1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <linux/part_stat.h> 26 #include <crypto/hash.h> 27 28 #include <linux/fscrypt.h> 29 #include <linux/fsverity.h> 30 31 #ifdef CONFIG_F2FS_CHECK_FS 32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 33 #else 34 #define f2fs_bug_on(sbi, condition) \ 35 do { \ 36 if (WARN_ON(condition)) \ 37 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 38 } while (0) 39 #endif 40 41 enum { 42 FAULT_KMALLOC, 43 FAULT_KVMALLOC, 44 FAULT_PAGE_ALLOC, 45 FAULT_PAGE_GET, 46 FAULT_ALLOC_NID, 47 FAULT_ORPHAN, 48 FAULT_BLOCK, 49 FAULT_DIR_DEPTH, 50 FAULT_EVICT_INODE, 51 FAULT_TRUNCATE, 52 FAULT_READ_IO, 53 FAULT_CHECKPOINT, 54 FAULT_DISCARD, 55 FAULT_WRITE_IO, 56 FAULT_MAX, 57 }; 58 59 #ifdef CONFIG_F2FS_FAULT_INJECTION 60 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 61 62 struct f2fs_fault_info { 63 atomic_t inject_ops; 64 unsigned int inject_rate; 65 unsigned int inject_type; 66 }; 67 68 extern const char *f2fs_fault_name[FAULT_MAX]; 69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 70 #endif 71 72 /* 73 * For mount options 74 */ 75 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 76 #define F2FS_MOUNT_DISCARD 0x00000004 77 #define F2FS_MOUNT_NOHEAP 0x00000008 78 #define F2FS_MOUNT_XATTR_USER 0x00000010 79 #define F2FS_MOUNT_POSIX_ACL 0x00000020 80 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 81 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 82 #define F2FS_MOUNT_INLINE_DATA 0x00000100 83 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 84 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 85 #define F2FS_MOUNT_NOBARRIER 0x00000800 86 #define F2FS_MOUNT_FASTBOOT 0x00001000 87 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 90 #define F2FS_MOUNT_USRQUOTA 0x00080000 91 #define F2FS_MOUNT_GRPQUOTA 0x00100000 92 #define F2FS_MOUNT_PRJQUOTA 0x00200000 93 #define F2FS_MOUNT_QUOTA 0x00400000 94 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 95 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 96 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 97 #define F2FS_MOUNT_NORECOVERY 0x04000000 98 #define F2FS_MOUNT_ATGC 0x08000000 99 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000 100 #define F2FS_MOUNT_GC_MERGE 0x20000000 101 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000 102 103 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 104 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 105 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 106 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 107 108 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 109 typecheck(unsigned long long, b) && \ 110 ((long long)((a) - (b)) > 0)) 111 112 typedef u32 block_t; /* 113 * should not change u32, since it is the on-disk block 114 * address format, __le32. 115 */ 116 typedef u32 nid_t; 117 118 #define COMPRESS_EXT_NUM 16 119 120 struct f2fs_mount_info { 121 unsigned int opt; 122 int write_io_size_bits; /* Write IO size bits */ 123 block_t root_reserved_blocks; /* root reserved blocks */ 124 kuid_t s_resuid; /* reserved blocks for uid */ 125 kgid_t s_resgid; /* reserved blocks for gid */ 126 int active_logs; /* # of active logs */ 127 int inline_xattr_size; /* inline xattr size */ 128 #ifdef CONFIG_F2FS_FAULT_INJECTION 129 struct f2fs_fault_info fault_info; /* For fault injection */ 130 #endif 131 #ifdef CONFIG_QUOTA 132 /* Names of quota files with journalled quota */ 133 char *s_qf_names[MAXQUOTAS]; 134 int s_jquota_fmt; /* Format of quota to use */ 135 #endif 136 /* For which write hints are passed down to block layer */ 137 int whint_mode; 138 int alloc_mode; /* segment allocation policy */ 139 int fsync_mode; /* fsync policy */ 140 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 141 int bggc_mode; /* bggc mode: off, on or sync */ 142 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 143 block_t unusable_cap_perc; /* percentage for cap */ 144 block_t unusable_cap; /* Amount of space allowed to be 145 * unusable when disabling checkpoint 146 */ 147 148 /* For compression */ 149 unsigned char compress_algorithm; /* algorithm type */ 150 unsigned char compress_log_size; /* cluster log size */ 151 unsigned char compress_level; /* compress level */ 152 bool compress_chksum; /* compressed data chksum */ 153 unsigned char compress_ext_cnt; /* extension count */ 154 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 155 int compress_mode; /* compression mode */ 156 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 157 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 158 }; 159 160 #define F2FS_FEATURE_ENCRYPT 0x0001 161 #define F2FS_FEATURE_BLKZONED 0x0002 162 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 163 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 164 #define F2FS_FEATURE_PRJQUOTA 0x0010 165 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 166 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 167 #define F2FS_FEATURE_QUOTA_INO 0x0080 168 #define F2FS_FEATURE_INODE_CRTIME 0x0100 169 #define F2FS_FEATURE_LOST_FOUND 0x0200 170 #define F2FS_FEATURE_VERITY 0x0400 171 #define F2FS_FEATURE_SB_CHKSUM 0x0800 172 #define F2FS_FEATURE_CASEFOLD 0x1000 173 #define F2FS_FEATURE_COMPRESSION 0x2000 174 #define F2FS_FEATURE_RO 0x4000 175 176 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 177 ((raw_super->feature & cpu_to_le32(mask)) != 0) 178 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 179 #define F2FS_SET_FEATURE(sbi, mask) \ 180 (sbi->raw_super->feature |= cpu_to_le32(mask)) 181 #define F2FS_CLEAR_FEATURE(sbi, mask) \ 182 (sbi->raw_super->feature &= ~cpu_to_le32(mask)) 183 184 /* 185 * Default values for user and/or group using reserved blocks 186 */ 187 #define F2FS_DEF_RESUID 0 188 #define F2FS_DEF_RESGID 0 189 190 /* 191 * For checkpoint manager 192 */ 193 enum { 194 NAT_BITMAP, 195 SIT_BITMAP 196 }; 197 198 #define CP_UMOUNT 0x00000001 199 #define CP_FASTBOOT 0x00000002 200 #define CP_SYNC 0x00000004 201 #define CP_RECOVERY 0x00000008 202 #define CP_DISCARD 0x00000010 203 #define CP_TRIMMED 0x00000020 204 #define CP_PAUSE 0x00000040 205 #define CP_RESIZE 0x00000080 206 207 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 208 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 209 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 210 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 211 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 212 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 213 #define DEF_CP_INTERVAL 60 /* 60 secs */ 214 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 215 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 216 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 217 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 218 219 struct cp_control { 220 int reason; 221 __u64 trim_start; 222 __u64 trim_end; 223 __u64 trim_minlen; 224 }; 225 226 /* 227 * indicate meta/data type 228 */ 229 enum { 230 META_CP, 231 META_NAT, 232 META_SIT, 233 META_SSA, 234 META_MAX, 235 META_POR, 236 DATA_GENERIC, /* check range only */ 237 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 238 DATA_GENERIC_ENHANCE_READ, /* 239 * strong check on range and segment 240 * bitmap but no warning due to race 241 * condition of read on truncated area 242 * by extent_cache 243 */ 244 META_GENERIC, 245 }; 246 247 /* for the list of ino */ 248 enum { 249 ORPHAN_INO, /* for orphan ino list */ 250 APPEND_INO, /* for append ino list */ 251 UPDATE_INO, /* for update ino list */ 252 TRANS_DIR_INO, /* for trasactions dir ino list */ 253 FLUSH_INO, /* for multiple device flushing */ 254 MAX_INO_ENTRY, /* max. list */ 255 }; 256 257 struct ino_entry { 258 struct list_head list; /* list head */ 259 nid_t ino; /* inode number */ 260 unsigned int dirty_device; /* dirty device bitmap */ 261 }; 262 263 /* for the list of inodes to be GCed */ 264 struct inode_entry { 265 struct list_head list; /* list head */ 266 struct inode *inode; /* vfs inode pointer */ 267 }; 268 269 struct fsync_node_entry { 270 struct list_head list; /* list head */ 271 struct page *page; /* warm node page pointer */ 272 unsigned int seq_id; /* sequence id */ 273 }; 274 275 struct ckpt_req { 276 struct completion wait; /* completion for checkpoint done */ 277 struct llist_node llnode; /* llist_node to be linked in wait queue */ 278 int ret; /* return code of checkpoint */ 279 ktime_t queue_time; /* request queued time */ 280 }; 281 282 struct ckpt_req_control { 283 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 284 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 285 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 286 atomic_t issued_ckpt; /* # of actually issued ckpts */ 287 atomic_t total_ckpt; /* # of total ckpts */ 288 atomic_t queued_ckpt; /* # of queued ckpts */ 289 struct llist_head issue_list; /* list for command issue */ 290 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 291 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 292 unsigned int peak_time; /* peak wait time in msec until now */ 293 }; 294 295 /* for the bitmap indicate blocks to be discarded */ 296 struct discard_entry { 297 struct list_head list; /* list head */ 298 block_t start_blkaddr; /* start blockaddr of current segment */ 299 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 300 }; 301 302 /* default discard granularity of inner discard thread, unit: block count */ 303 #define DEFAULT_DISCARD_GRANULARITY 16 304 305 /* max discard pend list number */ 306 #define MAX_PLIST_NUM 512 307 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 308 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 309 310 enum { 311 D_PREP, /* initial */ 312 D_PARTIAL, /* partially submitted */ 313 D_SUBMIT, /* all submitted */ 314 D_DONE, /* finished */ 315 }; 316 317 struct discard_info { 318 block_t lstart; /* logical start address */ 319 block_t len; /* length */ 320 block_t start; /* actual start address in dev */ 321 }; 322 323 struct discard_cmd { 324 struct rb_node rb_node; /* rb node located in rb-tree */ 325 union { 326 struct { 327 block_t lstart; /* logical start address */ 328 block_t len; /* length */ 329 block_t start; /* actual start address in dev */ 330 }; 331 struct discard_info di; /* discard info */ 332 333 }; 334 struct list_head list; /* command list */ 335 struct completion wait; /* compleation */ 336 struct block_device *bdev; /* bdev */ 337 unsigned short ref; /* reference count */ 338 unsigned char state; /* state */ 339 unsigned char queued; /* queued discard */ 340 int error; /* bio error */ 341 spinlock_t lock; /* for state/bio_ref updating */ 342 unsigned short bio_ref; /* bio reference count */ 343 }; 344 345 enum { 346 DPOLICY_BG, 347 DPOLICY_FORCE, 348 DPOLICY_FSTRIM, 349 DPOLICY_UMOUNT, 350 MAX_DPOLICY, 351 }; 352 353 struct discard_policy { 354 int type; /* type of discard */ 355 unsigned int min_interval; /* used for candidates exist */ 356 unsigned int mid_interval; /* used for device busy */ 357 unsigned int max_interval; /* used for candidates not exist */ 358 unsigned int max_requests; /* # of discards issued per round */ 359 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 360 bool io_aware; /* issue discard in idle time */ 361 bool sync; /* submit discard with REQ_SYNC flag */ 362 bool ordered; /* issue discard by lba order */ 363 bool timeout; /* discard timeout for put_super */ 364 unsigned int granularity; /* discard granularity */ 365 }; 366 367 struct discard_cmd_control { 368 struct task_struct *f2fs_issue_discard; /* discard thread */ 369 struct list_head entry_list; /* 4KB discard entry list */ 370 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 371 struct list_head wait_list; /* store on-flushing entries */ 372 struct list_head fstrim_list; /* in-flight discard from fstrim */ 373 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 374 unsigned int discard_wake; /* to wake up discard thread */ 375 struct mutex cmd_lock; 376 unsigned int nr_discards; /* # of discards in the list */ 377 unsigned int max_discards; /* max. discards to be issued */ 378 unsigned int discard_granularity; /* discard granularity */ 379 unsigned int undiscard_blks; /* # of undiscard blocks */ 380 unsigned int next_pos; /* next discard position */ 381 atomic_t issued_discard; /* # of issued discard */ 382 atomic_t queued_discard; /* # of queued discard */ 383 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 384 struct rb_root_cached root; /* root of discard rb-tree */ 385 bool rbtree_check; /* config for consistence check */ 386 }; 387 388 /* for the list of fsync inodes, used only during recovery */ 389 struct fsync_inode_entry { 390 struct list_head list; /* list head */ 391 struct inode *inode; /* vfs inode pointer */ 392 block_t blkaddr; /* block address locating the last fsync */ 393 block_t last_dentry; /* block address locating the last dentry */ 394 }; 395 396 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 397 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 398 399 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 400 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 401 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 402 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 403 404 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 405 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 406 407 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 408 { 409 int before = nats_in_cursum(journal); 410 411 journal->n_nats = cpu_to_le16(before + i); 412 return before; 413 } 414 415 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 416 { 417 int before = sits_in_cursum(journal); 418 419 journal->n_sits = cpu_to_le16(before + i); 420 return before; 421 } 422 423 static inline bool __has_cursum_space(struct f2fs_journal *journal, 424 int size, int type) 425 { 426 if (type == NAT_JOURNAL) 427 return size <= MAX_NAT_JENTRIES(journal); 428 return size <= MAX_SIT_JENTRIES(journal); 429 } 430 431 /* for inline stuff */ 432 #define DEF_INLINE_RESERVED_SIZE 1 433 static inline int get_extra_isize(struct inode *inode); 434 static inline int get_inline_xattr_addrs(struct inode *inode); 435 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 436 (CUR_ADDRS_PER_INODE(inode) - \ 437 get_inline_xattr_addrs(inode) - \ 438 DEF_INLINE_RESERVED_SIZE)) 439 440 /* for inline dir */ 441 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 442 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 443 BITS_PER_BYTE + 1)) 444 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 445 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 446 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 447 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 448 NR_INLINE_DENTRY(inode) + \ 449 INLINE_DENTRY_BITMAP_SIZE(inode))) 450 451 /* 452 * For INODE and NODE manager 453 */ 454 /* for directory operations */ 455 456 struct f2fs_filename { 457 /* 458 * The filename the user specified. This is NULL for some 459 * filesystem-internal operations, e.g. converting an inline directory 460 * to a non-inline one, or roll-forward recovering an encrypted dentry. 461 */ 462 const struct qstr *usr_fname; 463 464 /* 465 * The on-disk filename. For encrypted directories, this is encrypted. 466 * This may be NULL for lookups in an encrypted dir without the key. 467 */ 468 struct fscrypt_str disk_name; 469 470 /* The dirhash of this filename */ 471 f2fs_hash_t hash; 472 473 #ifdef CONFIG_FS_ENCRYPTION 474 /* 475 * For lookups in encrypted directories: either the buffer backing 476 * disk_name, or a buffer that holds the decoded no-key name. 477 */ 478 struct fscrypt_str crypto_buf; 479 #endif 480 #ifdef CONFIG_UNICODE 481 /* 482 * For casefolded directories: the casefolded name, but it's left NULL 483 * if the original name is not valid Unicode, if the directory is both 484 * casefolded and encrypted and its encryption key is unavailable, or if 485 * the filesystem is doing an internal operation where usr_fname is also 486 * NULL. In all these cases we fall back to treating the name as an 487 * opaque byte sequence. 488 */ 489 struct fscrypt_str cf_name; 490 #endif 491 }; 492 493 struct f2fs_dentry_ptr { 494 struct inode *inode; 495 void *bitmap; 496 struct f2fs_dir_entry *dentry; 497 __u8 (*filename)[F2FS_SLOT_LEN]; 498 int max; 499 int nr_bitmap; 500 }; 501 502 static inline void make_dentry_ptr_block(struct inode *inode, 503 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 504 { 505 d->inode = inode; 506 d->max = NR_DENTRY_IN_BLOCK; 507 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 508 d->bitmap = t->dentry_bitmap; 509 d->dentry = t->dentry; 510 d->filename = t->filename; 511 } 512 513 static inline void make_dentry_ptr_inline(struct inode *inode, 514 struct f2fs_dentry_ptr *d, void *t) 515 { 516 int entry_cnt = NR_INLINE_DENTRY(inode); 517 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 518 int reserved_size = INLINE_RESERVED_SIZE(inode); 519 520 d->inode = inode; 521 d->max = entry_cnt; 522 d->nr_bitmap = bitmap_size; 523 d->bitmap = t; 524 d->dentry = t + bitmap_size + reserved_size; 525 d->filename = t + bitmap_size + reserved_size + 526 SIZE_OF_DIR_ENTRY * entry_cnt; 527 } 528 529 /* 530 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 531 * as its node offset to distinguish from index node blocks. 532 * But some bits are used to mark the node block. 533 */ 534 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 535 >> OFFSET_BIT_SHIFT) 536 enum { 537 ALLOC_NODE, /* allocate a new node page if needed */ 538 LOOKUP_NODE, /* look up a node without readahead */ 539 LOOKUP_NODE_RA, /* 540 * look up a node with readahead called 541 * by get_data_block. 542 */ 543 }; 544 545 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */ 546 547 /* congestion wait timeout value, default: 20ms */ 548 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 549 550 /* maximum retry quota flush count */ 551 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 552 553 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 554 555 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 556 557 /* for in-memory extent cache entry */ 558 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 559 560 /* number of extent info in extent cache we try to shrink */ 561 #define EXTENT_CACHE_SHRINK_NUMBER 128 562 563 struct rb_entry { 564 struct rb_node rb_node; /* rb node located in rb-tree */ 565 union { 566 struct { 567 unsigned int ofs; /* start offset of the entry */ 568 unsigned int len; /* length of the entry */ 569 }; 570 unsigned long long key; /* 64-bits key */ 571 } __packed; 572 }; 573 574 struct extent_info { 575 unsigned int fofs; /* start offset in a file */ 576 unsigned int len; /* length of the extent */ 577 u32 blk; /* start block address of the extent */ 578 }; 579 580 struct extent_node { 581 struct rb_node rb_node; /* rb node located in rb-tree */ 582 struct extent_info ei; /* extent info */ 583 struct list_head list; /* node in global extent list of sbi */ 584 struct extent_tree *et; /* extent tree pointer */ 585 }; 586 587 struct extent_tree { 588 nid_t ino; /* inode number */ 589 struct rb_root_cached root; /* root of extent info rb-tree */ 590 struct extent_node *cached_en; /* recently accessed extent node */ 591 struct extent_info largest; /* largested extent info */ 592 struct list_head list; /* to be used by sbi->zombie_list */ 593 rwlock_t lock; /* protect extent info rb-tree */ 594 atomic_t node_cnt; /* # of extent node in rb-tree*/ 595 bool largest_updated; /* largest extent updated */ 596 }; 597 598 /* 599 * This structure is taken from ext4_map_blocks. 600 * 601 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 602 */ 603 #define F2FS_MAP_NEW (1 << BH_New) 604 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 605 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 606 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 607 F2FS_MAP_UNWRITTEN) 608 609 struct f2fs_map_blocks { 610 block_t m_pblk; 611 block_t m_lblk; 612 unsigned int m_len; 613 unsigned int m_flags; 614 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 615 pgoff_t *m_next_extent; /* point to next possible extent */ 616 int m_seg_type; 617 bool m_may_create; /* indicate it is from write path */ 618 }; 619 620 /* for flag in get_data_block */ 621 enum { 622 F2FS_GET_BLOCK_DEFAULT, 623 F2FS_GET_BLOCK_FIEMAP, 624 F2FS_GET_BLOCK_BMAP, 625 F2FS_GET_BLOCK_DIO, 626 F2FS_GET_BLOCK_PRE_DIO, 627 F2FS_GET_BLOCK_PRE_AIO, 628 F2FS_GET_BLOCK_PRECACHE, 629 }; 630 631 /* 632 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 633 */ 634 #define FADVISE_COLD_BIT 0x01 635 #define FADVISE_LOST_PINO_BIT 0x02 636 #define FADVISE_ENCRYPT_BIT 0x04 637 #define FADVISE_ENC_NAME_BIT 0x08 638 #define FADVISE_KEEP_SIZE_BIT 0x10 639 #define FADVISE_HOT_BIT 0x20 640 #define FADVISE_VERITY_BIT 0x40 641 642 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 643 644 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 645 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 646 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 647 648 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 649 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 650 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 651 652 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 653 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 654 655 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 656 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 657 658 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 659 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 660 661 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 662 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 663 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 664 665 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 666 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 667 668 #define DEF_DIR_LEVEL 0 669 670 enum { 671 GC_FAILURE_PIN, 672 GC_FAILURE_ATOMIC, 673 MAX_GC_FAILURE 674 }; 675 676 /* used for f2fs_inode_info->flags */ 677 enum { 678 FI_NEW_INODE, /* indicate newly allocated inode */ 679 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 680 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 681 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 682 FI_INC_LINK, /* need to increment i_nlink */ 683 FI_ACL_MODE, /* indicate acl mode */ 684 FI_NO_ALLOC, /* should not allocate any blocks */ 685 FI_FREE_NID, /* free allocated nide */ 686 FI_NO_EXTENT, /* not to use the extent cache */ 687 FI_INLINE_XATTR, /* used for inline xattr */ 688 FI_INLINE_DATA, /* used for inline data*/ 689 FI_INLINE_DENTRY, /* used for inline dentry */ 690 FI_APPEND_WRITE, /* inode has appended data */ 691 FI_UPDATE_WRITE, /* inode has in-place-update data */ 692 FI_NEED_IPU, /* used for ipu per file */ 693 FI_ATOMIC_FILE, /* indicate atomic file */ 694 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 695 FI_VOLATILE_FILE, /* indicate volatile file */ 696 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 697 FI_DROP_CACHE, /* drop dirty page cache */ 698 FI_DATA_EXIST, /* indicate data exists */ 699 FI_INLINE_DOTS, /* indicate inline dot dentries */ 700 FI_DO_DEFRAG, /* indicate defragment is running */ 701 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 702 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 703 FI_HOT_DATA, /* indicate file is hot */ 704 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 705 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 706 FI_PIN_FILE, /* indicate file should not be gced */ 707 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 708 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 709 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 710 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 711 FI_MMAP_FILE, /* indicate file was mmapped */ 712 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 713 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 714 FI_ALIGNED_WRITE, /* enable aligned write */ 715 FI_MAX, /* max flag, never be used */ 716 }; 717 718 struct f2fs_inode_info { 719 struct inode vfs_inode; /* serve a vfs inode */ 720 unsigned long i_flags; /* keep an inode flags for ioctl */ 721 unsigned char i_advise; /* use to give file attribute hints */ 722 unsigned char i_dir_level; /* use for dentry level for large dir */ 723 unsigned int i_current_depth; /* only for directory depth */ 724 /* for gc failure statistic */ 725 unsigned int i_gc_failures[MAX_GC_FAILURE]; 726 unsigned int i_pino; /* parent inode number */ 727 umode_t i_acl_mode; /* keep file acl mode temporarily */ 728 729 /* Use below internally in f2fs*/ 730 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 731 struct rw_semaphore i_sem; /* protect fi info */ 732 atomic_t dirty_pages; /* # of dirty pages */ 733 f2fs_hash_t chash; /* hash value of given file name */ 734 unsigned int clevel; /* maximum level of given file name */ 735 struct task_struct *task; /* lookup and create consistency */ 736 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 737 nid_t i_xattr_nid; /* node id that contains xattrs */ 738 loff_t last_disk_size; /* lastly written file size */ 739 spinlock_t i_size_lock; /* protect last_disk_size */ 740 741 #ifdef CONFIG_QUOTA 742 struct dquot *i_dquot[MAXQUOTAS]; 743 744 /* quota space reservation, managed internally by quota code */ 745 qsize_t i_reserved_quota; 746 #endif 747 struct list_head dirty_list; /* dirty list for dirs and files */ 748 struct list_head gdirty_list; /* linked in global dirty list */ 749 struct list_head inmem_ilist; /* list for inmem inodes */ 750 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 751 struct task_struct *inmem_task; /* store inmemory task */ 752 struct mutex inmem_lock; /* lock for inmemory pages */ 753 struct extent_tree *extent_tree; /* cached extent_tree entry */ 754 755 /* avoid racing between foreground op and gc */ 756 struct rw_semaphore i_gc_rwsem[2]; 757 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 758 759 int i_extra_isize; /* size of extra space located in i_addr */ 760 kprojid_t i_projid; /* id for project quota */ 761 int i_inline_xattr_size; /* inline xattr size */ 762 struct timespec64 i_crtime; /* inode creation time */ 763 struct timespec64 i_disk_time[4];/* inode disk times */ 764 765 /* for file compress */ 766 atomic_t i_compr_blocks; /* # of compressed blocks */ 767 unsigned char i_compress_algorithm; /* algorithm type */ 768 unsigned char i_log_cluster_size; /* log of cluster size */ 769 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 770 unsigned short i_compress_flag; /* compress flag */ 771 unsigned int i_cluster_size; /* cluster size */ 772 }; 773 774 static inline void get_extent_info(struct extent_info *ext, 775 struct f2fs_extent *i_ext) 776 { 777 ext->fofs = le32_to_cpu(i_ext->fofs); 778 ext->blk = le32_to_cpu(i_ext->blk); 779 ext->len = le32_to_cpu(i_ext->len); 780 } 781 782 static inline void set_raw_extent(struct extent_info *ext, 783 struct f2fs_extent *i_ext) 784 { 785 i_ext->fofs = cpu_to_le32(ext->fofs); 786 i_ext->blk = cpu_to_le32(ext->blk); 787 i_ext->len = cpu_to_le32(ext->len); 788 } 789 790 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 791 u32 blk, unsigned int len) 792 { 793 ei->fofs = fofs; 794 ei->blk = blk; 795 ei->len = len; 796 } 797 798 static inline bool __is_discard_mergeable(struct discard_info *back, 799 struct discard_info *front, unsigned int max_len) 800 { 801 return (back->lstart + back->len == front->lstart) && 802 (back->len + front->len <= max_len); 803 } 804 805 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 806 struct discard_info *back, unsigned int max_len) 807 { 808 return __is_discard_mergeable(back, cur, max_len); 809 } 810 811 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 812 struct discard_info *front, unsigned int max_len) 813 { 814 return __is_discard_mergeable(cur, front, max_len); 815 } 816 817 static inline bool __is_extent_mergeable(struct extent_info *back, 818 struct extent_info *front) 819 { 820 return (back->fofs + back->len == front->fofs && 821 back->blk + back->len == front->blk); 822 } 823 824 static inline bool __is_back_mergeable(struct extent_info *cur, 825 struct extent_info *back) 826 { 827 return __is_extent_mergeable(back, cur); 828 } 829 830 static inline bool __is_front_mergeable(struct extent_info *cur, 831 struct extent_info *front) 832 { 833 return __is_extent_mergeable(cur, front); 834 } 835 836 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 837 static inline void __try_update_largest_extent(struct extent_tree *et, 838 struct extent_node *en) 839 { 840 if (en->ei.len > et->largest.len) { 841 et->largest = en->ei; 842 et->largest_updated = true; 843 } 844 } 845 846 /* 847 * For free nid management 848 */ 849 enum nid_state { 850 FREE_NID, /* newly added to free nid list */ 851 PREALLOC_NID, /* it is preallocated */ 852 MAX_NID_STATE, 853 }; 854 855 enum nat_state { 856 TOTAL_NAT, 857 DIRTY_NAT, 858 RECLAIMABLE_NAT, 859 MAX_NAT_STATE, 860 }; 861 862 struct f2fs_nm_info { 863 block_t nat_blkaddr; /* base disk address of NAT */ 864 nid_t max_nid; /* maximum possible node ids */ 865 nid_t available_nids; /* # of available node ids */ 866 nid_t next_scan_nid; /* the next nid to be scanned */ 867 unsigned int ram_thresh; /* control the memory footprint */ 868 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 869 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 870 871 /* NAT cache management */ 872 struct radix_tree_root nat_root;/* root of the nat entry cache */ 873 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 874 struct rw_semaphore nat_tree_lock; /* protect nat entry tree */ 875 struct list_head nat_entries; /* cached nat entry list (clean) */ 876 spinlock_t nat_list_lock; /* protect clean nat entry list */ 877 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 878 unsigned int nat_blocks; /* # of nat blocks */ 879 880 /* free node ids management */ 881 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 882 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 883 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 884 spinlock_t nid_list_lock; /* protect nid lists ops */ 885 struct mutex build_lock; /* lock for build free nids */ 886 unsigned char **free_nid_bitmap; 887 unsigned char *nat_block_bitmap; 888 unsigned short *free_nid_count; /* free nid count of NAT block */ 889 890 /* for checkpoint */ 891 char *nat_bitmap; /* NAT bitmap pointer */ 892 893 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 894 unsigned char *nat_bits; /* NAT bits blocks */ 895 unsigned char *full_nat_bits; /* full NAT pages */ 896 unsigned char *empty_nat_bits; /* empty NAT pages */ 897 #ifdef CONFIG_F2FS_CHECK_FS 898 char *nat_bitmap_mir; /* NAT bitmap mirror */ 899 #endif 900 int bitmap_size; /* bitmap size */ 901 }; 902 903 /* 904 * this structure is used as one of function parameters. 905 * all the information are dedicated to a given direct node block determined 906 * by the data offset in a file. 907 */ 908 struct dnode_of_data { 909 struct inode *inode; /* vfs inode pointer */ 910 struct page *inode_page; /* its inode page, NULL is possible */ 911 struct page *node_page; /* cached direct node page */ 912 nid_t nid; /* node id of the direct node block */ 913 unsigned int ofs_in_node; /* data offset in the node page */ 914 bool inode_page_locked; /* inode page is locked or not */ 915 bool node_changed; /* is node block changed */ 916 char cur_level; /* level of hole node page */ 917 char max_level; /* level of current page located */ 918 block_t data_blkaddr; /* block address of the node block */ 919 }; 920 921 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 922 struct page *ipage, struct page *npage, nid_t nid) 923 { 924 memset(dn, 0, sizeof(*dn)); 925 dn->inode = inode; 926 dn->inode_page = ipage; 927 dn->node_page = npage; 928 dn->nid = nid; 929 } 930 931 /* 932 * For SIT manager 933 * 934 * By default, there are 6 active log areas across the whole main area. 935 * When considering hot and cold data separation to reduce cleaning overhead, 936 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 937 * respectively. 938 * In the current design, you should not change the numbers intentionally. 939 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 940 * logs individually according to the underlying devices. (default: 6) 941 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 942 * data and 8 for node logs. 943 */ 944 #define NR_CURSEG_DATA_TYPE (3) 945 #define NR_CURSEG_NODE_TYPE (3) 946 #define NR_CURSEG_INMEM_TYPE (2) 947 #define NR_CURSEG_RO_TYPE (2) 948 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 949 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 950 951 enum { 952 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 953 CURSEG_WARM_DATA, /* data blocks */ 954 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 955 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 956 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 957 CURSEG_COLD_NODE, /* indirect node blocks */ 958 NR_PERSISTENT_LOG, /* number of persistent log */ 959 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 960 /* pinned file that needs consecutive block address */ 961 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 962 NO_CHECK_TYPE, /* number of persistent & inmem log */ 963 }; 964 965 struct flush_cmd { 966 struct completion wait; 967 struct llist_node llnode; 968 nid_t ino; 969 int ret; 970 }; 971 972 struct flush_cmd_control { 973 struct task_struct *f2fs_issue_flush; /* flush thread */ 974 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 975 atomic_t issued_flush; /* # of issued flushes */ 976 atomic_t queued_flush; /* # of queued flushes */ 977 struct llist_head issue_list; /* list for command issue */ 978 struct llist_node *dispatch_list; /* list for command dispatch */ 979 }; 980 981 struct f2fs_sm_info { 982 struct sit_info *sit_info; /* whole segment information */ 983 struct free_segmap_info *free_info; /* free segment information */ 984 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 985 struct curseg_info *curseg_array; /* active segment information */ 986 987 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 988 989 block_t seg0_blkaddr; /* block address of 0'th segment */ 990 block_t main_blkaddr; /* start block address of main area */ 991 block_t ssa_blkaddr; /* start block address of SSA area */ 992 993 unsigned int segment_count; /* total # of segments */ 994 unsigned int main_segments; /* # of segments in main area */ 995 unsigned int reserved_segments; /* # of reserved segments */ 996 unsigned int ovp_segments; /* # of overprovision segments */ 997 998 /* a threshold to reclaim prefree segments */ 999 unsigned int rec_prefree_segments; 1000 1001 /* for batched trimming */ 1002 unsigned int trim_sections; /* # of sections to trim */ 1003 1004 struct list_head sit_entry_set; /* sit entry set list */ 1005 1006 unsigned int ipu_policy; /* in-place-update policy */ 1007 unsigned int min_ipu_util; /* in-place-update threshold */ 1008 unsigned int min_fsync_blocks; /* threshold for fsync */ 1009 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1010 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1011 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1012 1013 /* for flush command control */ 1014 struct flush_cmd_control *fcc_info; 1015 1016 /* for discard command control */ 1017 struct discard_cmd_control *dcc_info; 1018 }; 1019 1020 /* 1021 * For superblock 1022 */ 1023 /* 1024 * COUNT_TYPE for monitoring 1025 * 1026 * f2fs monitors the number of several block types such as on-writeback, 1027 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1028 */ 1029 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1030 enum count_type { 1031 F2FS_DIRTY_DENTS, 1032 F2FS_DIRTY_DATA, 1033 F2FS_DIRTY_QDATA, 1034 F2FS_DIRTY_NODES, 1035 F2FS_DIRTY_META, 1036 F2FS_INMEM_PAGES, 1037 F2FS_DIRTY_IMETA, 1038 F2FS_WB_CP_DATA, 1039 F2FS_WB_DATA, 1040 F2FS_RD_DATA, 1041 F2FS_RD_NODE, 1042 F2FS_RD_META, 1043 F2FS_DIO_WRITE, 1044 F2FS_DIO_READ, 1045 NR_COUNT_TYPE, 1046 }; 1047 1048 /* 1049 * The below are the page types of bios used in submit_bio(). 1050 * The available types are: 1051 * DATA User data pages. It operates as async mode. 1052 * NODE Node pages. It operates as async mode. 1053 * META FS metadata pages such as SIT, NAT, CP. 1054 * NR_PAGE_TYPE The number of page types. 1055 * META_FLUSH Make sure the previous pages are written 1056 * with waiting the bio's completion 1057 * ... Only can be used with META. 1058 */ 1059 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1060 enum page_type { 1061 DATA, 1062 NODE, 1063 META, 1064 NR_PAGE_TYPE, 1065 META_FLUSH, 1066 INMEM, /* the below types are used by tracepoints only. */ 1067 INMEM_DROP, 1068 INMEM_INVALIDATE, 1069 INMEM_REVOKE, 1070 IPU, 1071 OPU, 1072 }; 1073 1074 enum temp_type { 1075 HOT = 0, /* must be zero for meta bio */ 1076 WARM, 1077 COLD, 1078 NR_TEMP_TYPE, 1079 }; 1080 1081 enum need_lock_type { 1082 LOCK_REQ = 0, 1083 LOCK_DONE, 1084 LOCK_RETRY, 1085 }; 1086 1087 enum cp_reason_type { 1088 CP_NO_NEEDED, 1089 CP_NON_REGULAR, 1090 CP_COMPRESSED, 1091 CP_HARDLINK, 1092 CP_SB_NEED_CP, 1093 CP_WRONG_PINO, 1094 CP_NO_SPC_ROLL, 1095 CP_NODE_NEED_CP, 1096 CP_FASTBOOT_MODE, 1097 CP_SPEC_LOG_NUM, 1098 CP_RECOVER_DIR, 1099 }; 1100 1101 enum iostat_type { 1102 /* WRITE IO */ 1103 APP_DIRECT_IO, /* app direct write IOs */ 1104 APP_BUFFERED_IO, /* app buffered write IOs */ 1105 APP_WRITE_IO, /* app write IOs */ 1106 APP_MAPPED_IO, /* app mapped IOs */ 1107 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1108 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1109 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1110 FS_GC_DATA_IO, /* data IOs from forground gc */ 1111 FS_GC_NODE_IO, /* node IOs from forground gc */ 1112 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1113 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1114 FS_CP_META_IO, /* meta IOs from checkpoint */ 1115 1116 /* READ IO */ 1117 APP_DIRECT_READ_IO, /* app direct read IOs */ 1118 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1119 APP_READ_IO, /* app read IOs */ 1120 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1121 FS_DATA_READ_IO, /* data read IOs */ 1122 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1123 FS_CDATA_READ_IO, /* compressed data read IOs */ 1124 FS_NODE_READ_IO, /* node read IOs */ 1125 FS_META_READ_IO, /* meta read IOs */ 1126 1127 /* other */ 1128 FS_DISCARD, /* discard */ 1129 NR_IO_TYPE, 1130 }; 1131 1132 struct f2fs_io_info { 1133 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1134 nid_t ino; /* inode number */ 1135 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1136 enum temp_type temp; /* contains HOT/WARM/COLD */ 1137 int op; /* contains REQ_OP_ */ 1138 int op_flags; /* req_flag_bits */ 1139 block_t new_blkaddr; /* new block address to be written */ 1140 block_t old_blkaddr; /* old block address before Cow */ 1141 struct page *page; /* page to be written */ 1142 struct page *encrypted_page; /* encrypted page */ 1143 struct page *compressed_page; /* compressed page */ 1144 struct list_head list; /* serialize IOs */ 1145 bool submitted; /* indicate IO submission */ 1146 int need_lock; /* indicate we need to lock cp_rwsem */ 1147 bool in_list; /* indicate fio is in io_list */ 1148 bool is_por; /* indicate IO is from recovery or not */ 1149 bool retry; /* need to reallocate block address */ 1150 int compr_blocks; /* # of compressed block addresses */ 1151 bool encrypted; /* indicate file is encrypted */ 1152 enum iostat_type io_type; /* io type */ 1153 struct writeback_control *io_wbc; /* writeback control */ 1154 struct bio **bio; /* bio for ipu */ 1155 sector_t *last_block; /* last block number in bio */ 1156 unsigned char version; /* version of the node */ 1157 }; 1158 1159 struct bio_entry { 1160 struct bio *bio; 1161 struct list_head list; 1162 }; 1163 1164 #define is_read_io(rw) ((rw) == READ) 1165 struct f2fs_bio_info { 1166 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1167 struct bio *bio; /* bios to merge */ 1168 sector_t last_block_in_bio; /* last block number */ 1169 struct f2fs_io_info fio; /* store buffered io info. */ 1170 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1171 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1172 struct list_head io_list; /* track fios */ 1173 struct list_head bio_list; /* bio entry list head */ 1174 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */ 1175 }; 1176 1177 #define FDEV(i) (sbi->devs[i]) 1178 #define RDEV(i) (raw_super->devs[i]) 1179 struct f2fs_dev_info { 1180 struct block_device *bdev; 1181 char path[MAX_PATH_LEN]; 1182 unsigned int total_segments; 1183 block_t start_blk; 1184 block_t end_blk; 1185 #ifdef CONFIG_BLK_DEV_ZONED 1186 unsigned int nr_blkz; /* Total number of zones */ 1187 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1188 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */ 1189 #endif 1190 }; 1191 1192 enum inode_type { 1193 DIR_INODE, /* for dirty dir inode */ 1194 FILE_INODE, /* for dirty regular/symlink inode */ 1195 DIRTY_META, /* for all dirtied inode metadata */ 1196 ATOMIC_FILE, /* for all atomic files */ 1197 NR_INODE_TYPE, 1198 }; 1199 1200 /* for inner inode cache management */ 1201 struct inode_management { 1202 struct radix_tree_root ino_root; /* ino entry array */ 1203 spinlock_t ino_lock; /* for ino entry lock */ 1204 struct list_head ino_list; /* inode list head */ 1205 unsigned long ino_num; /* number of entries */ 1206 }; 1207 1208 /* for GC_AT */ 1209 struct atgc_management { 1210 bool atgc_enabled; /* ATGC is enabled or not */ 1211 struct rb_root_cached root; /* root of victim rb-tree */ 1212 struct list_head victim_list; /* linked with all victim entries */ 1213 unsigned int victim_count; /* victim count in rb-tree */ 1214 unsigned int candidate_ratio; /* candidate ratio */ 1215 unsigned int max_candidate_count; /* max candidate count */ 1216 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1217 unsigned long long age_threshold; /* age threshold */ 1218 }; 1219 1220 /* For s_flag in struct f2fs_sb_info */ 1221 enum { 1222 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1223 SBI_IS_CLOSE, /* specify unmounting */ 1224 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1225 SBI_POR_DOING, /* recovery is doing or not */ 1226 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1227 SBI_NEED_CP, /* need to checkpoint */ 1228 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1229 SBI_IS_RECOVERED, /* recovered orphan/data */ 1230 SBI_CP_DISABLED, /* CP was disabled last mount */ 1231 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1232 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1233 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1234 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1235 SBI_IS_RESIZEFS, /* resizefs is in process */ 1236 }; 1237 1238 enum { 1239 CP_TIME, 1240 REQ_TIME, 1241 DISCARD_TIME, 1242 GC_TIME, 1243 DISABLE_TIME, 1244 UMOUNT_DISCARD_TIMEOUT, 1245 MAX_TIME, 1246 }; 1247 1248 enum { 1249 GC_NORMAL, 1250 GC_IDLE_CB, 1251 GC_IDLE_GREEDY, 1252 GC_IDLE_AT, 1253 GC_URGENT_HIGH, 1254 GC_URGENT_LOW, 1255 }; 1256 1257 enum { 1258 BGGC_MODE_ON, /* background gc is on */ 1259 BGGC_MODE_OFF, /* background gc is off */ 1260 BGGC_MODE_SYNC, /* 1261 * background gc is on, migrating blocks 1262 * like foreground gc 1263 */ 1264 }; 1265 1266 enum { 1267 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1268 FS_MODE_LFS, /* use lfs allocation only */ 1269 }; 1270 1271 enum { 1272 WHINT_MODE_OFF, /* not pass down write hints */ 1273 WHINT_MODE_USER, /* try to pass down hints given by users */ 1274 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1275 }; 1276 1277 enum { 1278 ALLOC_MODE_DEFAULT, /* stay default */ 1279 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1280 }; 1281 1282 enum fsync_mode { 1283 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1284 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1285 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1286 }; 1287 1288 enum { 1289 COMPR_MODE_FS, /* 1290 * automatically compress compression 1291 * enabled files 1292 */ 1293 COMPR_MODE_USER, /* 1294 * automatical compression is disabled. 1295 * user can control the file compression 1296 * using ioctls 1297 */ 1298 }; 1299 1300 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1301 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1302 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1303 1304 /* 1305 * Layout of f2fs page.private: 1306 * 1307 * Layout A: lowest bit should be 1 1308 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1309 * bit 0 PAGE_PRIVATE_NOT_POINTER 1310 * bit 1 PAGE_PRIVATE_ATOMIC_WRITE 1311 * bit 2 PAGE_PRIVATE_DUMMY_WRITE 1312 * bit 3 PAGE_PRIVATE_ONGOING_MIGRATION 1313 * bit 4 PAGE_PRIVATE_INLINE_INODE 1314 * bit 5 PAGE_PRIVATE_REF_RESOURCE 1315 * bit 6- f2fs private data 1316 * 1317 * Layout B: lowest bit should be 0 1318 * page.private is a wrapped pointer. 1319 */ 1320 enum { 1321 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1322 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */ 1323 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */ 1324 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1325 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1326 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1327 PAGE_PRIVATE_MAX 1328 }; 1329 1330 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 1331 static inline bool page_private_##name(struct page *page) \ 1332 { \ 1333 return PagePrivate(page) && \ 1334 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 1335 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1336 } 1337 1338 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 1339 static inline void set_page_private_##name(struct page *page) \ 1340 { \ 1341 if (!PagePrivate(page)) { \ 1342 get_page(page); \ 1343 SetPagePrivate(page); \ 1344 set_page_private(page, 0); \ 1345 } \ 1346 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 1347 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1348 } 1349 1350 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 1351 static inline void clear_page_private_##name(struct page *page) \ 1352 { \ 1353 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1354 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \ 1355 set_page_private(page, 0); \ 1356 if (PagePrivate(page)) { \ 1357 ClearPagePrivate(page); \ 1358 put_page(page); \ 1359 }\ 1360 } \ 1361 } 1362 1363 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 1364 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE); 1365 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 1366 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 1367 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE); 1368 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE); 1369 1370 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 1371 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 1372 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 1373 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE); 1374 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE); 1375 1376 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 1377 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 1378 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 1379 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE); 1380 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE); 1381 1382 static inline unsigned long get_page_private_data(struct page *page) 1383 { 1384 unsigned long data = page_private(page); 1385 1386 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 1387 return 0; 1388 return data >> PAGE_PRIVATE_MAX; 1389 } 1390 1391 static inline void set_page_private_data(struct page *page, unsigned long data) 1392 { 1393 if (!PagePrivate(page)) { 1394 get_page(page); 1395 SetPagePrivate(page); 1396 set_page_private(page, 0); 1397 } 1398 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 1399 page_private(page) |= data << PAGE_PRIVATE_MAX; 1400 } 1401 1402 static inline void clear_page_private_data(struct page *page) 1403 { 1404 page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1; 1405 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { 1406 set_page_private(page, 0); 1407 if (PagePrivate(page)) { 1408 ClearPagePrivate(page); 1409 put_page(page); 1410 } 1411 } 1412 } 1413 1414 /* For compression */ 1415 enum compress_algorithm_type { 1416 COMPRESS_LZO, 1417 COMPRESS_LZ4, 1418 COMPRESS_ZSTD, 1419 COMPRESS_LZORLE, 1420 COMPRESS_MAX, 1421 }; 1422 1423 enum compress_flag { 1424 COMPRESS_CHKSUM, 1425 COMPRESS_MAX_FLAG, 1426 }; 1427 1428 #define COMPRESS_WATERMARK 20 1429 #define COMPRESS_PERCENT 20 1430 1431 #define COMPRESS_DATA_RESERVED_SIZE 4 1432 struct compress_data { 1433 __le32 clen; /* compressed data size */ 1434 __le32 chksum; /* compressed data chksum */ 1435 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1436 u8 cdata[]; /* compressed data */ 1437 }; 1438 1439 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1440 1441 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1442 1443 #define COMPRESS_LEVEL_OFFSET 8 1444 1445 /* compress context */ 1446 struct compress_ctx { 1447 struct inode *inode; /* inode the context belong to */ 1448 pgoff_t cluster_idx; /* cluster index number */ 1449 unsigned int cluster_size; /* page count in cluster */ 1450 unsigned int log_cluster_size; /* log of cluster size */ 1451 struct page **rpages; /* pages store raw data in cluster */ 1452 unsigned int nr_rpages; /* total page number in rpages */ 1453 struct page **cpages; /* pages store compressed data in cluster */ 1454 unsigned int nr_cpages; /* total page number in cpages */ 1455 void *rbuf; /* virtual mapped address on rpages */ 1456 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1457 size_t rlen; /* valid data length in rbuf */ 1458 size_t clen; /* valid data length in cbuf */ 1459 void *private; /* payload buffer for specified compression algorithm */ 1460 void *private2; /* extra payload buffer */ 1461 }; 1462 1463 /* compress context for write IO path */ 1464 struct compress_io_ctx { 1465 u32 magic; /* magic number to indicate page is compressed */ 1466 struct inode *inode; /* inode the context belong to */ 1467 struct page **rpages; /* pages store raw data in cluster */ 1468 unsigned int nr_rpages; /* total page number in rpages */ 1469 atomic_t pending_pages; /* in-flight compressed page count */ 1470 }; 1471 1472 /* Context for decompressing one cluster on the read IO path */ 1473 struct decompress_io_ctx { 1474 u32 magic; /* magic number to indicate page is compressed */ 1475 struct inode *inode; /* inode the context belong to */ 1476 pgoff_t cluster_idx; /* cluster index number */ 1477 unsigned int cluster_size; /* page count in cluster */ 1478 unsigned int log_cluster_size; /* log of cluster size */ 1479 struct page **rpages; /* pages store raw data in cluster */ 1480 unsigned int nr_rpages; /* total page number in rpages */ 1481 struct page **cpages; /* pages store compressed data in cluster */ 1482 unsigned int nr_cpages; /* total page number in cpages */ 1483 struct page **tpages; /* temp pages to pad holes in cluster */ 1484 void *rbuf; /* virtual mapped address on rpages */ 1485 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1486 size_t rlen; /* valid data length in rbuf */ 1487 size_t clen; /* valid data length in cbuf */ 1488 1489 /* 1490 * The number of compressed pages remaining to be read in this cluster. 1491 * This is initially nr_cpages. It is decremented by 1 each time a page 1492 * has been read (or failed to be read). When it reaches 0, the cluster 1493 * is decompressed (or an error is reported). 1494 * 1495 * If an error occurs before all the pages have been submitted for I/O, 1496 * then this will never reach 0. In this case the I/O submitter is 1497 * responsible for calling f2fs_decompress_end_io() instead. 1498 */ 1499 atomic_t remaining_pages; 1500 1501 /* 1502 * Number of references to this decompress_io_ctx. 1503 * 1504 * One reference is held for I/O completion. This reference is dropped 1505 * after the pagecache pages are updated and unlocked -- either after 1506 * decompression (and verity if enabled), or after an error. 1507 * 1508 * In addition, each compressed page holds a reference while it is in a 1509 * bio. These references are necessary prevent compressed pages from 1510 * being freed while they are still in a bio. 1511 */ 1512 refcount_t refcnt; 1513 1514 bool failed; /* IO error occurred before decompression? */ 1515 bool need_verity; /* need fs-verity verification after decompression? */ 1516 void *private; /* payload buffer for specified decompression algorithm */ 1517 void *private2; /* extra payload buffer */ 1518 struct work_struct verity_work; /* work to verify the decompressed pages */ 1519 }; 1520 1521 #define NULL_CLUSTER ((unsigned int)(~0)) 1522 #define MIN_COMPRESS_LOG_SIZE 2 1523 #define MAX_COMPRESS_LOG_SIZE 8 1524 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1525 1526 struct f2fs_sb_info { 1527 struct super_block *sb; /* pointer to VFS super block */ 1528 struct proc_dir_entry *s_proc; /* proc entry */ 1529 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1530 struct rw_semaphore sb_lock; /* lock for raw super block */ 1531 int valid_super_block; /* valid super block no */ 1532 unsigned long s_flag; /* flags for sbi */ 1533 struct mutex writepages; /* mutex for writepages() */ 1534 1535 #ifdef CONFIG_BLK_DEV_ZONED 1536 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1537 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1538 #endif 1539 1540 /* for node-related operations */ 1541 struct f2fs_nm_info *nm_info; /* node manager */ 1542 struct inode *node_inode; /* cache node blocks */ 1543 1544 /* for segment-related operations */ 1545 struct f2fs_sm_info *sm_info; /* segment manager */ 1546 1547 /* for bio operations */ 1548 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1549 /* keep migration IO order for LFS mode */ 1550 struct rw_semaphore io_order_lock; 1551 mempool_t *write_io_dummy; /* Dummy pages */ 1552 1553 /* for checkpoint */ 1554 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1555 int cur_cp_pack; /* remain current cp pack */ 1556 spinlock_t cp_lock; /* for flag in ckpt */ 1557 struct inode *meta_inode; /* cache meta blocks */ 1558 struct rw_semaphore cp_global_sem; /* checkpoint procedure lock */ 1559 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1560 struct rw_semaphore node_write; /* locking node writes */ 1561 struct rw_semaphore node_change; /* locking node change */ 1562 wait_queue_head_t cp_wait; 1563 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1564 long interval_time[MAX_TIME]; /* to store thresholds */ 1565 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1566 1567 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1568 1569 spinlock_t fsync_node_lock; /* for node entry lock */ 1570 struct list_head fsync_node_list; /* node list head */ 1571 unsigned int fsync_seg_id; /* sequence id */ 1572 unsigned int fsync_node_num; /* number of node entries */ 1573 1574 /* for orphan inode, use 0'th array */ 1575 unsigned int max_orphans; /* max orphan inodes */ 1576 1577 /* for inode management */ 1578 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1579 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1580 struct mutex flush_lock; /* for flush exclusion */ 1581 1582 /* for extent tree cache */ 1583 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1584 struct mutex extent_tree_lock; /* locking extent radix tree */ 1585 struct list_head extent_list; /* lru list for shrinker */ 1586 spinlock_t extent_lock; /* locking extent lru list */ 1587 atomic_t total_ext_tree; /* extent tree count */ 1588 struct list_head zombie_list; /* extent zombie tree list */ 1589 atomic_t total_zombie_tree; /* extent zombie tree count */ 1590 atomic_t total_ext_node; /* extent info count */ 1591 1592 /* basic filesystem units */ 1593 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1594 unsigned int log_blocksize; /* log2 block size */ 1595 unsigned int blocksize; /* block size */ 1596 unsigned int root_ino_num; /* root inode number*/ 1597 unsigned int node_ino_num; /* node inode number*/ 1598 unsigned int meta_ino_num; /* meta inode number*/ 1599 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1600 unsigned int blocks_per_seg; /* blocks per segment */ 1601 unsigned int segs_per_sec; /* segments per section */ 1602 unsigned int secs_per_zone; /* sections per zone */ 1603 unsigned int total_sections; /* total section count */ 1604 unsigned int total_node_count; /* total node block count */ 1605 unsigned int total_valid_node_count; /* valid node block count */ 1606 int dir_level; /* directory level */ 1607 int readdir_ra; /* readahead inode in readdir */ 1608 u64 max_io_bytes; /* max io bytes to merge IOs */ 1609 1610 block_t user_block_count; /* # of user blocks */ 1611 block_t total_valid_block_count; /* # of valid blocks */ 1612 block_t discard_blks; /* discard command candidats */ 1613 block_t last_valid_block_count; /* for recovery */ 1614 block_t reserved_blocks; /* configurable reserved blocks */ 1615 block_t current_reserved_blocks; /* current reserved blocks */ 1616 1617 /* Additional tracking for no checkpoint mode */ 1618 block_t unusable_block_count; /* # of blocks saved by last cp */ 1619 1620 unsigned int nquota_files; /* # of quota sysfile */ 1621 struct rw_semaphore quota_sem; /* blocking cp for flags */ 1622 1623 /* # of pages, see count_type */ 1624 atomic_t nr_pages[NR_COUNT_TYPE]; 1625 /* # of allocated blocks */ 1626 struct percpu_counter alloc_valid_block_count; 1627 1628 /* writeback control */ 1629 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1630 1631 /* valid inode count */ 1632 struct percpu_counter total_valid_inode_count; 1633 1634 struct f2fs_mount_info mount_opt; /* mount options */ 1635 1636 /* for cleaning operations */ 1637 struct rw_semaphore gc_lock; /* 1638 * semaphore for GC, avoid 1639 * race between GC and GC or CP 1640 */ 1641 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1642 struct atgc_management am; /* atgc management */ 1643 unsigned int cur_victim_sec; /* current victim section num */ 1644 unsigned int gc_mode; /* current GC state */ 1645 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1646 1647 /* for skip statistic */ 1648 unsigned int atomic_files; /* # of opened atomic file */ 1649 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1650 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1651 1652 /* threshold for gc trials on pinned files */ 1653 u64 gc_pin_file_threshold; 1654 struct rw_semaphore pin_sem; 1655 1656 /* maximum # of trials to find a victim segment for SSR and GC */ 1657 unsigned int max_victim_search; 1658 /* migration granularity of garbage collection, unit: segment */ 1659 unsigned int migration_granularity; 1660 1661 /* 1662 * for stat information. 1663 * one is for the LFS mode, and the other is for the SSR mode. 1664 */ 1665 #ifdef CONFIG_F2FS_STAT_FS 1666 struct f2fs_stat_info *stat_info; /* FS status information */ 1667 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1668 unsigned int segment_count[2]; /* # of allocated segments */ 1669 unsigned int block_count[2]; /* # of allocated blocks */ 1670 atomic_t inplace_count; /* # of inplace update */ 1671 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1672 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1673 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1674 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1675 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1676 atomic_t inline_inode; /* # of inline_data inodes */ 1677 atomic_t inline_dir; /* # of inline_dentry inodes */ 1678 atomic_t compr_inode; /* # of compressed inodes */ 1679 atomic64_t compr_blocks; /* # of compressed blocks */ 1680 atomic_t vw_cnt; /* # of volatile writes */ 1681 atomic_t max_aw_cnt; /* max # of atomic writes */ 1682 atomic_t max_vw_cnt; /* max # of volatile writes */ 1683 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1684 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1685 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1686 #endif 1687 spinlock_t stat_lock; /* lock for stat operations */ 1688 1689 /* For app/fs IO statistics */ 1690 spinlock_t iostat_lock; 1691 unsigned long long rw_iostat[NR_IO_TYPE]; 1692 unsigned long long prev_rw_iostat[NR_IO_TYPE]; 1693 bool iostat_enable; 1694 unsigned long iostat_next_period; 1695 unsigned int iostat_period_ms; 1696 1697 /* to attach REQ_META|REQ_FUA flags */ 1698 unsigned int data_io_flag; 1699 unsigned int node_io_flag; 1700 1701 /* For sysfs suppport */ 1702 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1703 struct completion s_kobj_unregister; 1704 1705 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1706 struct completion s_stat_kobj_unregister; 1707 1708 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1709 struct completion s_feature_list_kobj_unregister; 1710 1711 /* For shrinker support */ 1712 struct list_head s_list; 1713 int s_ndevs; /* number of devices */ 1714 struct f2fs_dev_info *devs; /* for device list */ 1715 unsigned int dirty_device; /* for checkpoint data flush */ 1716 spinlock_t dev_lock; /* protect dirty_device */ 1717 struct mutex umount_mutex; 1718 unsigned int shrinker_run_no; 1719 1720 /* For write statistics */ 1721 u64 sectors_written_start; 1722 u64 kbytes_written; 1723 1724 /* Reference to checksum algorithm driver via cryptoapi */ 1725 struct crypto_shash *s_chksum_driver; 1726 1727 /* Precomputed FS UUID checksum for seeding other checksums */ 1728 __u32 s_chksum_seed; 1729 1730 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1731 1732 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1733 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1734 1735 #ifdef CONFIG_F2FS_FS_COMPRESSION 1736 struct kmem_cache *page_array_slab; /* page array entry */ 1737 unsigned int page_array_slab_size; /* default page array slab size */ 1738 1739 /* For runtime compression statistics */ 1740 u64 compr_written_block; 1741 u64 compr_saved_block; 1742 u32 compr_new_inode; 1743 1744 /* For compressed block cache */ 1745 struct inode *compress_inode; /* cache compressed blocks */ 1746 unsigned int compress_percent; /* cache page percentage */ 1747 unsigned int compress_watermark; /* cache page watermark */ 1748 atomic_t compress_page_hit; /* cache hit count */ 1749 #endif 1750 }; 1751 1752 struct f2fs_private_dio { 1753 struct inode *inode; 1754 void *orig_private; 1755 bio_end_io_t *orig_end_io; 1756 bool write; 1757 }; 1758 1759 #ifdef CONFIG_F2FS_FAULT_INJECTION 1760 #define f2fs_show_injection_info(sbi, type) \ 1761 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \ 1762 KERN_INFO, sbi->sb->s_id, \ 1763 f2fs_fault_name[type], \ 1764 __func__, __builtin_return_address(0)) 1765 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1766 { 1767 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1768 1769 if (!ffi->inject_rate) 1770 return false; 1771 1772 if (!IS_FAULT_SET(ffi, type)) 1773 return false; 1774 1775 atomic_inc(&ffi->inject_ops); 1776 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1777 atomic_set(&ffi->inject_ops, 0); 1778 return true; 1779 } 1780 return false; 1781 } 1782 #else 1783 #define f2fs_show_injection_info(sbi, type) do { } while (0) 1784 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1785 { 1786 return false; 1787 } 1788 #endif 1789 1790 /* 1791 * Test if the mounted volume is a multi-device volume. 1792 * - For a single regular disk volume, sbi->s_ndevs is 0. 1793 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1794 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1795 */ 1796 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1797 { 1798 return sbi->s_ndevs > 1; 1799 } 1800 1801 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1802 { 1803 unsigned long now = jiffies; 1804 1805 sbi->last_time[type] = now; 1806 1807 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1808 if (type == REQ_TIME) { 1809 sbi->last_time[DISCARD_TIME] = now; 1810 sbi->last_time[GC_TIME] = now; 1811 } 1812 } 1813 1814 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1815 { 1816 unsigned long interval = sbi->interval_time[type] * HZ; 1817 1818 return time_after(jiffies, sbi->last_time[type] + interval); 1819 } 1820 1821 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1822 int type) 1823 { 1824 unsigned long interval = sbi->interval_time[type] * HZ; 1825 unsigned int wait_ms = 0; 1826 long delta; 1827 1828 delta = (sbi->last_time[type] + interval) - jiffies; 1829 if (delta > 0) 1830 wait_ms = jiffies_to_msecs(delta); 1831 1832 return wait_ms; 1833 } 1834 1835 /* 1836 * Inline functions 1837 */ 1838 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1839 const void *address, unsigned int length) 1840 { 1841 struct { 1842 struct shash_desc shash; 1843 char ctx[4]; 1844 } desc; 1845 int err; 1846 1847 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1848 1849 desc.shash.tfm = sbi->s_chksum_driver; 1850 *(u32 *)desc.ctx = crc; 1851 1852 err = crypto_shash_update(&desc.shash, address, length); 1853 BUG_ON(err); 1854 1855 return *(u32 *)desc.ctx; 1856 } 1857 1858 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1859 unsigned int length) 1860 { 1861 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1862 } 1863 1864 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1865 void *buf, size_t buf_size) 1866 { 1867 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1868 } 1869 1870 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1871 const void *address, unsigned int length) 1872 { 1873 return __f2fs_crc32(sbi, crc, address, length); 1874 } 1875 1876 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1877 { 1878 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1879 } 1880 1881 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1882 { 1883 return sb->s_fs_info; 1884 } 1885 1886 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1887 { 1888 return F2FS_SB(inode->i_sb); 1889 } 1890 1891 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1892 { 1893 return F2FS_I_SB(mapping->host); 1894 } 1895 1896 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1897 { 1898 return F2FS_M_SB(page_file_mapping(page)); 1899 } 1900 1901 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1902 { 1903 return (struct f2fs_super_block *)(sbi->raw_super); 1904 } 1905 1906 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1907 { 1908 return (struct f2fs_checkpoint *)(sbi->ckpt); 1909 } 1910 1911 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1912 { 1913 return (struct f2fs_node *)page_address(page); 1914 } 1915 1916 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1917 { 1918 return &((struct f2fs_node *)page_address(page))->i; 1919 } 1920 1921 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1922 { 1923 return (struct f2fs_nm_info *)(sbi->nm_info); 1924 } 1925 1926 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1927 { 1928 return (struct f2fs_sm_info *)(sbi->sm_info); 1929 } 1930 1931 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1932 { 1933 return (struct sit_info *)(SM_I(sbi)->sit_info); 1934 } 1935 1936 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1937 { 1938 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1939 } 1940 1941 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1942 { 1943 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1944 } 1945 1946 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1947 { 1948 return sbi->meta_inode->i_mapping; 1949 } 1950 1951 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1952 { 1953 return sbi->node_inode->i_mapping; 1954 } 1955 1956 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1957 { 1958 return test_bit(type, &sbi->s_flag); 1959 } 1960 1961 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1962 { 1963 set_bit(type, &sbi->s_flag); 1964 } 1965 1966 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1967 { 1968 clear_bit(type, &sbi->s_flag); 1969 } 1970 1971 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1972 { 1973 return le64_to_cpu(cp->checkpoint_ver); 1974 } 1975 1976 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1977 { 1978 if (type < F2FS_MAX_QUOTAS) 1979 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1980 return 0; 1981 } 1982 1983 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1984 { 1985 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1986 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1987 } 1988 1989 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1990 { 1991 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1992 1993 return ckpt_flags & f; 1994 } 1995 1996 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1997 { 1998 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1999 } 2000 2001 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2002 { 2003 unsigned int ckpt_flags; 2004 2005 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2006 ckpt_flags |= f; 2007 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2008 } 2009 2010 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2011 { 2012 unsigned long flags; 2013 2014 spin_lock_irqsave(&sbi->cp_lock, flags); 2015 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2016 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2017 } 2018 2019 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2020 { 2021 unsigned int ckpt_flags; 2022 2023 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2024 ckpt_flags &= (~f); 2025 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2026 } 2027 2028 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2029 { 2030 unsigned long flags; 2031 2032 spin_lock_irqsave(&sbi->cp_lock, flags); 2033 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2034 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2035 } 2036 2037 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 2038 { 2039 unsigned long flags; 2040 unsigned char *nat_bits; 2041 2042 /* 2043 * In order to re-enable nat_bits we need to call fsck.f2fs by 2044 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost, 2045 * so let's rely on regular fsck or unclean shutdown. 2046 */ 2047 2048 if (lock) 2049 spin_lock_irqsave(&sbi->cp_lock, flags); 2050 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 2051 nat_bits = NM_I(sbi)->nat_bits; 2052 NM_I(sbi)->nat_bits = NULL; 2053 if (lock) 2054 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2055 2056 kvfree(nat_bits); 2057 } 2058 2059 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 2060 struct cp_control *cpc) 2061 { 2062 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 2063 2064 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 2065 } 2066 2067 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2068 { 2069 down_read(&sbi->cp_rwsem); 2070 } 2071 2072 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2073 { 2074 return down_read_trylock(&sbi->cp_rwsem); 2075 } 2076 2077 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2078 { 2079 up_read(&sbi->cp_rwsem); 2080 } 2081 2082 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2083 { 2084 down_write(&sbi->cp_rwsem); 2085 } 2086 2087 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2088 { 2089 up_write(&sbi->cp_rwsem); 2090 } 2091 2092 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2093 { 2094 int reason = CP_SYNC; 2095 2096 if (test_opt(sbi, FASTBOOT)) 2097 reason = CP_FASTBOOT; 2098 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2099 reason = CP_UMOUNT; 2100 return reason; 2101 } 2102 2103 static inline bool __remain_node_summaries(int reason) 2104 { 2105 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2106 } 2107 2108 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2109 { 2110 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2111 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2112 } 2113 2114 /* 2115 * Check whether the inode has blocks or not 2116 */ 2117 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2118 { 2119 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2120 2121 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2122 } 2123 2124 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2125 { 2126 return ofs == XATTR_NODE_OFFSET; 2127 } 2128 2129 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2130 struct inode *inode, bool cap) 2131 { 2132 if (!inode) 2133 return true; 2134 if (!test_opt(sbi, RESERVE_ROOT)) 2135 return false; 2136 if (IS_NOQUOTA(inode)) 2137 return true; 2138 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2139 return true; 2140 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2141 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2142 return true; 2143 if (cap && capable(CAP_SYS_RESOURCE)) 2144 return true; 2145 return false; 2146 } 2147 2148 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2149 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2150 struct inode *inode, blkcnt_t *count) 2151 { 2152 blkcnt_t diff = 0, release = 0; 2153 block_t avail_user_block_count; 2154 int ret; 2155 2156 ret = dquot_reserve_block(inode, *count); 2157 if (ret) 2158 return ret; 2159 2160 if (time_to_inject(sbi, FAULT_BLOCK)) { 2161 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2162 release = *count; 2163 goto release_quota; 2164 } 2165 2166 /* 2167 * let's increase this in prior to actual block count change in order 2168 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2169 */ 2170 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2171 2172 spin_lock(&sbi->stat_lock); 2173 sbi->total_valid_block_count += (block_t)(*count); 2174 avail_user_block_count = sbi->user_block_count - 2175 sbi->current_reserved_blocks; 2176 2177 if (!__allow_reserved_blocks(sbi, inode, true)) 2178 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2180 if (avail_user_block_count > sbi->unusable_block_count) 2181 avail_user_block_count -= sbi->unusable_block_count; 2182 else 2183 avail_user_block_count = 0; 2184 } 2185 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 2186 diff = sbi->total_valid_block_count - avail_user_block_count; 2187 if (diff > *count) 2188 diff = *count; 2189 *count -= diff; 2190 release = diff; 2191 sbi->total_valid_block_count -= diff; 2192 if (!*count) { 2193 spin_unlock(&sbi->stat_lock); 2194 goto enospc; 2195 } 2196 } 2197 spin_unlock(&sbi->stat_lock); 2198 2199 if (unlikely(release)) { 2200 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2201 dquot_release_reservation_block(inode, release); 2202 } 2203 f2fs_i_blocks_write(inode, *count, true, true); 2204 return 0; 2205 2206 enospc: 2207 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2208 release_quota: 2209 dquot_release_reservation_block(inode, release); 2210 return -ENOSPC; 2211 } 2212 2213 __printf(2, 3) 2214 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 2215 2216 #define f2fs_err(sbi, fmt, ...) \ 2217 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 2218 #define f2fs_warn(sbi, fmt, ...) \ 2219 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 2220 #define f2fs_notice(sbi, fmt, ...) \ 2221 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 2222 #define f2fs_info(sbi, fmt, ...) \ 2223 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 2224 #define f2fs_debug(sbi, fmt, ...) \ 2225 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 2226 2227 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2228 struct inode *inode, 2229 block_t count) 2230 { 2231 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2232 2233 spin_lock(&sbi->stat_lock); 2234 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2235 sbi->total_valid_block_count -= (block_t)count; 2236 if (sbi->reserved_blocks && 2237 sbi->current_reserved_blocks < sbi->reserved_blocks) 2238 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2239 sbi->current_reserved_blocks + count); 2240 spin_unlock(&sbi->stat_lock); 2241 if (unlikely(inode->i_blocks < sectors)) { 2242 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2243 inode->i_ino, 2244 (unsigned long long)inode->i_blocks, 2245 (unsigned long long)sectors); 2246 set_sbi_flag(sbi, SBI_NEED_FSCK); 2247 return; 2248 } 2249 f2fs_i_blocks_write(inode, count, false, true); 2250 } 2251 2252 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2253 { 2254 atomic_inc(&sbi->nr_pages[count_type]); 2255 2256 if (count_type == F2FS_DIRTY_DENTS || 2257 count_type == F2FS_DIRTY_NODES || 2258 count_type == F2FS_DIRTY_META || 2259 count_type == F2FS_DIRTY_QDATA || 2260 count_type == F2FS_DIRTY_IMETA) 2261 set_sbi_flag(sbi, SBI_IS_DIRTY); 2262 } 2263 2264 static inline void inode_inc_dirty_pages(struct inode *inode) 2265 { 2266 atomic_inc(&F2FS_I(inode)->dirty_pages); 2267 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2268 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2269 if (IS_NOQUOTA(inode)) 2270 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2271 } 2272 2273 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2274 { 2275 atomic_dec(&sbi->nr_pages[count_type]); 2276 } 2277 2278 static inline void inode_dec_dirty_pages(struct inode *inode) 2279 { 2280 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2281 !S_ISLNK(inode->i_mode)) 2282 return; 2283 2284 atomic_dec(&F2FS_I(inode)->dirty_pages); 2285 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2286 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2287 if (IS_NOQUOTA(inode)) 2288 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2289 } 2290 2291 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2292 { 2293 return atomic_read(&sbi->nr_pages[count_type]); 2294 } 2295 2296 static inline int get_dirty_pages(struct inode *inode) 2297 { 2298 return atomic_read(&F2FS_I(inode)->dirty_pages); 2299 } 2300 2301 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2302 { 2303 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2304 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2305 sbi->log_blocks_per_seg; 2306 2307 return segs / sbi->segs_per_sec; 2308 } 2309 2310 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2311 { 2312 return sbi->total_valid_block_count; 2313 } 2314 2315 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2316 { 2317 return sbi->discard_blks; 2318 } 2319 2320 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2321 { 2322 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2323 2324 /* return NAT or SIT bitmap */ 2325 if (flag == NAT_BITMAP) 2326 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2327 else if (flag == SIT_BITMAP) 2328 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2329 2330 return 0; 2331 } 2332 2333 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2334 { 2335 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2336 } 2337 2338 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2339 { 2340 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2341 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2342 int offset; 2343 2344 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2345 offset = (flag == SIT_BITMAP) ? 2346 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2347 /* 2348 * if large_nat_bitmap feature is enabled, leave checksum 2349 * protection for all nat/sit bitmaps. 2350 */ 2351 return tmp_ptr + offset + sizeof(__le32); 2352 } 2353 2354 if (__cp_payload(sbi) > 0) { 2355 if (flag == NAT_BITMAP) 2356 return &ckpt->sit_nat_version_bitmap; 2357 else 2358 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2359 } else { 2360 offset = (flag == NAT_BITMAP) ? 2361 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2362 return tmp_ptr + offset; 2363 } 2364 } 2365 2366 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2367 { 2368 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2369 2370 if (sbi->cur_cp_pack == 2) 2371 start_addr += sbi->blocks_per_seg; 2372 return start_addr; 2373 } 2374 2375 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2376 { 2377 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2378 2379 if (sbi->cur_cp_pack == 1) 2380 start_addr += sbi->blocks_per_seg; 2381 return start_addr; 2382 } 2383 2384 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2385 { 2386 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2387 } 2388 2389 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2390 { 2391 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2392 } 2393 2394 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2395 struct inode *inode, bool is_inode) 2396 { 2397 block_t valid_block_count; 2398 unsigned int valid_node_count, user_block_count; 2399 int err; 2400 2401 if (is_inode) { 2402 if (inode) { 2403 err = dquot_alloc_inode(inode); 2404 if (err) 2405 return err; 2406 } 2407 } else { 2408 err = dquot_reserve_block(inode, 1); 2409 if (err) 2410 return err; 2411 } 2412 2413 if (time_to_inject(sbi, FAULT_BLOCK)) { 2414 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2415 goto enospc; 2416 } 2417 2418 spin_lock(&sbi->stat_lock); 2419 2420 valid_block_count = sbi->total_valid_block_count + 2421 sbi->current_reserved_blocks + 1; 2422 2423 if (!__allow_reserved_blocks(sbi, inode, false)) 2424 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2425 user_block_count = sbi->user_block_count; 2426 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2427 user_block_count -= sbi->unusable_block_count; 2428 2429 if (unlikely(valid_block_count > user_block_count)) { 2430 spin_unlock(&sbi->stat_lock); 2431 goto enospc; 2432 } 2433 2434 valid_node_count = sbi->total_valid_node_count + 1; 2435 if (unlikely(valid_node_count > sbi->total_node_count)) { 2436 spin_unlock(&sbi->stat_lock); 2437 goto enospc; 2438 } 2439 2440 sbi->total_valid_node_count++; 2441 sbi->total_valid_block_count++; 2442 spin_unlock(&sbi->stat_lock); 2443 2444 if (inode) { 2445 if (is_inode) 2446 f2fs_mark_inode_dirty_sync(inode, true); 2447 else 2448 f2fs_i_blocks_write(inode, 1, true, true); 2449 } 2450 2451 percpu_counter_inc(&sbi->alloc_valid_block_count); 2452 return 0; 2453 2454 enospc: 2455 if (is_inode) { 2456 if (inode) 2457 dquot_free_inode(inode); 2458 } else { 2459 dquot_release_reservation_block(inode, 1); 2460 } 2461 return -ENOSPC; 2462 } 2463 2464 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2465 struct inode *inode, bool is_inode) 2466 { 2467 spin_lock(&sbi->stat_lock); 2468 2469 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 2470 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 2471 2472 sbi->total_valid_node_count--; 2473 sbi->total_valid_block_count--; 2474 if (sbi->reserved_blocks && 2475 sbi->current_reserved_blocks < sbi->reserved_blocks) 2476 sbi->current_reserved_blocks++; 2477 2478 spin_unlock(&sbi->stat_lock); 2479 2480 if (is_inode) { 2481 dquot_free_inode(inode); 2482 } else { 2483 if (unlikely(inode->i_blocks == 0)) { 2484 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2485 inode->i_ino, 2486 (unsigned long long)inode->i_blocks); 2487 set_sbi_flag(sbi, SBI_NEED_FSCK); 2488 return; 2489 } 2490 f2fs_i_blocks_write(inode, 1, false, true); 2491 } 2492 } 2493 2494 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2495 { 2496 return sbi->total_valid_node_count; 2497 } 2498 2499 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2500 { 2501 percpu_counter_inc(&sbi->total_valid_inode_count); 2502 } 2503 2504 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2505 { 2506 percpu_counter_dec(&sbi->total_valid_inode_count); 2507 } 2508 2509 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2510 { 2511 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2512 } 2513 2514 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2515 pgoff_t index, bool for_write) 2516 { 2517 struct page *page; 2518 2519 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2520 if (!for_write) 2521 page = find_get_page_flags(mapping, index, 2522 FGP_LOCK | FGP_ACCESSED); 2523 else 2524 page = find_lock_page(mapping, index); 2525 if (page) 2526 return page; 2527 2528 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2529 f2fs_show_injection_info(F2FS_M_SB(mapping), 2530 FAULT_PAGE_ALLOC); 2531 return NULL; 2532 } 2533 } 2534 2535 if (!for_write) 2536 return grab_cache_page(mapping, index); 2537 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2538 } 2539 2540 static inline struct page *f2fs_pagecache_get_page( 2541 struct address_space *mapping, pgoff_t index, 2542 int fgp_flags, gfp_t gfp_mask) 2543 { 2544 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2545 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET); 2546 return NULL; 2547 } 2548 2549 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2550 } 2551 2552 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2553 { 2554 char *src_kaddr = kmap(src); 2555 char *dst_kaddr = kmap(dst); 2556 2557 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2558 kunmap(dst); 2559 kunmap(src); 2560 } 2561 2562 static inline void f2fs_put_page(struct page *page, int unlock) 2563 { 2564 if (!page) 2565 return; 2566 2567 if (unlock) { 2568 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2569 unlock_page(page); 2570 } 2571 put_page(page); 2572 } 2573 2574 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2575 { 2576 if (dn->node_page) 2577 f2fs_put_page(dn->node_page, 1); 2578 if (dn->inode_page && dn->node_page != dn->inode_page) 2579 f2fs_put_page(dn->inode_page, 0); 2580 dn->node_page = NULL; 2581 dn->inode_page = NULL; 2582 } 2583 2584 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2585 size_t size) 2586 { 2587 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2588 } 2589 2590 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2591 gfp_t flags) 2592 { 2593 void *entry; 2594 2595 entry = kmem_cache_alloc(cachep, flags); 2596 if (!entry) 2597 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2598 return entry; 2599 } 2600 2601 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2602 { 2603 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2604 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2605 get_pages(sbi, F2FS_WB_CP_DATA) || 2606 get_pages(sbi, F2FS_DIO_READ) || 2607 get_pages(sbi, F2FS_DIO_WRITE)) 2608 return true; 2609 2610 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2611 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2612 return true; 2613 2614 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2615 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2616 return true; 2617 return false; 2618 } 2619 2620 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2621 { 2622 if (sbi->gc_mode == GC_URGENT_HIGH) 2623 return true; 2624 2625 if (is_inflight_io(sbi, type)) 2626 return false; 2627 2628 if (sbi->gc_mode == GC_URGENT_LOW && 2629 (type == DISCARD_TIME || type == GC_TIME)) 2630 return true; 2631 2632 return f2fs_time_over(sbi, type); 2633 } 2634 2635 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2636 unsigned long index, void *item) 2637 { 2638 while (radix_tree_insert(root, index, item)) 2639 cond_resched(); 2640 } 2641 2642 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2643 2644 static inline bool IS_INODE(struct page *page) 2645 { 2646 struct f2fs_node *p = F2FS_NODE(page); 2647 2648 return RAW_IS_INODE(p); 2649 } 2650 2651 static inline int offset_in_addr(struct f2fs_inode *i) 2652 { 2653 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2654 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2655 } 2656 2657 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2658 { 2659 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2660 } 2661 2662 static inline int f2fs_has_extra_attr(struct inode *inode); 2663 static inline block_t data_blkaddr(struct inode *inode, 2664 struct page *node_page, unsigned int offset) 2665 { 2666 struct f2fs_node *raw_node; 2667 __le32 *addr_array; 2668 int base = 0; 2669 bool is_inode = IS_INODE(node_page); 2670 2671 raw_node = F2FS_NODE(node_page); 2672 2673 if (is_inode) { 2674 if (!inode) 2675 /* from GC path only */ 2676 base = offset_in_addr(&raw_node->i); 2677 else if (f2fs_has_extra_attr(inode)) 2678 base = get_extra_isize(inode); 2679 } 2680 2681 addr_array = blkaddr_in_node(raw_node); 2682 return le32_to_cpu(addr_array[base + offset]); 2683 } 2684 2685 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2686 { 2687 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2688 } 2689 2690 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2691 { 2692 int mask; 2693 2694 addr += (nr >> 3); 2695 mask = 1 << (7 - (nr & 0x07)); 2696 return mask & *addr; 2697 } 2698 2699 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2700 { 2701 int mask; 2702 2703 addr += (nr >> 3); 2704 mask = 1 << (7 - (nr & 0x07)); 2705 *addr |= mask; 2706 } 2707 2708 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2709 { 2710 int mask; 2711 2712 addr += (nr >> 3); 2713 mask = 1 << (7 - (nr & 0x07)); 2714 *addr &= ~mask; 2715 } 2716 2717 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2718 { 2719 int mask; 2720 int ret; 2721 2722 addr += (nr >> 3); 2723 mask = 1 << (7 - (nr & 0x07)); 2724 ret = mask & *addr; 2725 *addr |= mask; 2726 return ret; 2727 } 2728 2729 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2730 { 2731 int mask; 2732 int ret; 2733 2734 addr += (nr >> 3); 2735 mask = 1 << (7 - (nr & 0x07)); 2736 ret = mask & *addr; 2737 *addr &= ~mask; 2738 return ret; 2739 } 2740 2741 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2742 { 2743 int mask; 2744 2745 addr += (nr >> 3); 2746 mask = 1 << (7 - (nr & 0x07)); 2747 *addr ^= mask; 2748 } 2749 2750 /* 2751 * On-disk inode flags (f2fs_inode::i_flags) 2752 */ 2753 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2754 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2755 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2756 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2757 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2758 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2759 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2760 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2761 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2762 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2763 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2764 2765 /* Flags that should be inherited by new inodes from their parent. */ 2766 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2767 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2768 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL) 2769 2770 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2771 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2772 F2FS_CASEFOLD_FL)) 2773 2774 /* Flags that are appropriate for non-directories/regular files. */ 2775 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2776 2777 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2778 { 2779 if (S_ISDIR(mode)) 2780 return flags; 2781 else if (S_ISREG(mode)) 2782 return flags & F2FS_REG_FLMASK; 2783 else 2784 return flags & F2FS_OTHER_FLMASK; 2785 } 2786 2787 static inline void __mark_inode_dirty_flag(struct inode *inode, 2788 int flag, bool set) 2789 { 2790 switch (flag) { 2791 case FI_INLINE_XATTR: 2792 case FI_INLINE_DATA: 2793 case FI_INLINE_DENTRY: 2794 case FI_NEW_INODE: 2795 if (set) 2796 return; 2797 fallthrough; 2798 case FI_DATA_EXIST: 2799 case FI_INLINE_DOTS: 2800 case FI_PIN_FILE: 2801 case FI_COMPRESS_RELEASED: 2802 f2fs_mark_inode_dirty_sync(inode, true); 2803 } 2804 } 2805 2806 static inline void set_inode_flag(struct inode *inode, int flag) 2807 { 2808 set_bit(flag, F2FS_I(inode)->flags); 2809 __mark_inode_dirty_flag(inode, flag, true); 2810 } 2811 2812 static inline int is_inode_flag_set(struct inode *inode, int flag) 2813 { 2814 return test_bit(flag, F2FS_I(inode)->flags); 2815 } 2816 2817 static inline void clear_inode_flag(struct inode *inode, int flag) 2818 { 2819 clear_bit(flag, F2FS_I(inode)->flags); 2820 __mark_inode_dirty_flag(inode, flag, false); 2821 } 2822 2823 static inline bool f2fs_verity_in_progress(struct inode *inode) 2824 { 2825 return IS_ENABLED(CONFIG_FS_VERITY) && 2826 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 2827 } 2828 2829 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2830 { 2831 F2FS_I(inode)->i_acl_mode = mode; 2832 set_inode_flag(inode, FI_ACL_MODE); 2833 f2fs_mark_inode_dirty_sync(inode, false); 2834 } 2835 2836 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2837 { 2838 if (inc) 2839 inc_nlink(inode); 2840 else 2841 drop_nlink(inode); 2842 f2fs_mark_inode_dirty_sync(inode, true); 2843 } 2844 2845 static inline void f2fs_i_blocks_write(struct inode *inode, 2846 block_t diff, bool add, bool claim) 2847 { 2848 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2849 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2850 2851 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2852 if (add) { 2853 if (claim) 2854 dquot_claim_block(inode, diff); 2855 else 2856 dquot_alloc_block_nofail(inode, diff); 2857 } else { 2858 dquot_free_block(inode, diff); 2859 } 2860 2861 f2fs_mark_inode_dirty_sync(inode, true); 2862 if (clean || recover) 2863 set_inode_flag(inode, FI_AUTO_RECOVER); 2864 } 2865 2866 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2867 { 2868 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2869 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2870 2871 if (i_size_read(inode) == i_size) 2872 return; 2873 2874 i_size_write(inode, i_size); 2875 f2fs_mark_inode_dirty_sync(inode, true); 2876 if (clean || recover) 2877 set_inode_flag(inode, FI_AUTO_RECOVER); 2878 } 2879 2880 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2881 { 2882 F2FS_I(inode)->i_current_depth = depth; 2883 f2fs_mark_inode_dirty_sync(inode, true); 2884 } 2885 2886 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2887 unsigned int count) 2888 { 2889 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2890 f2fs_mark_inode_dirty_sync(inode, true); 2891 } 2892 2893 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2894 { 2895 F2FS_I(inode)->i_xattr_nid = xnid; 2896 f2fs_mark_inode_dirty_sync(inode, true); 2897 } 2898 2899 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2900 { 2901 F2FS_I(inode)->i_pino = pino; 2902 f2fs_mark_inode_dirty_sync(inode, true); 2903 } 2904 2905 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2906 { 2907 struct f2fs_inode_info *fi = F2FS_I(inode); 2908 2909 if (ri->i_inline & F2FS_INLINE_XATTR) 2910 set_bit(FI_INLINE_XATTR, fi->flags); 2911 if (ri->i_inline & F2FS_INLINE_DATA) 2912 set_bit(FI_INLINE_DATA, fi->flags); 2913 if (ri->i_inline & F2FS_INLINE_DENTRY) 2914 set_bit(FI_INLINE_DENTRY, fi->flags); 2915 if (ri->i_inline & F2FS_DATA_EXIST) 2916 set_bit(FI_DATA_EXIST, fi->flags); 2917 if (ri->i_inline & F2FS_INLINE_DOTS) 2918 set_bit(FI_INLINE_DOTS, fi->flags); 2919 if (ri->i_inline & F2FS_EXTRA_ATTR) 2920 set_bit(FI_EXTRA_ATTR, fi->flags); 2921 if (ri->i_inline & F2FS_PIN_FILE) 2922 set_bit(FI_PIN_FILE, fi->flags); 2923 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 2924 set_bit(FI_COMPRESS_RELEASED, fi->flags); 2925 } 2926 2927 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2928 { 2929 ri->i_inline = 0; 2930 2931 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2932 ri->i_inline |= F2FS_INLINE_XATTR; 2933 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2934 ri->i_inline |= F2FS_INLINE_DATA; 2935 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2936 ri->i_inline |= F2FS_INLINE_DENTRY; 2937 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2938 ri->i_inline |= F2FS_DATA_EXIST; 2939 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2940 ri->i_inline |= F2FS_INLINE_DOTS; 2941 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2942 ri->i_inline |= F2FS_EXTRA_ATTR; 2943 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2944 ri->i_inline |= F2FS_PIN_FILE; 2945 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 2946 ri->i_inline |= F2FS_COMPRESS_RELEASED; 2947 } 2948 2949 static inline int f2fs_has_extra_attr(struct inode *inode) 2950 { 2951 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2952 } 2953 2954 static inline int f2fs_has_inline_xattr(struct inode *inode) 2955 { 2956 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2957 } 2958 2959 static inline int f2fs_compressed_file(struct inode *inode) 2960 { 2961 return S_ISREG(inode->i_mode) && 2962 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 2963 } 2964 2965 static inline bool f2fs_need_compress_data(struct inode *inode) 2966 { 2967 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 2968 2969 if (!f2fs_compressed_file(inode)) 2970 return false; 2971 2972 if (compress_mode == COMPR_MODE_FS) 2973 return true; 2974 else if (compress_mode == COMPR_MODE_USER && 2975 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 2976 return true; 2977 2978 return false; 2979 } 2980 2981 static inline unsigned int addrs_per_inode(struct inode *inode) 2982 { 2983 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 2984 get_inline_xattr_addrs(inode); 2985 2986 if (!f2fs_compressed_file(inode)) 2987 return addrs; 2988 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 2989 } 2990 2991 static inline unsigned int addrs_per_block(struct inode *inode) 2992 { 2993 if (!f2fs_compressed_file(inode)) 2994 return DEF_ADDRS_PER_BLOCK; 2995 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 2996 } 2997 2998 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2999 { 3000 struct f2fs_inode *ri = F2FS_INODE(page); 3001 3002 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3003 get_inline_xattr_addrs(inode)]); 3004 } 3005 3006 static inline int inline_xattr_size(struct inode *inode) 3007 { 3008 if (f2fs_has_inline_xattr(inode)) 3009 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3010 return 0; 3011 } 3012 3013 static inline int f2fs_has_inline_data(struct inode *inode) 3014 { 3015 return is_inode_flag_set(inode, FI_INLINE_DATA); 3016 } 3017 3018 static inline int f2fs_exist_data(struct inode *inode) 3019 { 3020 return is_inode_flag_set(inode, FI_DATA_EXIST); 3021 } 3022 3023 static inline int f2fs_has_inline_dots(struct inode *inode) 3024 { 3025 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3026 } 3027 3028 static inline int f2fs_is_mmap_file(struct inode *inode) 3029 { 3030 return is_inode_flag_set(inode, FI_MMAP_FILE); 3031 } 3032 3033 static inline bool f2fs_is_pinned_file(struct inode *inode) 3034 { 3035 return is_inode_flag_set(inode, FI_PIN_FILE); 3036 } 3037 3038 static inline bool f2fs_is_atomic_file(struct inode *inode) 3039 { 3040 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3041 } 3042 3043 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 3044 { 3045 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 3046 } 3047 3048 static inline bool f2fs_is_volatile_file(struct inode *inode) 3049 { 3050 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 3051 } 3052 3053 static inline bool f2fs_is_first_block_written(struct inode *inode) 3054 { 3055 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 3056 } 3057 3058 static inline bool f2fs_is_drop_cache(struct inode *inode) 3059 { 3060 return is_inode_flag_set(inode, FI_DROP_CACHE); 3061 } 3062 3063 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3064 { 3065 struct f2fs_inode *ri = F2FS_INODE(page); 3066 int extra_size = get_extra_isize(inode); 3067 3068 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 3069 } 3070 3071 static inline int f2fs_has_inline_dentry(struct inode *inode) 3072 { 3073 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3074 } 3075 3076 static inline int is_file(struct inode *inode, int type) 3077 { 3078 return F2FS_I(inode)->i_advise & type; 3079 } 3080 3081 static inline void set_file(struct inode *inode, int type) 3082 { 3083 F2FS_I(inode)->i_advise |= type; 3084 f2fs_mark_inode_dirty_sync(inode, true); 3085 } 3086 3087 static inline void clear_file(struct inode *inode, int type) 3088 { 3089 F2FS_I(inode)->i_advise &= ~type; 3090 f2fs_mark_inode_dirty_sync(inode, true); 3091 } 3092 3093 static inline bool f2fs_is_time_consistent(struct inode *inode) 3094 { 3095 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 3096 return false; 3097 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 3098 return false; 3099 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 3100 return false; 3101 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 3102 &F2FS_I(inode)->i_crtime)) 3103 return false; 3104 return true; 3105 } 3106 3107 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3108 { 3109 bool ret; 3110 3111 if (dsync) { 3112 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3113 3114 spin_lock(&sbi->inode_lock[DIRTY_META]); 3115 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3116 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3117 return ret; 3118 } 3119 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3120 file_keep_isize(inode) || 3121 i_size_read(inode) & ~PAGE_MASK) 3122 return false; 3123 3124 if (!f2fs_is_time_consistent(inode)) 3125 return false; 3126 3127 spin_lock(&F2FS_I(inode)->i_size_lock); 3128 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3129 spin_unlock(&F2FS_I(inode)->i_size_lock); 3130 3131 return ret; 3132 } 3133 3134 static inline bool f2fs_readonly(struct super_block *sb) 3135 { 3136 return sb_rdonly(sb); 3137 } 3138 3139 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3140 { 3141 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3142 } 3143 3144 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3145 { 3146 if (len == 1 && name[0] == '.') 3147 return true; 3148 3149 if (len == 2 && name[0] == '.' && name[1] == '.') 3150 return true; 3151 3152 return false; 3153 } 3154 3155 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3156 size_t size, gfp_t flags) 3157 { 3158 if (time_to_inject(sbi, FAULT_KMALLOC)) { 3159 f2fs_show_injection_info(sbi, FAULT_KMALLOC); 3160 return NULL; 3161 } 3162 3163 return kmalloc(size, flags); 3164 } 3165 3166 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3167 size_t size, gfp_t flags) 3168 { 3169 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3170 } 3171 3172 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3173 size_t size, gfp_t flags) 3174 { 3175 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 3176 f2fs_show_injection_info(sbi, FAULT_KVMALLOC); 3177 return NULL; 3178 } 3179 3180 return kvmalloc(size, flags); 3181 } 3182 3183 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3184 size_t size, gfp_t flags) 3185 { 3186 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3187 } 3188 3189 static inline int get_extra_isize(struct inode *inode) 3190 { 3191 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3192 } 3193 3194 static inline int get_inline_xattr_addrs(struct inode *inode) 3195 { 3196 return F2FS_I(inode)->i_inline_xattr_size; 3197 } 3198 3199 #define f2fs_get_inode_mode(i) \ 3200 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3201 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3202 3203 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3204 (offsetof(struct f2fs_inode, i_extra_end) - \ 3205 offsetof(struct f2fs_inode, i_extra_isize)) \ 3206 3207 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3208 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3209 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3210 sizeof((f2fs_inode)->field)) \ 3211 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3212 3213 #define DEFAULT_IOSTAT_PERIOD_MS 3000 3214 #define MIN_IOSTAT_PERIOD_MS 100 3215 /* maximum period of iostat tracing is 1 day */ 3216 #define MAX_IOSTAT_PERIOD_MS 8640000 3217 3218 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 3219 { 3220 int i; 3221 3222 spin_lock(&sbi->iostat_lock); 3223 for (i = 0; i < NR_IO_TYPE; i++) { 3224 sbi->rw_iostat[i] = 0; 3225 sbi->prev_rw_iostat[i] = 0; 3226 } 3227 spin_unlock(&sbi->iostat_lock); 3228 } 3229 3230 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi); 3231 3232 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 3233 enum iostat_type type, unsigned long long io_bytes) 3234 { 3235 if (!sbi->iostat_enable) 3236 return; 3237 spin_lock(&sbi->iostat_lock); 3238 sbi->rw_iostat[type] += io_bytes; 3239 3240 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 3241 sbi->rw_iostat[APP_BUFFERED_IO] = 3242 sbi->rw_iostat[APP_WRITE_IO] - 3243 sbi->rw_iostat[APP_DIRECT_IO]; 3244 3245 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO) 3246 sbi->rw_iostat[APP_BUFFERED_READ_IO] = 3247 sbi->rw_iostat[APP_READ_IO] - 3248 sbi->rw_iostat[APP_DIRECT_READ_IO]; 3249 spin_unlock(&sbi->iostat_lock); 3250 3251 f2fs_record_iostat(sbi); 3252 } 3253 3254 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 3255 3256 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3257 3258 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3259 block_t blkaddr, int type); 3260 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3261 block_t blkaddr, int type) 3262 { 3263 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 3264 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3265 blkaddr, type); 3266 f2fs_bug_on(sbi, 1); 3267 } 3268 } 3269 3270 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3271 { 3272 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3273 blkaddr == COMPRESS_ADDR) 3274 return false; 3275 return true; 3276 } 3277 3278 /* 3279 * file.c 3280 */ 3281 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3282 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 3283 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3284 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3285 int f2fs_truncate(struct inode *inode); 3286 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 3287 struct kstat *stat, u32 request_mask, unsigned int flags); 3288 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 3289 struct iattr *attr); 3290 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3291 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3292 int f2fs_precache_extents(struct inode *inode); 3293 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3294 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3295 struct dentry *dentry, struct fileattr *fa); 3296 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3297 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3298 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3299 int f2fs_pin_file_control(struct inode *inode, bool inc); 3300 3301 /* 3302 * inode.c 3303 */ 3304 void f2fs_set_inode_flags(struct inode *inode); 3305 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3306 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3307 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3308 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3309 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3310 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3311 void f2fs_update_inode_page(struct inode *inode); 3312 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3313 void f2fs_evict_inode(struct inode *inode); 3314 void f2fs_handle_failed_inode(struct inode *inode); 3315 3316 /* 3317 * namei.c 3318 */ 3319 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3320 bool hot, bool set); 3321 struct dentry *f2fs_get_parent(struct dentry *child); 3322 3323 /* 3324 * dir.c 3325 */ 3326 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 3327 int f2fs_init_casefolded_name(const struct inode *dir, 3328 struct f2fs_filename *fname); 3329 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3330 int lookup, struct f2fs_filename *fname); 3331 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3332 struct f2fs_filename *fname); 3333 void f2fs_free_filename(struct f2fs_filename *fname); 3334 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3335 const struct f2fs_filename *fname, int *max_slots); 3336 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3337 unsigned int start_pos, struct fscrypt_str *fstr); 3338 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3339 struct f2fs_dentry_ptr *d); 3340 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3341 const struct f2fs_filename *fname, struct page *dpage); 3342 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3343 unsigned int current_depth); 3344 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3345 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3346 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3347 const struct f2fs_filename *fname, 3348 struct page **res_page); 3349 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3350 const struct qstr *child, struct page **res_page); 3351 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3352 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3353 struct page **page); 3354 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3355 struct page *page, struct inode *inode); 3356 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3357 const struct f2fs_filename *fname); 3358 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3359 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3360 unsigned int bit_pos); 3361 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3362 struct inode *inode, nid_t ino, umode_t mode); 3363 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3364 struct inode *inode, nid_t ino, umode_t mode); 3365 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3366 struct inode *inode, nid_t ino, umode_t mode); 3367 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3368 struct inode *dir, struct inode *inode); 3369 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3370 bool f2fs_empty_dir(struct inode *dir); 3371 3372 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3373 { 3374 if (fscrypt_is_nokey_name(dentry)) 3375 return -ENOKEY; 3376 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3377 inode, inode->i_ino, inode->i_mode); 3378 } 3379 3380 /* 3381 * super.c 3382 */ 3383 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3384 void f2fs_inode_synced(struct inode *inode); 3385 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3386 int f2fs_quota_sync(struct super_block *sb, int type); 3387 loff_t max_file_blocks(struct inode *inode); 3388 void f2fs_quota_off_umount(struct super_block *sb); 3389 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3390 int f2fs_sync_fs(struct super_block *sb, int sync); 3391 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3392 3393 /* 3394 * hash.c 3395 */ 3396 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3397 3398 /* 3399 * node.c 3400 */ 3401 struct node_info; 3402 3403 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3404 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3405 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3406 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3407 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3408 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3409 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3410 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3411 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3412 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3413 struct node_info *ni); 3414 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3415 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3416 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3417 int f2fs_truncate_xattr_node(struct inode *inode); 3418 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3419 unsigned int seq_id); 3420 int f2fs_remove_inode_page(struct inode *inode); 3421 struct page *f2fs_new_inode_page(struct inode *inode); 3422 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3423 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3424 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3425 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3426 int f2fs_move_node_page(struct page *node_page, int gc_type); 3427 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3428 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3429 struct writeback_control *wbc, bool atomic, 3430 unsigned int *seq_id); 3431 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3432 struct writeback_control *wbc, 3433 bool do_balance, enum iostat_type io_type); 3434 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3435 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3436 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3437 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3438 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3439 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3440 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3441 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3442 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3443 unsigned int segno, struct f2fs_summary_block *sum); 3444 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3445 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3446 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3447 int __init f2fs_create_node_manager_caches(void); 3448 void f2fs_destroy_node_manager_caches(void); 3449 3450 /* 3451 * segment.c 3452 */ 3453 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3454 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 3455 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 3456 void f2fs_drop_inmem_pages(struct inode *inode); 3457 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 3458 int f2fs_commit_inmem_pages(struct inode *inode); 3459 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3460 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3461 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3462 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3463 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3464 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3465 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3466 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3467 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3468 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3469 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3470 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3471 struct cp_control *cpc); 3472 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3473 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3474 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3475 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3476 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3477 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3478 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3479 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3480 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3481 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3482 unsigned int *newseg, bool new_sec, int dir); 3483 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3484 unsigned int start, unsigned int end); 3485 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3486 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3487 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3488 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3489 struct cp_control *cpc); 3490 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3491 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3492 block_t blk_addr); 3493 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3494 enum iostat_type io_type); 3495 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3496 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3497 struct f2fs_io_info *fio); 3498 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3499 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3500 block_t old_blkaddr, block_t new_blkaddr, 3501 bool recover_curseg, bool recover_newaddr, 3502 bool from_gc); 3503 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3504 block_t old_addr, block_t new_addr, 3505 unsigned char version, bool recover_curseg, 3506 bool recover_newaddr); 3507 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3508 block_t old_blkaddr, block_t *new_blkaddr, 3509 struct f2fs_summary *sum, int type, 3510 struct f2fs_io_info *fio); 3511 void f2fs_wait_on_page_writeback(struct page *page, 3512 enum page_type type, bool ordered, bool locked); 3513 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3514 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3515 block_t len); 3516 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3517 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3518 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3519 unsigned int val, int alloc); 3520 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3521 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3522 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3523 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3524 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3525 int __init f2fs_create_segment_manager_caches(void); 3526 void f2fs_destroy_segment_manager_caches(void); 3527 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3528 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3529 enum page_type type, enum temp_type temp); 3530 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3531 unsigned int segno); 3532 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3533 unsigned int segno); 3534 3535 /* 3536 * checkpoint.c 3537 */ 3538 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 3539 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3540 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3541 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3542 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3543 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3544 block_t blkaddr, int type); 3545 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3546 int type, bool sync); 3547 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 3548 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3549 long nr_to_write, enum iostat_type io_type); 3550 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3551 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3552 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3553 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3554 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3555 unsigned int devidx, int type); 3556 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3557 unsigned int devidx, int type); 3558 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3559 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3560 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3561 void f2fs_add_orphan_inode(struct inode *inode); 3562 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3563 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3564 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3565 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 3566 void f2fs_remove_dirty_inode(struct inode *inode); 3567 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 3568 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3569 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3570 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3571 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3572 int __init f2fs_create_checkpoint_caches(void); 3573 void f2fs_destroy_checkpoint_caches(void); 3574 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3575 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3576 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3577 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3578 3579 /* 3580 * data.c 3581 */ 3582 int __init f2fs_init_bioset(void); 3583 void f2fs_destroy_bioset(void); 3584 int f2fs_init_bio_entry_cache(void); 3585 void f2fs_destroy_bio_entry_cache(void); 3586 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 3587 struct bio *bio, enum page_type type); 3588 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3589 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3590 struct inode *inode, struct page *page, 3591 nid_t ino, enum page_type type); 3592 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3593 struct bio **bio, struct page *page); 3594 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3595 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3596 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3597 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3598 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3599 block_t blk_addr, struct bio *bio); 3600 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3601 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3602 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3603 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3604 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3605 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3606 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3607 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3608 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3609 int op_flags, bool for_write); 3610 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3611 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3612 bool for_write); 3613 struct page *f2fs_get_new_data_page(struct inode *inode, 3614 struct page *ipage, pgoff_t index, bool new_i_size); 3615 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3616 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3617 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3618 int create, int flag); 3619 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3620 u64 start, u64 len); 3621 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3622 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3623 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3624 int f2fs_write_single_data_page(struct page *page, int *submitted, 3625 struct bio **bio, sector_t *last_block, 3626 struct writeback_control *wbc, 3627 enum iostat_type io_type, 3628 int compr_blocks, bool allow_balance); 3629 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3630 unsigned int length); 3631 int f2fs_release_page(struct page *page, gfp_t wait); 3632 #ifdef CONFIG_MIGRATION 3633 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3634 struct page *page, enum migrate_mode mode); 3635 #endif 3636 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3637 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3638 int f2fs_init_post_read_processing(void); 3639 void f2fs_destroy_post_read_processing(void); 3640 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3641 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3642 3643 /* 3644 * gc.c 3645 */ 3646 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3647 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3648 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3649 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force, 3650 unsigned int segno); 3651 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3652 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3653 int __init f2fs_create_garbage_collection_cache(void); 3654 void f2fs_destroy_garbage_collection_cache(void); 3655 3656 /* 3657 * recovery.c 3658 */ 3659 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3660 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3661 int __init f2fs_create_recovery_cache(void); 3662 void f2fs_destroy_recovery_cache(void); 3663 3664 /* 3665 * debug.c 3666 */ 3667 #ifdef CONFIG_F2FS_STAT_FS 3668 struct f2fs_stat_info { 3669 struct list_head stat_list; 3670 struct f2fs_sb_info *sbi; 3671 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3672 int main_area_segs, main_area_sections, main_area_zones; 3673 unsigned long long hit_largest, hit_cached, hit_rbtree; 3674 unsigned long long hit_total, total_ext; 3675 int ext_tree, zombie_tree, ext_node; 3676 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3677 int ndirty_data, ndirty_qdata; 3678 int inmem_pages; 3679 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3680 int nats, dirty_nats, sits, dirty_sits; 3681 int free_nids, avail_nids, alloc_nids; 3682 int total_count, utilization; 3683 int bg_gc, nr_wb_cp_data, nr_wb_data; 3684 int nr_rd_data, nr_rd_node, nr_rd_meta; 3685 int nr_dio_read, nr_dio_write; 3686 unsigned int io_skip_bggc, other_skip_bggc; 3687 int nr_flushing, nr_flushed, flush_list_empty; 3688 int nr_discarding, nr_discarded; 3689 int nr_discard_cmd; 3690 unsigned int undiscard_blks; 3691 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3692 unsigned int cur_ckpt_time, peak_ckpt_time; 3693 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3694 int compr_inode; 3695 unsigned long long compr_blocks; 3696 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3697 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3698 unsigned int bimodal, avg_vblocks; 3699 int util_free, util_valid, util_invalid; 3700 int rsvd_segs, overp_segs; 3701 int dirty_count, node_pages, meta_pages, compress_pages; 3702 int compress_page_hit; 3703 int prefree_count, call_count, cp_count, bg_cp_count; 3704 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3705 int bg_node_segs, bg_data_segs; 3706 int tot_blks, data_blks, node_blks; 3707 int bg_data_blks, bg_node_blks; 3708 unsigned long long skipped_atomic_files[2]; 3709 int curseg[NR_CURSEG_TYPE]; 3710 int cursec[NR_CURSEG_TYPE]; 3711 int curzone[NR_CURSEG_TYPE]; 3712 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3713 unsigned int full_seg[NR_CURSEG_TYPE]; 3714 unsigned int valid_blks[NR_CURSEG_TYPE]; 3715 3716 unsigned int meta_count[META_MAX]; 3717 unsigned int segment_count[2]; 3718 unsigned int block_count[2]; 3719 unsigned int inplace_count; 3720 unsigned long long base_mem, cache_mem, page_mem; 3721 }; 3722 3723 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3724 { 3725 return (struct f2fs_stat_info *)sbi->stat_info; 3726 } 3727 3728 #define stat_inc_cp_count(si) ((si)->cp_count++) 3729 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3730 #define stat_inc_call_count(si) ((si)->call_count++) 3731 #define stat_inc_bggc_count(si) ((si)->bg_gc++) 3732 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3733 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3734 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3735 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3736 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3737 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3738 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3739 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3740 #define stat_inc_inline_xattr(inode) \ 3741 do { \ 3742 if (f2fs_has_inline_xattr(inode)) \ 3743 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3744 } while (0) 3745 #define stat_dec_inline_xattr(inode) \ 3746 do { \ 3747 if (f2fs_has_inline_xattr(inode)) \ 3748 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3749 } while (0) 3750 #define stat_inc_inline_inode(inode) \ 3751 do { \ 3752 if (f2fs_has_inline_data(inode)) \ 3753 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3754 } while (0) 3755 #define stat_dec_inline_inode(inode) \ 3756 do { \ 3757 if (f2fs_has_inline_data(inode)) \ 3758 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3759 } while (0) 3760 #define stat_inc_inline_dir(inode) \ 3761 do { \ 3762 if (f2fs_has_inline_dentry(inode)) \ 3763 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3764 } while (0) 3765 #define stat_dec_inline_dir(inode) \ 3766 do { \ 3767 if (f2fs_has_inline_dentry(inode)) \ 3768 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3769 } while (0) 3770 #define stat_inc_compr_inode(inode) \ 3771 do { \ 3772 if (f2fs_compressed_file(inode)) \ 3773 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 3774 } while (0) 3775 #define stat_dec_compr_inode(inode) \ 3776 do { \ 3777 if (f2fs_compressed_file(inode)) \ 3778 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 3779 } while (0) 3780 #define stat_add_compr_blocks(inode, blocks) \ 3781 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3782 #define stat_sub_compr_blocks(inode, blocks) \ 3783 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3784 #define stat_inc_meta_count(sbi, blkaddr) \ 3785 do { \ 3786 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3787 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3788 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3789 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3790 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3791 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3792 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3793 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3794 } while (0) 3795 #define stat_inc_seg_type(sbi, curseg) \ 3796 ((sbi)->segment_count[(curseg)->alloc_type]++) 3797 #define stat_inc_block_count(sbi, curseg) \ 3798 ((sbi)->block_count[(curseg)->alloc_type]++) 3799 #define stat_inc_inplace_blocks(sbi) \ 3800 (atomic_inc(&(sbi)->inplace_count)) 3801 #define stat_update_max_atomic_write(inode) \ 3802 do { \ 3803 int cur = F2FS_I_SB(inode)->atomic_files; \ 3804 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3805 if (cur > max) \ 3806 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3807 } while (0) 3808 #define stat_inc_volatile_write(inode) \ 3809 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3810 #define stat_dec_volatile_write(inode) \ 3811 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3812 #define stat_update_max_volatile_write(inode) \ 3813 do { \ 3814 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3815 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3816 if (cur > max) \ 3817 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3818 } while (0) 3819 #define stat_inc_seg_count(sbi, type, gc_type) \ 3820 do { \ 3821 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3822 si->tot_segs++; \ 3823 if ((type) == SUM_TYPE_DATA) { \ 3824 si->data_segs++; \ 3825 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3826 } else { \ 3827 si->node_segs++; \ 3828 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3829 } \ 3830 } while (0) 3831 3832 #define stat_inc_tot_blk_count(si, blks) \ 3833 ((si)->tot_blks += (blks)) 3834 3835 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3836 do { \ 3837 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3838 stat_inc_tot_blk_count(si, blks); \ 3839 si->data_blks += (blks); \ 3840 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3841 } while (0) 3842 3843 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3844 do { \ 3845 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3846 stat_inc_tot_blk_count(si, blks); \ 3847 si->node_blks += (blks); \ 3848 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3849 } while (0) 3850 3851 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3852 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3853 void __init f2fs_create_root_stats(void); 3854 void f2fs_destroy_root_stats(void); 3855 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 3856 #else 3857 #define stat_inc_cp_count(si) do { } while (0) 3858 #define stat_inc_bg_cp_count(si) do { } while (0) 3859 #define stat_inc_call_count(si) do { } while (0) 3860 #define stat_inc_bggc_count(si) do { } while (0) 3861 #define stat_io_skip_bggc_count(sbi) do { } while (0) 3862 #define stat_other_skip_bggc_count(sbi) do { } while (0) 3863 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3864 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3865 #define stat_inc_total_hit(sbi) do { } while (0) 3866 #define stat_inc_rbtree_node_hit(sbi) do { } while (0) 3867 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3868 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3869 #define stat_inc_inline_xattr(inode) do { } while (0) 3870 #define stat_dec_inline_xattr(inode) do { } while (0) 3871 #define stat_inc_inline_inode(inode) do { } while (0) 3872 #define stat_dec_inline_inode(inode) do { } while (0) 3873 #define stat_inc_inline_dir(inode) do { } while (0) 3874 #define stat_dec_inline_dir(inode) do { } while (0) 3875 #define stat_inc_compr_inode(inode) do { } while (0) 3876 #define stat_dec_compr_inode(inode) do { } while (0) 3877 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 3878 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 3879 #define stat_update_max_atomic_write(inode) do { } while (0) 3880 #define stat_inc_volatile_write(inode) do { } while (0) 3881 #define stat_dec_volatile_write(inode) do { } while (0) 3882 #define stat_update_max_volatile_write(inode) do { } while (0) 3883 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 3884 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3885 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3886 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3887 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3888 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3889 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3890 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3891 3892 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3893 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3894 static inline void __init f2fs_create_root_stats(void) { } 3895 static inline void f2fs_destroy_root_stats(void) { } 3896 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 3897 #endif 3898 3899 extern const struct file_operations f2fs_dir_operations; 3900 extern const struct file_operations f2fs_file_operations; 3901 extern const struct inode_operations f2fs_file_inode_operations; 3902 extern const struct address_space_operations f2fs_dblock_aops; 3903 extern const struct address_space_operations f2fs_node_aops; 3904 extern const struct address_space_operations f2fs_meta_aops; 3905 extern const struct inode_operations f2fs_dir_inode_operations; 3906 extern const struct inode_operations f2fs_symlink_inode_operations; 3907 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3908 extern const struct inode_operations f2fs_special_inode_operations; 3909 extern struct kmem_cache *f2fs_inode_entry_slab; 3910 3911 /* 3912 * inline.c 3913 */ 3914 bool f2fs_may_inline_data(struct inode *inode); 3915 bool f2fs_may_inline_dentry(struct inode *inode); 3916 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3917 void f2fs_truncate_inline_inode(struct inode *inode, 3918 struct page *ipage, u64 from); 3919 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3920 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3921 int f2fs_convert_inline_inode(struct inode *inode); 3922 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 3923 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3924 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3925 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3926 const struct f2fs_filename *fname, 3927 struct page **res_page); 3928 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3929 struct page *ipage); 3930 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 3931 struct inode *inode, nid_t ino, umode_t mode); 3932 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3933 struct page *page, struct inode *dir, 3934 struct inode *inode); 3935 bool f2fs_empty_inline_dir(struct inode *dir); 3936 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3937 struct fscrypt_str *fstr); 3938 int f2fs_inline_data_fiemap(struct inode *inode, 3939 struct fiemap_extent_info *fieinfo, 3940 __u64 start, __u64 len); 3941 3942 /* 3943 * shrinker.c 3944 */ 3945 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3946 struct shrink_control *sc); 3947 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3948 struct shrink_control *sc); 3949 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3950 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3951 3952 /* 3953 * extent_cache.c 3954 */ 3955 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 3956 struct rb_entry *cached_re, unsigned int ofs); 3957 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi, 3958 struct rb_root_cached *root, 3959 struct rb_node **parent, 3960 unsigned long long key, bool *left_most); 3961 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3962 struct rb_root_cached *root, 3963 struct rb_node **parent, 3964 unsigned int ofs, bool *leftmost); 3965 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 3966 struct rb_entry *cached_re, unsigned int ofs, 3967 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3968 struct rb_node ***insert_p, struct rb_node **insert_parent, 3969 bool force, bool *leftmost); 3970 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3971 struct rb_root_cached *root, bool check_key); 3972 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3973 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage); 3974 void f2fs_drop_extent_tree(struct inode *inode); 3975 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3976 void f2fs_destroy_extent_tree(struct inode *inode); 3977 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3978 struct extent_info *ei); 3979 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3980 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3981 pgoff_t fofs, block_t blkaddr, unsigned int len); 3982 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3983 int __init f2fs_create_extent_cache(void); 3984 void f2fs_destroy_extent_cache(void); 3985 3986 /* 3987 * sysfs.c 3988 */ 3989 int __init f2fs_init_sysfs(void); 3990 void f2fs_exit_sysfs(void); 3991 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3992 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3993 3994 /* verity.c */ 3995 extern const struct fsverity_operations f2fs_verityops; 3996 3997 /* 3998 * crypto support 3999 */ 4000 static inline bool f2fs_encrypted_file(struct inode *inode) 4001 { 4002 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4003 } 4004 4005 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4006 { 4007 #ifdef CONFIG_FS_ENCRYPTION 4008 file_set_encrypt(inode); 4009 f2fs_set_inode_flags(inode); 4010 #endif 4011 } 4012 4013 /* 4014 * Returns true if the reads of the inode's data need to undergo some 4015 * postprocessing step, like decryption or authenticity verification. 4016 */ 4017 static inline bool f2fs_post_read_required(struct inode *inode) 4018 { 4019 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4020 f2fs_compressed_file(inode); 4021 } 4022 4023 /* 4024 * compress.c 4025 */ 4026 #ifdef CONFIG_F2FS_FS_COMPRESSION 4027 bool f2fs_is_compressed_page(struct page *page); 4028 struct page *f2fs_compress_control_page(struct page *page); 4029 int f2fs_prepare_compress_overwrite(struct inode *inode, 4030 struct page **pagep, pgoff_t index, void **fsdata); 4031 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4032 pgoff_t index, unsigned copied); 4033 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4034 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4035 bool f2fs_is_compress_backend_ready(struct inode *inode); 4036 int f2fs_init_compress_mempool(void); 4037 void f2fs_destroy_compress_mempool(void); 4038 void f2fs_decompress_cluster(struct decompress_io_ctx *dic); 4039 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4040 block_t blkaddr); 4041 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4042 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4043 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4044 int f2fs_write_multi_pages(struct compress_ctx *cc, 4045 int *submitted, 4046 struct writeback_control *wbc, 4047 enum iostat_type io_type); 4048 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4049 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4050 unsigned nr_pages, sector_t *last_block_in_bio, 4051 bool is_readahead, bool for_write); 4052 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4053 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed); 4054 void f2fs_put_page_dic(struct page *page); 4055 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4056 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4057 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4058 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4059 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4060 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4061 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4062 int __init f2fs_init_compress_cache(void); 4063 void f2fs_destroy_compress_cache(void); 4064 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4065 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4066 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4067 nid_t ino, block_t blkaddr); 4068 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4069 block_t blkaddr); 4070 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4071 #define inc_compr_inode_stat(inode) \ 4072 do { \ 4073 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4074 sbi->compr_new_inode++; \ 4075 } while (0) 4076 #define add_compr_block_stat(inode, blocks) \ 4077 do { \ 4078 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4079 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4080 sbi->compr_written_block += blocks; \ 4081 sbi->compr_saved_block += diff; \ 4082 } while (0) 4083 #else 4084 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4085 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4086 { 4087 if (!f2fs_compressed_file(inode)) 4088 return true; 4089 /* not support compression */ 4090 return false; 4091 } 4092 static inline struct page *f2fs_compress_control_page(struct page *page) 4093 { 4094 WARN_ON_ONCE(1); 4095 return ERR_PTR(-EINVAL); 4096 } 4097 static inline int f2fs_init_compress_mempool(void) { return 0; } 4098 static inline void f2fs_destroy_compress_mempool(void) { } 4099 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { } 4100 static inline void f2fs_end_read_compressed_page(struct page *page, 4101 bool failed, block_t blkaddr) 4102 { 4103 WARN_ON_ONCE(1); 4104 } 4105 static inline void f2fs_put_page_dic(struct page *page) 4106 { 4107 WARN_ON_ONCE(1); 4108 } 4109 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4110 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4111 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4112 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4113 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4114 static inline void f2fs_destroy_compress_cache(void) { } 4115 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4116 block_t blkaddr) { } 4117 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4118 struct page *page, nid_t ino, block_t blkaddr) { } 4119 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4120 struct page *page, block_t blkaddr) { return false; } 4121 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4122 nid_t ino) { } 4123 #define inc_compr_inode_stat(inode) do { } while (0) 4124 #endif 4125 4126 static inline void set_compress_context(struct inode *inode) 4127 { 4128 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4129 4130 F2FS_I(inode)->i_compress_algorithm = 4131 F2FS_OPTION(sbi).compress_algorithm; 4132 F2FS_I(inode)->i_log_cluster_size = 4133 F2FS_OPTION(sbi).compress_log_size; 4134 F2FS_I(inode)->i_compress_flag = 4135 F2FS_OPTION(sbi).compress_chksum ? 4136 1 << COMPRESS_CHKSUM : 0; 4137 F2FS_I(inode)->i_cluster_size = 4138 1 << F2FS_I(inode)->i_log_cluster_size; 4139 if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 && 4140 F2FS_OPTION(sbi).compress_level) 4141 F2FS_I(inode)->i_compress_flag |= 4142 F2FS_OPTION(sbi).compress_level << 4143 COMPRESS_LEVEL_OFFSET; 4144 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4145 set_inode_flag(inode, FI_COMPRESSED_FILE); 4146 stat_inc_compr_inode(inode); 4147 inc_compr_inode_stat(inode); 4148 f2fs_mark_inode_dirty_sync(inode, true); 4149 } 4150 4151 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4152 { 4153 struct f2fs_inode_info *fi = F2FS_I(inode); 4154 4155 if (!f2fs_compressed_file(inode)) 4156 return true; 4157 if (S_ISREG(inode->i_mode) && 4158 (get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks))) 4159 return false; 4160 4161 fi->i_flags &= ~F2FS_COMPR_FL; 4162 stat_dec_compr_inode(inode); 4163 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4164 f2fs_mark_inode_dirty_sync(inode, true); 4165 return true; 4166 } 4167 4168 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4169 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4170 { \ 4171 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4172 } 4173 4174 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4175 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4176 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4177 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4178 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4179 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4180 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4181 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4182 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4183 F2FS_FEATURE_FUNCS(verity, VERITY); 4184 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4185 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4186 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4187 F2FS_FEATURE_FUNCS(readonly, RO); 4188 4189 static inline bool f2fs_may_extent_tree(struct inode *inode) 4190 { 4191 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4192 4193 if (!test_opt(sbi, EXTENT_CACHE) || 4194 is_inode_flag_set(inode, FI_NO_EXTENT) || 4195 (is_inode_flag_set(inode, FI_COMPRESSED_FILE) && 4196 !f2fs_sb_has_readonly(sbi))) 4197 return false; 4198 4199 /* 4200 * for recovered files during mount do not create extents 4201 * if shrinker is not registered. 4202 */ 4203 if (list_empty(&sbi->s_list)) 4204 return false; 4205 4206 return S_ISREG(inode->i_mode); 4207 } 4208 4209 #ifdef CONFIG_BLK_DEV_ZONED 4210 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4211 block_t blkaddr) 4212 { 4213 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 4214 4215 return test_bit(zno, FDEV(devi).blkz_seq); 4216 } 4217 #endif 4218 4219 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4220 { 4221 return f2fs_sb_has_blkzoned(sbi); 4222 } 4223 4224 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4225 { 4226 return blk_queue_discard(bdev_get_queue(bdev)) || 4227 bdev_is_zoned(bdev); 4228 } 4229 4230 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4231 { 4232 int i; 4233 4234 if (!f2fs_is_multi_device(sbi)) 4235 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4236 4237 for (i = 0; i < sbi->s_ndevs; i++) 4238 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4239 return true; 4240 return false; 4241 } 4242 4243 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4244 { 4245 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4246 f2fs_hw_should_discard(sbi); 4247 } 4248 4249 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4250 { 4251 int i; 4252 4253 if (!f2fs_is_multi_device(sbi)) 4254 return bdev_read_only(sbi->sb->s_bdev); 4255 4256 for (i = 0; i < sbi->s_ndevs; i++) 4257 if (bdev_read_only(FDEV(i).bdev)) 4258 return true; 4259 return false; 4260 } 4261 4262 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4263 { 4264 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4265 } 4266 4267 static inline bool f2fs_may_compress(struct inode *inode) 4268 { 4269 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4270 f2fs_is_atomic_file(inode) || 4271 f2fs_is_volatile_file(inode)) 4272 return false; 4273 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4274 } 4275 4276 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4277 u64 blocks, bool add) 4278 { 4279 int diff = F2FS_I(inode)->i_cluster_size - blocks; 4280 struct f2fs_inode_info *fi = F2FS_I(inode); 4281 4282 /* don't update i_compr_blocks if saved blocks were released */ 4283 if (!add && !atomic_read(&fi->i_compr_blocks)) 4284 return; 4285 4286 if (add) { 4287 atomic_add(diff, &fi->i_compr_blocks); 4288 stat_add_compr_blocks(inode, diff); 4289 } else { 4290 atomic_sub(diff, &fi->i_compr_blocks); 4291 stat_sub_compr_blocks(inode, diff); 4292 } 4293 f2fs_mark_inode_dirty_sync(inode, true); 4294 } 4295 4296 static inline int block_unaligned_IO(struct inode *inode, 4297 struct kiocb *iocb, struct iov_iter *iter) 4298 { 4299 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits); 4300 unsigned int blocksize_mask = (1 << i_blkbits) - 1; 4301 loff_t offset = iocb->ki_pos; 4302 unsigned long align = offset | iov_iter_alignment(iter); 4303 4304 return align & blocksize_mask; 4305 } 4306 4307 static inline int allow_outplace_dio(struct inode *inode, 4308 struct kiocb *iocb, struct iov_iter *iter) 4309 { 4310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4311 int rw = iov_iter_rw(iter); 4312 4313 return (f2fs_lfs_mode(sbi) && (rw == WRITE) && 4314 !block_unaligned_IO(inode, iocb, iter)); 4315 } 4316 4317 static inline bool f2fs_force_buffered_io(struct inode *inode, 4318 struct kiocb *iocb, struct iov_iter *iter) 4319 { 4320 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4321 int rw = iov_iter_rw(iter); 4322 4323 if (f2fs_post_read_required(inode)) 4324 return true; 4325 if (f2fs_is_multi_device(sbi)) 4326 return true; 4327 /* 4328 * for blkzoned device, fallback direct IO to buffered IO, so 4329 * all IOs can be serialized by log-structured write. 4330 */ 4331 if (f2fs_sb_has_blkzoned(sbi)) 4332 return true; 4333 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) { 4334 if (block_unaligned_IO(inode, iocb, iter)) 4335 return true; 4336 if (F2FS_IO_ALIGNED(sbi)) 4337 return true; 4338 } 4339 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED)) 4340 return true; 4341 4342 return false; 4343 } 4344 4345 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4346 { 4347 return fsverity_active(inode) && 4348 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4349 } 4350 4351 #ifdef CONFIG_F2FS_FAULT_INJECTION 4352 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4353 unsigned int type); 4354 #else 4355 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4356 #endif 4357 4358 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4359 { 4360 #ifdef CONFIG_QUOTA 4361 if (f2fs_sb_has_quota_ino(sbi)) 4362 return true; 4363 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4364 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4365 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4366 return true; 4367 #endif 4368 return false; 4369 } 4370 4371 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4372 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4373 4374 #endif /* _LINUX_F2FS_H */ 4375