xref: /openbmc/linux/fs/f2fs/f2fs.h (revision e52a6321)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #include <linux/fscrypt.h>
28 
29 #ifdef CONFIG_F2FS_CHECK_FS
30 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
31 #else
32 #define f2fs_bug_on(sbi, condition)					\
33 	do {								\
34 		if (unlikely(condition)) {				\
35 			WARN_ON(1);					\
36 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
37 		}							\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_MAX,
58 };
59 
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
62 
63 struct f2fs_fault_info {
64 	atomic_t inject_ops;
65 	unsigned int inject_rate;
66 	unsigned int inject_type;
67 };
68 
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72 
73 /*
74  * For mount options
75  */
76 #define F2FS_MOUNT_BG_GC		0x00000001
77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
78 #define F2FS_MOUNT_DISCARD		0x00000004
79 #define F2FS_MOUNT_NOHEAP		0x00000008
80 #define F2FS_MOUNT_XATTR_USER		0x00000010
81 #define F2FS_MOUNT_POSIX_ACL		0x00000020
82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
83 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
84 #define F2FS_MOUNT_INLINE_DATA		0x00000100
85 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
86 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
87 #define F2FS_MOUNT_NOBARRIER		0x00000800
88 #define F2FS_MOUNT_FASTBOOT		0x00001000
89 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
90 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
91 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93 #define F2FS_MOUNT_ADAPTIVE		0x00020000
94 #define F2FS_MOUNT_LFS			0x00040000
95 #define F2FS_MOUNT_USRQUOTA		0x00080000
96 #define F2FS_MOUNT_GRPQUOTA		0x00100000
97 #define F2FS_MOUNT_PRJQUOTA		0x00200000
98 #define F2FS_MOUNT_QUOTA		0x00400000
99 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
100 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
101 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 struct f2fs_mount_info {
119 	unsigned int opt;
120 	int write_io_size_bits;		/* Write IO size bits */
121 	block_t root_reserved_blocks;	/* root reserved blocks */
122 	kuid_t s_resuid;		/* reserved blocks for uid */
123 	kgid_t s_resgid;		/* reserved blocks for gid */
124 	int active_logs;		/* # of active logs */
125 	int inline_xattr_size;		/* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 	struct f2fs_fault_info fault_info;	/* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 	/* Names of quota files with journalled quota */
131 	char *s_qf_names[MAXQUOTAS];
132 	int s_jquota_fmt;			/* Format of quota to use */
133 #endif
134 	/* For which write hints are passed down to block layer */
135 	int whint_mode;
136 	int alloc_mode;			/* segment allocation policy */
137 	int fsync_mode;			/* fsync policy */
138 	bool test_dummy_encryption;	/* test dummy encryption */
139 	block_t unusable_cap;		/* Amount of space allowed to be
140 					 * unusable when disabling checkpoint
141 					 */
142 };
143 
144 #define F2FS_FEATURE_ENCRYPT		0x0001
145 #define F2FS_FEATURE_BLKZONED		0x0002
146 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
147 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
148 #define F2FS_FEATURE_PRJQUOTA		0x0010
149 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
150 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
151 #define F2FS_FEATURE_QUOTA_INO		0x0080
152 #define F2FS_FEATURE_INODE_CRTIME	0x0100
153 #define F2FS_FEATURE_LOST_FOUND		0x0200
154 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
155 #define F2FS_FEATURE_SB_CHKSUM		0x0800
156 
157 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
158 	((raw_super->feature & cpu_to_le32(mask)) != 0)
159 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
160 #define F2FS_SET_FEATURE(sbi, mask)					\
161 	(sbi->raw_super->feature |= cpu_to_le32(mask))
162 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
163 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
164 
165 /*
166  * Default values for user and/or group using reserved blocks
167  */
168 #define	F2FS_DEF_RESUID		0
169 #define	F2FS_DEF_RESGID		0
170 
171 /*
172  * For checkpoint manager
173  */
174 enum {
175 	NAT_BITMAP,
176 	SIT_BITMAP
177 };
178 
179 #define	CP_UMOUNT	0x00000001
180 #define	CP_FASTBOOT	0x00000002
181 #define	CP_SYNC		0x00000004
182 #define	CP_RECOVERY	0x00000008
183 #define	CP_DISCARD	0x00000010
184 #define CP_TRIMMED	0x00000020
185 #define CP_PAUSE	0x00000040
186 
187 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
188 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
189 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
190 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
191 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
192 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
193 #define DEF_CP_INTERVAL			60	/* 60 secs */
194 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
195 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
196 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
197 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
198 
199 struct cp_control {
200 	int reason;
201 	__u64 trim_start;
202 	__u64 trim_end;
203 	__u64 trim_minlen;
204 };
205 
206 /*
207  * indicate meta/data type
208  */
209 enum {
210 	META_CP,
211 	META_NAT,
212 	META_SIT,
213 	META_SSA,
214 	META_MAX,
215 	META_POR,
216 	DATA_GENERIC,		/* check range only */
217 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
218 	DATA_GENERIC_ENHANCE_READ,	/*
219 					 * strong check on range and segment
220 					 * bitmap but no warning due to race
221 					 * condition of read on truncated area
222 					 * by extent_cache
223 					 */
224 	META_GENERIC,
225 };
226 
227 /* for the list of ino */
228 enum {
229 	ORPHAN_INO,		/* for orphan ino list */
230 	APPEND_INO,		/* for append ino list */
231 	UPDATE_INO,		/* for update ino list */
232 	TRANS_DIR_INO,		/* for trasactions dir ino list */
233 	FLUSH_INO,		/* for multiple device flushing */
234 	MAX_INO_ENTRY,		/* max. list */
235 };
236 
237 struct ino_entry {
238 	struct list_head list;		/* list head */
239 	nid_t ino;			/* inode number */
240 	unsigned int dirty_device;	/* dirty device bitmap */
241 };
242 
243 /* for the list of inodes to be GCed */
244 struct inode_entry {
245 	struct list_head list;	/* list head */
246 	struct inode *inode;	/* vfs inode pointer */
247 };
248 
249 struct fsync_node_entry {
250 	struct list_head list;	/* list head */
251 	struct page *page;	/* warm node page pointer */
252 	unsigned int seq_id;	/* sequence id */
253 };
254 
255 /* for the bitmap indicate blocks to be discarded */
256 struct discard_entry {
257 	struct list_head list;	/* list head */
258 	block_t start_blkaddr;	/* start blockaddr of current segment */
259 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
260 };
261 
262 /* default discard granularity of inner discard thread, unit: block count */
263 #define DEFAULT_DISCARD_GRANULARITY		16
264 
265 /* max discard pend list number */
266 #define MAX_PLIST_NUM		512
267 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
268 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
269 
270 enum {
271 	D_PREP,			/* initial */
272 	D_PARTIAL,		/* partially submitted */
273 	D_SUBMIT,		/* all submitted */
274 	D_DONE,			/* finished */
275 };
276 
277 struct discard_info {
278 	block_t lstart;			/* logical start address */
279 	block_t len;			/* length */
280 	block_t start;			/* actual start address in dev */
281 };
282 
283 struct discard_cmd {
284 	struct rb_node rb_node;		/* rb node located in rb-tree */
285 	union {
286 		struct {
287 			block_t lstart;	/* logical start address */
288 			block_t len;	/* length */
289 			block_t start;	/* actual start address in dev */
290 		};
291 		struct discard_info di;	/* discard info */
292 
293 	};
294 	struct list_head list;		/* command list */
295 	struct completion wait;		/* compleation */
296 	struct block_device *bdev;	/* bdev */
297 	unsigned short ref;		/* reference count */
298 	unsigned char state;		/* state */
299 	unsigned char queued;		/* queued discard */
300 	int error;			/* bio error */
301 	spinlock_t lock;		/* for state/bio_ref updating */
302 	unsigned short bio_ref;		/* bio reference count */
303 };
304 
305 enum {
306 	DPOLICY_BG,
307 	DPOLICY_FORCE,
308 	DPOLICY_FSTRIM,
309 	DPOLICY_UMOUNT,
310 	MAX_DPOLICY,
311 };
312 
313 struct discard_policy {
314 	int type;			/* type of discard */
315 	unsigned int min_interval;	/* used for candidates exist */
316 	unsigned int mid_interval;	/* used for device busy */
317 	unsigned int max_interval;	/* used for candidates not exist */
318 	unsigned int max_requests;	/* # of discards issued per round */
319 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
320 	bool io_aware;			/* issue discard in idle time */
321 	bool sync;			/* submit discard with REQ_SYNC flag */
322 	bool ordered;			/* issue discard by lba order */
323 	unsigned int granularity;	/* discard granularity */
324 	int timeout;			/* discard timeout for put_super */
325 };
326 
327 struct discard_cmd_control {
328 	struct task_struct *f2fs_issue_discard;	/* discard thread */
329 	struct list_head entry_list;		/* 4KB discard entry list */
330 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
331 	struct list_head wait_list;		/* store on-flushing entries */
332 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
333 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
334 	unsigned int discard_wake;		/* to wake up discard thread */
335 	struct mutex cmd_lock;
336 	unsigned int nr_discards;		/* # of discards in the list */
337 	unsigned int max_discards;		/* max. discards to be issued */
338 	unsigned int discard_granularity;	/* discard granularity */
339 	unsigned int undiscard_blks;		/* # of undiscard blocks */
340 	unsigned int next_pos;			/* next discard position */
341 	atomic_t issued_discard;		/* # of issued discard */
342 	atomic_t queued_discard;		/* # of queued discard */
343 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
344 	struct rb_root_cached root;		/* root of discard rb-tree */
345 	bool rbtree_check;			/* config for consistence check */
346 };
347 
348 /* for the list of fsync inodes, used only during recovery */
349 struct fsync_inode_entry {
350 	struct list_head list;	/* list head */
351 	struct inode *inode;	/* vfs inode pointer */
352 	block_t blkaddr;	/* block address locating the last fsync */
353 	block_t last_dentry;	/* block address locating the last dentry */
354 };
355 
356 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
357 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
358 
359 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
360 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
361 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
362 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
363 
364 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
365 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
366 
367 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
368 {
369 	int before = nats_in_cursum(journal);
370 
371 	journal->n_nats = cpu_to_le16(before + i);
372 	return before;
373 }
374 
375 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
376 {
377 	int before = sits_in_cursum(journal);
378 
379 	journal->n_sits = cpu_to_le16(before + i);
380 	return before;
381 }
382 
383 static inline bool __has_cursum_space(struct f2fs_journal *journal,
384 							int size, int type)
385 {
386 	if (type == NAT_JOURNAL)
387 		return size <= MAX_NAT_JENTRIES(journal);
388 	return size <= MAX_SIT_JENTRIES(journal);
389 }
390 
391 /*
392  * ioctl commands
393  */
394 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
395 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
396 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
397 
398 #define F2FS_IOCTL_MAGIC		0xf5
399 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
400 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
401 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
402 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
403 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
404 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
405 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
406 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
407 						struct f2fs_defragment)
408 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
409 						struct f2fs_move_range)
410 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
411 						struct f2fs_flush_device)
412 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
413 						struct f2fs_gc_range)
414 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
415 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
416 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
417 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
418 #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
419 
420 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
421 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
422 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
423 
424 /*
425  * should be same as XFS_IOC_GOINGDOWN.
426  * Flags for going down operation used by FS_IOC_GOINGDOWN
427  */
428 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
429 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
430 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
431 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
432 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
433 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
434 
435 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
436 /*
437  * ioctl commands in 32 bit emulation
438  */
439 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
440 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
441 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
442 #endif
443 
444 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
445 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
446 
447 struct f2fs_gc_range {
448 	u32 sync;
449 	u64 start;
450 	u64 len;
451 };
452 
453 struct f2fs_defragment {
454 	u64 start;
455 	u64 len;
456 };
457 
458 struct f2fs_move_range {
459 	u32 dst_fd;		/* destination fd */
460 	u64 pos_in;		/* start position in src_fd */
461 	u64 pos_out;		/* start position in dst_fd */
462 	u64 len;		/* size to move */
463 };
464 
465 struct f2fs_flush_device {
466 	u32 dev_num;		/* device number to flush */
467 	u32 segments;		/* # of segments to flush */
468 };
469 
470 /* for inline stuff */
471 #define DEF_INLINE_RESERVED_SIZE	1
472 static inline int get_extra_isize(struct inode *inode);
473 static inline int get_inline_xattr_addrs(struct inode *inode);
474 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
475 				(CUR_ADDRS_PER_INODE(inode) -		\
476 				get_inline_xattr_addrs(inode) -	\
477 				DEF_INLINE_RESERVED_SIZE))
478 
479 /* for inline dir */
480 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
481 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
482 				BITS_PER_BYTE + 1))
483 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
484 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
485 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
486 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
487 				NR_INLINE_DENTRY(inode) + \
488 				INLINE_DENTRY_BITMAP_SIZE(inode)))
489 
490 /*
491  * For INODE and NODE manager
492  */
493 /* for directory operations */
494 struct f2fs_dentry_ptr {
495 	struct inode *inode;
496 	void *bitmap;
497 	struct f2fs_dir_entry *dentry;
498 	__u8 (*filename)[F2FS_SLOT_LEN];
499 	int max;
500 	int nr_bitmap;
501 };
502 
503 static inline void make_dentry_ptr_block(struct inode *inode,
504 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
505 {
506 	d->inode = inode;
507 	d->max = NR_DENTRY_IN_BLOCK;
508 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
509 	d->bitmap = t->dentry_bitmap;
510 	d->dentry = t->dentry;
511 	d->filename = t->filename;
512 }
513 
514 static inline void make_dentry_ptr_inline(struct inode *inode,
515 					struct f2fs_dentry_ptr *d, void *t)
516 {
517 	int entry_cnt = NR_INLINE_DENTRY(inode);
518 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
519 	int reserved_size = INLINE_RESERVED_SIZE(inode);
520 
521 	d->inode = inode;
522 	d->max = entry_cnt;
523 	d->nr_bitmap = bitmap_size;
524 	d->bitmap = t;
525 	d->dentry = t + bitmap_size + reserved_size;
526 	d->filename = t + bitmap_size + reserved_size +
527 					SIZE_OF_DIR_ENTRY * entry_cnt;
528 }
529 
530 /*
531  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
532  * as its node offset to distinguish from index node blocks.
533  * But some bits are used to mark the node block.
534  */
535 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
536 				>> OFFSET_BIT_SHIFT)
537 enum {
538 	ALLOC_NODE,			/* allocate a new node page if needed */
539 	LOOKUP_NODE,			/* look up a node without readahead */
540 	LOOKUP_NODE_RA,			/*
541 					 * look up a node with readahead called
542 					 * by get_data_block.
543 					 */
544 };
545 
546 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
547 
548 /* maximum retry quota flush count */
549 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
550 
551 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
552 
553 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
554 
555 /* for in-memory extent cache entry */
556 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
557 
558 /* number of extent info in extent cache we try to shrink */
559 #define EXTENT_CACHE_SHRINK_NUMBER	128
560 
561 struct rb_entry {
562 	struct rb_node rb_node;		/* rb node located in rb-tree */
563 	unsigned int ofs;		/* start offset of the entry */
564 	unsigned int len;		/* length of the entry */
565 };
566 
567 struct extent_info {
568 	unsigned int fofs;		/* start offset in a file */
569 	unsigned int len;		/* length of the extent */
570 	u32 blk;			/* start block address of the extent */
571 };
572 
573 struct extent_node {
574 	struct rb_node rb_node;		/* rb node located in rb-tree */
575 	struct extent_info ei;		/* extent info */
576 	struct list_head list;		/* node in global extent list of sbi */
577 	struct extent_tree *et;		/* extent tree pointer */
578 };
579 
580 struct extent_tree {
581 	nid_t ino;			/* inode number */
582 	struct rb_root_cached root;	/* root of extent info rb-tree */
583 	struct extent_node *cached_en;	/* recently accessed extent node */
584 	struct extent_info largest;	/* largested extent info */
585 	struct list_head list;		/* to be used by sbi->zombie_list */
586 	rwlock_t lock;			/* protect extent info rb-tree */
587 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
588 	bool largest_updated;		/* largest extent updated */
589 };
590 
591 /*
592  * This structure is taken from ext4_map_blocks.
593  *
594  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
595  */
596 #define F2FS_MAP_NEW		(1 << BH_New)
597 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
598 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
599 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
600 				F2FS_MAP_UNWRITTEN)
601 
602 struct f2fs_map_blocks {
603 	block_t m_pblk;
604 	block_t m_lblk;
605 	unsigned int m_len;
606 	unsigned int m_flags;
607 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
608 	pgoff_t *m_next_extent;		/* point to next possible extent */
609 	int m_seg_type;
610 	bool m_may_create;		/* indicate it is from write path */
611 };
612 
613 /* for flag in get_data_block */
614 enum {
615 	F2FS_GET_BLOCK_DEFAULT,
616 	F2FS_GET_BLOCK_FIEMAP,
617 	F2FS_GET_BLOCK_BMAP,
618 	F2FS_GET_BLOCK_DIO,
619 	F2FS_GET_BLOCK_PRE_DIO,
620 	F2FS_GET_BLOCK_PRE_AIO,
621 	F2FS_GET_BLOCK_PRECACHE,
622 };
623 
624 /*
625  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
626  */
627 #define FADVISE_COLD_BIT	0x01
628 #define FADVISE_LOST_PINO_BIT	0x02
629 #define FADVISE_ENCRYPT_BIT	0x04
630 #define FADVISE_ENC_NAME_BIT	0x08
631 #define FADVISE_KEEP_SIZE_BIT	0x10
632 #define FADVISE_HOT_BIT		0x20
633 #define FADVISE_VERITY_BIT	0x40	/* reserved */
634 
635 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
636 
637 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
638 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
639 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
640 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
641 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
642 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
643 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
644 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
645 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
646 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
647 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
648 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
649 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
650 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
651 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
652 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
653 
654 #define DEF_DIR_LEVEL		0
655 
656 enum {
657 	GC_FAILURE_PIN,
658 	GC_FAILURE_ATOMIC,
659 	MAX_GC_FAILURE
660 };
661 
662 struct f2fs_inode_info {
663 	struct inode vfs_inode;		/* serve a vfs inode */
664 	unsigned long i_flags;		/* keep an inode flags for ioctl */
665 	unsigned char i_advise;		/* use to give file attribute hints */
666 	unsigned char i_dir_level;	/* use for dentry level for large dir */
667 	unsigned int i_current_depth;	/* only for directory depth */
668 	/* for gc failure statistic */
669 	unsigned int i_gc_failures[MAX_GC_FAILURE];
670 	unsigned int i_pino;		/* parent inode number */
671 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
672 
673 	/* Use below internally in f2fs*/
674 	unsigned long flags;		/* use to pass per-file flags */
675 	struct rw_semaphore i_sem;	/* protect fi info */
676 	atomic_t dirty_pages;		/* # of dirty pages */
677 	f2fs_hash_t chash;		/* hash value of given file name */
678 	unsigned int clevel;		/* maximum level of given file name */
679 	struct task_struct *task;	/* lookup and create consistency */
680 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
681 	nid_t i_xattr_nid;		/* node id that contains xattrs */
682 	loff_t	last_disk_size;		/* lastly written file size */
683 
684 #ifdef CONFIG_QUOTA
685 	struct dquot *i_dquot[MAXQUOTAS];
686 
687 	/* quota space reservation, managed internally by quota code */
688 	qsize_t i_reserved_quota;
689 #endif
690 	struct list_head dirty_list;	/* dirty list for dirs and files */
691 	struct list_head gdirty_list;	/* linked in global dirty list */
692 	struct list_head inmem_ilist;	/* list for inmem inodes */
693 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
694 	struct task_struct *inmem_task;	/* store inmemory task */
695 	struct mutex inmem_lock;	/* lock for inmemory pages */
696 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
697 
698 	/* avoid racing between foreground op and gc */
699 	struct rw_semaphore i_gc_rwsem[2];
700 	struct rw_semaphore i_mmap_sem;
701 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
702 
703 	int i_extra_isize;		/* size of extra space located in i_addr */
704 	kprojid_t i_projid;		/* id for project quota */
705 	int i_inline_xattr_size;	/* inline xattr size */
706 	struct timespec64 i_crtime;	/* inode creation time */
707 	struct timespec64 i_disk_time[4];/* inode disk times */
708 };
709 
710 static inline void get_extent_info(struct extent_info *ext,
711 					struct f2fs_extent *i_ext)
712 {
713 	ext->fofs = le32_to_cpu(i_ext->fofs);
714 	ext->blk = le32_to_cpu(i_ext->blk);
715 	ext->len = le32_to_cpu(i_ext->len);
716 }
717 
718 static inline void set_raw_extent(struct extent_info *ext,
719 					struct f2fs_extent *i_ext)
720 {
721 	i_ext->fofs = cpu_to_le32(ext->fofs);
722 	i_ext->blk = cpu_to_le32(ext->blk);
723 	i_ext->len = cpu_to_le32(ext->len);
724 }
725 
726 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
727 						u32 blk, unsigned int len)
728 {
729 	ei->fofs = fofs;
730 	ei->blk = blk;
731 	ei->len = len;
732 }
733 
734 static inline bool __is_discard_mergeable(struct discard_info *back,
735 			struct discard_info *front, unsigned int max_len)
736 {
737 	return (back->lstart + back->len == front->lstart) &&
738 		(back->len + front->len <= max_len);
739 }
740 
741 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
742 			struct discard_info *back, unsigned int max_len)
743 {
744 	return __is_discard_mergeable(back, cur, max_len);
745 }
746 
747 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
748 			struct discard_info *front, unsigned int max_len)
749 {
750 	return __is_discard_mergeable(cur, front, max_len);
751 }
752 
753 static inline bool __is_extent_mergeable(struct extent_info *back,
754 						struct extent_info *front)
755 {
756 	return (back->fofs + back->len == front->fofs &&
757 			back->blk + back->len == front->blk);
758 }
759 
760 static inline bool __is_back_mergeable(struct extent_info *cur,
761 						struct extent_info *back)
762 {
763 	return __is_extent_mergeable(back, cur);
764 }
765 
766 static inline bool __is_front_mergeable(struct extent_info *cur,
767 						struct extent_info *front)
768 {
769 	return __is_extent_mergeable(cur, front);
770 }
771 
772 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
773 static inline void __try_update_largest_extent(struct extent_tree *et,
774 						struct extent_node *en)
775 {
776 	if (en->ei.len > et->largest.len) {
777 		et->largest = en->ei;
778 		et->largest_updated = true;
779 	}
780 }
781 
782 /*
783  * For free nid management
784  */
785 enum nid_state {
786 	FREE_NID,		/* newly added to free nid list */
787 	PREALLOC_NID,		/* it is preallocated */
788 	MAX_NID_STATE,
789 };
790 
791 struct f2fs_nm_info {
792 	block_t nat_blkaddr;		/* base disk address of NAT */
793 	nid_t max_nid;			/* maximum possible node ids */
794 	nid_t available_nids;		/* # of available node ids */
795 	nid_t next_scan_nid;		/* the next nid to be scanned */
796 	unsigned int ram_thresh;	/* control the memory footprint */
797 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
798 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
799 
800 	/* NAT cache management */
801 	struct radix_tree_root nat_root;/* root of the nat entry cache */
802 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
803 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
804 	struct list_head nat_entries;	/* cached nat entry list (clean) */
805 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
806 	unsigned int nat_cnt;		/* the # of cached nat entries */
807 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
808 	unsigned int nat_blocks;	/* # of nat blocks */
809 
810 	/* free node ids management */
811 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
812 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
813 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
814 	spinlock_t nid_list_lock;	/* protect nid lists ops */
815 	struct mutex build_lock;	/* lock for build free nids */
816 	unsigned char **free_nid_bitmap;
817 	unsigned char *nat_block_bitmap;
818 	unsigned short *free_nid_count;	/* free nid count of NAT block */
819 
820 	/* for checkpoint */
821 	char *nat_bitmap;		/* NAT bitmap pointer */
822 
823 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
824 	unsigned char *nat_bits;	/* NAT bits blocks */
825 	unsigned char *full_nat_bits;	/* full NAT pages */
826 	unsigned char *empty_nat_bits;	/* empty NAT pages */
827 #ifdef CONFIG_F2FS_CHECK_FS
828 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
829 #endif
830 	int bitmap_size;		/* bitmap size */
831 };
832 
833 /*
834  * this structure is used as one of function parameters.
835  * all the information are dedicated to a given direct node block determined
836  * by the data offset in a file.
837  */
838 struct dnode_of_data {
839 	struct inode *inode;		/* vfs inode pointer */
840 	struct page *inode_page;	/* its inode page, NULL is possible */
841 	struct page *node_page;		/* cached direct node page */
842 	nid_t nid;			/* node id of the direct node block */
843 	unsigned int ofs_in_node;	/* data offset in the node page */
844 	bool inode_page_locked;		/* inode page is locked or not */
845 	bool node_changed;		/* is node block changed */
846 	char cur_level;			/* level of hole node page */
847 	char max_level;			/* level of current page located */
848 	block_t	data_blkaddr;		/* block address of the node block */
849 };
850 
851 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
852 		struct page *ipage, struct page *npage, nid_t nid)
853 {
854 	memset(dn, 0, sizeof(*dn));
855 	dn->inode = inode;
856 	dn->inode_page = ipage;
857 	dn->node_page = npage;
858 	dn->nid = nid;
859 }
860 
861 /*
862  * For SIT manager
863  *
864  * By default, there are 6 active log areas across the whole main area.
865  * When considering hot and cold data separation to reduce cleaning overhead,
866  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
867  * respectively.
868  * In the current design, you should not change the numbers intentionally.
869  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
870  * logs individually according to the underlying devices. (default: 6)
871  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
872  * data and 8 for node logs.
873  */
874 #define	NR_CURSEG_DATA_TYPE	(3)
875 #define NR_CURSEG_NODE_TYPE	(3)
876 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
877 
878 enum {
879 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
880 	CURSEG_WARM_DATA,	/* data blocks */
881 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
882 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
883 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
884 	CURSEG_COLD_NODE,	/* indirect node blocks */
885 	NO_CHECK_TYPE,
886 };
887 
888 struct flush_cmd {
889 	struct completion wait;
890 	struct llist_node llnode;
891 	nid_t ino;
892 	int ret;
893 };
894 
895 struct flush_cmd_control {
896 	struct task_struct *f2fs_issue_flush;	/* flush thread */
897 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
898 	atomic_t issued_flush;			/* # of issued flushes */
899 	atomic_t queued_flush;			/* # of queued flushes */
900 	struct llist_head issue_list;		/* list for command issue */
901 	struct llist_node *dispatch_list;	/* list for command dispatch */
902 };
903 
904 struct f2fs_sm_info {
905 	struct sit_info *sit_info;		/* whole segment information */
906 	struct free_segmap_info *free_info;	/* free segment information */
907 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
908 	struct curseg_info *curseg_array;	/* active segment information */
909 
910 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
911 
912 	block_t seg0_blkaddr;		/* block address of 0'th segment */
913 	block_t main_blkaddr;		/* start block address of main area */
914 	block_t ssa_blkaddr;		/* start block address of SSA area */
915 
916 	unsigned int segment_count;	/* total # of segments */
917 	unsigned int main_segments;	/* # of segments in main area */
918 	unsigned int reserved_segments;	/* # of reserved segments */
919 	unsigned int ovp_segments;	/* # of overprovision segments */
920 
921 	/* a threshold to reclaim prefree segments */
922 	unsigned int rec_prefree_segments;
923 
924 	/* for batched trimming */
925 	unsigned int trim_sections;		/* # of sections to trim */
926 
927 	struct list_head sit_entry_set;	/* sit entry set list */
928 
929 	unsigned int ipu_policy;	/* in-place-update policy */
930 	unsigned int min_ipu_util;	/* in-place-update threshold */
931 	unsigned int min_fsync_blocks;	/* threshold for fsync */
932 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
933 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
934 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
935 
936 	/* for flush command control */
937 	struct flush_cmd_control *fcc_info;
938 
939 	/* for discard command control */
940 	struct discard_cmd_control *dcc_info;
941 };
942 
943 /*
944  * For superblock
945  */
946 /*
947  * COUNT_TYPE for monitoring
948  *
949  * f2fs monitors the number of several block types such as on-writeback,
950  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
951  */
952 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
953 enum count_type {
954 	F2FS_DIRTY_DENTS,
955 	F2FS_DIRTY_DATA,
956 	F2FS_DIRTY_QDATA,
957 	F2FS_DIRTY_NODES,
958 	F2FS_DIRTY_META,
959 	F2FS_INMEM_PAGES,
960 	F2FS_DIRTY_IMETA,
961 	F2FS_WB_CP_DATA,
962 	F2FS_WB_DATA,
963 	F2FS_RD_DATA,
964 	F2FS_RD_NODE,
965 	F2FS_RD_META,
966 	F2FS_DIO_WRITE,
967 	F2FS_DIO_READ,
968 	NR_COUNT_TYPE,
969 };
970 
971 /*
972  * The below are the page types of bios used in submit_bio().
973  * The available types are:
974  * DATA			User data pages. It operates as async mode.
975  * NODE			Node pages. It operates as async mode.
976  * META			FS metadata pages such as SIT, NAT, CP.
977  * NR_PAGE_TYPE		The number of page types.
978  * META_FLUSH		Make sure the previous pages are written
979  *			with waiting the bio's completion
980  * ...			Only can be used with META.
981  */
982 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
983 enum page_type {
984 	DATA,
985 	NODE,
986 	META,
987 	NR_PAGE_TYPE,
988 	META_FLUSH,
989 	INMEM,		/* the below types are used by tracepoints only. */
990 	INMEM_DROP,
991 	INMEM_INVALIDATE,
992 	INMEM_REVOKE,
993 	IPU,
994 	OPU,
995 };
996 
997 enum temp_type {
998 	HOT = 0,	/* must be zero for meta bio */
999 	WARM,
1000 	COLD,
1001 	NR_TEMP_TYPE,
1002 };
1003 
1004 enum need_lock_type {
1005 	LOCK_REQ = 0,
1006 	LOCK_DONE,
1007 	LOCK_RETRY,
1008 };
1009 
1010 enum cp_reason_type {
1011 	CP_NO_NEEDED,
1012 	CP_NON_REGULAR,
1013 	CP_HARDLINK,
1014 	CP_SB_NEED_CP,
1015 	CP_WRONG_PINO,
1016 	CP_NO_SPC_ROLL,
1017 	CP_NODE_NEED_CP,
1018 	CP_FASTBOOT_MODE,
1019 	CP_SPEC_LOG_NUM,
1020 	CP_RECOVER_DIR,
1021 };
1022 
1023 enum iostat_type {
1024 	APP_DIRECT_IO,			/* app direct IOs */
1025 	APP_BUFFERED_IO,		/* app buffered IOs */
1026 	APP_WRITE_IO,			/* app write IOs */
1027 	APP_MAPPED_IO,			/* app mapped IOs */
1028 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1029 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1030 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1031 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1032 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1033 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1034 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1035 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1036 	FS_DISCARD,			/* discard */
1037 	NR_IO_TYPE,
1038 };
1039 
1040 struct f2fs_io_info {
1041 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1042 	nid_t ino;		/* inode number */
1043 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1044 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1045 	int op;			/* contains REQ_OP_ */
1046 	int op_flags;		/* req_flag_bits */
1047 	block_t new_blkaddr;	/* new block address to be written */
1048 	block_t old_blkaddr;	/* old block address before Cow */
1049 	struct page *page;	/* page to be written */
1050 	struct page *encrypted_page;	/* encrypted page */
1051 	struct list_head list;		/* serialize IOs */
1052 	bool submitted;		/* indicate IO submission */
1053 	int need_lock;		/* indicate we need to lock cp_rwsem */
1054 	bool in_list;		/* indicate fio is in io_list */
1055 	bool is_por;		/* indicate IO is from recovery or not */
1056 	bool retry;		/* need to reallocate block address */
1057 	enum iostat_type io_type;	/* io type */
1058 	struct writeback_control *io_wbc; /* writeback control */
1059 	struct bio **bio;		/* bio for ipu */
1060 	sector_t *last_block;		/* last block number in bio */
1061 	unsigned char version;		/* version of the node */
1062 };
1063 
1064 #define is_read_io(rw) ((rw) == READ)
1065 struct f2fs_bio_info {
1066 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1067 	struct bio *bio;		/* bios to merge */
1068 	sector_t last_block_in_bio;	/* last block number */
1069 	struct f2fs_io_info fio;	/* store buffered io info. */
1070 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1071 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1072 	struct list_head io_list;	/* track fios */
1073 };
1074 
1075 #define FDEV(i)				(sbi->devs[i])
1076 #define RDEV(i)				(raw_super->devs[i])
1077 struct f2fs_dev_info {
1078 	struct block_device *bdev;
1079 	char path[MAX_PATH_LEN];
1080 	unsigned int total_segments;
1081 	block_t start_blk;
1082 	block_t end_blk;
1083 #ifdef CONFIG_BLK_DEV_ZONED
1084 	unsigned int nr_blkz;		/* Total number of zones */
1085 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1086 #endif
1087 };
1088 
1089 enum inode_type {
1090 	DIR_INODE,			/* for dirty dir inode */
1091 	FILE_INODE,			/* for dirty regular/symlink inode */
1092 	DIRTY_META,			/* for all dirtied inode metadata */
1093 	ATOMIC_FILE,			/* for all atomic files */
1094 	NR_INODE_TYPE,
1095 };
1096 
1097 /* for inner inode cache management */
1098 struct inode_management {
1099 	struct radix_tree_root ino_root;	/* ino entry array */
1100 	spinlock_t ino_lock;			/* for ino entry lock */
1101 	struct list_head ino_list;		/* inode list head */
1102 	unsigned long ino_num;			/* number of entries */
1103 };
1104 
1105 /* For s_flag in struct f2fs_sb_info */
1106 enum {
1107 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1108 	SBI_IS_CLOSE,				/* specify unmounting */
1109 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1110 	SBI_POR_DOING,				/* recovery is doing or not */
1111 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1112 	SBI_NEED_CP,				/* need to checkpoint */
1113 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1114 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1115 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1116 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1117 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1118 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1119 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1120 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1121 };
1122 
1123 enum {
1124 	CP_TIME,
1125 	REQ_TIME,
1126 	DISCARD_TIME,
1127 	GC_TIME,
1128 	DISABLE_TIME,
1129 	UMOUNT_DISCARD_TIMEOUT,
1130 	MAX_TIME,
1131 };
1132 
1133 enum {
1134 	GC_NORMAL,
1135 	GC_IDLE_CB,
1136 	GC_IDLE_GREEDY,
1137 	GC_URGENT,
1138 };
1139 
1140 enum {
1141 	WHINT_MODE_OFF,		/* not pass down write hints */
1142 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1143 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1144 };
1145 
1146 enum {
1147 	ALLOC_MODE_DEFAULT,	/* stay default */
1148 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1149 };
1150 
1151 enum fsync_mode {
1152 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1153 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1154 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1155 };
1156 
1157 #ifdef CONFIG_FS_ENCRYPTION
1158 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1159 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1160 #else
1161 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1162 #endif
1163 
1164 struct f2fs_sb_info {
1165 	struct super_block *sb;			/* pointer to VFS super block */
1166 	struct proc_dir_entry *s_proc;		/* proc entry */
1167 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1168 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1169 	int valid_super_block;			/* valid super block no */
1170 	unsigned long s_flag;				/* flags for sbi */
1171 	struct mutex writepages;		/* mutex for writepages() */
1172 
1173 #ifdef CONFIG_BLK_DEV_ZONED
1174 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1175 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1176 #endif
1177 
1178 	/* for node-related operations */
1179 	struct f2fs_nm_info *nm_info;		/* node manager */
1180 	struct inode *node_inode;		/* cache node blocks */
1181 
1182 	/* for segment-related operations */
1183 	struct f2fs_sm_info *sm_info;		/* segment manager */
1184 
1185 	/* for bio operations */
1186 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1187 	/* keep migration IO order for LFS mode */
1188 	struct rw_semaphore io_order_lock;
1189 	mempool_t *write_io_dummy;		/* Dummy pages */
1190 
1191 	/* for checkpoint */
1192 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1193 	int cur_cp_pack;			/* remain current cp pack */
1194 	spinlock_t cp_lock;			/* for flag in ckpt */
1195 	struct inode *meta_inode;		/* cache meta blocks */
1196 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1197 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1198 	struct rw_semaphore node_write;		/* locking node writes */
1199 	struct rw_semaphore node_change;	/* locking node change */
1200 	wait_queue_head_t cp_wait;
1201 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1202 	long interval_time[MAX_TIME];		/* to store thresholds */
1203 
1204 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1205 
1206 	spinlock_t fsync_node_lock;		/* for node entry lock */
1207 	struct list_head fsync_node_list;	/* node list head */
1208 	unsigned int fsync_seg_id;		/* sequence id */
1209 	unsigned int fsync_node_num;		/* number of node entries */
1210 
1211 	/* for orphan inode, use 0'th array */
1212 	unsigned int max_orphans;		/* max orphan inodes */
1213 
1214 	/* for inode management */
1215 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1216 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1217 	struct mutex flush_lock;		/* for flush exclusion */
1218 
1219 	/* for extent tree cache */
1220 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1221 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1222 	struct list_head extent_list;		/* lru list for shrinker */
1223 	spinlock_t extent_lock;			/* locking extent lru list */
1224 	atomic_t total_ext_tree;		/* extent tree count */
1225 	struct list_head zombie_list;		/* extent zombie tree list */
1226 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1227 	atomic_t total_ext_node;		/* extent info count */
1228 
1229 	/* basic filesystem units */
1230 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1231 	unsigned int log_blocksize;		/* log2 block size */
1232 	unsigned int blocksize;			/* block size */
1233 	unsigned int root_ino_num;		/* root inode number*/
1234 	unsigned int node_ino_num;		/* node inode number*/
1235 	unsigned int meta_ino_num;		/* meta inode number*/
1236 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1237 	unsigned int blocks_per_seg;		/* blocks per segment */
1238 	unsigned int segs_per_sec;		/* segments per section */
1239 	unsigned int secs_per_zone;		/* sections per zone */
1240 	unsigned int total_sections;		/* total section count */
1241 	struct mutex resize_mutex;		/* for resize exclusion */
1242 	unsigned int total_node_count;		/* total node block count */
1243 	unsigned int total_valid_node_count;	/* valid node block count */
1244 	loff_t max_file_blocks;			/* max block index of file */
1245 	int dir_level;				/* directory level */
1246 	int readdir_ra;				/* readahead inode in readdir */
1247 
1248 	block_t user_block_count;		/* # of user blocks */
1249 	block_t total_valid_block_count;	/* # of valid blocks */
1250 	block_t discard_blks;			/* discard command candidats */
1251 	block_t last_valid_block_count;		/* for recovery */
1252 	block_t reserved_blocks;		/* configurable reserved blocks */
1253 	block_t current_reserved_blocks;	/* current reserved blocks */
1254 
1255 	/* Additional tracking for no checkpoint mode */
1256 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1257 
1258 	unsigned int nquota_files;		/* # of quota sysfile */
1259 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1260 
1261 	/* # of pages, see count_type */
1262 	atomic_t nr_pages[NR_COUNT_TYPE];
1263 	/* # of allocated blocks */
1264 	struct percpu_counter alloc_valid_block_count;
1265 
1266 	/* writeback control */
1267 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1268 
1269 	/* valid inode count */
1270 	struct percpu_counter total_valid_inode_count;
1271 
1272 	struct f2fs_mount_info mount_opt;	/* mount options */
1273 
1274 	/* for cleaning operations */
1275 	struct mutex gc_mutex;			/* mutex for GC */
1276 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1277 	unsigned int cur_victim_sec;		/* current victim section num */
1278 	unsigned int gc_mode;			/* current GC state */
1279 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1280 	/* for skip statistic */
1281 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1282 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1283 
1284 	/* threshold for gc trials on pinned files */
1285 	u64 gc_pin_file_threshold;
1286 
1287 	/* maximum # of trials to find a victim segment for SSR and GC */
1288 	unsigned int max_victim_search;
1289 	/* migration granularity of garbage collection, unit: segment */
1290 	unsigned int migration_granularity;
1291 
1292 	/*
1293 	 * for stat information.
1294 	 * one is for the LFS mode, and the other is for the SSR mode.
1295 	 */
1296 #ifdef CONFIG_F2FS_STAT_FS
1297 	struct f2fs_stat_info *stat_info;	/* FS status information */
1298 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1299 	unsigned int segment_count[2];		/* # of allocated segments */
1300 	unsigned int block_count[2];		/* # of allocated blocks */
1301 	atomic_t inplace_count;		/* # of inplace update */
1302 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1303 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1304 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1305 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1306 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1307 	atomic_t inline_inode;			/* # of inline_data inodes */
1308 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1309 	atomic_t aw_cnt;			/* # of atomic writes */
1310 	atomic_t vw_cnt;			/* # of volatile writes */
1311 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1312 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1313 	int bg_gc;				/* background gc calls */
1314 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1315 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1316 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1317 #endif
1318 	spinlock_t stat_lock;			/* lock for stat operations */
1319 
1320 	/* For app/fs IO statistics */
1321 	spinlock_t iostat_lock;
1322 	unsigned long long write_iostat[NR_IO_TYPE];
1323 	bool iostat_enable;
1324 
1325 	/* For sysfs suppport */
1326 	struct kobject s_kobj;
1327 	struct completion s_kobj_unregister;
1328 
1329 	/* For shrinker support */
1330 	struct list_head s_list;
1331 	int s_ndevs;				/* number of devices */
1332 	struct f2fs_dev_info *devs;		/* for device list */
1333 	unsigned int dirty_device;		/* for checkpoint data flush */
1334 	spinlock_t dev_lock;			/* protect dirty_device */
1335 	struct mutex umount_mutex;
1336 	unsigned int shrinker_run_no;
1337 
1338 	/* For write statistics */
1339 	u64 sectors_written_start;
1340 	u64 kbytes_written;
1341 
1342 	/* Reference to checksum algorithm driver via cryptoapi */
1343 	struct crypto_shash *s_chksum_driver;
1344 
1345 	/* Precomputed FS UUID checksum for seeding other checksums */
1346 	__u32 s_chksum_seed;
1347 };
1348 
1349 struct f2fs_private_dio {
1350 	struct inode *inode;
1351 	void *orig_private;
1352 	bio_end_io_t *orig_end_io;
1353 	bool write;
1354 };
1355 
1356 #ifdef CONFIG_F2FS_FAULT_INJECTION
1357 #define f2fs_show_injection_info(type)					\
1358 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pS\n",	\
1359 		KERN_INFO, f2fs_fault_name[type],			\
1360 		__func__, __builtin_return_address(0))
1361 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1362 {
1363 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1364 
1365 	if (!ffi->inject_rate)
1366 		return false;
1367 
1368 	if (!IS_FAULT_SET(ffi, type))
1369 		return false;
1370 
1371 	atomic_inc(&ffi->inject_ops);
1372 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1373 		atomic_set(&ffi->inject_ops, 0);
1374 		return true;
1375 	}
1376 	return false;
1377 }
1378 #else
1379 #define f2fs_show_injection_info(type) do { } while (0)
1380 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1381 {
1382 	return false;
1383 }
1384 #endif
1385 
1386 /*
1387  * Test if the mounted volume is a multi-device volume.
1388  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1389  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1390  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1391  */
1392 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1393 {
1394 	return sbi->s_ndevs > 1;
1395 }
1396 
1397 /* For write statistics. Suppose sector size is 512 bytes,
1398  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1399  */
1400 #define BD_PART_WRITTEN(s)						 \
1401 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1402 		(s)->sectors_written_start) >> 1)
1403 
1404 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1405 {
1406 	unsigned long now = jiffies;
1407 
1408 	sbi->last_time[type] = now;
1409 
1410 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1411 	if (type == REQ_TIME) {
1412 		sbi->last_time[DISCARD_TIME] = now;
1413 		sbi->last_time[GC_TIME] = now;
1414 	}
1415 }
1416 
1417 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1418 {
1419 	unsigned long interval = sbi->interval_time[type] * HZ;
1420 
1421 	return time_after(jiffies, sbi->last_time[type] + interval);
1422 }
1423 
1424 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1425 						int type)
1426 {
1427 	unsigned long interval = sbi->interval_time[type] * HZ;
1428 	unsigned int wait_ms = 0;
1429 	long delta;
1430 
1431 	delta = (sbi->last_time[type] + interval) - jiffies;
1432 	if (delta > 0)
1433 		wait_ms = jiffies_to_msecs(delta);
1434 
1435 	return wait_ms;
1436 }
1437 
1438 /*
1439  * Inline functions
1440  */
1441 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1442 			      const void *address, unsigned int length)
1443 {
1444 	struct {
1445 		struct shash_desc shash;
1446 		char ctx[4];
1447 	} desc;
1448 	int err;
1449 
1450 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1451 
1452 	desc.shash.tfm = sbi->s_chksum_driver;
1453 	*(u32 *)desc.ctx = crc;
1454 
1455 	err = crypto_shash_update(&desc.shash, address, length);
1456 	BUG_ON(err);
1457 
1458 	return *(u32 *)desc.ctx;
1459 }
1460 
1461 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1462 			   unsigned int length)
1463 {
1464 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1465 }
1466 
1467 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1468 				  void *buf, size_t buf_size)
1469 {
1470 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1471 }
1472 
1473 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1474 			      const void *address, unsigned int length)
1475 {
1476 	return __f2fs_crc32(sbi, crc, address, length);
1477 }
1478 
1479 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1480 {
1481 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1482 }
1483 
1484 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1485 {
1486 	return sb->s_fs_info;
1487 }
1488 
1489 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1490 {
1491 	return F2FS_SB(inode->i_sb);
1492 }
1493 
1494 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1495 {
1496 	return F2FS_I_SB(mapping->host);
1497 }
1498 
1499 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1500 {
1501 	return F2FS_M_SB(page_file_mapping(page));
1502 }
1503 
1504 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1505 {
1506 	return (struct f2fs_super_block *)(sbi->raw_super);
1507 }
1508 
1509 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1510 {
1511 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1512 }
1513 
1514 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1515 {
1516 	return (struct f2fs_node *)page_address(page);
1517 }
1518 
1519 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1520 {
1521 	return &((struct f2fs_node *)page_address(page))->i;
1522 }
1523 
1524 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1525 {
1526 	return (struct f2fs_nm_info *)(sbi->nm_info);
1527 }
1528 
1529 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1530 {
1531 	return (struct f2fs_sm_info *)(sbi->sm_info);
1532 }
1533 
1534 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1535 {
1536 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1537 }
1538 
1539 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1540 {
1541 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1542 }
1543 
1544 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1545 {
1546 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1547 }
1548 
1549 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1550 {
1551 	return sbi->meta_inode->i_mapping;
1552 }
1553 
1554 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1555 {
1556 	return sbi->node_inode->i_mapping;
1557 }
1558 
1559 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1560 {
1561 	return test_bit(type, &sbi->s_flag);
1562 }
1563 
1564 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1565 {
1566 	set_bit(type, &sbi->s_flag);
1567 }
1568 
1569 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1570 {
1571 	clear_bit(type, &sbi->s_flag);
1572 }
1573 
1574 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1575 {
1576 	return le64_to_cpu(cp->checkpoint_ver);
1577 }
1578 
1579 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1580 {
1581 	if (type < F2FS_MAX_QUOTAS)
1582 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1583 	return 0;
1584 }
1585 
1586 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1587 {
1588 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1589 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1590 }
1591 
1592 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1593 {
1594 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1595 
1596 	return ckpt_flags & f;
1597 }
1598 
1599 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1600 {
1601 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1602 }
1603 
1604 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1605 {
1606 	unsigned int ckpt_flags;
1607 
1608 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1609 	ckpt_flags |= f;
1610 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1611 }
1612 
1613 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1614 {
1615 	unsigned long flags;
1616 
1617 	spin_lock_irqsave(&sbi->cp_lock, flags);
1618 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1619 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1620 }
1621 
1622 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1623 {
1624 	unsigned int ckpt_flags;
1625 
1626 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1627 	ckpt_flags &= (~f);
1628 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1629 }
1630 
1631 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1632 {
1633 	unsigned long flags;
1634 
1635 	spin_lock_irqsave(&sbi->cp_lock, flags);
1636 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1637 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1638 }
1639 
1640 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1641 {
1642 	unsigned long flags;
1643 
1644 	/*
1645 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1646 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1647 	 * so let's rely on regular fsck or unclean shutdown.
1648 	 */
1649 
1650 	if (lock)
1651 		spin_lock_irqsave(&sbi->cp_lock, flags);
1652 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1653 	kvfree(NM_I(sbi)->nat_bits);
1654 	NM_I(sbi)->nat_bits = NULL;
1655 	if (lock)
1656 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1657 }
1658 
1659 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1660 					struct cp_control *cpc)
1661 {
1662 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1663 
1664 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1665 }
1666 
1667 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1668 {
1669 	down_read(&sbi->cp_rwsem);
1670 }
1671 
1672 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1673 {
1674 	return down_read_trylock(&sbi->cp_rwsem);
1675 }
1676 
1677 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1678 {
1679 	up_read(&sbi->cp_rwsem);
1680 }
1681 
1682 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1683 {
1684 	down_write(&sbi->cp_rwsem);
1685 }
1686 
1687 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1688 {
1689 	up_write(&sbi->cp_rwsem);
1690 }
1691 
1692 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1693 {
1694 	int reason = CP_SYNC;
1695 
1696 	if (test_opt(sbi, FASTBOOT))
1697 		reason = CP_FASTBOOT;
1698 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1699 		reason = CP_UMOUNT;
1700 	return reason;
1701 }
1702 
1703 static inline bool __remain_node_summaries(int reason)
1704 {
1705 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1706 }
1707 
1708 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1709 {
1710 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1711 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1712 }
1713 
1714 /*
1715  * Check whether the inode has blocks or not
1716  */
1717 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1718 {
1719 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1720 
1721 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1722 }
1723 
1724 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1725 {
1726 	return ofs == XATTR_NODE_OFFSET;
1727 }
1728 
1729 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1730 					struct inode *inode, bool cap)
1731 {
1732 	if (!inode)
1733 		return true;
1734 	if (!test_opt(sbi, RESERVE_ROOT))
1735 		return false;
1736 	if (IS_NOQUOTA(inode))
1737 		return true;
1738 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1739 		return true;
1740 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1741 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1742 		return true;
1743 	if (cap && capable(CAP_SYS_RESOURCE))
1744 		return true;
1745 	return false;
1746 }
1747 
1748 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1749 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1750 				 struct inode *inode, blkcnt_t *count)
1751 {
1752 	blkcnt_t diff = 0, release = 0;
1753 	block_t avail_user_block_count;
1754 	int ret;
1755 
1756 	ret = dquot_reserve_block(inode, *count);
1757 	if (ret)
1758 		return ret;
1759 
1760 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1761 		f2fs_show_injection_info(FAULT_BLOCK);
1762 		release = *count;
1763 		goto enospc;
1764 	}
1765 
1766 	/*
1767 	 * let's increase this in prior to actual block count change in order
1768 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1769 	 */
1770 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1771 
1772 	spin_lock(&sbi->stat_lock);
1773 	sbi->total_valid_block_count += (block_t)(*count);
1774 	avail_user_block_count = sbi->user_block_count -
1775 					sbi->current_reserved_blocks;
1776 
1777 	if (!__allow_reserved_blocks(sbi, inode, true))
1778 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1779 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1780 		if (avail_user_block_count > sbi->unusable_block_count)
1781 			avail_user_block_count -= sbi->unusable_block_count;
1782 		else
1783 			avail_user_block_count = 0;
1784 	}
1785 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1786 		diff = sbi->total_valid_block_count - avail_user_block_count;
1787 		if (diff > *count)
1788 			diff = *count;
1789 		*count -= diff;
1790 		release = diff;
1791 		sbi->total_valid_block_count -= diff;
1792 		if (!*count) {
1793 			spin_unlock(&sbi->stat_lock);
1794 			goto enospc;
1795 		}
1796 	}
1797 	spin_unlock(&sbi->stat_lock);
1798 
1799 	if (unlikely(release)) {
1800 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1801 		dquot_release_reservation_block(inode, release);
1802 	}
1803 	f2fs_i_blocks_write(inode, *count, true, true);
1804 	return 0;
1805 
1806 enospc:
1807 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1808 	dquot_release_reservation_block(inode, release);
1809 	return -ENOSPC;
1810 }
1811 
1812 __printf(2, 3)
1813 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
1814 
1815 #define f2fs_err(sbi, fmt, ...)						\
1816 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
1817 #define f2fs_warn(sbi, fmt, ...)					\
1818 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
1819 #define f2fs_notice(sbi, fmt, ...)					\
1820 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
1821 #define f2fs_info(sbi, fmt, ...)					\
1822 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
1823 #define f2fs_debug(sbi, fmt, ...)					\
1824 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
1825 
1826 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1827 						struct inode *inode,
1828 						block_t count)
1829 {
1830 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1831 
1832 	spin_lock(&sbi->stat_lock);
1833 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1834 	sbi->total_valid_block_count -= (block_t)count;
1835 	if (sbi->reserved_blocks &&
1836 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1837 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1838 					sbi->current_reserved_blocks + count);
1839 	spin_unlock(&sbi->stat_lock);
1840 	if (unlikely(inode->i_blocks < sectors)) {
1841 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1842 			  inode->i_ino,
1843 			  (unsigned long long)inode->i_blocks,
1844 			  (unsigned long long)sectors);
1845 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1846 		return;
1847 	}
1848 	f2fs_i_blocks_write(inode, count, false, true);
1849 }
1850 
1851 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1852 {
1853 	atomic_inc(&sbi->nr_pages[count_type]);
1854 
1855 	if (count_type == F2FS_DIRTY_DENTS ||
1856 			count_type == F2FS_DIRTY_NODES ||
1857 			count_type == F2FS_DIRTY_META ||
1858 			count_type == F2FS_DIRTY_QDATA ||
1859 			count_type == F2FS_DIRTY_IMETA)
1860 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1861 }
1862 
1863 static inline void inode_inc_dirty_pages(struct inode *inode)
1864 {
1865 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1866 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1867 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1868 	if (IS_NOQUOTA(inode))
1869 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1870 }
1871 
1872 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1873 {
1874 	atomic_dec(&sbi->nr_pages[count_type]);
1875 }
1876 
1877 static inline void inode_dec_dirty_pages(struct inode *inode)
1878 {
1879 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1880 			!S_ISLNK(inode->i_mode))
1881 		return;
1882 
1883 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1884 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1885 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1886 	if (IS_NOQUOTA(inode))
1887 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1888 }
1889 
1890 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1891 {
1892 	return atomic_read(&sbi->nr_pages[count_type]);
1893 }
1894 
1895 static inline int get_dirty_pages(struct inode *inode)
1896 {
1897 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1898 }
1899 
1900 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1901 {
1902 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1903 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1904 						sbi->log_blocks_per_seg;
1905 
1906 	return segs / sbi->segs_per_sec;
1907 }
1908 
1909 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1910 {
1911 	return sbi->total_valid_block_count;
1912 }
1913 
1914 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1915 {
1916 	return sbi->discard_blks;
1917 }
1918 
1919 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1920 {
1921 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1922 
1923 	/* return NAT or SIT bitmap */
1924 	if (flag == NAT_BITMAP)
1925 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1926 	else if (flag == SIT_BITMAP)
1927 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1928 
1929 	return 0;
1930 }
1931 
1932 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1933 {
1934 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1935 }
1936 
1937 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1938 {
1939 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1940 	int offset;
1941 
1942 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1943 		offset = (flag == SIT_BITMAP) ?
1944 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1945 		/*
1946 		 * if large_nat_bitmap feature is enabled, leave checksum
1947 		 * protection for all nat/sit bitmaps.
1948 		 */
1949 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
1950 	}
1951 
1952 	if (__cp_payload(sbi) > 0) {
1953 		if (flag == NAT_BITMAP)
1954 			return &ckpt->sit_nat_version_bitmap;
1955 		else
1956 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1957 	} else {
1958 		offset = (flag == NAT_BITMAP) ?
1959 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1960 		return &ckpt->sit_nat_version_bitmap + offset;
1961 	}
1962 }
1963 
1964 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1965 {
1966 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1967 
1968 	if (sbi->cur_cp_pack == 2)
1969 		start_addr += sbi->blocks_per_seg;
1970 	return start_addr;
1971 }
1972 
1973 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1974 {
1975 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1976 
1977 	if (sbi->cur_cp_pack == 1)
1978 		start_addr += sbi->blocks_per_seg;
1979 	return start_addr;
1980 }
1981 
1982 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1983 {
1984 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1985 }
1986 
1987 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1988 {
1989 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1990 }
1991 
1992 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1993 					struct inode *inode, bool is_inode)
1994 {
1995 	block_t	valid_block_count;
1996 	unsigned int valid_node_count, user_block_count;
1997 	int err;
1998 
1999 	if (is_inode) {
2000 		if (inode) {
2001 			err = dquot_alloc_inode(inode);
2002 			if (err)
2003 				return err;
2004 		}
2005 	} else {
2006 		err = dquot_reserve_block(inode, 1);
2007 		if (err)
2008 			return err;
2009 	}
2010 
2011 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2012 		f2fs_show_injection_info(FAULT_BLOCK);
2013 		goto enospc;
2014 	}
2015 
2016 	spin_lock(&sbi->stat_lock);
2017 
2018 	valid_block_count = sbi->total_valid_block_count +
2019 					sbi->current_reserved_blocks + 1;
2020 
2021 	if (!__allow_reserved_blocks(sbi, inode, false))
2022 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2023 	user_block_count = sbi->user_block_count;
2024 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2025 		user_block_count -= sbi->unusable_block_count;
2026 
2027 	if (unlikely(valid_block_count > user_block_count)) {
2028 		spin_unlock(&sbi->stat_lock);
2029 		goto enospc;
2030 	}
2031 
2032 	valid_node_count = sbi->total_valid_node_count + 1;
2033 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2034 		spin_unlock(&sbi->stat_lock);
2035 		goto enospc;
2036 	}
2037 
2038 	sbi->total_valid_node_count++;
2039 	sbi->total_valid_block_count++;
2040 	spin_unlock(&sbi->stat_lock);
2041 
2042 	if (inode) {
2043 		if (is_inode)
2044 			f2fs_mark_inode_dirty_sync(inode, true);
2045 		else
2046 			f2fs_i_blocks_write(inode, 1, true, true);
2047 	}
2048 
2049 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2050 	return 0;
2051 
2052 enospc:
2053 	if (is_inode) {
2054 		if (inode)
2055 			dquot_free_inode(inode);
2056 	} else {
2057 		dquot_release_reservation_block(inode, 1);
2058 	}
2059 	return -ENOSPC;
2060 }
2061 
2062 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2063 					struct inode *inode, bool is_inode)
2064 {
2065 	spin_lock(&sbi->stat_lock);
2066 
2067 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2068 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2069 
2070 	sbi->total_valid_node_count--;
2071 	sbi->total_valid_block_count--;
2072 	if (sbi->reserved_blocks &&
2073 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2074 		sbi->current_reserved_blocks++;
2075 
2076 	spin_unlock(&sbi->stat_lock);
2077 
2078 	if (is_inode) {
2079 		dquot_free_inode(inode);
2080 	} else {
2081 		if (unlikely(inode->i_blocks == 0)) {
2082 			f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2083 				  inode->i_ino,
2084 				  (unsigned long long)inode->i_blocks);
2085 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2086 			return;
2087 		}
2088 		f2fs_i_blocks_write(inode, 1, false, true);
2089 	}
2090 }
2091 
2092 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2093 {
2094 	return sbi->total_valid_node_count;
2095 }
2096 
2097 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2098 {
2099 	percpu_counter_inc(&sbi->total_valid_inode_count);
2100 }
2101 
2102 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2103 {
2104 	percpu_counter_dec(&sbi->total_valid_inode_count);
2105 }
2106 
2107 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2108 {
2109 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2110 }
2111 
2112 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2113 						pgoff_t index, bool for_write)
2114 {
2115 	struct page *page;
2116 
2117 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2118 		if (!for_write)
2119 			page = find_get_page_flags(mapping, index,
2120 							FGP_LOCK | FGP_ACCESSED);
2121 		else
2122 			page = find_lock_page(mapping, index);
2123 		if (page)
2124 			return page;
2125 
2126 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2127 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2128 			return NULL;
2129 		}
2130 	}
2131 
2132 	if (!for_write)
2133 		return grab_cache_page(mapping, index);
2134 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2135 }
2136 
2137 static inline struct page *f2fs_pagecache_get_page(
2138 				struct address_space *mapping, pgoff_t index,
2139 				int fgp_flags, gfp_t gfp_mask)
2140 {
2141 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2142 		f2fs_show_injection_info(FAULT_PAGE_GET);
2143 		return NULL;
2144 	}
2145 
2146 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2147 }
2148 
2149 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2150 {
2151 	char *src_kaddr = kmap(src);
2152 	char *dst_kaddr = kmap(dst);
2153 
2154 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2155 	kunmap(dst);
2156 	kunmap(src);
2157 }
2158 
2159 static inline void f2fs_put_page(struct page *page, int unlock)
2160 {
2161 	if (!page)
2162 		return;
2163 
2164 	if (unlock) {
2165 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2166 		unlock_page(page);
2167 	}
2168 	put_page(page);
2169 }
2170 
2171 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2172 {
2173 	if (dn->node_page)
2174 		f2fs_put_page(dn->node_page, 1);
2175 	if (dn->inode_page && dn->node_page != dn->inode_page)
2176 		f2fs_put_page(dn->inode_page, 0);
2177 	dn->node_page = NULL;
2178 	dn->inode_page = NULL;
2179 }
2180 
2181 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2182 					size_t size)
2183 {
2184 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2185 }
2186 
2187 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2188 						gfp_t flags)
2189 {
2190 	void *entry;
2191 
2192 	entry = kmem_cache_alloc(cachep, flags);
2193 	if (!entry)
2194 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2195 	return entry;
2196 }
2197 
2198 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2199 						int npages, bool no_fail)
2200 {
2201 	struct bio *bio;
2202 
2203 	if (no_fail) {
2204 		/* No failure on bio allocation */
2205 		bio = bio_alloc(GFP_NOIO, npages);
2206 		if (!bio)
2207 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2208 		return bio;
2209 	}
2210 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2211 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2212 		return NULL;
2213 	}
2214 
2215 	return bio_alloc(GFP_KERNEL, npages);
2216 }
2217 
2218 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2219 {
2220 	if (sbi->gc_mode == GC_URGENT)
2221 		return true;
2222 
2223 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2224 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2225 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2226 		get_pages(sbi, F2FS_DIO_READ) ||
2227 		get_pages(sbi, F2FS_DIO_WRITE))
2228 		return false;
2229 
2230 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2231 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2232 		return false;
2233 
2234 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2235 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2236 		return false;
2237 
2238 	return f2fs_time_over(sbi, type);
2239 }
2240 
2241 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2242 				unsigned long index, void *item)
2243 {
2244 	while (radix_tree_insert(root, index, item))
2245 		cond_resched();
2246 }
2247 
2248 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2249 
2250 static inline bool IS_INODE(struct page *page)
2251 {
2252 	struct f2fs_node *p = F2FS_NODE(page);
2253 
2254 	return RAW_IS_INODE(p);
2255 }
2256 
2257 static inline int offset_in_addr(struct f2fs_inode *i)
2258 {
2259 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2260 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2261 }
2262 
2263 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2264 {
2265 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2266 }
2267 
2268 static inline int f2fs_has_extra_attr(struct inode *inode);
2269 static inline block_t datablock_addr(struct inode *inode,
2270 			struct page *node_page, unsigned int offset)
2271 {
2272 	struct f2fs_node *raw_node;
2273 	__le32 *addr_array;
2274 	int base = 0;
2275 	bool is_inode = IS_INODE(node_page);
2276 
2277 	raw_node = F2FS_NODE(node_page);
2278 
2279 	/* from GC path only */
2280 	if (is_inode) {
2281 		if (!inode)
2282 			base = offset_in_addr(&raw_node->i);
2283 		else if (f2fs_has_extra_attr(inode))
2284 			base = get_extra_isize(inode);
2285 	}
2286 
2287 	addr_array = blkaddr_in_node(raw_node);
2288 	return le32_to_cpu(addr_array[base + offset]);
2289 }
2290 
2291 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2292 {
2293 	int mask;
2294 
2295 	addr += (nr >> 3);
2296 	mask = 1 << (7 - (nr & 0x07));
2297 	return mask & *addr;
2298 }
2299 
2300 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2301 {
2302 	int mask;
2303 
2304 	addr += (nr >> 3);
2305 	mask = 1 << (7 - (nr & 0x07));
2306 	*addr |= mask;
2307 }
2308 
2309 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2310 {
2311 	int mask;
2312 
2313 	addr += (nr >> 3);
2314 	mask = 1 << (7 - (nr & 0x07));
2315 	*addr &= ~mask;
2316 }
2317 
2318 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2319 {
2320 	int mask;
2321 	int ret;
2322 
2323 	addr += (nr >> 3);
2324 	mask = 1 << (7 - (nr & 0x07));
2325 	ret = mask & *addr;
2326 	*addr |= mask;
2327 	return ret;
2328 }
2329 
2330 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2331 {
2332 	int mask;
2333 	int ret;
2334 
2335 	addr += (nr >> 3);
2336 	mask = 1 << (7 - (nr & 0x07));
2337 	ret = mask & *addr;
2338 	*addr &= ~mask;
2339 	return ret;
2340 }
2341 
2342 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2343 {
2344 	int mask;
2345 
2346 	addr += (nr >> 3);
2347 	mask = 1 << (7 - (nr & 0x07));
2348 	*addr ^= mask;
2349 }
2350 
2351 /*
2352  * On-disk inode flags (f2fs_inode::i_flags)
2353  */
2354 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2355 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2356 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2357 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2358 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2359 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2360 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2361 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2362 
2363 /* Flags that should be inherited by new inodes from their parent. */
2364 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2365 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL)
2366 
2367 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2368 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL))
2369 
2370 /* Flags that are appropriate for non-directories/regular files. */
2371 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2372 
2373 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2374 {
2375 	if (S_ISDIR(mode))
2376 		return flags;
2377 	else if (S_ISREG(mode))
2378 		return flags & F2FS_REG_FLMASK;
2379 	else
2380 		return flags & F2FS_OTHER_FLMASK;
2381 }
2382 
2383 /* used for f2fs_inode_info->flags */
2384 enum {
2385 	FI_NEW_INODE,		/* indicate newly allocated inode */
2386 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2387 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2388 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2389 	FI_INC_LINK,		/* need to increment i_nlink */
2390 	FI_ACL_MODE,		/* indicate acl mode */
2391 	FI_NO_ALLOC,		/* should not allocate any blocks */
2392 	FI_FREE_NID,		/* free allocated nide */
2393 	FI_NO_EXTENT,		/* not to use the extent cache */
2394 	FI_INLINE_XATTR,	/* used for inline xattr */
2395 	FI_INLINE_DATA,		/* used for inline data*/
2396 	FI_INLINE_DENTRY,	/* used for inline dentry */
2397 	FI_APPEND_WRITE,	/* inode has appended data */
2398 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2399 	FI_NEED_IPU,		/* used for ipu per file */
2400 	FI_ATOMIC_FILE,		/* indicate atomic file */
2401 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2402 	FI_VOLATILE_FILE,	/* indicate volatile file */
2403 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2404 	FI_DROP_CACHE,		/* drop dirty page cache */
2405 	FI_DATA_EXIST,		/* indicate data exists */
2406 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2407 	FI_DO_DEFRAG,		/* indicate defragment is running */
2408 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2409 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2410 	FI_HOT_DATA,		/* indicate file is hot */
2411 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2412 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2413 	FI_PIN_FILE,		/* indicate file should not be gced */
2414 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2415 };
2416 
2417 static inline void __mark_inode_dirty_flag(struct inode *inode,
2418 						int flag, bool set)
2419 {
2420 	switch (flag) {
2421 	case FI_INLINE_XATTR:
2422 	case FI_INLINE_DATA:
2423 	case FI_INLINE_DENTRY:
2424 	case FI_NEW_INODE:
2425 		if (set)
2426 			return;
2427 		/* fall through */
2428 	case FI_DATA_EXIST:
2429 	case FI_INLINE_DOTS:
2430 	case FI_PIN_FILE:
2431 		f2fs_mark_inode_dirty_sync(inode, true);
2432 	}
2433 }
2434 
2435 static inline void set_inode_flag(struct inode *inode, int flag)
2436 {
2437 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2438 		set_bit(flag, &F2FS_I(inode)->flags);
2439 	__mark_inode_dirty_flag(inode, flag, true);
2440 }
2441 
2442 static inline int is_inode_flag_set(struct inode *inode, int flag)
2443 {
2444 	return test_bit(flag, &F2FS_I(inode)->flags);
2445 }
2446 
2447 static inline void clear_inode_flag(struct inode *inode, int flag)
2448 {
2449 	if (test_bit(flag, &F2FS_I(inode)->flags))
2450 		clear_bit(flag, &F2FS_I(inode)->flags);
2451 	__mark_inode_dirty_flag(inode, flag, false);
2452 }
2453 
2454 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2455 {
2456 	F2FS_I(inode)->i_acl_mode = mode;
2457 	set_inode_flag(inode, FI_ACL_MODE);
2458 	f2fs_mark_inode_dirty_sync(inode, false);
2459 }
2460 
2461 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2462 {
2463 	if (inc)
2464 		inc_nlink(inode);
2465 	else
2466 		drop_nlink(inode);
2467 	f2fs_mark_inode_dirty_sync(inode, true);
2468 }
2469 
2470 static inline void f2fs_i_blocks_write(struct inode *inode,
2471 					block_t diff, bool add, bool claim)
2472 {
2473 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2474 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2475 
2476 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2477 	if (add) {
2478 		if (claim)
2479 			dquot_claim_block(inode, diff);
2480 		else
2481 			dquot_alloc_block_nofail(inode, diff);
2482 	} else {
2483 		dquot_free_block(inode, diff);
2484 	}
2485 
2486 	f2fs_mark_inode_dirty_sync(inode, true);
2487 	if (clean || recover)
2488 		set_inode_flag(inode, FI_AUTO_RECOVER);
2489 }
2490 
2491 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2492 {
2493 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2494 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2495 
2496 	if (i_size_read(inode) == i_size)
2497 		return;
2498 
2499 	i_size_write(inode, i_size);
2500 	f2fs_mark_inode_dirty_sync(inode, true);
2501 	if (clean || recover)
2502 		set_inode_flag(inode, FI_AUTO_RECOVER);
2503 }
2504 
2505 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2506 {
2507 	F2FS_I(inode)->i_current_depth = depth;
2508 	f2fs_mark_inode_dirty_sync(inode, true);
2509 }
2510 
2511 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2512 					unsigned int count)
2513 {
2514 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2515 	f2fs_mark_inode_dirty_sync(inode, true);
2516 }
2517 
2518 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2519 {
2520 	F2FS_I(inode)->i_xattr_nid = xnid;
2521 	f2fs_mark_inode_dirty_sync(inode, true);
2522 }
2523 
2524 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2525 {
2526 	F2FS_I(inode)->i_pino = pino;
2527 	f2fs_mark_inode_dirty_sync(inode, true);
2528 }
2529 
2530 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2531 {
2532 	struct f2fs_inode_info *fi = F2FS_I(inode);
2533 
2534 	if (ri->i_inline & F2FS_INLINE_XATTR)
2535 		set_bit(FI_INLINE_XATTR, &fi->flags);
2536 	if (ri->i_inline & F2FS_INLINE_DATA)
2537 		set_bit(FI_INLINE_DATA, &fi->flags);
2538 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2539 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2540 	if (ri->i_inline & F2FS_DATA_EXIST)
2541 		set_bit(FI_DATA_EXIST, &fi->flags);
2542 	if (ri->i_inline & F2FS_INLINE_DOTS)
2543 		set_bit(FI_INLINE_DOTS, &fi->flags);
2544 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2545 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2546 	if (ri->i_inline & F2FS_PIN_FILE)
2547 		set_bit(FI_PIN_FILE, &fi->flags);
2548 }
2549 
2550 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2551 {
2552 	ri->i_inline = 0;
2553 
2554 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2555 		ri->i_inline |= F2FS_INLINE_XATTR;
2556 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2557 		ri->i_inline |= F2FS_INLINE_DATA;
2558 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2559 		ri->i_inline |= F2FS_INLINE_DENTRY;
2560 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2561 		ri->i_inline |= F2FS_DATA_EXIST;
2562 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2563 		ri->i_inline |= F2FS_INLINE_DOTS;
2564 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2565 		ri->i_inline |= F2FS_EXTRA_ATTR;
2566 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2567 		ri->i_inline |= F2FS_PIN_FILE;
2568 }
2569 
2570 static inline int f2fs_has_extra_attr(struct inode *inode)
2571 {
2572 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2573 }
2574 
2575 static inline int f2fs_has_inline_xattr(struct inode *inode)
2576 {
2577 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2578 }
2579 
2580 static inline unsigned int addrs_per_inode(struct inode *inode)
2581 {
2582 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2583 				get_inline_xattr_addrs(inode);
2584 	return ALIGN_DOWN(addrs, 1);
2585 }
2586 
2587 static inline unsigned int addrs_per_block(struct inode *inode)
2588 {
2589 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1);
2590 }
2591 
2592 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2593 {
2594 	struct f2fs_inode *ri = F2FS_INODE(page);
2595 
2596 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2597 					get_inline_xattr_addrs(inode)]);
2598 }
2599 
2600 static inline int inline_xattr_size(struct inode *inode)
2601 {
2602 	if (f2fs_has_inline_xattr(inode))
2603 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2604 	return 0;
2605 }
2606 
2607 static inline int f2fs_has_inline_data(struct inode *inode)
2608 {
2609 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2610 }
2611 
2612 static inline int f2fs_exist_data(struct inode *inode)
2613 {
2614 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2615 }
2616 
2617 static inline int f2fs_has_inline_dots(struct inode *inode)
2618 {
2619 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2620 }
2621 
2622 static inline bool f2fs_is_pinned_file(struct inode *inode)
2623 {
2624 	return is_inode_flag_set(inode, FI_PIN_FILE);
2625 }
2626 
2627 static inline bool f2fs_is_atomic_file(struct inode *inode)
2628 {
2629 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2630 }
2631 
2632 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2633 {
2634 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2635 }
2636 
2637 static inline bool f2fs_is_volatile_file(struct inode *inode)
2638 {
2639 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2640 }
2641 
2642 static inline bool f2fs_is_first_block_written(struct inode *inode)
2643 {
2644 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2645 }
2646 
2647 static inline bool f2fs_is_drop_cache(struct inode *inode)
2648 {
2649 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2650 }
2651 
2652 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2653 {
2654 	struct f2fs_inode *ri = F2FS_INODE(page);
2655 	int extra_size = get_extra_isize(inode);
2656 
2657 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2658 }
2659 
2660 static inline int f2fs_has_inline_dentry(struct inode *inode)
2661 {
2662 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2663 }
2664 
2665 static inline int is_file(struct inode *inode, int type)
2666 {
2667 	return F2FS_I(inode)->i_advise & type;
2668 }
2669 
2670 static inline void set_file(struct inode *inode, int type)
2671 {
2672 	F2FS_I(inode)->i_advise |= type;
2673 	f2fs_mark_inode_dirty_sync(inode, true);
2674 }
2675 
2676 static inline void clear_file(struct inode *inode, int type)
2677 {
2678 	F2FS_I(inode)->i_advise &= ~type;
2679 	f2fs_mark_inode_dirty_sync(inode, true);
2680 }
2681 
2682 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2683 {
2684 	bool ret;
2685 
2686 	if (dsync) {
2687 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2688 
2689 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2690 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2691 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2692 		return ret;
2693 	}
2694 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2695 			file_keep_isize(inode) ||
2696 			i_size_read(inode) & ~PAGE_MASK)
2697 		return false;
2698 
2699 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2700 		return false;
2701 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2702 		return false;
2703 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2704 		return false;
2705 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2706 						&F2FS_I(inode)->i_crtime))
2707 		return false;
2708 
2709 	down_read(&F2FS_I(inode)->i_sem);
2710 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2711 	up_read(&F2FS_I(inode)->i_sem);
2712 
2713 	return ret;
2714 }
2715 
2716 static inline bool f2fs_readonly(struct super_block *sb)
2717 {
2718 	return sb_rdonly(sb);
2719 }
2720 
2721 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2722 {
2723 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2724 }
2725 
2726 static inline bool is_dot_dotdot(const struct qstr *str)
2727 {
2728 	if (str->len == 1 && str->name[0] == '.')
2729 		return true;
2730 
2731 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2732 		return true;
2733 
2734 	return false;
2735 }
2736 
2737 static inline bool f2fs_may_extent_tree(struct inode *inode)
2738 {
2739 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2740 
2741 	if (!test_opt(sbi, EXTENT_CACHE) ||
2742 			is_inode_flag_set(inode, FI_NO_EXTENT))
2743 		return false;
2744 
2745 	/*
2746 	 * for recovered files during mount do not create extents
2747 	 * if shrinker is not registered.
2748 	 */
2749 	if (list_empty(&sbi->s_list))
2750 		return false;
2751 
2752 	return S_ISREG(inode->i_mode);
2753 }
2754 
2755 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2756 					size_t size, gfp_t flags)
2757 {
2758 	void *ret;
2759 
2760 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2761 		f2fs_show_injection_info(FAULT_KMALLOC);
2762 		return NULL;
2763 	}
2764 
2765 	ret = kmalloc(size, flags);
2766 	if (ret)
2767 		return ret;
2768 
2769 	return kvmalloc(size, flags);
2770 }
2771 
2772 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2773 					size_t size, gfp_t flags)
2774 {
2775 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2776 }
2777 
2778 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2779 					size_t size, gfp_t flags)
2780 {
2781 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2782 		f2fs_show_injection_info(FAULT_KVMALLOC);
2783 		return NULL;
2784 	}
2785 
2786 	return kvmalloc(size, flags);
2787 }
2788 
2789 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2790 					size_t size, gfp_t flags)
2791 {
2792 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2793 }
2794 
2795 static inline int get_extra_isize(struct inode *inode)
2796 {
2797 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2798 }
2799 
2800 static inline int get_inline_xattr_addrs(struct inode *inode)
2801 {
2802 	return F2FS_I(inode)->i_inline_xattr_size;
2803 }
2804 
2805 #define f2fs_get_inode_mode(i) \
2806 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2807 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2808 
2809 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2810 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2811 	offsetof(struct f2fs_inode, i_extra_isize))	\
2812 
2813 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2814 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2815 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2816 		sizeof((f2fs_inode)->field))			\
2817 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2818 
2819 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2820 {
2821 	int i;
2822 
2823 	spin_lock(&sbi->iostat_lock);
2824 	for (i = 0; i < NR_IO_TYPE; i++)
2825 		sbi->write_iostat[i] = 0;
2826 	spin_unlock(&sbi->iostat_lock);
2827 }
2828 
2829 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2830 			enum iostat_type type, unsigned long long io_bytes)
2831 {
2832 	if (!sbi->iostat_enable)
2833 		return;
2834 	spin_lock(&sbi->iostat_lock);
2835 	sbi->write_iostat[type] += io_bytes;
2836 
2837 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2838 		sbi->write_iostat[APP_BUFFERED_IO] =
2839 			sbi->write_iostat[APP_WRITE_IO] -
2840 			sbi->write_iostat[APP_DIRECT_IO];
2841 	spin_unlock(&sbi->iostat_lock);
2842 }
2843 
2844 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2845 
2846 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2847 
2848 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2849 					block_t blkaddr, int type);
2850 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2851 					block_t blkaddr, int type)
2852 {
2853 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2854 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
2855 			 blkaddr, type);
2856 		f2fs_bug_on(sbi, 1);
2857 	}
2858 }
2859 
2860 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2861 {
2862 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2863 		return false;
2864 	return true;
2865 }
2866 
2867 static inline void f2fs_set_page_private(struct page *page,
2868 						unsigned long data)
2869 {
2870 	if (PagePrivate(page))
2871 		return;
2872 
2873 	get_page(page);
2874 	SetPagePrivate(page);
2875 	set_page_private(page, data);
2876 }
2877 
2878 static inline void f2fs_clear_page_private(struct page *page)
2879 {
2880 	if (!PagePrivate(page))
2881 		return;
2882 
2883 	set_page_private(page, 0);
2884 	ClearPagePrivate(page);
2885 	f2fs_put_page(page, 0);
2886 }
2887 
2888 /*
2889  * file.c
2890  */
2891 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2892 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2893 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2894 int f2fs_truncate(struct inode *inode);
2895 int f2fs_getattr(const struct path *path, struct kstat *stat,
2896 			u32 request_mask, unsigned int flags);
2897 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2898 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2899 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2900 int f2fs_precache_extents(struct inode *inode);
2901 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2902 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2903 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2904 int f2fs_pin_file_control(struct inode *inode, bool inc);
2905 
2906 /*
2907  * inode.c
2908  */
2909 void f2fs_set_inode_flags(struct inode *inode);
2910 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2911 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2912 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2913 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2914 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2915 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2916 void f2fs_update_inode_page(struct inode *inode);
2917 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2918 void f2fs_evict_inode(struct inode *inode);
2919 void f2fs_handle_failed_inode(struct inode *inode);
2920 
2921 /*
2922  * namei.c
2923  */
2924 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2925 							bool hot, bool set);
2926 struct dentry *f2fs_get_parent(struct dentry *child);
2927 
2928 /*
2929  * dir.c
2930  */
2931 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2932 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2933 			f2fs_hash_t namehash, int *max_slots,
2934 			struct f2fs_dentry_ptr *d);
2935 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2936 			unsigned int start_pos, struct fscrypt_str *fstr);
2937 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2938 			struct f2fs_dentry_ptr *d);
2939 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2940 			const struct qstr *new_name,
2941 			const struct qstr *orig_name, struct page *dpage);
2942 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2943 			unsigned int current_depth);
2944 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2945 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2946 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2947 			struct fscrypt_name *fname, struct page **res_page);
2948 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2949 			const struct qstr *child, struct page **res_page);
2950 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2951 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2952 			struct page **page);
2953 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2954 			struct page *page, struct inode *inode);
2955 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2956 			const struct qstr *name, f2fs_hash_t name_hash,
2957 			unsigned int bit_pos);
2958 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2959 			const struct qstr *orig_name,
2960 			struct inode *inode, nid_t ino, umode_t mode);
2961 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2962 			struct inode *inode, nid_t ino, umode_t mode);
2963 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2964 			struct inode *inode, nid_t ino, umode_t mode);
2965 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2966 			struct inode *dir, struct inode *inode);
2967 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2968 bool f2fs_empty_dir(struct inode *dir);
2969 
2970 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2971 {
2972 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2973 				inode, inode->i_ino, inode->i_mode);
2974 }
2975 
2976 /*
2977  * super.c
2978  */
2979 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2980 void f2fs_inode_synced(struct inode *inode);
2981 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2982 int f2fs_quota_sync(struct super_block *sb, int type);
2983 void f2fs_quota_off_umount(struct super_block *sb);
2984 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2985 int f2fs_sync_fs(struct super_block *sb, int sync);
2986 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2987 
2988 /*
2989  * hash.c
2990  */
2991 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2992 				struct fscrypt_name *fname);
2993 
2994 /*
2995  * node.c
2996  */
2997 struct dnode_of_data;
2998 struct node_info;
2999 
3000 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3001 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3002 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3003 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3004 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3005 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3006 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3007 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3008 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3009 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3010 						struct node_info *ni);
3011 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3012 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3013 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3014 int f2fs_truncate_xattr_node(struct inode *inode);
3015 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3016 					unsigned int seq_id);
3017 int f2fs_remove_inode_page(struct inode *inode);
3018 struct page *f2fs_new_inode_page(struct inode *inode);
3019 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3020 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3021 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3022 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3023 int f2fs_move_node_page(struct page *node_page, int gc_type);
3024 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3025 			struct writeback_control *wbc, bool atomic,
3026 			unsigned int *seq_id);
3027 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3028 			struct writeback_control *wbc,
3029 			bool do_balance, enum iostat_type io_type);
3030 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3031 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3032 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3033 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3034 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3035 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3036 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3037 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3038 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3039 			unsigned int segno, struct f2fs_summary_block *sum);
3040 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3041 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3042 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3043 int __init f2fs_create_node_manager_caches(void);
3044 void f2fs_destroy_node_manager_caches(void);
3045 
3046 /*
3047  * segment.c
3048  */
3049 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3050 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3051 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3052 void f2fs_drop_inmem_pages(struct inode *inode);
3053 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3054 int f2fs_commit_inmem_pages(struct inode *inode);
3055 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3056 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3057 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3058 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3059 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3060 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3061 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3062 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3063 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3064 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3065 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3066 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3067 					struct cp_control *cpc);
3068 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3069 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3070 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3071 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3072 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3073 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3074 					unsigned int start, unsigned int end);
3075 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3076 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3077 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3078 					struct cp_control *cpc);
3079 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3080 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3081 					block_t blk_addr);
3082 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3083 						enum iostat_type io_type);
3084 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3085 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3086 			struct f2fs_io_info *fio);
3087 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3088 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3089 			block_t old_blkaddr, block_t new_blkaddr,
3090 			bool recover_curseg, bool recover_newaddr);
3091 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3092 			block_t old_addr, block_t new_addr,
3093 			unsigned char version, bool recover_curseg,
3094 			bool recover_newaddr);
3095 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3096 			block_t old_blkaddr, block_t *new_blkaddr,
3097 			struct f2fs_summary *sum, int type,
3098 			struct f2fs_io_info *fio, bool add_list);
3099 void f2fs_wait_on_page_writeback(struct page *page,
3100 			enum page_type type, bool ordered, bool locked);
3101 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3102 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3103 								block_t len);
3104 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3105 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3106 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3107 			unsigned int val, int alloc);
3108 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3109 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3110 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3111 int __init f2fs_create_segment_manager_caches(void);
3112 void f2fs_destroy_segment_manager_caches(void);
3113 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3114 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3115 			enum page_type type, enum temp_type temp);
3116 
3117 /*
3118  * checkpoint.c
3119  */
3120 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3121 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3122 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3123 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3124 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3125 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3126 					block_t blkaddr, int type);
3127 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3128 			int type, bool sync);
3129 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3130 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3131 			long nr_to_write, enum iostat_type io_type);
3132 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3133 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3134 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3135 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3136 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3137 					unsigned int devidx, int type);
3138 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3139 					unsigned int devidx, int type);
3140 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3141 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3142 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3143 void f2fs_add_orphan_inode(struct inode *inode);
3144 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3145 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3146 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3147 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3148 void f2fs_remove_dirty_inode(struct inode *inode);
3149 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3150 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3151 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3152 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3153 int __init f2fs_create_checkpoint_caches(void);
3154 void f2fs_destroy_checkpoint_caches(void);
3155 
3156 /*
3157  * data.c
3158  */
3159 int f2fs_init_post_read_processing(void);
3160 void f2fs_destroy_post_read_processing(void);
3161 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3162 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3163 				struct inode *inode, struct page *page,
3164 				nid_t ino, enum page_type type);
3165 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3166 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3167 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3168 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3169 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3170 			block_t blk_addr, struct bio *bio);
3171 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3172 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3173 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3174 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3175 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3176 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3177 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3178 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3179 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3180 			int op_flags, bool for_write);
3181 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3182 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3183 			bool for_write);
3184 struct page *f2fs_get_new_data_page(struct inode *inode,
3185 			struct page *ipage, pgoff_t index, bool new_i_size);
3186 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3187 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3188 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3189 			int create, int flag);
3190 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3191 			u64 start, u64 len);
3192 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3193 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3194 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3195 			unsigned int length);
3196 int f2fs_release_page(struct page *page, gfp_t wait);
3197 #ifdef CONFIG_MIGRATION
3198 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3199 			struct page *page, enum migrate_mode mode);
3200 #endif
3201 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3202 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3203 
3204 /*
3205  * gc.c
3206  */
3207 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3208 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3209 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3210 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3211 			unsigned int segno);
3212 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3213 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3214 
3215 /*
3216  * recovery.c
3217  */
3218 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3219 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3220 
3221 /*
3222  * debug.c
3223  */
3224 #ifdef CONFIG_F2FS_STAT_FS
3225 struct f2fs_stat_info {
3226 	struct list_head stat_list;
3227 	struct f2fs_sb_info *sbi;
3228 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3229 	int main_area_segs, main_area_sections, main_area_zones;
3230 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3231 	unsigned long long hit_total, total_ext;
3232 	int ext_tree, zombie_tree, ext_node;
3233 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3234 	int ndirty_data, ndirty_qdata;
3235 	int inmem_pages;
3236 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3237 	int nats, dirty_nats, sits, dirty_sits;
3238 	int free_nids, avail_nids, alloc_nids;
3239 	int total_count, utilization;
3240 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3241 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3242 	int nr_dio_read, nr_dio_write;
3243 	unsigned int io_skip_bggc, other_skip_bggc;
3244 	int nr_flushing, nr_flushed, flush_list_empty;
3245 	int nr_discarding, nr_discarded;
3246 	int nr_discard_cmd;
3247 	unsigned int undiscard_blks;
3248 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3249 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3250 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3251 	unsigned int bimodal, avg_vblocks;
3252 	int util_free, util_valid, util_invalid;
3253 	int rsvd_segs, overp_segs;
3254 	int dirty_count, node_pages, meta_pages;
3255 	int prefree_count, call_count, cp_count, bg_cp_count;
3256 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3257 	int bg_node_segs, bg_data_segs;
3258 	int tot_blks, data_blks, node_blks;
3259 	int bg_data_blks, bg_node_blks;
3260 	unsigned long long skipped_atomic_files[2];
3261 	int curseg[NR_CURSEG_TYPE];
3262 	int cursec[NR_CURSEG_TYPE];
3263 	int curzone[NR_CURSEG_TYPE];
3264 
3265 	unsigned int meta_count[META_MAX];
3266 	unsigned int segment_count[2];
3267 	unsigned int block_count[2];
3268 	unsigned int inplace_count;
3269 	unsigned long long base_mem, cache_mem, page_mem;
3270 };
3271 
3272 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3273 {
3274 	return (struct f2fs_stat_info *)sbi->stat_info;
3275 }
3276 
3277 #define stat_inc_cp_count(si)		((si)->cp_count++)
3278 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3279 #define stat_inc_call_count(si)		((si)->call_count++)
3280 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3281 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3282 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3283 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3284 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3285 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3286 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3287 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3288 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3289 #define stat_inc_inline_xattr(inode)					\
3290 	do {								\
3291 		if (f2fs_has_inline_xattr(inode))			\
3292 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3293 	} while (0)
3294 #define stat_dec_inline_xattr(inode)					\
3295 	do {								\
3296 		if (f2fs_has_inline_xattr(inode))			\
3297 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3298 	} while (0)
3299 #define stat_inc_inline_inode(inode)					\
3300 	do {								\
3301 		if (f2fs_has_inline_data(inode))			\
3302 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3303 	} while (0)
3304 #define stat_dec_inline_inode(inode)					\
3305 	do {								\
3306 		if (f2fs_has_inline_data(inode))			\
3307 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3308 	} while (0)
3309 #define stat_inc_inline_dir(inode)					\
3310 	do {								\
3311 		if (f2fs_has_inline_dentry(inode))			\
3312 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3313 	} while (0)
3314 #define stat_dec_inline_dir(inode)					\
3315 	do {								\
3316 		if (f2fs_has_inline_dentry(inode))			\
3317 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3318 	} while (0)
3319 #define stat_inc_meta_count(sbi, blkaddr)				\
3320 	do {								\
3321 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3322 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3323 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3324 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3325 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3326 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3327 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3328 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3329 	} while (0)
3330 #define stat_inc_seg_type(sbi, curseg)					\
3331 		((sbi)->segment_count[(curseg)->alloc_type]++)
3332 #define stat_inc_block_count(sbi, curseg)				\
3333 		((sbi)->block_count[(curseg)->alloc_type]++)
3334 #define stat_inc_inplace_blocks(sbi)					\
3335 		(atomic_inc(&(sbi)->inplace_count))
3336 #define stat_inc_atomic_write(inode)					\
3337 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3338 #define stat_dec_atomic_write(inode)					\
3339 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3340 #define stat_update_max_atomic_write(inode)				\
3341 	do {								\
3342 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3343 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3344 		if (cur > max)						\
3345 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3346 	} while (0)
3347 #define stat_inc_volatile_write(inode)					\
3348 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3349 #define stat_dec_volatile_write(inode)					\
3350 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3351 #define stat_update_max_volatile_write(inode)				\
3352 	do {								\
3353 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3354 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3355 		if (cur > max)						\
3356 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3357 	} while (0)
3358 #define stat_inc_seg_count(sbi, type, gc_type)				\
3359 	do {								\
3360 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3361 		si->tot_segs++;						\
3362 		if ((type) == SUM_TYPE_DATA) {				\
3363 			si->data_segs++;				\
3364 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3365 		} else {						\
3366 			si->node_segs++;				\
3367 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3368 		}							\
3369 	} while (0)
3370 
3371 #define stat_inc_tot_blk_count(si, blks)				\
3372 	((si)->tot_blks += (blks))
3373 
3374 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3375 	do {								\
3376 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3377 		stat_inc_tot_blk_count(si, blks);			\
3378 		si->data_blks += (blks);				\
3379 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3380 	} while (0)
3381 
3382 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3383 	do {								\
3384 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3385 		stat_inc_tot_blk_count(si, blks);			\
3386 		si->node_blks += (blks);				\
3387 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3388 	} while (0)
3389 
3390 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3391 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3392 void __init f2fs_create_root_stats(void);
3393 void f2fs_destroy_root_stats(void);
3394 #else
3395 #define stat_inc_cp_count(si)				do { } while (0)
3396 #define stat_inc_bg_cp_count(si)			do { } while (0)
3397 #define stat_inc_call_count(si)				do { } while (0)
3398 #define stat_inc_bggc_count(si)				do { } while (0)
3399 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3400 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3401 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3402 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3403 #define stat_inc_total_hit(sb)				do { } while (0)
3404 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3405 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3406 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3407 #define stat_inc_inline_xattr(inode)			do { } while (0)
3408 #define stat_dec_inline_xattr(inode)			do { } while (0)
3409 #define stat_inc_inline_inode(inode)			do { } while (0)
3410 #define stat_dec_inline_inode(inode)			do { } while (0)
3411 #define stat_inc_inline_dir(inode)			do { } while (0)
3412 #define stat_dec_inline_dir(inode)			do { } while (0)
3413 #define stat_inc_atomic_write(inode)			do { } while (0)
3414 #define stat_dec_atomic_write(inode)			do { } while (0)
3415 #define stat_update_max_atomic_write(inode)		do { } while (0)
3416 #define stat_inc_volatile_write(inode)			do { } while (0)
3417 #define stat_dec_volatile_write(inode)			do { } while (0)
3418 #define stat_update_max_volatile_write(inode)		do { } while (0)
3419 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3420 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3421 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3422 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3423 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3424 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3425 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3426 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3427 
3428 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3429 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3430 static inline void __init f2fs_create_root_stats(void) { }
3431 static inline void f2fs_destroy_root_stats(void) { }
3432 #endif
3433 
3434 extern const struct file_operations f2fs_dir_operations;
3435 extern const struct file_operations f2fs_file_operations;
3436 extern const struct inode_operations f2fs_file_inode_operations;
3437 extern const struct address_space_operations f2fs_dblock_aops;
3438 extern const struct address_space_operations f2fs_node_aops;
3439 extern const struct address_space_operations f2fs_meta_aops;
3440 extern const struct inode_operations f2fs_dir_inode_operations;
3441 extern const struct inode_operations f2fs_symlink_inode_operations;
3442 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3443 extern const struct inode_operations f2fs_special_inode_operations;
3444 extern struct kmem_cache *f2fs_inode_entry_slab;
3445 
3446 /*
3447  * inline.c
3448  */
3449 bool f2fs_may_inline_data(struct inode *inode);
3450 bool f2fs_may_inline_dentry(struct inode *inode);
3451 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3452 void f2fs_truncate_inline_inode(struct inode *inode,
3453 						struct page *ipage, u64 from);
3454 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3455 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3456 int f2fs_convert_inline_inode(struct inode *inode);
3457 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3458 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3459 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3460 			struct fscrypt_name *fname, struct page **res_page);
3461 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3462 			struct page *ipage);
3463 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3464 			const struct qstr *orig_name,
3465 			struct inode *inode, nid_t ino, umode_t mode);
3466 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3467 				struct page *page, struct inode *dir,
3468 				struct inode *inode);
3469 bool f2fs_empty_inline_dir(struct inode *dir);
3470 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3471 			struct fscrypt_str *fstr);
3472 int f2fs_inline_data_fiemap(struct inode *inode,
3473 			struct fiemap_extent_info *fieinfo,
3474 			__u64 start, __u64 len);
3475 
3476 /*
3477  * shrinker.c
3478  */
3479 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3480 			struct shrink_control *sc);
3481 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3482 			struct shrink_control *sc);
3483 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3484 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3485 
3486 /*
3487  * extent_cache.c
3488  */
3489 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3490 				struct rb_entry *cached_re, unsigned int ofs);
3491 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3492 				struct rb_root_cached *root,
3493 				struct rb_node **parent,
3494 				unsigned int ofs, bool *leftmost);
3495 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3496 		struct rb_entry *cached_re, unsigned int ofs,
3497 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3498 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3499 		bool force, bool *leftmost);
3500 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3501 						struct rb_root_cached *root);
3502 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3503 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3504 void f2fs_drop_extent_tree(struct inode *inode);
3505 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3506 void f2fs_destroy_extent_tree(struct inode *inode);
3507 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3508 			struct extent_info *ei);
3509 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3510 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3511 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3512 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3513 int __init f2fs_create_extent_cache(void);
3514 void f2fs_destroy_extent_cache(void);
3515 
3516 /*
3517  * sysfs.c
3518  */
3519 int __init f2fs_init_sysfs(void);
3520 void f2fs_exit_sysfs(void);
3521 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3522 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3523 
3524 /*
3525  * crypto support
3526  */
3527 static inline bool f2fs_encrypted_file(struct inode *inode)
3528 {
3529 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3530 }
3531 
3532 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3533 {
3534 #ifdef CONFIG_FS_ENCRYPTION
3535 	file_set_encrypt(inode);
3536 	f2fs_set_inode_flags(inode);
3537 #endif
3538 }
3539 
3540 /*
3541  * Returns true if the reads of the inode's data need to undergo some
3542  * postprocessing step, like decryption or authenticity verification.
3543  */
3544 static inline bool f2fs_post_read_required(struct inode *inode)
3545 {
3546 	return f2fs_encrypted_file(inode);
3547 }
3548 
3549 #define F2FS_FEATURE_FUNCS(name, flagname) \
3550 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3551 { \
3552 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3553 }
3554 
3555 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3556 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3557 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3558 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3559 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3560 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3561 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3562 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3563 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3564 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3565 
3566 #ifdef CONFIG_BLK_DEV_ZONED
3567 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3568 				    block_t blkaddr)
3569 {
3570 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3571 
3572 	return test_bit(zno, FDEV(devi).blkz_seq);
3573 }
3574 #endif
3575 
3576 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3577 {
3578 	return f2fs_sb_has_blkzoned(sbi);
3579 }
3580 
3581 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3582 {
3583 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3584 	       bdev_is_zoned(bdev);
3585 }
3586 
3587 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3588 {
3589 	int i;
3590 
3591 	if (!f2fs_is_multi_device(sbi))
3592 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3593 
3594 	for (i = 0; i < sbi->s_ndevs; i++)
3595 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3596 			return true;
3597 	return false;
3598 }
3599 
3600 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3601 {
3602 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3603 					f2fs_hw_should_discard(sbi);
3604 }
3605 
3606 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3607 {
3608 	int i;
3609 
3610 	if (!f2fs_is_multi_device(sbi))
3611 		return bdev_read_only(sbi->sb->s_bdev);
3612 
3613 	for (i = 0; i < sbi->s_ndevs; i++)
3614 		if (bdev_read_only(FDEV(i).bdev))
3615 			return true;
3616 	return false;
3617 }
3618 
3619 
3620 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3621 {
3622 	clear_opt(sbi, ADAPTIVE);
3623 	clear_opt(sbi, LFS);
3624 
3625 	switch (mt) {
3626 	case F2FS_MOUNT_ADAPTIVE:
3627 		set_opt(sbi, ADAPTIVE);
3628 		break;
3629 	case F2FS_MOUNT_LFS:
3630 		set_opt(sbi, LFS);
3631 		break;
3632 	}
3633 }
3634 
3635 static inline bool f2fs_may_encrypt(struct inode *inode)
3636 {
3637 #ifdef CONFIG_FS_ENCRYPTION
3638 	umode_t mode = inode->i_mode;
3639 
3640 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3641 #else
3642 	return false;
3643 #endif
3644 }
3645 
3646 static inline int block_unaligned_IO(struct inode *inode,
3647 				struct kiocb *iocb, struct iov_iter *iter)
3648 {
3649 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3650 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3651 	loff_t offset = iocb->ki_pos;
3652 	unsigned long align = offset | iov_iter_alignment(iter);
3653 
3654 	return align & blocksize_mask;
3655 }
3656 
3657 static inline int allow_outplace_dio(struct inode *inode,
3658 				struct kiocb *iocb, struct iov_iter *iter)
3659 {
3660 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3661 	int rw = iov_iter_rw(iter);
3662 
3663 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3664 				!block_unaligned_IO(inode, iocb, iter));
3665 }
3666 
3667 static inline bool f2fs_force_buffered_io(struct inode *inode,
3668 				struct kiocb *iocb, struct iov_iter *iter)
3669 {
3670 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3671 	int rw = iov_iter_rw(iter);
3672 
3673 	if (f2fs_post_read_required(inode))
3674 		return true;
3675 	if (f2fs_is_multi_device(sbi))
3676 		return true;
3677 	/*
3678 	 * for blkzoned device, fallback direct IO to buffered IO, so
3679 	 * all IOs can be serialized by log-structured write.
3680 	 */
3681 	if (f2fs_sb_has_blkzoned(sbi))
3682 		return true;
3683 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3684 				block_unaligned_IO(inode, iocb, iter))
3685 		return true;
3686 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
3687 					!(inode->i_flags & S_SWAPFILE))
3688 		return true;
3689 
3690 	return false;
3691 }
3692 
3693 #ifdef CONFIG_F2FS_FAULT_INJECTION
3694 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3695 							unsigned int type);
3696 #else
3697 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3698 #endif
3699 
3700 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3701 {
3702 #ifdef CONFIG_QUOTA
3703 	if (f2fs_sb_has_quota_ino(sbi))
3704 		return true;
3705 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3706 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3707 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3708 		return true;
3709 #endif
3710 	return false;
3711 }
3712 
3713 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
3714 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
3715 
3716 #endif /* _LINUX_F2FS_H */
3717