sb_info */
723 enum {
724 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
725 	SBI_IS_CLOSE,				/* specify unmounting */
726 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
727 	SBI_POR_DOING,				/* recovery is doing or not */
728 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
729 	SBI_NEED_CP,				/* need to checkpoint */
730 };
731 
732 enum {
733 	CP_TIME,
734 	REQ_TIME,
735 	MAX_TIME,
736 };
737 
738 #ifdef CONFIG_F2FS_FS_ENCRYPTION
739 #define F2FS_KEY_DESC_PREFIX "f2fs:"
740 #define F2FS_KEY_DESC_PREFIX_SIZE 5
741 #endif
742 struct f2fs_sb_info {
743 	struct super_block *sb;			/* pointer to VFS super block */
744 	struct proc_dir_entry *s_proc;		/* proc entry */
745 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
746 	int valid_super_block;			/* valid super block no */
747 	unsigned long s_flag;				/* flags for sbi */
748 
749 #ifdef CONFIG_F2FS_FS_ENCRYPTION
750 	u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
751 	u8 key_prefix_size;
752 #endif
753 	/* for node-related operations */
754 	struct f2fs_nm_info *nm_info;		/* node manager */
755 	struct inode *node_inode;		/* cache node blocks */
756 
757 	/* for segment-related operations */
758 	struct f2fs_sm_info *sm_info;		/* segment manager */
759 
760 	/* for bio operations */
761 	struct f2fs_bio_info read_io;			/* for read bios */
762 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
763 	struct mutex wio_mutex[NODE + 1];	/* bio ordering for NODE/DATA */
764 
765 	/* for checkpoint */
766 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
767 	spinlock_t cp_lock;			/* for flag in ckpt */
768 	struct inode *meta_inode;		/* cache meta blocks */
769 	struct mutex cp_mutex;			/* checkpoint procedure lock */
770 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
771 	struct rw_semaphore node_write;		/* locking node writes */
772 	wait_queue_head_t cp_wait;
773 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
774 	long interval_time[MAX_TIME];		/* to store thresholds */
775 
776 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
777 
778 	/* for orphan inode, use 0'th array */
779 	unsigned int max_orphans;		/* max orphan inodes */
780 
781 	/* for inode management */
782 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
783 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
784 
785 	/* for extent tree cache */
786 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
787 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
788 	struct list_head extent_list;		/* lru list for shrinker */
789 	spinlock_t extent_lock;			/* locking extent lru list */
790 	atomic_t total_ext_tree;		/* extent tree count */
791 	struct list_head zombie_list;		/* extent zombie tree list */
792 	atomic_t total_zombie_tree;		/* extent zombie tree count */
793 	atomic_t total_ext_node;		/* extent info count */
794 
795 	/* basic filesystem units */
796 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
797 	unsigned int log_blocksize;		/* log2 block size */
798 	unsigned int blocksize;			/* block size */
799 	unsigned int root_ino_num;		/* root inode number*/
800 	unsigned int node_ino_num;		/* node inode number*/
801 	unsigned int meta_ino_num;		/* meta inode number*/
802 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
803 	unsigned int blocks_per_seg;		/* blocks per segment */
804 	unsigned int segs_per_sec;		/* segments per section */
805 	unsigned int secs_per_zone;		/* sections per zone */
806 	unsigned int total_sections;		/* total section count */
807 	unsigned int total_node_count;		/* total node block count */
808 	unsigned int total_valid_node_count;	/* valid node block count */
809 	loff_t max_file_blocks;			/* max block index of file */
810 	int active_logs;			/* # of active logs */
811 	int dir_level;				/* directory level */
812 
813 	block_t user_block_count;		/* # of user blocks */
814 	block_t total_valid_block_count;	/* # of valid blocks */
815 	block_t discard_blks;			/* discard command candidats */
816 	block_t last_valid_block_count;		/* for recovery */
817 	u32 s_next_generation;			/* for NFS support */
818 	atomic_t nr_wb_bios;			/* # of writeback bios */
819 
820 	/* # of pages, see count_type */
821 	struct percpu_counter nr_pages[NR_COUNT_TYPE];
822 	/* # of allocated blocks */
823 	struct percpu_counter alloc_valid_block_count;
824 
825 	/* valid inode count */
826 	struct percpu_counter total_valid_inode_count;
827 
828 	struct f2fs_mount_info mount_opt;	/* mount options */
829 
830 	/* for cleaning operations */
831 	struct mutex gc_mutex;			/* mutex for GC */
832 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
833 	unsigned int cur_victim_sec;		/* current victim section num */
834 
835 	/* maximum # of trials to find a victim segment for SSR and GC */
836 	unsigned int max_victim_search;
837 
838 	/*
839 	 * for stat information.
840 	 * one is for the LFS mode, and the other is for the SSR mode.
841 	 */
842 #ifdef CONFIG_F2FS_STAT_FS
843 	struct f2fs_stat_info *stat_info;	/* FS status information */
844 	unsigned int segment_count[2];		/* # of allocated segments */
845 	unsigned int block_count[2];		/* # of allocated blocks */
846 	atomic_t inplace_count;		/* # of inplace update */
847 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
848 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
849 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
850 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
851 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
852 	atomic_t inline_inode;			/* # of inline_data inodes */
853 	atomic_t inline_dir;			/* # of inline_dentry inodes */
854 	int bg_gc;				/* background gc calls */
855 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
856 #endif
857 	unsigned int last_victim[2];		/* last victim segment # */
858 	spinlock_t stat_lock;			/* lock for stat operations */
859 
860 	/* For sysfs suppport */
861 	struct kobject s_kobj;
862 	struct completion s_kobj_unregister;
863 
864 	/* For shrinker support */
865 	struct list_head s_list;
866 	struct mutex umount_mutex;
867 	unsigned int shrinker_run_no;
868 
869 	/* For write statistics */
870 	u64 sectors_written_start;
871 	u64 kbytes_written;
872 
873 	/* Reference to checksum algorithm driver via cryptoapi */
874 	struct crypto_shash *s_chksum_driver;
875 
876 	/* For fault injection */
877 #ifdef CONFIG_F2FS_FAULT_INJECTION
878 	struct f2fs_fault_info fault_info;
879 #endif
880 };
881 
882 #ifdef CONFIG_F2FS_FAULT_INJECTION
883 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
884 {
885 	struct f2fs_fault_info *ffi = &sbi->fault_info;
886 
887 	if (!ffi->inject_rate)
888 		return false;
889 
890 	if (!IS_FAULT_SET(ffi, type))
891 		return false;
892 
893 	atomic_inc(&ffi->inject_ops);
894 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
895 		atomic_set(&ffi->inject_ops, 0);
896 		printk("%sF2FS-fs : inject %s in %pF\n",
897 				KERN_INFO,
898 				fault_name[type],
899 				__builtin_return_address(0));
900 		return true;
901 	}
902 	return false;
903 }
904 #endif
905 
906 /* For write statistics. Suppose sector size is 512 bytes,
907  * and the return value is in kbytes. s is of struct f2fs_sb_info.
908  */
909 #define BD_PART_WRITTEN(s)						 \
910 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
911 		s->sectors_written_start) >> 1)
912 
913 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
914 {
915 	sbi->last_time[type] = jiffies;
916 }
917 
918 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
919 {
920 	struct timespec ts = {sbi->interval_time[type], 0};
921 	unsigned long interval = timespec_to_jiffies(&ts);
922 
923 	return time_after(jiffies, sbi->last_time[type] + interval);
924 }
925 
926 static inline bool is_idle(struct f2fs_sb_info *sbi)
927 {
928 	struct block_device *bdev = sbi->sb->s_bdev;
929 	struct request_queue *q = bdev_get_queue(bdev);
930 	struct request_list *rl = &q->root_rl;
931 
932 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
933 		return 0;
934 
935 	return f2fs_time_over(sbi, REQ_TIME);
936 }
937 
938 /*
939  * Inline functions
940  */
941 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
942 			   unsigned int length)
943 {
944 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
945 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
946 	int err;
947 
948 	shash->tfm = sbi->s_chksum_driver;
949 	shash->flags = 0;
950 	*ctx = F2FS_SUPER_MAGIC;
951 
952 	err = crypto_shash_update(shash, address, length);
953 	BUG_ON(err);
954 
955 	return *ctx;
956 }
957 
958 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
959 				  void *buf, size_t buf_size)
960 {
961 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
962 }
963 
964 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
965 {
966 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
967 }
968 
969 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
970 {
971 	return sb->s_fs_info;
972 }
973 
974 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
975 {
976 	return F2FS_SB(inode->i_sb);
977 }
978 
979 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
980 {
981 	return F2FS_I_SB(mapping->host);
982 }
983 
984 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
985 {
986 	return F2FS_M_SB(page->mapping);
987 }
988 
989 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
990 {
991 	return (struct f2fs_super_block *)(sbi->raw_super);
992 }
993 
994 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
995 {
996 	return (struct f2fs_checkpoint *)(sbi->ckpt);
997 }
998 
999 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1000 {
1001 	return (struct f2fs_node *)page_address(page);
1002 }
1003 
1004 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1005 {
1006 	return &((struct f2fs_node *)page_address(page))->i;
1007 }
1008 
1009 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1010 {
1011 	return (struct f2fs_nm_info *)(sbi->nm_info);
1012 }
1013 
1014 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1015 {
1016 	return (struct f2fs_sm_info *)(sbi->sm_info);
1017 }
1018 
1019 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1020 {
1021 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1022 }
1023 
1024 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1025 {
1026 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1027 }
1028 
1029 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1030 {
1031 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1032 }
1033 
1034 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1035 {
1036 	return sbi->meta_inode->i_mapping;
1037 }
1038 
1039 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1040 {
1041 	return sbi->node_inode->i_mapping;
1042 }
1043 
1044 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1045 {
1046 	return test_bit(type, &sbi->s_flag);
1047 }
1048 
1049 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1050 {
1051 	set_bit(type, &sbi->s_flag);
1052 }
1053 
1054 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1055 {
1056 	clear_bit(type, &sbi->s_flag);
1057 }
1058 
1059 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1060 {
1061 	return le64_to_cpu(cp->checkpoint_ver);
1062 }
1063 
1064 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1065 {
1066 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1067 
1068 	return ckpt_flags & f;
1069 }
1070 
1071 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1072 {
1073 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1074 }
1075 
1076 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1077 {
1078 	unsigned int ckpt_flags;
1079 
1080 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1081 	ckpt_flags |= f;
1082 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1083 }
1084 
1085 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1086 {
1087 	spin_lock(&sbi->cp_lock);
1088 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1089 	spin_unlock(&sbi->cp_lock);
1090 }
1091 
1092 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1093 {
1094 	unsigned int ckpt_flags;
1095 
1096 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1097 	ckpt_flags &= (~f);
1098 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1099 }
1100 
1101 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1102 {
1103 	spin_lock(&sbi->cp_lock);
1104 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1105 	spin_unlock(&sbi->cp_lock);
1106 }
1107 
1108 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
1109 {
1110 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
1111 
1112 	return blk_queue_discard(q);
1113 }
1114 
1115 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1116 {
1117 	down_read(&sbi->cp_rwsem);
1118 }
1119 
1120 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1121 {
1122 	up_read(&sbi->cp_rwsem);
1123 }
1124 
1125 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1126 {
1127 	down_write(&sbi->cp_rwsem);
1128 }
1129 
1130 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1131 {
1132 	up_write(&sbi->cp_rwsem);
1133 }
1134 
1135 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1136 {
1137 	int reason = CP_SYNC;
1138 
1139 	if (test_opt(sbi, FASTBOOT))
1140 		reason = CP_FASTBOOT;
1141 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1142 		reason = CP_UMOUNT;
1143 	return reason;
1144 }
1145 
1146 static inline bool __remain_node_summaries(int reason)
1147 {
1148 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1149 }
1150 
1151 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1152 {
1153 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1154 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1155 }
1156 
1157 /*
1158  * Check whether the given nid is within node id range.
1159  */
1160 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1161 {
1162 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1163 		return -EINVAL;
1164 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1165 		return -EINVAL;
1166 	return 0;
1167 }
1168 
1169 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1170 
1171 /*
1172  * Check whether the inode has blocks or not
1173  */
1174 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1175 {
1176 	if (F2FS_I(inode)->i_xattr_nid)
1177 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1178 	else
1179 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1180 }
1181 
1182 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1183 {
1184 	return ofs == XATTR_NODE_OFFSET;
1185 }
1186 
1187 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1188 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1189 				 struct inode *inode, blkcnt_t *count)
1190 {
1191 	blkcnt_t diff;
1192 
1193 #ifdef CONFIG_F2FS_FAULT_INJECTION
1194 	if (time_to_inject(sbi, FAULT_BLOCK))
1195 		return false;
1196 #endif
1197 	/*
1198 	 * let's increase this in prior to actual block count change in order
1199 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1200 	 */
1201 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1202 
1203 	spin_lock(&sbi->stat_lock);
1204 	sbi->total_valid_block_count += (block_t)(*count);
1205 	if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1206 		diff = sbi->total_valid_block_count - sbi->user_block_count;
1207 		*count -= diff;
1208 		sbi->total_valid_block_count = sbi->user_block_count;
1209 		if (!*count) {
1210 			spin_unlock(&sbi->stat_lock);
1211 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1212 			return false;
1213 		}
1214 	}
1215 	spin_unlock(&sbi->stat_lock);
1216 
1217 	f2fs_i_blocks_write(inode, *count, true);
1218 	return true;
1219 }
1220 
1221 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1222 						struct inode *inode,
1223 						blkcnt_t count)
1224 {
1225 	spin_lock(&sbi->stat_lock);
1226 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1227 	f2fs_bug_on(sbi, inode->i_blocks < count);
1228 	sbi->total_valid_block_count -= (block_t)count;
1229 	spin_unlock(&sbi->stat_lock);
1230 	f2fs_i_blocks_write(inode, count, false);
1231 }
1232 
1233 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1234 {
1235 	percpu_counter_inc(&sbi->nr_pages[count_type]);
1236 
1237 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES)
1238 		return;
1239 
1240 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1241 }
1242 
1243 static inline void inode_inc_dirty_pages(struct inode *inode)
1244 {
1245 	percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1246 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1247 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1248 }
1249 
1250 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1251 {
1252 	percpu_counter_dec(&sbi->nr_pages[count_type]);
1253 }
1254 
1255 static inline void inode_dec_dirty_pages(struct inode *inode)
1256 {
1257 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1258 			!S_ISLNK(inode->i_mode))
1259 		return;
1260 
1261 	percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1262 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1263 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1264 }
1265 
1266 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1267 {
1268 	return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1269 }
1270 
1271 static inline s64 get_dirty_pages(struct inode *inode)
1272 {
1273 	return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1274 }
1275 
1276 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1277 {
1278 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1279 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1280 						sbi->log_blocks_per_seg;
1281 
1282 	return segs / sbi->segs_per_sec;
1283 }
1284 
1285 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1286 {
1287 	return sbi->total_valid_block_count;
1288 }
1289 
1290 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1291 {
1292 	return sbi->discard_blks;
1293 }
1294 
1295 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1296 {
1297 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1298 
1299 	/* return NAT or SIT bitmap */
1300 	if (flag == NAT_BITMAP)
1301 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1302 	else if (flag == SIT_BITMAP)
1303 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1304 
1305 	return 0;
1306 }
1307 
1308 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1309 {
1310 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1311 }
1312 
1313 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1314 {
1315 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1316 	int offset;
1317 
1318 	if (__cp_payload(sbi) > 0) {
1319 		if (flag == NAT_BITMAP)
1320 			return &ckpt->sit_nat_version_bitmap;
1321 		else
1322 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1323 	} else {
1324 		offset = (flag == NAT_BITMAP) ?
1325 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1326 		return &ckpt->sit_nat_version_bitmap + offset;
1327 	}
1328 }
1329 
1330 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1331 {
1332 	block_t start_addr;
1333 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1334 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1335 
1336 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1337 
1338 	/*
1339 	 * odd numbered checkpoint should at cp segment 0
1340 	 * and even segment must be at cp segment 1
1341 	 */
1342 	if (!(ckpt_version & 1))
1343 		start_addr += sbi->blocks_per_seg;
1344 
1345 	return start_addr;
1346 }
1347 
1348 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1349 {
1350 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1351 }
1352 
1353 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1354 						struct inode *inode)
1355 {
1356 	block_t	valid_block_count;
1357 	unsigned int valid_node_count;
1358 
1359 	spin_lock(&sbi->stat_lock);
1360 
1361 	valid_block_count = sbi->total_valid_block_count + 1;
1362 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1363 		spin_unlock(&sbi->stat_lock);
1364 		return false;
1365 	}
1366 
1367 	valid_node_count = sbi->total_valid_node_count + 1;
1368 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1369 		spin_unlock(&sbi->stat_lock);
1370 		return false;
1371 	}
1372 
1373 	if (inode)
1374 		f2fs_i_blocks_write(inode, 1, true);
1375 
1376 	sbi->total_valid_node_count++;
1377 	sbi->total_valid_block_count++;
1378 	spin_unlock(&sbi->stat_lock);
1379 
1380 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1381 	return true;
1382 }
1383 
1384 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1385 						struct inode *inode)
1386 {
1387 	spin_lock(&sbi->stat_lock);
1388 
1389 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1390 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1391 	f2fs_bug_on(sbi, !inode->i_blocks);
1392 
1393 	f2fs_i_blocks_write(inode, 1, false);
1394 	sbi->total_valid_node_count--;
1395 	sbi->total_valid_block_count--;
1396 
1397 	spin_unlock(&sbi->stat_lock);
1398 }
1399 
1400 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1401 {
1402 	return sbi->total_valid_node_count;
1403 }
1404 
1405 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1406 {
1407 	percpu_counter_inc(&sbi->total_valid_inode_count);
1408 }
1409 
1410 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1411 {
1412 	percpu_counter_dec(&sbi->total_valid_inode_count);
1413 }
1414 
1415 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1416 {
1417 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1418 }
1419 
1420 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1421 						pgoff_t index, bool for_write)
1422 {
1423 #ifdef CONFIG_F2FS_FAULT_INJECTION
1424 	struct page *page = find_lock_page(mapping, index);
1425 	if (page)
1426 		return page;
1427 
1428 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
1429 		return NULL;
1430 #endif
1431 	if (!for_write)
1432 		return grab_cache_page(mapping, index);
1433 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1434 }
1435 
1436 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1437 {
1438 	char *src_kaddr = kmap(src);
1439 	char *dst_kaddr = kmap(dst);
1440 
1441 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1442 	kunmap(dst);
1443 	kunmap(src);
1444 }
1445 
1446 static inline void f2fs_put_page(struct page *page, int unlock)
1447 {
1448 	if (!page)
1449 		return;
1450 
1451 	if (unlock) {
1452 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1453 		unlock_page(page);
1454 	}
1455 	put_page(page);
1456 }
1457 
1458 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1459 {
1460 	if (dn->node_page)
1461 		f2fs_put_page(dn->node_page, 1);
1462 	if (dn->inode_page && dn->node_page != dn->inode_page)
1463 		f2fs_put_page(dn->inode_page, 0);
1464 	dn->node_page = NULL;
1465 	dn->inode_page = NULL;
1466 }
1467 
1468 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1469 					size_t size)
1470 {
1471 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1472 }
1473 
1474 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1475 						gfp_t flags)
1476 {
1477 	void *entry;
1478 
1479 	entry = kmem_cache_alloc(cachep, flags);
1480 	if (!entry)
1481 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1482 	return entry;
1483 }
1484 
1485 static inline struct bio *f2fs_bio_alloc(int npages)
1486 {
1487 	struct bio *bio;
1488 
1489 	/* No failure on bio allocation */
1490 	bio = bio_alloc(GFP_NOIO, npages);
1491 	if (!bio)
1492 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1493 	return bio;
1494 }
1495 
1496 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1497 				unsigned long index, void *item)
1498 {
1499 	while (radix_tree_insert(root, index, item))
1500 		cond_resched();
1501 }
1502 
1503 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1504 
1505 static inline bool IS_INODE(struct page *page)
1506 {
1507 	struct f2fs_node *p = F2FS_NODE(page);
1508 	return RAW_IS_INODE(p);
1509 }
1510 
1511 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1512 {
1513 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1514 }
1515 
1516 static inline block_t datablock_addr(struct page *node_page,
1517 		unsigned int offset)
1518 {
1519 	struct f2fs_node *raw_node;
1520 	__le32 *addr_array;
1521 	raw_node = F2FS_NODE(node_page);
1522 	addr_array = blkaddr_in_node(raw_node);
1523 	return le32_to_cpu(addr_array[offset]);
1524 }
1525 
1526 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1527 {
1528 	int mask;
1529 
1530 	addr += (nr >> 3);
1531 	mask = 1 << (7 - (nr & 0x07));
1532 	return mask & *addr;
1533 }
1534 
1535 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1536 {
1537 	int mask;
1538 
1539 	addr += (nr >> 3);
1540 	mask = 1 << (7 - (nr & 0x07));
1541 	*addr |= mask;
1542 }
1543 
1544 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1545 {
1546 	int mask;
1547 
1548 	addr += (nr >> 3);
1549 	mask = 1 << (7 - (nr & 0x07));
1550 	*addr &= ~mask;
1551 }
1552 
1553 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1554 {
1555 	int mask;
1556 	int ret;
1557 
1558 	addr += (nr >> 3);
1559 	mask = 1 << (7 - (nr & 0x07));
1560 	ret = mask & *addr;
1561 	*addr |= mask;
1562 	return ret;
1563 }
1564 
1565 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1566 {
1567 	int mask;
1568 	int ret;
1569 
1570 	addr += (nr >> 3);
1571 	mask = 1 << (7 - (nr & 0x07));
1572 	ret = mask & *addr;
1573 	*addr &= ~mask;
1574 	return ret;
1575 }
1576 
1577 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1578 {
1579 	int mask;
1580 
1581 	addr += (nr >> 3);
1582 	mask = 1 << (7 - (nr & 0x07));
1583 	*addr ^= mask;
1584 }
1585 
1586 /* used for f2fs_inode_info->flags */
1587 enum {
1588 	FI_NEW_INODE,		/* indicate newly allocated inode */
1589 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1590 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1591 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1592 	FI_INC_LINK,		/* need to increment i_nlink */
1593 	FI_ACL_MODE,		/* indicate acl mode */
1594 	FI_NO_ALLOC,		/* should not allocate any blocks */
1595 	FI_FREE_NID,		/* free allocated nide */
1596 	FI_NO_EXTENT,		/* not to use the extent cache */
1597 	FI_INLINE_XATTR,	/* used for inline xattr */
1598 	FI_INLINE_DATA,		/* used for inline data*/
1599 	FI_INLINE_DENTRY,	/* used for inline dentry */
1600 	FI_APPEND_WRITE,	/* inode has appended data */
1601 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1602 	FI_NEED_IPU,		/* used for ipu per file */
1603 	FI_ATOMIC_FILE,		/* indicate atomic file */
1604 	FI_VOLATILE_FILE,	/* indicate volatile file */
1605 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1606 	FI_DROP_CACHE,		/* drop dirty page cache */
1607 	FI_DATA_EXIST,		/* indicate data exists */
1608 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1609 	FI_DO_DEFRAG,		/* indicate defragment is running */
1610 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1611 };
1612 
1613 static inline void __mark_inode_dirty_flag(struct inode *inode,
1614 						int flag, bool set)
1615 {
1616 	switch (flag) {
1617 	case FI_INLINE_XATTR:
1618 	case FI_INLINE_DATA:
1619 	case FI_INLINE_DENTRY:
1620 		if (set)
1621 			return;
1622 	case FI_DATA_EXIST:
1623 	case FI_INLINE_DOTS:
1624 		f2fs_mark_inode_dirty_sync(inode);
1625 	}
1626 }
1627 
1628 static inline void set_inode_flag(struct inode *inode, int flag)
1629 {
1630 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1631 		set_bit(flag, &F2FS_I(inode)->flags);
1632 	__mark_inode_dirty_flag(inode, flag, true);
1633 }
1634 
1635 static inline int is_inode_flag_set(struct inode *inode, int flag)
1636 {
1637 	return test_bit(flag, &F2FS_I(inode)->flags);
1638 }
1639 
1640 static inline void clear_inode_flag(struct inode *inode, int flag)
1641 {
1642 	if (test_bit(flag, &F2FS_I(inode)->flags))
1643 		clear_bit(flag, &F2FS_I(inode)->flags);
1644 	__mark_inode_dirty_flag(inode, flag, false);
1645 }
1646 
1647 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1648 {
1649 	F2FS_I(inode)->i_acl_mode = mode;
1650 	set_inode_flag(inode, FI_ACL_MODE);
1651 	f2fs_mark_inode_dirty_sync(inode);
1652 }
1653 
1654 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1655 {
1656 	if (inc)
1657 		inc_nlink(inode);
1658 	else
1659 		drop_nlink(inode);
1660 	f2fs_mark_inode_dirty_sync(inode);
1661 }
1662 
1663 static inline void f2fs_i_blocks_write(struct inode *inode,
1664 					blkcnt_t diff, bool add)
1665 {
1666 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1667 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1668 
1669 	inode->i_blocks = add ? inode->i_blocks + diff :
1670 				inode->i_blocks - diff;
1671 	f2fs_mark_inode_dirty_sync(inode);
1672 	if (clean || recover)
1673 		set_inode_flag(inode, FI_AUTO_RECOVER);
1674 }
1675 
1676 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1677 {
1678 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1679 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1680 
1681 	if (i_size_read(inode) == i_size)
1682 		return;
1683 
1684 	i_size_write(inode, i_size);
1685 	f2fs_mark_inode_dirty_sync(inode);
1686 	if (clean || recover)
1687 		set_inode_flag(inode, FI_AUTO_RECOVER);
1688 }
1689 
1690 static inline bool f2fs_skip_inode_update(struct inode *inode)
1691 {
1692 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1693 		return false;
1694 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1695 }
1696 
1697 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1698 {
1699 	F2FS_I(inode)->i_current_depth = depth;
1700 	f2fs_mark_inode_dirty_sync(inode);
1701 }
1702 
1703 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1704 {
1705 	F2FS_I(inode)->i_xattr_nid = xnid;
1706 	f2fs_mark_inode_dirty_sync(inode);
1707 }
1708 
1709 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1710 {
1711 	F2FS_I(inode)->i_pino = pino;
1712 	f2fs_mark_inode_dirty_sync(inode);
1713 }
1714 
1715 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1716 {
1717 	struct f2fs_inode_info *fi = F2FS_I(inode);
1718 
1719 	if (ri->i_inline & F2FS_INLINE_XATTR)
1720 		set_bit(FI_INLINE_XATTR, &fi->flags);
1721 	if (ri->i_inline & F2FS_INLINE_DATA)
1722 		set_bit(FI_INLINE_DATA, &fi->flags);
1723 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1724 		set_bit(FI_INLINE_DENTRY, &fi->flags);
1725 	if (ri->i_inline & F2FS_DATA_EXIST)
1726 		set_bit(FI_DATA_EXIST, &fi->flags);
1727 	if (ri->i_inline & F2FS_INLINE_DOTS)
1728 		set_bit(FI_INLINE_DOTS, &fi->flags);
1729 }
1730 
1731 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1732 {
1733 	ri->i_inline = 0;
1734 
1735 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1736 		ri->i_inline |= F2FS_INLINE_XATTR;
1737 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
1738 		ri->i_inline |= F2FS_INLINE_DATA;
1739 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1740 		ri->i_inline |= F2FS_INLINE_DENTRY;
1741 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
1742 		ri->i_inline |= F2FS_DATA_EXIST;
1743 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1744 		ri->i_inline |= F2FS_INLINE_DOTS;
1745 }
1746 
1747 static inline int f2fs_has_inline_xattr(struct inode *inode)
1748 {
1749 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
1750 }
1751 
1752 static inline unsigned int addrs_per_inode(struct inode *inode)
1753 {
1754 	if (f2fs_has_inline_xattr(inode))
1755 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1756 	return DEF_ADDRS_PER_INODE;
1757 }
1758 
1759 static inline void *inline_xattr_addr(struct page *page)
1760 {
1761 	struct f2fs_inode *ri = F2FS_INODE(page);
1762 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1763 					F2FS_INLINE_XATTR_ADDRS]);
1764 }
1765 
1766 static inline int inline_xattr_size(struct inode *inode)
1767 {
1768 	if (f2fs_has_inline_xattr(inode))
1769 		return F2FS_INLINE_XATTR_ADDRS << 2;
1770 	else
1771 		return 0;
1772 }
1773 
1774 static inline int f2fs_has_inline_data(struct inode *inode)
1775 {
1776 	return is_inode_flag_set(inode, FI_INLINE_DATA);
1777 }
1778 
1779 static inline void f2fs_clear_inline_inode(struct inode *inode)
1780 {
1781 	clear_inode_flag(inode, FI_INLINE_DATA);
1782 	clear_inode_flag(inode, FI_DATA_EXIST);
1783 }
1784 
1785 static inline int f2fs_exist_data(struct inode *inode)
1786 {
1787 	return is_inode_flag_set(inode, FI_DATA_EXIST);
1788 }
1789 
1790 static inline int f2fs_has_inline_dots(struct inode *inode)
1791 {
1792 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
1793 }
1794 
1795 static inline bool f2fs_is_atomic_file(struct inode *inode)
1796 {
1797 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1798 }
1799 
1800 static inline bool f2fs_is_volatile_file(struct inode *inode)
1801 {
1802 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1803 }
1804 
1805 static inline bool f2fs_is_first_block_written(struct inode *inode)
1806 {
1807 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1808 }
1809 
1810 static inline bool f2fs_is_drop_cache(struct inode *inode)
1811 {
1812 	return is_inode_flag_set(inode, FI_DROP_CACHE);
1813 }
1814 
1815 static inline void *inline_data_addr(struct page *page)
1816 {
1817 	struct f2fs_inode *ri = F2FS_INODE(page);
1818 	return (void *)&(ri->i_addr[1]);
1819 }
1820 
1821 static inline int f2fs_has_inline_dentry(struct inode *inode)
1822 {
1823 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1824 }
1825 
1826 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1827 {
1828 	if (!f2fs_has_inline_dentry(dir))
1829 		kunmap(page);
1830 }
1831 
1832 static inline int is_file(struct inode *inode, int type)
1833 {
1834 	return F2FS_I(inode)->i_advise & type;
1835 }
1836 
1837 static inline void set_file(struct inode *inode, int type)
1838 {
1839 	F2FS_I(inode)->i_advise |= type;
1840 	f2fs_mark_inode_dirty_sync(inode);
1841 }
1842 
1843 static inline void clear_file(struct inode *inode, int type)
1844 {
1845 	F2FS_I(inode)->i_advise &= ~type;
1846 	f2fs_mark_inode_dirty_sync(inode);
1847 }
1848 
1849 static inline int f2fs_readonly(struct super_block *sb)
1850 {
1851 	return sb->s_flags & MS_RDONLY;
1852 }
1853 
1854 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1855 {
1856 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1857 }
1858 
1859 static inline bool is_dot_dotdot(const struct qstr *str)
1860 {
1861 	if (str->len == 1 && str->name[0] == '.')
1862 		return true;
1863 
1864 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1865 		return true;
1866 
1867 	return false;
1868 }
1869 
1870 static inline bool f2fs_may_extent_tree(struct inode *inode)
1871 {
1872 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1873 			is_inode_flag_set(inode, FI_NO_EXTENT))
1874 		return false;
1875 
1876 	return S_ISREG(inode->i_mode);
1877 }
1878 
1879 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1880 					size_t size, gfp_t flags)
1881 {
1882 #ifdef CONFIG_F2FS_FAULT_INJECTION
1883 	if (time_to_inject(sbi, FAULT_KMALLOC))
1884 		return NULL;
1885 #endif
1886 	return kmalloc(size, flags);
1887 }
1888 
1889 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1890 {
1891 	void *ret;
1892 
1893 	ret = kmalloc(size, flags | __GFP_NOWARN);
1894 	if (!ret)
1895 		ret = __vmalloc(size, flags, PAGE_KERNEL);
1896 	return ret;
1897 }
1898 
1899 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1900 {
1901 	void *ret;
1902 
1903 	ret = kzalloc(size, flags | __GFP_NOWARN);
1904 	if (!ret)
1905 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1906 	return ret;
1907 }
1908 
1909 #define get_inode_mode(i) \
1910 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1911 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1912 
1913 /* get offset of first page in next direct node */
1914 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
1915 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
1916 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
1917 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1918 
1919 /*
1920  * file.c
1921  */
1922 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1923 void truncate_data_blocks(struct dnode_of_data *);
1924 int truncate_blocks(struct inode *, u64, bool);
1925 int f2fs_truncate(struct inode *);
1926 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1927 int f2fs_setattr(struct dentry *, struct iattr *);
1928 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1929 int truncate_data_blocks_range(struct dnode_of_data *, int);
1930 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1931 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1932 
1933 /*
1934  * inode.c
1935  */
1936 void f2fs_set_inode_flags(struct inode *);
1937 struct inode *f2fs_iget(struct super_block *, unsigned long);
1938 struct inode *f2fs_iget_retry(struct super_block *, unsigned long);
1939 int try_to_free_nats(struct f2fs_sb_info *, int);
1940 int update_inode(struct inode *, struct page *);
1941 int update_inode_page(struct inode *);
1942 int f2fs_write_inode(struct inode *, struct writeback_control *);
1943 void f2fs_evict_inode(struct inode *);
1944 void handle_failed_inode(struct inode *);
1945 
1946 /*
1947  * namei.c
1948  */
1949 struct dentry *f2fs_get_parent(struct dentry *child);
1950 
1951 /*
1952  * dir.c
1953  */
1954 void set_de_type(struct f2fs_dir_entry *, umode_t);
1955 unsigned char get_de_type(struct f2fs_dir_entry *);
1956 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1957 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1958 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1959 			unsigned int, struct fscrypt_str *);
1960 void do_make_empty_dir(struct inode *, struct inode *,
1961 			struct f2fs_dentry_ptr *);
1962 struct page *init_inode_metadata(struct inode *, struct inode *,
1963 		const struct qstr *, const struct qstr *, struct page *);
1964 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1965 int room_for_filename(const void *, int, int);
1966 void f2fs_drop_nlink(struct inode *, struct inode *);
1967 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *,
1968 							struct page **);
1969 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
1970 							struct page **);
1971 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1972 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
1973 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1974 				struct page *, struct inode *);
1975 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1976 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1977 			const struct qstr *, f2fs_hash_t , unsigned int);
1978 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1979 			const struct qstr *, struct inode *, nid_t, umode_t);
1980 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *,
1981 			nid_t, umode_t);
1982 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1983 			umode_t);
1984 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1985 							struct inode *);
1986 int f2fs_do_tmpfile(struct inode *, struct inode *);
1987 bool f2fs_empty_dir(struct inode *);
1988 
1989 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1990 {
1991 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1992 				inode, inode->i_ino, inode->i_mode);
1993 }
1994 
1995 /*
1996  * super.c
1997  */
1998 int f2fs_inode_dirtied(struct inode *);
1999 void f2fs_inode_synced(struct inode *);
2000 int f2fs_commit_super(struct f2fs_sb_info *, bool);
2001 int f2fs_sync_fs(struct super_block *, int);
2002 extern __printf(3, 4)
2003 void f2fs_msg(struct super_block *, const char *, const char *, ...);
2004 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2005 
2006 /*
2007  * hash.c
2008  */
2009 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
2010 
2011 /*
2012  * node.c
2013  */
2014 struct dnode_of_data;
2015 struct node_info;
2016 
2017 bool available_free_memory(struct f2fs_sb_info *, int);
2018 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
2019 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
2020 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
2021 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
2022 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
2023 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
2024 int truncate_inode_blocks(struct inode *, pgoff_t);
2025 int truncate_xattr_node(struct inode *, struct page *);
2026 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
2027 int remove_inode_page(struct inode *);
2028 struct page *new_inode_page(struct inode *);
2029 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
2030 void ra_node_page(struct f2fs_sb_info *, nid_t);
2031 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
2032 struct page *get_node_page_ra(struct page *, int);
2033 void move_node_page(struct page *, int);
2034 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
2035 			struct writeback_control *, bool);
2036 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
2037 void build_free_nids(struct f2fs_sb_info *);
2038 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
2039 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
2040 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
2041 int try_to_free_nids(struct f2fs_sb_info *, int);
2042 void recover_inline_xattr(struct inode *, struct page *);
2043 void recover_xattr_data(struct inode *, struct page *, block_t);
2044 int recover_inode_page(struct f2fs_sb_info *, struct page *);
2045 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
2046 				struct f2fs_summary_block *);
2047 void flush_nat_entries(struct f2fs_sb_info *);
2048 int build_node_manager(struct f2fs_sb_info *);
2049 void destroy_node_manager(struct f2fs_sb_info *);
2050 int __init create_node_manager_caches(void);
2051 void destroy_node_manager_caches(void);
2052 
2053 /*
2054  * segment.c
2055  */
2056 void register_inmem_page(struct inode *, struct page *);
2057 void drop_inmem_pages(struct inode *);
2058 int commit_inmem_pages(struct inode *);
2059 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2060 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2061 int f2fs_issue_flush(struct f2fs_sb_info *);
2062 int create_flush_cmd_control(struct f2fs_sb_info *);
2063 void destroy_flush_cmd_control(struct f2fs_sb_info *);
2064 void invalidate_blocks(struct f2fs_sb_info *, block_t);
2065 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2066 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2067 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *);
2068 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2069 void release_discard_addrs(struct f2fs_sb_info *);
2070 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2071 void allocate_new_segments(struct f2fs_sb_info *);
2072 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2073 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2074 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2075 void write_meta_page(struct f2fs_sb_info *, struct page *);
2076 void write_node_page(unsigned int, struct f2fs_io_info *);
2077 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2078 void rewrite_data_page(struct f2fs_io_info *);
2079 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2080 					block_t, block_t, bool, bool);
2081 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2082 				block_t, block_t, unsigned char, bool, bool);
2083 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2084 		block_t, block_t *, struct f2fs_summary *, int);
2085 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2086 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2087 void write_data_summaries(struct f2fs_sb_info *, block_t);
2088 void write_node_summaries(struct f2fs_sb_info *, block_t);
2089 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2090 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2091 int build_segment_manager(struct f2fs_sb_info *);
2092 void destroy_segment_manager(struct f2fs_sb_info *);
2093 int __init create_segment_manager_caches(void);
2094 void destroy_segment_manager_caches(void);
2095 
2096 /*
2097  * checkpoint.c
2098  */
2099 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2100 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2101 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2102 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2103 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2104 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2105 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2106 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2107 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2108 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2109 void release_ino_entry(struct f2fs_sb_info *, bool);
2110 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2111 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2112 int acquire_orphan_inode(struct f2fs_sb_info *);
2113 void release_orphan_inode(struct f2fs_sb_info *);
2114 void add_orphan_inode(struct inode *);
2115 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2116 int recover_orphan_inodes(struct f2fs_sb_info *);
2117 int get_valid_checkpoint(struct f2fs_sb_info *);
2118 void update_dirty_page(struct inode *, struct page *);
2119 void remove_dirty_inode(struct inode *);
2120 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2121 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2122 void init_ino_entry_info(struct f2fs_sb_info *);
2123 int __init create_checkpoint_caches(void);
2124 void destroy_checkpoint_caches(void);
2125 
2126 /*
2127  * data.c
2128  */
2129 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2130 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2131 				struct page *, nid_t, enum page_type, int);
2132 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2133 int f2fs_submit_page_bio(struct f2fs_io_info *);
2134 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2135 void set_data_blkaddr(struct dnode_of_data *);
2136 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2137 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2138 int reserve_new_block(struct dnode_of_data *);
2139 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2140 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2141 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2142 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2143 struct page *find_data_page(struct inode *, pgoff_t);
2144 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2145 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2146 int do_write_data_page(struct f2fs_io_info *);
2147 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2148 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2149 void f2fs_set_page_dirty_nobuffers(struct page *);
2150 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2151 int f2fs_release_page(struct page *, gfp_t);
2152 #ifdef CONFIG_MIGRATION
2153 int f2fs_migrate_page(struct address_space *, struct page *, struct page *,
2154 				enum migrate_mode);
2155 #endif
2156 
2157 /*
2158  * gc.c
2159  */
2160 int start_gc_thread(struct f2fs_sb_info *);
2161 void stop_gc_thread(struct f2fs_sb_info *);
2162 block_t start_bidx_of_node(unsigned int, struct inode *);
2163 int f2fs_gc(struct f2fs_sb_info *, bool);
2164 void build_gc_manager(struct f2fs_sb_info *);
2165 
2166 /*
2167  * recovery.c
2168  */
2169 int recover_fsync_data(struct f2fs_sb_info *, bool);
2170 bool space_for_roll_forward(struct f2fs_sb_info *);
2171 
2172 /*
2173  * debug.c
2174  */
2175 #ifdef CONFIG_F2FS_STAT_FS
2176 struct f2fs_stat_info {
2177 	struct list_head stat_list;
2178 	struct f2fs_sb_info *sbi;
2179 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2180 	int main_area_segs, main_area_sections, main_area_zones;
2181 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2182 	unsigned long long hit_total, total_ext;
2183 	int ext_tree, zombie_tree, ext_node;
2184 	s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2185 	s64 inmem_pages;
2186 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2187 	int nats, dirty_nats, sits, dirty_sits, fnids;
2188 	int total_count, utilization;
2189 	int bg_gc, wb_bios;
2190 	int inline_xattr, inline_inode, inline_dir, orphans;
2191 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2192 	unsigned int bimodal, avg_vblocks;
2193 	int util_free, util_valid, util_invalid;
2194 	int rsvd_segs, overp_segs;
2195 	int dirty_count, node_pages, meta_pages;
2196 	int prefree_count, call_count, cp_count, bg_cp_count;
2197 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2198 	int bg_node_segs, bg_data_segs;
2199 	int tot_blks, data_blks, node_blks;
2200 	int bg_data_blks, bg_node_blks;
2201 	int curseg[NR_CURSEG_TYPE];
2202 	int cursec[NR_CURSEG_TYPE];
2203 	int curzone[NR_CURSEG_TYPE];
2204 
2205 	unsigned int segment_count[2];
2206 	unsigned int block_count[2];
2207 	unsigned int inplace_count;
2208 	unsigned long long base_mem, cache_mem, page_mem;
2209 };
2210 
2211 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2212 {
2213 	return (struct f2fs_stat_info *)sbi->stat_info;
2214 }
2215 
2216 #define stat_inc_cp_count(si)		((si)->cp_count++)
2217 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2218 #define stat_inc_call_count(si)		((si)->call_count++)
2219 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2220 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2221 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2222 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2223 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2224 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2225 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2226 #define stat_inc_inline_xattr(inode)					\
2227 	do {								\
2228 		if (f2fs_has_inline_xattr(inode))			\
2229 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2230 	} while (0)
2231 #define stat_dec_inline_xattr(inode)					\
2232 	do {								\
2233 		if (f2fs_has_inline_xattr(inode))			\
2234 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2235 	} while (0)
2236 #define stat_inc_inline_inode(inode)					\
2237 	do {								\
2238 		if (f2fs_has_inline_data(inode))			\
2239 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2240 	} while (0)
2241 #define stat_dec_inline_inode(inode)					\
2242 	do {								\
2243 		if (f2fs_has_inline_data(inode))			\
2244 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2245 	} while (0)
2246 #define stat_inc_inline_dir(inode)					\
2247 	do {								\
2248 		if (f2fs_has_inline_dentry(inode))			\
2249 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2250 	} while (0)
2251 #define stat_dec_inline_dir(inode)					\
2252 	do {								\
2253 		if (f2fs_has_inline_dentry(inode))			\
2254 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2255 	} while (0)
2256 #define stat_inc_seg_type(sbi, curseg)					\
2257 		((sbi)->segment_count[(curseg)->alloc_type]++)
2258 #define stat_inc_block_count(sbi, curseg)				\
2259 		((sbi)->block_count[(curseg)->alloc_type]++)
2260 #define stat_inc_inplace_blocks(sbi)					\
2261 		(atomic_inc(&(sbi)->inplace_count))
2262 #define stat_inc_seg_count(sbi, type, gc_type)				\
2263 	do {								\
2264 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2265 		(si)->tot_segs++;					\
2266 		if (type == SUM_TYPE_DATA) {				\
2267 			si->data_segs++;				\
2268 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2269 		} else {						\
2270 			si->node_segs++;				\
2271 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2272 		}							\
2273 	} while (0)
2274 
2275 #define stat_inc_tot_blk_count(si, blks)				\
2276 	(si->tot_blks += (blks))
2277 
2278 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2279 	do {								\
2280 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2281 		stat_inc_tot_blk_count(si, blks);			\
2282 		si->data_blks += (blks);				\
2283 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2284 	} while (0)
2285 
2286 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2287 	do {								\
2288 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2289 		stat_inc_tot_blk_count(si, blks);			\
2290 		si->node_blks += (blks);				\
2291 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2292 	} while (0)
2293 
2294 int f2fs_build_stats(struct f2fs_sb_info *);
2295 void f2fs_destroy_stats(struct f2fs_sb_info *);
2296 int __init f2fs_create_root_stats(void);
2297 void f2fs_destroy_root_stats(void);
2298 #else
2299 #define stat_inc_cp_count(si)
2300 #define stat_inc_bg_cp_count(si)
2301 #define stat_inc_call_count(si)
2302 #define stat_inc_bggc_count(si)
2303 #define stat_inc_dirty_inode(sbi, type)
2304 #define stat_dec_dirty_inode(sbi, type)
2305 #define stat_inc_total_hit(sb)
2306 #define stat_inc_rbtree_node_hit(sb)
2307 #define stat_inc_largest_node_hit(sbi)
2308 #define stat_inc_cached_node_hit(sbi)
2309 #define stat_inc_inline_xattr(inode)
2310 #define stat_dec_inline_xattr(inode)
2311 #define stat_inc_inline_inode(inode)
2312 #define stat_dec_inline_inode(inode)
2313 #define stat_inc_inline_dir(inode)
2314 #define stat_dec_inline_dir(inode)
2315 #define stat_inc_seg_type(sbi, curseg)
2316 #define stat_inc_block_count(sbi, curseg)
2317 #define stat_inc_inplace_blocks(sbi)
2318 #define stat_inc_seg_count(sbi, type, gc_type)
2319 #define stat_inc_tot_blk_count(si, blks)
2320 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2321 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2322 
2323 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2324 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2325 static inline int __init f2fs_create_root_stats(void) { return 0; }
2326 static inline void f2fs_destroy_root_stats(void) { }
2327 #endif
2328 
2329 extern const struct file_operations f2fs_dir_operations;
2330 extern const struct file_operations f2fs_file_operations;
2331 extern const struct inode_operations f2fs_file_inode_operations;
2332 extern const struct address_space_operations f2fs_dblock_aops;
2333 extern const struct address_space_operations f2fs_node_aops;
2334 extern const struct address_space_operations f2fs_meta_aops;
2335 extern const struct inode_operations f2fs_dir_inode_operations;
2336 extern const struct inode_operations f2fs_symlink_inode_operations;
2337 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2338 extern const struct inode_operations f2fs_special_inode_operations;
2339 extern struct kmem_cache *inode_entry_slab;
2340 
2341 /*
2342  * inline.c
2343  */
2344 bool f2fs_may_inline_data(struct inode *);
2345 bool f2fs_may_inline_dentry(struct inode *);
2346 void read_inline_data(struct page *, struct page *);
2347 bool truncate_inline_inode(struct page *, u64);
2348 int f2fs_read_inline_data(struct inode *, struct page *);
2349 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2350 int f2fs_convert_inline_inode(struct inode *);
2351 int f2fs_write_inline_data(struct inode *, struct page *);
2352 bool recover_inline_data(struct inode *, struct page *);
2353 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2354 				struct fscrypt_name *, struct page **);
2355 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2356 int f2fs_add_inline_entry(struct inode *, const struct qstr *,
2357 		const struct qstr *, struct inode *, nid_t, umode_t);
2358 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2359 						struct inode *, struct inode *);
2360 bool f2fs_empty_inline_dir(struct inode *);
2361 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2362 						struct fscrypt_str *);
2363 int f2fs_inline_data_fiemap(struct inode *,
2364 		struct fiemap_extent_info *, __u64, __u64);
2365 
2366 /*
2367  * shrinker.c
2368  */
2369 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2370 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2371 void f2fs_join_shrinker(struct f2fs_sb_info *);
2372 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2373 
2374 /*
2375  * extent_cache.c
2376  */
2377 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2378 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2379 void f2fs_drop_extent_tree(struct inode *);
2380 unsigned int f2fs_destroy_extent_node(struct inode *);
2381 void f2fs_destroy_extent_tree(struct inode *);
2382 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2383 void f2fs_update_extent_cache(struct dnode_of_data *);
2384 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2385 						pgoff_t, block_t, unsigned int);
2386 void init_extent_cache_info(struct f2fs_sb_info *);
2387 int __init create_extent_cache(void);
2388 void destroy_extent_cache(void);
2389 
2390 /*
2391  * crypto support
2392  */
2393 static inline bool f2fs_encrypted_inode(struct inode *inode)
2394 {
2395 	return file_is_encrypt(inode);
2396 }
2397 
2398 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2399 {
2400 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2401 	file_set_encrypt(inode);
2402 #endif
2403 }
2404 
2405 static inline bool f2fs_bio_encrypted(struct bio *bio)
2406 {
2407 	return bio->bi_private != NULL;
2408 }
2409 
2410 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2411 {
2412 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2413 }
2414 
2415 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb)
2416 {
2417 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR);
2418 }
2419 
2420 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2421 {
2422 	clear_opt(sbi, ADAPTIVE);
2423 	clear_opt(sbi, LFS);
2424 
2425 	switch (mt) {
2426 	case F2FS_MOUNT_ADAPTIVE:
2427 		set_opt(sbi, ADAPTIVE);
2428 		break;
2429 	case F2FS_MOUNT_LFS:
2430 		set_opt(sbi, LFS);
2431 		break;
2432 	}
2433 }
2434 
2435 static inline bool f2fs_may_encrypt(struct inode *inode)
2436 {
2437 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2438 	umode_t mode = inode->i_mode;
2439 
2440 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2441 #else
2442 	return 0;
2443 #endif
2444 }
2445 
2446 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2447 #define fscrypt_set_d_op(i)
2448 #define fscrypt_get_ctx			fscrypt_notsupp_get_ctx
2449 #define fscrypt_release_ctx		fscrypt_notsupp_release_ctx
2450 #define fscrypt_encrypt_page		fscrypt_notsupp_encrypt_page
2451 #define fscrypt_decrypt_page		fscrypt_notsupp_decrypt_page
2452 #define fscrypt_decrypt_bio_pages	fscrypt_notsupp_decrypt_bio_pages
2453 #define fscrypt_pullback_bio_page	fscrypt_notsupp_pullback_bio_page
2454 #define fscrypt_restore_control_page	fscrypt_notsupp_restore_control_page
2455 #define fscrypt_zeroout_range		fscrypt_notsupp_zeroout_range
2456 #define fscrypt_process_policy		fscrypt_notsupp_process_policy
2457 #define fscrypt_get_policy		fscrypt_notsupp_get_policy
2458 #define fscrypt_has_permitted_context	fscrypt_notsupp_has_permitted_context
2459 #define fscrypt_inherit_context		fscrypt_notsupp_inherit_context
2460 #define fscrypt_get_encryption_info	fscrypt_notsupp_get_encryption_info
2461 #define fscrypt_put_encryption_info	fscrypt_notsupp_put_encryption_info
2462 #define fscrypt_setup_filename		fscrypt_notsupp_setup_filename
2463 #define fscrypt_free_filename		fscrypt_notsupp_free_filename
2464 #define fscrypt_fname_encrypted_size	fscrypt_notsupp_fname_encrypted_size
2465 #define fscrypt_fname_alloc_buffer	fscrypt_notsupp_fname_alloc_buffer
2466 #define fscrypt_fname_free_buffer	fscrypt_notsupp_fname_free_buffer
2467 #define fscrypt_fname_disk_to_usr	fscrypt_notsupp_fname_disk_to_usr
2468 #define fscrypt_fname_usr_to_disk	fscrypt_notsupp_fname_usr_to_disk
2469 #endif
2470 #endif
2471