1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/part_stat.h> 27 #include <crypto/hash.h> 28 29 #include <linux/fscrypt.h> 30 #include <linux/fsverity.h> 31 32 struct pagevec; 33 34 #ifdef CONFIG_F2FS_CHECK_FS 35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 36 #else 37 #define f2fs_bug_on(sbi, condition) \ 38 do { \ 39 if (WARN_ON(condition)) \ 40 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 41 } while (0) 42 #endif 43 44 enum { 45 FAULT_KMALLOC, 46 FAULT_KVMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_PAGE_GET, 49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 50 FAULT_ALLOC_NID, 51 FAULT_ORPHAN, 52 FAULT_BLOCK, 53 FAULT_DIR_DEPTH, 54 FAULT_EVICT_INODE, 55 FAULT_TRUNCATE, 56 FAULT_READ_IO, 57 FAULT_CHECKPOINT, 58 FAULT_DISCARD, 59 FAULT_WRITE_IO, 60 FAULT_SLAB_ALLOC, 61 FAULT_DQUOT_INIT, 62 FAULT_LOCK_OP, 63 FAULT_BLKADDR, 64 FAULT_MAX, 65 }; 66 67 #ifdef CONFIG_F2FS_FAULT_INJECTION 68 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0)) 69 70 struct f2fs_fault_info { 71 atomic_t inject_ops; 72 unsigned int inject_rate; 73 unsigned int inject_type; 74 }; 75 76 extern const char *f2fs_fault_name[FAULT_MAX]; 77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type)) 78 79 /* maximum retry count for injected failure */ 80 #define DEFAULT_FAILURE_RETRY_COUNT 8 81 #else 82 #define DEFAULT_FAILURE_RETRY_COUNT 1 83 #endif 84 85 /* 86 * For mount options 87 */ 88 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001 89 #define F2FS_MOUNT_DISCARD 0x00000002 90 #define F2FS_MOUNT_NOHEAP 0x00000004 91 #define F2FS_MOUNT_XATTR_USER 0x00000008 92 #define F2FS_MOUNT_POSIX_ACL 0x00000010 93 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020 94 #define F2FS_MOUNT_INLINE_XATTR 0x00000040 95 #define F2FS_MOUNT_INLINE_DATA 0x00000080 96 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100 97 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200 98 #define F2FS_MOUNT_NOBARRIER 0x00000400 99 #define F2FS_MOUNT_FASTBOOT 0x00000800 100 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000 101 #define F2FS_MOUNT_DATA_FLUSH 0x00002000 102 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000 103 #define F2FS_MOUNT_USRQUOTA 0x00008000 104 #define F2FS_MOUNT_GRPQUOTA 0x00010000 105 #define F2FS_MOUNT_PRJQUOTA 0x00020000 106 #define F2FS_MOUNT_QUOTA 0x00040000 107 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000 108 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000 109 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000 110 #define F2FS_MOUNT_NORECOVERY 0x00400000 111 #define F2FS_MOUNT_ATGC 0x00800000 112 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000 113 #define F2FS_MOUNT_GC_MERGE 0x02000000 114 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000 115 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000 116 117 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 118 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 119 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 120 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 121 122 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 123 typecheck(unsigned long long, b) && \ 124 ((long long)((a) - (b)) > 0)) 125 126 typedef u32 block_t; /* 127 * should not change u32, since it is the on-disk block 128 * address format, __le32. 129 */ 130 typedef u32 nid_t; 131 132 #define COMPRESS_EXT_NUM 16 133 134 /* 135 * An implementation of an rwsem that is explicitly unfair to readers. This 136 * prevents priority inversion when a low-priority reader acquires the read lock 137 * while sleeping on the write lock but the write lock is needed by 138 * higher-priority clients. 139 */ 140 141 struct f2fs_rwsem { 142 struct rw_semaphore internal_rwsem; 143 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 144 wait_queue_head_t read_waiters; 145 #endif 146 }; 147 148 struct f2fs_mount_info { 149 unsigned int opt; 150 int write_io_size_bits; /* Write IO size bits */ 151 block_t root_reserved_blocks; /* root reserved blocks */ 152 kuid_t s_resuid; /* reserved blocks for uid */ 153 kgid_t s_resgid; /* reserved blocks for gid */ 154 int active_logs; /* # of active logs */ 155 int inline_xattr_size; /* inline xattr size */ 156 #ifdef CONFIG_F2FS_FAULT_INJECTION 157 struct f2fs_fault_info fault_info; /* For fault injection */ 158 #endif 159 #ifdef CONFIG_QUOTA 160 /* Names of quota files with journalled quota */ 161 char *s_qf_names[MAXQUOTAS]; 162 int s_jquota_fmt; /* Format of quota to use */ 163 #endif 164 /* For which write hints are passed down to block layer */ 165 int alloc_mode; /* segment allocation policy */ 166 int fsync_mode; /* fsync policy */ 167 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 168 int bggc_mode; /* bggc mode: off, on or sync */ 169 int memory_mode; /* memory mode */ 170 int errors; /* errors parameter */ 171 int discard_unit; /* 172 * discard command's offset/size should 173 * be aligned to this unit: block, 174 * segment or section 175 */ 176 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 177 block_t unusable_cap_perc; /* percentage for cap */ 178 block_t unusable_cap; /* Amount of space allowed to be 179 * unusable when disabling checkpoint 180 */ 181 182 /* For compression */ 183 unsigned char compress_algorithm; /* algorithm type */ 184 unsigned char compress_log_size; /* cluster log size */ 185 unsigned char compress_level; /* compress level */ 186 bool compress_chksum; /* compressed data chksum */ 187 unsigned char compress_ext_cnt; /* extension count */ 188 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 189 int compress_mode; /* compression mode */ 190 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 191 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 192 }; 193 194 #define F2FS_FEATURE_ENCRYPT 0x00000001 195 #define F2FS_FEATURE_BLKZONED 0x00000002 196 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004 197 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008 198 #define F2FS_FEATURE_PRJQUOTA 0x00000010 199 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020 200 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040 201 #define F2FS_FEATURE_QUOTA_INO 0x00000080 202 #define F2FS_FEATURE_INODE_CRTIME 0x00000100 203 #define F2FS_FEATURE_LOST_FOUND 0x00000200 204 #define F2FS_FEATURE_VERITY 0x00000400 205 #define F2FS_FEATURE_SB_CHKSUM 0x00000800 206 #define F2FS_FEATURE_CASEFOLD 0x00001000 207 #define F2FS_FEATURE_COMPRESSION 0x00002000 208 #define F2FS_FEATURE_RO 0x00004000 209 210 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 211 ((raw_super->feature & cpu_to_le32(mask)) != 0) 212 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 213 214 /* 215 * Default values for user and/or group using reserved blocks 216 */ 217 #define F2FS_DEF_RESUID 0 218 #define F2FS_DEF_RESGID 0 219 220 /* 221 * For checkpoint manager 222 */ 223 enum { 224 NAT_BITMAP, 225 SIT_BITMAP 226 }; 227 228 #define CP_UMOUNT 0x00000001 229 #define CP_FASTBOOT 0x00000002 230 #define CP_SYNC 0x00000004 231 #define CP_RECOVERY 0x00000008 232 #define CP_DISCARD 0x00000010 233 #define CP_TRIMMED 0x00000020 234 #define CP_PAUSE 0x00000040 235 #define CP_RESIZE 0x00000080 236 237 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 238 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 239 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 240 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 241 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 242 #define DEF_CP_INTERVAL 60 /* 60 secs */ 243 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 244 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 245 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 246 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 247 248 struct cp_control { 249 int reason; 250 __u64 trim_start; 251 __u64 trim_end; 252 __u64 trim_minlen; 253 }; 254 255 /* 256 * indicate meta/data type 257 */ 258 enum { 259 META_CP, 260 META_NAT, 261 META_SIT, 262 META_SSA, 263 META_MAX, 264 META_POR, 265 DATA_GENERIC, /* check range only */ 266 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 267 DATA_GENERIC_ENHANCE_READ, /* 268 * strong check on range and segment 269 * bitmap but no warning due to race 270 * condition of read on truncated area 271 * by extent_cache 272 */ 273 DATA_GENERIC_ENHANCE_UPDATE, /* 274 * strong check on range and segment 275 * bitmap for update case 276 */ 277 META_GENERIC, 278 }; 279 280 /* for the list of ino */ 281 enum { 282 ORPHAN_INO, /* for orphan ino list */ 283 APPEND_INO, /* for append ino list */ 284 UPDATE_INO, /* for update ino list */ 285 TRANS_DIR_INO, /* for transactions dir ino list */ 286 FLUSH_INO, /* for multiple device flushing */ 287 MAX_INO_ENTRY, /* max. list */ 288 }; 289 290 struct ino_entry { 291 struct list_head list; /* list head */ 292 nid_t ino; /* inode number */ 293 unsigned int dirty_device; /* dirty device bitmap */ 294 }; 295 296 /* for the list of inodes to be GCed */ 297 struct inode_entry { 298 struct list_head list; /* list head */ 299 struct inode *inode; /* vfs inode pointer */ 300 }; 301 302 struct fsync_node_entry { 303 struct list_head list; /* list head */ 304 struct page *page; /* warm node page pointer */ 305 unsigned int seq_id; /* sequence id */ 306 }; 307 308 struct ckpt_req { 309 struct completion wait; /* completion for checkpoint done */ 310 struct llist_node llnode; /* llist_node to be linked in wait queue */ 311 int ret; /* return code of checkpoint */ 312 ktime_t queue_time; /* request queued time */ 313 }; 314 315 struct ckpt_req_control { 316 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 317 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 318 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 319 atomic_t issued_ckpt; /* # of actually issued ckpts */ 320 atomic_t total_ckpt; /* # of total ckpts */ 321 atomic_t queued_ckpt; /* # of queued ckpts */ 322 struct llist_head issue_list; /* list for command issue */ 323 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 324 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 325 unsigned int peak_time; /* peak wait time in msec until now */ 326 }; 327 328 /* for the bitmap indicate blocks to be discarded */ 329 struct discard_entry { 330 struct list_head list; /* list head */ 331 block_t start_blkaddr; /* start blockaddr of current segment */ 332 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 333 }; 334 335 /* minimum discard granularity, unit: block count */ 336 #define MIN_DISCARD_GRANULARITY 1 337 /* default discard granularity of inner discard thread, unit: block count */ 338 #define DEFAULT_DISCARD_GRANULARITY 16 339 /* default maximum discard granularity of ordered discard, unit: block count */ 340 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 341 342 /* max discard pend list number */ 343 #define MAX_PLIST_NUM 512 344 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 345 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 346 347 enum { 348 D_PREP, /* initial */ 349 D_PARTIAL, /* partially submitted */ 350 D_SUBMIT, /* all submitted */ 351 D_DONE, /* finished */ 352 }; 353 354 struct discard_info { 355 block_t lstart; /* logical start address */ 356 block_t len; /* length */ 357 block_t start; /* actual start address in dev */ 358 }; 359 360 struct discard_cmd { 361 struct rb_node rb_node; /* rb node located in rb-tree */ 362 struct discard_info di; /* discard info */ 363 struct list_head list; /* command list */ 364 struct completion wait; /* compleation */ 365 struct block_device *bdev; /* bdev */ 366 unsigned short ref; /* reference count */ 367 unsigned char state; /* state */ 368 unsigned char queued; /* queued discard */ 369 int error; /* bio error */ 370 spinlock_t lock; /* for state/bio_ref updating */ 371 unsigned short bio_ref; /* bio reference count */ 372 }; 373 374 enum { 375 DPOLICY_BG, 376 DPOLICY_FORCE, 377 DPOLICY_FSTRIM, 378 DPOLICY_UMOUNT, 379 MAX_DPOLICY, 380 }; 381 382 struct discard_policy { 383 int type; /* type of discard */ 384 unsigned int min_interval; /* used for candidates exist */ 385 unsigned int mid_interval; /* used for device busy */ 386 unsigned int max_interval; /* used for candidates not exist */ 387 unsigned int max_requests; /* # of discards issued per round */ 388 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 389 bool io_aware; /* issue discard in idle time */ 390 bool sync; /* submit discard with REQ_SYNC flag */ 391 bool ordered; /* issue discard by lba order */ 392 bool timeout; /* discard timeout for put_super */ 393 unsigned int granularity; /* discard granularity */ 394 }; 395 396 struct discard_cmd_control { 397 struct task_struct *f2fs_issue_discard; /* discard thread */ 398 struct list_head entry_list; /* 4KB discard entry list */ 399 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 400 struct list_head wait_list; /* store on-flushing entries */ 401 struct list_head fstrim_list; /* in-flight discard from fstrim */ 402 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 403 struct mutex cmd_lock; 404 unsigned int nr_discards; /* # of discards in the list */ 405 unsigned int max_discards; /* max. discards to be issued */ 406 unsigned int max_discard_request; /* max. discard request per round */ 407 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 408 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 409 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 410 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */ 411 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 412 unsigned int discard_granularity; /* discard granularity */ 413 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 414 unsigned int undiscard_blks; /* # of undiscard blocks */ 415 unsigned int next_pos; /* next discard position */ 416 atomic_t issued_discard; /* # of issued discard */ 417 atomic_t queued_discard; /* # of queued discard */ 418 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 419 struct rb_root_cached root; /* root of discard rb-tree */ 420 bool rbtree_check; /* config for consistence check */ 421 bool discard_wake; /* to wake up discard thread */ 422 }; 423 424 /* for the list of fsync inodes, used only during recovery */ 425 struct fsync_inode_entry { 426 struct list_head list; /* list head */ 427 struct inode *inode; /* vfs inode pointer */ 428 block_t blkaddr; /* block address locating the last fsync */ 429 block_t last_dentry; /* block address locating the last dentry */ 430 }; 431 432 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 433 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 434 435 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 436 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 437 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 438 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 439 440 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 441 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 442 443 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 444 { 445 int before = nats_in_cursum(journal); 446 447 journal->n_nats = cpu_to_le16(before + i); 448 return before; 449 } 450 451 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 452 { 453 int before = sits_in_cursum(journal); 454 455 journal->n_sits = cpu_to_le16(before + i); 456 return before; 457 } 458 459 static inline bool __has_cursum_space(struct f2fs_journal *journal, 460 int size, int type) 461 { 462 if (type == NAT_JOURNAL) 463 return size <= MAX_NAT_JENTRIES(journal); 464 return size <= MAX_SIT_JENTRIES(journal); 465 } 466 467 /* for inline stuff */ 468 #define DEF_INLINE_RESERVED_SIZE 1 469 static inline int get_extra_isize(struct inode *inode); 470 static inline int get_inline_xattr_addrs(struct inode *inode); 471 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 472 (CUR_ADDRS_PER_INODE(inode) - \ 473 get_inline_xattr_addrs(inode) - \ 474 DEF_INLINE_RESERVED_SIZE)) 475 476 /* for inline dir */ 477 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 478 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 479 BITS_PER_BYTE + 1)) 480 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 481 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 482 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 483 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 484 NR_INLINE_DENTRY(inode) + \ 485 INLINE_DENTRY_BITMAP_SIZE(inode))) 486 487 /* 488 * For INODE and NODE manager 489 */ 490 /* for directory operations */ 491 492 struct f2fs_filename { 493 /* 494 * The filename the user specified. This is NULL for some 495 * filesystem-internal operations, e.g. converting an inline directory 496 * to a non-inline one, or roll-forward recovering an encrypted dentry. 497 */ 498 const struct qstr *usr_fname; 499 500 /* 501 * The on-disk filename. For encrypted directories, this is encrypted. 502 * This may be NULL for lookups in an encrypted dir without the key. 503 */ 504 struct fscrypt_str disk_name; 505 506 /* The dirhash of this filename */ 507 f2fs_hash_t hash; 508 509 #ifdef CONFIG_FS_ENCRYPTION 510 /* 511 * For lookups in encrypted directories: either the buffer backing 512 * disk_name, or a buffer that holds the decoded no-key name. 513 */ 514 struct fscrypt_str crypto_buf; 515 #endif 516 #if IS_ENABLED(CONFIG_UNICODE) 517 /* 518 * For casefolded directories: the casefolded name, but it's left NULL 519 * if the original name is not valid Unicode, if the original name is 520 * "." or "..", if the directory is both casefolded and encrypted and 521 * its encryption key is unavailable, or if the filesystem is doing an 522 * internal operation where usr_fname is also NULL. In all these cases 523 * we fall back to treating the name as an opaque byte sequence. 524 */ 525 struct fscrypt_str cf_name; 526 #endif 527 }; 528 529 struct f2fs_dentry_ptr { 530 struct inode *inode; 531 void *bitmap; 532 struct f2fs_dir_entry *dentry; 533 __u8 (*filename)[F2FS_SLOT_LEN]; 534 int max; 535 int nr_bitmap; 536 }; 537 538 static inline void make_dentry_ptr_block(struct inode *inode, 539 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 540 { 541 d->inode = inode; 542 d->max = NR_DENTRY_IN_BLOCK; 543 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 544 d->bitmap = t->dentry_bitmap; 545 d->dentry = t->dentry; 546 d->filename = t->filename; 547 } 548 549 static inline void make_dentry_ptr_inline(struct inode *inode, 550 struct f2fs_dentry_ptr *d, void *t) 551 { 552 int entry_cnt = NR_INLINE_DENTRY(inode); 553 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 554 int reserved_size = INLINE_RESERVED_SIZE(inode); 555 556 d->inode = inode; 557 d->max = entry_cnt; 558 d->nr_bitmap = bitmap_size; 559 d->bitmap = t; 560 d->dentry = t + bitmap_size + reserved_size; 561 d->filename = t + bitmap_size + reserved_size + 562 SIZE_OF_DIR_ENTRY * entry_cnt; 563 } 564 565 /* 566 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 567 * as its node offset to distinguish from index node blocks. 568 * But some bits are used to mark the node block. 569 */ 570 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 571 >> OFFSET_BIT_SHIFT) 572 enum { 573 ALLOC_NODE, /* allocate a new node page if needed */ 574 LOOKUP_NODE, /* look up a node without readahead */ 575 LOOKUP_NODE_RA, /* 576 * look up a node with readahead called 577 * by get_data_block. 578 */ 579 }; 580 581 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 582 583 /* congestion wait timeout value, default: 20ms */ 584 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 585 586 /* maximum retry quota flush count */ 587 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 588 589 /* maximum retry of EIO'ed page */ 590 #define MAX_RETRY_PAGE_EIO 100 591 592 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 593 594 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 595 596 /* dirty segments threshold for triggering CP */ 597 #define DEFAULT_DIRTY_THRESHOLD 4 598 599 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 600 #define RECOVERY_MIN_RA_BLOCKS 1 601 602 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 603 604 /* for in-memory extent cache entry */ 605 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 606 607 /* number of extent info in extent cache we try to shrink */ 608 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 609 610 /* number of age extent info in extent cache we try to shrink */ 611 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 612 #define LAST_AGE_WEIGHT 30 613 #define SAME_AGE_REGION 1024 614 615 /* 616 * Define data block with age less than 1GB as hot data 617 * define data block with age less than 10GB but more than 1GB as warm data 618 */ 619 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 620 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 621 622 /* extent cache type */ 623 enum extent_type { 624 EX_READ, 625 EX_BLOCK_AGE, 626 NR_EXTENT_CACHES, 627 }; 628 629 struct extent_info { 630 unsigned int fofs; /* start offset in a file */ 631 unsigned int len; /* length of the extent */ 632 union { 633 /* read extent_cache */ 634 struct { 635 /* start block address of the extent */ 636 block_t blk; 637 #ifdef CONFIG_F2FS_FS_COMPRESSION 638 /* physical extent length of compressed blocks */ 639 unsigned int c_len; 640 #endif 641 }; 642 /* block age extent_cache */ 643 struct { 644 /* block age of the extent */ 645 unsigned long long age; 646 /* last total blocks allocated */ 647 unsigned long long last_blocks; 648 }; 649 }; 650 }; 651 652 struct extent_node { 653 struct rb_node rb_node; /* rb node located in rb-tree */ 654 struct extent_info ei; /* extent info */ 655 struct list_head list; /* node in global extent list of sbi */ 656 struct extent_tree *et; /* extent tree pointer */ 657 }; 658 659 struct extent_tree { 660 nid_t ino; /* inode number */ 661 enum extent_type type; /* keep the extent tree type */ 662 struct rb_root_cached root; /* root of extent info rb-tree */ 663 struct extent_node *cached_en; /* recently accessed extent node */ 664 struct list_head list; /* to be used by sbi->zombie_list */ 665 rwlock_t lock; /* protect extent info rb-tree */ 666 atomic_t node_cnt; /* # of extent node in rb-tree*/ 667 bool largest_updated; /* largest extent updated */ 668 struct extent_info largest; /* largest cached extent for EX_READ */ 669 }; 670 671 struct extent_tree_info { 672 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 673 struct mutex extent_tree_lock; /* locking extent radix tree */ 674 struct list_head extent_list; /* lru list for shrinker */ 675 spinlock_t extent_lock; /* locking extent lru list */ 676 atomic_t total_ext_tree; /* extent tree count */ 677 struct list_head zombie_list; /* extent zombie tree list */ 678 atomic_t total_zombie_tree; /* extent zombie tree count */ 679 atomic_t total_ext_node; /* extent info count */ 680 }; 681 682 /* 683 * State of block returned by f2fs_map_blocks. 684 */ 685 #define F2FS_MAP_NEW (1U << 0) 686 #define F2FS_MAP_MAPPED (1U << 1) 687 #define F2FS_MAP_DELALLOC (1U << 2) 688 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 689 F2FS_MAP_DELALLOC) 690 691 struct f2fs_map_blocks { 692 struct block_device *m_bdev; /* for multi-device dio */ 693 block_t m_pblk; 694 block_t m_lblk; 695 unsigned int m_len; 696 unsigned int m_flags; 697 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 698 pgoff_t *m_next_extent; /* point to next possible extent */ 699 int m_seg_type; 700 bool m_may_create; /* indicate it is from write path */ 701 bool m_multidev_dio; /* indicate it allows multi-device dio */ 702 }; 703 704 /* for flag in get_data_block */ 705 enum { 706 F2FS_GET_BLOCK_DEFAULT, 707 F2FS_GET_BLOCK_FIEMAP, 708 F2FS_GET_BLOCK_BMAP, 709 F2FS_GET_BLOCK_DIO, 710 F2FS_GET_BLOCK_PRE_DIO, 711 F2FS_GET_BLOCK_PRE_AIO, 712 F2FS_GET_BLOCK_PRECACHE, 713 }; 714 715 /* 716 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 717 */ 718 #define FADVISE_COLD_BIT 0x01 719 #define FADVISE_LOST_PINO_BIT 0x02 720 #define FADVISE_ENCRYPT_BIT 0x04 721 #define FADVISE_ENC_NAME_BIT 0x08 722 #define FADVISE_KEEP_SIZE_BIT 0x10 723 #define FADVISE_HOT_BIT 0x20 724 #define FADVISE_VERITY_BIT 0x40 725 #define FADVISE_TRUNC_BIT 0x80 726 727 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 728 729 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 730 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 731 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 732 733 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 734 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 735 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 736 737 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 738 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 739 740 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 741 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 742 743 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 744 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 745 746 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 747 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 748 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 749 750 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 751 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 752 753 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 754 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 755 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 756 757 #define DEF_DIR_LEVEL 0 758 759 enum { 760 GC_FAILURE_PIN, 761 MAX_GC_FAILURE 762 }; 763 764 /* used for f2fs_inode_info->flags */ 765 enum { 766 FI_NEW_INODE, /* indicate newly allocated inode */ 767 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 768 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 769 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 770 FI_INC_LINK, /* need to increment i_nlink */ 771 FI_ACL_MODE, /* indicate acl mode */ 772 FI_NO_ALLOC, /* should not allocate any blocks */ 773 FI_FREE_NID, /* free allocated nide */ 774 FI_NO_EXTENT, /* not to use the extent cache */ 775 FI_INLINE_XATTR, /* used for inline xattr */ 776 FI_INLINE_DATA, /* used for inline data*/ 777 FI_INLINE_DENTRY, /* used for inline dentry */ 778 FI_APPEND_WRITE, /* inode has appended data */ 779 FI_UPDATE_WRITE, /* inode has in-place-update data */ 780 FI_NEED_IPU, /* used for ipu per file */ 781 FI_ATOMIC_FILE, /* indicate atomic file */ 782 FI_DATA_EXIST, /* indicate data exists */ 783 FI_INLINE_DOTS, /* indicate inline dot dentries */ 784 FI_SKIP_WRITES, /* should skip data page writeback */ 785 FI_OPU_WRITE, /* used for opu per file */ 786 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 787 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 788 FI_HOT_DATA, /* indicate file is hot */ 789 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 790 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 791 FI_PIN_FILE, /* indicate file should not be gced */ 792 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 793 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 794 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 795 FI_MMAP_FILE, /* indicate file was mmapped */ 796 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 797 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 798 FI_ALIGNED_WRITE, /* enable aligned write */ 799 FI_COW_FILE, /* indicate COW file */ 800 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 801 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 802 FI_MAX, /* max flag, never be used */ 803 }; 804 805 struct f2fs_inode_info { 806 struct inode vfs_inode; /* serve a vfs inode */ 807 unsigned long i_flags; /* keep an inode flags for ioctl */ 808 unsigned char i_advise; /* use to give file attribute hints */ 809 unsigned char i_dir_level; /* use for dentry level for large dir */ 810 unsigned int i_current_depth; /* only for directory depth */ 811 /* for gc failure statistic */ 812 unsigned int i_gc_failures[MAX_GC_FAILURE]; 813 unsigned int i_pino; /* parent inode number */ 814 umode_t i_acl_mode; /* keep file acl mode temporarily */ 815 816 /* Use below internally in f2fs*/ 817 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 818 struct f2fs_rwsem i_sem; /* protect fi info */ 819 atomic_t dirty_pages; /* # of dirty pages */ 820 f2fs_hash_t chash; /* hash value of given file name */ 821 unsigned int clevel; /* maximum level of given file name */ 822 struct task_struct *task; /* lookup and create consistency */ 823 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 824 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 825 nid_t i_xattr_nid; /* node id that contains xattrs */ 826 loff_t last_disk_size; /* lastly written file size */ 827 spinlock_t i_size_lock; /* protect last_disk_size */ 828 829 #ifdef CONFIG_QUOTA 830 struct dquot __rcu *i_dquot[MAXQUOTAS]; 831 832 /* quota space reservation, managed internally by quota code */ 833 qsize_t i_reserved_quota; 834 #endif 835 struct list_head dirty_list; /* dirty list for dirs and files */ 836 struct list_head gdirty_list; /* linked in global dirty list */ 837 struct task_struct *atomic_write_task; /* store atomic write task */ 838 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 839 /* cached extent_tree entry */ 840 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 841 842 /* avoid racing between foreground op and gc */ 843 struct f2fs_rwsem i_gc_rwsem[2]; 844 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 845 846 int i_extra_isize; /* size of extra space located in i_addr */ 847 kprojid_t i_projid; /* id for project quota */ 848 int i_inline_xattr_size; /* inline xattr size */ 849 struct timespec64 i_crtime; /* inode creation time */ 850 struct timespec64 i_disk_time[3];/* inode disk times */ 851 852 /* for file compress */ 853 atomic_t i_compr_blocks; /* # of compressed blocks */ 854 unsigned char i_compress_algorithm; /* algorithm type */ 855 unsigned char i_log_cluster_size; /* log of cluster size */ 856 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 857 unsigned char i_compress_flag; /* compress flag */ 858 unsigned int i_cluster_size; /* cluster size */ 859 860 unsigned int atomic_write_cnt; 861 loff_t original_i_size; /* original i_size before atomic write */ 862 }; 863 864 static inline void get_read_extent_info(struct extent_info *ext, 865 struct f2fs_extent *i_ext) 866 { 867 ext->fofs = le32_to_cpu(i_ext->fofs); 868 ext->blk = le32_to_cpu(i_ext->blk); 869 ext->len = le32_to_cpu(i_ext->len); 870 } 871 872 static inline void set_raw_read_extent(struct extent_info *ext, 873 struct f2fs_extent *i_ext) 874 { 875 i_ext->fofs = cpu_to_le32(ext->fofs); 876 i_ext->blk = cpu_to_le32(ext->blk); 877 i_ext->len = cpu_to_le32(ext->len); 878 } 879 880 static inline bool __is_discard_mergeable(struct discard_info *back, 881 struct discard_info *front, unsigned int max_len) 882 { 883 return (back->lstart + back->len == front->lstart) && 884 (back->len + front->len <= max_len); 885 } 886 887 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 888 struct discard_info *back, unsigned int max_len) 889 { 890 return __is_discard_mergeable(back, cur, max_len); 891 } 892 893 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 894 struct discard_info *front, unsigned int max_len) 895 { 896 return __is_discard_mergeable(cur, front, max_len); 897 } 898 899 /* 900 * For free nid management 901 */ 902 enum nid_state { 903 FREE_NID, /* newly added to free nid list */ 904 PREALLOC_NID, /* it is preallocated */ 905 MAX_NID_STATE, 906 }; 907 908 enum nat_state { 909 TOTAL_NAT, 910 DIRTY_NAT, 911 RECLAIMABLE_NAT, 912 MAX_NAT_STATE, 913 }; 914 915 struct f2fs_nm_info { 916 block_t nat_blkaddr; /* base disk address of NAT */ 917 nid_t max_nid; /* maximum possible node ids */ 918 nid_t available_nids; /* # of available node ids */ 919 nid_t next_scan_nid; /* the next nid to be scanned */ 920 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 921 unsigned int ram_thresh; /* control the memory footprint */ 922 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 923 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 924 925 /* NAT cache management */ 926 struct radix_tree_root nat_root;/* root of the nat entry cache */ 927 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 928 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 929 struct list_head nat_entries; /* cached nat entry list (clean) */ 930 spinlock_t nat_list_lock; /* protect clean nat entry list */ 931 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 932 unsigned int nat_blocks; /* # of nat blocks */ 933 934 /* free node ids management */ 935 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 936 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 937 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 938 spinlock_t nid_list_lock; /* protect nid lists ops */ 939 struct mutex build_lock; /* lock for build free nids */ 940 unsigned char **free_nid_bitmap; 941 unsigned char *nat_block_bitmap; 942 unsigned short *free_nid_count; /* free nid count of NAT block */ 943 944 /* for checkpoint */ 945 char *nat_bitmap; /* NAT bitmap pointer */ 946 947 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 948 unsigned char *nat_bits; /* NAT bits blocks */ 949 unsigned char *full_nat_bits; /* full NAT pages */ 950 unsigned char *empty_nat_bits; /* empty NAT pages */ 951 #ifdef CONFIG_F2FS_CHECK_FS 952 char *nat_bitmap_mir; /* NAT bitmap mirror */ 953 #endif 954 int bitmap_size; /* bitmap size */ 955 }; 956 957 /* 958 * this structure is used as one of function parameters. 959 * all the information are dedicated to a given direct node block determined 960 * by the data offset in a file. 961 */ 962 struct dnode_of_data { 963 struct inode *inode; /* vfs inode pointer */ 964 struct page *inode_page; /* its inode page, NULL is possible */ 965 struct page *node_page; /* cached direct node page */ 966 nid_t nid; /* node id of the direct node block */ 967 unsigned int ofs_in_node; /* data offset in the node page */ 968 bool inode_page_locked; /* inode page is locked or not */ 969 bool node_changed; /* is node block changed */ 970 char cur_level; /* level of hole node page */ 971 char max_level; /* level of current page located */ 972 block_t data_blkaddr; /* block address of the node block */ 973 }; 974 975 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 976 struct page *ipage, struct page *npage, nid_t nid) 977 { 978 memset(dn, 0, sizeof(*dn)); 979 dn->inode = inode; 980 dn->inode_page = ipage; 981 dn->node_page = npage; 982 dn->nid = nid; 983 } 984 985 /* 986 * For SIT manager 987 * 988 * By default, there are 6 active log areas across the whole main area. 989 * When considering hot and cold data separation to reduce cleaning overhead, 990 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 991 * respectively. 992 * In the current design, you should not change the numbers intentionally. 993 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 994 * logs individually according to the underlying devices. (default: 6) 995 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 996 * data and 8 for node logs. 997 */ 998 #define NR_CURSEG_DATA_TYPE (3) 999 #define NR_CURSEG_NODE_TYPE (3) 1000 #define NR_CURSEG_INMEM_TYPE (2) 1001 #define NR_CURSEG_RO_TYPE (2) 1002 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 1003 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1004 1005 enum { 1006 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1007 CURSEG_WARM_DATA, /* data blocks */ 1008 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1009 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1010 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1011 CURSEG_COLD_NODE, /* indirect node blocks */ 1012 NR_PERSISTENT_LOG, /* number of persistent log */ 1013 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1014 /* pinned file that needs consecutive block address */ 1015 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1016 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1017 }; 1018 1019 struct flush_cmd { 1020 struct completion wait; 1021 struct llist_node llnode; 1022 nid_t ino; 1023 int ret; 1024 }; 1025 1026 struct flush_cmd_control { 1027 struct task_struct *f2fs_issue_flush; /* flush thread */ 1028 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1029 atomic_t issued_flush; /* # of issued flushes */ 1030 atomic_t queued_flush; /* # of queued flushes */ 1031 struct llist_head issue_list; /* list for command issue */ 1032 struct llist_node *dispatch_list; /* list for command dispatch */ 1033 }; 1034 1035 struct f2fs_sm_info { 1036 struct sit_info *sit_info; /* whole segment information */ 1037 struct free_segmap_info *free_info; /* free segment information */ 1038 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1039 struct curseg_info *curseg_array; /* active segment information */ 1040 1041 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1042 1043 block_t seg0_blkaddr; /* block address of 0'th segment */ 1044 block_t main_blkaddr; /* start block address of main area */ 1045 block_t ssa_blkaddr; /* start block address of SSA area */ 1046 1047 unsigned int segment_count; /* total # of segments */ 1048 unsigned int main_segments; /* # of segments in main area */ 1049 unsigned int reserved_segments; /* # of reserved segments */ 1050 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ 1051 unsigned int ovp_segments; /* # of overprovision segments */ 1052 1053 /* a threshold to reclaim prefree segments */ 1054 unsigned int rec_prefree_segments; 1055 1056 struct list_head sit_entry_set; /* sit entry set list */ 1057 1058 unsigned int ipu_policy; /* in-place-update policy */ 1059 unsigned int min_ipu_util; /* in-place-update threshold */ 1060 unsigned int min_fsync_blocks; /* threshold for fsync */ 1061 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1062 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1063 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1064 1065 /* for flush command control */ 1066 struct flush_cmd_control *fcc_info; 1067 1068 /* for discard command control */ 1069 struct discard_cmd_control *dcc_info; 1070 }; 1071 1072 /* 1073 * For superblock 1074 */ 1075 /* 1076 * COUNT_TYPE for monitoring 1077 * 1078 * f2fs monitors the number of several block types such as on-writeback, 1079 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1080 */ 1081 #define WB_DATA_TYPE(p, f) \ 1082 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1083 enum count_type { 1084 F2FS_DIRTY_DENTS, 1085 F2FS_DIRTY_DATA, 1086 F2FS_DIRTY_QDATA, 1087 F2FS_DIRTY_NODES, 1088 F2FS_DIRTY_META, 1089 F2FS_DIRTY_IMETA, 1090 F2FS_WB_CP_DATA, 1091 F2FS_WB_DATA, 1092 F2FS_RD_DATA, 1093 F2FS_RD_NODE, 1094 F2FS_RD_META, 1095 F2FS_DIO_WRITE, 1096 F2FS_DIO_READ, 1097 NR_COUNT_TYPE, 1098 }; 1099 1100 /* 1101 * The below are the page types of bios used in submit_bio(). 1102 * The available types are: 1103 * DATA User data pages. It operates as async mode. 1104 * NODE Node pages. It operates as async mode. 1105 * META FS metadata pages such as SIT, NAT, CP. 1106 * NR_PAGE_TYPE The number of page types. 1107 * META_FLUSH Make sure the previous pages are written 1108 * with waiting the bio's completion 1109 * ... Only can be used with META. 1110 */ 1111 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1112 enum page_type { 1113 DATA = 0, 1114 NODE = 1, /* should not change this */ 1115 META, 1116 NR_PAGE_TYPE, 1117 META_FLUSH, 1118 IPU, /* the below types are used by tracepoints only. */ 1119 OPU, 1120 }; 1121 1122 enum temp_type { 1123 HOT = 0, /* must be zero for meta bio */ 1124 WARM, 1125 COLD, 1126 NR_TEMP_TYPE, 1127 }; 1128 1129 enum need_lock_type { 1130 LOCK_REQ = 0, 1131 LOCK_DONE, 1132 LOCK_RETRY, 1133 }; 1134 1135 enum cp_reason_type { 1136 CP_NO_NEEDED, 1137 CP_NON_REGULAR, 1138 CP_COMPRESSED, 1139 CP_HARDLINK, 1140 CP_SB_NEED_CP, 1141 CP_WRONG_PINO, 1142 CP_NO_SPC_ROLL, 1143 CP_NODE_NEED_CP, 1144 CP_FASTBOOT_MODE, 1145 CP_SPEC_LOG_NUM, 1146 CP_RECOVER_DIR, 1147 }; 1148 1149 enum iostat_type { 1150 /* WRITE IO */ 1151 APP_DIRECT_IO, /* app direct write IOs */ 1152 APP_BUFFERED_IO, /* app buffered write IOs */ 1153 APP_WRITE_IO, /* app write IOs */ 1154 APP_MAPPED_IO, /* app mapped IOs */ 1155 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1156 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1157 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1158 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1159 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1160 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1161 FS_GC_DATA_IO, /* data IOs from forground gc */ 1162 FS_GC_NODE_IO, /* node IOs from forground gc */ 1163 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1164 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1165 FS_CP_META_IO, /* meta IOs from checkpoint */ 1166 1167 /* READ IO */ 1168 APP_DIRECT_READ_IO, /* app direct read IOs */ 1169 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1170 APP_READ_IO, /* app read IOs */ 1171 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1172 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1173 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1174 FS_DATA_READ_IO, /* data read IOs */ 1175 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1176 FS_CDATA_READ_IO, /* compressed data read IOs */ 1177 FS_NODE_READ_IO, /* node read IOs */ 1178 FS_META_READ_IO, /* meta read IOs */ 1179 1180 /* other */ 1181 FS_DISCARD_IO, /* discard */ 1182 FS_FLUSH_IO, /* flush */ 1183 FS_ZONE_RESET_IO, /* zone reset */ 1184 NR_IO_TYPE, 1185 }; 1186 1187 struct f2fs_io_info { 1188 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1189 nid_t ino; /* inode number */ 1190 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1191 enum temp_type temp; /* contains HOT/WARM/COLD */ 1192 enum req_op op; /* contains REQ_OP_ */ 1193 blk_opf_t op_flags; /* req_flag_bits */ 1194 block_t new_blkaddr; /* new block address to be written */ 1195 block_t old_blkaddr; /* old block address before Cow */ 1196 struct page *page; /* page to be written */ 1197 struct page *encrypted_page; /* encrypted page */ 1198 struct page *compressed_page; /* compressed page */ 1199 struct list_head list; /* serialize IOs */ 1200 unsigned int compr_blocks; /* # of compressed block addresses */ 1201 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */ 1202 unsigned int version:8; /* version of the node */ 1203 unsigned int submitted:1; /* indicate IO submission */ 1204 unsigned int in_list:1; /* indicate fio is in io_list */ 1205 unsigned int is_por:1; /* indicate IO is from recovery or not */ 1206 unsigned int retry:1; /* need to reallocate block address */ 1207 unsigned int encrypted:1; /* indicate file is encrypted */ 1208 unsigned int post_read:1; /* require post read */ 1209 enum iostat_type io_type; /* io type */ 1210 struct writeback_control *io_wbc; /* writeback control */ 1211 struct bio **bio; /* bio for ipu */ 1212 sector_t *last_block; /* last block number in bio */ 1213 }; 1214 1215 struct bio_entry { 1216 struct bio *bio; 1217 struct list_head list; 1218 }; 1219 1220 #define is_read_io(rw) ((rw) == READ) 1221 struct f2fs_bio_info { 1222 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1223 struct bio *bio; /* bios to merge */ 1224 sector_t last_block_in_bio; /* last block number */ 1225 struct f2fs_io_info fio; /* store buffered io info. */ 1226 #ifdef CONFIG_BLK_DEV_ZONED 1227 struct completion zone_wait; /* condition value for the previous open zone to close */ 1228 struct bio *zone_pending_bio; /* pending bio for the previous zone */ 1229 void *bi_private; /* previous bi_private for pending bio */ 1230 #endif 1231 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1232 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1233 struct list_head io_list; /* track fios */ 1234 struct list_head bio_list; /* bio entry list head */ 1235 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1236 }; 1237 1238 #define FDEV(i) (sbi->devs[i]) 1239 #define RDEV(i) (raw_super->devs[i]) 1240 struct f2fs_dev_info { 1241 struct block_device *bdev; 1242 char path[MAX_PATH_LEN]; 1243 unsigned int total_segments; 1244 block_t start_blk; 1245 block_t end_blk; 1246 #ifdef CONFIG_BLK_DEV_ZONED 1247 unsigned int nr_blkz; /* Total number of zones */ 1248 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1249 #endif 1250 }; 1251 1252 enum inode_type { 1253 DIR_INODE, /* for dirty dir inode */ 1254 FILE_INODE, /* for dirty regular/symlink inode */ 1255 DIRTY_META, /* for all dirtied inode metadata */ 1256 NR_INODE_TYPE, 1257 }; 1258 1259 /* for inner inode cache management */ 1260 struct inode_management { 1261 struct radix_tree_root ino_root; /* ino entry array */ 1262 spinlock_t ino_lock; /* for ino entry lock */ 1263 struct list_head ino_list; /* inode list head */ 1264 unsigned long ino_num; /* number of entries */ 1265 }; 1266 1267 /* for GC_AT */ 1268 struct atgc_management { 1269 bool atgc_enabled; /* ATGC is enabled or not */ 1270 struct rb_root_cached root; /* root of victim rb-tree */ 1271 struct list_head victim_list; /* linked with all victim entries */ 1272 unsigned int victim_count; /* victim count in rb-tree */ 1273 unsigned int candidate_ratio; /* candidate ratio */ 1274 unsigned int max_candidate_count; /* max candidate count */ 1275 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1276 unsigned long long age_threshold; /* age threshold */ 1277 }; 1278 1279 struct f2fs_gc_control { 1280 unsigned int victim_segno; /* target victim segment number */ 1281 int init_gc_type; /* FG_GC or BG_GC */ 1282 bool no_bg_gc; /* check the space and stop bg_gc */ 1283 bool should_migrate_blocks; /* should migrate blocks */ 1284 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1285 unsigned int nr_free_secs; /* # of free sections to do GC */ 1286 }; 1287 1288 /* 1289 * For s_flag in struct f2fs_sb_info 1290 * Modification on enum should be synchronized with s_flag array 1291 */ 1292 enum { 1293 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1294 SBI_IS_CLOSE, /* specify unmounting */ 1295 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1296 SBI_POR_DOING, /* recovery is doing or not */ 1297 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1298 SBI_NEED_CP, /* need to checkpoint */ 1299 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1300 SBI_IS_RECOVERED, /* recovered orphan/data */ 1301 SBI_CP_DISABLED, /* CP was disabled last mount */ 1302 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1303 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1304 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1305 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1306 SBI_IS_RESIZEFS, /* resizefs is in process */ 1307 SBI_IS_FREEZING, /* freezefs is in process */ 1308 SBI_IS_WRITABLE, /* remove ro mountoption transiently */ 1309 MAX_SBI_FLAG, 1310 }; 1311 1312 enum { 1313 CP_TIME, 1314 REQ_TIME, 1315 DISCARD_TIME, 1316 GC_TIME, 1317 DISABLE_TIME, 1318 UMOUNT_DISCARD_TIMEOUT, 1319 MAX_TIME, 1320 }; 1321 1322 /* Note that you need to keep synchronization with this gc_mode_names array */ 1323 enum { 1324 GC_NORMAL, 1325 GC_IDLE_CB, 1326 GC_IDLE_GREEDY, 1327 GC_IDLE_AT, 1328 GC_URGENT_HIGH, 1329 GC_URGENT_LOW, 1330 GC_URGENT_MID, 1331 MAX_GC_MODE, 1332 }; 1333 1334 enum { 1335 BGGC_MODE_ON, /* background gc is on */ 1336 BGGC_MODE_OFF, /* background gc is off */ 1337 BGGC_MODE_SYNC, /* 1338 * background gc is on, migrating blocks 1339 * like foreground gc 1340 */ 1341 }; 1342 1343 enum { 1344 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1345 FS_MODE_LFS, /* use lfs allocation only */ 1346 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1347 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1348 }; 1349 1350 enum { 1351 ALLOC_MODE_DEFAULT, /* stay default */ 1352 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1353 }; 1354 1355 enum fsync_mode { 1356 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1357 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1358 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1359 }; 1360 1361 enum { 1362 COMPR_MODE_FS, /* 1363 * automatically compress compression 1364 * enabled files 1365 */ 1366 COMPR_MODE_USER, /* 1367 * automatical compression is disabled. 1368 * user can control the file compression 1369 * using ioctls 1370 */ 1371 }; 1372 1373 enum { 1374 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1375 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1376 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1377 }; 1378 1379 enum { 1380 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1381 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1382 }; 1383 1384 enum errors_option { 1385 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */ 1386 MOUNT_ERRORS_CONTINUE, /* continue on errors */ 1387 MOUNT_ERRORS_PANIC, /* panic on errors */ 1388 }; 1389 1390 enum { 1391 BACKGROUND, 1392 FOREGROUND, 1393 MAX_CALL_TYPE, 1394 TOTAL_CALL = FOREGROUND, 1395 }; 1396 1397 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1398 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1399 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1400 1401 /* 1402 * Layout of f2fs page.private: 1403 * 1404 * Layout A: lowest bit should be 1 1405 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1406 * bit 0 PAGE_PRIVATE_NOT_POINTER 1407 * bit 1 PAGE_PRIVATE_DUMMY_WRITE 1408 * bit 2 PAGE_PRIVATE_ONGOING_MIGRATION 1409 * bit 3 PAGE_PRIVATE_INLINE_INODE 1410 * bit 4 PAGE_PRIVATE_REF_RESOURCE 1411 * bit 5- f2fs private data 1412 * 1413 * Layout B: lowest bit should be 0 1414 * page.private is a wrapped pointer. 1415 */ 1416 enum { 1417 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1418 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */ 1419 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1420 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1421 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1422 PAGE_PRIVATE_MAX 1423 }; 1424 1425 /* For compression */ 1426 enum compress_algorithm_type { 1427 COMPRESS_LZO, 1428 COMPRESS_LZ4, 1429 COMPRESS_ZSTD, 1430 COMPRESS_LZORLE, 1431 COMPRESS_MAX, 1432 }; 1433 1434 enum compress_flag { 1435 COMPRESS_CHKSUM, 1436 COMPRESS_MAX_FLAG, 1437 }; 1438 1439 #define COMPRESS_WATERMARK 20 1440 #define COMPRESS_PERCENT 20 1441 1442 #define COMPRESS_DATA_RESERVED_SIZE 4 1443 struct compress_data { 1444 __le32 clen; /* compressed data size */ 1445 __le32 chksum; /* compressed data chksum */ 1446 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1447 u8 cdata[]; /* compressed data */ 1448 }; 1449 1450 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1451 1452 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1453 1454 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 1455 1456 #define COMPRESS_LEVEL_OFFSET 8 1457 1458 /* compress context */ 1459 struct compress_ctx { 1460 struct inode *inode; /* inode the context belong to */ 1461 pgoff_t cluster_idx; /* cluster index number */ 1462 unsigned int cluster_size; /* page count in cluster */ 1463 unsigned int log_cluster_size; /* log of cluster size */ 1464 struct page **rpages; /* pages store raw data in cluster */ 1465 unsigned int nr_rpages; /* total page number in rpages */ 1466 struct page **cpages; /* pages store compressed data in cluster */ 1467 unsigned int nr_cpages; /* total page number in cpages */ 1468 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1469 void *rbuf; /* virtual mapped address on rpages */ 1470 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1471 size_t rlen; /* valid data length in rbuf */ 1472 size_t clen; /* valid data length in cbuf */ 1473 void *private; /* payload buffer for specified compression algorithm */ 1474 void *private2; /* extra payload buffer */ 1475 }; 1476 1477 /* compress context for write IO path */ 1478 struct compress_io_ctx { 1479 u32 magic; /* magic number to indicate page is compressed */ 1480 struct inode *inode; /* inode the context belong to */ 1481 struct page **rpages; /* pages store raw data in cluster */ 1482 unsigned int nr_rpages; /* total page number in rpages */ 1483 atomic_t pending_pages; /* in-flight compressed page count */ 1484 }; 1485 1486 /* Context for decompressing one cluster on the read IO path */ 1487 struct decompress_io_ctx { 1488 u32 magic; /* magic number to indicate page is compressed */ 1489 struct inode *inode; /* inode the context belong to */ 1490 pgoff_t cluster_idx; /* cluster index number */ 1491 unsigned int cluster_size; /* page count in cluster */ 1492 unsigned int log_cluster_size; /* log of cluster size */ 1493 struct page **rpages; /* pages store raw data in cluster */ 1494 unsigned int nr_rpages; /* total page number in rpages */ 1495 struct page **cpages; /* pages store compressed data in cluster */ 1496 unsigned int nr_cpages; /* total page number in cpages */ 1497 struct page **tpages; /* temp pages to pad holes in cluster */ 1498 void *rbuf; /* virtual mapped address on rpages */ 1499 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1500 size_t rlen; /* valid data length in rbuf */ 1501 size_t clen; /* valid data length in cbuf */ 1502 1503 /* 1504 * The number of compressed pages remaining to be read in this cluster. 1505 * This is initially nr_cpages. It is decremented by 1 each time a page 1506 * has been read (or failed to be read). When it reaches 0, the cluster 1507 * is decompressed (or an error is reported). 1508 * 1509 * If an error occurs before all the pages have been submitted for I/O, 1510 * then this will never reach 0. In this case the I/O submitter is 1511 * responsible for calling f2fs_decompress_end_io() instead. 1512 */ 1513 atomic_t remaining_pages; 1514 1515 /* 1516 * Number of references to this decompress_io_ctx. 1517 * 1518 * One reference is held for I/O completion. This reference is dropped 1519 * after the pagecache pages are updated and unlocked -- either after 1520 * decompression (and verity if enabled), or after an error. 1521 * 1522 * In addition, each compressed page holds a reference while it is in a 1523 * bio. These references are necessary prevent compressed pages from 1524 * being freed while they are still in a bio. 1525 */ 1526 refcount_t refcnt; 1527 1528 bool failed; /* IO error occurred before decompression? */ 1529 bool need_verity; /* need fs-verity verification after decompression? */ 1530 void *private; /* payload buffer for specified decompression algorithm */ 1531 void *private2; /* extra payload buffer */ 1532 struct work_struct verity_work; /* work to verify the decompressed pages */ 1533 struct work_struct free_work; /* work for late free this structure itself */ 1534 }; 1535 1536 #define NULL_CLUSTER ((unsigned int)(~0)) 1537 #define MIN_COMPRESS_LOG_SIZE 2 1538 #define MAX_COMPRESS_LOG_SIZE 8 1539 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1540 1541 struct f2fs_sb_info { 1542 struct super_block *sb; /* pointer to VFS super block */ 1543 struct proc_dir_entry *s_proc; /* proc entry */ 1544 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1545 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1546 int valid_super_block; /* valid super block no */ 1547 unsigned long s_flag; /* flags for sbi */ 1548 struct mutex writepages; /* mutex for writepages() */ 1549 1550 #ifdef CONFIG_BLK_DEV_ZONED 1551 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1552 #endif 1553 1554 /* for node-related operations */ 1555 struct f2fs_nm_info *nm_info; /* node manager */ 1556 struct inode *node_inode; /* cache node blocks */ 1557 1558 /* for segment-related operations */ 1559 struct f2fs_sm_info *sm_info; /* segment manager */ 1560 1561 /* for bio operations */ 1562 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1563 /* keep migration IO order for LFS mode */ 1564 struct f2fs_rwsem io_order_lock; 1565 mempool_t *write_io_dummy; /* Dummy pages */ 1566 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1567 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1568 1569 /* for checkpoint */ 1570 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1571 int cur_cp_pack; /* remain current cp pack */ 1572 spinlock_t cp_lock; /* for flag in ckpt */ 1573 struct inode *meta_inode; /* cache meta blocks */ 1574 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1575 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1576 struct f2fs_rwsem node_write; /* locking node writes */ 1577 struct f2fs_rwsem node_change; /* locking node change */ 1578 wait_queue_head_t cp_wait; 1579 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1580 long interval_time[MAX_TIME]; /* to store thresholds */ 1581 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1582 1583 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1584 1585 spinlock_t fsync_node_lock; /* for node entry lock */ 1586 struct list_head fsync_node_list; /* node list head */ 1587 unsigned int fsync_seg_id; /* sequence id */ 1588 unsigned int fsync_node_num; /* number of node entries */ 1589 1590 /* for orphan inode, use 0'th array */ 1591 unsigned int max_orphans; /* max orphan inodes */ 1592 1593 /* for inode management */ 1594 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1595 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1596 struct mutex flush_lock; /* for flush exclusion */ 1597 1598 /* for extent tree cache */ 1599 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1600 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1601 1602 /* The threshold used for hot and warm data seperation*/ 1603 unsigned int hot_data_age_threshold; 1604 unsigned int warm_data_age_threshold; 1605 unsigned int last_age_weight; 1606 1607 /* basic filesystem units */ 1608 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1609 unsigned int log_blocksize; /* log2 block size */ 1610 unsigned int blocksize; /* block size */ 1611 unsigned int root_ino_num; /* root inode number*/ 1612 unsigned int node_ino_num; /* node inode number*/ 1613 unsigned int meta_ino_num; /* meta inode number*/ 1614 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1615 unsigned int blocks_per_seg; /* blocks per segment */ 1616 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1617 unsigned int segs_per_sec; /* segments per section */ 1618 unsigned int secs_per_zone; /* sections per zone */ 1619 unsigned int total_sections; /* total section count */ 1620 unsigned int total_node_count; /* total node block count */ 1621 unsigned int total_valid_node_count; /* valid node block count */ 1622 int dir_level; /* directory level */ 1623 bool readdir_ra; /* readahead inode in readdir */ 1624 u64 max_io_bytes; /* max io bytes to merge IOs */ 1625 1626 block_t user_block_count; /* # of user blocks */ 1627 block_t total_valid_block_count; /* # of valid blocks */ 1628 block_t discard_blks; /* discard command candidats */ 1629 block_t last_valid_block_count; /* for recovery */ 1630 block_t reserved_blocks; /* configurable reserved blocks */ 1631 block_t current_reserved_blocks; /* current reserved blocks */ 1632 1633 /* Additional tracking for no checkpoint mode */ 1634 block_t unusable_block_count; /* # of blocks saved by last cp */ 1635 1636 unsigned int nquota_files; /* # of quota sysfile */ 1637 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1638 1639 /* # of pages, see count_type */ 1640 atomic_t nr_pages[NR_COUNT_TYPE]; 1641 /* # of allocated blocks */ 1642 struct percpu_counter alloc_valid_block_count; 1643 /* # of node block writes as roll forward recovery */ 1644 struct percpu_counter rf_node_block_count; 1645 1646 /* writeback control */ 1647 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1648 1649 /* valid inode count */ 1650 struct percpu_counter total_valid_inode_count; 1651 1652 struct f2fs_mount_info mount_opt; /* mount options */ 1653 1654 /* for cleaning operations */ 1655 struct f2fs_rwsem gc_lock; /* 1656 * semaphore for GC, avoid 1657 * race between GC and GC or CP 1658 */ 1659 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1660 struct atgc_management am; /* atgc management */ 1661 unsigned int cur_victim_sec; /* current victim section num */ 1662 unsigned int gc_mode; /* current GC state */ 1663 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1664 spinlock_t gc_remaining_trials_lock; 1665 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1666 unsigned int gc_remaining_trials; 1667 1668 /* for skip statistic */ 1669 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1670 1671 /* threshold for gc trials on pinned files */ 1672 u64 gc_pin_file_threshold; 1673 struct f2fs_rwsem pin_sem; 1674 1675 /* maximum # of trials to find a victim segment for SSR and GC */ 1676 unsigned int max_victim_search; 1677 /* migration granularity of garbage collection, unit: segment */ 1678 unsigned int migration_granularity; 1679 1680 /* 1681 * for stat information. 1682 * one is for the LFS mode, and the other is for the SSR mode. 1683 */ 1684 #ifdef CONFIG_F2FS_STAT_FS 1685 struct f2fs_stat_info *stat_info; /* FS status information */ 1686 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1687 unsigned int segment_count[2]; /* # of allocated segments */ 1688 unsigned int block_count[2]; /* # of allocated blocks */ 1689 atomic_t inplace_count; /* # of inplace update */ 1690 /* # of lookup extent cache */ 1691 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1692 /* # of hit rbtree extent node */ 1693 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1694 /* # of hit cached extent node */ 1695 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1696 /* # of hit largest extent node in read extent cache */ 1697 atomic64_t read_hit_largest; 1698 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1699 atomic_t inline_inode; /* # of inline_data inodes */ 1700 atomic_t inline_dir; /* # of inline_dentry inodes */ 1701 atomic_t compr_inode; /* # of compressed inodes */ 1702 atomic64_t compr_blocks; /* # of compressed blocks */ 1703 atomic_t swapfile_inode; /* # of swapfile inodes */ 1704 atomic_t atomic_files; /* # of opened atomic file */ 1705 atomic_t max_aw_cnt; /* max # of atomic writes */ 1706 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1707 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1708 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1709 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */ 1710 #endif 1711 spinlock_t stat_lock; /* lock for stat operations */ 1712 1713 /* to attach REQ_META|REQ_FUA flags */ 1714 unsigned int data_io_flag; 1715 unsigned int node_io_flag; 1716 1717 /* For sysfs support */ 1718 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1719 struct completion s_kobj_unregister; 1720 1721 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1722 struct completion s_stat_kobj_unregister; 1723 1724 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1725 struct completion s_feature_list_kobj_unregister; 1726 1727 /* For shrinker support */ 1728 struct list_head s_list; 1729 struct mutex umount_mutex; 1730 unsigned int shrinker_run_no; 1731 1732 /* For multi devices */ 1733 int s_ndevs; /* number of devices */ 1734 struct f2fs_dev_info *devs; /* for device list */ 1735 unsigned int dirty_device; /* for checkpoint data flush */ 1736 spinlock_t dev_lock; /* protect dirty_device */ 1737 bool aligned_blksize; /* all devices has the same logical blksize */ 1738 1739 /* For write statistics */ 1740 u64 sectors_written_start; 1741 u64 kbytes_written; 1742 1743 /* Reference to checksum algorithm driver via cryptoapi */ 1744 struct crypto_shash *s_chksum_driver; 1745 1746 /* Precomputed FS UUID checksum for seeding other checksums */ 1747 __u32 s_chksum_seed; 1748 1749 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1750 1751 /* 1752 * If we are in irq context, let's update error information into 1753 * on-disk superblock in the work. 1754 */ 1755 struct work_struct s_error_work; 1756 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1757 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */ 1758 spinlock_t error_lock; /* protect errors/stop_reason array */ 1759 bool error_dirty; /* errors of sb is dirty */ 1760 1761 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1762 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1763 1764 /* For reclaimed segs statistics per each GC mode */ 1765 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1766 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1767 1768 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1769 1770 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1771 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1772 1773 /* For atomic write statistics */ 1774 atomic64_t current_atomic_write; 1775 s64 peak_atomic_write; 1776 u64 committed_atomic_block; 1777 u64 revoked_atomic_block; 1778 1779 #ifdef CONFIG_F2FS_FS_COMPRESSION 1780 struct kmem_cache *page_array_slab; /* page array entry */ 1781 unsigned int page_array_slab_size; /* default page array slab size */ 1782 1783 /* For runtime compression statistics */ 1784 u64 compr_written_block; 1785 u64 compr_saved_block; 1786 u32 compr_new_inode; 1787 1788 /* For compressed block cache */ 1789 struct inode *compress_inode; /* cache compressed blocks */ 1790 unsigned int compress_percent; /* cache page percentage */ 1791 unsigned int compress_watermark; /* cache page watermark */ 1792 atomic_t compress_page_hit; /* cache hit count */ 1793 #endif 1794 1795 #ifdef CONFIG_F2FS_IOSTAT 1796 /* For app/fs IO statistics */ 1797 spinlock_t iostat_lock; 1798 unsigned long long iostat_count[NR_IO_TYPE]; 1799 unsigned long long iostat_bytes[NR_IO_TYPE]; 1800 unsigned long long prev_iostat_bytes[NR_IO_TYPE]; 1801 bool iostat_enable; 1802 unsigned long iostat_next_period; 1803 unsigned int iostat_period_ms; 1804 1805 /* For io latency related statistics info in one iostat period */ 1806 spinlock_t iostat_lat_lock; 1807 struct iostat_lat_info *iostat_io_lat; 1808 #endif 1809 }; 1810 1811 #ifdef CONFIG_F2FS_FAULT_INJECTION 1812 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \ 1813 __builtin_return_address(0)) 1814 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type, 1815 const char *func, const char *parent_func) 1816 { 1817 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1818 1819 if (!ffi->inject_rate) 1820 return false; 1821 1822 if (!IS_FAULT_SET(ffi, type)) 1823 return false; 1824 1825 atomic_inc(&ffi->inject_ops); 1826 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1827 atomic_set(&ffi->inject_ops, 0); 1828 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", 1829 KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type], 1830 func, parent_func); 1831 return true; 1832 } 1833 return false; 1834 } 1835 #else 1836 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1837 { 1838 return false; 1839 } 1840 #endif 1841 1842 /* 1843 * Test if the mounted volume is a multi-device volume. 1844 * - For a single regular disk volume, sbi->s_ndevs is 0. 1845 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1846 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1847 */ 1848 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1849 { 1850 return sbi->s_ndevs > 1; 1851 } 1852 1853 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1854 { 1855 unsigned long now = jiffies; 1856 1857 sbi->last_time[type] = now; 1858 1859 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1860 if (type == REQ_TIME) { 1861 sbi->last_time[DISCARD_TIME] = now; 1862 sbi->last_time[GC_TIME] = now; 1863 } 1864 } 1865 1866 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1867 { 1868 unsigned long interval = sbi->interval_time[type] * HZ; 1869 1870 return time_after(jiffies, sbi->last_time[type] + interval); 1871 } 1872 1873 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1874 int type) 1875 { 1876 unsigned long interval = sbi->interval_time[type] * HZ; 1877 unsigned int wait_ms = 0; 1878 long delta; 1879 1880 delta = (sbi->last_time[type] + interval) - jiffies; 1881 if (delta > 0) 1882 wait_ms = jiffies_to_msecs(delta); 1883 1884 return wait_ms; 1885 } 1886 1887 /* 1888 * Inline functions 1889 */ 1890 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1891 const void *address, unsigned int length) 1892 { 1893 struct { 1894 struct shash_desc shash; 1895 char ctx[4]; 1896 } desc; 1897 int err; 1898 1899 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1900 1901 desc.shash.tfm = sbi->s_chksum_driver; 1902 *(u32 *)desc.ctx = crc; 1903 1904 err = crypto_shash_update(&desc.shash, address, length); 1905 BUG_ON(err); 1906 1907 return *(u32 *)desc.ctx; 1908 } 1909 1910 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1911 unsigned int length) 1912 { 1913 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1914 } 1915 1916 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1917 void *buf, size_t buf_size) 1918 { 1919 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1920 } 1921 1922 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1923 const void *address, unsigned int length) 1924 { 1925 return __f2fs_crc32(sbi, crc, address, length); 1926 } 1927 1928 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1929 { 1930 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1931 } 1932 1933 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1934 { 1935 return sb->s_fs_info; 1936 } 1937 1938 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1939 { 1940 return F2FS_SB(inode->i_sb); 1941 } 1942 1943 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1944 { 1945 return F2FS_I_SB(mapping->host); 1946 } 1947 1948 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1949 { 1950 return F2FS_M_SB(page_file_mapping(page)); 1951 } 1952 1953 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1954 { 1955 return (struct f2fs_super_block *)(sbi->raw_super); 1956 } 1957 1958 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1959 { 1960 return (struct f2fs_checkpoint *)(sbi->ckpt); 1961 } 1962 1963 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1964 { 1965 return (struct f2fs_node *)page_address(page); 1966 } 1967 1968 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1969 { 1970 return &((struct f2fs_node *)page_address(page))->i; 1971 } 1972 1973 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1974 { 1975 return (struct f2fs_nm_info *)(sbi->nm_info); 1976 } 1977 1978 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1979 { 1980 return (struct f2fs_sm_info *)(sbi->sm_info); 1981 } 1982 1983 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1984 { 1985 return (struct sit_info *)(SM_I(sbi)->sit_info); 1986 } 1987 1988 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1989 { 1990 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1991 } 1992 1993 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1994 { 1995 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1996 } 1997 1998 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1999 { 2000 return sbi->meta_inode->i_mapping; 2001 } 2002 2003 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2004 { 2005 return sbi->node_inode->i_mapping; 2006 } 2007 2008 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2009 { 2010 return test_bit(type, &sbi->s_flag); 2011 } 2012 2013 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2014 { 2015 set_bit(type, &sbi->s_flag); 2016 } 2017 2018 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2019 { 2020 clear_bit(type, &sbi->s_flag); 2021 } 2022 2023 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2024 { 2025 return le64_to_cpu(cp->checkpoint_ver); 2026 } 2027 2028 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2029 { 2030 if (type < F2FS_MAX_QUOTAS) 2031 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2032 return 0; 2033 } 2034 2035 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2036 { 2037 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2038 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2039 } 2040 2041 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2042 { 2043 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2044 2045 return ckpt_flags & f; 2046 } 2047 2048 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2049 { 2050 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2051 } 2052 2053 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2054 { 2055 unsigned int ckpt_flags; 2056 2057 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2058 ckpt_flags |= f; 2059 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2060 } 2061 2062 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2063 { 2064 unsigned long flags; 2065 2066 spin_lock_irqsave(&sbi->cp_lock, flags); 2067 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2068 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2069 } 2070 2071 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2072 { 2073 unsigned int ckpt_flags; 2074 2075 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2076 ckpt_flags &= (~f); 2077 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2078 } 2079 2080 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2081 { 2082 unsigned long flags; 2083 2084 spin_lock_irqsave(&sbi->cp_lock, flags); 2085 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2086 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2087 } 2088 2089 #define init_f2fs_rwsem(sem) \ 2090 do { \ 2091 static struct lock_class_key __key; \ 2092 \ 2093 __init_f2fs_rwsem((sem), #sem, &__key); \ 2094 } while (0) 2095 2096 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2097 const char *sem_name, struct lock_class_key *key) 2098 { 2099 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2100 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2101 init_waitqueue_head(&sem->read_waiters); 2102 #endif 2103 } 2104 2105 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2106 { 2107 return rwsem_is_locked(&sem->internal_rwsem); 2108 } 2109 2110 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2111 { 2112 return rwsem_is_contended(&sem->internal_rwsem); 2113 } 2114 2115 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2116 { 2117 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2118 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2119 #else 2120 down_read(&sem->internal_rwsem); 2121 #endif 2122 } 2123 2124 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2125 { 2126 return down_read_trylock(&sem->internal_rwsem); 2127 } 2128 2129 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2130 { 2131 up_read(&sem->internal_rwsem); 2132 } 2133 2134 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2135 { 2136 down_write(&sem->internal_rwsem); 2137 } 2138 2139 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2140 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2141 { 2142 down_read_nested(&sem->internal_rwsem, subclass); 2143 } 2144 2145 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass) 2146 { 2147 down_write_nested(&sem->internal_rwsem, subclass); 2148 } 2149 #else 2150 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2151 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem) 2152 #endif 2153 2154 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2155 { 2156 return down_write_trylock(&sem->internal_rwsem); 2157 } 2158 2159 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2160 { 2161 up_write(&sem->internal_rwsem); 2162 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2163 wake_up_all(&sem->read_waiters); 2164 #endif 2165 } 2166 2167 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2168 { 2169 f2fs_down_read(&sbi->cp_rwsem); 2170 } 2171 2172 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2173 { 2174 if (time_to_inject(sbi, FAULT_LOCK_OP)) 2175 return 0; 2176 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2177 } 2178 2179 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2180 { 2181 f2fs_up_read(&sbi->cp_rwsem); 2182 } 2183 2184 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2185 { 2186 f2fs_down_write(&sbi->cp_rwsem); 2187 } 2188 2189 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2190 { 2191 f2fs_up_write(&sbi->cp_rwsem); 2192 } 2193 2194 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2195 { 2196 int reason = CP_SYNC; 2197 2198 if (test_opt(sbi, FASTBOOT)) 2199 reason = CP_FASTBOOT; 2200 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2201 reason = CP_UMOUNT; 2202 return reason; 2203 } 2204 2205 static inline bool __remain_node_summaries(int reason) 2206 { 2207 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2208 } 2209 2210 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2211 { 2212 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2213 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2214 } 2215 2216 /* 2217 * Check whether the inode has blocks or not 2218 */ 2219 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2220 { 2221 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2222 2223 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2224 } 2225 2226 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2227 { 2228 return ofs == XATTR_NODE_OFFSET; 2229 } 2230 2231 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2232 struct inode *inode, bool cap) 2233 { 2234 if (!inode) 2235 return true; 2236 if (!test_opt(sbi, RESERVE_ROOT)) 2237 return false; 2238 if (IS_NOQUOTA(inode)) 2239 return true; 2240 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2241 return true; 2242 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2243 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2244 return true; 2245 if (cap && capable(CAP_SYS_RESOURCE)) 2246 return true; 2247 return false; 2248 } 2249 2250 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2251 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2252 struct inode *inode, blkcnt_t *count, bool partial) 2253 { 2254 blkcnt_t diff = 0, release = 0; 2255 block_t avail_user_block_count; 2256 int ret; 2257 2258 ret = dquot_reserve_block(inode, *count); 2259 if (ret) 2260 return ret; 2261 2262 if (time_to_inject(sbi, FAULT_BLOCK)) { 2263 release = *count; 2264 goto release_quota; 2265 } 2266 2267 /* 2268 * let's increase this in prior to actual block count change in order 2269 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2270 */ 2271 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2272 2273 spin_lock(&sbi->stat_lock); 2274 sbi->total_valid_block_count += (block_t)(*count); 2275 avail_user_block_count = sbi->user_block_count - 2276 sbi->current_reserved_blocks; 2277 2278 if (!__allow_reserved_blocks(sbi, inode, true)) 2279 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2280 2281 if (F2FS_IO_ALIGNED(sbi)) 2282 avail_user_block_count -= sbi->blocks_per_seg * 2283 SM_I(sbi)->additional_reserved_segments; 2284 2285 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2286 if (avail_user_block_count > sbi->unusable_block_count) 2287 avail_user_block_count -= sbi->unusable_block_count; 2288 else 2289 avail_user_block_count = 0; 2290 } 2291 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 2292 if (!partial) { 2293 spin_unlock(&sbi->stat_lock); 2294 goto enospc; 2295 } 2296 2297 diff = sbi->total_valid_block_count - avail_user_block_count; 2298 if (diff > *count) 2299 diff = *count; 2300 *count -= diff; 2301 release = diff; 2302 sbi->total_valid_block_count -= diff; 2303 if (!*count) { 2304 spin_unlock(&sbi->stat_lock); 2305 goto enospc; 2306 } 2307 } 2308 spin_unlock(&sbi->stat_lock); 2309 2310 if (unlikely(release)) { 2311 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2312 dquot_release_reservation_block(inode, release); 2313 } 2314 f2fs_i_blocks_write(inode, *count, true, true); 2315 return 0; 2316 2317 enospc: 2318 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2319 release_quota: 2320 dquot_release_reservation_block(inode, release); 2321 return -ENOSPC; 2322 } 2323 2324 __printf(2, 3) 2325 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 2326 2327 #define f2fs_err(sbi, fmt, ...) \ 2328 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 2329 #define f2fs_warn(sbi, fmt, ...) \ 2330 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 2331 #define f2fs_notice(sbi, fmt, ...) \ 2332 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 2333 #define f2fs_info(sbi, fmt, ...) \ 2334 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 2335 #define f2fs_debug(sbi, fmt, ...) \ 2336 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 2337 2338 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 2339 static inline bool page_private_##name(struct page *page) \ 2340 { \ 2341 return PagePrivate(page) && \ 2342 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 2343 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2344 } 2345 2346 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 2347 static inline void set_page_private_##name(struct page *page) \ 2348 { \ 2349 if (!PagePrivate(page)) \ 2350 attach_page_private(page, (void *)0); \ 2351 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 2352 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2353 } 2354 2355 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 2356 static inline void clear_page_private_##name(struct page *page) \ 2357 { \ 2358 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2359 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \ 2360 detach_page_private(page); \ 2361 } 2362 2363 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 2364 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 2365 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 2366 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE); 2367 2368 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 2369 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 2370 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 2371 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE); 2372 2373 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 2374 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 2375 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 2376 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE); 2377 2378 static inline unsigned long get_page_private_data(struct page *page) 2379 { 2380 unsigned long data = page_private(page); 2381 2382 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 2383 return 0; 2384 return data >> PAGE_PRIVATE_MAX; 2385 } 2386 2387 static inline void set_page_private_data(struct page *page, unsigned long data) 2388 { 2389 if (!PagePrivate(page)) 2390 attach_page_private(page, (void *)0); 2391 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 2392 page_private(page) |= data << PAGE_PRIVATE_MAX; 2393 } 2394 2395 static inline void clear_page_private_data(struct page *page) 2396 { 2397 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0); 2398 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) 2399 detach_page_private(page); 2400 } 2401 2402 static inline void clear_page_private_all(struct page *page) 2403 { 2404 clear_page_private_data(page); 2405 clear_page_private_reference(page); 2406 clear_page_private_gcing(page); 2407 clear_page_private_inline(page); 2408 2409 f2fs_bug_on(F2FS_P_SB(page), page_private(page)); 2410 } 2411 2412 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2413 struct inode *inode, 2414 block_t count) 2415 { 2416 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2417 2418 spin_lock(&sbi->stat_lock); 2419 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2420 sbi->total_valid_block_count -= (block_t)count; 2421 if (sbi->reserved_blocks && 2422 sbi->current_reserved_blocks < sbi->reserved_blocks) 2423 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2424 sbi->current_reserved_blocks + count); 2425 spin_unlock(&sbi->stat_lock); 2426 if (unlikely(inode->i_blocks < sectors)) { 2427 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2428 inode->i_ino, 2429 (unsigned long long)inode->i_blocks, 2430 (unsigned long long)sectors); 2431 set_sbi_flag(sbi, SBI_NEED_FSCK); 2432 return; 2433 } 2434 f2fs_i_blocks_write(inode, count, false, true); 2435 } 2436 2437 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2438 { 2439 atomic_inc(&sbi->nr_pages[count_type]); 2440 2441 if (count_type == F2FS_DIRTY_DENTS || 2442 count_type == F2FS_DIRTY_NODES || 2443 count_type == F2FS_DIRTY_META || 2444 count_type == F2FS_DIRTY_QDATA || 2445 count_type == F2FS_DIRTY_IMETA) 2446 set_sbi_flag(sbi, SBI_IS_DIRTY); 2447 } 2448 2449 static inline void inode_inc_dirty_pages(struct inode *inode) 2450 { 2451 atomic_inc(&F2FS_I(inode)->dirty_pages); 2452 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2453 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2454 if (IS_NOQUOTA(inode)) 2455 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2456 } 2457 2458 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2459 { 2460 atomic_dec(&sbi->nr_pages[count_type]); 2461 } 2462 2463 static inline void inode_dec_dirty_pages(struct inode *inode) 2464 { 2465 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2466 !S_ISLNK(inode->i_mode)) 2467 return; 2468 2469 atomic_dec(&F2FS_I(inode)->dirty_pages); 2470 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2471 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2472 if (IS_NOQUOTA(inode)) 2473 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2474 } 2475 2476 static inline void inc_atomic_write_cnt(struct inode *inode) 2477 { 2478 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2479 struct f2fs_inode_info *fi = F2FS_I(inode); 2480 u64 current_write; 2481 2482 fi->atomic_write_cnt++; 2483 atomic64_inc(&sbi->current_atomic_write); 2484 current_write = atomic64_read(&sbi->current_atomic_write); 2485 if (current_write > sbi->peak_atomic_write) 2486 sbi->peak_atomic_write = current_write; 2487 } 2488 2489 static inline void release_atomic_write_cnt(struct inode *inode) 2490 { 2491 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2492 struct f2fs_inode_info *fi = F2FS_I(inode); 2493 2494 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2495 fi->atomic_write_cnt = 0; 2496 } 2497 2498 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2499 { 2500 return atomic_read(&sbi->nr_pages[count_type]); 2501 } 2502 2503 static inline int get_dirty_pages(struct inode *inode) 2504 { 2505 return atomic_read(&F2FS_I(inode)->dirty_pages); 2506 } 2507 2508 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2509 { 2510 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2511 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2512 sbi->log_blocks_per_seg; 2513 2514 return segs / sbi->segs_per_sec; 2515 } 2516 2517 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2518 { 2519 return sbi->total_valid_block_count; 2520 } 2521 2522 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2523 { 2524 return sbi->discard_blks; 2525 } 2526 2527 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2528 { 2529 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2530 2531 /* return NAT or SIT bitmap */ 2532 if (flag == NAT_BITMAP) 2533 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2534 else if (flag == SIT_BITMAP) 2535 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2536 2537 return 0; 2538 } 2539 2540 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2541 { 2542 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2543 } 2544 2545 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2546 { 2547 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2548 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2549 int offset; 2550 2551 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2552 offset = (flag == SIT_BITMAP) ? 2553 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2554 /* 2555 * if large_nat_bitmap feature is enabled, leave checksum 2556 * protection for all nat/sit bitmaps. 2557 */ 2558 return tmp_ptr + offset + sizeof(__le32); 2559 } 2560 2561 if (__cp_payload(sbi) > 0) { 2562 if (flag == NAT_BITMAP) 2563 return tmp_ptr; 2564 else 2565 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2566 } else { 2567 offset = (flag == NAT_BITMAP) ? 2568 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2569 return tmp_ptr + offset; 2570 } 2571 } 2572 2573 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2574 { 2575 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2576 2577 if (sbi->cur_cp_pack == 2) 2578 start_addr += sbi->blocks_per_seg; 2579 return start_addr; 2580 } 2581 2582 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2583 { 2584 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2585 2586 if (sbi->cur_cp_pack == 1) 2587 start_addr += sbi->blocks_per_seg; 2588 return start_addr; 2589 } 2590 2591 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2592 { 2593 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2594 } 2595 2596 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2597 { 2598 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2599 } 2600 2601 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2602 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2603 struct inode *inode, bool is_inode) 2604 { 2605 block_t valid_block_count; 2606 unsigned int valid_node_count, user_block_count; 2607 int err; 2608 2609 if (is_inode) { 2610 if (inode) { 2611 err = dquot_alloc_inode(inode); 2612 if (err) 2613 return err; 2614 } 2615 } else { 2616 err = dquot_reserve_block(inode, 1); 2617 if (err) 2618 return err; 2619 } 2620 2621 if (time_to_inject(sbi, FAULT_BLOCK)) 2622 goto enospc; 2623 2624 spin_lock(&sbi->stat_lock); 2625 2626 valid_block_count = sbi->total_valid_block_count + 2627 sbi->current_reserved_blocks + 1; 2628 2629 if (!__allow_reserved_blocks(sbi, inode, false)) 2630 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2631 2632 if (F2FS_IO_ALIGNED(sbi)) 2633 valid_block_count += sbi->blocks_per_seg * 2634 SM_I(sbi)->additional_reserved_segments; 2635 2636 user_block_count = sbi->user_block_count; 2637 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2638 user_block_count -= sbi->unusable_block_count; 2639 2640 if (unlikely(valid_block_count > user_block_count)) { 2641 spin_unlock(&sbi->stat_lock); 2642 goto enospc; 2643 } 2644 2645 valid_node_count = sbi->total_valid_node_count + 1; 2646 if (unlikely(valid_node_count > sbi->total_node_count)) { 2647 spin_unlock(&sbi->stat_lock); 2648 goto enospc; 2649 } 2650 2651 sbi->total_valid_node_count++; 2652 sbi->total_valid_block_count++; 2653 spin_unlock(&sbi->stat_lock); 2654 2655 if (inode) { 2656 if (is_inode) 2657 f2fs_mark_inode_dirty_sync(inode, true); 2658 else 2659 f2fs_i_blocks_write(inode, 1, true, true); 2660 } 2661 2662 percpu_counter_inc(&sbi->alloc_valid_block_count); 2663 return 0; 2664 2665 enospc: 2666 if (is_inode) { 2667 if (inode) 2668 dquot_free_inode(inode); 2669 } else { 2670 dquot_release_reservation_block(inode, 1); 2671 } 2672 return -ENOSPC; 2673 } 2674 2675 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2676 struct inode *inode, bool is_inode) 2677 { 2678 spin_lock(&sbi->stat_lock); 2679 2680 if (unlikely(!sbi->total_valid_block_count || 2681 !sbi->total_valid_node_count)) { 2682 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2683 sbi->total_valid_block_count, 2684 sbi->total_valid_node_count); 2685 set_sbi_flag(sbi, SBI_NEED_FSCK); 2686 } else { 2687 sbi->total_valid_block_count--; 2688 sbi->total_valid_node_count--; 2689 } 2690 2691 if (sbi->reserved_blocks && 2692 sbi->current_reserved_blocks < sbi->reserved_blocks) 2693 sbi->current_reserved_blocks++; 2694 2695 spin_unlock(&sbi->stat_lock); 2696 2697 if (is_inode) { 2698 dquot_free_inode(inode); 2699 } else { 2700 if (unlikely(inode->i_blocks == 0)) { 2701 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2702 inode->i_ino, 2703 (unsigned long long)inode->i_blocks); 2704 set_sbi_flag(sbi, SBI_NEED_FSCK); 2705 return; 2706 } 2707 f2fs_i_blocks_write(inode, 1, false, true); 2708 } 2709 } 2710 2711 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2712 { 2713 return sbi->total_valid_node_count; 2714 } 2715 2716 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2717 { 2718 percpu_counter_inc(&sbi->total_valid_inode_count); 2719 } 2720 2721 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2722 { 2723 percpu_counter_dec(&sbi->total_valid_inode_count); 2724 } 2725 2726 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2727 { 2728 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2729 } 2730 2731 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2732 pgoff_t index, bool for_write) 2733 { 2734 struct page *page; 2735 unsigned int flags; 2736 2737 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2738 if (!for_write) 2739 page = find_get_page_flags(mapping, index, 2740 FGP_LOCK | FGP_ACCESSED); 2741 else 2742 page = find_lock_page(mapping, index); 2743 if (page) 2744 return page; 2745 2746 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 2747 return NULL; 2748 } 2749 2750 if (!for_write) 2751 return grab_cache_page(mapping, index); 2752 2753 flags = memalloc_nofs_save(); 2754 page = grab_cache_page_write_begin(mapping, index); 2755 memalloc_nofs_restore(flags); 2756 2757 return page; 2758 } 2759 2760 static inline struct page *f2fs_pagecache_get_page( 2761 struct address_space *mapping, pgoff_t index, 2762 fgf_t fgp_flags, gfp_t gfp_mask) 2763 { 2764 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) 2765 return NULL; 2766 2767 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2768 } 2769 2770 static inline void f2fs_put_page(struct page *page, int unlock) 2771 { 2772 if (!page) 2773 return; 2774 2775 if (unlock) { 2776 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2777 unlock_page(page); 2778 } 2779 put_page(page); 2780 } 2781 2782 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2783 { 2784 if (dn->node_page) 2785 f2fs_put_page(dn->node_page, 1); 2786 if (dn->inode_page && dn->node_page != dn->inode_page) 2787 f2fs_put_page(dn->inode_page, 0); 2788 dn->node_page = NULL; 2789 dn->inode_page = NULL; 2790 } 2791 2792 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2793 size_t size) 2794 { 2795 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2796 } 2797 2798 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2799 gfp_t flags) 2800 { 2801 void *entry; 2802 2803 entry = kmem_cache_alloc(cachep, flags); 2804 if (!entry) 2805 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2806 return entry; 2807 } 2808 2809 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2810 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2811 { 2812 if (nofail) 2813 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2814 2815 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) 2816 return NULL; 2817 2818 return kmem_cache_alloc(cachep, flags); 2819 } 2820 2821 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2822 { 2823 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2824 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2825 get_pages(sbi, F2FS_WB_CP_DATA) || 2826 get_pages(sbi, F2FS_DIO_READ) || 2827 get_pages(sbi, F2FS_DIO_WRITE)) 2828 return true; 2829 2830 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2831 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2832 return true; 2833 2834 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2835 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2836 return true; 2837 return false; 2838 } 2839 2840 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2841 { 2842 if (sbi->gc_mode == GC_URGENT_HIGH) 2843 return true; 2844 2845 if (is_inflight_io(sbi, type)) 2846 return false; 2847 2848 if (sbi->gc_mode == GC_URGENT_MID) 2849 return true; 2850 2851 if (sbi->gc_mode == GC_URGENT_LOW && 2852 (type == DISCARD_TIME || type == GC_TIME)) 2853 return true; 2854 2855 return f2fs_time_over(sbi, type); 2856 } 2857 2858 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2859 unsigned long index, void *item) 2860 { 2861 while (radix_tree_insert(root, index, item)) 2862 cond_resched(); 2863 } 2864 2865 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2866 2867 static inline bool IS_INODE(struct page *page) 2868 { 2869 struct f2fs_node *p = F2FS_NODE(page); 2870 2871 return RAW_IS_INODE(p); 2872 } 2873 2874 static inline int offset_in_addr(struct f2fs_inode *i) 2875 { 2876 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2877 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2878 } 2879 2880 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2881 { 2882 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2883 } 2884 2885 static inline int f2fs_has_extra_attr(struct inode *inode); 2886 static inline block_t data_blkaddr(struct inode *inode, 2887 struct page *node_page, unsigned int offset) 2888 { 2889 struct f2fs_node *raw_node; 2890 __le32 *addr_array; 2891 int base = 0; 2892 bool is_inode = IS_INODE(node_page); 2893 2894 raw_node = F2FS_NODE(node_page); 2895 2896 if (is_inode) { 2897 if (!inode) 2898 /* from GC path only */ 2899 base = offset_in_addr(&raw_node->i); 2900 else if (f2fs_has_extra_attr(inode)) 2901 base = get_extra_isize(inode); 2902 } 2903 2904 addr_array = blkaddr_in_node(raw_node); 2905 return le32_to_cpu(addr_array[base + offset]); 2906 } 2907 2908 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2909 { 2910 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2911 } 2912 2913 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2914 { 2915 int mask; 2916 2917 addr += (nr >> 3); 2918 mask = BIT(7 - (nr & 0x07)); 2919 return mask & *addr; 2920 } 2921 2922 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2923 { 2924 int mask; 2925 2926 addr += (nr >> 3); 2927 mask = BIT(7 - (nr & 0x07)); 2928 *addr |= mask; 2929 } 2930 2931 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2932 { 2933 int mask; 2934 2935 addr += (nr >> 3); 2936 mask = BIT(7 - (nr & 0x07)); 2937 *addr &= ~mask; 2938 } 2939 2940 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2941 { 2942 int mask; 2943 int ret; 2944 2945 addr += (nr >> 3); 2946 mask = BIT(7 - (nr & 0x07)); 2947 ret = mask & *addr; 2948 *addr |= mask; 2949 return ret; 2950 } 2951 2952 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2953 { 2954 int mask; 2955 int ret; 2956 2957 addr += (nr >> 3); 2958 mask = BIT(7 - (nr & 0x07)); 2959 ret = mask & *addr; 2960 *addr &= ~mask; 2961 return ret; 2962 } 2963 2964 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2965 { 2966 int mask; 2967 2968 addr += (nr >> 3); 2969 mask = BIT(7 - (nr & 0x07)); 2970 *addr ^= mask; 2971 } 2972 2973 /* 2974 * On-disk inode flags (f2fs_inode::i_flags) 2975 */ 2976 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2977 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2978 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2979 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2980 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2981 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2982 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2983 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2984 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2985 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2986 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2987 2988 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL) 2989 2990 /* Flags that should be inherited by new inodes from their parent. */ 2991 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2992 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2993 F2FS_CASEFOLD_FL) 2994 2995 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2996 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2997 F2FS_CASEFOLD_FL)) 2998 2999 /* Flags that are appropriate for non-directories/regular files. */ 3000 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 3001 3002 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 3003 { 3004 if (S_ISDIR(mode)) 3005 return flags; 3006 else if (S_ISREG(mode)) 3007 return flags & F2FS_REG_FLMASK; 3008 else 3009 return flags & F2FS_OTHER_FLMASK; 3010 } 3011 3012 static inline void __mark_inode_dirty_flag(struct inode *inode, 3013 int flag, bool set) 3014 { 3015 switch (flag) { 3016 case FI_INLINE_XATTR: 3017 case FI_INLINE_DATA: 3018 case FI_INLINE_DENTRY: 3019 case FI_NEW_INODE: 3020 if (set) 3021 return; 3022 fallthrough; 3023 case FI_DATA_EXIST: 3024 case FI_INLINE_DOTS: 3025 case FI_PIN_FILE: 3026 case FI_COMPRESS_RELEASED: 3027 case FI_ATOMIC_COMMITTED: 3028 f2fs_mark_inode_dirty_sync(inode, true); 3029 } 3030 } 3031 3032 static inline void set_inode_flag(struct inode *inode, int flag) 3033 { 3034 set_bit(flag, F2FS_I(inode)->flags); 3035 __mark_inode_dirty_flag(inode, flag, true); 3036 } 3037 3038 static inline int is_inode_flag_set(struct inode *inode, int flag) 3039 { 3040 return test_bit(flag, F2FS_I(inode)->flags); 3041 } 3042 3043 static inline void clear_inode_flag(struct inode *inode, int flag) 3044 { 3045 clear_bit(flag, F2FS_I(inode)->flags); 3046 __mark_inode_dirty_flag(inode, flag, false); 3047 } 3048 3049 static inline bool f2fs_verity_in_progress(struct inode *inode) 3050 { 3051 return IS_ENABLED(CONFIG_FS_VERITY) && 3052 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3053 } 3054 3055 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3056 { 3057 F2FS_I(inode)->i_acl_mode = mode; 3058 set_inode_flag(inode, FI_ACL_MODE); 3059 f2fs_mark_inode_dirty_sync(inode, false); 3060 } 3061 3062 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3063 { 3064 if (inc) 3065 inc_nlink(inode); 3066 else 3067 drop_nlink(inode); 3068 f2fs_mark_inode_dirty_sync(inode, true); 3069 } 3070 3071 static inline void f2fs_i_blocks_write(struct inode *inode, 3072 block_t diff, bool add, bool claim) 3073 { 3074 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3075 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3076 3077 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3078 if (add) { 3079 if (claim) 3080 dquot_claim_block(inode, diff); 3081 else 3082 dquot_alloc_block_nofail(inode, diff); 3083 } else { 3084 dquot_free_block(inode, diff); 3085 } 3086 3087 f2fs_mark_inode_dirty_sync(inode, true); 3088 if (clean || recover) 3089 set_inode_flag(inode, FI_AUTO_RECOVER); 3090 } 3091 3092 static inline bool f2fs_is_atomic_file(struct inode *inode); 3093 3094 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3095 { 3096 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3097 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3098 3099 if (i_size_read(inode) == i_size) 3100 return; 3101 3102 i_size_write(inode, i_size); 3103 3104 if (f2fs_is_atomic_file(inode)) 3105 return; 3106 3107 f2fs_mark_inode_dirty_sync(inode, true); 3108 if (clean || recover) 3109 set_inode_flag(inode, FI_AUTO_RECOVER); 3110 } 3111 3112 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3113 { 3114 F2FS_I(inode)->i_current_depth = depth; 3115 f2fs_mark_inode_dirty_sync(inode, true); 3116 } 3117 3118 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3119 unsigned int count) 3120 { 3121 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 3122 f2fs_mark_inode_dirty_sync(inode, true); 3123 } 3124 3125 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3126 { 3127 F2FS_I(inode)->i_xattr_nid = xnid; 3128 f2fs_mark_inode_dirty_sync(inode, true); 3129 } 3130 3131 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3132 { 3133 F2FS_I(inode)->i_pino = pino; 3134 f2fs_mark_inode_dirty_sync(inode, true); 3135 } 3136 3137 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3138 { 3139 struct f2fs_inode_info *fi = F2FS_I(inode); 3140 3141 if (ri->i_inline & F2FS_INLINE_XATTR) 3142 set_bit(FI_INLINE_XATTR, fi->flags); 3143 if (ri->i_inline & F2FS_INLINE_DATA) 3144 set_bit(FI_INLINE_DATA, fi->flags); 3145 if (ri->i_inline & F2FS_INLINE_DENTRY) 3146 set_bit(FI_INLINE_DENTRY, fi->flags); 3147 if (ri->i_inline & F2FS_DATA_EXIST) 3148 set_bit(FI_DATA_EXIST, fi->flags); 3149 if (ri->i_inline & F2FS_INLINE_DOTS) 3150 set_bit(FI_INLINE_DOTS, fi->flags); 3151 if (ri->i_inline & F2FS_EXTRA_ATTR) 3152 set_bit(FI_EXTRA_ATTR, fi->flags); 3153 if (ri->i_inline & F2FS_PIN_FILE) 3154 set_bit(FI_PIN_FILE, fi->flags); 3155 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3156 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3157 } 3158 3159 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3160 { 3161 ri->i_inline = 0; 3162 3163 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3164 ri->i_inline |= F2FS_INLINE_XATTR; 3165 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3166 ri->i_inline |= F2FS_INLINE_DATA; 3167 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3168 ri->i_inline |= F2FS_INLINE_DENTRY; 3169 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3170 ri->i_inline |= F2FS_DATA_EXIST; 3171 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 3172 ri->i_inline |= F2FS_INLINE_DOTS; 3173 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3174 ri->i_inline |= F2FS_EXTRA_ATTR; 3175 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3176 ri->i_inline |= F2FS_PIN_FILE; 3177 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3178 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3179 } 3180 3181 static inline int f2fs_has_extra_attr(struct inode *inode) 3182 { 3183 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3184 } 3185 3186 static inline int f2fs_has_inline_xattr(struct inode *inode) 3187 { 3188 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3189 } 3190 3191 static inline int f2fs_compressed_file(struct inode *inode) 3192 { 3193 return S_ISREG(inode->i_mode) && 3194 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3195 } 3196 3197 static inline bool f2fs_need_compress_data(struct inode *inode) 3198 { 3199 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3200 3201 if (!f2fs_compressed_file(inode)) 3202 return false; 3203 3204 if (compress_mode == COMPR_MODE_FS) 3205 return true; 3206 else if (compress_mode == COMPR_MODE_USER && 3207 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3208 return true; 3209 3210 return false; 3211 } 3212 3213 static inline unsigned int addrs_per_inode(struct inode *inode) 3214 { 3215 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 3216 get_inline_xattr_addrs(inode); 3217 3218 if (!f2fs_compressed_file(inode)) 3219 return addrs; 3220 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3221 } 3222 3223 static inline unsigned int addrs_per_block(struct inode *inode) 3224 { 3225 if (!f2fs_compressed_file(inode)) 3226 return DEF_ADDRS_PER_BLOCK; 3227 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 3228 } 3229 3230 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3231 { 3232 struct f2fs_inode *ri = F2FS_INODE(page); 3233 3234 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3235 get_inline_xattr_addrs(inode)]); 3236 } 3237 3238 static inline int inline_xattr_size(struct inode *inode) 3239 { 3240 if (f2fs_has_inline_xattr(inode)) 3241 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3242 return 0; 3243 } 3244 3245 /* 3246 * Notice: check inline_data flag without inode page lock is unsafe. 3247 * It could change at any time by f2fs_convert_inline_page(). 3248 */ 3249 static inline int f2fs_has_inline_data(struct inode *inode) 3250 { 3251 return is_inode_flag_set(inode, FI_INLINE_DATA); 3252 } 3253 3254 static inline int f2fs_exist_data(struct inode *inode) 3255 { 3256 return is_inode_flag_set(inode, FI_DATA_EXIST); 3257 } 3258 3259 static inline int f2fs_has_inline_dots(struct inode *inode) 3260 { 3261 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3262 } 3263 3264 static inline int f2fs_is_mmap_file(struct inode *inode) 3265 { 3266 return is_inode_flag_set(inode, FI_MMAP_FILE); 3267 } 3268 3269 static inline bool f2fs_is_pinned_file(struct inode *inode) 3270 { 3271 return is_inode_flag_set(inode, FI_PIN_FILE); 3272 } 3273 3274 static inline bool f2fs_is_atomic_file(struct inode *inode) 3275 { 3276 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3277 } 3278 3279 static inline bool f2fs_is_cow_file(struct inode *inode) 3280 { 3281 return is_inode_flag_set(inode, FI_COW_FILE); 3282 } 3283 3284 static inline __le32 *get_dnode_addr(struct inode *inode, 3285 struct page *node_page); 3286 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3287 { 3288 __le32 *addr = get_dnode_addr(inode, page); 3289 3290 return (void *)(addr + DEF_INLINE_RESERVED_SIZE); 3291 } 3292 3293 static inline int f2fs_has_inline_dentry(struct inode *inode) 3294 { 3295 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3296 } 3297 3298 static inline int is_file(struct inode *inode, int type) 3299 { 3300 return F2FS_I(inode)->i_advise & type; 3301 } 3302 3303 static inline void set_file(struct inode *inode, int type) 3304 { 3305 if (is_file(inode, type)) 3306 return; 3307 F2FS_I(inode)->i_advise |= type; 3308 f2fs_mark_inode_dirty_sync(inode, true); 3309 } 3310 3311 static inline void clear_file(struct inode *inode, int type) 3312 { 3313 if (!is_file(inode, type)) 3314 return; 3315 F2FS_I(inode)->i_advise &= ~type; 3316 f2fs_mark_inode_dirty_sync(inode, true); 3317 } 3318 3319 static inline bool f2fs_is_time_consistent(struct inode *inode) 3320 { 3321 struct timespec64 ctime = inode_get_ctime(inode); 3322 3323 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 3324 return false; 3325 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ctime)) 3326 return false; 3327 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 3328 return false; 3329 return true; 3330 } 3331 3332 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3333 { 3334 bool ret; 3335 3336 if (dsync) { 3337 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3338 3339 spin_lock(&sbi->inode_lock[DIRTY_META]); 3340 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3341 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3342 return ret; 3343 } 3344 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3345 file_keep_isize(inode) || 3346 i_size_read(inode) & ~PAGE_MASK) 3347 return false; 3348 3349 if (!f2fs_is_time_consistent(inode)) 3350 return false; 3351 3352 spin_lock(&F2FS_I(inode)->i_size_lock); 3353 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3354 spin_unlock(&F2FS_I(inode)->i_size_lock); 3355 3356 return ret; 3357 } 3358 3359 static inline bool f2fs_readonly(struct super_block *sb) 3360 { 3361 return sb_rdonly(sb); 3362 } 3363 3364 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3365 { 3366 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3367 } 3368 3369 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3370 { 3371 if (len == 1 && name[0] == '.') 3372 return true; 3373 3374 if (len == 2 && name[0] == '.' && name[1] == '.') 3375 return true; 3376 3377 return false; 3378 } 3379 3380 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3381 size_t size, gfp_t flags) 3382 { 3383 if (time_to_inject(sbi, FAULT_KMALLOC)) 3384 return NULL; 3385 3386 return kmalloc(size, flags); 3387 } 3388 3389 static inline void *f2fs_getname(struct f2fs_sb_info *sbi) 3390 { 3391 if (time_to_inject(sbi, FAULT_KMALLOC)) 3392 return NULL; 3393 3394 return __getname(); 3395 } 3396 3397 static inline void f2fs_putname(char *buf) 3398 { 3399 __putname(buf); 3400 } 3401 3402 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3403 size_t size, gfp_t flags) 3404 { 3405 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3406 } 3407 3408 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3409 size_t size, gfp_t flags) 3410 { 3411 if (time_to_inject(sbi, FAULT_KVMALLOC)) 3412 return NULL; 3413 3414 return kvmalloc(size, flags); 3415 } 3416 3417 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3418 size_t size, gfp_t flags) 3419 { 3420 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3421 } 3422 3423 static inline int get_extra_isize(struct inode *inode) 3424 { 3425 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3426 } 3427 3428 static inline int get_inline_xattr_addrs(struct inode *inode) 3429 { 3430 return F2FS_I(inode)->i_inline_xattr_size; 3431 } 3432 3433 static inline __le32 *get_dnode_addr(struct inode *inode, 3434 struct page *node_page) 3435 { 3436 int base = 0; 3437 3438 if (IS_INODE(node_page) && f2fs_has_extra_attr(inode)) 3439 base = get_extra_isize(inode); 3440 3441 return blkaddr_in_node(F2FS_NODE(node_page)) + base; 3442 } 3443 3444 #define f2fs_get_inode_mode(i) \ 3445 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3446 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3447 3448 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32)) 3449 3450 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3451 (offsetof(struct f2fs_inode, i_extra_end) - \ 3452 offsetof(struct f2fs_inode, i_extra_isize)) \ 3453 3454 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3455 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3456 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3457 sizeof((f2fs_inode)->field)) \ 3458 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3459 3460 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 3461 3462 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3463 3464 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3465 block_t blkaddr, int type); 3466 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3467 block_t blkaddr, int type) 3468 { 3469 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) 3470 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3471 blkaddr, type); 3472 } 3473 3474 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3475 { 3476 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3477 blkaddr == COMPRESS_ADDR) 3478 return false; 3479 return true; 3480 } 3481 3482 /* 3483 * file.c 3484 */ 3485 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3486 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3487 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3488 int f2fs_truncate(struct inode *inode); 3489 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 3490 struct kstat *stat, u32 request_mask, unsigned int flags); 3491 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3492 struct iattr *attr); 3493 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3494 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3495 int f2fs_precache_extents(struct inode *inode); 3496 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3497 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3498 struct dentry *dentry, struct fileattr *fa); 3499 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3500 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3501 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3502 int f2fs_pin_file_control(struct inode *inode, bool inc); 3503 3504 /* 3505 * inode.c 3506 */ 3507 void f2fs_set_inode_flags(struct inode *inode); 3508 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3509 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3510 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3511 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3512 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3513 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3514 void f2fs_update_inode_page(struct inode *inode); 3515 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3516 void f2fs_evict_inode(struct inode *inode); 3517 void f2fs_handle_failed_inode(struct inode *inode); 3518 3519 /* 3520 * namei.c 3521 */ 3522 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3523 bool hot, bool set); 3524 struct dentry *f2fs_get_parent(struct dentry *child); 3525 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3526 struct inode **new_inode); 3527 3528 /* 3529 * dir.c 3530 */ 3531 int f2fs_init_casefolded_name(const struct inode *dir, 3532 struct f2fs_filename *fname); 3533 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3534 int lookup, struct f2fs_filename *fname); 3535 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3536 struct f2fs_filename *fname); 3537 void f2fs_free_filename(struct f2fs_filename *fname); 3538 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3539 const struct f2fs_filename *fname, int *max_slots); 3540 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3541 unsigned int start_pos, struct fscrypt_str *fstr); 3542 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3543 struct f2fs_dentry_ptr *d); 3544 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3545 const struct f2fs_filename *fname, struct page *dpage); 3546 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3547 unsigned int current_depth); 3548 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3549 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3550 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3551 const struct f2fs_filename *fname, 3552 struct page **res_page); 3553 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3554 const struct qstr *child, struct page **res_page); 3555 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3556 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3557 struct page **page); 3558 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3559 struct page *page, struct inode *inode); 3560 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3561 const struct f2fs_filename *fname); 3562 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3563 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3564 unsigned int bit_pos); 3565 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3566 struct inode *inode, nid_t ino, umode_t mode); 3567 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3568 struct inode *inode, nid_t ino, umode_t mode); 3569 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3570 struct inode *inode, nid_t ino, umode_t mode); 3571 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3572 struct inode *dir, struct inode *inode); 3573 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir, 3574 struct f2fs_filename *fname); 3575 bool f2fs_empty_dir(struct inode *dir); 3576 3577 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3578 { 3579 if (fscrypt_is_nokey_name(dentry)) 3580 return -ENOKEY; 3581 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3582 inode, inode->i_ino, inode->i_mode); 3583 } 3584 3585 /* 3586 * super.c 3587 */ 3588 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3589 void f2fs_inode_synced(struct inode *inode); 3590 int f2fs_dquot_initialize(struct inode *inode); 3591 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3592 int f2fs_quota_sync(struct super_block *sb, int type); 3593 loff_t max_file_blocks(struct inode *inode); 3594 void f2fs_quota_off_umount(struct super_block *sb); 3595 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag); 3596 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 3597 bool irq_context); 3598 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3599 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error); 3600 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3601 int f2fs_sync_fs(struct super_block *sb, int sync); 3602 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3603 3604 /* 3605 * hash.c 3606 */ 3607 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3608 3609 /* 3610 * node.c 3611 */ 3612 struct node_info; 3613 3614 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3615 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3616 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3617 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3618 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3619 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3620 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3621 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3622 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3623 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3624 struct node_info *ni, bool checkpoint_context); 3625 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3626 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3627 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3628 int f2fs_truncate_xattr_node(struct inode *inode); 3629 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3630 unsigned int seq_id); 3631 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3632 int f2fs_remove_inode_page(struct inode *inode); 3633 struct page *f2fs_new_inode_page(struct inode *inode); 3634 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3635 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3636 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3637 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3638 int f2fs_move_node_page(struct page *node_page, int gc_type); 3639 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3640 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3641 struct writeback_control *wbc, bool atomic, 3642 unsigned int *seq_id); 3643 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3644 struct writeback_control *wbc, 3645 bool do_balance, enum iostat_type io_type); 3646 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3647 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3648 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3649 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3650 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3651 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3652 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3653 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3654 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3655 unsigned int segno, struct f2fs_summary_block *sum); 3656 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3657 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3658 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3659 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3660 int __init f2fs_create_node_manager_caches(void); 3661 void f2fs_destroy_node_manager_caches(void); 3662 3663 /* 3664 * segment.c 3665 */ 3666 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3667 int f2fs_commit_atomic_write(struct inode *inode); 3668 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3669 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3670 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3671 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3672 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3673 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3674 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3675 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3676 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3677 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3678 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3679 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3680 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3681 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3682 struct cp_control *cpc); 3683 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3684 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3685 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3686 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3687 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3688 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3689 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3690 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3691 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3692 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3693 unsigned int *newseg, bool new_sec, int dir); 3694 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3695 unsigned int start, unsigned int end); 3696 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3697 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3698 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3699 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3700 struct cp_control *cpc); 3701 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3702 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3703 block_t blk_addr); 3704 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3705 enum iostat_type io_type); 3706 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3707 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3708 struct f2fs_io_info *fio); 3709 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3710 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3711 block_t old_blkaddr, block_t new_blkaddr, 3712 bool recover_curseg, bool recover_newaddr, 3713 bool from_gc); 3714 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3715 block_t old_addr, block_t new_addr, 3716 unsigned char version, bool recover_curseg, 3717 bool recover_newaddr); 3718 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3719 block_t old_blkaddr, block_t *new_blkaddr, 3720 struct f2fs_summary *sum, int type, 3721 struct f2fs_io_info *fio); 3722 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3723 block_t blkaddr, unsigned int blkcnt); 3724 void f2fs_wait_on_page_writeback(struct page *page, 3725 enum page_type type, bool ordered, bool locked); 3726 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3727 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3728 block_t len); 3729 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3730 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3731 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3732 unsigned int val, int alloc); 3733 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3734 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3735 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3736 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3737 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3738 int __init f2fs_create_segment_manager_caches(void); 3739 void f2fs_destroy_segment_manager_caches(void); 3740 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3741 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3742 unsigned int segno); 3743 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3744 unsigned int segno); 3745 3746 #define DEF_FRAGMENT_SIZE 4 3747 #define MIN_FRAGMENT_SIZE 1 3748 #define MAX_FRAGMENT_SIZE 512 3749 3750 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3751 { 3752 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3753 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3754 } 3755 3756 /* 3757 * checkpoint.c 3758 */ 3759 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3760 unsigned char reason); 3761 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3762 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3763 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3764 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3765 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3766 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3767 block_t blkaddr, int type); 3768 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3769 int type, bool sync); 3770 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3771 unsigned int ra_blocks); 3772 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3773 long nr_to_write, enum iostat_type io_type); 3774 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3775 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3776 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3777 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3778 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3779 unsigned int devidx, int type); 3780 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3781 unsigned int devidx, int type); 3782 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3783 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3784 void f2fs_add_orphan_inode(struct inode *inode); 3785 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3786 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3787 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3788 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3789 void f2fs_remove_dirty_inode(struct inode *inode); 3790 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3791 bool from_cp); 3792 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3793 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3794 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3795 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3796 int __init f2fs_create_checkpoint_caches(void); 3797 void f2fs_destroy_checkpoint_caches(void); 3798 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3799 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3800 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3801 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3802 3803 /* 3804 * data.c 3805 */ 3806 int __init f2fs_init_bioset(void); 3807 void f2fs_destroy_bioset(void); 3808 bool f2fs_is_cp_guaranteed(struct page *page); 3809 int f2fs_init_bio_entry_cache(void); 3810 void f2fs_destroy_bio_entry_cache(void); 3811 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 3812 enum page_type type); 3813 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3814 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3815 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3816 struct inode *inode, struct page *page, 3817 nid_t ino, enum page_type type); 3818 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3819 struct bio **bio, struct page *page); 3820 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3821 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3822 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3823 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3824 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3825 block_t blk_addr, sector_t *sector); 3826 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3827 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3828 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3829 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3830 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3831 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); 3832 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3833 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3834 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3835 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3836 pgoff_t *next_pgofs); 3837 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3838 bool for_write); 3839 struct page *f2fs_get_new_data_page(struct inode *inode, 3840 struct page *ipage, pgoff_t index, bool new_i_size); 3841 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3842 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); 3843 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3844 u64 start, u64 len); 3845 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3846 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3847 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3848 int f2fs_write_single_data_page(struct page *page, int *submitted, 3849 struct bio **bio, sector_t *last_block, 3850 struct writeback_control *wbc, 3851 enum iostat_type io_type, 3852 int compr_blocks, bool allow_balance); 3853 void f2fs_write_failed(struct inode *inode, loff_t to); 3854 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3855 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3856 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3857 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3858 int f2fs_init_post_read_processing(void); 3859 void f2fs_destroy_post_read_processing(void); 3860 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3861 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3862 extern const struct iomap_ops f2fs_iomap_ops; 3863 3864 /* 3865 * gc.c 3866 */ 3867 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3868 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3869 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3870 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3871 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3872 int f2fs_resize_fs(struct file *filp, __u64 block_count); 3873 int __init f2fs_create_garbage_collection_cache(void); 3874 void f2fs_destroy_garbage_collection_cache(void); 3875 /* victim selection function for cleaning and SSR */ 3876 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 3877 int gc_type, int type, char alloc_mode, 3878 unsigned long long age); 3879 3880 /* 3881 * recovery.c 3882 */ 3883 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3884 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3885 int __init f2fs_create_recovery_cache(void); 3886 void f2fs_destroy_recovery_cache(void); 3887 3888 /* 3889 * debug.c 3890 */ 3891 #ifdef CONFIG_F2FS_STAT_FS 3892 struct f2fs_stat_info { 3893 struct list_head stat_list; 3894 struct f2fs_sb_info *sbi; 3895 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3896 int main_area_segs, main_area_sections, main_area_zones; 3897 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3898 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3899 unsigned long long total_ext[NR_EXTENT_CACHES]; 3900 unsigned long long hit_total[NR_EXTENT_CACHES]; 3901 int ext_tree[NR_EXTENT_CACHES]; 3902 int zombie_tree[NR_EXTENT_CACHES]; 3903 int ext_node[NR_EXTENT_CACHES]; 3904 /* to count memory footprint */ 3905 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3906 /* for read extent cache */ 3907 unsigned long long hit_largest; 3908 /* for block age extent cache */ 3909 unsigned long long allocated_data_blocks; 3910 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3911 int ndirty_data, ndirty_qdata; 3912 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3913 int nats, dirty_nats, sits, dirty_sits; 3914 int free_nids, avail_nids, alloc_nids; 3915 int total_count, utilization; 3916 int nr_wb_cp_data, nr_wb_data; 3917 int nr_rd_data, nr_rd_node, nr_rd_meta; 3918 int nr_dio_read, nr_dio_write; 3919 unsigned int io_skip_bggc, other_skip_bggc; 3920 int nr_flushing, nr_flushed, flush_list_empty; 3921 int nr_discarding, nr_discarded; 3922 int nr_discard_cmd; 3923 unsigned int undiscard_blks; 3924 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3925 unsigned int cur_ckpt_time, peak_ckpt_time; 3926 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3927 int compr_inode, swapfile_inode; 3928 unsigned long long compr_blocks; 3929 int aw_cnt, max_aw_cnt; 3930 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3931 unsigned int bimodal, avg_vblocks; 3932 int util_free, util_valid, util_invalid; 3933 int rsvd_segs, overp_segs; 3934 int dirty_count, node_pages, meta_pages, compress_pages; 3935 int compress_page_hit; 3936 int prefree_count, free_segs, free_secs; 3937 int cp_call_count[MAX_CALL_TYPE], cp_count; 3938 int gc_call_count[MAX_CALL_TYPE]; 3939 int gc_segs[2][2]; 3940 int gc_secs[2][2]; 3941 int tot_blks, data_blks, node_blks; 3942 int bg_data_blks, bg_node_blks; 3943 int curseg[NR_CURSEG_TYPE]; 3944 int cursec[NR_CURSEG_TYPE]; 3945 int curzone[NR_CURSEG_TYPE]; 3946 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3947 unsigned int full_seg[NR_CURSEG_TYPE]; 3948 unsigned int valid_blks[NR_CURSEG_TYPE]; 3949 3950 unsigned int meta_count[META_MAX]; 3951 unsigned int segment_count[2]; 3952 unsigned int block_count[2]; 3953 unsigned int inplace_count; 3954 unsigned long long base_mem, cache_mem, page_mem; 3955 }; 3956 3957 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3958 { 3959 return (struct f2fs_stat_info *)sbi->stat_info; 3960 } 3961 3962 #define stat_inc_cp_call_count(sbi, foreground) \ 3963 atomic_inc(&sbi->cp_call_count[(foreground)]) 3964 #define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++) 3965 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3966 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3967 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3968 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3969 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 3970 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 3971 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3972 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 3973 #define stat_inc_inline_xattr(inode) \ 3974 do { \ 3975 if (f2fs_has_inline_xattr(inode)) \ 3976 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3977 } while (0) 3978 #define stat_dec_inline_xattr(inode) \ 3979 do { \ 3980 if (f2fs_has_inline_xattr(inode)) \ 3981 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3982 } while (0) 3983 #define stat_inc_inline_inode(inode) \ 3984 do { \ 3985 if (f2fs_has_inline_data(inode)) \ 3986 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3987 } while (0) 3988 #define stat_dec_inline_inode(inode) \ 3989 do { \ 3990 if (f2fs_has_inline_data(inode)) \ 3991 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3992 } while (0) 3993 #define stat_inc_inline_dir(inode) \ 3994 do { \ 3995 if (f2fs_has_inline_dentry(inode)) \ 3996 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3997 } while (0) 3998 #define stat_dec_inline_dir(inode) \ 3999 do { \ 4000 if (f2fs_has_inline_dentry(inode)) \ 4001 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 4002 } while (0) 4003 #define stat_inc_compr_inode(inode) \ 4004 do { \ 4005 if (f2fs_compressed_file(inode)) \ 4006 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 4007 } while (0) 4008 #define stat_dec_compr_inode(inode) \ 4009 do { \ 4010 if (f2fs_compressed_file(inode)) \ 4011 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 4012 } while (0) 4013 #define stat_add_compr_blocks(inode, blocks) \ 4014 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4015 #define stat_sub_compr_blocks(inode, blocks) \ 4016 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4017 #define stat_inc_swapfile_inode(inode) \ 4018 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 4019 #define stat_dec_swapfile_inode(inode) \ 4020 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 4021 #define stat_inc_atomic_inode(inode) \ 4022 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 4023 #define stat_dec_atomic_inode(inode) \ 4024 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 4025 #define stat_inc_meta_count(sbi, blkaddr) \ 4026 do { \ 4027 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 4028 atomic_inc(&(sbi)->meta_count[META_CP]); \ 4029 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 4030 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 4031 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 4032 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 4033 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 4034 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 4035 } while (0) 4036 #define stat_inc_seg_type(sbi, curseg) \ 4037 ((sbi)->segment_count[(curseg)->alloc_type]++) 4038 #define stat_inc_block_count(sbi, curseg) \ 4039 ((sbi)->block_count[(curseg)->alloc_type]++) 4040 #define stat_inc_inplace_blocks(sbi) \ 4041 (atomic_inc(&(sbi)->inplace_count)) 4042 #define stat_update_max_atomic_write(inode) \ 4043 do { \ 4044 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 4045 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 4046 if (cur > max) \ 4047 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 4048 } while (0) 4049 #define stat_inc_gc_call_count(sbi, foreground) \ 4050 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++) 4051 #define stat_inc_gc_sec_count(sbi, type, gc_type) \ 4052 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++) 4053 #define stat_inc_gc_seg_count(sbi, type, gc_type) \ 4054 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++) 4055 4056 #define stat_inc_tot_blk_count(si, blks) \ 4057 ((si)->tot_blks += (blks)) 4058 4059 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4060 do { \ 4061 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4062 stat_inc_tot_blk_count(si, blks); \ 4063 si->data_blks += (blks); \ 4064 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4065 } while (0) 4066 4067 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4068 do { \ 4069 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4070 stat_inc_tot_blk_count(si, blks); \ 4071 si->node_blks += (blks); \ 4072 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4073 } while (0) 4074 4075 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4076 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4077 void __init f2fs_create_root_stats(void); 4078 void f2fs_destroy_root_stats(void); 4079 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4080 #else 4081 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0) 4082 #define stat_inc_cp_count(sbi) do { } while (0) 4083 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4084 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4085 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4086 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4087 #define stat_inc_total_hit(sbi, type) do { } while (0) 4088 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4089 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4090 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4091 #define stat_inc_inline_xattr(inode) do { } while (0) 4092 #define stat_dec_inline_xattr(inode) do { } while (0) 4093 #define stat_inc_inline_inode(inode) do { } while (0) 4094 #define stat_dec_inline_inode(inode) do { } while (0) 4095 #define stat_inc_inline_dir(inode) do { } while (0) 4096 #define stat_dec_inline_dir(inode) do { } while (0) 4097 #define stat_inc_compr_inode(inode) do { } while (0) 4098 #define stat_dec_compr_inode(inode) do { } while (0) 4099 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4100 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4101 #define stat_inc_swapfile_inode(inode) do { } while (0) 4102 #define stat_dec_swapfile_inode(inode) do { } while (0) 4103 #define stat_inc_atomic_inode(inode) do { } while (0) 4104 #define stat_dec_atomic_inode(inode) do { } while (0) 4105 #define stat_update_max_atomic_write(inode) do { } while (0) 4106 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4107 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4108 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4109 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4110 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0) 4111 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0) 4112 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0) 4113 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4114 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4115 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4116 4117 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4118 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4119 static inline void __init f2fs_create_root_stats(void) { } 4120 static inline void f2fs_destroy_root_stats(void) { } 4121 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4122 #endif 4123 4124 extern const struct file_operations f2fs_dir_operations; 4125 extern const struct file_operations f2fs_file_operations; 4126 extern const struct inode_operations f2fs_file_inode_operations; 4127 extern const struct address_space_operations f2fs_dblock_aops; 4128 extern const struct address_space_operations f2fs_node_aops; 4129 extern const struct address_space_operations f2fs_meta_aops; 4130 extern const struct inode_operations f2fs_dir_inode_operations; 4131 extern const struct inode_operations f2fs_symlink_inode_operations; 4132 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4133 extern const struct inode_operations f2fs_special_inode_operations; 4134 extern struct kmem_cache *f2fs_inode_entry_slab; 4135 4136 /* 4137 * inline.c 4138 */ 4139 bool f2fs_may_inline_data(struct inode *inode); 4140 bool f2fs_sanity_check_inline_data(struct inode *inode); 4141 bool f2fs_may_inline_dentry(struct inode *inode); 4142 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 4143 void f2fs_truncate_inline_inode(struct inode *inode, 4144 struct page *ipage, u64 from); 4145 int f2fs_read_inline_data(struct inode *inode, struct page *page); 4146 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4147 int f2fs_convert_inline_inode(struct inode *inode); 4148 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4149 int f2fs_write_inline_data(struct inode *inode, struct page *page); 4150 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4151 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4152 const struct f2fs_filename *fname, 4153 struct page **res_page); 4154 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4155 struct page *ipage); 4156 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4157 struct inode *inode, nid_t ino, umode_t mode); 4158 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4159 struct page *page, struct inode *dir, 4160 struct inode *inode); 4161 bool f2fs_empty_inline_dir(struct inode *dir); 4162 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4163 struct fscrypt_str *fstr); 4164 int f2fs_inline_data_fiemap(struct inode *inode, 4165 struct fiemap_extent_info *fieinfo, 4166 __u64 start, __u64 len); 4167 4168 /* 4169 * shrinker.c 4170 */ 4171 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4172 struct shrink_control *sc); 4173 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4174 struct shrink_control *sc); 4175 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4176 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4177 4178 /* 4179 * extent_cache.c 4180 */ 4181 bool sanity_check_extent_cache(struct inode *inode); 4182 void f2fs_init_extent_tree(struct inode *inode); 4183 void f2fs_drop_extent_tree(struct inode *inode); 4184 void f2fs_destroy_extent_node(struct inode *inode); 4185 void f2fs_destroy_extent_tree(struct inode *inode); 4186 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4187 int __init f2fs_create_extent_cache(void); 4188 void f2fs_destroy_extent_cache(void); 4189 4190 /* read extent cache ops */ 4191 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4192 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4193 struct extent_info *ei); 4194 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 4195 block_t *blkaddr); 4196 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4197 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4198 pgoff_t fofs, block_t blkaddr, unsigned int len); 4199 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4200 int nr_shrink); 4201 4202 /* block age extent cache ops */ 4203 void f2fs_init_age_extent_tree(struct inode *inode); 4204 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4205 struct extent_info *ei); 4206 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4207 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4208 pgoff_t fofs, unsigned int len); 4209 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4210 int nr_shrink); 4211 4212 /* 4213 * sysfs.c 4214 */ 4215 #define MIN_RA_MUL 2 4216 #define MAX_RA_MUL 256 4217 4218 int __init f2fs_init_sysfs(void); 4219 void f2fs_exit_sysfs(void); 4220 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4221 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4222 4223 /* verity.c */ 4224 extern const struct fsverity_operations f2fs_verityops; 4225 4226 /* 4227 * crypto support 4228 */ 4229 static inline bool f2fs_encrypted_file(struct inode *inode) 4230 { 4231 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4232 } 4233 4234 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4235 { 4236 #ifdef CONFIG_FS_ENCRYPTION 4237 file_set_encrypt(inode); 4238 f2fs_set_inode_flags(inode); 4239 #endif 4240 } 4241 4242 /* 4243 * Returns true if the reads of the inode's data need to undergo some 4244 * postprocessing step, like decryption or authenticity verification. 4245 */ 4246 static inline bool f2fs_post_read_required(struct inode *inode) 4247 { 4248 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4249 f2fs_compressed_file(inode); 4250 } 4251 4252 /* 4253 * compress.c 4254 */ 4255 #ifdef CONFIG_F2FS_FS_COMPRESSION 4256 bool f2fs_is_compressed_page(struct page *page); 4257 struct page *f2fs_compress_control_page(struct page *page); 4258 int f2fs_prepare_compress_overwrite(struct inode *inode, 4259 struct page **pagep, pgoff_t index, void **fsdata); 4260 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4261 pgoff_t index, unsigned copied); 4262 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4263 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4264 bool f2fs_is_compress_backend_ready(struct inode *inode); 4265 bool f2fs_is_compress_level_valid(int alg, int lvl); 4266 int __init f2fs_init_compress_mempool(void); 4267 void f2fs_destroy_compress_mempool(void); 4268 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4269 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4270 block_t blkaddr, bool in_task); 4271 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4272 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4273 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4274 int index, int nr_pages, bool uptodate); 4275 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4276 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4277 int f2fs_write_multi_pages(struct compress_ctx *cc, 4278 int *submitted, 4279 struct writeback_control *wbc, 4280 enum iostat_type io_type); 4281 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4282 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4283 pgoff_t fofs, block_t blkaddr, 4284 unsigned int llen, unsigned int c_len); 4285 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4286 unsigned nr_pages, sector_t *last_block_in_bio, 4287 bool is_readahead, bool for_write); 4288 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4289 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4290 bool in_task); 4291 void f2fs_put_page_dic(struct page *page, bool in_task); 4292 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn, 4293 unsigned int ofs_in_node); 4294 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4295 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4296 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4297 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4298 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4299 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4300 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4301 int __init f2fs_init_compress_cache(void); 4302 void f2fs_destroy_compress_cache(void); 4303 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4304 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4305 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4306 nid_t ino, block_t blkaddr); 4307 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4308 block_t blkaddr); 4309 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4310 #define inc_compr_inode_stat(inode) \ 4311 do { \ 4312 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4313 sbi->compr_new_inode++; \ 4314 } while (0) 4315 #define add_compr_block_stat(inode, blocks) \ 4316 do { \ 4317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4318 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4319 sbi->compr_written_block += blocks; \ 4320 sbi->compr_saved_block += diff; \ 4321 } while (0) 4322 #else 4323 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4324 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4325 { 4326 if (!f2fs_compressed_file(inode)) 4327 return true; 4328 /* not support compression */ 4329 return false; 4330 } 4331 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; } 4332 static inline struct page *f2fs_compress_control_page(struct page *page) 4333 { 4334 WARN_ON_ONCE(1); 4335 return ERR_PTR(-EINVAL); 4336 } 4337 static inline int __init f2fs_init_compress_mempool(void) { return 0; } 4338 static inline void f2fs_destroy_compress_mempool(void) { } 4339 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4340 bool in_task) { } 4341 static inline void f2fs_end_read_compressed_page(struct page *page, 4342 bool failed, block_t blkaddr, bool in_task) 4343 { 4344 WARN_ON_ONCE(1); 4345 } 4346 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4347 { 4348 WARN_ON_ONCE(1); 4349 } 4350 static inline unsigned int f2fs_cluster_blocks_are_contiguous( 4351 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; } 4352 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4353 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4354 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4355 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4356 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4357 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4358 static inline void f2fs_destroy_compress_cache(void) { } 4359 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4360 block_t blkaddr) { } 4361 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4362 struct page *page, nid_t ino, block_t blkaddr) { } 4363 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4364 struct page *page, block_t blkaddr) { return false; } 4365 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4366 nid_t ino) { } 4367 #define inc_compr_inode_stat(inode) do { } while (0) 4368 static inline void f2fs_update_read_extent_tree_range_compressed( 4369 struct inode *inode, 4370 pgoff_t fofs, block_t blkaddr, 4371 unsigned int llen, unsigned int c_len) { } 4372 #endif 4373 4374 static inline int set_compress_context(struct inode *inode) 4375 { 4376 #ifdef CONFIG_F2FS_FS_COMPRESSION 4377 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4378 4379 F2FS_I(inode)->i_compress_algorithm = 4380 F2FS_OPTION(sbi).compress_algorithm; 4381 F2FS_I(inode)->i_log_cluster_size = 4382 F2FS_OPTION(sbi).compress_log_size; 4383 F2FS_I(inode)->i_compress_flag = 4384 F2FS_OPTION(sbi).compress_chksum ? 4385 BIT(COMPRESS_CHKSUM) : 0; 4386 F2FS_I(inode)->i_cluster_size = 4387 BIT(F2FS_I(inode)->i_log_cluster_size); 4388 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || 4389 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && 4390 F2FS_OPTION(sbi).compress_level) 4391 F2FS_I(inode)->i_compress_level = 4392 F2FS_OPTION(sbi).compress_level; 4393 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4394 set_inode_flag(inode, FI_COMPRESSED_FILE); 4395 stat_inc_compr_inode(inode); 4396 inc_compr_inode_stat(inode); 4397 f2fs_mark_inode_dirty_sync(inode, true); 4398 return 0; 4399 #else 4400 return -EOPNOTSUPP; 4401 #endif 4402 } 4403 4404 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4405 { 4406 struct f2fs_inode_info *fi = F2FS_I(inode); 4407 4408 f2fs_down_write(&F2FS_I(inode)->i_sem); 4409 4410 if (!f2fs_compressed_file(inode)) { 4411 f2fs_up_write(&F2FS_I(inode)->i_sem); 4412 return true; 4413 } 4414 if (f2fs_is_mmap_file(inode) || 4415 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) { 4416 f2fs_up_write(&F2FS_I(inode)->i_sem); 4417 return false; 4418 } 4419 4420 fi->i_flags &= ~F2FS_COMPR_FL; 4421 stat_dec_compr_inode(inode); 4422 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4423 f2fs_mark_inode_dirty_sync(inode, true); 4424 4425 f2fs_up_write(&F2FS_I(inode)->i_sem); 4426 return true; 4427 } 4428 4429 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4430 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4431 { \ 4432 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4433 } 4434 4435 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4436 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4437 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4438 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4439 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4440 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4441 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4442 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4443 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4444 F2FS_FEATURE_FUNCS(verity, VERITY); 4445 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4446 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4447 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4448 F2FS_FEATURE_FUNCS(readonly, RO); 4449 4450 #ifdef CONFIG_BLK_DEV_ZONED 4451 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4452 block_t blkaddr) 4453 { 4454 unsigned int zno = blkaddr / sbi->blocks_per_blkz; 4455 4456 return test_bit(zno, FDEV(devi).blkz_seq); 4457 } 4458 #endif 4459 4460 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi, 4461 struct block_device *bdev) 4462 { 4463 int i; 4464 4465 if (!f2fs_is_multi_device(sbi)) 4466 return 0; 4467 4468 for (i = 0; i < sbi->s_ndevs; i++) 4469 if (FDEV(i).bdev == bdev) 4470 return i; 4471 4472 WARN_ON(1); 4473 return -1; 4474 } 4475 4476 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4477 { 4478 return f2fs_sb_has_blkzoned(sbi); 4479 } 4480 4481 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4482 { 4483 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4484 } 4485 4486 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4487 { 4488 int i; 4489 4490 if (!f2fs_is_multi_device(sbi)) 4491 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4492 4493 for (i = 0; i < sbi->s_ndevs; i++) 4494 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4495 return true; 4496 return false; 4497 } 4498 4499 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4500 { 4501 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4502 f2fs_hw_should_discard(sbi); 4503 } 4504 4505 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4506 { 4507 int i; 4508 4509 if (!f2fs_is_multi_device(sbi)) 4510 return bdev_read_only(sbi->sb->s_bdev); 4511 4512 for (i = 0; i < sbi->s_ndevs; i++) 4513 if (bdev_read_only(FDEV(i).bdev)) 4514 return true; 4515 return false; 4516 } 4517 4518 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi) 4519 { 4520 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi); 4521 } 4522 4523 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4524 { 4525 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4526 } 4527 4528 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4529 { 4530 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4531 } 4532 4533 static inline bool f2fs_may_compress(struct inode *inode) 4534 { 4535 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4536 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) || 4537 f2fs_is_mmap_file(inode)) 4538 return false; 4539 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4540 } 4541 4542 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4543 u64 blocks, bool add) 4544 { 4545 struct f2fs_inode_info *fi = F2FS_I(inode); 4546 int diff = fi->i_cluster_size - blocks; 4547 4548 /* don't update i_compr_blocks if saved blocks were released */ 4549 if (!add && !atomic_read(&fi->i_compr_blocks)) 4550 return; 4551 4552 if (add) { 4553 atomic_add(diff, &fi->i_compr_blocks); 4554 stat_add_compr_blocks(inode, diff); 4555 } else { 4556 atomic_sub(diff, &fi->i_compr_blocks); 4557 stat_sub_compr_blocks(inode, diff); 4558 } 4559 f2fs_mark_inode_dirty_sync(inode, true); 4560 } 4561 4562 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4563 int flag) 4564 { 4565 if (!f2fs_is_multi_device(sbi)) 4566 return false; 4567 if (flag != F2FS_GET_BLOCK_DIO) 4568 return false; 4569 return sbi->aligned_blksize; 4570 } 4571 4572 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4573 { 4574 return fsverity_active(inode) && 4575 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4576 } 4577 4578 #ifdef CONFIG_F2FS_FAULT_INJECTION 4579 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4580 unsigned int type); 4581 #else 4582 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4583 #endif 4584 4585 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4586 { 4587 #ifdef CONFIG_QUOTA 4588 if (f2fs_sb_has_quota_ino(sbi)) 4589 return true; 4590 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4591 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4592 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4593 return true; 4594 #endif 4595 return false; 4596 } 4597 4598 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4599 { 4600 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4601 } 4602 4603 static inline void f2fs_io_schedule_timeout(long timeout) 4604 { 4605 set_current_state(TASK_UNINTERRUPTIBLE); 4606 io_schedule_timeout(timeout); 4607 } 4608 4609 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs, 4610 enum page_type type) 4611 { 4612 if (unlikely(f2fs_cp_error(sbi))) 4613 return; 4614 4615 if (ofs == sbi->page_eio_ofs[type]) { 4616 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4617 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4618 } else { 4619 sbi->page_eio_ofs[type] = ofs; 4620 sbi->page_eio_cnt[type] = 0; 4621 } 4622 } 4623 4624 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4625 { 4626 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4627 } 4628 4629 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi, 4630 block_t blkaddr, unsigned int cnt) 4631 { 4632 bool need_submit = false; 4633 int i = 0; 4634 4635 do { 4636 struct page *page; 4637 4638 page = find_get_page(META_MAPPING(sbi), blkaddr + i); 4639 if (page) { 4640 if (PageWriteback(page)) 4641 need_submit = true; 4642 f2fs_put_page(page, 0); 4643 } 4644 } while (++i < cnt && !need_submit); 4645 4646 if (need_submit) 4647 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode, 4648 NULL, 0, DATA); 4649 4650 truncate_inode_pages_range(META_MAPPING(sbi), 4651 F2FS_BLK_TO_BYTES((loff_t)blkaddr), 4652 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1))); 4653 } 4654 4655 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi, 4656 block_t blkaddr) 4657 { 4658 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1); 4659 f2fs_invalidate_compress_page(sbi, blkaddr); 4660 } 4661 4662 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4663 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4664 4665 #endif /* _LINUX_F2FS_H */ 4666