1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <crypto/hash.h> 26 27 #include <linux/fscrypt.h> 28 29 #ifdef CONFIG_F2FS_CHECK_FS 30 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 31 #else 32 #define f2fs_bug_on(sbi, condition) \ 33 do { \ 34 if (unlikely(condition)) { \ 35 WARN_ON(1); \ 36 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 37 } \ 38 } while (0) 39 #endif 40 41 enum { 42 FAULT_KMALLOC, 43 FAULT_KVMALLOC, 44 FAULT_PAGE_ALLOC, 45 FAULT_PAGE_GET, 46 FAULT_ALLOC_BIO, 47 FAULT_ALLOC_NID, 48 FAULT_ORPHAN, 49 FAULT_BLOCK, 50 FAULT_DIR_DEPTH, 51 FAULT_EVICT_INODE, 52 FAULT_TRUNCATE, 53 FAULT_READ_IO, 54 FAULT_CHECKPOINT, 55 FAULT_DISCARD, 56 FAULT_WRITE_IO, 57 FAULT_MAX, 58 }; 59 60 #ifdef CONFIG_F2FS_FAULT_INJECTION 61 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 62 63 struct f2fs_fault_info { 64 atomic_t inject_ops; 65 unsigned int inject_rate; 66 unsigned int inject_type; 67 }; 68 69 extern const char *f2fs_fault_name[FAULT_MAX]; 70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 71 #endif 72 73 /* 74 * For mount options 75 */ 76 #define F2FS_MOUNT_BG_GC 0x00000001 77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 78 #define F2FS_MOUNT_DISCARD 0x00000004 79 #define F2FS_MOUNT_NOHEAP 0x00000008 80 #define F2FS_MOUNT_XATTR_USER 0x00000010 81 #define F2FS_MOUNT_POSIX_ACL 0x00000020 82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 83 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 84 #define F2FS_MOUNT_INLINE_DATA 0x00000100 85 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 86 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 87 #define F2FS_MOUNT_NOBARRIER 0x00000800 88 #define F2FS_MOUNT_FASTBOOT 0x00001000 89 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 90 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 91 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 92 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 93 #define F2FS_MOUNT_ADAPTIVE 0x00020000 94 #define F2FS_MOUNT_LFS 0x00040000 95 #define F2FS_MOUNT_USRQUOTA 0x00080000 96 #define F2FS_MOUNT_GRPQUOTA 0x00100000 97 #define F2FS_MOUNT_PRJQUOTA 0x00200000 98 #define F2FS_MOUNT_QUOTA 0x00400000 99 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 100 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 101 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 102 103 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 104 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 105 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 106 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 107 108 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 109 typecheck(unsigned long long, b) && \ 110 ((long long)((a) - (b)) > 0)) 111 112 typedef u32 block_t; /* 113 * should not change u32, since it is the on-disk block 114 * address format, __le32. 115 */ 116 typedef u32 nid_t; 117 118 struct f2fs_mount_info { 119 unsigned int opt; 120 int write_io_size_bits; /* Write IO size bits */ 121 block_t root_reserved_blocks; /* root reserved blocks */ 122 kuid_t s_resuid; /* reserved blocks for uid */ 123 kgid_t s_resgid; /* reserved blocks for gid */ 124 int active_logs; /* # of active logs */ 125 int inline_xattr_size; /* inline xattr size */ 126 #ifdef CONFIG_F2FS_FAULT_INJECTION 127 struct f2fs_fault_info fault_info; /* For fault injection */ 128 #endif 129 #ifdef CONFIG_QUOTA 130 /* Names of quota files with journalled quota */ 131 char *s_qf_names[MAXQUOTAS]; 132 int s_jquota_fmt; /* Format of quota to use */ 133 #endif 134 /* For which write hints are passed down to block layer */ 135 int whint_mode; 136 int alloc_mode; /* segment allocation policy */ 137 int fsync_mode; /* fsync policy */ 138 bool test_dummy_encryption; /* test dummy encryption */ 139 block_t unusable_cap; /* Amount of space allowed to be 140 * unusable when disabling checkpoint 141 */ 142 }; 143 144 #define F2FS_FEATURE_ENCRYPT 0x0001 145 #define F2FS_FEATURE_BLKZONED 0x0002 146 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 147 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 148 #define F2FS_FEATURE_PRJQUOTA 0x0010 149 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 150 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 151 #define F2FS_FEATURE_QUOTA_INO 0x0080 152 #define F2FS_FEATURE_INODE_CRTIME 0x0100 153 #define F2FS_FEATURE_LOST_FOUND 0x0200 154 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */ 155 #define F2FS_FEATURE_SB_CHKSUM 0x0800 156 157 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 158 ((raw_super->feature & cpu_to_le32(mask)) != 0) 159 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 160 #define F2FS_SET_FEATURE(sbi, mask) \ 161 (sbi->raw_super->feature |= cpu_to_le32(mask)) 162 #define F2FS_CLEAR_FEATURE(sbi, mask) \ 163 (sbi->raw_super->feature &= ~cpu_to_le32(mask)) 164 165 /* 166 * Default values for user and/or group using reserved blocks 167 */ 168 #define F2FS_DEF_RESUID 0 169 #define F2FS_DEF_RESGID 0 170 171 /* 172 * For checkpoint manager 173 */ 174 enum { 175 NAT_BITMAP, 176 SIT_BITMAP 177 }; 178 179 #define CP_UMOUNT 0x00000001 180 #define CP_FASTBOOT 0x00000002 181 #define CP_SYNC 0x00000004 182 #define CP_RECOVERY 0x00000008 183 #define CP_DISCARD 0x00000010 184 #define CP_TRIMMED 0x00000020 185 #define CP_PAUSE 0x00000040 186 187 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 188 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 189 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 190 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 191 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 192 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 193 #define DEF_CP_INTERVAL 60 /* 60 secs */ 194 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 195 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 196 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 197 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 198 199 struct cp_control { 200 int reason; 201 __u64 trim_start; 202 __u64 trim_end; 203 __u64 trim_minlen; 204 }; 205 206 /* 207 * indicate meta/data type 208 */ 209 enum { 210 META_CP, 211 META_NAT, 212 META_SIT, 213 META_SSA, 214 META_MAX, 215 META_POR, 216 DATA_GENERIC, /* check range only */ 217 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 218 DATA_GENERIC_ENHANCE_READ, /* 219 * strong check on range and segment 220 * bitmap but no warning due to race 221 * condition of read on truncated area 222 * by extent_cache 223 */ 224 META_GENERIC, 225 }; 226 227 /* for the list of ino */ 228 enum { 229 ORPHAN_INO, /* for orphan ino list */ 230 APPEND_INO, /* for append ino list */ 231 UPDATE_INO, /* for update ino list */ 232 TRANS_DIR_INO, /* for trasactions dir ino list */ 233 FLUSH_INO, /* for multiple device flushing */ 234 MAX_INO_ENTRY, /* max. list */ 235 }; 236 237 struct ino_entry { 238 struct list_head list; /* list head */ 239 nid_t ino; /* inode number */ 240 unsigned int dirty_device; /* dirty device bitmap */ 241 }; 242 243 /* for the list of inodes to be GCed */ 244 struct inode_entry { 245 struct list_head list; /* list head */ 246 struct inode *inode; /* vfs inode pointer */ 247 }; 248 249 struct fsync_node_entry { 250 struct list_head list; /* list head */ 251 struct page *page; /* warm node page pointer */ 252 unsigned int seq_id; /* sequence id */ 253 }; 254 255 /* for the bitmap indicate blocks to be discarded */ 256 struct discard_entry { 257 struct list_head list; /* list head */ 258 block_t start_blkaddr; /* start blockaddr of current segment */ 259 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 260 }; 261 262 /* default discard granularity of inner discard thread, unit: block count */ 263 #define DEFAULT_DISCARD_GRANULARITY 16 264 265 /* max discard pend list number */ 266 #define MAX_PLIST_NUM 512 267 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 268 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 269 270 enum { 271 D_PREP, /* initial */ 272 D_PARTIAL, /* partially submitted */ 273 D_SUBMIT, /* all submitted */ 274 D_DONE, /* finished */ 275 }; 276 277 struct discard_info { 278 block_t lstart; /* logical start address */ 279 block_t len; /* length */ 280 block_t start; /* actual start address in dev */ 281 }; 282 283 struct discard_cmd { 284 struct rb_node rb_node; /* rb node located in rb-tree */ 285 union { 286 struct { 287 block_t lstart; /* logical start address */ 288 block_t len; /* length */ 289 block_t start; /* actual start address in dev */ 290 }; 291 struct discard_info di; /* discard info */ 292 293 }; 294 struct list_head list; /* command list */ 295 struct completion wait; /* compleation */ 296 struct block_device *bdev; /* bdev */ 297 unsigned short ref; /* reference count */ 298 unsigned char state; /* state */ 299 unsigned char queued; /* queued discard */ 300 int error; /* bio error */ 301 spinlock_t lock; /* for state/bio_ref updating */ 302 unsigned short bio_ref; /* bio reference count */ 303 }; 304 305 enum { 306 DPOLICY_BG, 307 DPOLICY_FORCE, 308 DPOLICY_FSTRIM, 309 DPOLICY_UMOUNT, 310 MAX_DPOLICY, 311 }; 312 313 struct discard_policy { 314 int type; /* type of discard */ 315 unsigned int min_interval; /* used for candidates exist */ 316 unsigned int mid_interval; /* used for device busy */ 317 unsigned int max_interval; /* used for candidates not exist */ 318 unsigned int max_requests; /* # of discards issued per round */ 319 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 320 bool io_aware; /* issue discard in idle time */ 321 bool sync; /* submit discard with REQ_SYNC flag */ 322 bool ordered; /* issue discard by lba order */ 323 unsigned int granularity; /* discard granularity */ 324 int timeout; /* discard timeout for put_super */ 325 }; 326 327 struct discard_cmd_control { 328 struct task_struct *f2fs_issue_discard; /* discard thread */ 329 struct list_head entry_list; /* 4KB discard entry list */ 330 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 331 struct list_head wait_list; /* store on-flushing entries */ 332 struct list_head fstrim_list; /* in-flight discard from fstrim */ 333 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 334 unsigned int discard_wake; /* to wake up discard thread */ 335 struct mutex cmd_lock; 336 unsigned int nr_discards; /* # of discards in the list */ 337 unsigned int max_discards; /* max. discards to be issued */ 338 unsigned int discard_granularity; /* discard granularity */ 339 unsigned int undiscard_blks; /* # of undiscard blocks */ 340 unsigned int next_pos; /* next discard position */ 341 atomic_t issued_discard; /* # of issued discard */ 342 atomic_t queued_discard; /* # of queued discard */ 343 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 344 struct rb_root_cached root; /* root of discard rb-tree */ 345 bool rbtree_check; /* config for consistence check */ 346 }; 347 348 /* for the list of fsync inodes, used only during recovery */ 349 struct fsync_inode_entry { 350 struct list_head list; /* list head */ 351 struct inode *inode; /* vfs inode pointer */ 352 block_t blkaddr; /* block address locating the last fsync */ 353 block_t last_dentry; /* block address locating the last dentry */ 354 }; 355 356 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 357 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 358 359 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 360 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 361 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 362 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 363 364 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 365 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 366 367 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 368 { 369 int before = nats_in_cursum(journal); 370 371 journal->n_nats = cpu_to_le16(before + i); 372 return before; 373 } 374 375 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 376 { 377 int before = sits_in_cursum(journal); 378 379 journal->n_sits = cpu_to_le16(before + i); 380 return before; 381 } 382 383 static inline bool __has_cursum_space(struct f2fs_journal *journal, 384 int size, int type) 385 { 386 if (type == NAT_JOURNAL) 387 return size <= MAX_NAT_JENTRIES(journal); 388 return size <= MAX_SIT_JENTRIES(journal); 389 } 390 391 /* 392 * ioctl commands 393 */ 394 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 395 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 396 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 397 398 #define F2FS_IOCTL_MAGIC 0xf5 399 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 400 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 401 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 402 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 403 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 404 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 405 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 406 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 407 struct f2fs_defragment) 408 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 409 struct f2fs_move_range) 410 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 411 struct f2fs_flush_device) 412 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 413 struct f2fs_gc_range) 414 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 415 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 416 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 417 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 418 #define F2FS_IOC_RESIZE_FS _IOW(F2FS_IOCTL_MAGIC, 16, __u64) 419 420 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 421 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 422 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 423 424 /* 425 * should be same as XFS_IOC_GOINGDOWN. 426 * Flags for going down operation used by FS_IOC_GOINGDOWN 427 */ 428 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 429 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 430 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 431 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 432 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 433 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */ 434 435 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 436 /* 437 * ioctl commands in 32 bit emulation 438 */ 439 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 440 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 441 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 442 #endif 443 444 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 445 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 446 447 struct f2fs_gc_range { 448 u32 sync; 449 u64 start; 450 u64 len; 451 }; 452 453 struct f2fs_defragment { 454 u64 start; 455 u64 len; 456 }; 457 458 struct f2fs_move_range { 459 u32 dst_fd; /* destination fd */ 460 u64 pos_in; /* start position in src_fd */ 461 u64 pos_out; /* start position in dst_fd */ 462 u64 len; /* size to move */ 463 }; 464 465 struct f2fs_flush_device { 466 u32 dev_num; /* device number to flush */ 467 u32 segments; /* # of segments to flush */ 468 }; 469 470 /* for inline stuff */ 471 #define DEF_INLINE_RESERVED_SIZE 1 472 static inline int get_extra_isize(struct inode *inode); 473 static inline int get_inline_xattr_addrs(struct inode *inode); 474 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 475 (CUR_ADDRS_PER_INODE(inode) - \ 476 get_inline_xattr_addrs(inode) - \ 477 DEF_INLINE_RESERVED_SIZE)) 478 479 /* for inline dir */ 480 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 481 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 482 BITS_PER_BYTE + 1)) 483 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 484 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 485 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 486 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 487 NR_INLINE_DENTRY(inode) + \ 488 INLINE_DENTRY_BITMAP_SIZE(inode))) 489 490 /* 491 * For INODE and NODE manager 492 */ 493 /* for directory operations */ 494 struct f2fs_dentry_ptr { 495 struct inode *inode; 496 void *bitmap; 497 struct f2fs_dir_entry *dentry; 498 __u8 (*filename)[F2FS_SLOT_LEN]; 499 int max; 500 int nr_bitmap; 501 }; 502 503 static inline void make_dentry_ptr_block(struct inode *inode, 504 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 505 { 506 d->inode = inode; 507 d->max = NR_DENTRY_IN_BLOCK; 508 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 509 d->bitmap = t->dentry_bitmap; 510 d->dentry = t->dentry; 511 d->filename = t->filename; 512 } 513 514 static inline void make_dentry_ptr_inline(struct inode *inode, 515 struct f2fs_dentry_ptr *d, void *t) 516 { 517 int entry_cnt = NR_INLINE_DENTRY(inode); 518 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 519 int reserved_size = INLINE_RESERVED_SIZE(inode); 520 521 d->inode = inode; 522 d->max = entry_cnt; 523 d->nr_bitmap = bitmap_size; 524 d->bitmap = t; 525 d->dentry = t + bitmap_size + reserved_size; 526 d->filename = t + bitmap_size + reserved_size + 527 SIZE_OF_DIR_ENTRY * entry_cnt; 528 } 529 530 /* 531 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 532 * as its node offset to distinguish from index node blocks. 533 * But some bits are used to mark the node block. 534 */ 535 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 536 >> OFFSET_BIT_SHIFT) 537 enum { 538 ALLOC_NODE, /* allocate a new node page if needed */ 539 LOOKUP_NODE, /* look up a node without readahead */ 540 LOOKUP_NODE_RA, /* 541 * look up a node with readahead called 542 * by get_data_block. 543 */ 544 }; 545 546 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */ 547 548 /* maximum retry quota flush count */ 549 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 550 551 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 552 553 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 554 555 /* for in-memory extent cache entry */ 556 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 557 558 /* number of extent info in extent cache we try to shrink */ 559 #define EXTENT_CACHE_SHRINK_NUMBER 128 560 561 struct rb_entry { 562 struct rb_node rb_node; /* rb node located in rb-tree */ 563 unsigned int ofs; /* start offset of the entry */ 564 unsigned int len; /* length of the entry */ 565 }; 566 567 struct extent_info { 568 unsigned int fofs; /* start offset in a file */ 569 unsigned int len; /* length of the extent */ 570 u32 blk; /* start block address of the extent */ 571 }; 572 573 struct extent_node { 574 struct rb_node rb_node; /* rb node located in rb-tree */ 575 struct extent_info ei; /* extent info */ 576 struct list_head list; /* node in global extent list of sbi */ 577 struct extent_tree *et; /* extent tree pointer */ 578 }; 579 580 struct extent_tree { 581 nid_t ino; /* inode number */ 582 struct rb_root_cached root; /* root of extent info rb-tree */ 583 struct extent_node *cached_en; /* recently accessed extent node */ 584 struct extent_info largest; /* largested extent info */ 585 struct list_head list; /* to be used by sbi->zombie_list */ 586 rwlock_t lock; /* protect extent info rb-tree */ 587 atomic_t node_cnt; /* # of extent node in rb-tree*/ 588 bool largest_updated; /* largest extent updated */ 589 }; 590 591 /* 592 * This structure is taken from ext4_map_blocks. 593 * 594 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 595 */ 596 #define F2FS_MAP_NEW (1 << BH_New) 597 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 598 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 599 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 600 F2FS_MAP_UNWRITTEN) 601 602 struct f2fs_map_blocks { 603 block_t m_pblk; 604 block_t m_lblk; 605 unsigned int m_len; 606 unsigned int m_flags; 607 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 608 pgoff_t *m_next_extent; /* point to next possible extent */ 609 int m_seg_type; 610 bool m_may_create; /* indicate it is from write path */ 611 }; 612 613 /* for flag in get_data_block */ 614 enum { 615 F2FS_GET_BLOCK_DEFAULT, 616 F2FS_GET_BLOCK_FIEMAP, 617 F2FS_GET_BLOCK_BMAP, 618 F2FS_GET_BLOCK_DIO, 619 F2FS_GET_BLOCK_PRE_DIO, 620 F2FS_GET_BLOCK_PRE_AIO, 621 F2FS_GET_BLOCK_PRECACHE, 622 }; 623 624 /* 625 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 626 */ 627 #define FADVISE_COLD_BIT 0x01 628 #define FADVISE_LOST_PINO_BIT 0x02 629 #define FADVISE_ENCRYPT_BIT 0x04 630 #define FADVISE_ENC_NAME_BIT 0x08 631 #define FADVISE_KEEP_SIZE_BIT 0x10 632 #define FADVISE_HOT_BIT 0x20 633 #define FADVISE_VERITY_BIT 0x40 /* reserved */ 634 635 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 636 637 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 638 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 639 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 640 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 641 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 642 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 643 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 644 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 645 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 646 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 647 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 648 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 649 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 650 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 651 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 652 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 653 654 #define DEF_DIR_LEVEL 0 655 656 enum { 657 GC_FAILURE_PIN, 658 GC_FAILURE_ATOMIC, 659 MAX_GC_FAILURE 660 }; 661 662 struct f2fs_inode_info { 663 struct inode vfs_inode; /* serve a vfs inode */ 664 unsigned long i_flags; /* keep an inode flags for ioctl */ 665 unsigned char i_advise; /* use to give file attribute hints */ 666 unsigned char i_dir_level; /* use for dentry level for large dir */ 667 unsigned int i_current_depth; /* only for directory depth */ 668 /* for gc failure statistic */ 669 unsigned int i_gc_failures[MAX_GC_FAILURE]; 670 unsigned int i_pino; /* parent inode number */ 671 umode_t i_acl_mode; /* keep file acl mode temporarily */ 672 673 /* Use below internally in f2fs*/ 674 unsigned long flags; /* use to pass per-file flags */ 675 struct rw_semaphore i_sem; /* protect fi info */ 676 atomic_t dirty_pages; /* # of dirty pages */ 677 f2fs_hash_t chash; /* hash value of given file name */ 678 unsigned int clevel; /* maximum level of given file name */ 679 struct task_struct *task; /* lookup and create consistency */ 680 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 681 nid_t i_xattr_nid; /* node id that contains xattrs */ 682 loff_t last_disk_size; /* lastly written file size */ 683 684 #ifdef CONFIG_QUOTA 685 struct dquot *i_dquot[MAXQUOTAS]; 686 687 /* quota space reservation, managed internally by quota code */ 688 qsize_t i_reserved_quota; 689 #endif 690 struct list_head dirty_list; /* dirty list for dirs and files */ 691 struct list_head gdirty_list; /* linked in global dirty list */ 692 struct list_head inmem_ilist; /* list for inmem inodes */ 693 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 694 struct task_struct *inmem_task; /* store inmemory task */ 695 struct mutex inmem_lock; /* lock for inmemory pages */ 696 struct extent_tree *extent_tree; /* cached extent_tree entry */ 697 698 /* avoid racing between foreground op and gc */ 699 struct rw_semaphore i_gc_rwsem[2]; 700 struct rw_semaphore i_mmap_sem; 701 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 702 703 int i_extra_isize; /* size of extra space located in i_addr */ 704 kprojid_t i_projid; /* id for project quota */ 705 int i_inline_xattr_size; /* inline xattr size */ 706 struct timespec64 i_crtime; /* inode creation time */ 707 struct timespec64 i_disk_time[4];/* inode disk times */ 708 }; 709 710 static inline void get_extent_info(struct extent_info *ext, 711 struct f2fs_extent *i_ext) 712 { 713 ext->fofs = le32_to_cpu(i_ext->fofs); 714 ext->blk = le32_to_cpu(i_ext->blk); 715 ext->len = le32_to_cpu(i_ext->len); 716 } 717 718 static inline void set_raw_extent(struct extent_info *ext, 719 struct f2fs_extent *i_ext) 720 { 721 i_ext->fofs = cpu_to_le32(ext->fofs); 722 i_ext->blk = cpu_to_le32(ext->blk); 723 i_ext->len = cpu_to_le32(ext->len); 724 } 725 726 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 727 u32 blk, unsigned int len) 728 { 729 ei->fofs = fofs; 730 ei->blk = blk; 731 ei->len = len; 732 } 733 734 static inline bool __is_discard_mergeable(struct discard_info *back, 735 struct discard_info *front, unsigned int max_len) 736 { 737 return (back->lstart + back->len == front->lstart) && 738 (back->len + front->len <= max_len); 739 } 740 741 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 742 struct discard_info *back, unsigned int max_len) 743 { 744 return __is_discard_mergeable(back, cur, max_len); 745 } 746 747 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 748 struct discard_info *front, unsigned int max_len) 749 { 750 return __is_discard_mergeable(cur, front, max_len); 751 } 752 753 static inline bool __is_extent_mergeable(struct extent_info *back, 754 struct extent_info *front) 755 { 756 return (back->fofs + back->len == front->fofs && 757 back->blk + back->len == front->blk); 758 } 759 760 static inline bool __is_back_mergeable(struct extent_info *cur, 761 struct extent_info *back) 762 { 763 return __is_extent_mergeable(back, cur); 764 } 765 766 static inline bool __is_front_mergeable(struct extent_info *cur, 767 struct extent_info *front) 768 { 769 return __is_extent_mergeable(cur, front); 770 } 771 772 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 773 static inline void __try_update_largest_extent(struct extent_tree *et, 774 struct extent_node *en) 775 { 776 if (en->ei.len > et->largest.len) { 777 et->largest = en->ei; 778 et->largest_updated = true; 779 } 780 } 781 782 /* 783 * For free nid management 784 */ 785 enum nid_state { 786 FREE_NID, /* newly added to free nid list */ 787 PREALLOC_NID, /* it is preallocated */ 788 MAX_NID_STATE, 789 }; 790 791 struct f2fs_nm_info { 792 block_t nat_blkaddr; /* base disk address of NAT */ 793 nid_t max_nid; /* maximum possible node ids */ 794 nid_t available_nids; /* # of available node ids */ 795 nid_t next_scan_nid; /* the next nid to be scanned */ 796 unsigned int ram_thresh; /* control the memory footprint */ 797 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 798 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 799 800 /* NAT cache management */ 801 struct radix_tree_root nat_root;/* root of the nat entry cache */ 802 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 803 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 804 struct list_head nat_entries; /* cached nat entry list (clean) */ 805 spinlock_t nat_list_lock; /* protect clean nat entry list */ 806 unsigned int nat_cnt; /* the # of cached nat entries */ 807 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 808 unsigned int nat_blocks; /* # of nat blocks */ 809 810 /* free node ids management */ 811 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 812 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 813 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 814 spinlock_t nid_list_lock; /* protect nid lists ops */ 815 struct mutex build_lock; /* lock for build free nids */ 816 unsigned char **free_nid_bitmap; 817 unsigned char *nat_block_bitmap; 818 unsigned short *free_nid_count; /* free nid count of NAT block */ 819 820 /* for checkpoint */ 821 char *nat_bitmap; /* NAT bitmap pointer */ 822 823 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 824 unsigned char *nat_bits; /* NAT bits blocks */ 825 unsigned char *full_nat_bits; /* full NAT pages */ 826 unsigned char *empty_nat_bits; /* empty NAT pages */ 827 #ifdef CONFIG_F2FS_CHECK_FS 828 char *nat_bitmap_mir; /* NAT bitmap mirror */ 829 #endif 830 int bitmap_size; /* bitmap size */ 831 }; 832 833 /* 834 * this structure is used as one of function parameters. 835 * all the information are dedicated to a given direct node block determined 836 * by the data offset in a file. 837 */ 838 struct dnode_of_data { 839 struct inode *inode; /* vfs inode pointer */ 840 struct page *inode_page; /* its inode page, NULL is possible */ 841 struct page *node_page; /* cached direct node page */ 842 nid_t nid; /* node id of the direct node block */ 843 unsigned int ofs_in_node; /* data offset in the node page */ 844 bool inode_page_locked; /* inode page is locked or not */ 845 bool node_changed; /* is node block changed */ 846 char cur_level; /* level of hole node page */ 847 char max_level; /* level of current page located */ 848 block_t data_blkaddr; /* block address of the node block */ 849 }; 850 851 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 852 struct page *ipage, struct page *npage, nid_t nid) 853 { 854 memset(dn, 0, sizeof(*dn)); 855 dn->inode = inode; 856 dn->inode_page = ipage; 857 dn->node_page = npage; 858 dn->nid = nid; 859 } 860 861 /* 862 * For SIT manager 863 * 864 * By default, there are 6 active log areas across the whole main area. 865 * When considering hot and cold data separation to reduce cleaning overhead, 866 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 867 * respectively. 868 * In the current design, you should not change the numbers intentionally. 869 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 870 * logs individually according to the underlying devices. (default: 6) 871 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 872 * data and 8 for node logs. 873 */ 874 #define NR_CURSEG_DATA_TYPE (3) 875 #define NR_CURSEG_NODE_TYPE (3) 876 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 877 878 enum { 879 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 880 CURSEG_WARM_DATA, /* data blocks */ 881 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 882 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 883 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 884 CURSEG_COLD_NODE, /* indirect node blocks */ 885 NO_CHECK_TYPE, 886 }; 887 888 struct flush_cmd { 889 struct completion wait; 890 struct llist_node llnode; 891 nid_t ino; 892 int ret; 893 }; 894 895 struct flush_cmd_control { 896 struct task_struct *f2fs_issue_flush; /* flush thread */ 897 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 898 atomic_t issued_flush; /* # of issued flushes */ 899 atomic_t queued_flush; /* # of queued flushes */ 900 struct llist_head issue_list; /* list for command issue */ 901 struct llist_node *dispatch_list; /* list for command dispatch */ 902 }; 903 904 struct f2fs_sm_info { 905 struct sit_info *sit_info; /* whole segment information */ 906 struct free_segmap_info *free_info; /* free segment information */ 907 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 908 struct curseg_info *curseg_array; /* active segment information */ 909 910 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 911 912 block_t seg0_blkaddr; /* block address of 0'th segment */ 913 block_t main_blkaddr; /* start block address of main area */ 914 block_t ssa_blkaddr; /* start block address of SSA area */ 915 916 unsigned int segment_count; /* total # of segments */ 917 unsigned int main_segments; /* # of segments in main area */ 918 unsigned int reserved_segments; /* # of reserved segments */ 919 unsigned int ovp_segments; /* # of overprovision segments */ 920 921 /* a threshold to reclaim prefree segments */ 922 unsigned int rec_prefree_segments; 923 924 /* for batched trimming */ 925 unsigned int trim_sections; /* # of sections to trim */ 926 927 struct list_head sit_entry_set; /* sit entry set list */ 928 929 unsigned int ipu_policy; /* in-place-update policy */ 930 unsigned int min_ipu_util; /* in-place-update threshold */ 931 unsigned int min_fsync_blocks; /* threshold for fsync */ 932 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 933 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 934 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 935 936 /* for flush command control */ 937 struct flush_cmd_control *fcc_info; 938 939 /* for discard command control */ 940 struct discard_cmd_control *dcc_info; 941 }; 942 943 /* 944 * For superblock 945 */ 946 /* 947 * COUNT_TYPE for monitoring 948 * 949 * f2fs monitors the number of several block types such as on-writeback, 950 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 951 */ 952 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 953 enum count_type { 954 F2FS_DIRTY_DENTS, 955 F2FS_DIRTY_DATA, 956 F2FS_DIRTY_QDATA, 957 F2FS_DIRTY_NODES, 958 F2FS_DIRTY_META, 959 F2FS_INMEM_PAGES, 960 F2FS_DIRTY_IMETA, 961 F2FS_WB_CP_DATA, 962 F2FS_WB_DATA, 963 F2FS_RD_DATA, 964 F2FS_RD_NODE, 965 F2FS_RD_META, 966 F2FS_DIO_WRITE, 967 F2FS_DIO_READ, 968 NR_COUNT_TYPE, 969 }; 970 971 /* 972 * The below are the page types of bios used in submit_bio(). 973 * The available types are: 974 * DATA User data pages. It operates as async mode. 975 * NODE Node pages. It operates as async mode. 976 * META FS metadata pages such as SIT, NAT, CP. 977 * NR_PAGE_TYPE The number of page types. 978 * META_FLUSH Make sure the previous pages are written 979 * with waiting the bio's completion 980 * ... Only can be used with META. 981 */ 982 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 983 enum page_type { 984 DATA, 985 NODE, 986 META, 987 NR_PAGE_TYPE, 988 META_FLUSH, 989 INMEM, /* the below types are used by tracepoints only. */ 990 INMEM_DROP, 991 INMEM_INVALIDATE, 992 INMEM_REVOKE, 993 IPU, 994 OPU, 995 }; 996 997 enum temp_type { 998 HOT = 0, /* must be zero for meta bio */ 999 WARM, 1000 COLD, 1001 NR_TEMP_TYPE, 1002 }; 1003 1004 enum need_lock_type { 1005 LOCK_REQ = 0, 1006 LOCK_DONE, 1007 LOCK_RETRY, 1008 }; 1009 1010 enum cp_reason_type { 1011 CP_NO_NEEDED, 1012 CP_NON_REGULAR, 1013 CP_HARDLINK, 1014 CP_SB_NEED_CP, 1015 CP_WRONG_PINO, 1016 CP_NO_SPC_ROLL, 1017 CP_NODE_NEED_CP, 1018 CP_FASTBOOT_MODE, 1019 CP_SPEC_LOG_NUM, 1020 CP_RECOVER_DIR, 1021 }; 1022 1023 enum iostat_type { 1024 APP_DIRECT_IO, /* app direct IOs */ 1025 APP_BUFFERED_IO, /* app buffered IOs */ 1026 APP_WRITE_IO, /* app write IOs */ 1027 APP_MAPPED_IO, /* app mapped IOs */ 1028 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1029 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1030 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1031 FS_GC_DATA_IO, /* data IOs from forground gc */ 1032 FS_GC_NODE_IO, /* node IOs from forground gc */ 1033 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1034 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1035 FS_CP_META_IO, /* meta IOs from checkpoint */ 1036 FS_DISCARD, /* discard */ 1037 NR_IO_TYPE, 1038 }; 1039 1040 struct f2fs_io_info { 1041 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1042 nid_t ino; /* inode number */ 1043 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1044 enum temp_type temp; /* contains HOT/WARM/COLD */ 1045 int op; /* contains REQ_OP_ */ 1046 int op_flags; /* req_flag_bits */ 1047 block_t new_blkaddr; /* new block address to be written */ 1048 block_t old_blkaddr; /* old block address before Cow */ 1049 struct page *page; /* page to be written */ 1050 struct page *encrypted_page; /* encrypted page */ 1051 struct list_head list; /* serialize IOs */ 1052 bool submitted; /* indicate IO submission */ 1053 int need_lock; /* indicate we need to lock cp_rwsem */ 1054 bool in_list; /* indicate fio is in io_list */ 1055 bool is_por; /* indicate IO is from recovery or not */ 1056 bool retry; /* need to reallocate block address */ 1057 enum iostat_type io_type; /* io type */ 1058 struct writeback_control *io_wbc; /* writeback control */ 1059 struct bio **bio; /* bio for ipu */ 1060 sector_t *last_block; /* last block number in bio */ 1061 unsigned char version; /* version of the node */ 1062 }; 1063 1064 #define is_read_io(rw) ((rw) == READ) 1065 struct f2fs_bio_info { 1066 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1067 struct bio *bio; /* bios to merge */ 1068 sector_t last_block_in_bio; /* last block number */ 1069 struct f2fs_io_info fio; /* store buffered io info. */ 1070 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1071 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1072 struct list_head io_list; /* track fios */ 1073 }; 1074 1075 #define FDEV(i) (sbi->devs[i]) 1076 #define RDEV(i) (raw_super->devs[i]) 1077 struct f2fs_dev_info { 1078 struct block_device *bdev; 1079 char path[MAX_PATH_LEN]; 1080 unsigned int total_segments; 1081 block_t start_blk; 1082 block_t end_blk; 1083 #ifdef CONFIG_BLK_DEV_ZONED 1084 unsigned int nr_blkz; /* Total number of zones */ 1085 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1086 #endif 1087 }; 1088 1089 enum inode_type { 1090 DIR_INODE, /* for dirty dir inode */ 1091 FILE_INODE, /* for dirty regular/symlink inode */ 1092 DIRTY_META, /* for all dirtied inode metadata */ 1093 ATOMIC_FILE, /* for all atomic files */ 1094 NR_INODE_TYPE, 1095 }; 1096 1097 /* for inner inode cache management */ 1098 struct inode_management { 1099 struct radix_tree_root ino_root; /* ino entry array */ 1100 spinlock_t ino_lock; /* for ino entry lock */ 1101 struct list_head ino_list; /* inode list head */ 1102 unsigned long ino_num; /* number of entries */ 1103 }; 1104 1105 /* For s_flag in struct f2fs_sb_info */ 1106 enum { 1107 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1108 SBI_IS_CLOSE, /* specify unmounting */ 1109 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1110 SBI_POR_DOING, /* recovery is doing or not */ 1111 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1112 SBI_NEED_CP, /* need to checkpoint */ 1113 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1114 SBI_IS_RECOVERED, /* recovered orphan/data */ 1115 SBI_CP_DISABLED, /* CP was disabled last mount */ 1116 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1117 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1118 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1119 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1120 SBI_IS_RESIZEFS, /* resizefs is in process */ 1121 }; 1122 1123 enum { 1124 CP_TIME, 1125 REQ_TIME, 1126 DISCARD_TIME, 1127 GC_TIME, 1128 DISABLE_TIME, 1129 UMOUNT_DISCARD_TIMEOUT, 1130 MAX_TIME, 1131 }; 1132 1133 enum { 1134 GC_NORMAL, 1135 GC_IDLE_CB, 1136 GC_IDLE_GREEDY, 1137 GC_URGENT, 1138 }; 1139 1140 enum { 1141 WHINT_MODE_OFF, /* not pass down write hints */ 1142 WHINT_MODE_USER, /* try to pass down hints given by users */ 1143 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1144 }; 1145 1146 enum { 1147 ALLOC_MODE_DEFAULT, /* stay default */ 1148 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1149 }; 1150 1151 enum fsync_mode { 1152 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1153 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1154 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1155 }; 1156 1157 #ifdef CONFIG_FS_ENCRYPTION 1158 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1159 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1160 #else 1161 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1162 #endif 1163 1164 struct f2fs_sb_info { 1165 struct super_block *sb; /* pointer to VFS super block */ 1166 struct proc_dir_entry *s_proc; /* proc entry */ 1167 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1168 struct rw_semaphore sb_lock; /* lock for raw super block */ 1169 int valid_super_block; /* valid super block no */ 1170 unsigned long s_flag; /* flags for sbi */ 1171 struct mutex writepages; /* mutex for writepages() */ 1172 1173 #ifdef CONFIG_BLK_DEV_ZONED 1174 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1175 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1176 #endif 1177 1178 /* for node-related operations */ 1179 struct f2fs_nm_info *nm_info; /* node manager */ 1180 struct inode *node_inode; /* cache node blocks */ 1181 1182 /* for segment-related operations */ 1183 struct f2fs_sm_info *sm_info; /* segment manager */ 1184 1185 /* for bio operations */ 1186 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1187 /* keep migration IO order for LFS mode */ 1188 struct rw_semaphore io_order_lock; 1189 mempool_t *write_io_dummy; /* Dummy pages */ 1190 1191 /* for checkpoint */ 1192 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1193 int cur_cp_pack; /* remain current cp pack */ 1194 spinlock_t cp_lock; /* for flag in ckpt */ 1195 struct inode *meta_inode; /* cache meta blocks */ 1196 struct mutex cp_mutex; /* checkpoint procedure lock */ 1197 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1198 struct rw_semaphore node_write; /* locking node writes */ 1199 struct rw_semaphore node_change; /* locking node change */ 1200 wait_queue_head_t cp_wait; 1201 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1202 long interval_time[MAX_TIME]; /* to store thresholds */ 1203 1204 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1205 1206 spinlock_t fsync_node_lock; /* for node entry lock */ 1207 struct list_head fsync_node_list; /* node list head */ 1208 unsigned int fsync_seg_id; /* sequence id */ 1209 unsigned int fsync_node_num; /* number of node entries */ 1210 1211 /* for orphan inode, use 0'th array */ 1212 unsigned int max_orphans; /* max orphan inodes */ 1213 1214 /* for inode management */ 1215 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1216 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1217 struct mutex flush_lock; /* for flush exclusion */ 1218 1219 /* for extent tree cache */ 1220 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1221 struct mutex extent_tree_lock; /* locking extent radix tree */ 1222 struct list_head extent_list; /* lru list for shrinker */ 1223 spinlock_t extent_lock; /* locking extent lru list */ 1224 atomic_t total_ext_tree; /* extent tree count */ 1225 struct list_head zombie_list; /* extent zombie tree list */ 1226 atomic_t total_zombie_tree; /* extent zombie tree count */ 1227 atomic_t total_ext_node; /* extent info count */ 1228 1229 /* basic filesystem units */ 1230 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1231 unsigned int log_blocksize; /* log2 block size */ 1232 unsigned int blocksize; /* block size */ 1233 unsigned int root_ino_num; /* root inode number*/ 1234 unsigned int node_ino_num; /* node inode number*/ 1235 unsigned int meta_ino_num; /* meta inode number*/ 1236 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1237 unsigned int blocks_per_seg; /* blocks per segment */ 1238 unsigned int segs_per_sec; /* segments per section */ 1239 unsigned int secs_per_zone; /* sections per zone */ 1240 unsigned int total_sections; /* total section count */ 1241 struct mutex resize_mutex; /* for resize exclusion */ 1242 unsigned int total_node_count; /* total node block count */ 1243 unsigned int total_valid_node_count; /* valid node block count */ 1244 loff_t max_file_blocks; /* max block index of file */ 1245 int dir_level; /* directory level */ 1246 int readdir_ra; /* readahead inode in readdir */ 1247 1248 block_t user_block_count; /* # of user blocks */ 1249 block_t total_valid_block_count; /* # of valid blocks */ 1250 block_t discard_blks; /* discard command candidats */ 1251 block_t last_valid_block_count; /* for recovery */ 1252 block_t reserved_blocks; /* configurable reserved blocks */ 1253 block_t current_reserved_blocks; /* current reserved blocks */ 1254 1255 /* Additional tracking for no checkpoint mode */ 1256 block_t unusable_block_count; /* # of blocks saved by last cp */ 1257 1258 unsigned int nquota_files; /* # of quota sysfile */ 1259 struct rw_semaphore quota_sem; /* blocking cp for flags */ 1260 1261 /* # of pages, see count_type */ 1262 atomic_t nr_pages[NR_COUNT_TYPE]; 1263 /* # of allocated blocks */ 1264 struct percpu_counter alloc_valid_block_count; 1265 1266 /* writeback control */ 1267 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1268 1269 /* valid inode count */ 1270 struct percpu_counter total_valid_inode_count; 1271 1272 struct f2fs_mount_info mount_opt; /* mount options */ 1273 1274 /* for cleaning operations */ 1275 struct mutex gc_mutex; /* mutex for GC */ 1276 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1277 unsigned int cur_victim_sec; /* current victim section num */ 1278 unsigned int gc_mode; /* current GC state */ 1279 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1280 /* for skip statistic */ 1281 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1282 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1283 1284 /* threshold for gc trials on pinned files */ 1285 u64 gc_pin_file_threshold; 1286 1287 /* maximum # of trials to find a victim segment for SSR and GC */ 1288 unsigned int max_victim_search; 1289 /* migration granularity of garbage collection, unit: segment */ 1290 unsigned int migration_granularity; 1291 1292 /* 1293 * for stat information. 1294 * one is for the LFS mode, and the other is for the SSR mode. 1295 */ 1296 #ifdef CONFIG_F2FS_STAT_FS 1297 struct f2fs_stat_info *stat_info; /* FS status information */ 1298 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1299 unsigned int segment_count[2]; /* # of allocated segments */ 1300 unsigned int block_count[2]; /* # of allocated blocks */ 1301 atomic_t inplace_count; /* # of inplace update */ 1302 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1303 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1304 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1305 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1306 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1307 atomic_t inline_inode; /* # of inline_data inodes */ 1308 atomic_t inline_dir; /* # of inline_dentry inodes */ 1309 atomic_t aw_cnt; /* # of atomic writes */ 1310 atomic_t vw_cnt; /* # of volatile writes */ 1311 atomic_t max_aw_cnt; /* max # of atomic writes */ 1312 atomic_t max_vw_cnt; /* max # of volatile writes */ 1313 int bg_gc; /* background gc calls */ 1314 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1315 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1316 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1317 #endif 1318 spinlock_t stat_lock; /* lock for stat operations */ 1319 1320 /* For app/fs IO statistics */ 1321 spinlock_t iostat_lock; 1322 unsigned long long write_iostat[NR_IO_TYPE]; 1323 bool iostat_enable; 1324 1325 /* For sysfs suppport */ 1326 struct kobject s_kobj; 1327 struct completion s_kobj_unregister; 1328 1329 /* For shrinker support */ 1330 struct list_head s_list; 1331 int s_ndevs; /* number of devices */ 1332 struct f2fs_dev_info *devs; /* for device list */ 1333 unsigned int dirty_device; /* for checkpoint data flush */ 1334 spinlock_t dev_lock; /* protect dirty_device */ 1335 struct mutex umount_mutex; 1336 unsigned int shrinker_run_no; 1337 1338 /* For write statistics */ 1339 u64 sectors_written_start; 1340 u64 kbytes_written; 1341 1342 /* Reference to checksum algorithm driver via cryptoapi */ 1343 struct crypto_shash *s_chksum_driver; 1344 1345 /* Precomputed FS UUID checksum for seeding other checksums */ 1346 __u32 s_chksum_seed; 1347 }; 1348 1349 struct f2fs_private_dio { 1350 struct inode *inode; 1351 void *orig_private; 1352 bio_end_io_t *orig_end_io; 1353 bool write; 1354 }; 1355 1356 #ifdef CONFIG_F2FS_FAULT_INJECTION 1357 #define f2fs_show_injection_info(type) \ 1358 printk_ratelimited("%sF2FS-fs : inject %s in %s of %pS\n", \ 1359 KERN_INFO, f2fs_fault_name[type], \ 1360 __func__, __builtin_return_address(0)) 1361 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1362 { 1363 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1364 1365 if (!ffi->inject_rate) 1366 return false; 1367 1368 if (!IS_FAULT_SET(ffi, type)) 1369 return false; 1370 1371 atomic_inc(&ffi->inject_ops); 1372 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1373 atomic_set(&ffi->inject_ops, 0); 1374 return true; 1375 } 1376 return false; 1377 } 1378 #else 1379 #define f2fs_show_injection_info(type) do { } while (0) 1380 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1381 { 1382 return false; 1383 } 1384 #endif 1385 1386 /* 1387 * Test if the mounted volume is a multi-device volume. 1388 * - For a single regular disk volume, sbi->s_ndevs is 0. 1389 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1390 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1391 */ 1392 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1393 { 1394 return sbi->s_ndevs > 1; 1395 } 1396 1397 /* For write statistics. Suppose sector size is 512 bytes, 1398 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1399 */ 1400 #define BD_PART_WRITTEN(s) \ 1401 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \ 1402 (s)->sectors_written_start) >> 1) 1403 1404 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1405 { 1406 unsigned long now = jiffies; 1407 1408 sbi->last_time[type] = now; 1409 1410 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1411 if (type == REQ_TIME) { 1412 sbi->last_time[DISCARD_TIME] = now; 1413 sbi->last_time[GC_TIME] = now; 1414 } 1415 } 1416 1417 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1418 { 1419 unsigned long interval = sbi->interval_time[type] * HZ; 1420 1421 return time_after(jiffies, sbi->last_time[type] + interval); 1422 } 1423 1424 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1425 int type) 1426 { 1427 unsigned long interval = sbi->interval_time[type] * HZ; 1428 unsigned int wait_ms = 0; 1429 long delta; 1430 1431 delta = (sbi->last_time[type] + interval) - jiffies; 1432 if (delta > 0) 1433 wait_ms = jiffies_to_msecs(delta); 1434 1435 return wait_ms; 1436 } 1437 1438 /* 1439 * Inline functions 1440 */ 1441 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1442 const void *address, unsigned int length) 1443 { 1444 struct { 1445 struct shash_desc shash; 1446 char ctx[4]; 1447 } desc; 1448 int err; 1449 1450 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1451 1452 desc.shash.tfm = sbi->s_chksum_driver; 1453 *(u32 *)desc.ctx = crc; 1454 1455 err = crypto_shash_update(&desc.shash, address, length); 1456 BUG_ON(err); 1457 1458 return *(u32 *)desc.ctx; 1459 } 1460 1461 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1462 unsigned int length) 1463 { 1464 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1465 } 1466 1467 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1468 void *buf, size_t buf_size) 1469 { 1470 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1471 } 1472 1473 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1474 const void *address, unsigned int length) 1475 { 1476 return __f2fs_crc32(sbi, crc, address, length); 1477 } 1478 1479 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1480 { 1481 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1482 } 1483 1484 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1485 { 1486 return sb->s_fs_info; 1487 } 1488 1489 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1490 { 1491 return F2FS_SB(inode->i_sb); 1492 } 1493 1494 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1495 { 1496 return F2FS_I_SB(mapping->host); 1497 } 1498 1499 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1500 { 1501 return F2FS_M_SB(page_file_mapping(page)); 1502 } 1503 1504 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1505 { 1506 return (struct f2fs_super_block *)(sbi->raw_super); 1507 } 1508 1509 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1510 { 1511 return (struct f2fs_checkpoint *)(sbi->ckpt); 1512 } 1513 1514 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1515 { 1516 return (struct f2fs_node *)page_address(page); 1517 } 1518 1519 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1520 { 1521 return &((struct f2fs_node *)page_address(page))->i; 1522 } 1523 1524 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1525 { 1526 return (struct f2fs_nm_info *)(sbi->nm_info); 1527 } 1528 1529 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1530 { 1531 return (struct f2fs_sm_info *)(sbi->sm_info); 1532 } 1533 1534 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1535 { 1536 return (struct sit_info *)(SM_I(sbi)->sit_info); 1537 } 1538 1539 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1540 { 1541 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1542 } 1543 1544 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1545 { 1546 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1547 } 1548 1549 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1550 { 1551 return sbi->meta_inode->i_mapping; 1552 } 1553 1554 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1555 { 1556 return sbi->node_inode->i_mapping; 1557 } 1558 1559 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1560 { 1561 return test_bit(type, &sbi->s_flag); 1562 } 1563 1564 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1565 { 1566 set_bit(type, &sbi->s_flag); 1567 } 1568 1569 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1570 { 1571 clear_bit(type, &sbi->s_flag); 1572 } 1573 1574 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1575 { 1576 return le64_to_cpu(cp->checkpoint_ver); 1577 } 1578 1579 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1580 { 1581 if (type < F2FS_MAX_QUOTAS) 1582 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1583 return 0; 1584 } 1585 1586 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1587 { 1588 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1589 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1590 } 1591 1592 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1593 { 1594 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1595 1596 return ckpt_flags & f; 1597 } 1598 1599 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1600 { 1601 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1602 } 1603 1604 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1605 { 1606 unsigned int ckpt_flags; 1607 1608 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1609 ckpt_flags |= f; 1610 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1611 } 1612 1613 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1614 { 1615 unsigned long flags; 1616 1617 spin_lock_irqsave(&sbi->cp_lock, flags); 1618 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1619 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1620 } 1621 1622 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1623 { 1624 unsigned int ckpt_flags; 1625 1626 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1627 ckpt_flags &= (~f); 1628 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1629 } 1630 1631 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1632 { 1633 unsigned long flags; 1634 1635 spin_lock_irqsave(&sbi->cp_lock, flags); 1636 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1637 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1638 } 1639 1640 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1641 { 1642 unsigned long flags; 1643 1644 /* 1645 * In order to re-enable nat_bits we need to call fsck.f2fs by 1646 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost, 1647 * so let's rely on regular fsck or unclean shutdown. 1648 */ 1649 1650 if (lock) 1651 spin_lock_irqsave(&sbi->cp_lock, flags); 1652 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1653 kvfree(NM_I(sbi)->nat_bits); 1654 NM_I(sbi)->nat_bits = NULL; 1655 if (lock) 1656 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1657 } 1658 1659 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1660 struct cp_control *cpc) 1661 { 1662 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1663 1664 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1665 } 1666 1667 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1668 { 1669 down_read(&sbi->cp_rwsem); 1670 } 1671 1672 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1673 { 1674 return down_read_trylock(&sbi->cp_rwsem); 1675 } 1676 1677 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1678 { 1679 up_read(&sbi->cp_rwsem); 1680 } 1681 1682 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1683 { 1684 down_write(&sbi->cp_rwsem); 1685 } 1686 1687 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1688 { 1689 up_write(&sbi->cp_rwsem); 1690 } 1691 1692 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1693 { 1694 int reason = CP_SYNC; 1695 1696 if (test_opt(sbi, FASTBOOT)) 1697 reason = CP_FASTBOOT; 1698 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1699 reason = CP_UMOUNT; 1700 return reason; 1701 } 1702 1703 static inline bool __remain_node_summaries(int reason) 1704 { 1705 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1706 } 1707 1708 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1709 { 1710 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1711 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1712 } 1713 1714 /* 1715 * Check whether the inode has blocks or not 1716 */ 1717 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1718 { 1719 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1720 1721 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1722 } 1723 1724 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1725 { 1726 return ofs == XATTR_NODE_OFFSET; 1727 } 1728 1729 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1730 struct inode *inode, bool cap) 1731 { 1732 if (!inode) 1733 return true; 1734 if (!test_opt(sbi, RESERVE_ROOT)) 1735 return false; 1736 if (IS_NOQUOTA(inode)) 1737 return true; 1738 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1739 return true; 1740 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1741 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1742 return true; 1743 if (cap && capable(CAP_SYS_RESOURCE)) 1744 return true; 1745 return false; 1746 } 1747 1748 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1749 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1750 struct inode *inode, blkcnt_t *count) 1751 { 1752 blkcnt_t diff = 0, release = 0; 1753 block_t avail_user_block_count; 1754 int ret; 1755 1756 ret = dquot_reserve_block(inode, *count); 1757 if (ret) 1758 return ret; 1759 1760 if (time_to_inject(sbi, FAULT_BLOCK)) { 1761 f2fs_show_injection_info(FAULT_BLOCK); 1762 release = *count; 1763 goto enospc; 1764 } 1765 1766 /* 1767 * let's increase this in prior to actual block count change in order 1768 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1769 */ 1770 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1771 1772 spin_lock(&sbi->stat_lock); 1773 sbi->total_valid_block_count += (block_t)(*count); 1774 avail_user_block_count = sbi->user_block_count - 1775 sbi->current_reserved_blocks; 1776 1777 if (!__allow_reserved_blocks(sbi, inode, true)) 1778 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1779 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1780 if (avail_user_block_count > sbi->unusable_block_count) 1781 avail_user_block_count -= sbi->unusable_block_count; 1782 else 1783 avail_user_block_count = 0; 1784 } 1785 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1786 diff = sbi->total_valid_block_count - avail_user_block_count; 1787 if (diff > *count) 1788 diff = *count; 1789 *count -= diff; 1790 release = diff; 1791 sbi->total_valid_block_count -= diff; 1792 if (!*count) { 1793 spin_unlock(&sbi->stat_lock); 1794 goto enospc; 1795 } 1796 } 1797 spin_unlock(&sbi->stat_lock); 1798 1799 if (unlikely(release)) { 1800 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1801 dquot_release_reservation_block(inode, release); 1802 } 1803 f2fs_i_blocks_write(inode, *count, true, true); 1804 return 0; 1805 1806 enospc: 1807 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1808 dquot_release_reservation_block(inode, release); 1809 return -ENOSPC; 1810 } 1811 1812 __printf(2, 3) 1813 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 1814 1815 #define f2fs_err(sbi, fmt, ...) \ 1816 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 1817 #define f2fs_warn(sbi, fmt, ...) \ 1818 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 1819 #define f2fs_notice(sbi, fmt, ...) \ 1820 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 1821 #define f2fs_info(sbi, fmt, ...) \ 1822 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 1823 #define f2fs_debug(sbi, fmt, ...) \ 1824 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 1825 1826 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1827 struct inode *inode, 1828 block_t count) 1829 { 1830 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1831 1832 spin_lock(&sbi->stat_lock); 1833 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1834 sbi->total_valid_block_count -= (block_t)count; 1835 if (sbi->reserved_blocks && 1836 sbi->current_reserved_blocks < sbi->reserved_blocks) 1837 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1838 sbi->current_reserved_blocks + count); 1839 spin_unlock(&sbi->stat_lock); 1840 if (unlikely(inode->i_blocks < sectors)) { 1841 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 1842 inode->i_ino, 1843 (unsigned long long)inode->i_blocks, 1844 (unsigned long long)sectors); 1845 set_sbi_flag(sbi, SBI_NEED_FSCK); 1846 return; 1847 } 1848 f2fs_i_blocks_write(inode, count, false, true); 1849 } 1850 1851 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1852 { 1853 atomic_inc(&sbi->nr_pages[count_type]); 1854 1855 if (count_type == F2FS_DIRTY_DENTS || 1856 count_type == F2FS_DIRTY_NODES || 1857 count_type == F2FS_DIRTY_META || 1858 count_type == F2FS_DIRTY_QDATA || 1859 count_type == F2FS_DIRTY_IMETA) 1860 set_sbi_flag(sbi, SBI_IS_DIRTY); 1861 } 1862 1863 static inline void inode_inc_dirty_pages(struct inode *inode) 1864 { 1865 atomic_inc(&F2FS_I(inode)->dirty_pages); 1866 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1867 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1868 if (IS_NOQUOTA(inode)) 1869 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1870 } 1871 1872 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1873 { 1874 atomic_dec(&sbi->nr_pages[count_type]); 1875 } 1876 1877 static inline void inode_dec_dirty_pages(struct inode *inode) 1878 { 1879 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1880 !S_ISLNK(inode->i_mode)) 1881 return; 1882 1883 atomic_dec(&F2FS_I(inode)->dirty_pages); 1884 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1885 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1886 if (IS_NOQUOTA(inode)) 1887 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1888 } 1889 1890 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1891 { 1892 return atomic_read(&sbi->nr_pages[count_type]); 1893 } 1894 1895 static inline int get_dirty_pages(struct inode *inode) 1896 { 1897 return atomic_read(&F2FS_I(inode)->dirty_pages); 1898 } 1899 1900 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1901 { 1902 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1903 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1904 sbi->log_blocks_per_seg; 1905 1906 return segs / sbi->segs_per_sec; 1907 } 1908 1909 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1910 { 1911 return sbi->total_valid_block_count; 1912 } 1913 1914 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1915 { 1916 return sbi->discard_blks; 1917 } 1918 1919 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1920 { 1921 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1922 1923 /* return NAT or SIT bitmap */ 1924 if (flag == NAT_BITMAP) 1925 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1926 else if (flag == SIT_BITMAP) 1927 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1928 1929 return 0; 1930 } 1931 1932 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1933 { 1934 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1935 } 1936 1937 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1938 { 1939 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1940 int offset; 1941 1942 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1943 offset = (flag == SIT_BITMAP) ? 1944 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1945 /* 1946 * if large_nat_bitmap feature is enabled, leave checksum 1947 * protection for all nat/sit bitmaps. 1948 */ 1949 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32); 1950 } 1951 1952 if (__cp_payload(sbi) > 0) { 1953 if (flag == NAT_BITMAP) 1954 return &ckpt->sit_nat_version_bitmap; 1955 else 1956 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1957 } else { 1958 offset = (flag == NAT_BITMAP) ? 1959 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1960 return &ckpt->sit_nat_version_bitmap + offset; 1961 } 1962 } 1963 1964 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1965 { 1966 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1967 1968 if (sbi->cur_cp_pack == 2) 1969 start_addr += sbi->blocks_per_seg; 1970 return start_addr; 1971 } 1972 1973 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1974 { 1975 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1976 1977 if (sbi->cur_cp_pack == 1) 1978 start_addr += sbi->blocks_per_seg; 1979 return start_addr; 1980 } 1981 1982 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1983 { 1984 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1985 } 1986 1987 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1988 { 1989 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1990 } 1991 1992 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1993 struct inode *inode, bool is_inode) 1994 { 1995 block_t valid_block_count; 1996 unsigned int valid_node_count, user_block_count; 1997 int err; 1998 1999 if (is_inode) { 2000 if (inode) { 2001 err = dquot_alloc_inode(inode); 2002 if (err) 2003 return err; 2004 } 2005 } else { 2006 err = dquot_reserve_block(inode, 1); 2007 if (err) 2008 return err; 2009 } 2010 2011 if (time_to_inject(sbi, FAULT_BLOCK)) { 2012 f2fs_show_injection_info(FAULT_BLOCK); 2013 goto enospc; 2014 } 2015 2016 spin_lock(&sbi->stat_lock); 2017 2018 valid_block_count = sbi->total_valid_block_count + 2019 sbi->current_reserved_blocks + 1; 2020 2021 if (!__allow_reserved_blocks(sbi, inode, false)) 2022 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2023 user_block_count = sbi->user_block_count; 2024 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2025 user_block_count -= sbi->unusable_block_count; 2026 2027 if (unlikely(valid_block_count > user_block_count)) { 2028 spin_unlock(&sbi->stat_lock); 2029 goto enospc; 2030 } 2031 2032 valid_node_count = sbi->total_valid_node_count + 1; 2033 if (unlikely(valid_node_count > sbi->total_node_count)) { 2034 spin_unlock(&sbi->stat_lock); 2035 goto enospc; 2036 } 2037 2038 sbi->total_valid_node_count++; 2039 sbi->total_valid_block_count++; 2040 spin_unlock(&sbi->stat_lock); 2041 2042 if (inode) { 2043 if (is_inode) 2044 f2fs_mark_inode_dirty_sync(inode, true); 2045 else 2046 f2fs_i_blocks_write(inode, 1, true, true); 2047 } 2048 2049 percpu_counter_inc(&sbi->alloc_valid_block_count); 2050 return 0; 2051 2052 enospc: 2053 if (is_inode) { 2054 if (inode) 2055 dquot_free_inode(inode); 2056 } else { 2057 dquot_release_reservation_block(inode, 1); 2058 } 2059 return -ENOSPC; 2060 } 2061 2062 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2063 struct inode *inode, bool is_inode) 2064 { 2065 spin_lock(&sbi->stat_lock); 2066 2067 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 2068 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 2069 2070 sbi->total_valid_node_count--; 2071 sbi->total_valid_block_count--; 2072 if (sbi->reserved_blocks && 2073 sbi->current_reserved_blocks < sbi->reserved_blocks) 2074 sbi->current_reserved_blocks++; 2075 2076 spin_unlock(&sbi->stat_lock); 2077 2078 if (is_inode) { 2079 dquot_free_inode(inode); 2080 } else { 2081 if (unlikely(inode->i_blocks == 0)) { 2082 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu", 2083 inode->i_ino, 2084 (unsigned long long)inode->i_blocks); 2085 set_sbi_flag(sbi, SBI_NEED_FSCK); 2086 return; 2087 } 2088 f2fs_i_blocks_write(inode, 1, false, true); 2089 } 2090 } 2091 2092 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2093 { 2094 return sbi->total_valid_node_count; 2095 } 2096 2097 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2098 { 2099 percpu_counter_inc(&sbi->total_valid_inode_count); 2100 } 2101 2102 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2103 { 2104 percpu_counter_dec(&sbi->total_valid_inode_count); 2105 } 2106 2107 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2108 { 2109 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2110 } 2111 2112 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2113 pgoff_t index, bool for_write) 2114 { 2115 struct page *page; 2116 2117 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2118 if (!for_write) 2119 page = find_get_page_flags(mapping, index, 2120 FGP_LOCK | FGP_ACCESSED); 2121 else 2122 page = find_lock_page(mapping, index); 2123 if (page) 2124 return page; 2125 2126 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2127 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 2128 return NULL; 2129 } 2130 } 2131 2132 if (!for_write) 2133 return grab_cache_page(mapping, index); 2134 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2135 } 2136 2137 static inline struct page *f2fs_pagecache_get_page( 2138 struct address_space *mapping, pgoff_t index, 2139 int fgp_flags, gfp_t gfp_mask) 2140 { 2141 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2142 f2fs_show_injection_info(FAULT_PAGE_GET); 2143 return NULL; 2144 } 2145 2146 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2147 } 2148 2149 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2150 { 2151 char *src_kaddr = kmap(src); 2152 char *dst_kaddr = kmap(dst); 2153 2154 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2155 kunmap(dst); 2156 kunmap(src); 2157 } 2158 2159 static inline void f2fs_put_page(struct page *page, int unlock) 2160 { 2161 if (!page) 2162 return; 2163 2164 if (unlock) { 2165 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2166 unlock_page(page); 2167 } 2168 put_page(page); 2169 } 2170 2171 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2172 { 2173 if (dn->node_page) 2174 f2fs_put_page(dn->node_page, 1); 2175 if (dn->inode_page && dn->node_page != dn->inode_page) 2176 f2fs_put_page(dn->inode_page, 0); 2177 dn->node_page = NULL; 2178 dn->inode_page = NULL; 2179 } 2180 2181 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2182 size_t size) 2183 { 2184 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2185 } 2186 2187 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2188 gfp_t flags) 2189 { 2190 void *entry; 2191 2192 entry = kmem_cache_alloc(cachep, flags); 2193 if (!entry) 2194 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2195 return entry; 2196 } 2197 2198 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2199 int npages, bool no_fail) 2200 { 2201 struct bio *bio; 2202 2203 if (no_fail) { 2204 /* No failure on bio allocation */ 2205 bio = bio_alloc(GFP_NOIO, npages); 2206 if (!bio) 2207 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2208 return bio; 2209 } 2210 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2211 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2212 return NULL; 2213 } 2214 2215 return bio_alloc(GFP_KERNEL, npages); 2216 } 2217 2218 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2219 { 2220 if (sbi->gc_mode == GC_URGENT) 2221 return true; 2222 2223 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2224 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2225 get_pages(sbi, F2FS_WB_CP_DATA) || 2226 get_pages(sbi, F2FS_DIO_READ) || 2227 get_pages(sbi, F2FS_DIO_WRITE)) 2228 return false; 2229 2230 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2231 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2232 return false; 2233 2234 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2235 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2236 return false; 2237 2238 return f2fs_time_over(sbi, type); 2239 } 2240 2241 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2242 unsigned long index, void *item) 2243 { 2244 while (radix_tree_insert(root, index, item)) 2245 cond_resched(); 2246 } 2247 2248 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2249 2250 static inline bool IS_INODE(struct page *page) 2251 { 2252 struct f2fs_node *p = F2FS_NODE(page); 2253 2254 return RAW_IS_INODE(p); 2255 } 2256 2257 static inline int offset_in_addr(struct f2fs_inode *i) 2258 { 2259 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2260 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2261 } 2262 2263 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2264 { 2265 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2266 } 2267 2268 static inline int f2fs_has_extra_attr(struct inode *inode); 2269 static inline block_t datablock_addr(struct inode *inode, 2270 struct page *node_page, unsigned int offset) 2271 { 2272 struct f2fs_node *raw_node; 2273 __le32 *addr_array; 2274 int base = 0; 2275 bool is_inode = IS_INODE(node_page); 2276 2277 raw_node = F2FS_NODE(node_page); 2278 2279 /* from GC path only */ 2280 if (is_inode) { 2281 if (!inode) 2282 base = offset_in_addr(&raw_node->i); 2283 else if (f2fs_has_extra_attr(inode)) 2284 base = get_extra_isize(inode); 2285 } 2286 2287 addr_array = blkaddr_in_node(raw_node); 2288 return le32_to_cpu(addr_array[base + offset]); 2289 } 2290 2291 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2292 { 2293 int mask; 2294 2295 addr += (nr >> 3); 2296 mask = 1 << (7 - (nr & 0x07)); 2297 return mask & *addr; 2298 } 2299 2300 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2301 { 2302 int mask; 2303 2304 addr += (nr >> 3); 2305 mask = 1 << (7 - (nr & 0x07)); 2306 *addr |= mask; 2307 } 2308 2309 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2310 { 2311 int mask; 2312 2313 addr += (nr >> 3); 2314 mask = 1 << (7 - (nr & 0x07)); 2315 *addr &= ~mask; 2316 } 2317 2318 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2319 { 2320 int mask; 2321 int ret; 2322 2323 addr += (nr >> 3); 2324 mask = 1 << (7 - (nr & 0x07)); 2325 ret = mask & *addr; 2326 *addr |= mask; 2327 return ret; 2328 } 2329 2330 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2331 { 2332 int mask; 2333 int ret; 2334 2335 addr += (nr >> 3); 2336 mask = 1 << (7 - (nr & 0x07)); 2337 ret = mask & *addr; 2338 *addr &= ~mask; 2339 return ret; 2340 } 2341 2342 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2343 { 2344 int mask; 2345 2346 addr += (nr >> 3); 2347 mask = 1 << (7 - (nr & 0x07)); 2348 *addr ^= mask; 2349 } 2350 2351 /* 2352 * On-disk inode flags (f2fs_inode::i_flags) 2353 */ 2354 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2355 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2356 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2357 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2358 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2359 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2360 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2361 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2362 2363 /* Flags that should be inherited by new inodes from their parent. */ 2364 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2365 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL) 2366 2367 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2368 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL)) 2369 2370 /* Flags that are appropriate for non-directories/regular files. */ 2371 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2372 2373 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2374 { 2375 if (S_ISDIR(mode)) 2376 return flags; 2377 else if (S_ISREG(mode)) 2378 return flags & F2FS_REG_FLMASK; 2379 else 2380 return flags & F2FS_OTHER_FLMASK; 2381 } 2382 2383 /* used for f2fs_inode_info->flags */ 2384 enum { 2385 FI_NEW_INODE, /* indicate newly allocated inode */ 2386 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2387 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2388 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2389 FI_INC_LINK, /* need to increment i_nlink */ 2390 FI_ACL_MODE, /* indicate acl mode */ 2391 FI_NO_ALLOC, /* should not allocate any blocks */ 2392 FI_FREE_NID, /* free allocated nide */ 2393 FI_NO_EXTENT, /* not to use the extent cache */ 2394 FI_INLINE_XATTR, /* used for inline xattr */ 2395 FI_INLINE_DATA, /* used for inline data*/ 2396 FI_INLINE_DENTRY, /* used for inline dentry */ 2397 FI_APPEND_WRITE, /* inode has appended data */ 2398 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2399 FI_NEED_IPU, /* used for ipu per file */ 2400 FI_ATOMIC_FILE, /* indicate atomic file */ 2401 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2402 FI_VOLATILE_FILE, /* indicate volatile file */ 2403 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2404 FI_DROP_CACHE, /* drop dirty page cache */ 2405 FI_DATA_EXIST, /* indicate data exists */ 2406 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2407 FI_DO_DEFRAG, /* indicate defragment is running */ 2408 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2409 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2410 FI_HOT_DATA, /* indicate file is hot */ 2411 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2412 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2413 FI_PIN_FILE, /* indicate file should not be gced */ 2414 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 2415 }; 2416 2417 static inline void __mark_inode_dirty_flag(struct inode *inode, 2418 int flag, bool set) 2419 { 2420 switch (flag) { 2421 case FI_INLINE_XATTR: 2422 case FI_INLINE_DATA: 2423 case FI_INLINE_DENTRY: 2424 case FI_NEW_INODE: 2425 if (set) 2426 return; 2427 /* fall through */ 2428 case FI_DATA_EXIST: 2429 case FI_INLINE_DOTS: 2430 case FI_PIN_FILE: 2431 f2fs_mark_inode_dirty_sync(inode, true); 2432 } 2433 } 2434 2435 static inline void set_inode_flag(struct inode *inode, int flag) 2436 { 2437 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2438 set_bit(flag, &F2FS_I(inode)->flags); 2439 __mark_inode_dirty_flag(inode, flag, true); 2440 } 2441 2442 static inline int is_inode_flag_set(struct inode *inode, int flag) 2443 { 2444 return test_bit(flag, &F2FS_I(inode)->flags); 2445 } 2446 2447 static inline void clear_inode_flag(struct inode *inode, int flag) 2448 { 2449 if (test_bit(flag, &F2FS_I(inode)->flags)) 2450 clear_bit(flag, &F2FS_I(inode)->flags); 2451 __mark_inode_dirty_flag(inode, flag, false); 2452 } 2453 2454 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2455 { 2456 F2FS_I(inode)->i_acl_mode = mode; 2457 set_inode_flag(inode, FI_ACL_MODE); 2458 f2fs_mark_inode_dirty_sync(inode, false); 2459 } 2460 2461 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2462 { 2463 if (inc) 2464 inc_nlink(inode); 2465 else 2466 drop_nlink(inode); 2467 f2fs_mark_inode_dirty_sync(inode, true); 2468 } 2469 2470 static inline void f2fs_i_blocks_write(struct inode *inode, 2471 block_t diff, bool add, bool claim) 2472 { 2473 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2474 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2475 2476 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2477 if (add) { 2478 if (claim) 2479 dquot_claim_block(inode, diff); 2480 else 2481 dquot_alloc_block_nofail(inode, diff); 2482 } else { 2483 dquot_free_block(inode, diff); 2484 } 2485 2486 f2fs_mark_inode_dirty_sync(inode, true); 2487 if (clean || recover) 2488 set_inode_flag(inode, FI_AUTO_RECOVER); 2489 } 2490 2491 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2492 { 2493 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2494 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2495 2496 if (i_size_read(inode) == i_size) 2497 return; 2498 2499 i_size_write(inode, i_size); 2500 f2fs_mark_inode_dirty_sync(inode, true); 2501 if (clean || recover) 2502 set_inode_flag(inode, FI_AUTO_RECOVER); 2503 } 2504 2505 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2506 { 2507 F2FS_I(inode)->i_current_depth = depth; 2508 f2fs_mark_inode_dirty_sync(inode, true); 2509 } 2510 2511 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2512 unsigned int count) 2513 { 2514 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2515 f2fs_mark_inode_dirty_sync(inode, true); 2516 } 2517 2518 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2519 { 2520 F2FS_I(inode)->i_xattr_nid = xnid; 2521 f2fs_mark_inode_dirty_sync(inode, true); 2522 } 2523 2524 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2525 { 2526 F2FS_I(inode)->i_pino = pino; 2527 f2fs_mark_inode_dirty_sync(inode, true); 2528 } 2529 2530 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2531 { 2532 struct f2fs_inode_info *fi = F2FS_I(inode); 2533 2534 if (ri->i_inline & F2FS_INLINE_XATTR) 2535 set_bit(FI_INLINE_XATTR, &fi->flags); 2536 if (ri->i_inline & F2FS_INLINE_DATA) 2537 set_bit(FI_INLINE_DATA, &fi->flags); 2538 if (ri->i_inline & F2FS_INLINE_DENTRY) 2539 set_bit(FI_INLINE_DENTRY, &fi->flags); 2540 if (ri->i_inline & F2FS_DATA_EXIST) 2541 set_bit(FI_DATA_EXIST, &fi->flags); 2542 if (ri->i_inline & F2FS_INLINE_DOTS) 2543 set_bit(FI_INLINE_DOTS, &fi->flags); 2544 if (ri->i_inline & F2FS_EXTRA_ATTR) 2545 set_bit(FI_EXTRA_ATTR, &fi->flags); 2546 if (ri->i_inline & F2FS_PIN_FILE) 2547 set_bit(FI_PIN_FILE, &fi->flags); 2548 } 2549 2550 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2551 { 2552 ri->i_inline = 0; 2553 2554 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2555 ri->i_inline |= F2FS_INLINE_XATTR; 2556 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2557 ri->i_inline |= F2FS_INLINE_DATA; 2558 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2559 ri->i_inline |= F2FS_INLINE_DENTRY; 2560 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2561 ri->i_inline |= F2FS_DATA_EXIST; 2562 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2563 ri->i_inline |= F2FS_INLINE_DOTS; 2564 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2565 ri->i_inline |= F2FS_EXTRA_ATTR; 2566 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2567 ri->i_inline |= F2FS_PIN_FILE; 2568 } 2569 2570 static inline int f2fs_has_extra_attr(struct inode *inode) 2571 { 2572 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2573 } 2574 2575 static inline int f2fs_has_inline_xattr(struct inode *inode) 2576 { 2577 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2578 } 2579 2580 static inline unsigned int addrs_per_inode(struct inode *inode) 2581 { 2582 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 2583 get_inline_xattr_addrs(inode); 2584 return ALIGN_DOWN(addrs, 1); 2585 } 2586 2587 static inline unsigned int addrs_per_block(struct inode *inode) 2588 { 2589 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1); 2590 } 2591 2592 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2593 { 2594 struct f2fs_inode *ri = F2FS_INODE(page); 2595 2596 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2597 get_inline_xattr_addrs(inode)]); 2598 } 2599 2600 static inline int inline_xattr_size(struct inode *inode) 2601 { 2602 if (f2fs_has_inline_xattr(inode)) 2603 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2604 return 0; 2605 } 2606 2607 static inline int f2fs_has_inline_data(struct inode *inode) 2608 { 2609 return is_inode_flag_set(inode, FI_INLINE_DATA); 2610 } 2611 2612 static inline int f2fs_exist_data(struct inode *inode) 2613 { 2614 return is_inode_flag_set(inode, FI_DATA_EXIST); 2615 } 2616 2617 static inline int f2fs_has_inline_dots(struct inode *inode) 2618 { 2619 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2620 } 2621 2622 static inline bool f2fs_is_pinned_file(struct inode *inode) 2623 { 2624 return is_inode_flag_set(inode, FI_PIN_FILE); 2625 } 2626 2627 static inline bool f2fs_is_atomic_file(struct inode *inode) 2628 { 2629 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2630 } 2631 2632 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2633 { 2634 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2635 } 2636 2637 static inline bool f2fs_is_volatile_file(struct inode *inode) 2638 { 2639 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2640 } 2641 2642 static inline bool f2fs_is_first_block_written(struct inode *inode) 2643 { 2644 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2645 } 2646 2647 static inline bool f2fs_is_drop_cache(struct inode *inode) 2648 { 2649 return is_inode_flag_set(inode, FI_DROP_CACHE); 2650 } 2651 2652 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2653 { 2654 struct f2fs_inode *ri = F2FS_INODE(page); 2655 int extra_size = get_extra_isize(inode); 2656 2657 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2658 } 2659 2660 static inline int f2fs_has_inline_dentry(struct inode *inode) 2661 { 2662 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2663 } 2664 2665 static inline int is_file(struct inode *inode, int type) 2666 { 2667 return F2FS_I(inode)->i_advise & type; 2668 } 2669 2670 static inline void set_file(struct inode *inode, int type) 2671 { 2672 F2FS_I(inode)->i_advise |= type; 2673 f2fs_mark_inode_dirty_sync(inode, true); 2674 } 2675 2676 static inline void clear_file(struct inode *inode, int type) 2677 { 2678 F2FS_I(inode)->i_advise &= ~type; 2679 f2fs_mark_inode_dirty_sync(inode, true); 2680 } 2681 2682 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2683 { 2684 bool ret; 2685 2686 if (dsync) { 2687 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2688 2689 spin_lock(&sbi->inode_lock[DIRTY_META]); 2690 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2691 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2692 return ret; 2693 } 2694 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2695 file_keep_isize(inode) || 2696 i_size_read(inode) & ~PAGE_MASK) 2697 return false; 2698 2699 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 2700 return false; 2701 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 2702 return false; 2703 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 2704 return false; 2705 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 2706 &F2FS_I(inode)->i_crtime)) 2707 return false; 2708 2709 down_read(&F2FS_I(inode)->i_sem); 2710 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2711 up_read(&F2FS_I(inode)->i_sem); 2712 2713 return ret; 2714 } 2715 2716 static inline bool f2fs_readonly(struct super_block *sb) 2717 { 2718 return sb_rdonly(sb); 2719 } 2720 2721 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2722 { 2723 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2724 } 2725 2726 static inline bool is_dot_dotdot(const struct qstr *str) 2727 { 2728 if (str->len == 1 && str->name[0] == '.') 2729 return true; 2730 2731 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2732 return true; 2733 2734 return false; 2735 } 2736 2737 static inline bool f2fs_may_extent_tree(struct inode *inode) 2738 { 2739 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2740 2741 if (!test_opt(sbi, EXTENT_CACHE) || 2742 is_inode_flag_set(inode, FI_NO_EXTENT)) 2743 return false; 2744 2745 /* 2746 * for recovered files during mount do not create extents 2747 * if shrinker is not registered. 2748 */ 2749 if (list_empty(&sbi->s_list)) 2750 return false; 2751 2752 return S_ISREG(inode->i_mode); 2753 } 2754 2755 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2756 size_t size, gfp_t flags) 2757 { 2758 void *ret; 2759 2760 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2761 f2fs_show_injection_info(FAULT_KMALLOC); 2762 return NULL; 2763 } 2764 2765 ret = kmalloc(size, flags); 2766 if (ret) 2767 return ret; 2768 2769 return kvmalloc(size, flags); 2770 } 2771 2772 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2773 size_t size, gfp_t flags) 2774 { 2775 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2776 } 2777 2778 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2779 size_t size, gfp_t flags) 2780 { 2781 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2782 f2fs_show_injection_info(FAULT_KVMALLOC); 2783 return NULL; 2784 } 2785 2786 return kvmalloc(size, flags); 2787 } 2788 2789 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2790 size_t size, gfp_t flags) 2791 { 2792 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2793 } 2794 2795 static inline int get_extra_isize(struct inode *inode) 2796 { 2797 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2798 } 2799 2800 static inline int get_inline_xattr_addrs(struct inode *inode) 2801 { 2802 return F2FS_I(inode)->i_inline_xattr_size; 2803 } 2804 2805 #define f2fs_get_inode_mode(i) \ 2806 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2807 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2808 2809 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2810 (offsetof(struct f2fs_inode, i_extra_end) - \ 2811 offsetof(struct f2fs_inode, i_extra_isize)) \ 2812 2813 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2814 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2815 ((offsetof(typeof(*(f2fs_inode)), field) + \ 2816 sizeof((f2fs_inode)->field)) \ 2817 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 2818 2819 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2820 { 2821 int i; 2822 2823 spin_lock(&sbi->iostat_lock); 2824 for (i = 0; i < NR_IO_TYPE; i++) 2825 sbi->write_iostat[i] = 0; 2826 spin_unlock(&sbi->iostat_lock); 2827 } 2828 2829 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2830 enum iostat_type type, unsigned long long io_bytes) 2831 { 2832 if (!sbi->iostat_enable) 2833 return; 2834 spin_lock(&sbi->iostat_lock); 2835 sbi->write_iostat[type] += io_bytes; 2836 2837 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2838 sbi->write_iostat[APP_BUFFERED_IO] = 2839 sbi->write_iostat[APP_WRITE_IO] - 2840 sbi->write_iostat[APP_DIRECT_IO]; 2841 spin_unlock(&sbi->iostat_lock); 2842 } 2843 2844 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 2845 2846 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 2847 2848 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 2849 block_t blkaddr, int type); 2850 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 2851 block_t blkaddr, int type) 2852 { 2853 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 2854 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 2855 blkaddr, type); 2856 f2fs_bug_on(sbi, 1); 2857 } 2858 } 2859 2860 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 2861 { 2862 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2863 return false; 2864 return true; 2865 } 2866 2867 static inline void f2fs_set_page_private(struct page *page, 2868 unsigned long data) 2869 { 2870 if (PagePrivate(page)) 2871 return; 2872 2873 get_page(page); 2874 SetPagePrivate(page); 2875 set_page_private(page, data); 2876 } 2877 2878 static inline void f2fs_clear_page_private(struct page *page) 2879 { 2880 if (!PagePrivate(page)) 2881 return; 2882 2883 set_page_private(page, 0); 2884 ClearPagePrivate(page); 2885 f2fs_put_page(page, 0); 2886 } 2887 2888 /* 2889 * file.c 2890 */ 2891 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2892 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 2893 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 2894 int f2fs_truncate(struct inode *inode); 2895 int f2fs_getattr(const struct path *path, struct kstat *stat, 2896 u32 request_mask, unsigned int flags); 2897 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2898 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2899 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2900 int f2fs_precache_extents(struct inode *inode); 2901 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2902 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2903 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 2904 int f2fs_pin_file_control(struct inode *inode, bool inc); 2905 2906 /* 2907 * inode.c 2908 */ 2909 void f2fs_set_inode_flags(struct inode *inode); 2910 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2911 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2912 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2913 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2914 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2915 void f2fs_update_inode(struct inode *inode, struct page *node_page); 2916 void f2fs_update_inode_page(struct inode *inode); 2917 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2918 void f2fs_evict_inode(struct inode *inode); 2919 void f2fs_handle_failed_inode(struct inode *inode); 2920 2921 /* 2922 * namei.c 2923 */ 2924 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2925 bool hot, bool set); 2926 struct dentry *f2fs_get_parent(struct dentry *child); 2927 2928 /* 2929 * dir.c 2930 */ 2931 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 2932 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname, 2933 f2fs_hash_t namehash, int *max_slots, 2934 struct f2fs_dentry_ptr *d); 2935 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2936 unsigned int start_pos, struct fscrypt_str *fstr); 2937 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 2938 struct f2fs_dentry_ptr *d); 2939 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 2940 const struct qstr *new_name, 2941 const struct qstr *orig_name, struct page *dpage); 2942 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 2943 unsigned int current_depth); 2944 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 2945 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2946 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2947 struct fscrypt_name *fname, struct page **res_page); 2948 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2949 const struct qstr *child, struct page **res_page); 2950 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2951 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2952 struct page **page); 2953 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2954 struct page *page, struct inode *inode); 2955 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2956 const struct qstr *name, f2fs_hash_t name_hash, 2957 unsigned int bit_pos); 2958 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2959 const struct qstr *orig_name, 2960 struct inode *inode, nid_t ino, umode_t mode); 2961 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname, 2962 struct inode *inode, nid_t ino, umode_t mode); 2963 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 2964 struct inode *inode, nid_t ino, umode_t mode); 2965 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2966 struct inode *dir, struct inode *inode); 2967 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2968 bool f2fs_empty_dir(struct inode *dir); 2969 2970 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2971 { 2972 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2973 inode, inode->i_ino, inode->i_mode); 2974 } 2975 2976 /* 2977 * super.c 2978 */ 2979 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2980 void f2fs_inode_synced(struct inode *inode); 2981 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2982 int f2fs_quota_sync(struct super_block *sb, int type); 2983 void f2fs_quota_off_umount(struct super_block *sb); 2984 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2985 int f2fs_sync_fs(struct super_block *sb, int sync); 2986 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 2987 2988 /* 2989 * hash.c 2990 */ 2991 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2992 struct fscrypt_name *fname); 2993 2994 /* 2995 * node.c 2996 */ 2997 struct dnode_of_data; 2998 struct node_info; 2999 3000 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3001 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3002 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3003 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3004 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3005 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3006 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3007 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3008 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3009 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3010 struct node_info *ni); 3011 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3012 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3013 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3014 int f2fs_truncate_xattr_node(struct inode *inode); 3015 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3016 unsigned int seq_id); 3017 int f2fs_remove_inode_page(struct inode *inode); 3018 struct page *f2fs_new_inode_page(struct inode *inode); 3019 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3020 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3021 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3022 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3023 int f2fs_move_node_page(struct page *node_page, int gc_type); 3024 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3025 struct writeback_control *wbc, bool atomic, 3026 unsigned int *seq_id); 3027 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3028 struct writeback_control *wbc, 3029 bool do_balance, enum iostat_type io_type); 3030 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3031 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3032 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3033 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3034 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3035 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3036 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3037 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3038 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3039 unsigned int segno, struct f2fs_summary_block *sum); 3040 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3041 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3042 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3043 int __init f2fs_create_node_manager_caches(void); 3044 void f2fs_destroy_node_manager_caches(void); 3045 3046 /* 3047 * segment.c 3048 */ 3049 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3050 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 3051 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 3052 void f2fs_drop_inmem_pages(struct inode *inode); 3053 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 3054 int f2fs_commit_inmem_pages(struct inode *inode); 3055 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3056 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 3057 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3058 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3059 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3060 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3061 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3062 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3063 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3064 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3065 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3066 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3067 struct cp_control *cpc); 3068 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3069 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3070 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3071 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3072 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3073 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3074 unsigned int start, unsigned int end); 3075 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3076 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3077 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3078 struct cp_control *cpc); 3079 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3080 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3081 block_t blk_addr); 3082 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3083 enum iostat_type io_type); 3084 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3085 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3086 struct f2fs_io_info *fio); 3087 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3088 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3089 block_t old_blkaddr, block_t new_blkaddr, 3090 bool recover_curseg, bool recover_newaddr); 3091 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3092 block_t old_addr, block_t new_addr, 3093 unsigned char version, bool recover_curseg, 3094 bool recover_newaddr); 3095 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3096 block_t old_blkaddr, block_t *new_blkaddr, 3097 struct f2fs_summary *sum, int type, 3098 struct f2fs_io_info *fio, bool add_list); 3099 void f2fs_wait_on_page_writeback(struct page *page, 3100 enum page_type type, bool ordered, bool locked); 3101 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3102 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3103 block_t len); 3104 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3105 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3106 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3107 unsigned int val, int alloc); 3108 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3109 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3110 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3111 int __init f2fs_create_segment_manager_caches(void); 3112 void f2fs_destroy_segment_manager_caches(void); 3113 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3114 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3115 enum page_type type, enum temp_type temp); 3116 3117 /* 3118 * checkpoint.c 3119 */ 3120 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 3121 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3122 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3123 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index); 3124 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3125 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3126 block_t blkaddr, int type); 3127 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3128 int type, bool sync); 3129 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 3130 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3131 long nr_to_write, enum iostat_type io_type); 3132 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3133 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3134 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3135 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3136 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3137 unsigned int devidx, int type); 3138 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3139 unsigned int devidx, int type); 3140 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3141 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3142 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3143 void f2fs_add_orphan_inode(struct inode *inode); 3144 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3145 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3146 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3147 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 3148 void f2fs_remove_dirty_inode(struct inode *inode); 3149 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 3150 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi); 3151 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3152 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3153 int __init f2fs_create_checkpoint_caches(void); 3154 void f2fs_destroy_checkpoint_caches(void); 3155 3156 /* 3157 * data.c 3158 */ 3159 int f2fs_init_post_read_processing(void); 3160 void f2fs_destroy_post_read_processing(void); 3161 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3162 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3163 struct inode *inode, struct page *page, 3164 nid_t ino, enum page_type type); 3165 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3166 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3167 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3168 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3169 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3170 block_t blk_addr, struct bio *bio); 3171 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3172 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3173 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3174 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3175 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3176 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3177 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3178 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3179 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3180 int op_flags, bool for_write); 3181 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3182 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3183 bool for_write); 3184 struct page *f2fs_get_new_data_page(struct inode *inode, 3185 struct page *ipage, pgoff_t index, bool new_i_size); 3186 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3187 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3188 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3189 int create, int flag); 3190 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3191 u64 start, u64 len); 3192 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3193 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3194 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3195 unsigned int length); 3196 int f2fs_release_page(struct page *page, gfp_t wait); 3197 #ifdef CONFIG_MIGRATION 3198 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3199 struct page *page, enum migrate_mode mode); 3200 #endif 3201 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3202 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3203 3204 /* 3205 * gc.c 3206 */ 3207 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3208 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3209 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3210 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 3211 unsigned int segno); 3212 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3213 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3214 3215 /* 3216 * recovery.c 3217 */ 3218 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3219 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3220 3221 /* 3222 * debug.c 3223 */ 3224 #ifdef CONFIG_F2FS_STAT_FS 3225 struct f2fs_stat_info { 3226 struct list_head stat_list; 3227 struct f2fs_sb_info *sbi; 3228 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3229 int main_area_segs, main_area_sections, main_area_zones; 3230 unsigned long long hit_largest, hit_cached, hit_rbtree; 3231 unsigned long long hit_total, total_ext; 3232 int ext_tree, zombie_tree, ext_node; 3233 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3234 int ndirty_data, ndirty_qdata; 3235 int inmem_pages; 3236 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3237 int nats, dirty_nats, sits, dirty_sits; 3238 int free_nids, avail_nids, alloc_nids; 3239 int total_count, utilization; 3240 int bg_gc, nr_wb_cp_data, nr_wb_data; 3241 int nr_rd_data, nr_rd_node, nr_rd_meta; 3242 int nr_dio_read, nr_dio_write; 3243 unsigned int io_skip_bggc, other_skip_bggc; 3244 int nr_flushing, nr_flushed, flush_list_empty; 3245 int nr_discarding, nr_discarded; 3246 int nr_discard_cmd; 3247 unsigned int undiscard_blks; 3248 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3249 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3250 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3251 unsigned int bimodal, avg_vblocks; 3252 int util_free, util_valid, util_invalid; 3253 int rsvd_segs, overp_segs; 3254 int dirty_count, node_pages, meta_pages; 3255 int prefree_count, call_count, cp_count, bg_cp_count; 3256 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3257 int bg_node_segs, bg_data_segs; 3258 int tot_blks, data_blks, node_blks; 3259 int bg_data_blks, bg_node_blks; 3260 unsigned long long skipped_atomic_files[2]; 3261 int curseg[NR_CURSEG_TYPE]; 3262 int cursec[NR_CURSEG_TYPE]; 3263 int curzone[NR_CURSEG_TYPE]; 3264 3265 unsigned int meta_count[META_MAX]; 3266 unsigned int segment_count[2]; 3267 unsigned int block_count[2]; 3268 unsigned int inplace_count; 3269 unsigned long long base_mem, cache_mem, page_mem; 3270 }; 3271 3272 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3273 { 3274 return (struct f2fs_stat_info *)sbi->stat_info; 3275 } 3276 3277 #define stat_inc_cp_count(si) ((si)->cp_count++) 3278 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3279 #define stat_inc_call_count(si) ((si)->call_count++) 3280 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 3281 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3282 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3283 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3284 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3285 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3286 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3287 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3288 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3289 #define stat_inc_inline_xattr(inode) \ 3290 do { \ 3291 if (f2fs_has_inline_xattr(inode)) \ 3292 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3293 } while (0) 3294 #define stat_dec_inline_xattr(inode) \ 3295 do { \ 3296 if (f2fs_has_inline_xattr(inode)) \ 3297 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3298 } while (0) 3299 #define stat_inc_inline_inode(inode) \ 3300 do { \ 3301 if (f2fs_has_inline_data(inode)) \ 3302 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3303 } while (0) 3304 #define stat_dec_inline_inode(inode) \ 3305 do { \ 3306 if (f2fs_has_inline_data(inode)) \ 3307 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3308 } while (0) 3309 #define stat_inc_inline_dir(inode) \ 3310 do { \ 3311 if (f2fs_has_inline_dentry(inode)) \ 3312 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3313 } while (0) 3314 #define stat_dec_inline_dir(inode) \ 3315 do { \ 3316 if (f2fs_has_inline_dentry(inode)) \ 3317 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3318 } while (0) 3319 #define stat_inc_meta_count(sbi, blkaddr) \ 3320 do { \ 3321 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3322 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3323 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3324 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3325 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3326 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3327 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3328 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3329 } while (0) 3330 #define stat_inc_seg_type(sbi, curseg) \ 3331 ((sbi)->segment_count[(curseg)->alloc_type]++) 3332 #define stat_inc_block_count(sbi, curseg) \ 3333 ((sbi)->block_count[(curseg)->alloc_type]++) 3334 #define stat_inc_inplace_blocks(sbi) \ 3335 (atomic_inc(&(sbi)->inplace_count)) 3336 #define stat_inc_atomic_write(inode) \ 3337 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 3338 #define stat_dec_atomic_write(inode) \ 3339 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 3340 #define stat_update_max_atomic_write(inode) \ 3341 do { \ 3342 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3343 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3344 if (cur > max) \ 3345 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3346 } while (0) 3347 #define stat_inc_volatile_write(inode) \ 3348 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3349 #define stat_dec_volatile_write(inode) \ 3350 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3351 #define stat_update_max_volatile_write(inode) \ 3352 do { \ 3353 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3354 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3355 if (cur > max) \ 3356 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3357 } while (0) 3358 #define stat_inc_seg_count(sbi, type, gc_type) \ 3359 do { \ 3360 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3361 si->tot_segs++; \ 3362 if ((type) == SUM_TYPE_DATA) { \ 3363 si->data_segs++; \ 3364 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3365 } else { \ 3366 si->node_segs++; \ 3367 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3368 } \ 3369 } while (0) 3370 3371 #define stat_inc_tot_blk_count(si, blks) \ 3372 ((si)->tot_blks += (blks)) 3373 3374 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3375 do { \ 3376 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3377 stat_inc_tot_blk_count(si, blks); \ 3378 si->data_blks += (blks); \ 3379 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3380 } while (0) 3381 3382 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3383 do { \ 3384 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3385 stat_inc_tot_blk_count(si, blks); \ 3386 si->node_blks += (blks); \ 3387 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3388 } while (0) 3389 3390 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3391 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3392 void __init f2fs_create_root_stats(void); 3393 void f2fs_destroy_root_stats(void); 3394 #else 3395 #define stat_inc_cp_count(si) do { } while (0) 3396 #define stat_inc_bg_cp_count(si) do { } while (0) 3397 #define stat_inc_call_count(si) do { } while (0) 3398 #define stat_inc_bggc_count(si) do { } while (0) 3399 #define stat_io_skip_bggc_count(sbi) do { } while (0) 3400 #define stat_other_skip_bggc_count(sbi) do { } while (0) 3401 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3402 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3403 #define stat_inc_total_hit(sb) do { } while (0) 3404 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3405 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3406 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3407 #define stat_inc_inline_xattr(inode) do { } while (0) 3408 #define stat_dec_inline_xattr(inode) do { } while (0) 3409 #define stat_inc_inline_inode(inode) do { } while (0) 3410 #define stat_dec_inline_inode(inode) do { } while (0) 3411 #define stat_inc_inline_dir(inode) do { } while (0) 3412 #define stat_dec_inline_dir(inode) do { } while (0) 3413 #define stat_inc_atomic_write(inode) do { } while (0) 3414 #define stat_dec_atomic_write(inode) do { } while (0) 3415 #define stat_update_max_atomic_write(inode) do { } while (0) 3416 #define stat_inc_volatile_write(inode) do { } while (0) 3417 #define stat_dec_volatile_write(inode) do { } while (0) 3418 #define stat_update_max_volatile_write(inode) do { } while (0) 3419 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 3420 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3421 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3422 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3423 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3424 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3425 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3426 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3427 3428 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3429 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3430 static inline void __init f2fs_create_root_stats(void) { } 3431 static inline void f2fs_destroy_root_stats(void) { } 3432 #endif 3433 3434 extern const struct file_operations f2fs_dir_operations; 3435 extern const struct file_operations f2fs_file_operations; 3436 extern const struct inode_operations f2fs_file_inode_operations; 3437 extern const struct address_space_operations f2fs_dblock_aops; 3438 extern const struct address_space_operations f2fs_node_aops; 3439 extern const struct address_space_operations f2fs_meta_aops; 3440 extern const struct inode_operations f2fs_dir_inode_operations; 3441 extern const struct inode_operations f2fs_symlink_inode_operations; 3442 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3443 extern const struct inode_operations f2fs_special_inode_operations; 3444 extern struct kmem_cache *f2fs_inode_entry_slab; 3445 3446 /* 3447 * inline.c 3448 */ 3449 bool f2fs_may_inline_data(struct inode *inode); 3450 bool f2fs_may_inline_dentry(struct inode *inode); 3451 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3452 void f2fs_truncate_inline_inode(struct inode *inode, 3453 struct page *ipage, u64 from); 3454 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3455 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3456 int f2fs_convert_inline_inode(struct inode *inode); 3457 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3458 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3459 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3460 struct fscrypt_name *fname, struct page **res_page); 3461 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3462 struct page *ipage); 3463 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3464 const struct qstr *orig_name, 3465 struct inode *inode, nid_t ino, umode_t mode); 3466 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3467 struct page *page, struct inode *dir, 3468 struct inode *inode); 3469 bool f2fs_empty_inline_dir(struct inode *dir); 3470 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3471 struct fscrypt_str *fstr); 3472 int f2fs_inline_data_fiemap(struct inode *inode, 3473 struct fiemap_extent_info *fieinfo, 3474 __u64 start, __u64 len); 3475 3476 /* 3477 * shrinker.c 3478 */ 3479 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3480 struct shrink_control *sc); 3481 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3482 struct shrink_control *sc); 3483 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3484 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3485 3486 /* 3487 * extent_cache.c 3488 */ 3489 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 3490 struct rb_entry *cached_re, unsigned int ofs); 3491 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3492 struct rb_root_cached *root, 3493 struct rb_node **parent, 3494 unsigned int ofs, bool *leftmost); 3495 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 3496 struct rb_entry *cached_re, unsigned int ofs, 3497 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3498 struct rb_node ***insert_p, struct rb_node **insert_parent, 3499 bool force, bool *leftmost); 3500 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3501 struct rb_root_cached *root); 3502 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3503 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3504 void f2fs_drop_extent_tree(struct inode *inode); 3505 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3506 void f2fs_destroy_extent_tree(struct inode *inode); 3507 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3508 struct extent_info *ei); 3509 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3510 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3511 pgoff_t fofs, block_t blkaddr, unsigned int len); 3512 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3513 int __init f2fs_create_extent_cache(void); 3514 void f2fs_destroy_extent_cache(void); 3515 3516 /* 3517 * sysfs.c 3518 */ 3519 int __init f2fs_init_sysfs(void); 3520 void f2fs_exit_sysfs(void); 3521 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3522 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3523 3524 /* 3525 * crypto support 3526 */ 3527 static inline bool f2fs_encrypted_file(struct inode *inode) 3528 { 3529 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 3530 } 3531 3532 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3533 { 3534 #ifdef CONFIG_FS_ENCRYPTION 3535 file_set_encrypt(inode); 3536 f2fs_set_inode_flags(inode); 3537 #endif 3538 } 3539 3540 /* 3541 * Returns true if the reads of the inode's data need to undergo some 3542 * postprocessing step, like decryption or authenticity verification. 3543 */ 3544 static inline bool f2fs_post_read_required(struct inode *inode) 3545 { 3546 return f2fs_encrypted_file(inode); 3547 } 3548 3549 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3550 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 3551 { \ 3552 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 3553 } 3554 3555 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3556 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3557 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3558 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3559 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3560 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3561 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3562 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3563 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3564 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 3565 3566 #ifdef CONFIG_BLK_DEV_ZONED 3567 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 3568 block_t blkaddr) 3569 { 3570 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3571 3572 return test_bit(zno, FDEV(devi).blkz_seq); 3573 } 3574 #endif 3575 3576 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 3577 { 3578 return f2fs_sb_has_blkzoned(sbi); 3579 } 3580 3581 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 3582 { 3583 return blk_queue_discard(bdev_get_queue(bdev)) || 3584 bdev_is_zoned(bdev); 3585 } 3586 3587 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 3588 { 3589 int i; 3590 3591 if (!f2fs_is_multi_device(sbi)) 3592 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 3593 3594 for (i = 0; i < sbi->s_ndevs; i++) 3595 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 3596 return true; 3597 return false; 3598 } 3599 3600 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 3601 { 3602 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 3603 f2fs_hw_should_discard(sbi); 3604 } 3605 3606 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 3607 { 3608 int i; 3609 3610 if (!f2fs_is_multi_device(sbi)) 3611 return bdev_read_only(sbi->sb->s_bdev); 3612 3613 for (i = 0; i < sbi->s_ndevs; i++) 3614 if (bdev_read_only(FDEV(i).bdev)) 3615 return true; 3616 return false; 3617 } 3618 3619 3620 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3621 { 3622 clear_opt(sbi, ADAPTIVE); 3623 clear_opt(sbi, LFS); 3624 3625 switch (mt) { 3626 case F2FS_MOUNT_ADAPTIVE: 3627 set_opt(sbi, ADAPTIVE); 3628 break; 3629 case F2FS_MOUNT_LFS: 3630 set_opt(sbi, LFS); 3631 break; 3632 } 3633 } 3634 3635 static inline bool f2fs_may_encrypt(struct inode *inode) 3636 { 3637 #ifdef CONFIG_FS_ENCRYPTION 3638 umode_t mode = inode->i_mode; 3639 3640 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3641 #else 3642 return false; 3643 #endif 3644 } 3645 3646 static inline int block_unaligned_IO(struct inode *inode, 3647 struct kiocb *iocb, struct iov_iter *iter) 3648 { 3649 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits); 3650 unsigned int blocksize_mask = (1 << i_blkbits) - 1; 3651 loff_t offset = iocb->ki_pos; 3652 unsigned long align = offset | iov_iter_alignment(iter); 3653 3654 return align & blocksize_mask; 3655 } 3656 3657 static inline int allow_outplace_dio(struct inode *inode, 3658 struct kiocb *iocb, struct iov_iter *iter) 3659 { 3660 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3661 int rw = iov_iter_rw(iter); 3662 3663 return (test_opt(sbi, LFS) && (rw == WRITE) && 3664 !block_unaligned_IO(inode, iocb, iter)); 3665 } 3666 3667 static inline bool f2fs_force_buffered_io(struct inode *inode, 3668 struct kiocb *iocb, struct iov_iter *iter) 3669 { 3670 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3671 int rw = iov_iter_rw(iter); 3672 3673 if (f2fs_post_read_required(inode)) 3674 return true; 3675 if (f2fs_is_multi_device(sbi)) 3676 return true; 3677 /* 3678 * for blkzoned device, fallback direct IO to buffered IO, so 3679 * all IOs can be serialized by log-structured write. 3680 */ 3681 if (f2fs_sb_has_blkzoned(sbi)) 3682 return true; 3683 if (test_opt(sbi, LFS) && (rw == WRITE) && 3684 block_unaligned_IO(inode, iocb, iter)) 3685 return true; 3686 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) && 3687 !(inode->i_flags & S_SWAPFILE)) 3688 return true; 3689 3690 return false; 3691 } 3692 3693 #ifdef CONFIG_F2FS_FAULT_INJECTION 3694 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 3695 unsigned int type); 3696 #else 3697 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 3698 #endif 3699 3700 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 3701 { 3702 #ifdef CONFIG_QUOTA 3703 if (f2fs_sb_has_quota_ino(sbi)) 3704 return true; 3705 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 3706 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 3707 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 3708 return true; 3709 #endif 3710 return false; 3711 } 3712 3713 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 3714 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 3715 3716 #endif /* _LINUX_F2FS_H */ 3717