xref: /openbmc/linux/fs/f2fs/f2fs.h (revision db610a64)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
28 #include <linux/fscrypt.h>
29 
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition)					\
34 	do {								\
35 		if (unlikely(condition)) {				\
36 			WARN_ON(1);					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 		}							\
39 	} while (0)
40 #endif
41 
42 enum {
43 	FAULT_KMALLOC,
44 	FAULT_KVMALLOC,
45 	FAULT_PAGE_ALLOC,
46 	FAULT_PAGE_GET,
47 	FAULT_ALLOC_BIO,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_READ_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_DISCARD,
57 	FAULT_WRITE_IO,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_BG_GC		0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_ADAPTIVE		0x00020000
95 #define F2FS_MOUNT_LFS			0x00040000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 };
141 
142 #define F2FS_FEATURE_ENCRYPT		0x0001
143 #define F2FS_FEATURE_BLKZONED		0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
146 #define F2FS_FEATURE_PRJQUOTA		0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
149 #define F2FS_FEATURE_QUOTA_INO		0x0080
150 #define F2FS_FEATURE_INODE_CRTIME	0x0100
151 #define F2FS_FEATURE_LOST_FOUND		0x0200
152 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
153 #define F2FS_FEATURE_SB_CHKSUM		0x0800
154 
155 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
156 	((raw_super->feature & cpu_to_le32(mask)) != 0)
157 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
158 #define F2FS_SET_FEATURE(sbi, mask)					\
159 	(sbi->raw_super->feature |= cpu_to_le32(mask))
160 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
161 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
162 
163 /*
164  * Default values for user and/or group using reserved blocks
165  */
166 #define	F2FS_DEF_RESUID		0
167 #define	F2FS_DEF_RESGID		0
168 
169 /*
170  * For checkpoint manager
171  */
172 enum {
173 	NAT_BITMAP,
174 	SIT_BITMAP
175 };
176 
177 #define	CP_UMOUNT	0x00000001
178 #define	CP_FASTBOOT	0x00000002
179 #define	CP_SYNC		0x00000004
180 #define	CP_RECOVERY	0x00000008
181 #define	CP_DISCARD	0x00000010
182 #define CP_TRIMMED	0x00000020
183 #define CP_PAUSE	0x00000040
184 
185 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
186 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
187 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
188 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
189 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
190 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
191 #define DEF_CP_INTERVAL			60	/* 60 secs */
192 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
193 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
194 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
195 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
196 
197 struct cp_control {
198 	int reason;
199 	__u64 trim_start;
200 	__u64 trim_end;
201 	__u64 trim_minlen;
202 };
203 
204 /*
205  * indicate meta/data type
206  */
207 enum {
208 	META_CP,
209 	META_NAT,
210 	META_SIT,
211 	META_SSA,
212 	META_MAX,
213 	META_POR,
214 	DATA_GENERIC,
215 	META_GENERIC,
216 };
217 
218 /* for the list of ino */
219 enum {
220 	ORPHAN_INO,		/* for orphan ino list */
221 	APPEND_INO,		/* for append ino list */
222 	UPDATE_INO,		/* for update ino list */
223 	TRANS_DIR_INO,		/* for trasactions dir ino list */
224 	FLUSH_INO,		/* for multiple device flushing */
225 	MAX_INO_ENTRY,		/* max. list */
226 };
227 
228 struct ino_entry {
229 	struct list_head list;		/* list head */
230 	nid_t ino;			/* inode number */
231 	unsigned int dirty_device;	/* dirty device bitmap */
232 };
233 
234 /* for the list of inodes to be GCed */
235 struct inode_entry {
236 	struct list_head list;	/* list head */
237 	struct inode *inode;	/* vfs inode pointer */
238 };
239 
240 struct fsync_node_entry {
241 	struct list_head list;	/* list head */
242 	struct page *page;	/* warm node page pointer */
243 	unsigned int seq_id;	/* sequence id */
244 };
245 
246 /* for the bitmap indicate blocks to be discarded */
247 struct discard_entry {
248 	struct list_head list;	/* list head */
249 	block_t start_blkaddr;	/* start blockaddr of current segment */
250 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
251 };
252 
253 /* default discard granularity of inner discard thread, unit: block count */
254 #define DEFAULT_DISCARD_GRANULARITY		16
255 
256 /* max discard pend list number */
257 #define MAX_PLIST_NUM		512
258 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
259 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
260 
261 enum {
262 	D_PREP,			/* initial */
263 	D_PARTIAL,		/* partially submitted */
264 	D_SUBMIT,		/* all submitted */
265 	D_DONE,			/* finished */
266 };
267 
268 struct discard_info {
269 	block_t lstart;			/* logical start address */
270 	block_t len;			/* length */
271 	block_t start;			/* actual start address in dev */
272 };
273 
274 struct discard_cmd {
275 	struct rb_node rb_node;		/* rb node located in rb-tree */
276 	union {
277 		struct {
278 			block_t lstart;	/* logical start address */
279 			block_t len;	/* length */
280 			block_t start;	/* actual start address in dev */
281 		};
282 		struct discard_info di;	/* discard info */
283 
284 	};
285 	struct list_head list;		/* command list */
286 	struct completion wait;		/* compleation */
287 	struct block_device *bdev;	/* bdev */
288 	unsigned short ref;		/* reference count */
289 	unsigned char state;		/* state */
290 	unsigned char queued;		/* queued discard */
291 	int error;			/* bio error */
292 	spinlock_t lock;		/* for state/bio_ref updating */
293 	unsigned short bio_ref;		/* bio reference count */
294 };
295 
296 enum {
297 	DPOLICY_BG,
298 	DPOLICY_FORCE,
299 	DPOLICY_FSTRIM,
300 	DPOLICY_UMOUNT,
301 	MAX_DPOLICY,
302 };
303 
304 struct discard_policy {
305 	int type;			/* type of discard */
306 	unsigned int min_interval;	/* used for candidates exist */
307 	unsigned int mid_interval;	/* used for device busy */
308 	unsigned int max_interval;	/* used for candidates not exist */
309 	unsigned int max_requests;	/* # of discards issued per round */
310 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
311 	bool io_aware;			/* issue discard in idle time */
312 	bool sync;			/* submit discard with REQ_SYNC flag */
313 	bool ordered;			/* issue discard by lba order */
314 	unsigned int granularity;	/* discard granularity */
315 	int timeout;			/* discard timeout for put_super */
316 };
317 
318 struct discard_cmd_control {
319 	struct task_struct *f2fs_issue_discard;	/* discard thread */
320 	struct list_head entry_list;		/* 4KB discard entry list */
321 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
322 	struct list_head wait_list;		/* store on-flushing entries */
323 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
324 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
325 	unsigned int discard_wake;		/* to wake up discard thread */
326 	struct mutex cmd_lock;
327 	unsigned int nr_discards;		/* # of discards in the list */
328 	unsigned int max_discards;		/* max. discards to be issued */
329 	unsigned int discard_granularity;	/* discard granularity */
330 	unsigned int undiscard_blks;		/* # of undiscard blocks */
331 	unsigned int next_pos;			/* next discard position */
332 	atomic_t issued_discard;		/* # of issued discard */
333 	atomic_t queued_discard;		/* # of queued discard */
334 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
335 	struct rb_root_cached root;		/* root of discard rb-tree */
336 	bool rbtree_check;			/* config for consistence check */
337 };
338 
339 /* for the list of fsync inodes, used only during recovery */
340 struct fsync_inode_entry {
341 	struct list_head list;	/* list head */
342 	struct inode *inode;	/* vfs inode pointer */
343 	block_t blkaddr;	/* block address locating the last fsync */
344 	block_t last_dentry;	/* block address locating the last dentry */
345 };
346 
347 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
348 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
349 
350 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
351 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
352 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
353 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
354 
355 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
356 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
357 
358 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
359 {
360 	int before = nats_in_cursum(journal);
361 
362 	journal->n_nats = cpu_to_le16(before + i);
363 	return before;
364 }
365 
366 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
367 {
368 	int before = sits_in_cursum(journal);
369 
370 	journal->n_sits = cpu_to_le16(before + i);
371 	return before;
372 }
373 
374 static inline bool __has_cursum_space(struct f2fs_journal *journal,
375 							int size, int type)
376 {
377 	if (type == NAT_JOURNAL)
378 		return size <= MAX_NAT_JENTRIES(journal);
379 	return size <= MAX_SIT_JENTRIES(journal);
380 }
381 
382 /*
383  * ioctl commands
384  */
385 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
386 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
387 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
388 
389 #define F2FS_IOCTL_MAGIC		0xf5
390 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
391 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
392 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
393 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
394 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
395 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
396 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
397 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
398 						struct f2fs_defragment)
399 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
400 						struct f2fs_move_range)
401 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
402 						struct f2fs_flush_device)
403 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
404 						struct f2fs_gc_range)
405 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
406 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
407 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
408 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
409 
410 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
411 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
412 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
413 
414 /*
415  * should be same as XFS_IOC_GOINGDOWN.
416  * Flags for going down operation used by FS_IOC_GOINGDOWN
417  */
418 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
419 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
420 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
421 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
422 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
423 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
424 
425 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
426 /*
427  * ioctl commands in 32 bit emulation
428  */
429 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
430 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
431 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
432 #endif
433 
434 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
435 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
436 
437 struct f2fs_gc_range {
438 	u32 sync;
439 	u64 start;
440 	u64 len;
441 };
442 
443 struct f2fs_defragment {
444 	u64 start;
445 	u64 len;
446 };
447 
448 struct f2fs_move_range {
449 	u32 dst_fd;		/* destination fd */
450 	u64 pos_in;		/* start position in src_fd */
451 	u64 pos_out;		/* start position in dst_fd */
452 	u64 len;		/* size to move */
453 };
454 
455 struct f2fs_flush_device {
456 	u32 dev_num;		/* device number to flush */
457 	u32 segments;		/* # of segments to flush */
458 };
459 
460 /* for inline stuff */
461 #define DEF_INLINE_RESERVED_SIZE	1
462 #define DEF_MIN_INLINE_SIZE		1
463 static inline int get_extra_isize(struct inode *inode);
464 static inline int get_inline_xattr_addrs(struct inode *inode);
465 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
466 				(CUR_ADDRS_PER_INODE(inode) -		\
467 				get_inline_xattr_addrs(inode) -	\
468 				DEF_INLINE_RESERVED_SIZE))
469 
470 /* for inline dir */
471 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
472 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
473 				BITS_PER_BYTE + 1))
474 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
475 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
476 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
477 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
478 				NR_INLINE_DENTRY(inode) + \
479 				INLINE_DENTRY_BITMAP_SIZE(inode)))
480 
481 /*
482  * For INODE and NODE manager
483  */
484 /* for directory operations */
485 struct f2fs_dentry_ptr {
486 	struct inode *inode;
487 	void *bitmap;
488 	struct f2fs_dir_entry *dentry;
489 	__u8 (*filename)[F2FS_SLOT_LEN];
490 	int max;
491 	int nr_bitmap;
492 };
493 
494 static inline void make_dentry_ptr_block(struct inode *inode,
495 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
496 {
497 	d->inode = inode;
498 	d->max = NR_DENTRY_IN_BLOCK;
499 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
500 	d->bitmap = t->dentry_bitmap;
501 	d->dentry = t->dentry;
502 	d->filename = t->filename;
503 }
504 
505 static inline void make_dentry_ptr_inline(struct inode *inode,
506 					struct f2fs_dentry_ptr *d, void *t)
507 {
508 	int entry_cnt = NR_INLINE_DENTRY(inode);
509 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
510 	int reserved_size = INLINE_RESERVED_SIZE(inode);
511 
512 	d->inode = inode;
513 	d->max = entry_cnt;
514 	d->nr_bitmap = bitmap_size;
515 	d->bitmap = t;
516 	d->dentry = t + bitmap_size + reserved_size;
517 	d->filename = t + bitmap_size + reserved_size +
518 					SIZE_OF_DIR_ENTRY * entry_cnt;
519 }
520 
521 /*
522  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
523  * as its node offset to distinguish from index node blocks.
524  * But some bits are used to mark the node block.
525  */
526 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
527 				>> OFFSET_BIT_SHIFT)
528 enum {
529 	ALLOC_NODE,			/* allocate a new node page if needed */
530 	LOOKUP_NODE,			/* look up a node without readahead */
531 	LOOKUP_NODE_RA,			/*
532 					 * look up a node with readahead called
533 					 * by get_data_block.
534 					 */
535 };
536 
537 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
538 
539 /* maximum retry quota flush count */
540 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
541 
542 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
543 
544 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
545 
546 /* for in-memory extent cache entry */
547 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
548 
549 /* number of extent info in extent cache we try to shrink */
550 #define EXTENT_CACHE_SHRINK_NUMBER	128
551 
552 struct rb_entry {
553 	struct rb_node rb_node;		/* rb node located in rb-tree */
554 	unsigned int ofs;		/* start offset of the entry */
555 	unsigned int len;		/* length of the entry */
556 };
557 
558 struct extent_info {
559 	unsigned int fofs;		/* start offset in a file */
560 	unsigned int len;		/* length of the extent */
561 	u32 blk;			/* start block address of the extent */
562 };
563 
564 struct extent_node {
565 	struct rb_node rb_node;		/* rb node located in rb-tree */
566 	struct extent_info ei;		/* extent info */
567 	struct list_head list;		/* node in global extent list of sbi */
568 	struct extent_tree *et;		/* extent tree pointer */
569 };
570 
571 struct extent_tree {
572 	nid_t ino;			/* inode number */
573 	struct rb_root_cached root;	/* root of extent info rb-tree */
574 	struct extent_node *cached_en;	/* recently accessed extent node */
575 	struct extent_info largest;	/* largested extent info */
576 	struct list_head list;		/* to be used by sbi->zombie_list */
577 	rwlock_t lock;			/* protect extent info rb-tree */
578 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
579 	bool largest_updated;		/* largest extent updated */
580 };
581 
582 /*
583  * This structure is taken from ext4_map_blocks.
584  *
585  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
586  */
587 #define F2FS_MAP_NEW		(1 << BH_New)
588 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
589 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
590 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
591 				F2FS_MAP_UNWRITTEN)
592 
593 struct f2fs_map_blocks {
594 	block_t m_pblk;
595 	block_t m_lblk;
596 	unsigned int m_len;
597 	unsigned int m_flags;
598 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
599 	pgoff_t *m_next_extent;		/* point to next possible extent */
600 	int m_seg_type;
601 	bool m_may_create;		/* indicate it is from write path */
602 };
603 
604 /* for flag in get_data_block */
605 enum {
606 	F2FS_GET_BLOCK_DEFAULT,
607 	F2FS_GET_BLOCK_FIEMAP,
608 	F2FS_GET_BLOCK_BMAP,
609 	F2FS_GET_BLOCK_DIO,
610 	F2FS_GET_BLOCK_PRE_DIO,
611 	F2FS_GET_BLOCK_PRE_AIO,
612 	F2FS_GET_BLOCK_PRECACHE,
613 };
614 
615 /*
616  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
617  */
618 #define FADVISE_COLD_BIT	0x01
619 #define FADVISE_LOST_PINO_BIT	0x02
620 #define FADVISE_ENCRYPT_BIT	0x04
621 #define FADVISE_ENC_NAME_BIT	0x08
622 #define FADVISE_KEEP_SIZE_BIT	0x10
623 #define FADVISE_HOT_BIT		0x20
624 #define FADVISE_VERITY_BIT	0x40	/* reserved */
625 
626 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
627 
628 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
629 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
630 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
631 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
632 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
633 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
634 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
635 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
636 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
637 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
638 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
639 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
640 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
641 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
642 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
643 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
644 
645 #define DEF_DIR_LEVEL		0
646 
647 enum {
648 	GC_FAILURE_PIN,
649 	GC_FAILURE_ATOMIC,
650 	MAX_GC_FAILURE
651 };
652 
653 struct f2fs_inode_info {
654 	struct inode vfs_inode;		/* serve a vfs inode */
655 	unsigned long i_flags;		/* keep an inode flags for ioctl */
656 	unsigned char i_advise;		/* use to give file attribute hints */
657 	unsigned char i_dir_level;	/* use for dentry level for large dir */
658 	unsigned int i_current_depth;	/* only for directory depth */
659 	/* for gc failure statistic */
660 	unsigned int i_gc_failures[MAX_GC_FAILURE];
661 	unsigned int i_pino;		/* parent inode number */
662 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
663 
664 	/* Use below internally in f2fs*/
665 	unsigned long flags;		/* use to pass per-file flags */
666 	struct rw_semaphore i_sem;	/* protect fi info */
667 	atomic_t dirty_pages;		/* # of dirty pages */
668 	f2fs_hash_t chash;		/* hash value of given file name */
669 	unsigned int clevel;		/* maximum level of given file name */
670 	struct task_struct *task;	/* lookup and create consistency */
671 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
672 	nid_t i_xattr_nid;		/* node id that contains xattrs */
673 	loff_t	last_disk_size;		/* lastly written file size */
674 
675 #ifdef CONFIG_QUOTA
676 	struct dquot *i_dquot[MAXQUOTAS];
677 
678 	/* quota space reservation, managed internally by quota code */
679 	qsize_t i_reserved_quota;
680 #endif
681 	struct list_head dirty_list;	/* dirty list for dirs and files */
682 	struct list_head gdirty_list;	/* linked in global dirty list */
683 	struct list_head inmem_ilist;	/* list for inmem inodes */
684 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
685 	struct task_struct *inmem_task;	/* store inmemory task */
686 	struct mutex inmem_lock;	/* lock for inmemory pages */
687 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
688 
689 	/* avoid racing between foreground op and gc */
690 	struct rw_semaphore i_gc_rwsem[2];
691 	struct rw_semaphore i_mmap_sem;
692 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
693 
694 	int i_extra_isize;		/* size of extra space located in i_addr */
695 	kprojid_t i_projid;		/* id for project quota */
696 	int i_inline_xattr_size;	/* inline xattr size */
697 	struct timespec64 i_crtime;	/* inode creation time */
698 	struct timespec64 i_disk_time[4];/* inode disk times */
699 };
700 
701 static inline void get_extent_info(struct extent_info *ext,
702 					struct f2fs_extent *i_ext)
703 {
704 	ext->fofs = le32_to_cpu(i_ext->fofs);
705 	ext->blk = le32_to_cpu(i_ext->blk);
706 	ext->len = le32_to_cpu(i_ext->len);
707 }
708 
709 static inline void set_raw_extent(struct extent_info *ext,
710 					struct f2fs_extent *i_ext)
711 {
712 	i_ext->fofs = cpu_to_le32(ext->fofs);
713 	i_ext->blk = cpu_to_le32(ext->blk);
714 	i_ext->len = cpu_to_le32(ext->len);
715 }
716 
717 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
718 						u32 blk, unsigned int len)
719 {
720 	ei->fofs = fofs;
721 	ei->blk = blk;
722 	ei->len = len;
723 }
724 
725 static inline bool __is_discard_mergeable(struct discard_info *back,
726 			struct discard_info *front, unsigned int max_len)
727 {
728 	return (back->lstart + back->len == front->lstart) &&
729 		(back->len + front->len <= max_len);
730 }
731 
732 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
733 			struct discard_info *back, unsigned int max_len)
734 {
735 	return __is_discard_mergeable(back, cur, max_len);
736 }
737 
738 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
739 			struct discard_info *front, unsigned int max_len)
740 {
741 	return __is_discard_mergeable(cur, front, max_len);
742 }
743 
744 static inline bool __is_extent_mergeable(struct extent_info *back,
745 						struct extent_info *front)
746 {
747 	return (back->fofs + back->len == front->fofs &&
748 			back->blk + back->len == front->blk);
749 }
750 
751 static inline bool __is_back_mergeable(struct extent_info *cur,
752 						struct extent_info *back)
753 {
754 	return __is_extent_mergeable(back, cur);
755 }
756 
757 static inline bool __is_front_mergeable(struct extent_info *cur,
758 						struct extent_info *front)
759 {
760 	return __is_extent_mergeable(cur, front);
761 }
762 
763 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
764 static inline void __try_update_largest_extent(struct extent_tree *et,
765 						struct extent_node *en)
766 {
767 	if (en->ei.len > et->largest.len) {
768 		et->largest = en->ei;
769 		et->largest_updated = true;
770 	}
771 }
772 
773 /*
774  * For free nid management
775  */
776 enum nid_state {
777 	FREE_NID,		/* newly added to free nid list */
778 	PREALLOC_NID,		/* it is preallocated */
779 	MAX_NID_STATE,
780 };
781 
782 struct f2fs_nm_info {
783 	block_t nat_blkaddr;		/* base disk address of NAT */
784 	nid_t max_nid;			/* maximum possible node ids */
785 	nid_t available_nids;		/* # of available node ids */
786 	nid_t next_scan_nid;		/* the next nid to be scanned */
787 	unsigned int ram_thresh;	/* control the memory footprint */
788 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
789 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
790 
791 	/* NAT cache management */
792 	struct radix_tree_root nat_root;/* root of the nat entry cache */
793 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
794 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
795 	struct list_head nat_entries;	/* cached nat entry list (clean) */
796 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
797 	unsigned int nat_cnt;		/* the # of cached nat entries */
798 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
799 	unsigned int nat_blocks;	/* # of nat blocks */
800 
801 	/* free node ids management */
802 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
803 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
804 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
805 	spinlock_t nid_list_lock;	/* protect nid lists ops */
806 	struct mutex build_lock;	/* lock for build free nids */
807 	unsigned char **free_nid_bitmap;
808 	unsigned char *nat_block_bitmap;
809 	unsigned short *free_nid_count;	/* free nid count of NAT block */
810 
811 	/* for checkpoint */
812 	char *nat_bitmap;		/* NAT bitmap pointer */
813 
814 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
815 	unsigned char *nat_bits;	/* NAT bits blocks */
816 	unsigned char *full_nat_bits;	/* full NAT pages */
817 	unsigned char *empty_nat_bits;	/* empty NAT pages */
818 #ifdef CONFIG_F2FS_CHECK_FS
819 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
820 #endif
821 	int bitmap_size;		/* bitmap size */
822 };
823 
824 /*
825  * this structure is used as one of function parameters.
826  * all the information are dedicated to a given direct node block determined
827  * by the data offset in a file.
828  */
829 struct dnode_of_data {
830 	struct inode *inode;		/* vfs inode pointer */
831 	struct page *inode_page;	/* its inode page, NULL is possible */
832 	struct page *node_page;		/* cached direct node page */
833 	nid_t nid;			/* node id of the direct node block */
834 	unsigned int ofs_in_node;	/* data offset in the node page */
835 	bool inode_page_locked;		/* inode page is locked or not */
836 	bool node_changed;		/* is node block changed */
837 	char cur_level;			/* level of hole node page */
838 	char max_level;			/* level of current page located */
839 	block_t	data_blkaddr;		/* block address of the node block */
840 };
841 
842 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
843 		struct page *ipage, struct page *npage, nid_t nid)
844 {
845 	memset(dn, 0, sizeof(*dn));
846 	dn->inode = inode;
847 	dn->inode_page = ipage;
848 	dn->node_page = npage;
849 	dn->nid = nid;
850 }
851 
852 /*
853  * For SIT manager
854  *
855  * By default, there are 6 active log areas across the whole main area.
856  * When considering hot and cold data separation to reduce cleaning overhead,
857  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
858  * respectively.
859  * In the current design, you should not change the numbers intentionally.
860  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
861  * logs individually according to the underlying devices. (default: 6)
862  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
863  * data and 8 for node logs.
864  */
865 #define	NR_CURSEG_DATA_TYPE	(3)
866 #define NR_CURSEG_NODE_TYPE	(3)
867 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
868 
869 enum {
870 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
871 	CURSEG_WARM_DATA,	/* data blocks */
872 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
873 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
874 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
875 	CURSEG_COLD_NODE,	/* indirect node blocks */
876 	NO_CHECK_TYPE,
877 };
878 
879 struct flush_cmd {
880 	struct completion wait;
881 	struct llist_node llnode;
882 	nid_t ino;
883 	int ret;
884 };
885 
886 struct flush_cmd_control {
887 	struct task_struct *f2fs_issue_flush;	/* flush thread */
888 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
889 	atomic_t issued_flush;			/* # of issued flushes */
890 	atomic_t queued_flush;			/* # of queued flushes */
891 	struct llist_head issue_list;		/* list for command issue */
892 	struct llist_node *dispatch_list;	/* list for command dispatch */
893 };
894 
895 struct f2fs_sm_info {
896 	struct sit_info *sit_info;		/* whole segment information */
897 	struct free_segmap_info *free_info;	/* free segment information */
898 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
899 	struct curseg_info *curseg_array;	/* active segment information */
900 
901 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
902 
903 	block_t seg0_blkaddr;		/* block address of 0'th segment */
904 	block_t main_blkaddr;		/* start block address of main area */
905 	block_t ssa_blkaddr;		/* start block address of SSA area */
906 
907 	unsigned int segment_count;	/* total # of segments */
908 	unsigned int main_segments;	/* # of segments in main area */
909 	unsigned int reserved_segments;	/* # of reserved segments */
910 	unsigned int ovp_segments;	/* # of overprovision segments */
911 
912 	/* a threshold to reclaim prefree segments */
913 	unsigned int rec_prefree_segments;
914 
915 	/* for batched trimming */
916 	unsigned int trim_sections;		/* # of sections to trim */
917 
918 	struct list_head sit_entry_set;	/* sit entry set list */
919 
920 	unsigned int ipu_policy;	/* in-place-update policy */
921 	unsigned int min_ipu_util;	/* in-place-update threshold */
922 	unsigned int min_fsync_blocks;	/* threshold for fsync */
923 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
924 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
925 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
926 
927 	/* for flush command control */
928 	struct flush_cmd_control *fcc_info;
929 
930 	/* for discard command control */
931 	struct discard_cmd_control *dcc_info;
932 };
933 
934 /*
935  * For superblock
936  */
937 /*
938  * COUNT_TYPE for monitoring
939  *
940  * f2fs monitors the number of several block types such as on-writeback,
941  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
942  */
943 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
944 enum count_type {
945 	F2FS_DIRTY_DENTS,
946 	F2FS_DIRTY_DATA,
947 	F2FS_DIRTY_QDATA,
948 	F2FS_DIRTY_NODES,
949 	F2FS_DIRTY_META,
950 	F2FS_INMEM_PAGES,
951 	F2FS_DIRTY_IMETA,
952 	F2FS_WB_CP_DATA,
953 	F2FS_WB_DATA,
954 	F2FS_RD_DATA,
955 	F2FS_RD_NODE,
956 	F2FS_RD_META,
957 	F2FS_DIO_WRITE,
958 	F2FS_DIO_READ,
959 	NR_COUNT_TYPE,
960 };
961 
962 /*
963  * The below are the page types of bios used in submit_bio().
964  * The available types are:
965  * DATA			User data pages. It operates as async mode.
966  * NODE			Node pages. It operates as async mode.
967  * META			FS metadata pages such as SIT, NAT, CP.
968  * NR_PAGE_TYPE		The number of page types.
969  * META_FLUSH		Make sure the previous pages are written
970  *			with waiting the bio's completion
971  * ...			Only can be used with META.
972  */
973 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
974 enum page_type {
975 	DATA,
976 	NODE,
977 	META,
978 	NR_PAGE_TYPE,
979 	META_FLUSH,
980 	INMEM,		/* the below types are used by tracepoints only. */
981 	INMEM_DROP,
982 	INMEM_INVALIDATE,
983 	INMEM_REVOKE,
984 	IPU,
985 	OPU,
986 };
987 
988 enum temp_type {
989 	HOT = 0,	/* must be zero for meta bio */
990 	WARM,
991 	COLD,
992 	NR_TEMP_TYPE,
993 };
994 
995 enum need_lock_type {
996 	LOCK_REQ = 0,
997 	LOCK_DONE,
998 	LOCK_RETRY,
999 };
1000 
1001 enum cp_reason_type {
1002 	CP_NO_NEEDED,
1003 	CP_NON_REGULAR,
1004 	CP_HARDLINK,
1005 	CP_SB_NEED_CP,
1006 	CP_WRONG_PINO,
1007 	CP_NO_SPC_ROLL,
1008 	CP_NODE_NEED_CP,
1009 	CP_FASTBOOT_MODE,
1010 	CP_SPEC_LOG_NUM,
1011 	CP_RECOVER_DIR,
1012 };
1013 
1014 enum iostat_type {
1015 	APP_DIRECT_IO,			/* app direct IOs */
1016 	APP_BUFFERED_IO,		/* app buffered IOs */
1017 	APP_WRITE_IO,			/* app write IOs */
1018 	APP_MAPPED_IO,			/* app mapped IOs */
1019 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1020 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1021 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1022 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1023 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1024 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1025 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1026 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1027 	FS_DISCARD,			/* discard */
1028 	NR_IO_TYPE,
1029 };
1030 
1031 struct f2fs_io_info {
1032 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1033 	nid_t ino;		/* inode number */
1034 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1035 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1036 	int op;			/* contains REQ_OP_ */
1037 	int op_flags;		/* req_flag_bits */
1038 	block_t new_blkaddr;	/* new block address to be written */
1039 	block_t old_blkaddr;	/* old block address before Cow */
1040 	struct page *page;	/* page to be written */
1041 	struct page *encrypted_page;	/* encrypted page */
1042 	struct list_head list;		/* serialize IOs */
1043 	bool submitted;		/* indicate IO submission */
1044 	int need_lock;		/* indicate we need to lock cp_rwsem */
1045 	bool in_list;		/* indicate fio is in io_list */
1046 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1047 	bool retry;		/* need to reallocate block address */
1048 	enum iostat_type io_type;	/* io type */
1049 	struct writeback_control *io_wbc; /* writeback control */
1050 	unsigned char version;		/* version of the node */
1051 };
1052 
1053 #define is_read_io(rw) ((rw) == READ)
1054 struct f2fs_bio_info {
1055 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1056 	struct bio *bio;		/* bios to merge */
1057 	sector_t last_block_in_bio;	/* last block number */
1058 	struct f2fs_io_info fio;	/* store buffered io info. */
1059 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1060 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1061 	struct list_head io_list;	/* track fios */
1062 };
1063 
1064 #define FDEV(i)				(sbi->devs[i])
1065 #define RDEV(i)				(raw_super->devs[i])
1066 struct f2fs_dev_info {
1067 	struct block_device *bdev;
1068 	char path[MAX_PATH_LEN];
1069 	unsigned int total_segments;
1070 	block_t start_blk;
1071 	block_t end_blk;
1072 #ifdef CONFIG_BLK_DEV_ZONED
1073 	unsigned int nr_blkz;			/* Total number of zones */
1074 	u8 *blkz_type;				/* Array of zones type */
1075 #endif
1076 };
1077 
1078 enum inode_type {
1079 	DIR_INODE,			/* for dirty dir inode */
1080 	FILE_INODE,			/* for dirty regular/symlink inode */
1081 	DIRTY_META,			/* for all dirtied inode metadata */
1082 	ATOMIC_FILE,			/* for all atomic files */
1083 	NR_INODE_TYPE,
1084 };
1085 
1086 /* for inner inode cache management */
1087 struct inode_management {
1088 	struct radix_tree_root ino_root;	/* ino entry array */
1089 	spinlock_t ino_lock;			/* for ino entry lock */
1090 	struct list_head ino_list;		/* inode list head */
1091 	unsigned long ino_num;			/* number of entries */
1092 };
1093 
1094 /* For s_flag in struct f2fs_sb_info */
1095 enum {
1096 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1097 	SBI_IS_CLOSE,				/* specify unmounting */
1098 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1099 	SBI_POR_DOING,				/* recovery is doing or not */
1100 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1101 	SBI_NEED_CP,				/* need to checkpoint */
1102 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1103 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1104 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1105 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1106 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1107 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1108 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1109 };
1110 
1111 enum {
1112 	CP_TIME,
1113 	REQ_TIME,
1114 	DISCARD_TIME,
1115 	GC_TIME,
1116 	DISABLE_TIME,
1117 	UMOUNT_DISCARD_TIMEOUT,
1118 	MAX_TIME,
1119 };
1120 
1121 enum {
1122 	GC_NORMAL,
1123 	GC_IDLE_CB,
1124 	GC_IDLE_GREEDY,
1125 	GC_URGENT,
1126 };
1127 
1128 enum {
1129 	WHINT_MODE_OFF,		/* not pass down write hints */
1130 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1131 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1132 };
1133 
1134 enum {
1135 	ALLOC_MODE_DEFAULT,	/* stay default */
1136 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1137 };
1138 
1139 enum fsync_mode {
1140 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1141 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1142 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1143 };
1144 
1145 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1146 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1147 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1148 #else
1149 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1150 #endif
1151 
1152 struct f2fs_sb_info {
1153 	struct super_block *sb;			/* pointer to VFS super block */
1154 	struct proc_dir_entry *s_proc;		/* proc entry */
1155 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1156 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1157 	int valid_super_block;			/* valid super block no */
1158 	unsigned long s_flag;				/* flags for sbi */
1159 	struct mutex writepages;		/* mutex for writepages() */
1160 
1161 #ifdef CONFIG_BLK_DEV_ZONED
1162 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1163 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1164 #endif
1165 
1166 	/* for node-related operations */
1167 	struct f2fs_nm_info *nm_info;		/* node manager */
1168 	struct inode *node_inode;		/* cache node blocks */
1169 
1170 	/* for segment-related operations */
1171 	struct f2fs_sm_info *sm_info;		/* segment manager */
1172 
1173 	/* for bio operations */
1174 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1175 	/* keep migration IO order for LFS mode */
1176 	struct rw_semaphore io_order_lock;
1177 	mempool_t *write_io_dummy;		/* Dummy pages */
1178 
1179 	/* for checkpoint */
1180 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1181 	int cur_cp_pack;			/* remain current cp pack */
1182 	spinlock_t cp_lock;			/* for flag in ckpt */
1183 	struct inode *meta_inode;		/* cache meta blocks */
1184 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1185 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1186 	struct rw_semaphore node_write;		/* locking node writes */
1187 	struct rw_semaphore node_change;	/* locking node change */
1188 	wait_queue_head_t cp_wait;
1189 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1190 	long interval_time[MAX_TIME];		/* to store thresholds */
1191 
1192 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1193 
1194 	spinlock_t fsync_node_lock;		/* for node entry lock */
1195 	struct list_head fsync_node_list;	/* node list head */
1196 	unsigned int fsync_seg_id;		/* sequence id */
1197 	unsigned int fsync_node_num;		/* number of node entries */
1198 
1199 	/* for orphan inode, use 0'th array */
1200 	unsigned int max_orphans;		/* max orphan inodes */
1201 
1202 	/* for inode management */
1203 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1204 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1205 
1206 	/* for extent tree cache */
1207 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1208 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1209 	struct list_head extent_list;		/* lru list for shrinker */
1210 	spinlock_t extent_lock;			/* locking extent lru list */
1211 	atomic_t total_ext_tree;		/* extent tree count */
1212 	struct list_head zombie_list;		/* extent zombie tree list */
1213 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1214 	atomic_t total_ext_node;		/* extent info count */
1215 
1216 	/* basic filesystem units */
1217 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1218 	unsigned int log_blocksize;		/* log2 block size */
1219 	unsigned int blocksize;			/* block size */
1220 	unsigned int root_ino_num;		/* root inode number*/
1221 	unsigned int node_ino_num;		/* node inode number*/
1222 	unsigned int meta_ino_num;		/* meta inode number*/
1223 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1224 	unsigned int blocks_per_seg;		/* blocks per segment */
1225 	unsigned int segs_per_sec;		/* segments per section */
1226 	unsigned int secs_per_zone;		/* sections per zone */
1227 	unsigned int total_sections;		/* total section count */
1228 	unsigned int total_node_count;		/* total node block count */
1229 	unsigned int total_valid_node_count;	/* valid node block count */
1230 	loff_t max_file_blocks;			/* max block index of file */
1231 	int dir_level;				/* directory level */
1232 	int readdir_ra;				/* readahead inode in readdir */
1233 
1234 	block_t user_block_count;		/* # of user blocks */
1235 	block_t total_valid_block_count;	/* # of valid blocks */
1236 	block_t discard_blks;			/* discard command candidats */
1237 	block_t last_valid_block_count;		/* for recovery */
1238 	block_t reserved_blocks;		/* configurable reserved blocks */
1239 	block_t current_reserved_blocks;	/* current reserved blocks */
1240 
1241 	/* Additional tracking for no checkpoint mode */
1242 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1243 
1244 	unsigned int nquota_files;		/* # of quota sysfile */
1245 
1246 	u32 s_next_generation;			/* for NFS support */
1247 
1248 	/* # of pages, see count_type */
1249 	atomic_t nr_pages[NR_COUNT_TYPE];
1250 	/* # of allocated blocks */
1251 	struct percpu_counter alloc_valid_block_count;
1252 
1253 	/* writeback control */
1254 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1255 
1256 	/* valid inode count */
1257 	struct percpu_counter total_valid_inode_count;
1258 
1259 	struct f2fs_mount_info mount_opt;	/* mount options */
1260 
1261 	/* for cleaning operations */
1262 	struct mutex gc_mutex;			/* mutex for GC */
1263 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1264 	unsigned int cur_victim_sec;		/* current victim section num */
1265 	unsigned int gc_mode;			/* current GC state */
1266 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1267 	/* for skip statistic */
1268 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1269 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1270 
1271 	/* threshold for gc trials on pinned files */
1272 	u64 gc_pin_file_threshold;
1273 
1274 	/* maximum # of trials to find a victim segment for SSR and GC */
1275 	unsigned int max_victim_search;
1276 	/* migration granularity of garbage collection, unit: segment */
1277 	unsigned int migration_granularity;
1278 
1279 	/*
1280 	 * for stat information.
1281 	 * one is for the LFS mode, and the other is for the SSR mode.
1282 	 */
1283 #ifdef CONFIG_F2FS_STAT_FS
1284 	struct f2fs_stat_info *stat_info;	/* FS status information */
1285 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1286 	unsigned int segment_count[2];		/* # of allocated segments */
1287 	unsigned int block_count[2];		/* # of allocated blocks */
1288 	atomic_t inplace_count;		/* # of inplace update */
1289 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1290 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1291 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1292 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1293 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1294 	atomic_t inline_inode;			/* # of inline_data inodes */
1295 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1296 	atomic_t aw_cnt;			/* # of atomic writes */
1297 	atomic_t vw_cnt;			/* # of volatile writes */
1298 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1299 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1300 	int bg_gc;				/* background gc calls */
1301 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1302 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1303 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1304 #endif
1305 	spinlock_t stat_lock;			/* lock for stat operations */
1306 
1307 	/* For app/fs IO statistics */
1308 	spinlock_t iostat_lock;
1309 	unsigned long long write_iostat[NR_IO_TYPE];
1310 	bool iostat_enable;
1311 
1312 	/* For sysfs suppport */
1313 	struct kobject s_kobj;
1314 	struct completion s_kobj_unregister;
1315 
1316 	/* For shrinker support */
1317 	struct list_head s_list;
1318 	int s_ndevs;				/* number of devices */
1319 	struct f2fs_dev_info *devs;		/* for device list */
1320 	unsigned int dirty_device;		/* for checkpoint data flush */
1321 	spinlock_t dev_lock;			/* protect dirty_device */
1322 	struct mutex umount_mutex;
1323 	unsigned int shrinker_run_no;
1324 
1325 	/* For write statistics */
1326 	u64 sectors_written_start;
1327 	u64 kbytes_written;
1328 
1329 	/* Reference to checksum algorithm driver via cryptoapi */
1330 	struct crypto_shash *s_chksum_driver;
1331 
1332 	/* Precomputed FS UUID checksum for seeding other checksums */
1333 	__u32 s_chksum_seed;
1334 };
1335 
1336 struct f2fs_private_dio {
1337 	struct inode *inode;
1338 	void *orig_private;
1339 	bio_end_io_t *orig_end_io;
1340 	bool write;
1341 };
1342 
1343 #ifdef CONFIG_F2FS_FAULT_INJECTION
1344 #define f2fs_show_injection_info(type)					\
1345 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n",	\
1346 		KERN_INFO, f2fs_fault_name[type],			\
1347 		__func__, __builtin_return_address(0))
1348 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1349 {
1350 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1351 
1352 	if (!ffi->inject_rate)
1353 		return false;
1354 
1355 	if (!IS_FAULT_SET(ffi, type))
1356 		return false;
1357 
1358 	atomic_inc(&ffi->inject_ops);
1359 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1360 		atomic_set(&ffi->inject_ops, 0);
1361 		return true;
1362 	}
1363 	return false;
1364 }
1365 #else
1366 #define f2fs_show_injection_info(type) do { } while (0)
1367 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1368 {
1369 	return false;
1370 }
1371 #endif
1372 
1373 /* For write statistics. Suppose sector size is 512 bytes,
1374  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1375  */
1376 #define BD_PART_WRITTEN(s)						 \
1377 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1378 		(s)->sectors_written_start) >> 1)
1379 
1380 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1381 {
1382 	unsigned long now = jiffies;
1383 
1384 	sbi->last_time[type] = now;
1385 
1386 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1387 	if (type == REQ_TIME) {
1388 		sbi->last_time[DISCARD_TIME] = now;
1389 		sbi->last_time[GC_TIME] = now;
1390 	}
1391 }
1392 
1393 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1394 {
1395 	unsigned long interval = sbi->interval_time[type] * HZ;
1396 
1397 	return time_after(jiffies, sbi->last_time[type] + interval);
1398 }
1399 
1400 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1401 						int type)
1402 {
1403 	unsigned long interval = sbi->interval_time[type] * HZ;
1404 	unsigned int wait_ms = 0;
1405 	long delta;
1406 
1407 	delta = (sbi->last_time[type] + interval) - jiffies;
1408 	if (delta > 0)
1409 		wait_ms = jiffies_to_msecs(delta);
1410 
1411 	return wait_ms;
1412 }
1413 
1414 /*
1415  * Inline functions
1416  */
1417 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1418 			      const void *address, unsigned int length)
1419 {
1420 	struct {
1421 		struct shash_desc shash;
1422 		char ctx[4];
1423 	} desc;
1424 	int err;
1425 
1426 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1427 
1428 	desc.shash.tfm = sbi->s_chksum_driver;
1429 	desc.shash.flags = 0;
1430 	*(u32 *)desc.ctx = crc;
1431 
1432 	err = crypto_shash_update(&desc.shash, address, length);
1433 	BUG_ON(err);
1434 
1435 	return *(u32 *)desc.ctx;
1436 }
1437 
1438 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1439 			   unsigned int length)
1440 {
1441 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1442 }
1443 
1444 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1445 				  void *buf, size_t buf_size)
1446 {
1447 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1448 }
1449 
1450 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1451 			      const void *address, unsigned int length)
1452 {
1453 	return __f2fs_crc32(sbi, crc, address, length);
1454 }
1455 
1456 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1457 {
1458 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1459 }
1460 
1461 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1462 {
1463 	return sb->s_fs_info;
1464 }
1465 
1466 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1467 {
1468 	return F2FS_SB(inode->i_sb);
1469 }
1470 
1471 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1472 {
1473 	return F2FS_I_SB(mapping->host);
1474 }
1475 
1476 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1477 {
1478 	return F2FS_M_SB(page->mapping);
1479 }
1480 
1481 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1482 {
1483 	return (struct f2fs_super_block *)(sbi->raw_super);
1484 }
1485 
1486 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1487 {
1488 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1489 }
1490 
1491 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1492 {
1493 	return (struct f2fs_node *)page_address(page);
1494 }
1495 
1496 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1497 {
1498 	return &((struct f2fs_node *)page_address(page))->i;
1499 }
1500 
1501 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1502 {
1503 	return (struct f2fs_nm_info *)(sbi->nm_info);
1504 }
1505 
1506 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1507 {
1508 	return (struct f2fs_sm_info *)(sbi->sm_info);
1509 }
1510 
1511 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1512 {
1513 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1514 }
1515 
1516 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1517 {
1518 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1519 }
1520 
1521 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1522 {
1523 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1524 }
1525 
1526 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1527 {
1528 	return sbi->meta_inode->i_mapping;
1529 }
1530 
1531 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1532 {
1533 	return sbi->node_inode->i_mapping;
1534 }
1535 
1536 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1537 {
1538 	return test_bit(type, &sbi->s_flag);
1539 }
1540 
1541 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1542 {
1543 	set_bit(type, &sbi->s_flag);
1544 }
1545 
1546 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1547 {
1548 	clear_bit(type, &sbi->s_flag);
1549 }
1550 
1551 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1552 {
1553 	return le64_to_cpu(cp->checkpoint_ver);
1554 }
1555 
1556 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1557 {
1558 	if (type < F2FS_MAX_QUOTAS)
1559 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1560 	return 0;
1561 }
1562 
1563 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1564 {
1565 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1566 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1567 }
1568 
1569 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1570 {
1571 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1572 
1573 	return ckpt_flags & f;
1574 }
1575 
1576 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1577 {
1578 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1579 }
1580 
1581 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1582 {
1583 	unsigned int ckpt_flags;
1584 
1585 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1586 	ckpt_flags |= f;
1587 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1588 }
1589 
1590 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1591 {
1592 	unsigned long flags;
1593 
1594 	spin_lock_irqsave(&sbi->cp_lock, flags);
1595 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1596 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1597 }
1598 
1599 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1600 {
1601 	unsigned int ckpt_flags;
1602 
1603 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1604 	ckpt_flags &= (~f);
1605 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1606 }
1607 
1608 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1609 {
1610 	unsigned long flags;
1611 
1612 	spin_lock_irqsave(&sbi->cp_lock, flags);
1613 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1614 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1615 }
1616 
1617 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1618 {
1619 	unsigned long flags;
1620 
1621 	/*
1622 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1623 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1624 	 * so let's rely on regular fsck or unclean shutdown.
1625 	 */
1626 
1627 	if (lock)
1628 		spin_lock_irqsave(&sbi->cp_lock, flags);
1629 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1630 	kvfree(NM_I(sbi)->nat_bits);
1631 	NM_I(sbi)->nat_bits = NULL;
1632 	if (lock)
1633 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1634 }
1635 
1636 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1637 					struct cp_control *cpc)
1638 {
1639 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1640 
1641 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1642 }
1643 
1644 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1645 {
1646 	down_read(&sbi->cp_rwsem);
1647 }
1648 
1649 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1650 {
1651 	return down_read_trylock(&sbi->cp_rwsem);
1652 }
1653 
1654 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1655 {
1656 	up_read(&sbi->cp_rwsem);
1657 }
1658 
1659 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1660 {
1661 	down_write(&sbi->cp_rwsem);
1662 }
1663 
1664 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1665 {
1666 	up_write(&sbi->cp_rwsem);
1667 }
1668 
1669 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1670 {
1671 	int reason = CP_SYNC;
1672 
1673 	if (test_opt(sbi, FASTBOOT))
1674 		reason = CP_FASTBOOT;
1675 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1676 		reason = CP_UMOUNT;
1677 	return reason;
1678 }
1679 
1680 static inline bool __remain_node_summaries(int reason)
1681 {
1682 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1683 }
1684 
1685 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1686 {
1687 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1688 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1689 }
1690 
1691 /*
1692  * Check whether the inode has blocks or not
1693  */
1694 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1695 {
1696 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1697 
1698 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1699 }
1700 
1701 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1702 {
1703 	return ofs == XATTR_NODE_OFFSET;
1704 }
1705 
1706 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1707 					struct inode *inode, bool cap)
1708 {
1709 	if (!inode)
1710 		return true;
1711 	if (!test_opt(sbi, RESERVE_ROOT))
1712 		return false;
1713 	if (IS_NOQUOTA(inode))
1714 		return true;
1715 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1716 		return true;
1717 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1718 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1719 		return true;
1720 	if (cap && capable(CAP_SYS_RESOURCE))
1721 		return true;
1722 	return false;
1723 }
1724 
1725 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1726 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1727 				 struct inode *inode, blkcnt_t *count)
1728 {
1729 	blkcnt_t diff = 0, release = 0;
1730 	block_t avail_user_block_count;
1731 	int ret;
1732 
1733 	ret = dquot_reserve_block(inode, *count);
1734 	if (ret)
1735 		return ret;
1736 
1737 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1738 		f2fs_show_injection_info(FAULT_BLOCK);
1739 		release = *count;
1740 		goto enospc;
1741 	}
1742 
1743 	/*
1744 	 * let's increase this in prior to actual block count change in order
1745 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1746 	 */
1747 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1748 
1749 	spin_lock(&sbi->stat_lock);
1750 	sbi->total_valid_block_count += (block_t)(*count);
1751 	avail_user_block_count = sbi->user_block_count -
1752 					sbi->current_reserved_blocks;
1753 
1754 	if (!__allow_reserved_blocks(sbi, inode, true))
1755 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1756 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1757 		avail_user_block_count -= sbi->unusable_block_count;
1758 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1759 		diff = sbi->total_valid_block_count - avail_user_block_count;
1760 		if (diff > *count)
1761 			diff = *count;
1762 		*count -= diff;
1763 		release = diff;
1764 		sbi->total_valid_block_count -= diff;
1765 		if (!*count) {
1766 			spin_unlock(&sbi->stat_lock);
1767 			goto enospc;
1768 		}
1769 	}
1770 	spin_unlock(&sbi->stat_lock);
1771 
1772 	if (unlikely(release)) {
1773 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1774 		dquot_release_reservation_block(inode, release);
1775 	}
1776 	f2fs_i_blocks_write(inode, *count, true, true);
1777 	return 0;
1778 
1779 enospc:
1780 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1781 	dquot_release_reservation_block(inode, release);
1782 	return -ENOSPC;
1783 }
1784 
1785 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1786 						struct inode *inode,
1787 						block_t count)
1788 {
1789 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1790 
1791 	spin_lock(&sbi->stat_lock);
1792 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1793 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1794 	sbi->total_valid_block_count -= (block_t)count;
1795 	if (sbi->reserved_blocks &&
1796 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1797 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1798 					sbi->current_reserved_blocks + count);
1799 	spin_unlock(&sbi->stat_lock);
1800 	f2fs_i_blocks_write(inode, count, false, true);
1801 }
1802 
1803 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1804 {
1805 	atomic_inc(&sbi->nr_pages[count_type]);
1806 
1807 	if (count_type == F2FS_DIRTY_DENTS ||
1808 			count_type == F2FS_DIRTY_NODES ||
1809 			count_type == F2FS_DIRTY_META ||
1810 			count_type == F2FS_DIRTY_QDATA ||
1811 			count_type == F2FS_DIRTY_IMETA)
1812 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1813 }
1814 
1815 static inline void inode_inc_dirty_pages(struct inode *inode)
1816 {
1817 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1818 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1819 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1820 	if (IS_NOQUOTA(inode))
1821 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1822 }
1823 
1824 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1825 {
1826 	atomic_dec(&sbi->nr_pages[count_type]);
1827 }
1828 
1829 static inline void inode_dec_dirty_pages(struct inode *inode)
1830 {
1831 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1832 			!S_ISLNK(inode->i_mode))
1833 		return;
1834 
1835 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1836 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1837 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1838 	if (IS_NOQUOTA(inode))
1839 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1840 }
1841 
1842 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1843 {
1844 	return atomic_read(&sbi->nr_pages[count_type]);
1845 }
1846 
1847 static inline int get_dirty_pages(struct inode *inode)
1848 {
1849 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1850 }
1851 
1852 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1853 {
1854 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1855 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1856 						sbi->log_blocks_per_seg;
1857 
1858 	return segs / sbi->segs_per_sec;
1859 }
1860 
1861 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1862 {
1863 	return sbi->total_valid_block_count;
1864 }
1865 
1866 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1867 {
1868 	return sbi->discard_blks;
1869 }
1870 
1871 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1872 {
1873 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1874 
1875 	/* return NAT or SIT bitmap */
1876 	if (flag == NAT_BITMAP)
1877 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1878 	else if (flag == SIT_BITMAP)
1879 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1880 
1881 	return 0;
1882 }
1883 
1884 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1885 {
1886 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1887 }
1888 
1889 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1890 {
1891 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1892 	int offset;
1893 
1894 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1895 		offset = (flag == SIT_BITMAP) ?
1896 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1897 		return &ckpt->sit_nat_version_bitmap + offset;
1898 	}
1899 
1900 	if (__cp_payload(sbi) > 0) {
1901 		if (flag == NAT_BITMAP)
1902 			return &ckpt->sit_nat_version_bitmap;
1903 		else
1904 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1905 	} else {
1906 		offset = (flag == NAT_BITMAP) ?
1907 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1908 		return &ckpt->sit_nat_version_bitmap + offset;
1909 	}
1910 }
1911 
1912 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1913 {
1914 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1915 
1916 	if (sbi->cur_cp_pack == 2)
1917 		start_addr += sbi->blocks_per_seg;
1918 	return start_addr;
1919 }
1920 
1921 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1922 {
1923 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1924 
1925 	if (sbi->cur_cp_pack == 1)
1926 		start_addr += sbi->blocks_per_seg;
1927 	return start_addr;
1928 }
1929 
1930 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1931 {
1932 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1933 }
1934 
1935 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1936 {
1937 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1938 }
1939 
1940 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1941 					struct inode *inode, bool is_inode)
1942 {
1943 	block_t	valid_block_count;
1944 	unsigned int valid_node_count;
1945 	int err;
1946 
1947 	if (is_inode) {
1948 		if (inode) {
1949 			err = dquot_alloc_inode(inode);
1950 			if (err)
1951 				return err;
1952 		}
1953 	} else {
1954 		err = dquot_reserve_block(inode, 1);
1955 		if (err)
1956 			return err;
1957 	}
1958 
1959 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1960 		f2fs_show_injection_info(FAULT_BLOCK);
1961 		goto enospc;
1962 	}
1963 
1964 	spin_lock(&sbi->stat_lock);
1965 
1966 	valid_block_count = sbi->total_valid_block_count +
1967 					sbi->current_reserved_blocks + 1;
1968 
1969 	if (!__allow_reserved_blocks(sbi, inode, false))
1970 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1971 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1972 		valid_block_count += sbi->unusable_block_count;
1973 
1974 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1975 		spin_unlock(&sbi->stat_lock);
1976 		goto enospc;
1977 	}
1978 
1979 	valid_node_count = sbi->total_valid_node_count + 1;
1980 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1981 		spin_unlock(&sbi->stat_lock);
1982 		goto enospc;
1983 	}
1984 
1985 	sbi->total_valid_node_count++;
1986 	sbi->total_valid_block_count++;
1987 	spin_unlock(&sbi->stat_lock);
1988 
1989 	if (inode) {
1990 		if (is_inode)
1991 			f2fs_mark_inode_dirty_sync(inode, true);
1992 		else
1993 			f2fs_i_blocks_write(inode, 1, true, true);
1994 	}
1995 
1996 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1997 	return 0;
1998 
1999 enospc:
2000 	if (is_inode) {
2001 		if (inode)
2002 			dquot_free_inode(inode);
2003 	} else {
2004 		dquot_release_reservation_block(inode, 1);
2005 	}
2006 	return -ENOSPC;
2007 }
2008 
2009 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2010 					struct inode *inode, bool is_inode)
2011 {
2012 	spin_lock(&sbi->stat_lock);
2013 
2014 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2015 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2016 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2017 
2018 	sbi->total_valid_node_count--;
2019 	sbi->total_valid_block_count--;
2020 	if (sbi->reserved_blocks &&
2021 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2022 		sbi->current_reserved_blocks++;
2023 
2024 	spin_unlock(&sbi->stat_lock);
2025 
2026 	if (is_inode)
2027 		dquot_free_inode(inode);
2028 	else
2029 		f2fs_i_blocks_write(inode, 1, false, true);
2030 }
2031 
2032 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2033 {
2034 	return sbi->total_valid_node_count;
2035 }
2036 
2037 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2038 {
2039 	percpu_counter_inc(&sbi->total_valid_inode_count);
2040 }
2041 
2042 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2043 {
2044 	percpu_counter_dec(&sbi->total_valid_inode_count);
2045 }
2046 
2047 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2048 {
2049 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2050 }
2051 
2052 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2053 						pgoff_t index, bool for_write)
2054 {
2055 	struct page *page;
2056 
2057 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2058 		if (!for_write)
2059 			page = find_get_page_flags(mapping, index,
2060 							FGP_LOCK | FGP_ACCESSED);
2061 		else
2062 			page = find_lock_page(mapping, index);
2063 		if (page)
2064 			return page;
2065 
2066 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2067 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2068 			return NULL;
2069 		}
2070 	}
2071 
2072 	if (!for_write)
2073 		return grab_cache_page(mapping, index);
2074 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2075 }
2076 
2077 static inline struct page *f2fs_pagecache_get_page(
2078 				struct address_space *mapping, pgoff_t index,
2079 				int fgp_flags, gfp_t gfp_mask)
2080 {
2081 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2082 		f2fs_show_injection_info(FAULT_PAGE_GET);
2083 		return NULL;
2084 	}
2085 
2086 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2087 }
2088 
2089 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2090 {
2091 	char *src_kaddr = kmap(src);
2092 	char *dst_kaddr = kmap(dst);
2093 
2094 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2095 	kunmap(dst);
2096 	kunmap(src);
2097 }
2098 
2099 static inline void f2fs_put_page(struct page *page, int unlock)
2100 {
2101 	if (!page)
2102 		return;
2103 
2104 	if (unlock) {
2105 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2106 		unlock_page(page);
2107 	}
2108 	put_page(page);
2109 }
2110 
2111 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2112 {
2113 	if (dn->node_page)
2114 		f2fs_put_page(dn->node_page, 1);
2115 	if (dn->inode_page && dn->node_page != dn->inode_page)
2116 		f2fs_put_page(dn->inode_page, 0);
2117 	dn->node_page = NULL;
2118 	dn->inode_page = NULL;
2119 }
2120 
2121 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2122 					size_t size)
2123 {
2124 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2125 }
2126 
2127 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2128 						gfp_t flags)
2129 {
2130 	void *entry;
2131 
2132 	entry = kmem_cache_alloc(cachep, flags);
2133 	if (!entry)
2134 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2135 	return entry;
2136 }
2137 
2138 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2139 						int npages, bool no_fail)
2140 {
2141 	struct bio *bio;
2142 
2143 	if (no_fail) {
2144 		/* No failure on bio allocation */
2145 		bio = bio_alloc(GFP_NOIO, npages);
2146 		if (!bio)
2147 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2148 		return bio;
2149 	}
2150 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2151 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2152 		return NULL;
2153 	}
2154 
2155 	return bio_alloc(GFP_KERNEL, npages);
2156 }
2157 
2158 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2159 {
2160 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2161 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2162 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2163 		get_pages(sbi, F2FS_DIO_READ) ||
2164 		get_pages(sbi, F2FS_DIO_WRITE) ||
2165 		atomic_read(&SM_I(sbi)->dcc_info->queued_discard) ||
2166 		atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2167 		return false;
2168 	return f2fs_time_over(sbi, type);
2169 }
2170 
2171 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2172 				unsigned long index, void *item)
2173 {
2174 	while (radix_tree_insert(root, index, item))
2175 		cond_resched();
2176 }
2177 
2178 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2179 
2180 static inline bool IS_INODE(struct page *page)
2181 {
2182 	struct f2fs_node *p = F2FS_NODE(page);
2183 
2184 	return RAW_IS_INODE(p);
2185 }
2186 
2187 static inline int offset_in_addr(struct f2fs_inode *i)
2188 {
2189 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2190 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2191 }
2192 
2193 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2194 {
2195 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2196 }
2197 
2198 static inline int f2fs_has_extra_attr(struct inode *inode);
2199 static inline block_t datablock_addr(struct inode *inode,
2200 			struct page *node_page, unsigned int offset)
2201 {
2202 	struct f2fs_node *raw_node;
2203 	__le32 *addr_array;
2204 	int base = 0;
2205 	bool is_inode = IS_INODE(node_page);
2206 
2207 	raw_node = F2FS_NODE(node_page);
2208 
2209 	/* from GC path only */
2210 	if (is_inode) {
2211 		if (!inode)
2212 			base = offset_in_addr(&raw_node->i);
2213 		else if (f2fs_has_extra_attr(inode))
2214 			base = get_extra_isize(inode);
2215 	}
2216 
2217 	addr_array = blkaddr_in_node(raw_node);
2218 	return le32_to_cpu(addr_array[base + offset]);
2219 }
2220 
2221 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2222 {
2223 	int mask;
2224 
2225 	addr += (nr >> 3);
2226 	mask = 1 << (7 - (nr & 0x07));
2227 	return mask & *addr;
2228 }
2229 
2230 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2231 {
2232 	int mask;
2233 
2234 	addr += (nr >> 3);
2235 	mask = 1 << (7 - (nr & 0x07));
2236 	*addr |= mask;
2237 }
2238 
2239 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2240 {
2241 	int mask;
2242 
2243 	addr += (nr >> 3);
2244 	mask = 1 << (7 - (nr & 0x07));
2245 	*addr &= ~mask;
2246 }
2247 
2248 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2249 {
2250 	int mask;
2251 	int ret;
2252 
2253 	addr += (nr >> 3);
2254 	mask = 1 << (7 - (nr & 0x07));
2255 	ret = mask & *addr;
2256 	*addr |= mask;
2257 	return ret;
2258 }
2259 
2260 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2261 {
2262 	int mask;
2263 	int ret;
2264 
2265 	addr += (nr >> 3);
2266 	mask = 1 << (7 - (nr & 0x07));
2267 	ret = mask & *addr;
2268 	*addr &= ~mask;
2269 	return ret;
2270 }
2271 
2272 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2273 {
2274 	int mask;
2275 
2276 	addr += (nr >> 3);
2277 	mask = 1 << (7 - (nr & 0x07));
2278 	*addr ^= mask;
2279 }
2280 
2281 /*
2282  * Inode flags
2283  */
2284 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2285 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2286 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2287 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2288 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2289 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2290 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2291 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2292 /* Reserved for compression usage... */
2293 #define F2FS_DIRTY_FL			0x00000100
2294 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2295 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2296 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2297 /* End compression flags --- maybe not all used */
2298 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2299 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2300 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2301 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2302 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2303 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2304 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2305 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2306 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2307 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2308 #define F2FS_NOCOW_FL			0x00800000 /* Do not cow file */
2309 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2310 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2311 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2312 
2313 #define F2FS_FL_USER_VISIBLE		0x30CBDFFF /* User visible flags */
2314 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2315 
2316 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2317 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2318 					 F2FS_IMMUTABLE_FL | \
2319 					 F2FS_APPEND_FL | \
2320 					 F2FS_NODUMP_FL | \
2321 					 F2FS_NOATIME_FL | \
2322 					 F2FS_PROJINHERIT_FL)
2323 
2324 /* Flags that should be inherited by new inodes from their parent. */
2325 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2326 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2327 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2328 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2329 			   F2FS_PROJINHERIT_FL)
2330 
2331 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2332 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2333 
2334 /* Flags that are appropriate for non-directories/regular files. */
2335 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2336 
2337 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2338 {
2339 	if (S_ISDIR(mode))
2340 		return flags;
2341 	else if (S_ISREG(mode))
2342 		return flags & F2FS_REG_FLMASK;
2343 	else
2344 		return flags & F2FS_OTHER_FLMASK;
2345 }
2346 
2347 /* used for f2fs_inode_info->flags */
2348 enum {
2349 	FI_NEW_INODE,		/* indicate newly allocated inode */
2350 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2351 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2352 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2353 	FI_INC_LINK,		/* need to increment i_nlink */
2354 	FI_ACL_MODE,		/* indicate acl mode */
2355 	FI_NO_ALLOC,		/* should not allocate any blocks */
2356 	FI_FREE_NID,		/* free allocated nide */
2357 	FI_NO_EXTENT,		/* not to use the extent cache */
2358 	FI_INLINE_XATTR,	/* used for inline xattr */
2359 	FI_INLINE_DATA,		/* used for inline data*/
2360 	FI_INLINE_DENTRY,	/* used for inline dentry */
2361 	FI_APPEND_WRITE,	/* inode has appended data */
2362 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2363 	FI_NEED_IPU,		/* used for ipu per file */
2364 	FI_ATOMIC_FILE,		/* indicate atomic file */
2365 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2366 	FI_VOLATILE_FILE,	/* indicate volatile file */
2367 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2368 	FI_DROP_CACHE,		/* drop dirty page cache */
2369 	FI_DATA_EXIST,		/* indicate data exists */
2370 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2371 	FI_DO_DEFRAG,		/* indicate defragment is running */
2372 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2373 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2374 	FI_HOT_DATA,		/* indicate file is hot */
2375 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2376 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2377 	FI_PIN_FILE,		/* indicate file should not be gced */
2378 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2379 };
2380 
2381 static inline void __mark_inode_dirty_flag(struct inode *inode,
2382 						int flag, bool set)
2383 {
2384 	switch (flag) {
2385 	case FI_INLINE_XATTR:
2386 	case FI_INLINE_DATA:
2387 	case FI_INLINE_DENTRY:
2388 	case FI_NEW_INODE:
2389 		if (set)
2390 			return;
2391 		/* fall through */
2392 	case FI_DATA_EXIST:
2393 	case FI_INLINE_DOTS:
2394 	case FI_PIN_FILE:
2395 		f2fs_mark_inode_dirty_sync(inode, true);
2396 	}
2397 }
2398 
2399 static inline void set_inode_flag(struct inode *inode, int flag)
2400 {
2401 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2402 		set_bit(flag, &F2FS_I(inode)->flags);
2403 	__mark_inode_dirty_flag(inode, flag, true);
2404 }
2405 
2406 static inline int is_inode_flag_set(struct inode *inode, int flag)
2407 {
2408 	return test_bit(flag, &F2FS_I(inode)->flags);
2409 }
2410 
2411 static inline void clear_inode_flag(struct inode *inode, int flag)
2412 {
2413 	if (test_bit(flag, &F2FS_I(inode)->flags))
2414 		clear_bit(flag, &F2FS_I(inode)->flags);
2415 	__mark_inode_dirty_flag(inode, flag, false);
2416 }
2417 
2418 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2419 {
2420 	F2FS_I(inode)->i_acl_mode = mode;
2421 	set_inode_flag(inode, FI_ACL_MODE);
2422 	f2fs_mark_inode_dirty_sync(inode, false);
2423 }
2424 
2425 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2426 {
2427 	if (inc)
2428 		inc_nlink(inode);
2429 	else
2430 		drop_nlink(inode);
2431 	f2fs_mark_inode_dirty_sync(inode, true);
2432 }
2433 
2434 static inline void f2fs_i_blocks_write(struct inode *inode,
2435 					block_t diff, bool add, bool claim)
2436 {
2437 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2438 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2439 
2440 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2441 	if (add) {
2442 		if (claim)
2443 			dquot_claim_block(inode, diff);
2444 		else
2445 			dquot_alloc_block_nofail(inode, diff);
2446 	} else {
2447 		dquot_free_block(inode, diff);
2448 	}
2449 
2450 	f2fs_mark_inode_dirty_sync(inode, true);
2451 	if (clean || recover)
2452 		set_inode_flag(inode, FI_AUTO_RECOVER);
2453 }
2454 
2455 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2456 {
2457 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2458 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2459 
2460 	if (i_size_read(inode) == i_size)
2461 		return;
2462 
2463 	i_size_write(inode, i_size);
2464 	f2fs_mark_inode_dirty_sync(inode, true);
2465 	if (clean || recover)
2466 		set_inode_flag(inode, FI_AUTO_RECOVER);
2467 }
2468 
2469 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2470 {
2471 	F2FS_I(inode)->i_current_depth = depth;
2472 	f2fs_mark_inode_dirty_sync(inode, true);
2473 }
2474 
2475 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2476 					unsigned int count)
2477 {
2478 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2479 	f2fs_mark_inode_dirty_sync(inode, true);
2480 }
2481 
2482 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2483 {
2484 	F2FS_I(inode)->i_xattr_nid = xnid;
2485 	f2fs_mark_inode_dirty_sync(inode, true);
2486 }
2487 
2488 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2489 {
2490 	F2FS_I(inode)->i_pino = pino;
2491 	f2fs_mark_inode_dirty_sync(inode, true);
2492 }
2493 
2494 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2495 {
2496 	struct f2fs_inode_info *fi = F2FS_I(inode);
2497 
2498 	if (ri->i_inline & F2FS_INLINE_XATTR)
2499 		set_bit(FI_INLINE_XATTR, &fi->flags);
2500 	if (ri->i_inline & F2FS_INLINE_DATA)
2501 		set_bit(FI_INLINE_DATA, &fi->flags);
2502 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2503 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2504 	if (ri->i_inline & F2FS_DATA_EXIST)
2505 		set_bit(FI_DATA_EXIST, &fi->flags);
2506 	if (ri->i_inline & F2FS_INLINE_DOTS)
2507 		set_bit(FI_INLINE_DOTS, &fi->flags);
2508 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2509 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2510 	if (ri->i_inline & F2FS_PIN_FILE)
2511 		set_bit(FI_PIN_FILE, &fi->flags);
2512 }
2513 
2514 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2515 {
2516 	ri->i_inline = 0;
2517 
2518 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2519 		ri->i_inline |= F2FS_INLINE_XATTR;
2520 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2521 		ri->i_inline |= F2FS_INLINE_DATA;
2522 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2523 		ri->i_inline |= F2FS_INLINE_DENTRY;
2524 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2525 		ri->i_inline |= F2FS_DATA_EXIST;
2526 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2527 		ri->i_inline |= F2FS_INLINE_DOTS;
2528 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2529 		ri->i_inline |= F2FS_EXTRA_ATTR;
2530 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2531 		ri->i_inline |= F2FS_PIN_FILE;
2532 }
2533 
2534 static inline int f2fs_has_extra_attr(struct inode *inode)
2535 {
2536 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2537 }
2538 
2539 static inline int f2fs_has_inline_xattr(struct inode *inode)
2540 {
2541 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2542 }
2543 
2544 static inline unsigned int addrs_per_inode(struct inode *inode)
2545 {
2546 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2547 }
2548 
2549 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2550 {
2551 	struct f2fs_inode *ri = F2FS_INODE(page);
2552 
2553 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2554 					get_inline_xattr_addrs(inode)]);
2555 }
2556 
2557 static inline int inline_xattr_size(struct inode *inode)
2558 {
2559 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2560 }
2561 
2562 static inline int f2fs_has_inline_data(struct inode *inode)
2563 {
2564 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2565 }
2566 
2567 static inline int f2fs_exist_data(struct inode *inode)
2568 {
2569 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2570 }
2571 
2572 static inline int f2fs_has_inline_dots(struct inode *inode)
2573 {
2574 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2575 }
2576 
2577 static inline bool f2fs_is_pinned_file(struct inode *inode)
2578 {
2579 	return is_inode_flag_set(inode, FI_PIN_FILE);
2580 }
2581 
2582 static inline bool f2fs_is_atomic_file(struct inode *inode)
2583 {
2584 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2585 }
2586 
2587 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2588 {
2589 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2590 }
2591 
2592 static inline bool f2fs_is_volatile_file(struct inode *inode)
2593 {
2594 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2595 }
2596 
2597 static inline bool f2fs_is_first_block_written(struct inode *inode)
2598 {
2599 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2600 }
2601 
2602 static inline bool f2fs_is_drop_cache(struct inode *inode)
2603 {
2604 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2605 }
2606 
2607 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2608 {
2609 	struct f2fs_inode *ri = F2FS_INODE(page);
2610 	int extra_size = get_extra_isize(inode);
2611 
2612 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2613 }
2614 
2615 static inline int f2fs_has_inline_dentry(struct inode *inode)
2616 {
2617 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2618 }
2619 
2620 static inline int is_file(struct inode *inode, int type)
2621 {
2622 	return F2FS_I(inode)->i_advise & type;
2623 }
2624 
2625 static inline void set_file(struct inode *inode, int type)
2626 {
2627 	F2FS_I(inode)->i_advise |= type;
2628 	f2fs_mark_inode_dirty_sync(inode, true);
2629 }
2630 
2631 static inline void clear_file(struct inode *inode, int type)
2632 {
2633 	F2FS_I(inode)->i_advise &= ~type;
2634 	f2fs_mark_inode_dirty_sync(inode, true);
2635 }
2636 
2637 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2638 {
2639 	bool ret;
2640 
2641 	if (dsync) {
2642 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2643 
2644 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2645 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2646 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2647 		return ret;
2648 	}
2649 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2650 			file_keep_isize(inode) ||
2651 			i_size_read(inode) & ~PAGE_MASK)
2652 		return false;
2653 
2654 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2655 		return false;
2656 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2657 		return false;
2658 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2659 		return false;
2660 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2661 						&F2FS_I(inode)->i_crtime))
2662 		return false;
2663 
2664 	down_read(&F2FS_I(inode)->i_sem);
2665 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2666 	up_read(&F2FS_I(inode)->i_sem);
2667 
2668 	return ret;
2669 }
2670 
2671 static inline bool f2fs_readonly(struct super_block *sb)
2672 {
2673 	return sb_rdonly(sb);
2674 }
2675 
2676 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2677 {
2678 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2679 }
2680 
2681 static inline bool is_dot_dotdot(const struct qstr *str)
2682 {
2683 	if (str->len == 1 && str->name[0] == '.')
2684 		return true;
2685 
2686 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2687 		return true;
2688 
2689 	return false;
2690 }
2691 
2692 static inline bool f2fs_may_extent_tree(struct inode *inode)
2693 {
2694 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2695 
2696 	if (!test_opt(sbi, EXTENT_CACHE) ||
2697 			is_inode_flag_set(inode, FI_NO_EXTENT))
2698 		return false;
2699 
2700 	/*
2701 	 * for recovered files during mount do not create extents
2702 	 * if shrinker is not registered.
2703 	 */
2704 	if (list_empty(&sbi->s_list))
2705 		return false;
2706 
2707 	return S_ISREG(inode->i_mode);
2708 }
2709 
2710 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2711 					size_t size, gfp_t flags)
2712 {
2713 	void *ret;
2714 
2715 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2716 		f2fs_show_injection_info(FAULT_KMALLOC);
2717 		return NULL;
2718 	}
2719 
2720 	ret = kmalloc(size, flags);
2721 	if (ret)
2722 		return ret;
2723 
2724 	return kvmalloc(size, flags);
2725 }
2726 
2727 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2728 					size_t size, gfp_t flags)
2729 {
2730 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2731 }
2732 
2733 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2734 					size_t size, gfp_t flags)
2735 {
2736 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2737 		f2fs_show_injection_info(FAULT_KVMALLOC);
2738 		return NULL;
2739 	}
2740 
2741 	return kvmalloc(size, flags);
2742 }
2743 
2744 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2745 					size_t size, gfp_t flags)
2746 {
2747 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2748 }
2749 
2750 static inline int get_extra_isize(struct inode *inode)
2751 {
2752 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2753 }
2754 
2755 static inline int get_inline_xattr_addrs(struct inode *inode)
2756 {
2757 	return F2FS_I(inode)->i_inline_xattr_size;
2758 }
2759 
2760 #define f2fs_get_inode_mode(i) \
2761 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2762 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2763 
2764 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2765 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2766 	offsetof(struct f2fs_inode, i_extra_isize))	\
2767 
2768 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2769 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2770 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2771 		sizeof((f2fs_inode)->field))			\
2772 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2773 
2774 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2775 {
2776 	int i;
2777 
2778 	spin_lock(&sbi->iostat_lock);
2779 	for (i = 0; i < NR_IO_TYPE; i++)
2780 		sbi->write_iostat[i] = 0;
2781 	spin_unlock(&sbi->iostat_lock);
2782 }
2783 
2784 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2785 			enum iostat_type type, unsigned long long io_bytes)
2786 {
2787 	if (!sbi->iostat_enable)
2788 		return;
2789 	spin_lock(&sbi->iostat_lock);
2790 	sbi->write_iostat[type] += io_bytes;
2791 
2792 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2793 		sbi->write_iostat[APP_BUFFERED_IO] =
2794 			sbi->write_iostat[APP_WRITE_IO] -
2795 			sbi->write_iostat[APP_DIRECT_IO];
2796 	spin_unlock(&sbi->iostat_lock);
2797 }
2798 
2799 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2800 
2801 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META &&	\
2802 				(!is_read_io((fio)->op) || (fio)->is_meta))
2803 
2804 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2805 					block_t blkaddr, int type);
2806 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2807 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2808 					block_t blkaddr, int type)
2809 {
2810 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2811 		f2fs_msg(sbi->sb, KERN_ERR,
2812 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2813 			blkaddr, type);
2814 		f2fs_bug_on(sbi, 1);
2815 	}
2816 }
2817 
2818 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2819 {
2820 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2821 		return false;
2822 	return true;
2823 }
2824 
2825 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2826 						block_t blkaddr)
2827 {
2828 	if (!__is_valid_data_blkaddr(blkaddr))
2829 		return false;
2830 	verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2831 	return true;
2832 }
2833 
2834 /*
2835  * file.c
2836  */
2837 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2838 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2839 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock,
2840 							bool buf_write);
2841 int f2fs_truncate(struct inode *inode);
2842 int f2fs_getattr(const struct path *path, struct kstat *stat,
2843 			u32 request_mask, unsigned int flags);
2844 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2845 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2846 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2847 int f2fs_precache_extents(struct inode *inode);
2848 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2849 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2850 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2851 int f2fs_pin_file_control(struct inode *inode, bool inc);
2852 
2853 /*
2854  * inode.c
2855  */
2856 void f2fs_set_inode_flags(struct inode *inode);
2857 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2858 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2859 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2860 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2861 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2862 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2863 void f2fs_update_inode_page(struct inode *inode);
2864 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2865 void f2fs_evict_inode(struct inode *inode);
2866 void f2fs_handle_failed_inode(struct inode *inode);
2867 
2868 /*
2869  * namei.c
2870  */
2871 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2872 							bool hot, bool set);
2873 struct dentry *f2fs_get_parent(struct dentry *child);
2874 
2875 /*
2876  * dir.c
2877  */
2878 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2879 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2880 			f2fs_hash_t namehash, int *max_slots,
2881 			struct f2fs_dentry_ptr *d);
2882 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2883 			unsigned int start_pos, struct fscrypt_str *fstr);
2884 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2885 			struct f2fs_dentry_ptr *d);
2886 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2887 			const struct qstr *new_name,
2888 			const struct qstr *orig_name, struct page *dpage);
2889 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2890 			unsigned int current_depth);
2891 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2892 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2893 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2894 			struct fscrypt_name *fname, struct page **res_page);
2895 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2896 			const struct qstr *child, struct page **res_page);
2897 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2898 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2899 			struct page **page);
2900 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2901 			struct page *page, struct inode *inode);
2902 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2903 			const struct qstr *name, f2fs_hash_t name_hash,
2904 			unsigned int bit_pos);
2905 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2906 			const struct qstr *orig_name,
2907 			struct inode *inode, nid_t ino, umode_t mode);
2908 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2909 			struct inode *inode, nid_t ino, umode_t mode);
2910 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2911 			struct inode *inode, nid_t ino, umode_t mode);
2912 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2913 			struct inode *dir, struct inode *inode);
2914 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2915 bool f2fs_empty_dir(struct inode *dir);
2916 
2917 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2918 {
2919 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2920 				inode, inode->i_ino, inode->i_mode);
2921 }
2922 
2923 /*
2924  * super.c
2925  */
2926 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2927 void f2fs_inode_synced(struct inode *inode);
2928 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2929 int f2fs_quota_sync(struct super_block *sb, int type);
2930 void f2fs_quota_off_umount(struct super_block *sb);
2931 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2932 int f2fs_sync_fs(struct super_block *sb, int sync);
2933 extern __printf(3, 4)
2934 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2935 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2936 
2937 /*
2938  * hash.c
2939  */
2940 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2941 				struct fscrypt_name *fname);
2942 
2943 /*
2944  * node.c
2945  */
2946 struct dnode_of_data;
2947 struct node_info;
2948 
2949 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2950 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2951 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2952 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2953 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2954 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2955 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2956 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2957 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2958 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2959 						struct node_info *ni);
2960 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2961 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2962 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2963 int f2fs_truncate_xattr_node(struct inode *inode);
2964 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2965 					unsigned int seq_id);
2966 int f2fs_remove_inode_page(struct inode *inode);
2967 struct page *f2fs_new_inode_page(struct inode *inode);
2968 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2969 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2970 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2971 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2972 int f2fs_move_node_page(struct page *node_page, int gc_type);
2973 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2974 			struct writeback_control *wbc, bool atomic,
2975 			unsigned int *seq_id);
2976 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2977 			struct writeback_control *wbc,
2978 			bool do_balance, enum iostat_type io_type);
2979 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2980 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2981 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2982 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2983 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2984 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2985 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2986 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2987 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2988 			unsigned int segno, struct f2fs_summary_block *sum);
2989 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2990 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2991 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2992 int __init f2fs_create_node_manager_caches(void);
2993 void f2fs_destroy_node_manager_caches(void);
2994 
2995 /*
2996  * segment.c
2997  */
2998 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2999 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3000 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3001 void f2fs_drop_inmem_pages(struct inode *inode);
3002 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3003 int f2fs_commit_inmem_pages(struct inode *inode);
3004 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3005 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3006 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3007 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3008 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3009 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3010 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3011 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3012 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3013 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3014 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3015 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3016 					struct cp_control *cpc);
3017 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3018 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3019 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3020 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3021 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3022 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3023 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3024 					struct cp_control *cpc);
3025 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3026 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3027 					block_t blk_addr);
3028 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3029 						enum iostat_type io_type);
3030 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3031 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3032 			struct f2fs_io_info *fio);
3033 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3034 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3035 			block_t old_blkaddr, block_t new_blkaddr,
3036 			bool recover_curseg, bool recover_newaddr);
3037 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3038 			block_t old_addr, block_t new_addr,
3039 			unsigned char version, bool recover_curseg,
3040 			bool recover_newaddr);
3041 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3042 			block_t old_blkaddr, block_t *new_blkaddr,
3043 			struct f2fs_summary *sum, int type,
3044 			struct f2fs_io_info *fio, bool add_list);
3045 void f2fs_wait_on_page_writeback(struct page *page,
3046 			enum page_type type, bool ordered, bool locked);
3047 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3048 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3049 								block_t len);
3050 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3051 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3052 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3053 			unsigned int val, int alloc);
3054 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3055 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3056 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3057 int __init f2fs_create_segment_manager_caches(void);
3058 void f2fs_destroy_segment_manager_caches(void);
3059 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3060 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3061 			enum page_type type, enum temp_type temp);
3062 
3063 /*
3064  * checkpoint.c
3065  */
3066 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3067 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3068 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3069 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3070 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3071 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3072 					block_t blkaddr, int type);
3073 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3074 			int type, bool sync);
3075 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3076 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3077 			long nr_to_write, enum iostat_type io_type);
3078 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3079 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3080 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3081 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3082 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3083 					unsigned int devidx, int type);
3084 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3085 					unsigned int devidx, int type);
3086 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3087 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3088 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3089 void f2fs_add_orphan_inode(struct inode *inode);
3090 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3091 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3092 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3093 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3094 void f2fs_remove_dirty_inode(struct inode *inode);
3095 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3096 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3097 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3098 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3099 int __init f2fs_create_checkpoint_caches(void);
3100 void f2fs_destroy_checkpoint_caches(void);
3101 
3102 /*
3103  * data.c
3104  */
3105 int f2fs_init_post_read_processing(void);
3106 void f2fs_destroy_post_read_processing(void);
3107 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3108 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3109 				struct inode *inode, struct page *page,
3110 				nid_t ino, enum page_type type);
3111 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3112 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3113 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3114 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3115 			block_t blk_addr, struct bio *bio);
3116 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3117 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3118 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3119 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3120 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3121 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3122 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3123 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3124 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3125 			int op_flags, bool for_write);
3126 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3127 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3128 			bool for_write);
3129 struct page *f2fs_get_new_data_page(struct inode *inode,
3130 			struct page *ipage, pgoff_t index, bool new_i_size);
3131 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3132 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3133 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3134 			int create, int flag);
3135 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3136 			u64 start, u64 len);
3137 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3138 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3139 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3140 			unsigned int length);
3141 int f2fs_release_page(struct page *page, gfp_t wait);
3142 #ifdef CONFIG_MIGRATION
3143 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3144 			struct page *page, enum migrate_mode mode);
3145 #endif
3146 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3147 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3148 
3149 /*
3150  * gc.c
3151  */
3152 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3153 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3154 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3155 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3156 			unsigned int segno);
3157 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3158 
3159 /*
3160  * recovery.c
3161  */
3162 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3163 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3164 
3165 /*
3166  * debug.c
3167  */
3168 #ifdef CONFIG_F2FS_STAT_FS
3169 struct f2fs_stat_info {
3170 	struct list_head stat_list;
3171 	struct f2fs_sb_info *sbi;
3172 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3173 	int main_area_segs, main_area_sections, main_area_zones;
3174 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3175 	unsigned long long hit_total, total_ext;
3176 	int ext_tree, zombie_tree, ext_node;
3177 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3178 	int ndirty_data, ndirty_qdata;
3179 	int inmem_pages;
3180 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3181 	int nats, dirty_nats, sits, dirty_sits;
3182 	int free_nids, avail_nids, alloc_nids;
3183 	int total_count, utilization;
3184 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3185 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3186 	int nr_dio_read, nr_dio_write;
3187 	unsigned int io_skip_bggc, other_skip_bggc;
3188 	int nr_flushing, nr_flushed, flush_list_empty;
3189 	int nr_discarding, nr_discarded;
3190 	int nr_discard_cmd;
3191 	unsigned int undiscard_blks;
3192 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3193 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3194 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3195 	unsigned int bimodal, avg_vblocks;
3196 	int util_free, util_valid, util_invalid;
3197 	int rsvd_segs, overp_segs;
3198 	int dirty_count, node_pages, meta_pages;
3199 	int prefree_count, call_count, cp_count, bg_cp_count;
3200 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3201 	int bg_node_segs, bg_data_segs;
3202 	int tot_blks, data_blks, node_blks;
3203 	int bg_data_blks, bg_node_blks;
3204 	unsigned long long skipped_atomic_files[2];
3205 	int curseg[NR_CURSEG_TYPE];
3206 	int cursec[NR_CURSEG_TYPE];
3207 	int curzone[NR_CURSEG_TYPE];
3208 
3209 	unsigned int meta_count[META_MAX];
3210 	unsigned int segment_count[2];
3211 	unsigned int block_count[2];
3212 	unsigned int inplace_count;
3213 	unsigned long long base_mem, cache_mem, page_mem;
3214 };
3215 
3216 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3217 {
3218 	return (struct f2fs_stat_info *)sbi->stat_info;
3219 }
3220 
3221 #define stat_inc_cp_count(si)		((si)->cp_count++)
3222 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3223 #define stat_inc_call_count(si)		((si)->call_count++)
3224 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3225 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3226 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3227 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3228 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3229 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3230 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3231 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3232 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3233 #define stat_inc_inline_xattr(inode)					\
3234 	do {								\
3235 		if (f2fs_has_inline_xattr(inode))			\
3236 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3237 	} while (0)
3238 #define stat_dec_inline_xattr(inode)					\
3239 	do {								\
3240 		if (f2fs_has_inline_xattr(inode))			\
3241 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3242 	} while (0)
3243 #define stat_inc_inline_inode(inode)					\
3244 	do {								\
3245 		if (f2fs_has_inline_data(inode))			\
3246 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3247 	} while (0)
3248 #define stat_dec_inline_inode(inode)					\
3249 	do {								\
3250 		if (f2fs_has_inline_data(inode))			\
3251 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3252 	} while (0)
3253 #define stat_inc_inline_dir(inode)					\
3254 	do {								\
3255 		if (f2fs_has_inline_dentry(inode))			\
3256 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3257 	} while (0)
3258 #define stat_dec_inline_dir(inode)					\
3259 	do {								\
3260 		if (f2fs_has_inline_dentry(inode))			\
3261 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3262 	} while (0)
3263 #define stat_inc_meta_count(sbi, blkaddr)				\
3264 	do {								\
3265 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3266 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3267 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3268 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3269 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3270 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3271 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3272 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3273 	} while (0)
3274 #define stat_inc_seg_type(sbi, curseg)					\
3275 		((sbi)->segment_count[(curseg)->alloc_type]++)
3276 #define stat_inc_block_count(sbi, curseg)				\
3277 		((sbi)->block_count[(curseg)->alloc_type]++)
3278 #define stat_inc_inplace_blocks(sbi)					\
3279 		(atomic_inc(&(sbi)->inplace_count))
3280 #define stat_inc_atomic_write(inode)					\
3281 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3282 #define stat_dec_atomic_write(inode)					\
3283 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3284 #define stat_update_max_atomic_write(inode)				\
3285 	do {								\
3286 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3287 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3288 		if (cur > max)						\
3289 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3290 	} while (0)
3291 #define stat_inc_volatile_write(inode)					\
3292 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3293 #define stat_dec_volatile_write(inode)					\
3294 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3295 #define stat_update_max_volatile_write(inode)				\
3296 	do {								\
3297 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3298 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3299 		if (cur > max)						\
3300 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3301 	} while (0)
3302 #define stat_inc_seg_count(sbi, type, gc_type)				\
3303 	do {								\
3304 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3305 		si->tot_segs++;						\
3306 		if ((type) == SUM_TYPE_DATA) {				\
3307 			si->data_segs++;				\
3308 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3309 		} else {						\
3310 			si->node_segs++;				\
3311 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3312 		}							\
3313 	} while (0)
3314 
3315 #define stat_inc_tot_blk_count(si, blks)				\
3316 	((si)->tot_blks += (blks))
3317 
3318 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3319 	do {								\
3320 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3321 		stat_inc_tot_blk_count(si, blks);			\
3322 		si->data_blks += (blks);				\
3323 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3324 	} while (0)
3325 
3326 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3327 	do {								\
3328 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3329 		stat_inc_tot_blk_count(si, blks);			\
3330 		si->node_blks += (blks);				\
3331 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3332 	} while (0)
3333 
3334 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3335 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3336 void __init f2fs_create_root_stats(void);
3337 void f2fs_destroy_root_stats(void);
3338 #else
3339 #define stat_inc_cp_count(si)				do { } while (0)
3340 #define stat_inc_bg_cp_count(si)			do { } while (0)
3341 #define stat_inc_call_count(si)				do { } while (0)
3342 #define stat_inc_bggc_count(si)				do { } while (0)
3343 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3344 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3345 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3346 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3347 #define stat_inc_total_hit(sb)				do { } while (0)
3348 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3349 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3350 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3351 #define stat_inc_inline_xattr(inode)			do { } while (0)
3352 #define stat_dec_inline_xattr(inode)			do { } while (0)
3353 #define stat_inc_inline_inode(inode)			do { } while (0)
3354 #define stat_dec_inline_inode(inode)			do { } while (0)
3355 #define stat_inc_inline_dir(inode)			do { } while (0)
3356 #define stat_dec_inline_dir(inode)			do { } while (0)
3357 #define stat_inc_atomic_write(inode)			do { } while (0)
3358 #define stat_dec_atomic_write(inode)			do { } while (0)
3359 #define stat_update_max_atomic_write(inode)		do { } while (0)
3360 #define stat_inc_volatile_write(inode)			do { } while (0)
3361 #define stat_dec_volatile_write(inode)			do { } while (0)
3362 #define stat_update_max_volatile_write(inode)		do { } while (0)
3363 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3364 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3365 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3366 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3367 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3368 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3369 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3370 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3371 
3372 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3373 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3374 static inline void __init f2fs_create_root_stats(void) { }
3375 static inline void f2fs_destroy_root_stats(void) { }
3376 #endif
3377 
3378 extern const struct file_operations f2fs_dir_operations;
3379 extern const struct file_operations f2fs_file_operations;
3380 extern const struct inode_operations f2fs_file_inode_operations;
3381 extern const struct address_space_operations f2fs_dblock_aops;
3382 extern const struct address_space_operations f2fs_node_aops;
3383 extern const struct address_space_operations f2fs_meta_aops;
3384 extern const struct inode_operations f2fs_dir_inode_operations;
3385 extern const struct inode_operations f2fs_symlink_inode_operations;
3386 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3387 extern const struct inode_operations f2fs_special_inode_operations;
3388 extern struct kmem_cache *f2fs_inode_entry_slab;
3389 
3390 /*
3391  * inline.c
3392  */
3393 bool f2fs_may_inline_data(struct inode *inode);
3394 bool f2fs_may_inline_dentry(struct inode *inode);
3395 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3396 void f2fs_truncate_inline_inode(struct inode *inode,
3397 						struct page *ipage, u64 from);
3398 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3399 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3400 int f2fs_convert_inline_inode(struct inode *inode);
3401 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3402 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3403 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3404 			struct fscrypt_name *fname, struct page **res_page);
3405 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3406 			struct page *ipage);
3407 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3408 			const struct qstr *orig_name,
3409 			struct inode *inode, nid_t ino, umode_t mode);
3410 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3411 				struct page *page, struct inode *dir,
3412 				struct inode *inode);
3413 bool f2fs_empty_inline_dir(struct inode *dir);
3414 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3415 			struct fscrypt_str *fstr);
3416 int f2fs_inline_data_fiemap(struct inode *inode,
3417 			struct fiemap_extent_info *fieinfo,
3418 			__u64 start, __u64 len);
3419 
3420 /*
3421  * shrinker.c
3422  */
3423 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3424 			struct shrink_control *sc);
3425 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3426 			struct shrink_control *sc);
3427 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3428 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3429 
3430 /*
3431  * extent_cache.c
3432  */
3433 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3434 				struct rb_entry *cached_re, unsigned int ofs);
3435 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3436 				struct rb_root_cached *root,
3437 				struct rb_node **parent,
3438 				unsigned int ofs, bool *leftmost);
3439 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3440 		struct rb_entry *cached_re, unsigned int ofs,
3441 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3442 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3443 		bool force, bool *leftmost);
3444 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3445 						struct rb_root_cached *root);
3446 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3447 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3448 void f2fs_drop_extent_tree(struct inode *inode);
3449 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3450 void f2fs_destroy_extent_tree(struct inode *inode);
3451 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3452 			struct extent_info *ei);
3453 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3454 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3455 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3456 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3457 int __init f2fs_create_extent_cache(void);
3458 void f2fs_destroy_extent_cache(void);
3459 
3460 /*
3461  * sysfs.c
3462  */
3463 int __init f2fs_init_sysfs(void);
3464 void f2fs_exit_sysfs(void);
3465 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3466 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3467 
3468 /*
3469  * crypto support
3470  */
3471 static inline bool f2fs_encrypted_inode(struct inode *inode)
3472 {
3473 	return file_is_encrypt(inode);
3474 }
3475 
3476 static inline bool f2fs_encrypted_file(struct inode *inode)
3477 {
3478 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3479 }
3480 
3481 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3482 {
3483 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3484 	file_set_encrypt(inode);
3485 	f2fs_set_inode_flags(inode);
3486 #endif
3487 }
3488 
3489 /*
3490  * Returns true if the reads of the inode's data need to undergo some
3491  * postprocessing step, like decryption or authenticity verification.
3492  */
3493 static inline bool f2fs_post_read_required(struct inode *inode)
3494 {
3495 	return f2fs_encrypted_file(inode);
3496 }
3497 
3498 #define F2FS_FEATURE_FUNCS(name, flagname) \
3499 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3500 { \
3501 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3502 }
3503 
3504 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3505 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3506 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3507 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3508 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3509 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3510 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3511 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3512 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3513 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3514 
3515 #ifdef CONFIG_BLK_DEV_ZONED
3516 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3517 			struct block_device *bdev, block_t blkaddr)
3518 {
3519 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3520 	int i;
3521 
3522 	for (i = 0; i < sbi->s_ndevs; i++)
3523 		if (FDEV(i).bdev == bdev)
3524 			return FDEV(i).blkz_type[zno];
3525 	return -EINVAL;
3526 }
3527 #endif
3528 
3529 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3530 {
3531 	return f2fs_sb_has_blkzoned(sbi);
3532 }
3533 
3534 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3535 {
3536 	return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3537 }
3538 
3539 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3540 {
3541 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3542 					f2fs_hw_should_discard(sbi);
3543 }
3544 
3545 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3546 {
3547 	clear_opt(sbi, ADAPTIVE);
3548 	clear_opt(sbi, LFS);
3549 
3550 	switch (mt) {
3551 	case F2FS_MOUNT_ADAPTIVE:
3552 		set_opt(sbi, ADAPTIVE);
3553 		break;
3554 	case F2FS_MOUNT_LFS:
3555 		set_opt(sbi, LFS);
3556 		break;
3557 	}
3558 }
3559 
3560 static inline bool f2fs_may_encrypt(struct inode *inode)
3561 {
3562 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3563 	umode_t mode = inode->i_mode;
3564 
3565 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3566 #else
3567 	return false;
3568 #endif
3569 }
3570 
3571 static inline int block_unaligned_IO(struct inode *inode,
3572 				struct kiocb *iocb, struct iov_iter *iter)
3573 {
3574 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3575 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3576 	loff_t offset = iocb->ki_pos;
3577 	unsigned long align = offset | iov_iter_alignment(iter);
3578 
3579 	return align & blocksize_mask;
3580 }
3581 
3582 static inline int allow_outplace_dio(struct inode *inode,
3583 				struct kiocb *iocb, struct iov_iter *iter)
3584 {
3585 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3586 	int rw = iov_iter_rw(iter);
3587 
3588 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3589 				!block_unaligned_IO(inode, iocb, iter));
3590 }
3591 
3592 static inline bool f2fs_force_buffered_io(struct inode *inode,
3593 				struct kiocb *iocb, struct iov_iter *iter)
3594 {
3595 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3596 	int rw = iov_iter_rw(iter);
3597 
3598 	if (f2fs_post_read_required(inode))
3599 		return true;
3600 	if (sbi->s_ndevs)
3601 		return true;
3602 	/*
3603 	 * for blkzoned device, fallback direct IO to buffered IO, so
3604 	 * all IOs can be serialized by log-structured write.
3605 	 */
3606 	if (f2fs_sb_has_blkzoned(sbi))
3607 		return true;
3608 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3609 				block_unaligned_IO(inode, iocb, iter))
3610 		return true;
3611 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3612 		return true;
3613 
3614 	return false;
3615 }
3616 
3617 #ifdef CONFIG_F2FS_FAULT_INJECTION
3618 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3619 							unsigned int type);
3620 #else
3621 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3622 #endif
3623 
3624 #endif
3625 
3626 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3627 {
3628 #ifdef CONFIG_QUOTA
3629 	if (f2fs_sb_has_quota_ino(sbi))
3630 		return true;
3631 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3632 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3633 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3634 		return true;
3635 #endif
3636 	return false;
3637 }
3638