xref: /openbmc/linux/fs/f2fs/f2fs.h (revision e368cd72)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_NID,
47 	FAULT_ORPHAN,
48 	FAULT_BLOCK,
49 	FAULT_DIR_DEPTH,
50 	FAULT_EVICT_INODE,
51 	FAULT_TRUNCATE,
52 	FAULT_READ_IO,
53 	FAULT_CHECKPOINT,
54 	FAULT_DISCARD,
55 	FAULT_WRITE_IO,
56 	FAULT_MAX,
57 };
58 
59 #ifdef CONFIG_F2FS_FAULT_INJECTION
60 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern const char *f2fs_fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
76 #define F2FS_MOUNT_DISCARD		0x00000004
77 #define F2FS_MOUNT_NOHEAP		0x00000008
78 #define F2FS_MOUNT_XATTR_USER		0x00000010
79 #define F2FS_MOUNT_POSIX_ACL		0x00000020
80 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
81 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
82 #define F2FS_MOUNT_INLINE_DATA		0x00000100
83 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
84 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
85 #define F2FS_MOUNT_NOBARRIER		0x00000800
86 #define F2FS_MOUNT_FASTBOOT		0x00001000
87 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_USRQUOTA		0x00080000
91 #define F2FS_MOUNT_GRPQUOTA		0x00100000
92 #define F2FS_MOUNT_PRJQUOTA		0x00200000
93 #define F2FS_MOUNT_QUOTA		0x00400000
94 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
95 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
96 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
97 #define F2FS_MOUNT_NORECOVERY		0x04000000
98 #define F2FS_MOUNT_ATGC			0x08000000
99 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
100 #define	F2FS_MOUNT_GC_MERGE		0x20000000
101 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 #define COMPRESS_EXT_NUM		16
119 
120 struct f2fs_mount_info {
121 	unsigned int opt;
122 	int write_io_size_bits;		/* Write IO size bits */
123 	block_t root_reserved_blocks;	/* root reserved blocks */
124 	kuid_t s_resuid;		/* reserved blocks for uid */
125 	kgid_t s_resgid;		/* reserved blocks for gid */
126 	int active_logs;		/* # of active logs */
127 	int inline_xattr_size;		/* inline xattr size */
128 #ifdef CONFIG_F2FS_FAULT_INJECTION
129 	struct f2fs_fault_info fault_info;	/* For fault injection */
130 #endif
131 #ifdef CONFIG_QUOTA
132 	/* Names of quota files with journalled quota */
133 	char *s_qf_names[MAXQUOTAS];
134 	int s_jquota_fmt;			/* Format of quota to use */
135 #endif
136 	/* For which write hints are passed down to block layer */
137 	int whint_mode;
138 	int alloc_mode;			/* segment allocation policy */
139 	int fsync_mode;			/* fsync policy */
140 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
141 	int bggc_mode;			/* bggc mode: off, on or sync */
142 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
143 	block_t unusable_cap_perc;	/* percentage for cap */
144 	block_t unusable_cap;		/* Amount of space allowed to be
145 					 * unusable when disabling checkpoint
146 					 */
147 
148 	/* For compression */
149 	unsigned char compress_algorithm;	/* algorithm type */
150 	unsigned char compress_log_size;	/* cluster log size */
151 	unsigned char compress_level;		/* compress level */
152 	bool compress_chksum;			/* compressed data chksum */
153 	unsigned char compress_ext_cnt;		/* extension count */
154 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
155 	int compress_mode;			/* compression mode */
156 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
157 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
158 };
159 
160 #define F2FS_FEATURE_ENCRYPT		0x0001
161 #define F2FS_FEATURE_BLKZONED		0x0002
162 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
163 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
164 #define F2FS_FEATURE_PRJQUOTA		0x0010
165 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
166 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
167 #define F2FS_FEATURE_QUOTA_INO		0x0080
168 #define F2FS_FEATURE_INODE_CRTIME	0x0100
169 #define F2FS_FEATURE_LOST_FOUND		0x0200
170 #define F2FS_FEATURE_VERITY		0x0400
171 #define F2FS_FEATURE_SB_CHKSUM		0x0800
172 #define F2FS_FEATURE_CASEFOLD		0x1000
173 #define F2FS_FEATURE_COMPRESSION	0x2000
174 #define F2FS_FEATURE_RO			0x4000
175 
176 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
177 	((raw_super->feature & cpu_to_le32(mask)) != 0)
178 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
179 #define F2FS_SET_FEATURE(sbi, mask)					\
180 	(sbi->raw_super->feature |= cpu_to_le32(mask))
181 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
182 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
183 
184 /*
185  * Default values for user and/or group using reserved blocks
186  */
187 #define	F2FS_DEF_RESUID		0
188 #define	F2FS_DEF_RESGID		0
189 
190 /*
191  * For checkpoint manager
192  */
193 enum {
194 	NAT_BITMAP,
195 	SIT_BITMAP
196 };
197 
198 #define	CP_UMOUNT	0x00000001
199 #define	CP_FASTBOOT	0x00000002
200 #define	CP_SYNC		0x00000004
201 #define	CP_RECOVERY	0x00000008
202 #define	CP_DISCARD	0x00000010
203 #define CP_TRIMMED	0x00000020
204 #define CP_PAUSE	0x00000040
205 #define CP_RESIZE 	0x00000080
206 
207 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
208 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
209 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
210 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
211 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
212 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
213 #define DEF_CP_INTERVAL			60	/* 60 secs */
214 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
215 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
216 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
217 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
218 
219 struct cp_control {
220 	int reason;
221 	__u64 trim_start;
222 	__u64 trim_end;
223 	__u64 trim_minlen;
224 };
225 
226 /*
227  * indicate meta/data type
228  */
229 enum {
230 	META_CP,
231 	META_NAT,
232 	META_SIT,
233 	META_SSA,
234 	META_MAX,
235 	META_POR,
236 	DATA_GENERIC,		/* check range only */
237 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
238 	DATA_GENERIC_ENHANCE_READ,	/*
239 					 * strong check on range and segment
240 					 * bitmap but no warning due to race
241 					 * condition of read on truncated area
242 					 * by extent_cache
243 					 */
244 	META_GENERIC,
245 };
246 
247 /* for the list of ino */
248 enum {
249 	ORPHAN_INO,		/* for orphan ino list */
250 	APPEND_INO,		/* for append ino list */
251 	UPDATE_INO,		/* for update ino list */
252 	TRANS_DIR_INO,		/* for trasactions dir ino list */
253 	FLUSH_INO,		/* for multiple device flushing */
254 	MAX_INO_ENTRY,		/* max. list */
255 };
256 
257 struct ino_entry {
258 	struct list_head list;		/* list head */
259 	nid_t ino;			/* inode number */
260 	unsigned int dirty_device;	/* dirty device bitmap */
261 };
262 
263 /* for the list of inodes to be GCed */
264 struct inode_entry {
265 	struct list_head list;	/* list head */
266 	struct inode *inode;	/* vfs inode pointer */
267 };
268 
269 struct fsync_node_entry {
270 	struct list_head list;	/* list head */
271 	struct page *page;	/* warm node page pointer */
272 	unsigned int seq_id;	/* sequence id */
273 };
274 
275 struct ckpt_req {
276 	struct completion wait;		/* completion for checkpoint done */
277 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
278 	int ret;			/* return code of checkpoint */
279 	ktime_t queue_time;		/* request queued time */
280 };
281 
282 struct ckpt_req_control {
283 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
284 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
285 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
286 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
287 	atomic_t total_ckpt;		/* # of total ckpts */
288 	atomic_t queued_ckpt;		/* # of queued ckpts */
289 	struct llist_head issue_list;	/* list for command issue */
290 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
291 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
292 	unsigned int peak_time;		/* peak wait time in msec until now */
293 };
294 
295 /* for the bitmap indicate blocks to be discarded */
296 struct discard_entry {
297 	struct list_head list;	/* list head */
298 	block_t start_blkaddr;	/* start blockaddr of current segment */
299 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
300 };
301 
302 /* default discard granularity of inner discard thread, unit: block count */
303 #define DEFAULT_DISCARD_GRANULARITY		16
304 
305 /* max discard pend list number */
306 #define MAX_PLIST_NUM		512
307 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
308 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
309 
310 enum {
311 	D_PREP,			/* initial */
312 	D_PARTIAL,		/* partially submitted */
313 	D_SUBMIT,		/* all submitted */
314 	D_DONE,			/* finished */
315 };
316 
317 struct discard_info {
318 	block_t lstart;			/* logical start address */
319 	block_t len;			/* length */
320 	block_t start;			/* actual start address in dev */
321 };
322 
323 struct discard_cmd {
324 	struct rb_node rb_node;		/* rb node located in rb-tree */
325 	union {
326 		struct {
327 			block_t lstart;	/* logical start address */
328 			block_t len;	/* length */
329 			block_t start;	/* actual start address in dev */
330 		};
331 		struct discard_info di;	/* discard info */
332 
333 	};
334 	struct list_head list;		/* command list */
335 	struct completion wait;		/* compleation */
336 	struct block_device *bdev;	/* bdev */
337 	unsigned short ref;		/* reference count */
338 	unsigned char state;		/* state */
339 	unsigned char queued;		/* queued discard */
340 	int error;			/* bio error */
341 	spinlock_t lock;		/* for state/bio_ref updating */
342 	unsigned short bio_ref;		/* bio reference count */
343 };
344 
345 enum {
346 	DPOLICY_BG,
347 	DPOLICY_FORCE,
348 	DPOLICY_FSTRIM,
349 	DPOLICY_UMOUNT,
350 	MAX_DPOLICY,
351 };
352 
353 struct discard_policy {
354 	int type;			/* type of discard */
355 	unsigned int min_interval;	/* used for candidates exist */
356 	unsigned int mid_interval;	/* used for device busy */
357 	unsigned int max_interval;	/* used for candidates not exist */
358 	unsigned int max_requests;	/* # of discards issued per round */
359 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
360 	bool io_aware;			/* issue discard in idle time */
361 	bool sync;			/* submit discard with REQ_SYNC flag */
362 	bool ordered;			/* issue discard by lba order */
363 	bool timeout;			/* discard timeout for put_super */
364 	unsigned int granularity;	/* discard granularity */
365 };
366 
367 struct discard_cmd_control {
368 	struct task_struct *f2fs_issue_discard;	/* discard thread */
369 	struct list_head entry_list;		/* 4KB discard entry list */
370 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
371 	struct list_head wait_list;		/* store on-flushing entries */
372 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
373 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
374 	unsigned int discard_wake;		/* to wake up discard thread */
375 	struct mutex cmd_lock;
376 	unsigned int nr_discards;		/* # of discards in the list */
377 	unsigned int max_discards;		/* max. discards to be issued */
378 	unsigned int discard_granularity;	/* discard granularity */
379 	unsigned int undiscard_blks;		/* # of undiscard blocks */
380 	unsigned int next_pos;			/* next discard position */
381 	atomic_t issued_discard;		/* # of issued discard */
382 	atomic_t queued_discard;		/* # of queued discard */
383 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
384 	struct rb_root_cached root;		/* root of discard rb-tree */
385 	bool rbtree_check;			/* config for consistence check */
386 };
387 
388 /* for the list of fsync inodes, used only during recovery */
389 struct fsync_inode_entry {
390 	struct list_head list;	/* list head */
391 	struct inode *inode;	/* vfs inode pointer */
392 	block_t blkaddr;	/* block address locating the last fsync */
393 	block_t last_dentry;	/* block address locating the last dentry */
394 };
395 
396 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
397 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
398 
399 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
400 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
401 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
402 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
403 
404 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
405 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
406 
407 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
408 {
409 	int before = nats_in_cursum(journal);
410 
411 	journal->n_nats = cpu_to_le16(before + i);
412 	return before;
413 }
414 
415 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
416 {
417 	int before = sits_in_cursum(journal);
418 
419 	journal->n_sits = cpu_to_le16(before + i);
420 	return before;
421 }
422 
423 static inline bool __has_cursum_space(struct f2fs_journal *journal,
424 							int size, int type)
425 {
426 	if (type == NAT_JOURNAL)
427 		return size <= MAX_NAT_JENTRIES(journal);
428 	return size <= MAX_SIT_JENTRIES(journal);
429 }
430 
431 /* for inline stuff */
432 #define DEF_INLINE_RESERVED_SIZE	1
433 static inline int get_extra_isize(struct inode *inode);
434 static inline int get_inline_xattr_addrs(struct inode *inode);
435 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
436 				(CUR_ADDRS_PER_INODE(inode) -		\
437 				get_inline_xattr_addrs(inode) -	\
438 				DEF_INLINE_RESERVED_SIZE))
439 
440 /* for inline dir */
441 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
442 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
443 				BITS_PER_BYTE + 1))
444 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
445 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
446 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
447 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
448 				NR_INLINE_DENTRY(inode) + \
449 				INLINE_DENTRY_BITMAP_SIZE(inode)))
450 
451 /*
452  * For INODE and NODE manager
453  */
454 /* for directory operations */
455 
456 struct f2fs_filename {
457 	/*
458 	 * The filename the user specified.  This is NULL for some
459 	 * filesystem-internal operations, e.g. converting an inline directory
460 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
461 	 */
462 	const struct qstr *usr_fname;
463 
464 	/*
465 	 * The on-disk filename.  For encrypted directories, this is encrypted.
466 	 * This may be NULL for lookups in an encrypted dir without the key.
467 	 */
468 	struct fscrypt_str disk_name;
469 
470 	/* The dirhash of this filename */
471 	f2fs_hash_t hash;
472 
473 #ifdef CONFIG_FS_ENCRYPTION
474 	/*
475 	 * For lookups in encrypted directories: either the buffer backing
476 	 * disk_name, or a buffer that holds the decoded no-key name.
477 	 */
478 	struct fscrypt_str crypto_buf;
479 #endif
480 #ifdef CONFIG_UNICODE
481 	/*
482 	 * For casefolded directories: the casefolded name, but it's left NULL
483 	 * if the original name is not valid Unicode, if the directory is both
484 	 * casefolded and encrypted and its encryption key is unavailable, or if
485 	 * the filesystem is doing an internal operation where usr_fname is also
486 	 * NULL.  In all these cases we fall back to treating the name as an
487 	 * opaque byte sequence.
488 	 */
489 	struct fscrypt_str cf_name;
490 #endif
491 };
492 
493 struct f2fs_dentry_ptr {
494 	struct inode *inode;
495 	void *bitmap;
496 	struct f2fs_dir_entry *dentry;
497 	__u8 (*filename)[F2FS_SLOT_LEN];
498 	int max;
499 	int nr_bitmap;
500 };
501 
502 static inline void make_dentry_ptr_block(struct inode *inode,
503 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
504 {
505 	d->inode = inode;
506 	d->max = NR_DENTRY_IN_BLOCK;
507 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
508 	d->bitmap = t->dentry_bitmap;
509 	d->dentry = t->dentry;
510 	d->filename = t->filename;
511 }
512 
513 static inline void make_dentry_ptr_inline(struct inode *inode,
514 					struct f2fs_dentry_ptr *d, void *t)
515 {
516 	int entry_cnt = NR_INLINE_DENTRY(inode);
517 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
518 	int reserved_size = INLINE_RESERVED_SIZE(inode);
519 
520 	d->inode = inode;
521 	d->max = entry_cnt;
522 	d->nr_bitmap = bitmap_size;
523 	d->bitmap = t;
524 	d->dentry = t + bitmap_size + reserved_size;
525 	d->filename = t + bitmap_size + reserved_size +
526 					SIZE_OF_DIR_ENTRY * entry_cnt;
527 }
528 
529 /*
530  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
531  * as its node offset to distinguish from index node blocks.
532  * But some bits are used to mark the node block.
533  */
534 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
535 				>> OFFSET_BIT_SHIFT)
536 enum {
537 	ALLOC_NODE,			/* allocate a new node page if needed */
538 	LOOKUP_NODE,			/* look up a node without readahead */
539 	LOOKUP_NODE_RA,			/*
540 					 * look up a node with readahead called
541 					 * by get_data_block.
542 					 */
543 };
544 
545 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
546 
547 /* congestion wait timeout value, default: 20ms */
548 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
549 
550 /* maximum retry quota flush count */
551 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
552 
553 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
554 
555 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
556 
557 /* for in-memory extent cache entry */
558 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
559 
560 /* number of extent info in extent cache we try to shrink */
561 #define EXTENT_CACHE_SHRINK_NUMBER	128
562 
563 struct rb_entry {
564 	struct rb_node rb_node;		/* rb node located in rb-tree */
565 	union {
566 		struct {
567 			unsigned int ofs;	/* start offset of the entry */
568 			unsigned int len;	/* length of the entry */
569 		};
570 		unsigned long long key;		/* 64-bits key */
571 	} __packed;
572 };
573 
574 struct extent_info {
575 	unsigned int fofs;		/* start offset in a file */
576 	unsigned int len;		/* length of the extent */
577 	u32 blk;			/* start block address of the extent */
578 };
579 
580 struct extent_node {
581 	struct rb_node rb_node;		/* rb node located in rb-tree */
582 	struct extent_info ei;		/* extent info */
583 	struct list_head list;		/* node in global extent list of sbi */
584 	struct extent_tree *et;		/* extent tree pointer */
585 };
586 
587 struct extent_tree {
588 	nid_t ino;			/* inode number */
589 	struct rb_root_cached root;	/* root of extent info rb-tree */
590 	struct extent_node *cached_en;	/* recently accessed extent node */
591 	struct extent_info largest;	/* largested extent info */
592 	struct list_head list;		/* to be used by sbi->zombie_list */
593 	rwlock_t lock;			/* protect extent info rb-tree */
594 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
595 	bool largest_updated;		/* largest extent updated */
596 };
597 
598 /*
599  * This structure is taken from ext4_map_blocks.
600  *
601  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
602  */
603 #define F2FS_MAP_NEW		(1 << BH_New)
604 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
605 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
606 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
607 				F2FS_MAP_UNWRITTEN)
608 
609 struct f2fs_map_blocks {
610 	block_t m_pblk;
611 	block_t m_lblk;
612 	unsigned int m_len;
613 	unsigned int m_flags;
614 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
615 	pgoff_t *m_next_extent;		/* point to next possible extent */
616 	int m_seg_type;
617 	bool m_may_create;		/* indicate it is from write path */
618 };
619 
620 /* for flag in get_data_block */
621 enum {
622 	F2FS_GET_BLOCK_DEFAULT,
623 	F2FS_GET_BLOCK_FIEMAP,
624 	F2FS_GET_BLOCK_BMAP,
625 	F2FS_GET_BLOCK_DIO,
626 	F2FS_GET_BLOCK_PRE_DIO,
627 	F2FS_GET_BLOCK_PRE_AIO,
628 	F2FS_GET_BLOCK_PRECACHE,
629 };
630 
631 /*
632  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
633  */
634 #define FADVISE_COLD_BIT	0x01
635 #define FADVISE_LOST_PINO_BIT	0x02
636 #define FADVISE_ENCRYPT_BIT	0x04
637 #define FADVISE_ENC_NAME_BIT	0x08
638 #define FADVISE_KEEP_SIZE_BIT	0x10
639 #define FADVISE_HOT_BIT		0x20
640 #define FADVISE_VERITY_BIT	0x40
641 
642 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
643 
644 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
645 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
646 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
647 
648 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
649 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
650 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
651 
652 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
653 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
654 
655 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
656 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
657 
658 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
659 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
660 
661 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
662 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
663 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
664 
665 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
666 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
667 
668 #define DEF_DIR_LEVEL		0
669 
670 enum {
671 	GC_FAILURE_PIN,
672 	GC_FAILURE_ATOMIC,
673 	MAX_GC_FAILURE
674 };
675 
676 /* used for f2fs_inode_info->flags */
677 enum {
678 	FI_NEW_INODE,		/* indicate newly allocated inode */
679 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
680 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
681 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
682 	FI_INC_LINK,		/* need to increment i_nlink */
683 	FI_ACL_MODE,		/* indicate acl mode */
684 	FI_NO_ALLOC,		/* should not allocate any blocks */
685 	FI_FREE_NID,		/* free allocated nide */
686 	FI_NO_EXTENT,		/* not to use the extent cache */
687 	FI_INLINE_XATTR,	/* used for inline xattr */
688 	FI_INLINE_DATA,		/* used for inline data*/
689 	FI_INLINE_DENTRY,	/* used for inline dentry */
690 	FI_APPEND_WRITE,	/* inode has appended data */
691 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
692 	FI_NEED_IPU,		/* used for ipu per file */
693 	FI_ATOMIC_FILE,		/* indicate atomic file */
694 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
695 	FI_VOLATILE_FILE,	/* indicate volatile file */
696 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
697 	FI_DROP_CACHE,		/* drop dirty page cache */
698 	FI_DATA_EXIST,		/* indicate data exists */
699 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
700 	FI_DO_DEFRAG,		/* indicate defragment is running */
701 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
702 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
703 	FI_HOT_DATA,		/* indicate file is hot */
704 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
705 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
706 	FI_PIN_FILE,		/* indicate file should not be gced */
707 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
708 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
709 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
710 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
711 	FI_MMAP_FILE,		/* indicate file was mmapped */
712 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
713 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
714 	FI_ALIGNED_WRITE,	/* enable aligned write */
715 	FI_MAX,			/* max flag, never be used */
716 };
717 
718 struct f2fs_inode_info {
719 	struct inode vfs_inode;		/* serve a vfs inode */
720 	unsigned long i_flags;		/* keep an inode flags for ioctl */
721 	unsigned char i_advise;		/* use to give file attribute hints */
722 	unsigned char i_dir_level;	/* use for dentry level for large dir */
723 	unsigned int i_current_depth;	/* only for directory depth */
724 	/* for gc failure statistic */
725 	unsigned int i_gc_failures[MAX_GC_FAILURE];
726 	unsigned int i_pino;		/* parent inode number */
727 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
728 
729 	/* Use below internally in f2fs*/
730 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
731 	struct rw_semaphore i_sem;	/* protect fi info */
732 	atomic_t dirty_pages;		/* # of dirty pages */
733 	f2fs_hash_t chash;		/* hash value of given file name */
734 	unsigned int clevel;		/* maximum level of given file name */
735 	struct task_struct *task;	/* lookup and create consistency */
736 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
737 	nid_t i_xattr_nid;		/* node id that contains xattrs */
738 	loff_t	last_disk_size;		/* lastly written file size */
739 	spinlock_t i_size_lock;		/* protect last_disk_size */
740 
741 #ifdef CONFIG_QUOTA
742 	struct dquot *i_dquot[MAXQUOTAS];
743 
744 	/* quota space reservation, managed internally by quota code */
745 	qsize_t i_reserved_quota;
746 #endif
747 	struct list_head dirty_list;	/* dirty list for dirs and files */
748 	struct list_head gdirty_list;	/* linked in global dirty list */
749 	struct list_head inmem_ilist;	/* list for inmem inodes */
750 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
751 	struct task_struct *inmem_task;	/* store inmemory task */
752 	struct mutex inmem_lock;	/* lock for inmemory pages */
753 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
754 
755 	/* avoid racing between foreground op and gc */
756 	struct rw_semaphore i_gc_rwsem[2];
757 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
758 
759 	int i_extra_isize;		/* size of extra space located in i_addr */
760 	kprojid_t i_projid;		/* id for project quota */
761 	int i_inline_xattr_size;	/* inline xattr size */
762 	struct timespec64 i_crtime;	/* inode creation time */
763 	struct timespec64 i_disk_time[4];/* inode disk times */
764 
765 	/* for file compress */
766 	atomic_t i_compr_blocks;		/* # of compressed blocks */
767 	unsigned char i_compress_algorithm;	/* algorithm type */
768 	unsigned char i_log_cluster_size;	/* log of cluster size */
769 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
770 	unsigned short i_compress_flag;		/* compress flag */
771 	unsigned int i_cluster_size;		/* cluster size */
772 };
773 
774 static inline void get_extent_info(struct extent_info *ext,
775 					struct f2fs_extent *i_ext)
776 {
777 	ext->fofs = le32_to_cpu(i_ext->fofs);
778 	ext->blk = le32_to_cpu(i_ext->blk);
779 	ext->len = le32_to_cpu(i_ext->len);
780 }
781 
782 static inline void set_raw_extent(struct extent_info *ext,
783 					struct f2fs_extent *i_ext)
784 {
785 	i_ext->fofs = cpu_to_le32(ext->fofs);
786 	i_ext->blk = cpu_to_le32(ext->blk);
787 	i_ext->len = cpu_to_le32(ext->len);
788 }
789 
790 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
791 						u32 blk, unsigned int len)
792 {
793 	ei->fofs = fofs;
794 	ei->blk = blk;
795 	ei->len = len;
796 }
797 
798 static inline bool __is_discard_mergeable(struct discard_info *back,
799 			struct discard_info *front, unsigned int max_len)
800 {
801 	return (back->lstart + back->len == front->lstart) &&
802 		(back->len + front->len <= max_len);
803 }
804 
805 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
806 			struct discard_info *back, unsigned int max_len)
807 {
808 	return __is_discard_mergeable(back, cur, max_len);
809 }
810 
811 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
812 			struct discard_info *front, unsigned int max_len)
813 {
814 	return __is_discard_mergeable(cur, front, max_len);
815 }
816 
817 static inline bool __is_extent_mergeable(struct extent_info *back,
818 						struct extent_info *front)
819 {
820 	return (back->fofs + back->len == front->fofs &&
821 			back->blk + back->len == front->blk);
822 }
823 
824 static inline bool __is_back_mergeable(struct extent_info *cur,
825 						struct extent_info *back)
826 {
827 	return __is_extent_mergeable(back, cur);
828 }
829 
830 static inline bool __is_front_mergeable(struct extent_info *cur,
831 						struct extent_info *front)
832 {
833 	return __is_extent_mergeable(cur, front);
834 }
835 
836 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
837 static inline void __try_update_largest_extent(struct extent_tree *et,
838 						struct extent_node *en)
839 {
840 	if (en->ei.len > et->largest.len) {
841 		et->largest = en->ei;
842 		et->largest_updated = true;
843 	}
844 }
845 
846 /*
847  * For free nid management
848  */
849 enum nid_state {
850 	FREE_NID,		/* newly added to free nid list */
851 	PREALLOC_NID,		/* it is preallocated */
852 	MAX_NID_STATE,
853 };
854 
855 enum nat_state {
856 	TOTAL_NAT,
857 	DIRTY_NAT,
858 	RECLAIMABLE_NAT,
859 	MAX_NAT_STATE,
860 };
861 
862 struct f2fs_nm_info {
863 	block_t nat_blkaddr;		/* base disk address of NAT */
864 	nid_t max_nid;			/* maximum possible node ids */
865 	nid_t available_nids;		/* # of available node ids */
866 	nid_t next_scan_nid;		/* the next nid to be scanned */
867 	unsigned int ram_thresh;	/* control the memory footprint */
868 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
869 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
870 
871 	/* NAT cache management */
872 	struct radix_tree_root nat_root;/* root of the nat entry cache */
873 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
874 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
875 	struct list_head nat_entries;	/* cached nat entry list (clean) */
876 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
877 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
878 	unsigned int nat_blocks;	/* # of nat blocks */
879 
880 	/* free node ids management */
881 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
882 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
883 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
884 	spinlock_t nid_list_lock;	/* protect nid lists ops */
885 	struct mutex build_lock;	/* lock for build free nids */
886 	unsigned char **free_nid_bitmap;
887 	unsigned char *nat_block_bitmap;
888 	unsigned short *free_nid_count;	/* free nid count of NAT block */
889 
890 	/* for checkpoint */
891 	char *nat_bitmap;		/* NAT bitmap pointer */
892 
893 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
894 	unsigned char *nat_bits;	/* NAT bits blocks */
895 	unsigned char *full_nat_bits;	/* full NAT pages */
896 	unsigned char *empty_nat_bits;	/* empty NAT pages */
897 #ifdef CONFIG_F2FS_CHECK_FS
898 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
899 #endif
900 	int bitmap_size;		/* bitmap size */
901 };
902 
903 /*
904  * this structure is used as one of function parameters.
905  * all the information are dedicated to a given direct node block determined
906  * by the data offset in a file.
907  */
908 struct dnode_of_data {
909 	struct inode *inode;		/* vfs inode pointer */
910 	struct page *inode_page;	/* its inode page, NULL is possible */
911 	struct page *node_page;		/* cached direct node page */
912 	nid_t nid;			/* node id of the direct node block */
913 	unsigned int ofs_in_node;	/* data offset in the node page */
914 	bool inode_page_locked;		/* inode page is locked or not */
915 	bool node_changed;		/* is node block changed */
916 	char cur_level;			/* level of hole node page */
917 	char max_level;			/* level of current page located */
918 	block_t	data_blkaddr;		/* block address of the node block */
919 };
920 
921 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
922 		struct page *ipage, struct page *npage, nid_t nid)
923 {
924 	memset(dn, 0, sizeof(*dn));
925 	dn->inode = inode;
926 	dn->inode_page = ipage;
927 	dn->node_page = npage;
928 	dn->nid = nid;
929 }
930 
931 /*
932  * For SIT manager
933  *
934  * By default, there are 6 active log areas across the whole main area.
935  * When considering hot and cold data separation to reduce cleaning overhead,
936  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
937  * respectively.
938  * In the current design, you should not change the numbers intentionally.
939  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
940  * logs individually according to the underlying devices. (default: 6)
941  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
942  * data and 8 for node logs.
943  */
944 #define	NR_CURSEG_DATA_TYPE	(3)
945 #define NR_CURSEG_NODE_TYPE	(3)
946 #define NR_CURSEG_INMEM_TYPE	(2)
947 #define NR_CURSEG_RO_TYPE	(2)
948 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
949 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
950 
951 enum {
952 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
953 	CURSEG_WARM_DATA,	/* data blocks */
954 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
955 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
956 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
957 	CURSEG_COLD_NODE,	/* indirect node blocks */
958 	NR_PERSISTENT_LOG,	/* number of persistent log */
959 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
960 				/* pinned file that needs consecutive block address */
961 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
962 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
963 };
964 
965 struct flush_cmd {
966 	struct completion wait;
967 	struct llist_node llnode;
968 	nid_t ino;
969 	int ret;
970 };
971 
972 struct flush_cmd_control {
973 	struct task_struct *f2fs_issue_flush;	/* flush thread */
974 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
975 	atomic_t issued_flush;			/* # of issued flushes */
976 	atomic_t queued_flush;			/* # of queued flushes */
977 	struct llist_head issue_list;		/* list for command issue */
978 	struct llist_node *dispatch_list;	/* list for command dispatch */
979 };
980 
981 struct f2fs_sm_info {
982 	struct sit_info *sit_info;		/* whole segment information */
983 	struct free_segmap_info *free_info;	/* free segment information */
984 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
985 	struct curseg_info *curseg_array;	/* active segment information */
986 
987 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
988 
989 	block_t seg0_blkaddr;		/* block address of 0'th segment */
990 	block_t main_blkaddr;		/* start block address of main area */
991 	block_t ssa_blkaddr;		/* start block address of SSA area */
992 
993 	unsigned int segment_count;	/* total # of segments */
994 	unsigned int main_segments;	/* # of segments in main area */
995 	unsigned int reserved_segments;	/* # of reserved segments */
996 	unsigned int ovp_segments;	/* # of overprovision segments */
997 
998 	/* a threshold to reclaim prefree segments */
999 	unsigned int rec_prefree_segments;
1000 
1001 	/* for batched trimming */
1002 	unsigned int trim_sections;		/* # of sections to trim */
1003 
1004 	struct list_head sit_entry_set;	/* sit entry set list */
1005 
1006 	unsigned int ipu_policy;	/* in-place-update policy */
1007 	unsigned int min_ipu_util;	/* in-place-update threshold */
1008 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1009 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1010 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1011 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1012 
1013 	/* for flush command control */
1014 	struct flush_cmd_control *fcc_info;
1015 
1016 	/* for discard command control */
1017 	struct discard_cmd_control *dcc_info;
1018 };
1019 
1020 /*
1021  * For superblock
1022  */
1023 /*
1024  * COUNT_TYPE for monitoring
1025  *
1026  * f2fs monitors the number of several block types such as on-writeback,
1027  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1028  */
1029 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1030 enum count_type {
1031 	F2FS_DIRTY_DENTS,
1032 	F2FS_DIRTY_DATA,
1033 	F2FS_DIRTY_QDATA,
1034 	F2FS_DIRTY_NODES,
1035 	F2FS_DIRTY_META,
1036 	F2FS_INMEM_PAGES,
1037 	F2FS_DIRTY_IMETA,
1038 	F2FS_WB_CP_DATA,
1039 	F2FS_WB_DATA,
1040 	F2FS_RD_DATA,
1041 	F2FS_RD_NODE,
1042 	F2FS_RD_META,
1043 	F2FS_DIO_WRITE,
1044 	F2FS_DIO_READ,
1045 	NR_COUNT_TYPE,
1046 };
1047 
1048 /*
1049  * The below are the page types of bios used in submit_bio().
1050  * The available types are:
1051  * DATA			User data pages. It operates as async mode.
1052  * NODE			Node pages. It operates as async mode.
1053  * META			FS metadata pages such as SIT, NAT, CP.
1054  * NR_PAGE_TYPE		The number of page types.
1055  * META_FLUSH		Make sure the previous pages are written
1056  *			with waiting the bio's completion
1057  * ...			Only can be used with META.
1058  */
1059 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1060 enum page_type {
1061 	DATA,
1062 	NODE,
1063 	META,
1064 	NR_PAGE_TYPE,
1065 	META_FLUSH,
1066 	INMEM,		/* the below types are used by tracepoints only. */
1067 	INMEM_DROP,
1068 	INMEM_INVALIDATE,
1069 	INMEM_REVOKE,
1070 	IPU,
1071 	OPU,
1072 };
1073 
1074 enum temp_type {
1075 	HOT = 0,	/* must be zero for meta bio */
1076 	WARM,
1077 	COLD,
1078 	NR_TEMP_TYPE,
1079 };
1080 
1081 enum need_lock_type {
1082 	LOCK_REQ = 0,
1083 	LOCK_DONE,
1084 	LOCK_RETRY,
1085 };
1086 
1087 enum cp_reason_type {
1088 	CP_NO_NEEDED,
1089 	CP_NON_REGULAR,
1090 	CP_COMPRESSED,
1091 	CP_HARDLINK,
1092 	CP_SB_NEED_CP,
1093 	CP_WRONG_PINO,
1094 	CP_NO_SPC_ROLL,
1095 	CP_NODE_NEED_CP,
1096 	CP_FASTBOOT_MODE,
1097 	CP_SPEC_LOG_NUM,
1098 	CP_RECOVER_DIR,
1099 };
1100 
1101 enum iostat_type {
1102 	/* WRITE IO */
1103 	APP_DIRECT_IO,			/* app direct write IOs */
1104 	APP_BUFFERED_IO,		/* app buffered write IOs */
1105 	APP_WRITE_IO,			/* app write IOs */
1106 	APP_MAPPED_IO,			/* app mapped IOs */
1107 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1108 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1109 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1110 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1111 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1112 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1113 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1114 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1115 
1116 	/* READ IO */
1117 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1118 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1119 	APP_READ_IO,			/* app read IOs */
1120 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1121 	FS_DATA_READ_IO,		/* data read IOs */
1122 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1123 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1124 	FS_NODE_READ_IO,		/* node read IOs */
1125 	FS_META_READ_IO,		/* meta read IOs */
1126 
1127 	/* other */
1128 	FS_DISCARD,			/* discard */
1129 	NR_IO_TYPE,
1130 };
1131 
1132 struct f2fs_io_info {
1133 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1134 	nid_t ino;		/* inode number */
1135 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1136 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1137 	int op;			/* contains REQ_OP_ */
1138 	int op_flags;		/* req_flag_bits */
1139 	block_t new_blkaddr;	/* new block address to be written */
1140 	block_t old_blkaddr;	/* old block address before Cow */
1141 	struct page *page;	/* page to be written */
1142 	struct page *encrypted_page;	/* encrypted page */
1143 	struct page *compressed_page;	/* compressed page */
1144 	struct list_head list;		/* serialize IOs */
1145 	bool submitted;		/* indicate IO submission */
1146 	int need_lock;		/* indicate we need to lock cp_rwsem */
1147 	bool in_list;		/* indicate fio is in io_list */
1148 	bool is_por;		/* indicate IO is from recovery or not */
1149 	bool retry;		/* need to reallocate block address */
1150 	int compr_blocks;	/* # of compressed block addresses */
1151 	bool encrypted;		/* indicate file is encrypted */
1152 	enum iostat_type io_type;	/* io type */
1153 	struct writeback_control *io_wbc; /* writeback control */
1154 	struct bio **bio;		/* bio for ipu */
1155 	sector_t *last_block;		/* last block number in bio */
1156 	unsigned char version;		/* version of the node */
1157 };
1158 
1159 struct bio_entry {
1160 	struct bio *bio;
1161 	struct list_head list;
1162 };
1163 
1164 #define is_read_io(rw) ((rw) == READ)
1165 struct f2fs_bio_info {
1166 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1167 	struct bio *bio;		/* bios to merge */
1168 	sector_t last_block_in_bio;	/* last block number */
1169 	struct f2fs_io_info fio;	/* store buffered io info. */
1170 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1171 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1172 	struct list_head io_list;	/* track fios */
1173 	struct list_head bio_list;	/* bio entry list head */
1174 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1175 };
1176 
1177 #define FDEV(i)				(sbi->devs[i])
1178 #define RDEV(i)				(raw_super->devs[i])
1179 struct f2fs_dev_info {
1180 	struct block_device *bdev;
1181 	char path[MAX_PATH_LEN];
1182 	unsigned int total_segments;
1183 	block_t start_blk;
1184 	block_t end_blk;
1185 #ifdef CONFIG_BLK_DEV_ZONED
1186 	unsigned int nr_blkz;		/* Total number of zones */
1187 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1188 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1189 #endif
1190 };
1191 
1192 enum inode_type {
1193 	DIR_INODE,			/* for dirty dir inode */
1194 	FILE_INODE,			/* for dirty regular/symlink inode */
1195 	DIRTY_META,			/* for all dirtied inode metadata */
1196 	ATOMIC_FILE,			/* for all atomic files */
1197 	NR_INODE_TYPE,
1198 };
1199 
1200 /* for inner inode cache management */
1201 struct inode_management {
1202 	struct radix_tree_root ino_root;	/* ino entry array */
1203 	spinlock_t ino_lock;			/* for ino entry lock */
1204 	struct list_head ino_list;		/* inode list head */
1205 	unsigned long ino_num;			/* number of entries */
1206 };
1207 
1208 /* for GC_AT */
1209 struct atgc_management {
1210 	bool atgc_enabled;			/* ATGC is enabled or not */
1211 	struct rb_root_cached root;		/* root of victim rb-tree */
1212 	struct list_head victim_list;		/* linked with all victim entries */
1213 	unsigned int victim_count;		/* victim count in rb-tree */
1214 	unsigned int candidate_ratio;		/* candidate ratio */
1215 	unsigned int max_candidate_count;	/* max candidate count */
1216 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1217 	unsigned long long age_threshold;	/* age threshold */
1218 };
1219 
1220 /* For s_flag in struct f2fs_sb_info */
1221 enum {
1222 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1223 	SBI_IS_CLOSE,				/* specify unmounting */
1224 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1225 	SBI_POR_DOING,				/* recovery is doing or not */
1226 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1227 	SBI_NEED_CP,				/* need to checkpoint */
1228 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1229 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1230 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1231 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1232 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1233 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1234 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1235 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1236 };
1237 
1238 enum {
1239 	CP_TIME,
1240 	REQ_TIME,
1241 	DISCARD_TIME,
1242 	GC_TIME,
1243 	DISABLE_TIME,
1244 	UMOUNT_DISCARD_TIMEOUT,
1245 	MAX_TIME,
1246 };
1247 
1248 enum {
1249 	GC_NORMAL,
1250 	GC_IDLE_CB,
1251 	GC_IDLE_GREEDY,
1252 	GC_IDLE_AT,
1253 	GC_URGENT_HIGH,
1254 	GC_URGENT_LOW,
1255 };
1256 
1257 enum {
1258 	BGGC_MODE_ON,		/* background gc is on */
1259 	BGGC_MODE_OFF,		/* background gc is off */
1260 	BGGC_MODE_SYNC,		/*
1261 				 * background gc is on, migrating blocks
1262 				 * like foreground gc
1263 				 */
1264 };
1265 
1266 enum {
1267 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1268 	FS_MODE_LFS,		/* use lfs allocation only */
1269 };
1270 
1271 enum {
1272 	WHINT_MODE_OFF,		/* not pass down write hints */
1273 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1274 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1275 };
1276 
1277 enum {
1278 	ALLOC_MODE_DEFAULT,	/* stay default */
1279 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1280 };
1281 
1282 enum fsync_mode {
1283 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1284 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1285 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1286 };
1287 
1288 enum {
1289 	COMPR_MODE_FS,		/*
1290 				 * automatically compress compression
1291 				 * enabled files
1292 				 */
1293 	COMPR_MODE_USER,	/*
1294 				 * automatical compression is disabled.
1295 				 * user can control the file compression
1296 				 * using ioctls
1297 				 */
1298 };
1299 
1300 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1301 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1302 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1303 
1304 /*
1305  * Layout of f2fs page.private:
1306  *
1307  * Layout A: lowest bit should be 1
1308  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1309  * bit 0	PAGE_PRIVATE_NOT_POINTER
1310  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1311  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1312  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1313  * bit 4	PAGE_PRIVATE_INLINE_INODE
1314  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1315  * bit 6-	f2fs private data
1316  *
1317  * Layout B: lowest bit should be 0
1318  * page.private is a wrapped pointer.
1319  */
1320 enum {
1321 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1322 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1323 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1324 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1325 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1326 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1327 	PAGE_PRIVATE_MAX
1328 };
1329 
1330 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1331 static inline bool page_private_##name(struct page *page) \
1332 { \
1333 	return PagePrivate(page) && \
1334 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1335 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1336 }
1337 
1338 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1339 static inline void set_page_private_##name(struct page *page) \
1340 { \
1341 	if (!PagePrivate(page)) { \
1342 		get_page(page); \
1343 		SetPagePrivate(page); \
1344 		set_page_private(page, 0); \
1345 	} \
1346 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1347 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1348 }
1349 
1350 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1351 static inline void clear_page_private_##name(struct page *page) \
1352 { \
1353 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1354 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1355 		set_page_private(page, 0); \
1356 		if (PagePrivate(page)) { \
1357 			ClearPagePrivate(page); \
1358 			put_page(page); \
1359 		}\
1360 	} \
1361 }
1362 
1363 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1364 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1365 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1366 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1367 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1368 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1369 
1370 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1371 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1372 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1373 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1374 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1375 
1376 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1377 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1378 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1379 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1380 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1381 
1382 static inline unsigned long get_page_private_data(struct page *page)
1383 {
1384 	unsigned long data = page_private(page);
1385 
1386 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1387 		return 0;
1388 	return data >> PAGE_PRIVATE_MAX;
1389 }
1390 
1391 static inline void set_page_private_data(struct page *page, unsigned long data)
1392 {
1393 	if (!PagePrivate(page)) {
1394 		get_page(page);
1395 		SetPagePrivate(page);
1396 		set_page_private(page, 0);
1397 	}
1398 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1399 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1400 }
1401 
1402 static inline void clear_page_private_data(struct page *page)
1403 {
1404 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1405 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1406 		set_page_private(page, 0);
1407 		if (PagePrivate(page)) {
1408 			ClearPagePrivate(page);
1409 			put_page(page);
1410 		}
1411 	}
1412 }
1413 
1414 /* For compression */
1415 enum compress_algorithm_type {
1416 	COMPRESS_LZO,
1417 	COMPRESS_LZ4,
1418 	COMPRESS_ZSTD,
1419 	COMPRESS_LZORLE,
1420 	COMPRESS_MAX,
1421 };
1422 
1423 enum compress_flag {
1424 	COMPRESS_CHKSUM,
1425 	COMPRESS_MAX_FLAG,
1426 };
1427 
1428 #define	COMPRESS_WATERMARK			20
1429 #define	COMPRESS_PERCENT			20
1430 
1431 #define COMPRESS_DATA_RESERVED_SIZE		4
1432 struct compress_data {
1433 	__le32 clen;			/* compressed data size */
1434 	__le32 chksum;			/* compressed data chksum */
1435 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1436 	u8 cdata[];			/* compressed data */
1437 };
1438 
1439 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1440 
1441 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1442 
1443 #define	COMPRESS_LEVEL_OFFSET	8
1444 
1445 /* compress context */
1446 struct compress_ctx {
1447 	struct inode *inode;		/* inode the context belong to */
1448 	pgoff_t cluster_idx;		/* cluster index number */
1449 	unsigned int cluster_size;	/* page count in cluster */
1450 	unsigned int log_cluster_size;	/* log of cluster size */
1451 	struct page **rpages;		/* pages store raw data in cluster */
1452 	unsigned int nr_rpages;		/* total page number in rpages */
1453 	struct page **cpages;		/* pages store compressed data in cluster */
1454 	unsigned int nr_cpages;		/* total page number in cpages */
1455 	void *rbuf;			/* virtual mapped address on rpages */
1456 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1457 	size_t rlen;			/* valid data length in rbuf */
1458 	size_t clen;			/* valid data length in cbuf */
1459 	void *private;			/* payload buffer for specified compression algorithm */
1460 	void *private2;			/* extra payload buffer */
1461 };
1462 
1463 /* compress context for write IO path */
1464 struct compress_io_ctx {
1465 	u32 magic;			/* magic number to indicate page is compressed */
1466 	struct inode *inode;		/* inode the context belong to */
1467 	struct page **rpages;		/* pages store raw data in cluster */
1468 	unsigned int nr_rpages;		/* total page number in rpages */
1469 	atomic_t pending_pages;		/* in-flight compressed page count */
1470 };
1471 
1472 /* Context for decompressing one cluster on the read IO path */
1473 struct decompress_io_ctx {
1474 	u32 magic;			/* magic number to indicate page is compressed */
1475 	struct inode *inode;		/* inode the context belong to */
1476 	pgoff_t cluster_idx;		/* cluster index number */
1477 	unsigned int cluster_size;	/* page count in cluster */
1478 	unsigned int log_cluster_size;	/* log of cluster size */
1479 	struct page **rpages;		/* pages store raw data in cluster */
1480 	unsigned int nr_rpages;		/* total page number in rpages */
1481 	struct page **cpages;		/* pages store compressed data in cluster */
1482 	unsigned int nr_cpages;		/* total page number in cpages */
1483 	struct page **tpages;		/* temp pages to pad holes in cluster */
1484 	void *rbuf;			/* virtual mapped address on rpages */
1485 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1486 	size_t rlen;			/* valid data length in rbuf */
1487 	size_t clen;			/* valid data length in cbuf */
1488 
1489 	/*
1490 	 * The number of compressed pages remaining to be read in this cluster.
1491 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1492 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1493 	 * is decompressed (or an error is reported).
1494 	 *
1495 	 * If an error occurs before all the pages have been submitted for I/O,
1496 	 * then this will never reach 0.  In this case the I/O submitter is
1497 	 * responsible for calling f2fs_decompress_end_io() instead.
1498 	 */
1499 	atomic_t remaining_pages;
1500 
1501 	/*
1502 	 * Number of references to this decompress_io_ctx.
1503 	 *
1504 	 * One reference is held for I/O completion.  This reference is dropped
1505 	 * after the pagecache pages are updated and unlocked -- either after
1506 	 * decompression (and verity if enabled), or after an error.
1507 	 *
1508 	 * In addition, each compressed page holds a reference while it is in a
1509 	 * bio.  These references are necessary prevent compressed pages from
1510 	 * being freed while they are still in a bio.
1511 	 */
1512 	refcount_t refcnt;
1513 
1514 	bool failed;			/* IO error occurred before decompression? */
1515 	bool need_verity;		/* need fs-verity verification after decompression? */
1516 	void *private;			/* payload buffer for specified decompression algorithm */
1517 	void *private2;			/* extra payload buffer */
1518 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1519 };
1520 
1521 #define NULL_CLUSTER			((unsigned int)(~0))
1522 #define MIN_COMPRESS_LOG_SIZE		2
1523 #define MAX_COMPRESS_LOG_SIZE		8
1524 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1525 
1526 struct f2fs_sb_info {
1527 	struct super_block *sb;			/* pointer to VFS super block */
1528 	struct proc_dir_entry *s_proc;		/* proc entry */
1529 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1530 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1531 	int valid_super_block;			/* valid super block no */
1532 	unsigned long s_flag;				/* flags for sbi */
1533 	struct mutex writepages;		/* mutex for writepages() */
1534 
1535 #ifdef CONFIG_BLK_DEV_ZONED
1536 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1537 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1538 #endif
1539 
1540 	/* for node-related operations */
1541 	struct f2fs_nm_info *nm_info;		/* node manager */
1542 	struct inode *node_inode;		/* cache node blocks */
1543 
1544 	/* for segment-related operations */
1545 	struct f2fs_sm_info *sm_info;		/* segment manager */
1546 
1547 	/* for bio operations */
1548 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1549 	/* keep migration IO order for LFS mode */
1550 	struct rw_semaphore io_order_lock;
1551 	mempool_t *write_io_dummy;		/* Dummy pages */
1552 
1553 	/* for checkpoint */
1554 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1555 	int cur_cp_pack;			/* remain current cp pack */
1556 	spinlock_t cp_lock;			/* for flag in ckpt */
1557 	struct inode *meta_inode;		/* cache meta blocks */
1558 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1559 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1560 	struct rw_semaphore node_write;		/* locking node writes */
1561 	struct rw_semaphore node_change;	/* locking node change */
1562 	wait_queue_head_t cp_wait;
1563 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1564 	long interval_time[MAX_TIME];		/* to store thresholds */
1565 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1566 
1567 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1568 
1569 	spinlock_t fsync_node_lock;		/* for node entry lock */
1570 	struct list_head fsync_node_list;	/* node list head */
1571 	unsigned int fsync_seg_id;		/* sequence id */
1572 	unsigned int fsync_node_num;		/* number of node entries */
1573 
1574 	/* for orphan inode, use 0'th array */
1575 	unsigned int max_orphans;		/* max orphan inodes */
1576 
1577 	/* for inode management */
1578 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1579 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1580 	struct mutex flush_lock;		/* for flush exclusion */
1581 
1582 	/* for extent tree cache */
1583 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1584 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1585 	struct list_head extent_list;		/* lru list for shrinker */
1586 	spinlock_t extent_lock;			/* locking extent lru list */
1587 	atomic_t total_ext_tree;		/* extent tree count */
1588 	struct list_head zombie_list;		/* extent zombie tree list */
1589 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1590 	atomic_t total_ext_node;		/* extent info count */
1591 
1592 	/* basic filesystem units */
1593 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1594 	unsigned int log_blocksize;		/* log2 block size */
1595 	unsigned int blocksize;			/* block size */
1596 	unsigned int root_ino_num;		/* root inode number*/
1597 	unsigned int node_ino_num;		/* node inode number*/
1598 	unsigned int meta_ino_num;		/* meta inode number*/
1599 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1600 	unsigned int blocks_per_seg;		/* blocks per segment */
1601 	unsigned int segs_per_sec;		/* segments per section */
1602 	unsigned int secs_per_zone;		/* sections per zone */
1603 	unsigned int total_sections;		/* total section count */
1604 	unsigned int total_node_count;		/* total node block count */
1605 	unsigned int total_valid_node_count;	/* valid node block count */
1606 	int dir_level;				/* directory level */
1607 	int readdir_ra;				/* readahead inode in readdir */
1608 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1609 
1610 	block_t user_block_count;		/* # of user blocks */
1611 	block_t total_valid_block_count;	/* # of valid blocks */
1612 	block_t discard_blks;			/* discard command candidats */
1613 	block_t last_valid_block_count;		/* for recovery */
1614 	block_t reserved_blocks;		/* configurable reserved blocks */
1615 	block_t current_reserved_blocks;	/* current reserved blocks */
1616 
1617 	/* Additional tracking for no checkpoint mode */
1618 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1619 
1620 	unsigned int nquota_files;		/* # of quota sysfile */
1621 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1622 
1623 	/* # of pages, see count_type */
1624 	atomic_t nr_pages[NR_COUNT_TYPE];
1625 	/* # of allocated blocks */
1626 	struct percpu_counter alloc_valid_block_count;
1627 
1628 	/* writeback control */
1629 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1630 
1631 	/* valid inode count */
1632 	struct percpu_counter total_valid_inode_count;
1633 
1634 	struct f2fs_mount_info mount_opt;	/* mount options */
1635 
1636 	/* for cleaning operations */
1637 	struct rw_semaphore gc_lock;		/*
1638 						 * semaphore for GC, avoid
1639 						 * race between GC and GC or CP
1640 						 */
1641 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1642 	struct atgc_management am;		/* atgc management */
1643 	unsigned int cur_victim_sec;		/* current victim section num */
1644 	unsigned int gc_mode;			/* current GC state */
1645 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1646 
1647 	/* for skip statistic */
1648 	unsigned int atomic_files;		/* # of opened atomic file */
1649 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1650 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1651 
1652 	/* threshold for gc trials on pinned files */
1653 	u64 gc_pin_file_threshold;
1654 	struct rw_semaphore pin_sem;
1655 
1656 	/* maximum # of trials to find a victim segment for SSR and GC */
1657 	unsigned int max_victim_search;
1658 	/* migration granularity of garbage collection, unit: segment */
1659 	unsigned int migration_granularity;
1660 
1661 	/*
1662 	 * for stat information.
1663 	 * one is for the LFS mode, and the other is for the SSR mode.
1664 	 */
1665 #ifdef CONFIG_F2FS_STAT_FS
1666 	struct f2fs_stat_info *stat_info;	/* FS status information */
1667 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1668 	unsigned int segment_count[2];		/* # of allocated segments */
1669 	unsigned int block_count[2];		/* # of allocated blocks */
1670 	atomic_t inplace_count;		/* # of inplace update */
1671 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1672 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1673 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1674 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1675 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1676 	atomic_t inline_inode;			/* # of inline_data inodes */
1677 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1678 	atomic_t compr_inode;			/* # of compressed inodes */
1679 	atomic64_t compr_blocks;		/* # of compressed blocks */
1680 	atomic_t vw_cnt;			/* # of volatile writes */
1681 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1682 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1683 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1684 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1685 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1686 #endif
1687 	spinlock_t stat_lock;			/* lock for stat operations */
1688 
1689 	/* For app/fs IO statistics */
1690 	spinlock_t iostat_lock;
1691 	unsigned long long rw_iostat[NR_IO_TYPE];
1692 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1693 	bool iostat_enable;
1694 	unsigned long iostat_next_period;
1695 	unsigned int iostat_period_ms;
1696 
1697 	/* to attach REQ_META|REQ_FUA flags */
1698 	unsigned int data_io_flag;
1699 	unsigned int node_io_flag;
1700 
1701 	/* For sysfs suppport */
1702 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1703 	struct completion s_kobj_unregister;
1704 
1705 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1706 	struct completion s_stat_kobj_unregister;
1707 
1708 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1709 	struct completion s_feature_list_kobj_unregister;
1710 
1711 	/* For shrinker support */
1712 	struct list_head s_list;
1713 	int s_ndevs;				/* number of devices */
1714 	struct f2fs_dev_info *devs;		/* for device list */
1715 	unsigned int dirty_device;		/* for checkpoint data flush */
1716 	spinlock_t dev_lock;			/* protect dirty_device */
1717 	struct mutex umount_mutex;
1718 	unsigned int shrinker_run_no;
1719 
1720 	/* For write statistics */
1721 	u64 sectors_written_start;
1722 	u64 kbytes_written;
1723 
1724 	/* Reference to checksum algorithm driver via cryptoapi */
1725 	struct crypto_shash *s_chksum_driver;
1726 
1727 	/* Precomputed FS UUID checksum for seeding other checksums */
1728 	__u32 s_chksum_seed;
1729 
1730 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1731 
1732 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1733 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1734 
1735 #ifdef CONFIG_F2FS_FS_COMPRESSION
1736 	struct kmem_cache *page_array_slab;	/* page array entry */
1737 	unsigned int page_array_slab_size;	/* default page array slab size */
1738 
1739 	/* For runtime compression statistics */
1740 	u64 compr_written_block;
1741 	u64 compr_saved_block;
1742 	u32 compr_new_inode;
1743 
1744 	/* For compressed block cache */
1745 	struct inode *compress_inode;		/* cache compressed blocks */
1746 	unsigned int compress_percent;		/* cache page percentage */
1747 	unsigned int compress_watermark;	/* cache page watermark */
1748 	atomic_t compress_page_hit;		/* cache hit count */
1749 #endif
1750 };
1751 
1752 struct f2fs_private_dio {
1753 	struct inode *inode;
1754 	void *orig_private;
1755 	bio_end_io_t *orig_end_io;
1756 	bool write;
1757 };
1758 
1759 #ifdef CONFIG_F2FS_FAULT_INJECTION
1760 #define f2fs_show_injection_info(sbi, type)					\
1761 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1762 		KERN_INFO, sbi->sb->s_id,				\
1763 		f2fs_fault_name[type],					\
1764 		__func__, __builtin_return_address(0))
1765 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1766 {
1767 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1768 
1769 	if (!ffi->inject_rate)
1770 		return false;
1771 
1772 	if (!IS_FAULT_SET(ffi, type))
1773 		return false;
1774 
1775 	atomic_inc(&ffi->inject_ops);
1776 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1777 		atomic_set(&ffi->inject_ops, 0);
1778 		return true;
1779 	}
1780 	return false;
1781 }
1782 #else
1783 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1784 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1785 {
1786 	return false;
1787 }
1788 #endif
1789 
1790 /*
1791  * Test if the mounted volume is a multi-device volume.
1792  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1793  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1794  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1795  */
1796 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1797 {
1798 	return sbi->s_ndevs > 1;
1799 }
1800 
1801 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1802 {
1803 	unsigned long now = jiffies;
1804 
1805 	sbi->last_time[type] = now;
1806 
1807 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1808 	if (type == REQ_TIME) {
1809 		sbi->last_time[DISCARD_TIME] = now;
1810 		sbi->last_time[GC_TIME] = now;
1811 	}
1812 }
1813 
1814 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1815 {
1816 	unsigned long interval = sbi->interval_time[type] * HZ;
1817 
1818 	return time_after(jiffies, sbi->last_time[type] + interval);
1819 }
1820 
1821 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1822 						int type)
1823 {
1824 	unsigned long interval = sbi->interval_time[type] * HZ;
1825 	unsigned int wait_ms = 0;
1826 	long delta;
1827 
1828 	delta = (sbi->last_time[type] + interval) - jiffies;
1829 	if (delta > 0)
1830 		wait_ms = jiffies_to_msecs(delta);
1831 
1832 	return wait_ms;
1833 }
1834 
1835 /*
1836  * Inline functions
1837  */
1838 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1839 			      const void *address, unsigned int length)
1840 {
1841 	struct {
1842 		struct shash_desc shash;
1843 		char ctx[4];
1844 	} desc;
1845 	int err;
1846 
1847 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1848 
1849 	desc.shash.tfm = sbi->s_chksum_driver;
1850 	*(u32 *)desc.ctx = crc;
1851 
1852 	err = crypto_shash_update(&desc.shash, address, length);
1853 	BUG_ON(err);
1854 
1855 	return *(u32 *)desc.ctx;
1856 }
1857 
1858 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1859 			   unsigned int length)
1860 {
1861 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1862 }
1863 
1864 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1865 				  void *buf, size_t buf_size)
1866 {
1867 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1868 }
1869 
1870 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1871 			      const void *address, unsigned int length)
1872 {
1873 	return __f2fs_crc32(sbi, crc, address, length);
1874 }
1875 
1876 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1877 {
1878 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1879 }
1880 
1881 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1882 {
1883 	return sb->s_fs_info;
1884 }
1885 
1886 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1887 {
1888 	return F2FS_SB(inode->i_sb);
1889 }
1890 
1891 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1892 {
1893 	return F2FS_I_SB(mapping->host);
1894 }
1895 
1896 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1897 {
1898 	return F2FS_M_SB(page_file_mapping(page));
1899 }
1900 
1901 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1902 {
1903 	return (struct f2fs_super_block *)(sbi->raw_super);
1904 }
1905 
1906 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1907 {
1908 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1909 }
1910 
1911 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1912 {
1913 	return (struct f2fs_node *)page_address(page);
1914 }
1915 
1916 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1917 {
1918 	return &((struct f2fs_node *)page_address(page))->i;
1919 }
1920 
1921 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1922 {
1923 	return (struct f2fs_nm_info *)(sbi->nm_info);
1924 }
1925 
1926 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1927 {
1928 	return (struct f2fs_sm_info *)(sbi->sm_info);
1929 }
1930 
1931 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1932 {
1933 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1934 }
1935 
1936 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1937 {
1938 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1939 }
1940 
1941 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1942 {
1943 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1944 }
1945 
1946 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1947 {
1948 	return sbi->meta_inode->i_mapping;
1949 }
1950 
1951 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1952 {
1953 	return sbi->node_inode->i_mapping;
1954 }
1955 
1956 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1957 {
1958 	return test_bit(type, &sbi->s_flag);
1959 }
1960 
1961 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1962 {
1963 	set_bit(type, &sbi->s_flag);
1964 }
1965 
1966 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1967 {
1968 	clear_bit(type, &sbi->s_flag);
1969 }
1970 
1971 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1972 {
1973 	return le64_to_cpu(cp->checkpoint_ver);
1974 }
1975 
1976 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1977 {
1978 	if (type < F2FS_MAX_QUOTAS)
1979 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1980 	return 0;
1981 }
1982 
1983 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1984 {
1985 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1986 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1987 }
1988 
1989 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1990 {
1991 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1992 
1993 	return ckpt_flags & f;
1994 }
1995 
1996 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1997 {
1998 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1999 }
2000 
2001 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2002 {
2003 	unsigned int ckpt_flags;
2004 
2005 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2006 	ckpt_flags |= f;
2007 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2008 }
2009 
2010 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2011 {
2012 	unsigned long flags;
2013 
2014 	spin_lock_irqsave(&sbi->cp_lock, flags);
2015 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2016 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2017 }
2018 
2019 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2020 {
2021 	unsigned int ckpt_flags;
2022 
2023 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2024 	ckpt_flags &= (~f);
2025 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2026 }
2027 
2028 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2029 {
2030 	unsigned long flags;
2031 
2032 	spin_lock_irqsave(&sbi->cp_lock, flags);
2033 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2034 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2035 }
2036 
2037 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2038 {
2039 	unsigned long flags;
2040 	unsigned char *nat_bits;
2041 
2042 	/*
2043 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
2044 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2045 	 * so let's rely on regular fsck or unclean shutdown.
2046 	 */
2047 
2048 	if (lock)
2049 		spin_lock_irqsave(&sbi->cp_lock, flags);
2050 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2051 	nat_bits = NM_I(sbi)->nat_bits;
2052 	NM_I(sbi)->nat_bits = NULL;
2053 	if (lock)
2054 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
2055 
2056 	kvfree(nat_bits);
2057 }
2058 
2059 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2060 					struct cp_control *cpc)
2061 {
2062 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2063 
2064 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2065 }
2066 
2067 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2068 {
2069 	down_read(&sbi->cp_rwsem);
2070 }
2071 
2072 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2073 {
2074 	return down_read_trylock(&sbi->cp_rwsem);
2075 }
2076 
2077 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2078 {
2079 	up_read(&sbi->cp_rwsem);
2080 }
2081 
2082 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2083 {
2084 	down_write(&sbi->cp_rwsem);
2085 }
2086 
2087 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2088 {
2089 	up_write(&sbi->cp_rwsem);
2090 }
2091 
2092 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2093 {
2094 	int reason = CP_SYNC;
2095 
2096 	if (test_opt(sbi, FASTBOOT))
2097 		reason = CP_FASTBOOT;
2098 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2099 		reason = CP_UMOUNT;
2100 	return reason;
2101 }
2102 
2103 static inline bool __remain_node_summaries(int reason)
2104 {
2105 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2106 }
2107 
2108 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2109 {
2110 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2111 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2112 }
2113 
2114 /*
2115  * Check whether the inode has blocks or not
2116  */
2117 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2118 {
2119 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2120 
2121 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2122 }
2123 
2124 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2125 {
2126 	return ofs == XATTR_NODE_OFFSET;
2127 }
2128 
2129 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2130 					struct inode *inode, bool cap)
2131 {
2132 	if (!inode)
2133 		return true;
2134 	if (!test_opt(sbi, RESERVE_ROOT))
2135 		return false;
2136 	if (IS_NOQUOTA(inode))
2137 		return true;
2138 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2139 		return true;
2140 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2141 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2142 		return true;
2143 	if (cap && capable(CAP_SYS_RESOURCE))
2144 		return true;
2145 	return false;
2146 }
2147 
2148 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2149 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2150 				 struct inode *inode, blkcnt_t *count)
2151 {
2152 	blkcnt_t diff = 0, release = 0;
2153 	block_t avail_user_block_count;
2154 	int ret;
2155 
2156 	ret = dquot_reserve_block(inode, *count);
2157 	if (ret)
2158 		return ret;
2159 
2160 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2161 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2162 		release = *count;
2163 		goto release_quota;
2164 	}
2165 
2166 	/*
2167 	 * let's increase this in prior to actual block count change in order
2168 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2169 	 */
2170 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2171 
2172 	spin_lock(&sbi->stat_lock);
2173 	sbi->total_valid_block_count += (block_t)(*count);
2174 	avail_user_block_count = sbi->user_block_count -
2175 					sbi->current_reserved_blocks;
2176 
2177 	if (!__allow_reserved_blocks(sbi, inode, true))
2178 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2179 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2180 		if (avail_user_block_count > sbi->unusable_block_count)
2181 			avail_user_block_count -= sbi->unusable_block_count;
2182 		else
2183 			avail_user_block_count = 0;
2184 	}
2185 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2186 		diff = sbi->total_valid_block_count - avail_user_block_count;
2187 		if (diff > *count)
2188 			diff = *count;
2189 		*count -= diff;
2190 		release = diff;
2191 		sbi->total_valid_block_count -= diff;
2192 		if (!*count) {
2193 			spin_unlock(&sbi->stat_lock);
2194 			goto enospc;
2195 		}
2196 	}
2197 	spin_unlock(&sbi->stat_lock);
2198 
2199 	if (unlikely(release)) {
2200 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2201 		dquot_release_reservation_block(inode, release);
2202 	}
2203 	f2fs_i_blocks_write(inode, *count, true, true);
2204 	return 0;
2205 
2206 enospc:
2207 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2208 release_quota:
2209 	dquot_release_reservation_block(inode, release);
2210 	return -ENOSPC;
2211 }
2212 
2213 __printf(2, 3)
2214 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2215 
2216 #define f2fs_err(sbi, fmt, ...)						\
2217 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2218 #define f2fs_warn(sbi, fmt, ...)					\
2219 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2220 #define f2fs_notice(sbi, fmt, ...)					\
2221 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2222 #define f2fs_info(sbi, fmt, ...)					\
2223 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2224 #define f2fs_debug(sbi, fmt, ...)					\
2225 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2226 
2227 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2228 						struct inode *inode,
2229 						block_t count)
2230 {
2231 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2232 
2233 	spin_lock(&sbi->stat_lock);
2234 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2235 	sbi->total_valid_block_count -= (block_t)count;
2236 	if (sbi->reserved_blocks &&
2237 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2238 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2239 					sbi->current_reserved_blocks + count);
2240 	spin_unlock(&sbi->stat_lock);
2241 	if (unlikely(inode->i_blocks < sectors)) {
2242 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2243 			  inode->i_ino,
2244 			  (unsigned long long)inode->i_blocks,
2245 			  (unsigned long long)sectors);
2246 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2247 		return;
2248 	}
2249 	f2fs_i_blocks_write(inode, count, false, true);
2250 }
2251 
2252 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2253 {
2254 	atomic_inc(&sbi->nr_pages[count_type]);
2255 
2256 	if (count_type == F2FS_DIRTY_DENTS ||
2257 			count_type == F2FS_DIRTY_NODES ||
2258 			count_type == F2FS_DIRTY_META ||
2259 			count_type == F2FS_DIRTY_QDATA ||
2260 			count_type == F2FS_DIRTY_IMETA)
2261 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2262 }
2263 
2264 static inline void inode_inc_dirty_pages(struct inode *inode)
2265 {
2266 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2267 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2268 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2269 	if (IS_NOQUOTA(inode))
2270 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2271 }
2272 
2273 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2274 {
2275 	atomic_dec(&sbi->nr_pages[count_type]);
2276 }
2277 
2278 static inline void inode_dec_dirty_pages(struct inode *inode)
2279 {
2280 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2281 			!S_ISLNK(inode->i_mode))
2282 		return;
2283 
2284 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2285 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2286 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2287 	if (IS_NOQUOTA(inode))
2288 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2289 }
2290 
2291 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2292 {
2293 	return atomic_read(&sbi->nr_pages[count_type]);
2294 }
2295 
2296 static inline int get_dirty_pages(struct inode *inode)
2297 {
2298 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2299 }
2300 
2301 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2302 {
2303 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2304 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2305 						sbi->log_blocks_per_seg;
2306 
2307 	return segs / sbi->segs_per_sec;
2308 }
2309 
2310 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2311 {
2312 	return sbi->total_valid_block_count;
2313 }
2314 
2315 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2316 {
2317 	return sbi->discard_blks;
2318 }
2319 
2320 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2321 {
2322 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2323 
2324 	/* return NAT or SIT bitmap */
2325 	if (flag == NAT_BITMAP)
2326 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2327 	else if (flag == SIT_BITMAP)
2328 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2329 
2330 	return 0;
2331 }
2332 
2333 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2334 {
2335 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2336 }
2337 
2338 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2339 {
2340 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2341 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2342 	int offset;
2343 
2344 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2345 		offset = (flag == SIT_BITMAP) ?
2346 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2347 		/*
2348 		 * if large_nat_bitmap feature is enabled, leave checksum
2349 		 * protection for all nat/sit bitmaps.
2350 		 */
2351 		return tmp_ptr + offset + sizeof(__le32);
2352 	}
2353 
2354 	if (__cp_payload(sbi) > 0) {
2355 		if (flag == NAT_BITMAP)
2356 			return &ckpt->sit_nat_version_bitmap;
2357 		else
2358 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2359 	} else {
2360 		offset = (flag == NAT_BITMAP) ?
2361 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2362 		return tmp_ptr + offset;
2363 	}
2364 }
2365 
2366 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2367 {
2368 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2369 
2370 	if (sbi->cur_cp_pack == 2)
2371 		start_addr += sbi->blocks_per_seg;
2372 	return start_addr;
2373 }
2374 
2375 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2376 {
2377 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2378 
2379 	if (sbi->cur_cp_pack == 1)
2380 		start_addr += sbi->blocks_per_seg;
2381 	return start_addr;
2382 }
2383 
2384 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2385 {
2386 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2387 }
2388 
2389 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2390 {
2391 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2392 }
2393 
2394 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2395 					struct inode *inode, bool is_inode)
2396 {
2397 	block_t	valid_block_count;
2398 	unsigned int valid_node_count, user_block_count;
2399 	int err;
2400 
2401 	if (is_inode) {
2402 		if (inode) {
2403 			err = dquot_alloc_inode(inode);
2404 			if (err)
2405 				return err;
2406 		}
2407 	} else {
2408 		err = dquot_reserve_block(inode, 1);
2409 		if (err)
2410 			return err;
2411 	}
2412 
2413 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2414 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2415 		goto enospc;
2416 	}
2417 
2418 	spin_lock(&sbi->stat_lock);
2419 
2420 	valid_block_count = sbi->total_valid_block_count +
2421 					sbi->current_reserved_blocks + 1;
2422 
2423 	if (!__allow_reserved_blocks(sbi, inode, false))
2424 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2425 	user_block_count = sbi->user_block_count;
2426 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2427 		user_block_count -= sbi->unusable_block_count;
2428 
2429 	if (unlikely(valid_block_count > user_block_count)) {
2430 		spin_unlock(&sbi->stat_lock);
2431 		goto enospc;
2432 	}
2433 
2434 	valid_node_count = sbi->total_valid_node_count + 1;
2435 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2436 		spin_unlock(&sbi->stat_lock);
2437 		goto enospc;
2438 	}
2439 
2440 	sbi->total_valid_node_count++;
2441 	sbi->total_valid_block_count++;
2442 	spin_unlock(&sbi->stat_lock);
2443 
2444 	if (inode) {
2445 		if (is_inode)
2446 			f2fs_mark_inode_dirty_sync(inode, true);
2447 		else
2448 			f2fs_i_blocks_write(inode, 1, true, true);
2449 	}
2450 
2451 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2452 	return 0;
2453 
2454 enospc:
2455 	if (is_inode) {
2456 		if (inode)
2457 			dquot_free_inode(inode);
2458 	} else {
2459 		dquot_release_reservation_block(inode, 1);
2460 	}
2461 	return -ENOSPC;
2462 }
2463 
2464 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2465 					struct inode *inode, bool is_inode)
2466 {
2467 	spin_lock(&sbi->stat_lock);
2468 
2469 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2470 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2471 
2472 	sbi->total_valid_node_count--;
2473 	sbi->total_valid_block_count--;
2474 	if (sbi->reserved_blocks &&
2475 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2476 		sbi->current_reserved_blocks++;
2477 
2478 	spin_unlock(&sbi->stat_lock);
2479 
2480 	if (is_inode) {
2481 		dquot_free_inode(inode);
2482 	} else {
2483 		if (unlikely(inode->i_blocks == 0)) {
2484 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2485 				  inode->i_ino,
2486 				  (unsigned long long)inode->i_blocks);
2487 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2488 			return;
2489 		}
2490 		f2fs_i_blocks_write(inode, 1, false, true);
2491 	}
2492 }
2493 
2494 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2495 {
2496 	return sbi->total_valid_node_count;
2497 }
2498 
2499 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2500 {
2501 	percpu_counter_inc(&sbi->total_valid_inode_count);
2502 }
2503 
2504 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2505 {
2506 	percpu_counter_dec(&sbi->total_valid_inode_count);
2507 }
2508 
2509 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2510 {
2511 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2512 }
2513 
2514 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2515 						pgoff_t index, bool for_write)
2516 {
2517 	struct page *page;
2518 
2519 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2520 		if (!for_write)
2521 			page = find_get_page_flags(mapping, index,
2522 							FGP_LOCK | FGP_ACCESSED);
2523 		else
2524 			page = find_lock_page(mapping, index);
2525 		if (page)
2526 			return page;
2527 
2528 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2529 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2530 							FAULT_PAGE_ALLOC);
2531 			return NULL;
2532 		}
2533 	}
2534 
2535 	if (!for_write)
2536 		return grab_cache_page(mapping, index);
2537 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2538 }
2539 
2540 static inline struct page *f2fs_pagecache_get_page(
2541 				struct address_space *mapping, pgoff_t index,
2542 				int fgp_flags, gfp_t gfp_mask)
2543 {
2544 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2545 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2546 		return NULL;
2547 	}
2548 
2549 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2550 }
2551 
2552 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2553 {
2554 	char *src_kaddr = kmap(src);
2555 	char *dst_kaddr = kmap(dst);
2556 
2557 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2558 	kunmap(dst);
2559 	kunmap(src);
2560 }
2561 
2562 static inline void f2fs_put_page(struct page *page, int unlock)
2563 {
2564 	if (!page)
2565 		return;
2566 
2567 	if (unlock) {
2568 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2569 		unlock_page(page);
2570 	}
2571 	put_page(page);
2572 }
2573 
2574 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2575 {
2576 	if (dn->node_page)
2577 		f2fs_put_page(dn->node_page, 1);
2578 	if (dn->inode_page && dn->node_page != dn->inode_page)
2579 		f2fs_put_page(dn->inode_page, 0);
2580 	dn->node_page = NULL;
2581 	dn->inode_page = NULL;
2582 }
2583 
2584 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2585 					size_t size)
2586 {
2587 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2588 }
2589 
2590 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2591 						gfp_t flags)
2592 {
2593 	void *entry;
2594 
2595 	entry = kmem_cache_alloc(cachep, flags);
2596 	if (!entry)
2597 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2598 	return entry;
2599 }
2600 
2601 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2602 {
2603 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2604 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2605 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2606 		get_pages(sbi, F2FS_DIO_READ) ||
2607 		get_pages(sbi, F2FS_DIO_WRITE))
2608 		return true;
2609 
2610 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2611 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2612 		return true;
2613 
2614 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2615 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2616 		return true;
2617 	return false;
2618 }
2619 
2620 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2621 {
2622 	if (sbi->gc_mode == GC_URGENT_HIGH)
2623 		return true;
2624 
2625 	if (is_inflight_io(sbi, type))
2626 		return false;
2627 
2628 	if (sbi->gc_mode == GC_URGENT_LOW &&
2629 			(type == DISCARD_TIME || type == GC_TIME))
2630 		return true;
2631 
2632 	return f2fs_time_over(sbi, type);
2633 }
2634 
2635 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2636 				unsigned long index, void *item)
2637 {
2638 	while (radix_tree_insert(root, index, item))
2639 		cond_resched();
2640 }
2641 
2642 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2643 
2644 static inline bool IS_INODE(struct page *page)
2645 {
2646 	struct f2fs_node *p = F2FS_NODE(page);
2647 
2648 	return RAW_IS_INODE(p);
2649 }
2650 
2651 static inline int offset_in_addr(struct f2fs_inode *i)
2652 {
2653 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2654 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2655 }
2656 
2657 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2658 {
2659 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2660 }
2661 
2662 static inline int f2fs_has_extra_attr(struct inode *inode);
2663 static inline block_t data_blkaddr(struct inode *inode,
2664 			struct page *node_page, unsigned int offset)
2665 {
2666 	struct f2fs_node *raw_node;
2667 	__le32 *addr_array;
2668 	int base = 0;
2669 	bool is_inode = IS_INODE(node_page);
2670 
2671 	raw_node = F2FS_NODE(node_page);
2672 
2673 	if (is_inode) {
2674 		if (!inode)
2675 			/* from GC path only */
2676 			base = offset_in_addr(&raw_node->i);
2677 		else if (f2fs_has_extra_attr(inode))
2678 			base = get_extra_isize(inode);
2679 	}
2680 
2681 	addr_array = blkaddr_in_node(raw_node);
2682 	return le32_to_cpu(addr_array[base + offset]);
2683 }
2684 
2685 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2686 {
2687 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2688 }
2689 
2690 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2691 {
2692 	int mask;
2693 
2694 	addr += (nr >> 3);
2695 	mask = 1 << (7 - (nr & 0x07));
2696 	return mask & *addr;
2697 }
2698 
2699 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2700 {
2701 	int mask;
2702 
2703 	addr += (nr >> 3);
2704 	mask = 1 << (7 - (nr & 0x07));
2705 	*addr |= mask;
2706 }
2707 
2708 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2709 {
2710 	int mask;
2711 
2712 	addr += (nr >> 3);
2713 	mask = 1 << (7 - (nr & 0x07));
2714 	*addr &= ~mask;
2715 }
2716 
2717 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2718 {
2719 	int mask;
2720 	int ret;
2721 
2722 	addr += (nr >> 3);
2723 	mask = 1 << (7 - (nr & 0x07));
2724 	ret = mask & *addr;
2725 	*addr |= mask;
2726 	return ret;
2727 }
2728 
2729 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2730 {
2731 	int mask;
2732 	int ret;
2733 
2734 	addr += (nr >> 3);
2735 	mask = 1 << (7 - (nr & 0x07));
2736 	ret = mask & *addr;
2737 	*addr &= ~mask;
2738 	return ret;
2739 }
2740 
2741 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2742 {
2743 	int mask;
2744 
2745 	addr += (nr >> 3);
2746 	mask = 1 << (7 - (nr & 0x07));
2747 	*addr ^= mask;
2748 }
2749 
2750 /*
2751  * On-disk inode flags (f2fs_inode::i_flags)
2752  */
2753 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2754 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2755 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2756 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2757 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2758 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2759 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2760 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2761 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2762 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2763 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2764 
2765 /* Flags that should be inherited by new inodes from their parent. */
2766 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2767 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2768 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2769 
2770 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2771 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2772 				F2FS_CASEFOLD_FL))
2773 
2774 /* Flags that are appropriate for non-directories/regular files. */
2775 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2776 
2777 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2778 {
2779 	if (S_ISDIR(mode))
2780 		return flags;
2781 	else if (S_ISREG(mode))
2782 		return flags & F2FS_REG_FLMASK;
2783 	else
2784 		return flags & F2FS_OTHER_FLMASK;
2785 }
2786 
2787 static inline void __mark_inode_dirty_flag(struct inode *inode,
2788 						int flag, bool set)
2789 {
2790 	switch (flag) {
2791 	case FI_INLINE_XATTR:
2792 	case FI_INLINE_DATA:
2793 	case FI_INLINE_DENTRY:
2794 	case FI_NEW_INODE:
2795 		if (set)
2796 			return;
2797 		fallthrough;
2798 	case FI_DATA_EXIST:
2799 	case FI_INLINE_DOTS:
2800 	case FI_PIN_FILE:
2801 	case FI_COMPRESS_RELEASED:
2802 		f2fs_mark_inode_dirty_sync(inode, true);
2803 	}
2804 }
2805 
2806 static inline void set_inode_flag(struct inode *inode, int flag)
2807 {
2808 	set_bit(flag, F2FS_I(inode)->flags);
2809 	__mark_inode_dirty_flag(inode, flag, true);
2810 }
2811 
2812 static inline int is_inode_flag_set(struct inode *inode, int flag)
2813 {
2814 	return test_bit(flag, F2FS_I(inode)->flags);
2815 }
2816 
2817 static inline void clear_inode_flag(struct inode *inode, int flag)
2818 {
2819 	clear_bit(flag, F2FS_I(inode)->flags);
2820 	__mark_inode_dirty_flag(inode, flag, false);
2821 }
2822 
2823 static inline bool f2fs_verity_in_progress(struct inode *inode)
2824 {
2825 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2826 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2827 }
2828 
2829 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2830 {
2831 	F2FS_I(inode)->i_acl_mode = mode;
2832 	set_inode_flag(inode, FI_ACL_MODE);
2833 	f2fs_mark_inode_dirty_sync(inode, false);
2834 }
2835 
2836 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2837 {
2838 	if (inc)
2839 		inc_nlink(inode);
2840 	else
2841 		drop_nlink(inode);
2842 	f2fs_mark_inode_dirty_sync(inode, true);
2843 }
2844 
2845 static inline void f2fs_i_blocks_write(struct inode *inode,
2846 					block_t diff, bool add, bool claim)
2847 {
2848 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2849 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2850 
2851 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2852 	if (add) {
2853 		if (claim)
2854 			dquot_claim_block(inode, diff);
2855 		else
2856 			dquot_alloc_block_nofail(inode, diff);
2857 	} else {
2858 		dquot_free_block(inode, diff);
2859 	}
2860 
2861 	f2fs_mark_inode_dirty_sync(inode, true);
2862 	if (clean || recover)
2863 		set_inode_flag(inode, FI_AUTO_RECOVER);
2864 }
2865 
2866 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2867 {
2868 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2869 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2870 
2871 	if (i_size_read(inode) == i_size)
2872 		return;
2873 
2874 	i_size_write(inode, i_size);
2875 	f2fs_mark_inode_dirty_sync(inode, true);
2876 	if (clean || recover)
2877 		set_inode_flag(inode, FI_AUTO_RECOVER);
2878 }
2879 
2880 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2881 {
2882 	F2FS_I(inode)->i_current_depth = depth;
2883 	f2fs_mark_inode_dirty_sync(inode, true);
2884 }
2885 
2886 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2887 					unsigned int count)
2888 {
2889 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2890 	f2fs_mark_inode_dirty_sync(inode, true);
2891 }
2892 
2893 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2894 {
2895 	F2FS_I(inode)->i_xattr_nid = xnid;
2896 	f2fs_mark_inode_dirty_sync(inode, true);
2897 }
2898 
2899 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2900 {
2901 	F2FS_I(inode)->i_pino = pino;
2902 	f2fs_mark_inode_dirty_sync(inode, true);
2903 }
2904 
2905 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2906 {
2907 	struct f2fs_inode_info *fi = F2FS_I(inode);
2908 
2909 	if (ri->i_inline & F2FS_INLINE_XATTR)
2910 		set_bit(FI_INLINE_XATTR, fi->flags);
2911 	if (ri->i_inline & F2FS_INLINE_DATA)
2912 		set_bit(FI_INLINE_DATA, fi->flags);
2913 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2914 		set_bit(FI_INLINE_DENTRY, fi->flags);
2915 	if (ri->i_inline & F2FS_DATA_EXIST)
2916 		set_bit(FI_DATA_EXIST, fi->flags);
2917 	if (ri->i_inline & F2FS_INLINE_DOTS)
2918 		set_bit(FI_INLINE_DOTS, fi->flags);
2919 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2920 		set_bit(FI_EXTRA_ATTR, fi->flags);
2921 	if (ri->i_inline & F2FS_PIN_FILE)
2922 		set_bit(FI_PIN_FILE, fi->flags);
2923 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2924 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
2925 }
2926 
2927 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2928 {
2929 	ri->i_inline = 0;
2930 
2931 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2932 		ri->i_inline |= F2FS_INLINE_XATTR;
2933 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2934 		ri->i_inline |= F2FS_INLINE_DATA;
2935 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2936 		ri->i_inline |= F2FS_INLINE_DENTRY;
2937 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2938 		ri->i_inline |= F2FS_DATA_EXIST;
2939 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2940 		ri->i_inline |= F2FS_INLINE_DOTS;
2941 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2942 		ri->i_inline |= F2FS_EXTRA_ATTR;
2943 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2944 		ri->i_inline |= F2FS_PIN_FILE;
2945 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
2946 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
2947 }
2948 
2949 static inline int f2fs_has_extra_attr(struct inode *inode)
2950 {
2951 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2952 }
2953 
2954 static inline int f2fs_has_inline_xattr(struct inode *inode)
2955 {
2956 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2957 }
2958 
2959 static inline int f2fs_compressed_file(struct inode *inode)
2960 {
2961 	return S_ISREG(inode->i_mode) &&
2962 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2963 }
2964 
2965 static inline bool f2fs_need_compress_data(struct inode *inode)
2966 {
2967 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2968 
2969 	if (!f2fs_compressed_file(inode))
2970 		return false;
2971 
2972 	if (compress_mode == COMPR_MODE_FS)
2973 		return true;
2974 	else if (compress_mode == COMPR_MODE_USER &&
2975 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2976 		return true;
2977 
2978 	return false;
2979 }
2980 
2981 static inline unsigned int addrs_per_inode(struct inode *inode)
2982 {
2983 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2984 				get_inline_xattr_addrs(inode);
2985 
2986 	if (!f2fs_compressed_file(inode))
2987 		return addrs;
2988 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2989 }
2990 
2991 static inline unsigned int addrs_per_block(struct inode *inode)
2992 {
2993 	if (!f2fs_compressed_file(inode))
2994 		return DEF_ADDRS_PER_BLOCK;
2995 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2996 }
2997 
2998 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2999 {
3000 	struct f2fs_inode *ri = F2FS_INODE(page);
3001 
3002 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3003 					get_inline_xattr_addrs(inode)]);
3004 }
3005 
3006 static inline int inline_xattr_size(struct inode *inode)
3007 {
3008 	if (f2fs_has_inline_xattr(inode))
3009 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3010 	return 0;
3011 }
3012 
3013 static inline int f2fs_has_inline_data(struct inode *inode)
3014 {
3015 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3016 }
3017 
3018 static inline int f2fs_exist_data(struct inode *inode)
3019 {
3020 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3021 }
3022 
3023 static inline int f2fs_has_inline_dots(struct inode *inode)
3024 {
3025 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3026 }
3027 
3028 static inline int f2fs_is_mmap_file(struct inode *inode)
3029 {
3030 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3031 }
3032 
3033 static inline bool f2fs_is_pinned_file(struct inode *inode)
3034 {
3035 	return is_inode_flag_set(inode, FI_PIN_FILE);
3036 }
3037 
3038 static inline bool f2fs_is_atomic_file(struct inode *inode)
3039 {
3040 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3041 }
3042 
3043 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3044 {
3045 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3046 }
3047 
3048 static inline bool f2fs_is_volatile_file(struct inode *inode)
3049 {
3050 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3051 }
3052 
3053 static inline bool f2fs_is_first_block_written(struct inode *inode)
3054 {
3055 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3056 }
3057 
3058 static inline bool f2fs_is_drop_cache(struct inode *inode)
3059 {
3060 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3061 }
3062 
3063 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3064 {
3065 	struct f2fs_inode *ri = F2FS_INODE(page);
3066 	int extra_size = get_extra_isize(inode);
3067 
3068 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3069 }
3070 
3071 static inline int f2fs_has_inline_dentry(struct inode *inode)
3072 {
3073 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3074 }
3075 
3076 static inline int is_file(struct inode *inode, int type)
3077 {
3078 	return F2FS_I(inode)->i_advise & type;
3079 }
3080 
3081 static inline void set_file(struct inode *inode, int type)
3082 {
3083 	F2FS_I(inode)->i_advise |= type;
3084 	f2fs_mark_inode_dirty_sync(inode, true);
3085 }
3086 
3087 static inline void clear_file(struct inode *inode, int type)
3088 {
3089 	F2FS_I(inode)->i_advise &= ~type;
3090 	f2fs_mark_inode_dirty_sync(inode, true);
3091 }
3092 
3093 static inline bool f2fs_is_time_consistent(struct inode *inode)
3094 {
3095 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3096 		return false;
3097 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3098 		return false;
3099 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3100 		return false;
3101 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3102 						&F2FS_I(inode)->i_crtime))
3103 		return false;
3104 	return true;
3105 }
3106 
3107 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3108 {
3109 	bool ret;
3110 
3111 	if (dsync) {
3112 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3113 
3114 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3115 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3116 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3117 		return ret;
3118 	}
3119 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3120 			file_keep_isize(inode) ||
3121 			i_size_read(inode) & ~PAGE_MASK)
3122 		return false;
3123 
3124 	if (!f2fs_is_time_consistent(inode))
3125 		return false;
3126 
3127 	spin_lock(&F2FS_I(inode)->i_size_lock);
3128 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3129 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3130 
3131 	return ret;
3132 }
3133 
3134 static inline bool f2fs_readonly(struct super_block *sb)
3135 {
3136 	return sb_rdonly(sb);
3137 }
3138 
3139 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3140 {
3141 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3142 }
3143 
3144 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3145 {
3146 	if (len == 1 && name[0] == '.')
3147 		return true;
3148 
3149 	if (len == 2 && name[0] == '.' && name[1] == '.')
3150 		return true;
3151 
3152 	return false;
3153 }
3154 
3155 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3156 					size_t size, gfp_t flags)
3157 {
3158 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3159 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3160 		return NULL;
3161 	}
3162 
3163 	return kmalloc(size, flags);
3164 }
3165 
3166 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3167 					size_t size, gfp_t flags)
3168 {
3169 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3170 }
3171 
3172 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3173 					size_t size, gfp_t flags)
3174 {
3175 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3176 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3177 		return NULL;
3178 	}
3179 
3180 	return kvmalloc(size, flags);
3181 }
3182 
3183 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3184 					size_t size, gfp_t flags)
3185 {
3186 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3187 }
3188 
3189 static inline int get_extra_isize(struct inode *inode)
3190 {
3191 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3192 }
3193 
3194 static inline int get_inline_xattr_addrs(struct inode *inode)
3195 {
3196 	return F2FS_I(inode)->i_inline_xattr_size;
3197 }
3198 
3199 #define f2fs_get_inode_mode(i) \
3200 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3201 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3202 
3203 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3204 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3205 	offsetof(struct f2fs_inode, i_extra_isize))	\
3206 
3207 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3208 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3209 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3210 		sizeof((f2fs_inode)->field))			\
3211 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3212 
3213 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3214 #define MIN_IOSTAT_PERIOD_MS		100
3215 /* maximum period of iostat tracing is 1 day */
3216 #define MAX_IOSTAT_PERIOD_MS		8640000
3217 
3218 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3219 {
3220 	int i;
3221 
3222 	spin_lock(&sbi->iostat_lock);
3223 	for (i = 0; i < NR_IO_TYPE; i++) {
3224 		sbi->rw_iostat[i] = 0;
3225 		sbi->prev_rw_iostat[i] = 0;
3226 	}
3227 	spin_unlock(&sbi->iostat_lock);
3228 }
3229 
3230 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3231 
3232 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3233 			enum iostat_type type, unsigned long long io_bytes)
3234 {
3235 	if (!sbi->iostat_enable)
3236 		return;
3237 	spin_lock(&sbi->iostat_lock);
3238 	sbi->rw_iostat[type] += io_bytes;
3239 
3240 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3241 		sbi->rw_iostat[APP_BUFFERED_IO] =
3242 			sbi->rw_iostat[APP_WRITE_IO] -
3243 			sbi->rw_iostat[APP_DIRECT_IO];
3244 
3245 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3246 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3247 			sbi->rw_iostat[APP_READ_IO] -
3248 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3249 	spin_unlock(&sbi->iostat_lock);
3250 
3251 	f2fs_record_iostat(sbi);
3252 }
3253 
3254 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3255 
3256 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3257 
3258 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3259 					block_t blkaddr, int type);
3260 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3261 					block_t blkaddr, int type)
3262 {
3263 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3264 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3265 			 blkaddr, type);
3266 		f2fs_bug_on(sbi, 1);
3267 	}
3268 }
3269 
3270 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3271 {
3272 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3273 			blkaddr == COMPRESS_ADDR)
3274 		return false;
3275 	return true;
3276 }
3277 
3278 /*
3279  * file.c
3280  */
3281 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3282 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3283 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3284 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3285 int f2fs_truncate(struct inode *inode);
3286 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3287 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3288 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3289 		 struct iattr *attr);
3290 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3291 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3292 int f2fs_precache_extents(struct inode *inode);
3293 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3294 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3295 		      struct dentry *dentry, struct fileattr *fa);
3296 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3297 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3298 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3299 int f2fs_pin_file_control(struct inode *inode, bool inc);
3300 
3301 /*
3302  * inode.c
3303  */
3304 void f2fs_set_inode_flags(struct inode *inode);
3305 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3306 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3307 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3308 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3309 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3310 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3311 void f2fs_update_inode_page(struct inode *inode);
3312 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3313 void f2fs_evict_inode(struct inode *inode);
3314 void f2fs_handle_failed_inode(struct inode *inode);
3315 
3316 /*
3317  * namei.c
3318  */
3319 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3320 							bool hot, bool set);
3321 struct dentry *f2fs_get_parent(struct dentry *child);
3322 
3323 /*
3324  * dir.c
3325  */
3326 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3327 int f2fs_init_casefolded_name(const struct inode *dir,
3328 			      struct f2fs_filename *fname);
3329 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3330 			int lookup, struct f2fs_filename *fname);
3331 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3332 			struct f2fs_filename *fname);
3333 void f2fs_free_filename(struct f2fs_filename *fname);
3334 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3335 			const struct f2fs_filename *fname, int *max_slots);
3336 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3337 			unsigned int start_pos, struct fscrypt_str *fstr);
3338 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3339 			struct f2fs_dentry_ptr *d);
3340 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3341 			const struct f2fs_filename *fname, struct page *dpage);
3342 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3343 			unsigned int current_depth);
3344 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3345 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3346 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3347 					 const struct f2fs_filename *fname,
3348 					 struct page **res_page);
3349 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3350 			const struct qstr *child, struct page **res_page);
3351 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3352 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3353 			struct page **page);
3354 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3355 			struct page *page, struct inode *inode);
3356 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3357 			  const struct f2fs_filename *fname);
3358 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3359 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3360 			unsigned int bit_pos);
3361 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3362 			struct inode *inode, nid_t ino, umode_t mode);
3363 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3364 			struct inode *inode, nid_t ino, umode_t mode);
3365 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3366 			struct inode *inode, nid_t ino, umode_t mode);
3367 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3368 			struct inode *dir, struct inode *inode);
3369 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3370 bool f2fs_empty_dir(struct inode *dir);
3371 
3372 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3373 {
3374 	if (fscrypt_is_nokey_name(dentry))
3375 		return -ENOKEY;
3376 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3377 				inode, inode->i_ino, inode->i_mode);
3378 }
3379 
3380 /*
3381  * super.c
3382  */
3383 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3384 void f2fs_inode_synced(struct inode *inode);
3385 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3386 int f2fs_quota_sync(struct super_block *sb, int type);
3387 loff_t max_file_blocks(struct inode *inode);
3388 void f2fs_quota_off_umount(struct super_block *sb);
3389 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3390 int f2fs_sync_fs(struct super_block *sb, int sync);
3391 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3392 
3393 /*
3394  * hash.c
3395  */
3396 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3397 
3398 /*
3399  * node.c
3400  */
3401 struct node_info;
3402 
3403 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3404 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3405 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3406 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3407 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3408 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3409 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3410 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3412 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3413 						struct node_info *ni);
3414 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3415 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3416 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3417 int f2fs_truncate_xattr_node(struct inode *inode);
3418 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3419 					unsigned int seq_id);
3420 int f2fs_remove_inode_page(struct inode *inode);
3421 struct page *f2fs_new_inode_page(struct inode *inode);
3422 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3423 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3424 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3425 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3426 int f2fs_move_node_page(struct page *node_page, int gc_type);
3427 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3428 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3429 			struct writeback_control *wbc, bool atomic,
3430 			unsigned int *seq_id);
3431 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3432 			struct writeback_control *wbc,
3433 			bool do_balance, enum iostat_type io_type);
3434 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3435 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3436 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3437 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3438 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3439 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3440 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3441 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3442 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3443 			unsigned int segno, struct f2fs_summary_block *sum);
3444 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3445 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3446 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3447 int __init f2fs_create_node_manager_caches(void);
3448 void f2fs_destroy_node_manager_caches(void);
3449 
3450 /*
3451  * segment.c
3452  */
3453 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3454 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3455 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3456 void f2fs_drop_inmem_pages(struct inode *inode);
3457 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3458 int f2fs_commit_inmem_pages(struct inode *inode);
3459 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3460 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3461 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3462 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3463 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3464 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3465 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3466 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3467 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3468 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3469 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3470 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3471 					struct cp_control *cpc);
3472 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3473 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3474 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3475 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3476 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3477 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3478 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3479 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3480 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3481 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3482 			unsigned int *newseg, bool new_sec, int dir);
3483 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3484 					unsigned int start, unsigned int end);
3485 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3486 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3487 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3488 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3489 					struct cp_control *cpc);
3490 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3491 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3492 					block_t blk_addr);
3493 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3494 						enum iostat_type io_type);
3495 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3496 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3497 			struct f2fs_io_info *fio);
3498 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3499 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3500 			block_t old_blkaddr, block_t new_blkaddr,
3501 			bool recover_curseg, bool recover_newaddr,
3502 			bool from_gc);
3503 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3504 			block_t old_addr, block_t new_addr,
3505 			unsigned char version, bool recover_curseg,
3506 			bool recover_newaddr);
3507 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3508 			block_t old_blkaddr, block_t *new_blkaddr,
3509 			struct f2fs_summary *sum, int type,
3510 			struct f2fs_io_info *fio);
3511 void f2fs_wait_on_page_writeback(struct page *page,
3512 			enum page_type type, bool ordered, bool locked);
3513 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3514 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3515 								block_t len);
3516 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3517 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3518 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3519 			unsigned int val, int alloc);
3520 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3521 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3522 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3523 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3524 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3525 int __init f2fs_create_segment_manager_caches(void);
3526 void f2fs_destroy_segment_manager_caches(void);
3527 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3528 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3529 			enum page_type type, enum temp_type temp);
3530 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3531 			unsigned int segno);
3532 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3533 			unsigned int segno);
3534 
3535 /*
3536  * checkpoint.c
3537  */
3538 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3539 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3540 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3541 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3542 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3543 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3544 					block_t blkaddr, int type);
3545 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3546 			int type, bool sync);
3547 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3548 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3549 			long nr_to_write, enum iostat_type io_type);
3550 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3551 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3552 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3553 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3554 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3555 					unsigned int devidx, int type);
3556 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3557 					unsigned int devidx, int type);
3558 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3559 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3560 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3561 void f2fs_add_orphan_inode(struct inode *inode);
3562 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3563 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3564 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3565 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3566 void f2fs_remove_dirty_inode(struct inode *inode);
3567 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3568 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3569 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3570 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3571 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3572 int __init f2fs_create_checkpoint_caches(void);
3573 void f2fs_destroy_checkpoint_caches(void);
3574 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3575 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3576 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3577 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3578 
3579 /*
3580  * data.c
3581  */
3582 int __init f2fs_init_bioset(void);
3583 void f2fs_destroy_bioset(void);
3584 int f2fs_init_bio_entry_cache(void);
3585 void f2fs_destroy_bio_entry_cache(void);
3586 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3587 				struct bio *bio, enum page_type type);
3588 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3589 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3590 				struct inode *inode, struct page *page,
3591 				nid_t ino, enum page_type type);
3592 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3593 					struct bio **bio, struct page *page);
3594 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3595 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3596 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3597 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3598 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3599 			block_t blk_addr, struct bio *bio);
3600 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3601 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3602 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3603 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3604 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3605 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3606 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3607 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3608 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3609 			int op_flags, bool for_write);
3610 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3611 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3612 			bool for_write);
3613 struct page *f2fs_get_new_data_page(struct inode *inode,
3614 			struct page *ipage, pgoff_t index, bool new_i_size);
3615 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3616 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3617 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3618 			int create, int flag);
3619 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3620 			u64 start, u64 len);
3621 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3622 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3623 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3624 int f2fs_write_single_data_page(struct page *page, int *submitted,
3625 				struct bio **bio, sector_t *last_block,
3626 				struct writeback_control *wbc,
3627 				enum iostat_type io_type,
3628 				int compr_blocks, bool allow_balance);
3629 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3630 			unsigned int length);
3631 int f2fs_release_page(struct page *page, gfp_t wait);
3632 #ifdef CONFIG_MIGRATION
3633 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3634 			struct page *page, enum migrate_mode mode);
3635 #endif
3636 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3637 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3638 int f2fs_init_post_read_processing(void);
3639 void f2fs_destroy_post_read_processing(void);
3640 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3641 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3642 
3643 /*
3644  * gc.c
3645  */
3646 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3647 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3648 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3649 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3650 			unsigned int segno);
3651 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3652 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3653 int __init f2fs_create_garbage_collection_cache(void);
3654 void f2fs_destroy_garbage_collection_cache(void);
3655 
3656 /*
3657  * recovery.c
3658  */
3659 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3660 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3661 int __init f2fs_create_recovery_cache(void);
3662 void f2fs_destroy_recovery_cache(void);
3663 
3664 /*
3665  * debug.c
3666  */
3667 #ifdef CONFIG_F2FS_STAT_FS
3668 struct f2fs_stat_info {
3669 	struct list_head stat_list;
3670 	struct f2fs_sb_info *sbi;
3671 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3672 	int main_area_segs, main_area_sections, main_area_zones;
3673 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3674 	unsigned long long hit_total, total_ext;
3675 	int ext_tree, zombie_tree, ext_node;
3676 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3677 	int ndirty_data, ndirty_qdata;
3678 	int inmem_pages;
3679 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3680 	int nats, dirty_nats, sits, dirty_sits;
3681 	int free_nids, avail_nids, alloc_nids;
3682 	int total_count, utilization;
3683 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3684 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3685 	int nr_dio_read, nr_dio_write;
3686 	unsigned int io_skip_bggc, other_skip_bggc;
3687 	int nr_flushing, nr_flushed, flush_list_empty;
3688 	int nr_discarding, nr_discarded;
3689 	int nr_discard_cmd;
3690 	unsigned int undiscard_blks;
3691 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3692 	unsigned int cur_ckpt_time, peak_ckpt_time;
3693 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3694 	int compr_inode;
3695 	unsigned long long compr_blocks;
3696 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3697 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3698 	unsigned int bimodal, avg_vblocks;
3699 	int util_free, util_valid, util_invalid;
3700 	int rsvd_segs, overp_segs;
3701 	int dirty_count, node_pages, meta_pages, compress_pages;
3702 	int compress_page_hit;
3703 	int prefree_count, call_count, cp_count, bg_cp_count;
3704 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3705 	int bg_node_segs, bg_data_segs;
3706 	int tot_blks, data_blks, node_blks;
3707 	int bg_data_blks, bg_node_blks;
3708 	unsigned long long skipped_atomic_files[2];
3709 	int curseg[NR_CURSEG_TYPE];
3710 	int cursec[NR_CURSEG_TYPE];
3711 	int curzone[NR_CURSEG_TYPE];
3712 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3713 	unsigned int full_seg[NR_CURSEG_TYPE];
3714 	unsigned int valid_blks[NR_CURSEG_TYPE];
3715 
3716 	unsigned int meta_count[META_MAX];
3717 	unsigned int segment_count[2];
3718 	unsigned int block_count[2];
3719 	unsigned int inplace_count;
3720 	unsigned long long base_mem, cache_mem, page_mem;
3721 };
3722 
3723 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3724 {
3725 	return (struct f2fs_stat_info *)sbi->stat_info;
3726 }
3727 
3728 #define stat_inc_cp_count(si)		((si)->cp_count++)
3729 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3730 #define stat_inc_call_count(si)		((si)->call_count++)
3731 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3732 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3733 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3734 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3735 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3736 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3737 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3738 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3739 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3740 #define stat_inc_inline_xattr(inode)					\
3741 	do {								\
3742 		if (f2fs_has_inline_xattr(inode))			\
3743 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3744 	} while (0)
3745 #define stat_dec_inline_xattr(inode)					\
3746 	do {								\
3747 		if (f2fs_has_inline_xattr(inode))			\
3748 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3749 	} while (0)
3750 #define stat_inc_inline_inode(inode)					\
3751 	do {								\
3752 		if (f2fs_has_inline_data(inode))			\
3753 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3754 	} while (0)
3755 #define stat_dec_inline_inode(inode)					\
3756 	do {								\
3757 		if (f2fs_has_inline_data(inode))			\
3758 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3759 	} while (0)
3760 #define stat_inc_inline_dir(inode)					\
3761 	do {								\
3762 		if (f2fs_has_inline_dentry(inode))			\
3763 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3764 	} while (0)
3765 #define stat_dec_inline_dir(inode)					\
3766 	do {								\
3767 		if (f2fs_has_inline_dentry(inode))			\
3768 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3769 	} while (0)
3770 #define stat_inc_compr_inode(inode)					\
3771 	do {								\
3772 		if (f2fs_compressed_file(inode))			\
3773 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3774 	} while (0)
3775 #define stat_dec_compr_inode(inode)					\
3776 	do {								\
3777 		if (f2fs_compressed_file(inode))			\
3778 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3779 	} while (0)
3780 #define stat_add_compr_blocks(inode, blocks)				\
3781 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3782 #define stat_sub_compr_blocks(inode, blocks)				\
3783 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3784 #define stat_inc_meta_count(sbi, blkaddr)				\
3785 	do {								\
3786 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3787 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3788 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3789 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3790 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3791 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3792 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3793 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3794 	} while (0)
3795 #define stat_inc_seg_type(sbi, curseg)					\
3796 		((sbi)->segment_count[(curseg)->alloc_type]++)
3797 #define stat_inc_block_count(sbi, curseg)				\
3798 		((sbi)->block_count[(curseg)->alloc_type]++)
3799 #define stat_inc_inplace_blocks(sbi)					\
3800 		(atomic_inc(&(sbi)->inplace_count))
3801 #define stat_update_max_atomic_write(inode)				\
3802 	do {								\
3803 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3804 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3805 		if (cur > max)						\
3806 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3807 	} while (0)
3808 #define stat_inc_volatile_write(inode)					\
3809 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3810 #define stat_dec_volatile_write(inode)					\
3811 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3812 #define stat_update_max_volatile_write(inode)				\
3813 	do {								\
3814 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3815 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3816 		if (cur > max)						\
3817 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3818 	} while (0)
3819 #define stat_inc_seg_count(sbi, type, gc_type)				\
3820 	do {								\
3821 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3822 		si->tot_segs++;						\
3823 		if ((type) == SUM_TYPE_DATA) {				\
3824 			si->data_segs++;				\
3825 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3826 		} else {						\
3827 			si->node_segs++;				\
3828 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3829 		}							\
3830 	} while (0)
3831 
3832 #define stat_inc_tot_blk_count(si, blks)				\
3833 	((si)->tot_blks += (blks))
3834 
3835 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3836 	do {								\
3837 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3838 		stat_inc_tot_blk_count(si, blks);			\
3839 		si->data_blks += (blks);				\
3840 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3841 	} while (0)
3842 
3843 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3844 	do {								\
3845 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3846 		stat_inc_tot_blk_count(si, blks);			\
3847 		si->node_blks += (blks);				\
3848 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3849 	} while (0)
3850 
3851 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3852 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3853 void __init f2fs_create_root_stats(void);
3854 void f2fs_destroy_root_stats(void);
3855 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3856 #else
3857 #define stat_inc_cp_count(si)				do { } while (0)
3858 #define stat_inc_bg_cp_count(si)			do { } while (0)
3859 #define stat_inc_call_count(si)				do { } while (0)
3860 #define stat_inc_bggc_count(si)				do { } while (0)
3861 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3862 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3863 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3864 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3865 #define stat_inc_total_hit(sbi)				do { } while (0)
3866 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3867 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3868 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3869 #define stat_inc_inline_xattr(inode)			do { } while (0)
3870 #define stat_dec_inline_xattr(inode)			do { } while (0)
3871 #define stat_inc_inline_inode(inode)			do { } while (0)
3872 #define stat_dec_inline_inode(inode)			do { } while (0)
3873 #define stat_inc_inline_dir(inode)			do { } while (0)
3874 #define stat_dec_inline_dir(inode)			do { } while (0)
3875 #define stat_inc_compr_inode(inode)			do { } while (0)
3876 #define stat_dec_compr_inode(inode)			do { } while (0)
3877 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3878 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3879 #define stat_update_max_atomic_write(inode)		do { } while (0)
3880 #define stat_inc_volatile_write(inode)			do { } while (0)
3881 #define stat_dec_volatile_write(inode)			do { } while (0)
3882 #define stat_update_max_volatile_write(inode)		do { } while (0)
3883 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3884 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3885 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3886 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3887 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3888 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3889 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3890 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3891 
3892 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3893 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3894 static inline void __init f2fs_create_root_stats(void) { }
3895 static inline void f2fs_destroy_root_stats(void) { }
3896 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3897 #endif
3898 
3899 extern const struct file_operations f2fs_dir_operations;
3900 extern const struct file_operations f2fs_file_operations;
3901 extern const struct inode_operations f2fs_file_inode_operations;
3902 extern const struct address_space_operations f2fs_dblock_aops;
3903 extern const struct address_space_operations f2fs_node_aops;
3904 extern const struct address_space_operations f2fs_meta_aops;
3905 extern const struct inode_operations f2fs_dir_inode_operations;
3906 extern const struct inode_operations f2fs_symlink_inode_operations;
3907 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3908 extern const struct inode_operations f2fs_special_inode_operations;
3909 extern struct kmem_cache *f2fs_inode_entry_slab;
3910 
3911 /*
3912  * inline.c
3913  */
3914 bool f2fs_may_inline_data(struct inode *inode);
3915 bool f2fs_may_inline_dentry(struct inode *inode);
3916 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3917 void f2fs_truncate_inline_inode(struct inode *inode,
3918 						struct page *ipage, u64 from);
3919 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3920 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3921 int f2fs_convert_inline_inode(struct inode *inode);
3922 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3923 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3924 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3925 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3926 					const struct f2fs_filename *fname,
3927 					struct page **res_page);
3928 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3929 			struct page *ipage);
3930 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3931 			struct inode *inode, nid_t ino, umode_t mode);
3932 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3933 				struct page *page, struct inode *dir,
3934 				struct inode *inode);
3935 bool f2fs_empty_inline_dir(struct inode *dir);
3936 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3937 			struct fscrypt_str *fstr);
3938 int f2fs_inline_data_fiemap(struct inode *inode,
3939 			struct fiemap_extent_info *fieinfo,
3940 			__u64 start, __u64 len);
3941 
3942 /*
3943  * shrinker.c
3944  */
3945 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3946 			struct shrink_control *sc);
3947 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3948 			struct shrink_control *sc);
3949 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3950 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3951 
3952 /*
3953  * extent_cache.c
3954  */
3955 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3956 				struct rb_entry *cached_re, unsigned int ofs);
3957 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3958 				struct rb_root_cached *root,
3959 				struct rb_node **parent,
3960 				unsigned long long key, bool *left_most);
3961 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3962 				struct rb_root_cached *root,
3963 				struct rb_node **parent,
3964 				unsigned int ofs, bool *leftmost);
3965 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3966 		struct rb_entry *cached_re, unsigned int ofs,
3967 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3968 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3969 		bool force, bool *leftmost);
3970 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3971 				struct rb_root_cached *root, bool check_key);
3972 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3973 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3974 void f2fs_drop_extent_tree(struct inode *inode);
3975 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3976 void f2fs_destroy_extent_tree(struct inode *inode);
3977 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3978 			struct extent_info *ei);
3979 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3980 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3981 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3982 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3983 int __init f2fs_create_extent_cache(void);
3984 void f2fs_destroy_extent_cache(void);
3985 
3986 /*
3987  * sysfs.c
3988  */
3989 int __init f2fs_init_sysfs(void);
3990 void f2fs_exit_sysfs(void);
3991 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3992 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3993 
3994 /* verity.c */
3995 extern const struct fsverity_operations f2fs_verityops;
3996 
3997 /*
3998  * crypto support
3999  */
4000 static inline bool f2fs_encrypted_file(struct inode *inode)
4001 {
4002 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4003 }
4004 
4005 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4006 {
4007 #ifdef CONFIG_FS_ENCRYPTION
4008 	file_set_encrypt(inode);
4009 	f2fs_set_inode_flags(inode);
4010 #endif
4011 }
4012 
4013 /*
4014  * Returns true if the reads of the inode's data need to undergo some
4015  * postprocessing step, like decryption or authenticity verification.
4016  */
4017 static inline bool f2fs_post_read_required(struct inode *inode)
4018 {
4019 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4020 		f2fs_compressed_file(inode);
4021 }
4022 
4023 /*
4024  * compress.c
4025  */
4026 #ifdef CONFIG_F2FS_FS_COMPRESSION
4027 bool f2fs_is_compressed_page(struct page *page);
4028 struct page *f2fs_compress_control_page(struct page *page);
4029 int f2fs_prepare_compress_overwrite(struct inode *inode,
4030 			struct page **pagep, pgoff_t index, void **fsdata);
4031 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4032 					pgoff_t index, unsigned copied);
4033 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4034 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4035 bool f2fs_is_compress_backend_ready(struct inode *inode);
4036 int f2fs_init_compress_mempool(void);
4037 void f2fs_destroy_compress_mempool(void);
4038 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4039 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4040 							block_t blkaddr);
4041 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4042 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4043 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4044 int f2fs_write_multi_pages(struct compress_ctx *cc,
4045 						int *submitted,
4046 						struct writeback_control *wbc,
4047 						enum iostat_type io_type);
4048 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4049 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4050 				unsigned nr_pages, sector_t *last_block_in_bio,
4051 				bool is_readahead, bool for_write);
4052 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4053 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4054 void f2fs_put_page_dic(struct page *page);
4055 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4056 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4057 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4058 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4059 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4060 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4061 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4062 int __init f2fs_init_compress_cache(void);
4063 void f2fs_destroy_compress_cache(void);
4064 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4065 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4066 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4067 						nid_t ino, block_t blkaddr);
4068 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4069 								block_t blkaddr);
4070 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4071 #define inc_compr_inode_stat(inode)					\
4072 	do {								\
4073 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4074 		sbi->compr_new_inode++;					\
4075 	} while (0)
4076 #define add_compr_block_stat(inode, blocks)				\
4077 	do {								\
4078 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4079 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4080 		sbi->compr_written_block += blocks;			\
4081 		sbi->compr_saved_block += diff;				\
4082 	} while (0)
4083 #else
4084 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4085 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4086 {
4087 	if (!f2fs_compressed_file(inode))
4088 		return true;
4089 	/* not support compression */
4090 	return false;
4091 }
4092 static inline struct page *f2fs_compress_control_page(struct page *page)
4093 {
4094 	WARN_ON_ONCE(1);
4095 	return ERR_PTR(-EINVAL);
4096 }
4097 static inline int f2fs_init_compress_mempool(void) { return 0; }
4098 static inline void f2fs_destroy_compress_mempool(void) { }
4099 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4100 static inline void f2fs_end_read_compressed_page(struct page *page,
4101 						bool failed, block_t blkaddr)
4102 {
4103 	WARN_ON_ONCE(1);
4104 }
4105 static inline void f2fs_put_page_dic(struct page *page)
4106 {
4107 	WARN_ON_ONCE(1);
4108 }
4109 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4110 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4111 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4112 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4113 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4114 static inline void f2fs_destroy_compress_cache(void) { }
4115 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4116 				block_t blkaddr) { }
4117 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4118 				struct page *page, nid_t ino, block_t blkaddr) { }
4119 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4120 				struct page *page, block_t blkaddr) { return false; }
4121 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4122 							nid_t ino) { }
4123 #define inc_compr_inode_stat(inode)		do { } while (0)
4124 #endif
4125 
4126 static inline void set_compress_context(struct inode *inode)
4127 {
4128 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4129 
4130 	F2FS_I(inode)->i_compress_algorithm =
4131 			F2FS_OPTION(sbi).compress_algorithm;
4132 	F2FS_I(inode)->i_log_cluster_size =
4133 			F2FS_OPTION(sbi).compress_log_size;
4134 	F2FS_I(inode)->i_compress_flag =
4135 			F2FS_OPTION(sbi).compress_chksum ?
4136 				1 << COMPRESS_CHKSUM : 0;
4137 	F2FS_I(inode)->i_cluster_size =
4138 			1 << F2FS_I(inode)->i_log_cluster_size;
4139 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 &&
4140 			F2FS_OPTION(sbi).compress_level)
4141 		F2FS_I(inode)->i_compress_flag |=
4142 				F2FS_OPTION(sbi).compress_level <<
4143 				COMPRESS_LEVEL_OFFSET;
4144 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4145 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4146 	stat_inc_compr_inode(inode);
4147 	inc_compr_inode_stat(inode);
4148 	f2fs_mark_inode_dirty_sync(inode, true);
4149 }
4150 
4151 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4152 {
4153 	struct f2fs_inode_info *fi = F2FS_I(inode);
4154 
4155 	if (!f2fs_compressed_file(inode))
4156 		return true;
4157 	if (S_ISREG(inode->i_mode) &&
4158 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
4159 		return false;
4160 
4161 	fi->i_flags &= ~F2FS_COMPR_FL;
4162 	stat_dec_compr_inode(inode);
4163 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4164 	f2fs_mark_inode_dirty_sync(inode, true);
4165 	return true;
4166 }
4167 
4168 #define F2FS_FEATURE_FUNCS(name, flagname) \
4169 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4170 { \
4171 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4172 }
4173 
4174 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4175 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4176 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4177 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4178 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4179 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4180 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4181 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4182 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4183 F2FS_FEATURE_FUNCS(verity, VERITY);
4184 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4185 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4186 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4187 F2FS_FEATURE_FUNCS(readonly, RO);
4188 
4189 static inline bool f2fs_may_extent_tree(struct inode *inode)
4190 {
4191 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4192 
4193 	if (!test_opt(sbi, EXTENT_CACHE) ||
4194 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4195 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4196 			 !f2fs_sb_has_readonly(sbi)))
4197 		return false;
4198 
4199 	/*
4200 	 * for recovered files during mount do not create extents
4201 	 * if shrinker is not registered.
4202 	 */
4203 	if (list_empty(&sbi->s_list))
4204 		return false;
4205 
4206 	return S_ISREG(inode->i_mode);
4207 }
4208 
4209 #ifdef CONFIG_BLK_DEV_ZONED
4210 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4211 				    block_t blkaddr)
4212 {
4213 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4214 
4215 	return test_bit(zno, FDEV(devi).blkz_seq);
4216 }
4217 #endif
4218 
4219 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4220 {
4221 	return f2fs_sb_has_blkzoned(sbi);
4222 }
4223 
4224 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4225 {
4226 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4227 	       bdev_is_zoned(bdev);
4228 }
4229 
4230 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4231 {
4232 	int i;
4233 
4234 	if (!f2fs_is_multi_device(sbi))
4235 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4236 
4237 	for (i = 0; i < sbi->s_ndevs; i++)
4238 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4239 			return true;
4240 	return false;
4241 }
4242 
4243 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4244 {
4245 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4246 					f2fs_hw_should_discard(sbi);
4247 }
4248 
4249 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4250 {
4251 	int i;
4252 
4253 	if (!f2fs_is_multi_device(sbi))
4254 		return bdev_read_only(sbi->sb->s_bdev);
4255 
4256 	for (i = 0; i < sbi->s_ndevs; i++)
4257 		if (bdev_read_only(FDEV(i).bdev))
4258 			return true;
4259 	return false;
4260 }
4261 
4262 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4263 {
4264 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4265 }
4266 
4267 static inline bool f2fs_may_compress(struct inode *inode)
4268 {
4269 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4270 				f2fs_is_atomic_file(inode) ||
4271 				f2fs_is_volatile_file(inode))
4272 		return false;
4273 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4274 }
4275 
4276 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4277 						u64 blocks, bool add)
4278 {
4279 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4280 	struct f2fs_inode_info *fi = F2FS_I(inode);
4281 
4282 	/* don't update i_compr_blocks if saved blocks were released */
4283 	if (!add && !atomic_read(&fi->i_compr_blocks))
4284 		return;
4285 
4286 	if (add) {
4287 		atomic_add(diff, &fi->i_compr_blocks);
4288 		stat_add_compr_blocks(inode, diff);
4289 	} else {
4290 		atomic_sub(diff, &fi->i_compr_blocks);
4291 		stat_sub_compr_blocks(inode, diff);
4292 	}
4293 	f2fs_mark_inode_dirty_sync(inode, true);
4294 }
4295 
4296 static inline int block_unaligned_IO(struct inode *inode,
4297 				struct kiocb *iocb, struct iov_iter *iter)
4298 {
4299 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4300 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4301 	loff_t offset = iocb->ki_pos;
4302 	unsigned long align = offset | iov_iter_alignment(iter);
4303 
4304 	return align & blocksize_mask;
4305 }
4306 
4307 static inline int allow_outplace_dio(struct inode *inode,
4308 				struct kiocb *iocb, struct iov_iter *iter)
4309 {
4310 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4311 	int rw = iov_iter_rw(iter);
4312 
4313 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4314 				!block_unaligned_IO(inode, iocb, iter));
4315 }
4316 
4317 static inline bool f2fs_force_buffered_io(struct inode *inode,
4318 				struct kiocb *iocb, struct iov_iter *iter)
4319 {
4320 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4321 	int rw = iov_iter_rw(iter);
4322 
4323 	if (f2fs_post_read_required(inode))
4324 		return true;
4325 	if (f2fs_is_multi_device(sbi))
4326 		return true;
4327 	/*
4328 	 * for blkzoned device, fallback direct IO to buffered IO, so
4329 	 * all IOs can be serialized by log-structured write.
4330 	 */
4331 	if (f2fs_sb_has_blkzoned(sbi))
4332 		return true;
4333 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4334 		if (block_unaligned_IO(inode, iocb, iter))
4335 			return true;
4336 		if (F2FS_IO_ALIGNED(sbi))
4337 			return true;
4338 	}
4339 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4340 		return true;
4341 
4342 	return false;
4343 }
4344 
4345 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4346 {
4347 	return fsverity_active(inode) &&
4348 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4349 }
4350 
4351 #ifdef CONFIG_F2FS_FAULT_INJECTION
4352 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4353 							unsigned int type);
4354 #else
4355 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4356 #endif
4357 
4358 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4359 {
4360 #ifdef CONFIG_QUOTA
4361 	if (f2fs_sb_has_quota_ino(sbi))
4362 		return true;
4363 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4364 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4365 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4366 		return true;
4367 #endif
4368 	return false;
4369 }
4370 
4371 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4372 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4373 
4374 #endif /* _LINUX_F2FS_H */
4375