xref: /openbmc/linux/fs/f2fs/f2fs.h (revision e6c81cce)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
25 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition)					\
28 	do {								\
29 		if (unlikely(condition)) {				\
30 			WARN_ON(1);					\
31 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
32 		}							\
33 	} while (0)
34 #define f2fs_down_write(x, y)	down_write(x)
35 #endif
36 
37 /*
38  * For mount options
39  */
40 #define F2FS_MOUNT_BG_GC		0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
42 #define F2FS_MOUNT_DISCARD		0x00000004
43 #define F2FS_MOUNT_NOHEAP		0x00000008
44 #define F2FS_MOUNT_XATTR_USER		0x00000010
45 #define F2FS_MOUNT_POSIX_ACL		0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
48 #define F2FS_MOUNT_INLINE_DATA		0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
51 #define F2FS_MOUNT_NOBARRIER		0x00000800
52 #define F2FS_MOUNT_FASTBOOT		0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
54 
55 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
58 
59 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
60 		typecheck(unsigned long long, b) &&			\
61 		((long long)((a) - (b)) > 0))
62 
63 typedef u32 block_t;	/*
64 			 * should not change u32, since it is the on-disk block
65 			 * address format, __le32.
66 			 */
67 typedef u32 nid_t;
68 
69 struct f2fs_mount_info {
70 	unsigned int	opt;
71 };
72 
73 #define CRCPOLY_LE 0xedb88320
74 
75 static inline __u32 f2fs_crc32(void *buf, size_t len)
76 {
77 	unsigned char *p = (unsigned char *)buf;
78 	__u32 crc = F2FS_SUPER_MAGIC;
79 	int i;
80 
81 	while (len--) {
82 		crc ^= *p++;
83 		for (i = 0; i < 8; i++)
84 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
85 	}
86 	return crc;
87 }
88 
89 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
90 {
91 	return f2fs_crc32(buf, buf_size) == blk_crc;
92 }
93 
94 /*
95  * For checkpoint manager
96  */
97 enum {
98 	NAT_BITMAP,
99 	SIT_BITMAP
100 };
101 
102 enum {
103 	CP_UMOUNT,
104 	CP_FASTBOOT,
105 	CP_SYNC,
106 	CP_RECOVERY,
107 	CP_DISCARD,
108 };
109 
110 #define DEF_BATCHED_TRIM_SECTIONS	32
111 #define BATCHED_TRIM_SEGMENTS(sbi)	\
112 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
113 
114 struct cp_control {
115 	int reason;
116 	__u64 trim_start;
117 	__u64 trim_end;
118 	__u64 trim_minlen;
119 	__u64 trimmed;
120 };
121 
122 /*
123  * For CP/NAT/SIT/SSA readahead
124  */
125 enum {
126 	META_CP,
127 	META_NAT,
128 	META_SIT,
129 	META_SSA,
130 	META_POR,
131 };
132 
133 /* for the list of ino */
134 enum {
135 	ORPHAN_INO,		/* for orphan ino list */
136 	APPEND_INO,		/* for append ino list */
137 	UPDATE_INO,		/* for update ino list */
138 	MAX_INO_ENTRY,		/* max. list */
139 };
140 
141 struct ino_entry {
142 	struct list_head list;	/* list head */
143 	nid_t ino;		/* inode number */
144 };
145 
146 /*
147  * for the list of directory inodes or gc inodes.
148  * NOTE: there are two slab users for this structure, if we add/modify/delete
149  * fields in structure for one of slab users, it may affect fields or size of
150  * other one, in this condition, it's better to split both of slab and related
151  * data structure.
152  */
153 struct inode_entry {
154 	struct list_head list;	/* list head */
155 	struct inode *inode;	/* vfs inode pointer */
156 };
157 
158 /* for the list of blockaddresses to be discarded */
159 struct discard_entry {
160 	struct list_head list;	/* list head */
161 	block_t blkaddr;	/* block address to be discarded */
162 	int len;		/* # of consecutive blocks of the discard */
163 };
164 
165 /* for the list of fsync inodes, used only during recovery */
166 struct fsync_inode_entry {
167 	struct list_head list;	/* list head */
168 	struct inode *inode;	/* vfs inode pointer */
169 	block_t blkaddr;	/* block address locating the last fsync */
170 	block_t last_dentry;	/* block address locating the last dentry */
171 	block_t last_inode;	/* block address locating the last inode */
172 };
173 
174 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
175 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
176 
177 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
178 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
179 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
180 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
181 
182 #define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
183 #define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
184 
185 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
186 {
187 	int before = nats_in_cursum(rs);
188 	rs->n_nats = cpu_to_le16(before + i);
189 	return before;
190 }
191 
192 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
193 {
194 	int before = sits_in_cursum(rs);
195 	rs->n_sits = cpu_to_le16(before + i);
196 	return before;
197 }
198 
199 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
200 								int type)
201 {
202 	if (type == NAT_JOURNAL)
203 		return size <= MAX_NAT_JENTRIES(sum);
204 	return size <= MAX_SIT_JENTRIES(sum);
205 }
206 
207 /*
208  * ioctl commands
209  */
210 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
211 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
212 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
213 
214 #define F2FS_IOCTL_MAGIC		0xf5
215 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
216 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
217 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
218 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
219 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
220 
221 /*
222  * should be same as XFS_IOC_GOINGDOWN.
223  * Flags for going down operation used by FS_IOC_GOINGDOWN
224  */
225 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
226 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
227 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
228 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
229 
230 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
231 /*
232  * ioctl commands in 32 bit emulation
233  */
234 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
235 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
236 #endif
237 
238 /*
239  * For INODE and NODE manager
240  */
241 /* for directory operations */
242 struct f2fs_dentry_ptr {
243 	const void *bitmap;
244 	struct f2fs_dir_entry *dentry;
245 	__u8 (*filename)[F2FS_SLOT_LEN];
246 	int max;
247 };
248 
249 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
250 					void *src, int type)
251 {
252 	if (type == 1) {
253 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
254 		d->max = NR_DENTRY_IN_BLOCK;
255 		d->bitmap = &t->dentry_bitmap;
256 		d->dentry = t->dentry;
257 		d->filename = t->filename;
258 	} else {
259 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
260 		d->max = NR_INLINE_DENTRY;
261 		d->bitmap = &t->dentry_bitmap;
262 		d->dentry = t->dentry;
263 		d->filename = t->filename;
264 	}
265 }
266 
267 /*
268  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
269  * as its node offset to distinguish from index node blocks.
270  * But some bits are used to mark the node block.
271  */
272 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
273 				>> OFFSET_BIT_SHIFT)
274 enum {
275 	ALLOC_NODE,			/* allocate a new node page if needed */
276 	LOOKUP_NODE,			/* look up a node without readahead */
277 	LOOKUP_NODE_RA,			/*
278 					 * look up a node with readahead called
279 					 * by get_data_block.
280 					 */
281 };
282 
283 #define F2FS_LINK_MAX		32000	/* maximum link count per file */
284 
285 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
286 
287 /* vector size for gang look-up from extent cache that consists of radix tree */
288 #define EXT_TREE_VEC_SIZE	64
289 
290 /* for in-memory extent cache entry */
291 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
292 
293 /* number of extent info in extent cache we try to shrink */
294 #define EXTENT_CACHE_SHRINK_NUMBER	128
295 
296 struct extent_info {
297 	unsigned int fofs;		/* start offset in a file */
298 	u32 blk;			/* start block address of the extent */
299 	unsigned int len;		/* length of the extent */
300 };
301 
302 struct extent_node {
303 	struct rb_node rb_node;		/* rb node located in rb-tree */
304 	struct list_head list;		/* node in global extent list of sbi */
305 	struct extent_info ei;		/* extent info */
306 };
307 
308 struct extent_tree {
309 	nid_t ino;			/* inode number */
310 	struct rb_root root;		/* root of extent info rb-tree */
311 	struct extent_node *cached_en;	/* recently accessed extent node */
312 	rwlock_t lock;			/* protect extent info rb-tree */
313 	atomic_t refcount;		/* reference count of rb-tree */
314 	unsigned int count;		/* # of extent node in rb-tree*/
315 };
316 
317 /*
318  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
319  */
320 #define FADVISE_COLD_BIT	0x01
321 #define FADVISE_LOST_PINO_BIT	0x02
322 
323 #define DEF_DIR_LEVEL		0
324 
325 struct f2fs_inode_info {
326 	struct inode vfs_inode;		/* serve a vfs inode */
327 	unsigned long i_flags;		/* keep an inode flags for ioctl */
328 	unsigned char i_advise;		/* use to give file attribute hints */
329 	unsigned char i_dir_level;	/* use for dentry level for large dir */
330 	unsigned int i_current_depth;	/* use only in directory structure */
331 	unsigned int i_pino;		/* parent inode number */
332 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
333 
334 	/* Use below internally in f2fs*/
335 	unsigned long flags;		/* use to pass per-file flags */
336 	struct rw_semaphore i_sem;	/* protect fi info */
337 	atomic_t dirty_pages;		/* # of dirty pages */
338 	f2fs_hash_t chash;		/* hash value of given file name */
339 	unsigned int clevel;		/* maximum level of given file name */
340 	nid_t i_xattr_nid;		/* node id that contains xattrs */
341 	unsigned long long xattr_ver;	/* cp version of xattr modification */
342 	struct extent_info ext;		/* in-memory extent cache entry */
343 	rwlock_t ext_lock;		/* rwlock for single extent cache */
344 	struct inode_entry *dirty_dir;	/* the pointer of dirty dir */
345 
346 	struct radix_tree_root inmem_root;	/* radix tree for inmem pages */
347 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
348 	struct mutex inmem_lock;	/* lock for inmemory pages */
349 };
350 
351 static inline void get_extent_info(struct extent_info *ext,
352 					struct f2fs_extent i_ext)
353 {
354 	ext->fofs = le32_to_cpu(i_ext.fofs);
355 	ext->blk = le32_to_cpu(i_ext.blk);
356 	ext->len = le32_to_cpu(i_ext.len);
357 }
358 
359 static inline void set_raw_extent(struct extent_info *ext,
360 					struct f2fs_extent *i_ext)
361 {
362 	i_ext->fofs = cpu_to_le32(ext->fofs);
363 	i_ext->blk = cpu_to_le32(ext->blk);
364 	i_ext->len = cpu_to_le32(ext->len);
365 }
366 
367 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
368 						u32 blk, unsigned int len)
369 {
370 	ei->fofs = fofs;
371 	ei->blk = blk;
372 	ei->len = len;
373 }
374 
375 static inline bool __is_extent_same(struct extent_info *ei1,
376 						struct extent_info *ei2)
377 {
378 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
379 						ei1->len == ei2->len);
380 }
381 
382 static inline bool __is_extent_mergeable(struct extent_info *back,
383 						struct extent_info *front)
384 {
385 	return (back->fofs + back->len == front->fofs &&
386 			back->blk + back->len == front->blk);
387 }
388 
389 static inline bool __is_back_mergeable(struct extent_info *cur,
390 						struct extent_info *back)
391 {
392 	return __is_extent_mergeable(back, cur);
393 }
394 
395 static inline bool __is_front_mergeable(struct extent_info *cur,
396 						struct extent_info *front)
397 {
398 	return __is_extent_mergeable(cur, front);
399 }
400 
401 struct f2fs_nm_info {
402 	block_t nat_blkaddr;		/* base disk address of NAT */
403 	nid_t max_nid;			/* maximum possible node ids */
404 	nid_t available_nids;		/* maximum available node ids */
405 	nid_t next_scan_nid;		/* the next nid to be scanned */
406 	unsigned int ram_thresh;	/* control the memory footprint */
407 
408 	/* NAT cache management */
409 	struct radix_tree_root nat_root;/* root of the nat entry cache */
410 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
411 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
412 	struct list_head nat_entries;	/* cached nat entry list (clean) */
413 	unsigned int nat_cnt;		/* the # of cached nat entries */
414 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
415 
416 	/* free node ids management */
417 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
418 	struct list_head free_nid_list;	/* a list for free nids */
419 	spinlock_t free_nid_list_lock;	/* protect free nid list */
420 	unsigned int fcnt;		/* the number of free node id */
421 	struct mutex build_lock;	/* lock for build free nids */
422 
423 	/* for checkpoint */
424 	char *nat_bitmap;		/* NAT bitmap pointer */
425 	int bitmap_size;		/* bitmap size */
426 };
427 
428 /*
429  * this structure is used as one of function parameters.
430  * all the information are dedicated to a given direct node block determined
431  * by the data offset in a file.
432  */
433 struct dnode_of_data {
434 	struct inode *inode;		/* vfs inode pointer */
435 	struct page *inode_page;	/* its inode page, NULL is possible */
436 	struct page *node_page;		/* cached direct node page */
437 	nid_t nid;			/* node id of the direct node block */
438 	unsigned int ofs_in_node;	/* data offset in the node page */
439 	bool inode_page_locked;		/* inode page is locked or not */
440 	block_t	data_blkaddr;		/* block address of the node block */
441 };
442 
443 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
444 		struct page *ipage, struct page *npage, nid_t nid)
445 {
446 	memset(dn, 0, sizeof(*dn));
447 	dn->inode = inode;
448 	dn->inode_page = ipage;
449 	dn->node_page = npage;
450 	dn->nid = nid;
451 }
452 
453 /*
454  * For SIT manager
455  *
456  * By default, there are 6 active log areas across the whole main area.
457  * When considering hot and cold data separation to reduce cleaning overhead,
458  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
459  * respectively.
460  * In the current design, you should not change the numbers intentionally.
461  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
462  * logs individually according to the underlying devices. (default: 6)
463  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
464  * data and 8 for node logs.
465  */
466 #define	NR_CURSEG_DATA_TYPE	(3)
467 #define NR_CURSEG_NODE_TYPE	(3)
468 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
469 
470 enum {
471 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
472 	CURSEG_WARM_DATA,	/* data blocks */
473 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
474 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
475 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
476 	CURSEG_COLD_NODE,	/* indirect node blocks */
477 	NO_CHECK_TYPE,
478 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
479 };
480 
481 struct flush_cmd {
482 	struct completion wait;
483 	struct llist_node llnode;
484 	int ret;
485 };
486 
487 struct flush_cmd_control {
488 	struct task_struct *f2fs_issue_flush;	/* flush thread */
489 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
490 	struct llist_head issue_list;		/* list for command issue */
491 	struct llist_node *dispatch_list;	/* list for command dispatch */
492 };
493 
494 struct f2fs_sm_info {
495 	struct sit_info *sit_info;		/* whole segment information */
496 	struct free_segmap_info *free_info;	/* free segment information */
497 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
498 	struct curseg_info *curseg_array;	/* active segment information */
499 
500 	block_t seg0_blkaddr;		/* block address of 0'th segment */
501 	block_t main_blkaddr;		/* start block address of main area */
502 	block_t ssa_blkaddr;		/* start block address of SSA area */
503 
504 	unsigned int segment_count;	/* total # of segments */
505 	unsigned int main_segments;	/* # of segments in main area */
506 	unsigned int reserved_segments;	/* # of reserved segments */
507 	unsigned int ovp_segments;	/* # of overprovision segments */
508 
509 	/* a threshold to reclaim prefree segments */
510 	unsigned int rec_prefree_segments;
511 
512 	/* for small discard management */
513 	struct list_head discard_list;		/* 4KB discard list */
514 	int nr_discards;			/* # of discards in the list */
515 	int max_discards;			/* max. discards to be issued */
516 
517 	/* for batched trimming */
518 	unsigned int trim_sections;		/* # of sections to trim */
519 
520 	struct list_head sit_entry_set;	/* sit entry set list */
521 
522 	unsigned int ipu_policy;	/* in-place-update policy */
523 	unsigned int min_ipu_util;	/* in-place-update threshold */
524 	unsigned int min_fsync_blocks;	/* threshold for fsync */
525 
526 	/* for flush command control */
527 	struct flush_cmd_control *cmd_control_info;
528 
529 };
530 
531 /*
532  * For superblock
533  */
534 /*
535  * COUNT_TYPE for monitoring
536  *
537  * f2fs monitors the number of several block types such as on-writeback,
538  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
539  */
540 enum count_type {
541 	F2FS_WRITEBACK,
542 	F2FS_DIRTY_DENTS,
543 	F2FS_DIRTY_NODES,
544 	F2FS_DIRTY_META,
545 	F2FS_INMEM_PAGES,
546 	NR_COUNT_TYPE,
547 };
548 
549 /*
550  * The below are the page types of bios used in submit_bio().
551  * The available types are:
552  * DATA			User data pages. It operates as async mode.
553  * NODE			Node pages. It operates as async mode.
554  * META			FS metadata pages such as SIT, NAT, CP.
555  * NR_PAGE_TYPE		The number of page types.
556  * META_FLUSH		Make sure the previous pages are written
557  *			with waiting the bio's completion
558  * ...			Only can be used with META.
559  */
560 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
561 enum page_type {
562 	DATA,
563 	NODE,
564 	META,
565 	NR_PAGE_TYPE,
566 	META_FLUSH,
567 	INMEM,		/* the below types are used by tracepoints only. */
568 	INMEM_DROP,
569 	IPU,
570 	OPU,
571 };
572 
573 struct f2fs_io_info {
574 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
575 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
576 	block_t blk_addr;	/* block address to be written */
577 };
578 
579 #define is_read_io(rw)	(((rw) & 1) == READ)
580 struct f2fs_bio_info {
581 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
582 	struct bio *bio;		/* bios to merge */
583 	sector_t last_block_in_bio;	/* last block number */
584 	struct f2fs_io_info fio;	/* store buffered io info. */
585 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
586 };
587 
588 /* for inner inode cache management */
589 struct inode_management {
590 	struct radix_tree_root ino_root;	/* ino entry array */
591 	spinlock_t ino_lock;			/* for ino entry lock */
592 	struct list_head ino_list;		/* inode list head */
593 	unsigned long ino_num;			/* number of entries */
594 };
595 
596 /* For s_flag in struct f2fs_sb_info */
597 enum {
598 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
599 	SBI_IS_CLOSE,				/* specify unmounting */
600 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
601 	SBI_POR_DOING,				/* recovery is doing or not */
602 };
603 
604 struct f2fs_sb_info {
605 	struct super_block *sb;			/* pointer to VFS super block */
606 	struct proc_dir_entry *s_proc;		/* proc entry */
607 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
608 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
609 	int s_flag;				/* flags for sbi */
610 
611 	/* for node-related operations */
612 	struct f2fs_nm_info *nm_info;		/* node manager */
613 	struct inode *node_inode;		/* cache node blocks */
614 
615 	/* for segment-related operations */
616 	struct f2fs_sm_info *sm_info;		/* segment manager */
617 
618 	/* for bio operations */
619 	struct f2fs_bio_info read_io;			/* for read bios */
620 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
621 
622 	/* for checkpoint */
623 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
624 	struct inode *meta_inode;		/* cache meta blocks */
625 	struct mutex cp_mutex;			/* checkpoint procedure lock */
626 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
627 	struct rw_semaphore node_write;		/* locking node writes */
628 	wait_queue_head_t cp_wait;
629 
630 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
631 
632 	/* for orphan inode, use 0'th array */
633 	unsigned int max_orphans;		/* max orphan inodes */
634 
635 	/* for directory inode management */
636 	struct list_head dir_inode_list;	/* dir inode list */
637 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
638 
639 	/* for extent tree cache */
640 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
641 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
642 	struct list_head extent_list;		/* lru list for shrinker */
643 	spinlock_t extent_lock;			/* locking extent lru list */
644 	int total_ext_tree;			/* extent tree count */
645 	atomic_t total_ext_node;		/* extent info count */
646 
647 	/* basic filesystem units */
648 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
649 	unsigned int log_blocksize;		/* log2 block size */
650 	unsigned int blocksize;			/* block size */
651 	unsigned int root_ino_num;		/* root inode number*/
652 	unsigned int node_ino_num;		/* node inode number*/
653 	unsigned int meta_ino_num;		/* meta inode number*/
654 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
655 	unsigned int blocks_per_seg;		/* blocks per segment */
656 	unsigned int segs_per_sec;		/* segments per section */
657 	unsigned int secs_per_zone;		/* sections per zone */
658 	unsigned int total_sections;		/* total section count */
659 	unsigned int total_node_count;		/* total node block count */
660 	unsigned int total_valid_node_count;	/* valid node block count */
661 	unsigned int total_valid_inode_count;	/* valid inode count */
662 	int active_logs;			/* # of active logs */
663 	int dir_level;				/* directory level */
664 
665 	block_t user_block_count;		/* # of user blocks */
666 	block_t total_valid_block_count;	/* # of valid blocks */
667 	block_t alloc_valid_block_count;	/* # of allocated blocks */
668 	block_t last_valid_block_count;		/* for recovery */
669 	u32 s_next_generation;			/* for NFS support */
670 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
671 
672 	struct f2fs_mount_info mount_opt;	/* mount options */
673 
674 	/* for cleaning operations */
675 	struct mutex gc_mutex;			/* mutex for GC */
676 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
677 	unsigned int cur_victim_sec;		/* current victim section num */
678 
679 	/* maximum # of trials to find a victim segment for SSR and GC */
680 	unsigned int max_victim_search;
681 
682 	/*
683 	 * for stat information.
684 	 * one is for the LFS mode, and the other is for the SSR mode.
685 	 */
686 #ifdef CONFIG_F2FS_STAT_FS
687 	struct f2fs_stat_info *stat_info;	/* FS status information */
688 	unsigned int segment_count[2];		/* # of allocated segments */
689 	unsigned int block_count[2];		/* # of allocated blocks */
690 	atomic_t inplace_count;		/* # of inplace update */
691 	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
692 	atomic_t inline_inode;			/* # of inline_data inodes */
693 	atomic_t inline_dir;			/* # of inline_dentry inodes */
694 	int bg_gc;				/* background gc calls */
695 	unsigned int n_dirty_dirs;		/* # of dir inodes */
696 #endif
697 	unsigned int last_victim[2];		/* last victim segment # */
698 	spinlock_t stat_lock;			/* lock for stat operations */
699 
700 	/* For sysfs suppport */
701 	struct kobject s_kobj;
702 	struct completion s_kobj_unregister;
703 };
704 
705 /*
706  * Inline functions
707  */
708 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
709 {
710 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
711 }
712 
713 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
714 {
715 	return sb->s_fs_info;
716 }
717 
718 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
719 {
720 	return F2FS_SB(inode->i_sb);
721 }
722 
723 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
724 {
725 	return F2FS_I_SB(mapping->host);
726 }
727 
728 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
729 {
730 	return F2FS_M_SB(page->mapping);
731 }
732 
733 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
734 {
735 	return (struct f2fs_super_block *)(sbi->raw_super);
736 }
737 
738 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
739 {
740 	return (struct f2fs_checkpoint *)(sbi->ckpt);
741 }
742 
743 static inline struct f2fs_node *F2FS_NODE(struct page *page)
744 {
745 	return (struct f2fs_node *)page_address(page);
746 }
747 
748 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
749 {
750 	return &((struct f2fs_node *)page_address(page))->i;
751 }
752 
753 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
754 {
755 	return (struct f2fs_nm_info *)(sbi->nm_info);
756 }
757 
758 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
759 {
760 	return (struct f2fs_sm_info *)(sbi->sm_info);
761 }
762 
763 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
764 {
765 	return (struct sit_info *)(SM_I(sbi)->sit_info);
766 }
767 
768 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
769 {
770 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
771 }
772 
773 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
774 {
775 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
776 }
777 
778 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
779 {
780 	return sbi->meta_inode->i_mapping;
781 }
782 
783 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
784 {
785 	return sbi->node_inode->i_mapping;
786 }
787 
788 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
789 {
790 	return sbi->s_flag & (0x01 << type);
791 }
792 
793 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
794 {
795 	sbi->s_flag |= (0x01 << type);
796 }
797 
798 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
799 {
800 	sbi->s_flag &= ~(0x01 << type);
801 }
802 
803 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
804 {
805 	return le64_to_cpu(cp->checkpoint_ver);
806 }
807 
808 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
809 {
810 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
811 	return ckpt_flags & f;
812 }
813 
814 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
815 {
816 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
817 	ckpt_flags |= f;
818 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
819 }
820 
821 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
822 {
823 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
824 	ckpt_flags &= (~f);
825 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
826 }
827 
828 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
829 {
830 	down_read(&sbi->cp_rwsem);
831 }
832 
833 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
834 {
835 	up_read(&sbi->cp_rwsem);
836 }
837 
838 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
839 {
840 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
841 }
842 
843 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
844 {
845 	up_write(&sbi->cp_rwsem);
846 }
847 
848 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
849 {
850 	int reason = CP_SYNC;
851 
852 	if (test_opt(sbi, FASTBOOT))
853 		reason = CP_FASTBOOT;
854 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
855 		reason = CP_UMOUNT;
856 	return reason;
857 }
858 
859 static inline bool __remain_node_summaries(int reason)
860 {
861 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
862 }
863 
864 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
865 {
866 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
867 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
868 }
869 
870 /*
871  * Check whether the given nid is within node id range.
872  */
873 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
874 {
875 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
876 		return -EINVAL;
877 	if (unlikely(nid >= NM_I(sbi)->max_nid))
878 		return -EINVAL;
879 	return 0;
880 }
881 
882 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
883 
884 /*
885  * Check whether the inode has blocks or not
886  */
887 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
888 {
889 	if (F2FS_I(inode)->i_xattr_nid)
890 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
891 	else
892 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
893 }
894 
895 static inline bool f2fs_has_xattr_block(unsigned int ofs)
896 {
897 	return ofs == XATTR_NODE_OFFSET;
898 }
899 
900 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
901 				 struct inode *inode, blkcnt_t count)
902 {
903 	block_t	valid_block_count;
904 
905 	spin_lock(&sbi->stat_lock);
906 	valid_block_count =
907 		sbi->total_valid_block_count + (block_t)count;
908 	if (unlikely(valid_block_count > sbi->user_block_count)) {
909 		spin_unlock(&sbi->stat_lock);
910 		return false;
911 	}
912 	inode->i_blocks += count;
913 	sbi->total_valid_block_count = valid_block_count;
914 	sbi->alloc_valid_block_count += (block_t)count;
915 	spin_unlock(&sbi->stat_lock);
916 	return true;
917 }
918 
919 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
920 						struct inode *inode,
921 						blkcnt_t count)
922 {
923 	spin_lock(&sbi->stat_lock);
924 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
925 	f2fs_bug_on(sbi, inode->i_blocks < count);
926 	inode->i_blocks -= count;
927 	sbi->total_valid_block_count -= (block_t)count;
928 	spin_unlock(&sbi->stat_lock);
929 }
930 
931 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
932 {
933 	atomic_inc(&sbi->nr_pages[count_type]);
934 	set_sbi_flag(sbi, SBI_IS_DIRTY);
935 }
936 
937 static inline void inode_inc_dirty_pages(struct inode *inode)
938 {
939 	atomic_inc(&F2FS_I(inode)->dirty_pages);
940 	if (S_ISDIR(inode->i_mode))
941 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
942 }
943 
944 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
945 {
946 	atomic_dec(&sbi->nr_pages[count_type]);
947 }
948 
949 static inline void inode_dec_dirty_pages(struct inode *inode)
950 {
951 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
952 		return;
953 
954 	atomic_dec(&F2FS_I(inode)->dirty_pages);
955 
956 	if (S_ISDIR(inode->i_mode))
957 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
958 }
959 
960 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
961 {
962 	return atomic_read(&sbi->nr_pages[count_type]);
963 }
964 
965 static inline int get_dirty_pages(struct inode *inode)
966 {
967 	return atomic_read(&F2FS_I(inode)->dirty_pages);
968 }
969 
970 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
971 {
972 	unsigned int pages_per_sec = sbi->segs_per_sec *
973 					(1 << sbi->log_blocks_per_seg);
974 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
975 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
976 }
977 
978 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
979 {
980 	return sbi->total_valid_block_count;
981 }
982 
983 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
984 {
985 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
986 
987 	/* return NAT or SIT bitmap */
988 	if (flag == NAT_BITMAP)
989 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
990 	else if (flag == SIT_BITMAP)
991 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
992 
993 	return 0;
994 }
995 
996 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
997 {
998 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
999 }
1000 
1001 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1002 {
1003 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1004 	int offset;
1005 
1006 	if (__cp_payload(sbi) > 0) {
1007 		if (flag == NAT_BITMAP)
1008 			return &ckpt->sit_nat_version_bitmap;
1009 		else
1010 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1011 	} else {
1012 		offset = (flag == NAT_BITMAP) ?
1013 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1014 		return &ckpt->sit_nat_version_bitmap + offset;
1015 	}
1016 }
1017 
1018 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1019 {
1020 	block_t start_addr;
1021 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1022 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1023 
1024 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1025 
1026 	/*
1027 	 * odd numbered checkpoint should at cp segment 0
1028 	 * and even segment must be at cp segment 1
1029 	 */
1030 	if (!(ckpt_version & 1))
1031 		start_addr += sbi->blocks_per_seg;
1032 
1033 	return start_addr;
1034 }
1035 
1036 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1037 {
1038 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1039 }
1040 
1041 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1042 						struct inode *inode)
1043 {
1044 	block_t	valid_block_count;
1045 	unsigned int valid_node_count;
1046 
1047 	spin_lock(&sbi->stat_lock);
1048 
1049 	valid_block_count = sbi->total_valid_block_count + 1;
1050 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1051 		spin_unlock(&sbi->stat_lock);
1052 		return false;
1053 	}
1054 
1055 	valid_node_count = sbi->total_valid_node_count + 1;
1056 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1057 		spin_unlock(&sbi->stat_lock);
1058 		return false;
1059 	}
1060 
1061 	if (inode)
1062 		inode->i_blocks++;
1063 
1064 	sbi->alloc_valid_block_count++;
1065 	sbi->total_valid_node_count++;
1066 	sbi->total_valid_block_count++;
1067 	spin_unlock(&sbi->stat_lock);
1068 
1069 	return true;
1070 }
1071 
1072 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1073 						struct inode *inode)
1074 {
1075 	spin_lock(&sbi->stat_lock);
1076 
1077 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1078 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1079 	f2fs_bug_on(sbi, !inode->i_blocks);
1080 
1081 	inode->i_blocks--;
1082 	sbi->total_valid_node_count--;
1083 	sbi->total_valid_block_count--;
1084 
1085 	spin_unlock(&sbi->stat_lock);
1086 }
1087 
1088 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1089 {
1090 	return sbi->total_valid_node_count;
1091 }
1092 
1093 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1094 {
1095 	spin_lock(&sbi->stat_lock);
1096 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1097 	sbi->total_valid_inode_count++;
1098 	spin_unlock(&sbi->stat_lock);
1099 }
1100 
1101 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1102 {
1103 	spin_lock(&sbi->stat_lock);
1104 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1105 	sbi->total_valid_inode_count--;
1106 	spin_unlock(&sbi->stat_lock);
1107 }
1108 
1109 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1110 {
1111 	return sbi->total_valid_inode_count;
1112 }
1113 
1114 static inline void f2fs_put_page(struct page *page, int unlock)
1115 {
1116 	if (!page)
1117 		return;
1118 
1119 	if (unlock) {
1120 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1121 		unlock_page(page);
1122 	}
1123 	page_cache_release(page);
1124 }
1125 
1126 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1127 {
1128 	if (dn->node_page)
1129 		f2fs_put_page(dn->node_page, 1);
1130 	if (dn->inode_page && dn->node_page != dn->inode_page)
1131 		f2fs_put_page(dn->inode_page, 0);
1132 	dn->node_page = NULL;
1133 	dn->inode_page = NULL;
1134 }
1135 
1136 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1137 					size_t size)
1138 {
1139 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1140 }
1141 
1142 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1143 						gfp_t flags)
1144 {
1145 	void *entry;
1146 retry:
1147 	entry = kmem_cache_alloc(cachep, flags);
1148 	if (!entry) {
1149 		cond_resched();
1150 		goto retry;
1151 	}
1152 
1153 	return entry;
1154 }
1155 
1156 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1157 				unsigned long index, void *item)
1158 {
1159 	while (radix_tree_insert(root, index, item))
1160 		cond_resched();
1161 }
1162 
1163 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1164 
1165 static inline bool IS_INODE(struct page *page)
1166 {
1167 	struct f2fs_node *p = F2FS_NODE(page);
1168 	return RAW_IS_INODE(p);
1169 }
1170 
1171 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1172 {
1173 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1174 }
1175 
1176 static inline block_t datablock_addr(struct page *node_page,
1177 		unsigned int offset)
1178 {
1179 	struct f2fs_node *raw_node;
1180 	__le32 *addr_array;
1181 	raw_node = F2FS_NODE(node_page);
1182 	addr_array = blkaddr_in_node(raw_node);
1183 	return le32_to_cpu(addr_array[offset]);
1184 }
1185 
1186 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1187 {
1188 	int mask;
1189 
1190 	addr += (nr >> 3);
1191 	mask = 1 << (7 - (nr & 0x07));
1192 	return mask & *addr;
1193 }
1194 
1195 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1196 {
1197 	int mask;
1198 	int ret;
1199 
1200 	addr += (nr >> 3);
1201 	mask = 1 << (7 - (nr & 0x07));
1202 	ret = mask & *addr;
1203 	*addr |= mask;
1204 	return ret;
1205 }
1206 
1207 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1208 {
1209 	int mask;
1210 	int ret;
1211 
1212 	addr += (nr >> 3);
1213 	mask = 1 << (7 - (nr & 0x07));
1214 	ret = mask & *addr;
1215 	*addr &= ~mask;
1216 	return ret;
1217 }
1218 
1219 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1220 {
1221 	int mask;
1222 
1223 	addr += (nr >> 3);
1224 	mask = 1 << (7 - (nr & 0x07));
1225 	*addr ^= mask;
1226 }
1227 
1228 /* used for f2fs_inode_info->flags */
1229 enum {
1230 	FI_NEW_INODE,		/* indicate newly allocated inode */
1231 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1232 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1233 	FI_INC_LINK,		/* need to increment i_nlink */
1234 	FI_ACL_MODE,		/* indicate acl mode */
1235 	FI_NO_ALLOC,		/* should not allocate any blocks */
1236 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1237 	FI_DELAY_IPUT,		/* used for the recovery */
1238 	FI_NO_EXTENT,		/* not to use the extent cache */
1239 	FI_INLINE_XATTR,	/* used for inline xattr */
1240 	FI_INLINE_DATA,		/* used for inline data*/
1241 	FI_INLINE_DENTRY,	/* used for inline dentry */
1242 	FI_APPEND_WRITE,	/* inode has appended data */
1243 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1244 	FI_NEED_IPU,		/* used for ipu per file */
1245 	FI_ATOMIC_FILE,		/* indicate atomic file */
1246 	FI_VOLATILE_FILE,	/* indicate volatile file */
1247 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1248 	FI_DROP_CACHE,		/* drop dirty page cache */
1249 	FI_DATA_EXIST,		/* indicate data exists */
1250 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1251 };
1252 
1253 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1254 {
1255 	if (!test_bit(flag, &fi->flags))
1256 		set_bit(flag, &fi->flags);
1257 }
1258 
1259 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1260 {
1261 	return test_bit(flag, &fi->flags);
1262 }
1263 
1264 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1265 {
1266 	if (test_bit(flag, &fi->flags))
1267 		clear_bit(flag, &fi->flags);
1268 }
1269 
1270 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1271 {
1272 	fi->i_acl_mode = mode;
1273 	set_inode_flag(fi, FI_ACL_MODE);
1274 }
1275 
1276 static inline void get_inline_info(struct f2fs_inode_info *fi,
1277 					struct f2fs_inode *ri)
1278 {
1279 	if (ri->i_inline & F2FS_INLINE_XATTR)
1280 		set_inode_flag(fi, FI_INLINE_XATTR);
1281 	if (ri->i_inline & F2FS_INLINE_DATA)
1282 		set_inode_flag(fi, FI_INLINE_DATA);
1283 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1284 		set_inode_flag(fi, FI_INLINE_DENTRY);
1285 	if (ri->i_inline & F2FS_DATA_EXIST)
1286 		set_inode_flag(fi, FI_DATA_EXIST);
1287 	if (ri->i_inline & F2FS_INLINE_DOTS)
1288 		set_inode_flag(fi, FI_INLINE_DOTS);
1289 }
1290 
1291 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1292 					struct f2fs_inode *ri)
1293 {
1294 	ri->i_inline = 0;
1295 
1296 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1297 		ri->i_inline |= F2FS_INLINE_XATTR;
1298 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1299 		ri->i_inline |= F2FS_INLINE_DATA;
1300 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1301 		ri->i_inline |= F2FS_INLINE_DENTRY;
1302 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1303 		ri->i_inline |= F2FS_DATA_EXIST;
1304 	if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1305 		ri->i_inline |= F2FS_INLINE_DOTS;
1306 }
1307 
1308 static inline int f2fs_has_inline_xattr(struct inode *inode)
1309 {
1310 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1311 }
1312 
1313 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1314 {
1315 	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1316 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1317 	return DEF_ADDRS_PER_INODE;
1318 }
1319 
1320 static inline void *inline_xattr_addr(struct page *page)
1321 {
1322 	struct f2fs_inode *ri = F2FS_INODE(page);
1323 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1324 					F2FS_INLINE_XATTR_ADDRS]);
1325 }
1326 
1327 static inline int inline_xattr_size(struct inode *inode)
1328 {
1329 	if (f2fs_has_inline_xattr(inode))
1330 		return F2FS_INLINE_XATTR_ADDRS << 2;
1331 	else
1332 		return 0;
1333 }
1334 
1335 static inline int f2fs_has_inline_data(struct inode *inode)
1336 {
1337 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1338 }
1339 
1340 static inline void f2fs_clear_inline_inode(struct inode *inode)
1341 {
1342 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1343 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1344 }
1345 
1346 static inline int f2fs_exist_data(struct inode *inode)
1347 {
1348 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1349 }
1350 
1351 static inline int f2fs_has_inline_dots(struct inode *inode)
1352 {
1353 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1354 }
1355 
1356 static inline bool f2fs_is_atomic_file(struct inode *inode)
1357 {
1358 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1359 }
1360 
1361 static inline bool f2fs_is_volatile_file(struct inode *inode)
1362 {
1363 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1364 }
1365 
1366 static inline bool f2fs_is_first_block_written(struct inode *inode)
1367 {
1368 	return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1369 }
1370 
1371 static inline bool f2fs_is_drop_cache(struct inode *inode)
1372 {
1373 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1374 }
1375 
1376 static inline void *inline_data_addr(struct page *page)
1377 {
1378 	struct f2fs_inode *ri = F2FS_INODE(page);
1379 	return (void *)&(ri->i_addr[1]);
1380 }
1381 
1382 static inline int f2fs_has_inline_dentry(struct inode *inode)
1383 {
1384 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1385 }
1386 
1387 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1388 {
1389 	if (!f2fs_has_inline_dentry(dir))
1390 		kunmap(page);
1391 }
1392 
1393 static inline int f2fs_readonly(struct super_block *sb)
1394 {
1395 	return sb->s_flags & MS_RDONLY;
1396 }
1397 
1398 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1399 {
1400 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1401 }
1402 
1403 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1404 {
1405 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1406 	sbi->sb->s_flags |= MS_RDONLY;
1407 }
1408 
1409 #define get_inode_mode(i) \
1410 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1411 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1412 
1413 /* get offset of first page in next direct node */
1414 #define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1415 	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1416 	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1417 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1418 
1419 /*
1420  * file.c
1421  */
1422 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1423 void truncate_data_blocks(struct dnode_of_data *);
1424 int truncate_blocks(struct inode *, u64, bool);
1425 void f2fs_truncate(struct inode *);
1426 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1427 int f2fs_setattr(struct dentry *, struct iattr *);
1428 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1429 int truncate_data_blocks_range(struct dnode_of_data *, int);
1430 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1431 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1432 
1433 /*
1434  * inode.c
1435  */
1436 void f2fs_set_inode_flags(struct inode *);
1437 struct inode *f2fs_iget(struct super_block *, unsigned long);
1438 int try_to_free_nats(struct f2fs_sb_info *, int);
1439 void update_inode(struct inode *, struct page *);
1440 void update_inode_page(struct inode *);
1441 int f2fs_write_inode(struct inode *, struct writeback_control *);
1442 void f2fs_evict_inode(struct inode *);
1443 void handle_failed_inode(struct inode *);
1444 
1445 /*
1446  * namei.c
1447  */
1448 struct dentry *f2fs_get_parent(struct dentry *child);
1449 
1450 /*
1451  * dir.c
1452  */
1453 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1454 void set_de_type(struct f2fs_dir_entry *, umode_t);
1455 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1456 			struct f2fs_dentry_ptr *);
1457 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1458 			unsigned int);
1459 void do_make_empty_dir(struct inode *, struct inode *,
1460 			struct f2fs_dentry_ptr *);
1461 struct page *init_inode_metadata(struct inode *, struct inode *,
1462 			const struct qstr *, struct page *);
1463 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1464 int room_for_filename(const void *, int, int);
1465 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1466 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1467 							struct page **);
1468 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1469 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1470 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1471 				struct page *, struct inode *);
1472 int update_dent_inode(struct inode *, const struct qstr *);
1473 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1474 			const struct qstr *, f2fs_hash_t , unsigned int);
1475 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1476 			umode_t);
1477 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1478 							struct inode *);
1479 int f2fs_do_tmpfile(struct inode *, struct inode *);
1480 int f2fs_make_empty(struct inode *, struct inode *);
1481 bool f2fs_empty_dir(struct inode *);
1482 
1483 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1484 {
1485 	return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1486 				inode, inode->i_ino, inode->i_mode);
1487 }
1488 
1489 /*
1490  * super.c
1491  */
1492 int f2fs_sync_fs(struct super_block *, int);
1493 extern __printf(3, 4)
1494 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1495 
1496 /*
1497  * hash.c
1498  */
1499 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1500 
1501 /*
1502  * node.c
1503  */
1504 struct dnode_of_data;
1505 struct node_info;
1506 
1507 bool available_free_memory(struct f2fs_sb_info *, int);
1508 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1509 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1510 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1511 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1512 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1513 int truncate_inode_blocks(struct inode *, pgoff_t);
1514 int truncate_xattr_node(struct inode *, struct page *);
1515 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1516 void remove_inode_page(struct inode *);
1517 struct page *new_inode_page(struct inode *);
1518 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1519 void ra_node_page(struct f2fs_sb_info *, nid_t);
1520 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1521 struct page *get_node_page_ra(struct page *, int);
1522 void sync_inode_page(struct dnode_of_data *);
1523 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1524 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1525 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1526 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1527 void recover_inline_xattr(struct inode *, struct page *);
1528 void recover_xattr_data(struct inode *, struct page *, block_t);
1529 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1530 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1531 				struct f2fs_summary_block *);
1532 void flush_nat_entries(struct f2fs_sb_info *);
1533 int build_node_manager(struct f2fs_sb_info *);
1534 void destroy_node_manager(struct f2fs_sb_info *);
1535 int __init create_node_manager_caches(void);
1536 void destroy_node_manager_caches(void);
1537 
1538 /*
1539  * segment.c
1540  */
1541 void register_inmem_page(struct inode *, struct page *);
1542 void commit_inmem_pages(struct inode *, bool);
1543 void f2fs_balance_fs(struct f2fs_sb_info *);
1544 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1545 int f2fs_issue_flush(struct f2fs_sb_info *);
1546 int create_flush_cmd_control(struct f2fs_sb_info *);
1547 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1548 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1549 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1550 void clear_prefree_segments(struct f2fs_sb_info *);
1551 void release_discard_addrs(struct f2fs_sb_info *);
1552 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1553 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1554 void allocate_new_segments(struct f2fs_sb_info *);
1555 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1556 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1557 void write_meta_page(struct f2fs_sb_info *, struct page *);
1558 void write_node_page(struct f2fs_sb_info *, struct page *,
1559 				unsigned int, struct f2fs_io_info *);
1560 void write_data_page(struct page *, struct dnode_of_data *,
1561 			struct f2fs_io_info *);
1562 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1563 void recover_data_page(struct f2fs_sb_info *, struct page *,
1564 				struct f2fs_summary *, block_t, block_t);
1565 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1566 		block_t, block_t *, struct f2fs_summary *, int);
1567 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1568 void write_data_summaries(struct f2fs_sb_info *, block_t);
1569 void write_node_summaries(struct f2fs_sb_info *, block_t);
1570 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1571 					int, unsigned int, int);
1572 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1573 int build_segment_manager(struct f2fs_sb_info *);
1574 void destroy_segment_manager(struct f2fs_sb_info *);
1575 int __init create_segment_manager_caches(void);
1576 void destroy_segment_manager_caches(void);
1577 
1578 /*
1579  * checkpoint.c
1580  */
1581 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1582 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1583 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1584 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1585 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1586 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1587 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1588 void release_dirty_inode(struct f2fs_sb_info *);
1589 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1590 int acquire_orphan_inode(struct f2fs_sb_info *);
1591 void release_orphan_inode(struct f2fs_sb_info *);
1592 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1593 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1594 void recover_orphan_inodes(struct f2fs_sb_info *);
1595 int get_valid_checkpoint(struct f2fs_sb_info *);
1596 void update_dirty_page(struct inode *, struct page *);
1597 void add_dirty_dir_inode(struct inode *);
1598 void remove_dirty_dir_inode(struct inode *);
1599 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1600 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1601 void init_ino_entry_info(struct f2fs_sb_info *);
1602 int __init create_checkpoint_caches(void);
1603 void destroy_checkpoint_caches(void);
1604 
1605 /*
1606  * data.c
1607  */
1608 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1609 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1610 						struct f2fs_io_info *);
1611 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1612 						struct f2fs_io_info *);
1613 void set_data_blkaddr(struct dnode_of_data *);
1614 int reserve_new_block(struct dnode_of_data *);
1615 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1616 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1617 void f2fs_destroy_extent_tree(struct inode *);
1618 void f2fs_init_extent_cache(struct inode *, struct f2fs_extent *);
1619 void f2fs_update_extent_cache(struct dnode_of_data *);
1620 void f2fs_preserve_extent_tree(struct inode *);
1621 struct page *find_data_page(struct inode *, pgoff_t, bool);
1622 struct page *get_lock_data_page(struct inode *, pgoff_t);
1623 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1624 int do_write_data_page(struct page *, struct f2fs_io_info *);
1625 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1626 void init_extent_cache_info(struct f2fs_sb_info *);
1627 int __init create_extent_cache(void);
1628 void destroy_extent_cache(void);
1629 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1630 int f2fs_release_page(struct page *, gfp_t);
1631 
1632 /*
1633  * gc.c
1634  */
1635 int start_gc_thread(struct f2fs_sb_info *);
1636 void stop_gc_thread(struct f2fs_sb_info *);
1637 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1638 int f2fs_gc(struct f2fs_sb_info *);
1639 void build_gc_manager(struct f2fs_sb_info *);
1640 
1641 /*
1642  * recovery.c
1643  */
1644 int recover_fsync_data(struct f2fs_sb_info *);
1645 bool space_for_roll_forward(struct f2fs_sb_info *);
1646 
1647 /*
1648  * debug.c
1649  */
1650 #ifdef CONFIG_F2FS_STAT_FS
1651 struct f2fs_stat_info {
1652 	struct list_head stat_list;
1653 	struct f2fs_sb_info *sbi;
1654 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1655 	int main_area_segs, main_area_sections, main_area_zones;
1656 	int hit_ext, total_ext, ext_tree, ext_node;
1657 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1658 	int nats, dirty_nats, sits, dirty_sits, fnids;
1659 	int total_count, utilization;
1660 	int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1661 	unsigned int valid_count, valid_node_count, valid_inode_count;
1662 	unsigned int bimodal, avg_vblocks;
1663 	int util_free, util_valid, util_invalid;
1664 	int rsvd_segs, overp_segs;
1665 	int dirty_count, node_pages, meta_pages;
1666 	int prefree_count, call_count, cp_count;
1667 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1668 	int bg_node_segs, bg_data_segs;
1669 	int tot_blks, data_blks, node_blks;
1670 	int bg_data_blks, bg_node_blks;
1671 	int curseg[NR_CURSEG_TYPE];
1672 	int cursec[NR_CURSEG_TYPE];
1673 	int curzone[NR_CURSEG_TYPE];
1674 
1675 	unsigned int segment_count[2];
1676 	unsigned int block_count[2];
1677 	unsigned int inplace_count;
1678 	unsigned base_mem, cache_mem, page_mem;
1679 };
1680 
1681 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1682 {
1683 	return (struct f2fs_stat_info *)sbi->stat_info;
1684 }
1685 
1686 #define stat_inc_cp_count(si)		((si)->cp_count++)
1687 #define stat_inc_call_count(si)		((si)->call_count++)
1688 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1689 #define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1690 #define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1691 #define stat_inc_total_hit(sb)		((F2FS_SB(sb))->total_hit_ext++)
1692 #define stat_inc_read_hit(sb)		((F2FS_SB(sb))->read_hit_ext++)
1693 #define stat_inc_inline_inode(inode)					\
1694 	do {								\
1695 		if (f2fs_has_inline_data(inode))			\
1696 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
1697 	} while (0)
1698 #define stat_dec_inline_inode(inode)					\
1699 	do {								\
1700 		if (f2fs_has_inline_data(inode))			\
1701 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
1702 	} while (0)
1703 #define stat_inc_inline_dir(inode)					\
1704 	do {								\
1705 		if (f2fs_has_inline_dentry(inode))			\
1706 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
1707 	} while (0)
1708 #define stat_dec_inline_dir(inode)					\
1709 	do {								\
1710 		if (f2fs_has_inline_dentry(inode))			\
1711 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
1712 	} while (0)
1713 #define stat_inc_seg_type(sbi, curseg)					\
1714 		((sbi)->segment_count[(curseg)->alloc_type]++)
1715 #define stat_inc_block_count(sbi, curseg)				\
1716 		((sbi)->block_count[(curseg)->alloc_type]++)
1717 #define stat_inc_inplace_blocks(sbi)					\
1718 		(atomic_inc(&(sbi)->inplace_count))
1719 #define stat_inc_seg_count(sbi, type, gc_type)				\
1720 	do {								\
1721 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1722 		(si)->tot_segs++;					\
1723 		if (type == SUM_TYPE_DATA) {				\
1724 			si->data_segs++;				\
1725 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
1726 		} else {						\
1727 			si->node_segs++;				\
1728 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
1729 		}							\
1730 	} while (0)
1731 
1732 #define stat_inc_tot_blk_count(si, blks)				\
1733 	(si->tot_blks += (blks))
1734 
1735 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
1736 	do {								\
1737 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1738 		stat_inc_tot_blk_count(si, blks);			\
1739 		si->data_blks += (blks);				\
1740 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1741 	} while (0)
1742 
1743 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
1744 	do {								\
1745 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1746 		stat_inc_tot_blk_count(si, blks);			\
1747 		si->node_blks += (blks);				\
1748 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1749 	} while (0)
1750 
1751 int f2fs_build_stats(struct f2fs_sb_info *);
1752 void f2fs_destroy_stats(struct f2fs_sb_info *);
1753 void __init f2fs_create_root_stats(void);
1754 void f2fs_destroy_root_stats(void);
1755 #else
1756 #define stat_inc_cp_count(si)
1757 #define stat_inc_call_count(si)
1758 #define stat_inc_bggc_count(si)
1759 #define stat_inc_dirty_dir(sbi)
1760 #define stat_dec_dirty_dir(sbi)
1761 #define stat_inc_total_hit(sb)
1762 #define stat_inc_read_hit(sb)
1763 #define stat_inc_inline_inode(inode)
1764 #define stat_dec_inline_inode(inode)
1765 #define stat_inc_inline_dir(inode)
1766 #define stat_dec_inline_dir(inode)
1767 #define stat_inc_seg_type(sbi, curseg)
1768 #define stat_inc_block_count(sbi, curseg)
1769 #define stat_inc_inplace_blocks(sbi)
1770 #define stat_inc_seg_count(sbi, type, gc_type)
1771 #define stat_inc_tot_blk_count(si, blks)
1772 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1773 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1774 
1775 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1776 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1777 static inline void __init f2fs_create_root_stats(void) { }
1778 static inline void f2fs_destroy_root_stats(void) { }
1779 #endif
1780 
1781 extern const struct file_operations f2fs_dir_operations;
1782 extern const struct file_operations f2fs_file_operations;
1783 extern const struct inode_operations f2fs_file_inode_operations;
1784 extern const struct address_space_operations f2fs_dblock_aops;
1785 extern const struct address_space_operations f2fs_node_aops;
1786 extern const struct address_space_operations f2fs_meta_aops;
1787 extern const struct inode_operations f2fs_dir_inode_operations;
1788 extern const struct inode_operations f2fs_symlink_inode_operations;
1789 extern const struct inode_operations f2fs_special_inode_operations;
1790 extern struct kmem_cache *inode_entry_slab;
1791 
1792 /*
1793  * inline.c
1794  */
1795 bool f2fs_may_inline(struct inode *);
1796 void read_inline_data(struct page *, struct page *);
1797 bool truncate_inline_inode(struct page *, u64);
1798 int f2fs_read_inline_data(struct inode *, struct page *);
1799 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1800 int f2fs_convert_inline_inode(struct inode *);
1801 int f2fs_write_inline_data(struct inode *, struct page *);
1802 bool recover_inline_data(struct inode *, struct page *);
1803 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1804 							struct page **);
1805 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1806 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1807 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1808 						nid_t, umode_t);
1809 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1810 						struct inode *, struct inode *);
1811 bool f2fs_empty_inline_dir(struct inode *);
1812 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1813 #endif
1814