xref: /openbmc/linux/fs/f2fs/f2fs.h (revision db489652)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_MAX,
58 };
59 
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
62 
63 struct f2fs_fault_info {
64 	atomic_t inject_ops;
65 	unsigned int inject_rate;
66 	unsigned int inject_type;
67 };
68 
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72 
73 /*
74  * For mount options
75  */
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
90 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
91 #define F2FS_MOUNT_USRQUOTA		0x00080000
92 #define F2FS_MOUNT_GRPQUOTA		0x00100000
93 #define F2FS_MOUNT_PRJQUOTA		0x00200000
94 #define F2FS_MOUNT_QUOTA		0x00400000
95 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
96 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
97 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
98 #define F2FS_MOUNT_NORECOVERY		0x04000000
99 #define F2FS_MOUNT_ATGC			0x08000000
100 
101 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
102 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105 
106 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
107 		typecheck(unsigned long long, b) &&			\
108 		((long long)((a) - (b)) > 0))
109 
110 typedef u32 block_t;	/*
111 			 * should not change u32, since it is the on-disk block
112 			 * address format, __le32.
113 			 */
114 typedef u32 nid_t;
115 
116 #define COMPRESS_EXT_NUM		16
117 
118 struct f2fs_mount_info {
119 	unsigned int opt;
120 	int write_io_size_bits;		/* Write IO size bits */
121 	block_t root_reserved_blocks;	/* root reserved blocks */
122 	kuid_t s_resuid;		/* reserved blocks for uid */
123 	kgid_t s_resgid;		/* reserved blocks for gid */
124 	int active_logs;		/* # of active logs */
125 	int inline_xattr_size;		/* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 	struct f2fs_fault_info fault_info;	/* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 	/* Names of quota files with journalled quota */
131 	char *s_qf_names[MAXQUOTAS];
132 	int s_jquota_fmt;			/* Format of quota to use */
133 #endif
134 	/* For which write hints are passed down to block layer */
135 	int whint_mode;
136 	int alloc_mode;			/* segment allocation policy */
137 	int fsync_mode;			/* fsync policy */
138 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
139 	int bggc_mode;			/* bggc mode: off, on or sync */
140 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
141 	block_t unusable_cap_perc;	/* percentage for cap */
142 	block_t unusable_cap;		/* Amount of space allowed to be
143 					 * unusable when disabling checkpoint
144 					 */
145 
146 	/* For compression */
147 	unsigned char compress_algorithm;	/* algorithm type */
148 	unsigned char compress_log_size;	/* cluster log size */
149 	bool compress_chksum;			/* compressed data chksum */
150 	unsigned char compress_ext_cnt;		/* extension count */
151 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
152 };
153 
154 #define F2FS_FEATURE_ENCRYPT		0x0001
155 #define F2FS_FEATURE_BLKZONED		0x0002
156 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
157 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
158 #define F2FS_FEATURE_PRJQUOTA		0x0010
159 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
160 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
161 #define F2FS_FEATURE_QUOTA_INO		0x0080
162 #define F2FS_FEATURE_INODE_CRTIME	0x0100
163 #define F2FS_FEATURE_LOST_FOUND		0x0200
164 #define F2FS_FEATURE_VERITY		0x0400
165 #define F2FS_FEATURE_SB_CHKSUM		0x0800
166 #define F2FS_FEATURE_CASEFOLD		0x1000
167 #define F2FS_FEATURE_COMPRESSION	0x2000
168 
169 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
170 	((raw_super->feature & cpu_to_le32(mask)) != 0)
171 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
172 #define F2FS_SET_FEATURE(sbi, mask)					\
173 	(sbi->raw_super->feature |= cpu_to_le32(mask))
174 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
175 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
176 
177 /*
178  * Default values for user and/or group using reserved blocks
179  */
180 #define	F2FS_DEF_RESUID		0
181 #define	F2FS_DEF_RESGID		0
182 
183 /*
184  * For checkpoint manager
185  */
186 enum {
187 	NAT_BITMAP,
188 	SIT_BITMAP
189 };
190 
191 #define	CP_UMOUNT	0x00000001
192 #define	CP_FASTBOOT	0x00000002
193 #define	CP_SYNC		0x00000004
194 #define	CP_RECOVERY	0x00000008
195 #define	CP_DISCARD	0x00000010
196 #define CP_TRIMMED	0x00000020
197 #define CP_PAUSE	0x00000040
198 #define CP_RESIZE 	0x00000080
199 
200 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
201 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
202 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
203 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
204 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
205 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
206 #define DEF_CP_INTERVAL			60	/* 60 secs */
207 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
208 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
209 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
210 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
211 
212 struct cp_control {
213 	int reason;
214 	__u64 trim_start;
215 	__u64 trim_end;
216 	__u64 trim_minlen;
217 };
218 
219 /*
220  * indicate meta/data type
221  */
222 enum {
223 	META_CP,
224 	META_NAT,
225 	META_SIT,
226 	META_SSA,
227 	META_MAX,
228 	META_POR,
229 	DATA_GENERIC,		/* check range only */
230 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
231 	DATA_GENERIC_ENHANCE_READ,	/*
232 					 * strong check on range and segment
233 					 * bitmap but no warning due to race
234 					 * condition of read on truncated area
235 					 * by extent_cache
236 					 */
237 	META_GENERIC,
238 };
239 
240 /* for the list of ino */
241 enum {
242 	ORPHAN_INO,		/* for orphan ino list */
243 	APPEND_INO,		/* for append ino list */
244 	UPDATE_INO,		/* for update ino list */
245 	TRANS_DIR_INO,		/* for trasactions dir ino list */
246 	FLUSH_INO,		/* for multiple device flushing */
247 	MAX_INO_ENTRY,		/* max. list */
248 };
249 
250 struct ino_entry {
251 	struct list_head list;		/* list head */
252 	nid_t ino;			/* inode number */
253 	unsigned int dirty_device;	/* dirty device bitmap */
254 };
255 
256 /* for the list of inodes to be GCed */
257 struct inode_entry {
258 	struct list_head list;	/* list head */
259 	struct inode *inode;	/* vfs inode pointer */
260 };
261 
262 struct fsync_node_entry {
263 	struct list_head list;	/* list head */
264 	struct page *page;	/* warm node page pointer */
265 	unsigned int seq_id;	/* sequence id */
266 };
267 
268 /* for the bitmap indicate blocks to be discarded */
269 struct discard_entry {
270 	struct list_head list;	/* list head */
271 	block_t start_blkaddr;	/* start blockaddr of current segment */
272 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
273 };
274 
275 /* default discard granularity of inner discard thread, unit: block count */
276 #define DEFAULT_DISCARD_GRANULARITY		16
277 
278 /* max discard pend list number */
279 #define MAX_PLIST_NUM		512
280 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
281 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
282 
283 enum {
284 	D_PREP,			/* initial */
285 	D_PARTIAL,		/* partially submitted */
286 	D_SUBMIT,		/* all submitted */
287 	D_DONE,			/* finished */
288 };
289 
290 struct discard_info {
291 	block_t lstart;			/* logical start address */
292 	block_t len;			/* length */
293 	block_t start;			/* actual start address in dev */
294 };
295 
296 struct discard_cmd {
297 	struct rb_node rb_node;		/* rb node located in rb-tree */
298 	union {
299 		struct {
300 			block_t lstart;	/* logical start address */
301 			block_t len;	/* length */
302 			block_t start;	/* actual start address in dev */
303 		};
304 		struct discard_info di;	/* discard info */
305 
306 	};
307 	struct list_head list;		/* command list */
308 	struct completion wait;		/* compleation */
309 	struct block_device *bdev;	/* bdev */
310 	unsigned short ref;		/* reference count */
311 	unsigned char state;		/* state */
312 	unsigned char queued;		/* queued discard */
313 	int error;			/* bio error */
314 	spinlock_t lock;		/* for state/bio_ref updating */
315 	unsigned short bio_ref;		/* bio reference count */
316 };
317 
318 enum {
319 	DPOLICY_BG,
320 	DPOLICY_FORCE,
321 	DPOLICY_FSTRIM,
322 	DPOLICY_UMOUNT,
323 	MAX_DPOLICY,
324 };
325 
326 struct discard_policy {
327 	int type;			/* type of discard */
328 	unsigned int min_interval;	/* used for candidates exist */
329 	unsigned int mid_interval;	/* used for device busy */
330 	unsigned int max_interval;	/* used for candidates not exist */
331 	unsigned int max_requests;	/* # of discards issued per round */
332 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
333 	bool io_aware;			/* issue discard in idle time */
334 	bool sync;			/* submit discard with REQ_SYNC flag */
335 	bool ordered;			/* issue discard by lba order */
336 	bool timeout;			/* discard timeout for put_super */
337 	unsigned int granularity;	/* discard granularity */
338 };
339 
340 struct discard_cmd_control {
341 	struct task_struct *f2fs_issue_discard;	/* discard thread */
342 	struct list_head entry_list;		/* 4KB discard entry list */
343 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
344 	struct list_head wait_list;		/* store on-flushing entries */
345 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
346 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
347 	unsigned int discard_wake;		/* to wake up discard thread */
348 	struct mutex cmd_lock;
349 	unsigned int nr_discards;		/* # of discards in the list */
350 	unsigned int max_discards;		/* max. discards to be issued */
351 	unsigned int discard_granularity;	/* discard granularity */
352 	unsigned int undiscard_blks;		/* # of undiscard blocks */
353 	unsigned int next_pos;			/* next discard position */
354 	atomic_t issued_discard;		/* # of issued discard */
355 	atomic_t queued_discard;		/* # of queued discard */
356 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
357 	struct rb_root_cached root;		/* root of discard rb-tree */
358 	bool rbtree_check;			/* config for consistence check */
359 };
360 
361 /* for the list of fsync inodes, used only during recovery */
362 struct fsync_inode_entry {
363 	struct list_head list;	/* list head */
364 	struct inode *inode;	/* vfs inode pointer */
365 	block_t blkaddr;	/* block address locating the last fsync */
366 	block_t last_dentry;	/* block address locating the last dentry */
367 };
368 
369 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
370 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
371 
372 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
373 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
374 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
375 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
376 
377 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
378 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
379 
380 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
381 {
382 	int before = nats_in_cursum(journal);
383 
384 	journal->n_nats = cpu_to_le16(before + i);
385 	return before;
386 }
387 
388 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
389 {
390 	int before = sits_in_cursum(journal);
391 
392 	journal->n_sits = cpu_to_le16(before + i);
393 	return before;
394 }
395 
396 static inline bool __has_cursum_space(struct f2fs_journal *journal,
397 							int size, int type)
398 {
399 	if (type == NAT_JOURNAL)
400 		return size <= MAX_NAT_JENTRIES(journal);
401 	return size <= MAX_SIT_JENTRIES(journal);
402 }
403 
404 /* for inline stuff */
405 #define DEF_INLINE_RESERVED_SIZE	1
406 static inline int get_extra_isize(struct inode *inode);
407 static inline int get_inline_xattr_addrs(struct inode *inode);
408 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
409 				(CUR_ADDRS_PER_INODE(inode) -		\
410 				get_inline_xattr_addrs(inode) -	\
411 				DEF_INLINE_RESERVED_SIZE))
412 
413 /* for inline dir */
414 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
415 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
416 				BITS_PER_BYTE + 1))
417 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
418 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
419 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
420 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
421 				NR_INLINE_DENTRY(inode) + \
422 				INLINE_DENTRY_BITMAP_SIZE(inode)))
423 
424 /*
425  * For INODE and NODE manager
426  */
427 /* for directory operations */
428 
429 struct f2fs_filename {
430 	/*
431 	 * The filename the user specified.  This is NULL for some
432 	 * filesystem-internal operations, e.g. converting an inline directory
433 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
434 	 */
435 	const struct qstr *usr_fname;
436 
437 	/*
438 	 * The on-disk filename.  For encrypted directories, this is encrypted.
439 	 * This may be NULL for lookups in an encrypted dir without the key.
440 	 */
441 	struct fscrypt_str disk_name;
442 
443 	/* The dirhash of this filename */
444 	f2fs_hash_t hash;
445 
446 #ifdef CONFIG_FS_ENCRYPTION
447 	/*
448 	 * For lookups in encrypted directories: either the buffer backing
449 	 * disk_name, or a buffer that holds the decoded no-key name.
450 	 */
451 	struct fscrypt_str crypto_buf;
452 #endif
453 #ifdef CONFIG_UNICODE
454 	/*
455 	 * For casefolded directories: the casefolded name, but it's left NULL
456 	 * if the original name is not valid Unicode, if the directory is both
457 	 * casefolded and encrypted and its encryption key is unavailable, or if
458 	 * the filesystem is doing an internal operation where usr_fname is also
459 	 * NULL.  In all these cases we fall back to treating the name as an
460 	 * opaque byte sequence.
461 	 */
462 	struct fscrypt_str cf_name;
463 #endif
464 };
465 
466 struct f2fs_dentry_ptr {
467 	struct inode *inode;
468 	void *bitmap;
469 	struct f2fs_dir_entry *dentry;
470 	__u8 (*filename)[F2FS_SLOT_LEN];
471 	int max;
472 	int nr_bitmap;
473 };
474 
475 static inline void make_dentry_ptr_block(struct inode *inode,
476 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
477 {
478 	d->inode = inode;
479 	d->max = NR_DENTRY_IN_BLOCK;
480 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
481 	d->bitmap = t->dentry_bitmap;
482 	d->dentry = t->dentry;
483 	d->filename = t->filename;
484 }
485 
486 static inline void make_dentry_ptr_inline(struct inode *inode,
487 					struct f2fs_dentry_ptr *d, void *t)
488 {
489 	int entry_cnt = NR_INLINE_DENTRY(inode);
490 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
491 	int reserved_size = INLINE_RESERVED_SIZE(inode);
492 
493 	d->inode = inode;
494 	d->max = entry_cnt;
495 	d->nr_bitmap = bitmap_size;
496 	d->bitmap = t;
497 	d->dentry = t + bitmap_size + reserved_size;
498 	d->filename = t + bitmap_size + reserved_size +
499 					SIZE_OF_DIR_ENTRY * entry_cnt;
500 }
501 
502 /*
503  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
504  * as its node offset to distinguish from index node blocks.
505  * But some bits are used to mark the node block.
506  */
507 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
508 				>> OFFSET_BIT_SHIFT)
509 enum {
510 	ALLOC_NODE,			/* allocate a new node page if needed */
511 	LOOKUP_NODE,			/* look up a node without readahead */
512 	LOOKUP_NODE_RA,			/*
513 					 * look up a node with readahead called
514 					 * by get_data_block.
515 					 */
516 };
517 
518 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
519 
520 /* congestion wait timeout value, default: 20ms */
521 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
522 
523 /* maximum retry quota flush count */
524 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
525 
526 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
527 
528 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
529 
530 /* for in-memory extent cache entry */
531 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
532 
533 /* number of extent info in extent cache we try to shrink */
534 #define EXTENT_CACHE_SHRINK_NUMBER	128
535 
536 struct rb_entry {
537 	struct rb_node rb_node;		/* rb node located in rb-tree */
538 	union {
539 		struct {
540 			unsigned int ofs;	/* start offset of the entry */
541 			unsigned int len;	/* length of the entry */
542 		};
543 		unsigned long long key;		/* 64-bits key */
544 	} __packed;
545 };
546 
547 struct extent_info {
548 	unsigned int fofs;		/* start offset in a file */
549 	unsigned int len;		/* length of the extent */
550 	u32 blk;			/* start block address of the extent */
551 };
552 
553 struct extent_node {
554 	struct rb_node rb_node;		/* rb node located in rb-tree */
555 	struct extent_info ei;		/* extent info */
556 	struct list_head list;		/* node in global extent list of sbi */
557 	struct extent_tree *et;		/* extent tree pointer */
558 };
559 
560 struct extent_tree {
561 	nid_t ino;			/* inode number */
562 	struct rb_root_cached root;	/* root of extent info rb-tree */
563 	struct extent_node *cached_en;	/* recently accessed extent node */
564 	struct extent_info largest;	/* largested extent info */
565 	struct list_head list;		/* to be used by sbi->zombie_list */
566 	rwlock_t lock;			/* protect extent info rb-tree */
567 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
568 	bool largest_updated;		/* largest extent updated */
569 };
570 
571 /*
572  * This structure is taken from ext4_map_blocks.
573  *
574  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
575  */
576 #define F2FS_MAP_NEW		(1 << BH_New)
577 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
578 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
579 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
580 				F2FS_MAP_UNWRITTEN)
581 
582 struct f2fs_map_blocks {
583 	block_t m_pblk;
584 	block_t m_lblk;
585 	unsigned int m_len;
586 	unsigned int m_flags;
587 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
588 	pgoff_t *m_next_extent;		/* point to next possible extent */
589 	int m_seg_type;
590 	bool m_may_create;		/* indicate it is from write path */
591 };
592 
593 /* for flag in get_data_block */
594 enum {
595 	F2FS_GET_BLOCK_DEFAULT,
596 	F2FS_GET_BLOCK_FIEMAP,
597 	F2FS_GET_BLOCK_BMAP,
598 	F2FS_GET_BLOCK_DIO,
599 	F2FS_GET_BLOCK_PRE_DIO,
600 	F2FS_GET_BLOCK_PRE_AIO,
601 	F2FS_GET_BLOCK_PRECACHE,
602 };
603 
604 /*
605  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
606  */
607 #define FADVISE_COLD_BIT	0x01
608 #define FADVISE_LOST_PINO_BIT	0x02
609 #define FADVISE_ENCRYPT_BIT	0x04
610 #define FADVISE_ENC_NAME_BIT	0x08
611 #define FADVISE_KEEP_SIZE_BIT	0x10
612 #define FADVISE_HOT_BIT		0x20
613 #define FADVISE_VERITY_BIT	0x40
614 
615 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
616 
617 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
618 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
619 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
620 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
621 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
622 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
623 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
624 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
625 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
626 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
627 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
628 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
629 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
630 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
631 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
632 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
633 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
634 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
635 
636 #define DEF_DIR_LEVEL		0
637 
638 enum {
639 	GC_FAILURE_PIN,
640 	GC_FAILURE_ATOMIC,
641 	MAX_GC_FAILURE
642 };
643 
644 /* used for f2fs_inode_info->flags */
645 enum {
646 	FI_NEW_INODE,		/* indicate newly allocated inode */
647 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
648 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
649 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
650 	FI_INC_LINK,		/* need to increment i_nlink */
651 	FI_ACL_MODE,		/* indicate acl mode */
652 	FI_NO_ALLOC,		/* should not allocate any blocks */
653 	FI_FREE_NID,		/* free allocated nide */
654 	FI_NO_EXTENT,		/* not to use the extent cache */
655 	FI_INLINE_XATTR,	/* used for inline xattr */
656 	FI_INLINE_DATA,		/* used for inline data*/
657 	FI_INLINE_DENTRY,	/* used for inline dentry */
658 	FI_APPEND_WRITE,	/* inode has appended data */
659 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
660 	FI_NEED_IPU,		/* used for ipu per file */
661 	FI_ATOMIC_FILE,		/* indicate atomic file */
662 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
663 	FI_VOLATILE_FILE,	/* indicate volatile file */
664 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
665 	FI_DROP_CACHE,		/* drop dirty page cache */
666 	FI_DATA_EXIST,		/* indicate data exists */
667 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
668 	FI_DO_DEFRAG,		/* indicate defragment is running */
669 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
670 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
671 	FI_HOT_DATA,		/* indicate file is hot */
672 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
673 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
674 	FI_PIN_FILE,		/* indicate file should not be gced */
675 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
676 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
677 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
678 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
679 	FI_MMAP_FILE,		/* indicate file was mmapped */
680 	FI_MAX,			/* max flag, never be used */
681 };
682 
683 struct f2fs_inode_info {
684 	struct inode vfs_inode;		/* serve a vfs inode */
685 	unsigned long i_flags;		/* keep an inode flags for ioctl */
686 	unsigned char i_advise;		/* use to give file attribute hints */
687 	unsigned char i_dir_level;	/* use for dentry level for large dir */
688 	unsigned int i_current_depth;	/* only for directory depth */
689 	/* for gc failure statistic */
690 	unsigned int i_gc_failures[MAX_GC_FAILURE];
691 	unsigned int i_pino;		/* parent inode number */
692 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
693 
694 	/* Use below internally in f2fs*/
695 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
696 	struct rw_semaphore i_sem;	/* protect fi info */
697 	atomic_t dirty_pages;		/* # of dirty pages */
698 	f2fs_hash_t chash;		/* hash value of given file name */
699 	unsigned int clevel;		/* maximum level of given file name */
700 	struct task_struct *task;	/* lookup and create consistency */
701 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
702 	nid_t i_xattr_nid;		/* node id that contains xattrs */
703 	loff_t	last_disk_size;		/* lastly written file size */
704 	spinlock_t i_size_lock;		/* protect last_disk_size */
705 
706 #ifdef CONFIG_QUOTA
707 	struct dquot *i_dquot[MAXQUOTAS];
708 
709 	/* quota space reservation, managed internally by quota code */
710 	qsize_t i_reserved_quota;
711 #endif
712 	struct list_head dirty_list;	/* dirty list for dirs and files */
713 	struct list_head gdirty_list;	/* linked in global dirty list */
714 	struct list_head inmem_ilist;	/* list for inmem inodes */
715 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
716 	struct task_struct *inmem_task;	/* store inmemory task */
717 	struct mutex inmem_lock;	/* lock for inmemory pages */
718 	pgoff_t ra_offset;		/* ongoing readahead offset */
719 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
720 
721 	/* avoid racing between foreground op and gc */
722 	struct rw_semaphore i_gc_rwsem[2];
723 	struct rw_semaphore i_mmap_sem;
724 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
725 
726 	int i_extra_isize;		/* size of extra space located in i_addr */
727 	kprojid_t i_projid;		/* id for project quota */
728 	int i_inline_xattr_size;	/* inline xattr size */
729 	struct timespec64 i_crtime;	/* inode creation time */
730 	struct timespec64 i_disk_time[4];/* inode disk times */
731 
732 	/* for file compress */
733 	atomic_t i_compr_blocks;		/* # of compressed blocks */
734 	unsigned char i_compress_algorithm;	/* algorithm type */
735 	unsigned char i_log_cluster_size;	/* log of cluster size */
736 	unsigned short i_compress_flag;		/* compress flag */
737 	unsigned int i_cluster_size;		/* cluster size */
738 };
739 
740 static inline void get_extent_info(struct extent_info *ext,
741 					struct f2fs_extent *i_ext)
742 {
743 	ext->fofs = le32_to_cpu(i_ext->fofs);
744 	ext->blk = le32_to_cpu(i_ext->blk);
745 	ext->len = le32_to_cpu(i_ext->len);
746 }
747 
748 static inline void set_raw_extent(struct extent_info *ext,
749 					struct f2fs_extent *i_ext)
750 {
751 	i_ext->fofs = cpu_to_le32(ext->fofs);
752 	i_ext->blk = cpu_to_le32(ext->blk);
753 	i_ext->len = cpu_to_le32(ext->len);
754 }
755 
756 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
757 						u32 blk, unsigned int len)
758 {
759 	ei->fofs = fofs;
760 	ei->blk = blk;
761 	ei->len = len;
762 }
763 
764 static inline bool __is_discard_mergeable(struct discard_info *back,
765 			struct discard_info *front, unsigned int max_len)
766 {
767 	return (back->lstart + back->len == front->lstart) &&
768 		(back->len + front->len <= max_len);
769 }
770 
771 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
772 			struct discard_info *back, unsigned int max_len)
773 {
774 	return __is_discard_mergeable(back, cur, max_len);
775 }
776 
777 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
778 			struct discard_info *front, unsigned int max_len)
779 {
780 	return __is_discard_mergeable(cur, front, max_len);
781 }
782 
783 static inline bool __is_extent_mergeable(struct extent_info *back,
784 						struct extent_info *front)
785 {
786 	return (back->fofs + back->len == front->fofs &&
787 			back->blk + back->len == front->blk);
788 }
789 
790 static inline bool __is_back_mergeable(struct extent_info *cur,
791 						struct extent_info *back)
792 {
793 	return __is_extent_mergeable(back, cur);
794 }
795 
796 static inline bool __is_front_mergeable(struct extent_info *cur,
797 						struct extent_info *front)
798 {
799 	return __is_extent_mergeable(cur, front);
800 }
801 
802 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
803 static inline void __try_update_largest_extent(struct extent_tree *et,
804 						struct extent_node *en)
805 {
806 	if (en->ei.len > et->largest.len) {
807 		et->largest = en->ei;
808 		et->largest_updated = true;
809 	}
810 }
811 
812 /*
813  * For free nid management
814  */
815 enum nid_state {
816 	FREE_NID,		/* newly added to free nid list */
817 	PREALLOC_NID,		/* it is preallocated */
818 	MAX_NID_STATE,
819 };
820 
821 struct f2fs_nm_info {
822 	block_t nat_blkaddr;		/* base disk address of NAT */
823 	nid_t max_nid;			/* maximum possible node ids */
824 	nid_t available_nids;		/* # of available node ids */
825 	nid_t next_scan_nid;		/* the next nid to be scanned */
826 	unsigned int ram_thresh;	/* control the memory footprint */
827 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
828 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
829 
830 	/* NAT cache management */
831 	struct radix_tree_root nat_root;/* root of the nat entry cache */
832 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
833 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
834 	struct list_head nat_entries;	/* cached nat entry list (clean) */
835 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
836 	unsigned int nat_cnt;		/* the # of cached nat entries */
837 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
838 	unsigned int nat_blocks;	/* # of nat blocks */
839 
840 	/* free node ids management */
841 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
842 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
843 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
844 	spinlock_t nid_list_lock;	/* protect nid lists ops */
845 	struct mutex build_lock;	/* lock for build free nids */
846 	unsigned char **free_nid_bitmap;
847 	unsigned char *nat_block_bitmap;
848 	unsigned short *free_nid_count;	/* free nid count of NAT block */
849 
850 	/* for checkpoint */
851 	char *nat_bitmap;		/* NAT bitmap pointer */
852 
853 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
854 	unsigned char *nat_bits;	/* NAT bits blocks */
855 	unsigned char *full_nat_bits;	/* full NAT pages */
856 	unsigned char *empty_nat_bits;	/* empty NAT pages */
857 #ifdef CONFIG_F2FS_CHECK_FS
858 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
859 #endif
860 	int bitmap_size;		/* bitmap size */
861 };
862 
863 /*
864  * this structure is used as one of function parameters.
865  * all the information are dedicated to a given direct node block determined
866  * by the data offset in a file.
867  */
868 struct dnode_of_data {
869 	struct inode *inode;		/* vfs inode pointer */
870 	struct page *inode_page;	/* its inode page, NULL is possible */
871 	struct page *node_page;		/* cached direct node page */
872 	nid_t nid;			/* node id of the direct node block */
873 	unsigned int ofs_in_node;	/* data offset in the node page */
874 	bool inode_page_locked;		/* inode page is locked or not */
875 	bool node_changed;		/* is node block changed */
876 	char cur_level;			/* level of hole node page */
877 	char max_level;			/* level of current page located */
878 	block_t	data_blkaddr;		/* block address of the node block */
879 };
880 
881 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
882 		struct page *ipage, struct page *npage, nid_t nid)
883 {
884 	memset(dn, 0, sizeof(*dn));
885 	dn->inode = inode;
886 	dn->inode_page = ipage;
887 	dn->node_page = npage;
888 	dn->nid = nid;
889 }
890 
891 /*
892  * For SIT manager
893  *
894  * By default, there are 6 active log areas across the whole main area.
895  * When considering hot and cold data separation to reduce cleaning overhead,
896  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
897  * respectively.
898  * In the current design, you should not change the numbers intentionally.
899  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
900  * logs individually according to the underlying devices. (default: 6)
901  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
902  * data and 8 for node logs.
903  */
904 #define	NR_CURSEG_DATA_TYPE	(3)
905 #define NR_CURSEG_NODE_TYPE	(3)
906 #define NR_CURSEG_INMEM_TYPE	(2)
907 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
908 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
909 
910 enum {
911 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
912 	CURSEG_WARM_DATA,	/* data blocks */
913 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
914 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
915 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
916 	CURSEG_COLD_NODE,	/* indirect node blocks */
917 	NR_PERSISTENT_LOG,	/* number of persistent log */
918 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
919 				/* pinned file that needs consecutive block address */
920 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
921 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
922 };
923 
924 struct flush_cmd {
925 	struct completion wait;
926 	struct llist_node llnode;
927 	nid_t ino;
928 	int ret;
929 };
930 
931 struct flush_cmd_control {
932 	struct task_struct *f2fs_issue_flush;	/* flush thread */
933 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
934 	atomic_t issued_flush;			/* # of issued flushes */
935 	atomic_t queued_flush;			/* # of queued flushes */
936 	struct llist_head issue_list;		/* list for command issue */
937 	struct llist_node *dispatch_list;	/* list for command dispatch */
938 };
939 
940 struct f2fs_sm_info {
941 	struct sit_info *sit_info;		/* whole segment information */
942 	struct free_segmap_info *free_info;	/* free segment information */
943 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
944 	struct curseg_info *curseg_array;	/* active segment information */
945 
946 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
947 
948 	block_t seg0_blkaddr;		/* block address of 0'th segment */
949 	block_t main_blkaddr;		/* start block address of main area */
950 	block_t ssa_blkaddr;		/* start block address of SSA area */
951 
952 	unsigned int segment_count;	/* total # of segments */
953 	unsigned int main_segments;	/* # of segments in main area */
954 	unsigned int reserved_segments;	/* # of reserved segments */
955 	unsigned int ovp_segments;	/* # of overprovision segments */
956 
957 	/* a threshold to reclaim prefree segments */
958 	unsigned int rec_prefree_segments;
959 
960 	/* for batched trimming */
961 	unsigned int trim_sections;		/* # of sections to trim */
962 
963 	struct list_head sit_entry_set;	/* sit entry set list */
964 
965 	unsigned int ipu_policy;	/* in-place-update policy */
966 	unsigned int min_ipu_util;	/* in-place-update threshold */
967 	unsigned int min_fsync_blocks;	/* threshold for fsync */
968 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
969 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
970 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
971 
972 	/* for flush command control */
973 	struct flush_cmd_control *fcc_info;
974 
975 	/* for discard command control */
976 	struct discard_cmd_control *dcc_info;
977 };
978 
979 /*
980  * For superblock
981  */
982 /*
983  * COUNT_TYPE for monitoring
984  *
985  * f2fs monitors the number of several block types such as on-writeback,
986  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
987  */
988 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
989 enum count_type {
990 	F2FS_DIRTY_DENTS,
991 	F2FS_DIRTY_DATA,
992 	F2FS_DIRTY_QDATA,
993 	F2FS_DIRTY_NODES,
994 	F2FS_DIRTY_META,
995 	F2FS_INMEM_PAGES,
996 	F2FS_DIRTY_IMETA,
997 	F2FS_WB_CP_DATA,
998 	F2FS_WB_DATA,
999 	F2FS_RD_DATA,
1000 	F2FS_RD_NODE,
1001 	F2FS_RD_META,
1002 	F2FS_DIO_WRITE,
1003 	F2FS_DIO_READ,
1004 	NR_COUNT_TYPE,
1005 };
1006 
1007 /*
1008  * The below are the page types of bios used in submit_bio().
1009  * The available types are:
1010  * DATA			User data pages. It operates as async mode.
1011  * NODE			Node pages. It operates as async mode.
1012  * META			FS metadata pages such as SIT, NAT, CP.
1013  * NR_PAGE_TYPE		The number of page types.
1014  * META_FLUSH		Make sure the previous pages are written
1015  *			with waiting the bio's completion
1016  * ...			Only can be used with META.
1017  */
1018 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1019 enum page_type {
1020 	DATA,
1021 	NODE,
1022 	META,
1023 	NR_PAGE_TYPE,
1024 	META_FLUSH,
1025 	INMEM,		/* the below types are used by tracepoints only. */
1026 	INMEM_DROP,
1027 	INMEM_INVALIDATE,
1028 	INMEM_REVOKE,
1029 	IPU,
1030 	OPU,
1031 };
1032 
1033 enum temp_type {
1034 	HOT = 0,	/* must be zero for meta bio */
1035 	WARM,
1036 	COLD,
1037 	NR_TEMP_TYPE,
1038 };
1039 
1040 enum need_lock_type {
1041 	LOCK_REQ = 0,
1042 	LOCK_DONE,
1043 	LOCK_RETRY,
1044 };
1045 
1046 enum cp_reason_type {
1047 	CP_NO_NEEDED,
1048 	CP_NON_REGULAR,
1049 	CP_COMPRESSED,
1050 	CP_HARDLINK,
1051 	CP_SB_NEED_CP,
1052 	CP_WRONG_PINO,
1053 	CP_NO_SPC_ROLL,
1054 	CP_NODE_NEED_CP,
1055 	CP_FASTBOOT_MODE,
1056 	CP_SPEC_LOG_NUM,
1057 	CP_RECOVER_DIR,
1058 };
1059 
1060 enum iostat_type {
1061 	/* WRITE IO */
1062 	APP_DIRECT_IO,			/* app direct write IOs */
1063 	APP_BUFFERED_IO,		/* app buffered write IOs */
1064 	APP_WRITE_IO,			/* app write IOs */
1065 	APP_MAPPED_IO,			/* app mapped IOs */
1066 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1067 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1068 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1069 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1070 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1071 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1072 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1073 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1074 
1075 	/* READ IO */
1076 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1077 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1078 	APP_READ_IO,			/* app read IOs */
1079 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1080 	FS_DATA_READ_IO,		/* data read IOs */
1081 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1082 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1083 	FS_NODE_READ_IO,		/* node read IOs */
1084 	FS_META_READ_IO,		/* meta read IOs */
1085 
1086 	/* other */
1087 	FS_DISCARD,			/* discard */
1088 	NR_IO_TYPE,
1089 };
1090 
1091 struct f2fs_io_info {
1092 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1093 	nid_t ino;		/* inode number */
1094 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1095 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1096 	int op;			/* contains REQ_OP_ */
1097 	int op_flags;		/* req_flag_bits */
1098 	block_t new_blkaddr;	/* new block address to be written */
1099 	block_t old_blkaddr;	/* old block address before Cow */
1100 	struct page *page;	/* page to be written */
1101 	struct page *encrypted_page;	/* encrypted page */
1102 	struct page *compressed_page;	/* compressed page */
1103 	struct list_head list;		/* serialize IOs */
1104 	bool submitted;		/* indicate IO submission */
1105 	int need_lock;		/* indicate we need to lock cp_rwsem */
1106 	bool in_list;		/* indicate fio is in io_list */
1107 	bool is_por;		/* indicate IO is from recovery or not */
1108 	bool retry;		/* need to reallocate block address */
1109 	int compr_blocks;	/* # of compressed block addresses */
1110 	bool encrypted;		/* indicate file is encrypted */
1111 	enum iostat_type io_type;	/* io type */
1112 	struct writeback_control *io_wbc; /* writeback control */
1113 	struct bio **bio;		/* bio for ipu */
1114 	sector_t *last_block;		/* last block number in bio */
1115 	unsigned char version;		/* version of the node */
1116 };
1117 
1118 struct bio_entry {
1119 	struct bio *bio;
1120 	struct list_head list;
1121 };
1122 
1123 #define is_read_io(rw) ((rw) == READ)
1124 struct f2fs_bio_info {
1125 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1126 	struct bio *bio;		/* bios to merge */
1127 	sector_t last_block_in_bio;	/* last block number */
1128 	struct f2fs_io_info fio;	/* store buffered io info. */
1129 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1130 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1131 	struct list_head io_list;	/* track fios */
1132 	struct list_head bio_list;	/* bio entry list head */
1133 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1134 };
1135 
1136 #define FDEV(i)				(sbi->devs[i])
1137 #define RDEV(i)				(raw_super->devs[i])
1138 struct f2fs_dev_info {
1139 	struct block_device *bdev;
1140 	char path[MAX_PATH_LEN];
1141 	unsigned int total_segments;
1142 	block_t start_blk;
1143 	block_t end_blk;
1144 #ifdef CONFIG_BLK_DEV_ZONED
1145 	unsigned int nr_blkz;		/* Total number of zones */
1146 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1147 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1148 #endif
1149 };
1150 
1151 enum inode_type {
1152 	DIR_INODE,			/* for dirty dir inode */
1153 	FILE_INODE,			/* for dirty regular/symlink inode */
1154 	DIRTY_META,			/* for all dirtied inode metadata */
1155 	ATOMIC_FILE,			/* for all atomic files */
1156 	NR_INODE_TYPE,
1157 };
1158 
1159 /* for inner inode cache management */
1160 struct inode_management {
1161 	struct radix_tree_root ino_root;	/* ino entry array */
1162 	spinlock_t ino_lock;			/* for ino entry lock */
1163 	struct list_head ino_list;		/* inode list head */
1164 	unsigned long ino_num;			/* number of entries */
1165 };
1166 
1167 /* for GC_AT */
1168 struct atgc_management {
1169 	bool atgc_enabled;			/* ATGC is enabled or not */
1170 	struct rb_root_cached root;		/* root of victim rb-tree */
1171 	struct list_head victim_list;		/* linked with all victim entries */
1172 	unsigned int victim_count;		/* victim count in rb-tree */
1173 	unsigned int candidate_ratio;		/* candidate ratio */
1174 	unsigned int max_candidate_count;	/* max candidate count */
1175 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1176 	unsigned long long age_threshold;	/* age threshold */
1177 };
1178 
1179 /* For s_flag in struct f2fs_sb_info */
1180 enum {
1181 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1182 	SBI_IS_CLOSE,				/* specify unmounting */
1183 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1184 	SBI_POR_DOING,				/* recovery is doing or not */
1185 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1186 	SBI_NEED_CP,				/* need to checkpoint */
1187 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1188 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1189 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1190 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1191 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1192 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1193 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1194 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1195 };
1196 
1197 enum {
1198 	CP_TIME,
1199 	REQ_TIME,
1200 	DISCARD_TIME,
1201 	GC_TIME,
1202 	DISABLE_TIME,
1203 	UMOUNT_DISCARD_TIMEOUT,
1204 	MAX_TIME,
1205 };
1206 
1207 enum {
1208 	GC_NORMAL,
1209 	GC_IDLE_CB,
1210 	GC_IDLE_GREEDY,
1211 	GC_IDLE_AT,
1212 	GC_URGENT_HIGH,
1213 	GC_URGENT_LOW,
1214 };
1215 
1216 enum {
1217 	BGGC_MODE_ON,		/* background gc is on */
1218 	BGGC_MODE_OFF,		/* background gc is off */
1219 	BGGC_MODE_SYNC,		/*
1220 				 * background gc is on, migrating blocks
1221 				 * like foreground gc
1222 				 */
1223 };
1224 
1225 enum {
1226 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1227 	FS_MODE_LFS,		/* use lfs allocation only */
1228 };
1229 
1230 enum {
1231 	WHINT_MODE_OFF,		/* not pass down write hints */
1232 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1233 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1234 };
1235 
1236 enum {
1237 	ALLOC_MODE_DEFAULT,	/* stay default */
1238 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1239 };
1240 
1241 enum fsync_mode {
1242 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1243 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1244 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1245 };
1246 
1247 /*
1248  * this value is set in page as a private data which indicate that
1249  * the page is atomically written, and it is in inmem_pages list.
1250  */
1251 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1252 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1253 
1254 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1255 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1256 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1257 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1258 
1259 #ifdef CONFIG_F2FS_IO_TRACE
1260 #define IS_IO_TRACED_PAGE(page)			\
1261 		(page_private(page) > 0 &&		\
1262 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1263 #else
1264 #define IS_IO_TRACED_PAGE(page) (0)
1265 #endif
1266 
1267 /* For compression */
1268 enum compress_algorithm_type {
1269 	COMPRESS_LZO,
1270 	COMPRESS_LZ4,
1271 	COMPRESS_ZSTD,
1272 	COMPRESS_LZORLE,
1273 	COMPRESS_MAX,
1274 };
1275 
1276 enum compress_flag {
1277 	COMPRESS_CHKSUM,
1278 	COMPRESS_MAX_FLAG,
1279 };
1280 
1281 #define COMPRESS_DATA_RESERVED_SIZE		4
1282 struct compress_data {
1283 	__le32 clen;			/* compressed data size */
1284 	__le32 chksum;			/* compressed data chksum */
1285 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1286 	u8 cdata[];			/* compressed data */
1287 };
1288 
1289 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1290 
1291 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1292 
1293 /* compress context */
1294 struct compress_ctx {
1295 	struct inode *inode;		/* inode the context belong to */
1296 	pgoff_t cluster_idx;		/* cluster index number */
1297 	unsigned int cluster_size;	/* page count in cluster */
1298 	unsigned int log_cluster_size;	/* log of cluster size */
1299 	struct page **rpages;		/* pages store raw data in cluster */
1300 	unsigned int nr_rpages;		/* total page number in rpages */
1301 	struct page **cpages;		/* pages store compressed data in cluster */
1302 	unsigned int nr_cpages;		/* total page number in cpages */
1303 	void *rbuf;			/* virtual mapped address on rpages */
1304 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1305 	size_t rlen;			/* valid data length in rbuf */
1306 	size_t clen;			/* valid data length in cbuf */
1307 	void *private;			/* payload buffer for specified compression algorithm */
1308 	void *private2;			/* extra payload buffer */
1309 };
1310 
1311 /* compress context for write IO path */
1312 struct compress_io_ctx {
1313 	u32 magic;			/* magic number to indicate page is compressed */
1314 	struct inode *inode;		/* inode the context belong to */
1315 	struct page **rpages;		/* pages store raw data in cluster */
1316 	unsigned int nr_rpages;		/* total page number in rpages */
1317 	atomic_t pending_pages;		/* in-flight compressed page count */
1318 };
1319 
1320 /* decompress io context for read IO path */
1321 struct decompress_io_ctx {
1322 	u32 magic;			/* magic number to indicate page is compressed */
1323 	struct inode *inode;		/* inode the context belong to */
1324 	pgoff_t cluster_idx;		/* cluster index number */
1325 	unsigned int cluster_size;	/* page count in cluster */
1326 	unsigned int log_cluster_size;	/* log of cluster size */
1327 	struct page **rpages;		/* pages store raw data in cluster */
1328 	unsigned int nr_rpages;		/* total page number in rpages */
1329 	struct page **cpages;		/* pages store compressed data in cluster */
1330 	unsigned int nr_cpages;		/* total page number in cpages */
1331 	struct page **tpages;		/* temp pages to pad holes in cluster */
1332 	void *rbuf;			/* virtual mapped address on rpages */
1333 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1334 	size_t rlen;			/* valid data length in rbuf */
1335 	size_t clen;			/* valid data length in cbuf */
1336 	atomic_t pending_pages;		/* in-flight compressed page count */
1337 	bool failed;			/* indicate IO error during decompression */
1338 	void *private;			/* payload buffer for specified decompression algorithm */
1339 	void *private2;			/* extra payload buffer */
1340 };
1341 
1342 #define NULL_CLUSTER			((unsigned int)(~0))
1343 #define MIN_COMPRESS_LOG_SIZE		2
1344 #define MAX_COMPRESS_LOG_SIZE		8
1345 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1346 
1347 struct f2fs_sb_info {
1348 	struct super_block *sb;			/* pointer to VFS super block */
1349 	struct proc_dir_entry *s_proc;		/* proc entry */
1350 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1351 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1352 	int valid_super_block;			/* valid super block no */
1353 	unsigned long s_flag;				/* flags for sbi */
1354 	struct mutex writepages;		/* mutex for writepages() */
1355 
1356 #ifdef CONFIG_BLK_DEV_ZONED
1357 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1358 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1359 #endif
1360 
1361 	/* for node-related operations */
1362 	struct f2fs_nm_info *nm_info;		/* node manager */
1363 	struct inode *node_inode;		/* cache node blocks */
1364 
1365 	/* for segment-related operations */
1366 	struct f2fs_sm_info *sm_info;		/* segment manager */
1367 
1368 	/* for bio operations */
1369 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1370 	/* keep migration IO order for LFS mode */
1371 	struct rw_semaphore io_order_lock;
1372 	mempool_t *write_io_dummy;		/* Dummy pages */
1373 
1374 	/* for checkpoint */
1375 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1376 	int cur_cp_pack;			/* remain current cp pack */
1377 	spinlock_t cp_lock;			/* for flag in ckpt */
1378 	struct inode *meta_inode;		/* cache meta blocks */
1379 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1380 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1381 	struct rw_semaphore node_write;		/* locking node writes */
1382 	struct rw_semaphore node_change;	/* locking node change */
1383 	wait_queue_head_t cp_wait;
1384 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1385 	long interval_time[MAX_TIME];		/* to store thresholds */
1386 
1387 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1388 
1389 	spinlock_t fsync_node_lock;		/* for node entry lock */
1390 	struct list_head fsync_node_list;	/* node list head */
1391 	unsigned int fsync_seg_id;		/* sequence id */
1392 	unsigned int fsync_node_num;		/* number of node entries */
1393 
1394 	/* for orphan inode, use 0'th array */
1395 	unsigned int max_orphans;		/* max orphan inodes */
1396 
1397 	/* for inode management */
1398 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1399 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1400 	struct mutex flush_lock;		/* for flush exclusion */
1401 
1402 	/* for extent tree cache */
1403 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1404 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1405 	struct list_head extent_list;		/* lru list for shrinker */
1406 	spinlock_t extent_lock;			/* locking extent lru list */
1407 	atomic_t total_ext_tree;		/* extent tree count */
1408 	struct list_head zombie_list;		/* extent zombie tree list */
1409 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1410 	atomic_t total_ext_node;		/* extent info count */
1411 
1412 	/* basic filesystem units */
1413 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1414 	unsigned int log_blocksize;		/* log2 block size */
1415 	unsigned int blocksize;			/* block size */
1416 	unsigned int root_ino_num;		/* root inode number*/
1417 	unsigned int node_ino_num;		/* node inode number*/
1418 	unsigned int meta_ino_num;		/* meta inode number*/
1419 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1420 	unsigned int blocks_per_seg;		/* blocks per segment */
1421 	unsigned int segs_per_sec;		/* segments per section */
1422 	unsigned int secs_per_zone;		/* sections per zone */
1423 	unsigned int total_sections;		/* total section count */
1424 	unsigned int total_node_count;		/* total node block count */
1425 	unsigned int total_valid_node_count;	/* valid node block count */
1426 	loff_t max_file_blocks;			/* max block index of file */
1427 	int dir_level;				/* directory level */
1428 	int readdir_ra;				/* readahead inode in readdir */
1429 
1430 	block_t user_block_count;		/* # of user blocks */
1431 	block_t total_valid_block_count;	/* # of valid blocks */
1432 	block_t discard_blks;			/* discard command candidats */
1433 	block_t last_valid_block_count;		/* for recovery */
1434 	block_t reserved_blocks;		/* configurable reserved blocks */
1435 	block_t current_reserved_blocks;	/* current reserved blocks */
1436 
1437 	/* Additional tracking for no checkpoint mode */
1438 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1439 
1440 	unsigned int nquota_files;		/* # of quota sysfile */
1441 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1442 
1443 	/* # of pages, see count_type */
1444 	atomic_t nr_pages[NR_COUNT_TYPE];
1445 	/* # of allocated blocks */
1446 	struct percpu_counter alloc_valid_block_count;
1447 
1448 	/* writeback control */
1449 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1450 
1451 	/* valid inode count */
1452 	struct percpu_counter total_valid_inode_count;
1453 
1454 	struct f2fs_mount_info mount_opt;	/* mount options */
1455 
1456 	/* for cleaning operations */
1457 	struct rw_semaphore gc_lock;		/*
1458 						 * semaphore for GC, avoid
1459 						 * race between GC and GC or CP
1460 						 */
1461 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1462 	struct atgc_management am;		/* atgc management */
1463 	unsigned int cur_victim_sec;		/* current victim section num */
1464 	unsigned int gc_mode;			/* current GC state */
1465 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1466 
1467 	/* for skip statistic */
1468 	unsigned int atomic_files;		/* # of opened atomic file */
1469 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1470 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1471 
1472 	/* threshold for gc trials on pinned files */
1473 	u64 gc_pin_file_threshold;
1474 	struct rw_semaphore pin_sem;
1475 
1476 	/* maximum # of trials to find a victim segment for SSR and GC */
1477 	unsigned int max_victim_search;
1478 	/* migration granularity of garbage collection, unit: segment */
1479 	unsigned int migration_granularity;
1480 
1481 	/*
1482 	 * for stat information.
1483 	 * one is for the LFS mode, and the other is for the SSR mode.
1484 	 */
1485 #ifdef CONFIG_F2FS_STAT_FS
1486 	struct f2fs_stat_info *stat_info;	/* FS status information */
1487 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1488 	unsigned int segment_count[2];		/* # of allocated segments */
1489 	unsigned int block_count[2];		/* # of allocated blocks */
1490 	atomic_t inplace_count;		/* # of inplace update */
1491 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1492 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1493 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1494 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1495 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1496 	atomic_t inline_inode;			/* # of inline_data inodes */
1497 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1498 	atomic_t compr_inode;			/* # of compressed inodes */
1499 	atomic64_t compr_blocks;		/* # of compressed blocks */
1500 	atomic_t vw_cnt;			/* # of volatile writes */
1501 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1502 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1503 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1504 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1505 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1506 #endif
1507 	spinlock_t stat_lock;			/* lock for stat operations */
1508 
1509 	/* For app/fs IO statistics */
1510 	spinlock_t iostat_lock;
1511 	unsigned long long rw_iostat[NR_IO_TYPE];
1512 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1513 	bool iostat_enable;
1514 	unsigned long iostat_next_period;
1515 	unsigned int iostat_period_ms;
1516 
1517 	/* to attach REQ_META|REQ_FUA flags */
1518 	unsigned int data_io_flag;
1519 	unsigned int node_io_flag;
1520 
1521 	/* For sysfs suppport */
1522 	struct kobject s_kobj;
1523 	struct completion s_kobj_unregister;
1524 
1525 	/* For shrinker support */
1526 	struct list_head s_list;
1527 	int s_ndevs;				/* number of devices */
1528 	struct f2fs_dev_info *devs;		/* for device list */
1529 	unsigned int dirty_device;		/* for checkpoint data flush */
1530 	spinlock_t dev_lock;			/* protect dirty_device */
1531 	struct mutex umount_mutex;
1532 	unsigned int shrinker_run_no;
1533 
1534 	/* For write statistics */
1535 	u64 sectors_written_start;
1536 	u64 kbytes_written;
1537 
1538 	/* Reference to checksum algorithm driver via cryptoapi */
1539 	struct crypto_shash *s_chksum_driver;
1540 
1541 	/* Precomputed FS UUID checksum for seeding other checksums */
1542 	__u32 s_chksum_seed;
1543 
1544 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1545 
1546 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1547 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1548 
1549 #ifdef CONFIG_F2FS_FS_COMPRESSION
1550 	struct kmem_cache *page_array_slab;	/* page array entry */
1551 	unsigned int page_array_slab_size;	/* default page array slab size */
1552 #endif
1553 };
1554 
1555 struct f2fs_private_dio {
1556 	struct inode *inode;
1557 	void *orig_private;
1558 	bio_end_io_t *orig_end_io;
1559 	bool write;
1560 };
1561 
1562 #ifdef CONFIG_F2FS_FAULT_INJECTION
1563 #define f2fs_show_injection_info(sbi, type)					\
1564 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1565 		KERN_INFO, sbi->sb->s_id,				\
1566 		f2fs_fault_name[type],					\
1567 		__func__, __builtin_return_address(0))
1568 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1569 {
1570 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1571 
1572 	if (!ffi->inject_rate)
1573 		return false;
1574 
1575 	if (!IS_FAULT_SET(ffi, type))
1576 		return false;
1577 
1578 	atomic_inc(&ffi->inject_ops);
1579 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1580 		atomic_set(&ffi->inject_ops, 0);
1581 		return true;
1582 	}
1583 	return false;
1584 }
1585 #else
1586 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1587 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1588 {
1589 	return false;
1590 }
1591 #endif
1592 
1593 /*
1594  * Test if the mounted volume is a multi-device volume.
1595  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1596  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1597  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1598  */
1599 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1600 {
1601 	return sbi->s_ndevs > 1;
1602 }
1603 
1604 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1605 {
1606 	unsigned long now = jiffies;
1607 
1608 	sbi->last_time[type] = now;
1609 
1610 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1611 	if (type == REQ_TIME) {
1612 		sbi->last_time[DISCARD_TIME] = now;
1613 		sbi->last_time[GC_TIME] = now;
1614 	}
1615 }
1616 
1617 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1618 {
1619 	unsigned long interval = sbi->interval_time[type] * HZ;
1620 
1621 	return time_after(jiffies, sbi->last_time[type] + interval);
1622 }
1623 
1624 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1625 						int type)
1626 {
1627 	unsigned long interval = sbi->interval_time[type] * HZ;
1628 	unsigned int wait_ms = 0;
1629 	long delta;
1630 
1631 	delta = (sbi->last_time[type] + interval) - jiffies;
1632 	if (delta > 0)
1633 		wait_ms = jiffies_to_msecs(delta);
1634 
1635 	return wait_ms;
1636 }
1637 
1638 /*
1639  * Inline functions
1640  */
1641 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1642 			      const void *address, unsigned int length)
1643 {
1644 	struct {
1645 		struct shash_desc shash;
1646 		char ctx[4];
1647 	} desc;
1648 	int err;
1649 
1650 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1651 
1652 	desc.shash.tfm = sbi->s_chksum_driver;
1653 	*(u32 *)desc.ctx = crc;
1654 
1655 	err = crypto_shash_update(&desc.shash, address, length);
1656 	BUG_ON(err);
1657 
1658 	return *(u32 *)desc.ctx;
1659 }
1660 
1661 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1662 			   unsigned int length)
1663 {
1664 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1665 }
1666 
1667 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1668 				  void *buf, size_t buf_size)
1669 {
1670 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1671 }
1672 
1673 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1674 			      const void *address, unsigned int length)
1675 {
1676 	return __f2fs_crc32(sbi, crc, address, length);
1677 }
1678 
1679 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1680 {
1681 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1682 }
1683 
1684 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1685 {
1686 	return sb->s_fs_info;
1687 }
1688 
1689 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1690 {
1691 	return F2FS_SB(inode->i_sb);
1692 }
1693 
1694 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1695 {
1696 	return F2FS_I_SB(mapping->host);
1697 }
1698 
1699 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1700 {
1701 	return F2FS_M_SB(page_file_mapping(page));
1702 }
1703 
1704 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1705 {
1706 	return (struct f2fs_super_block *)(sbi->raw_super);
1707 }
1708 
1709 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1710 {
1711 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1712 }
1713 
1714 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1715 {
1716 	return (struct f2fs_node *)page_address(page);
1717 }
1718 
1719 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1720 {
1721 	return &((struct f2fs_node *)page_address(page))->i;
1722 }
1723 
1724 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1725 {
1726 	return (struct f2fs_nm_info *)(sbi->nm_info);
1727 }
1728 
1729 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1730 {
1731 	return (struct f2fs_sm_info *)(sbi->sm_info);
1732 }
1733 
1734 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1735 {
1736 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1737 }
1738 
1739 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1740 {
1741 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1742 }
1743 
1744 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1745 {
1746 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1747 }
1748 
1749 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1750 {
1751 	return sbi->meta_inode->i_mapping;
1752 }
1753 
1754 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1755 {
1756 	return sbi->node_inode->i_mapping;
1757 }
1758 
1759 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1760 {
1761 	return test_bit(type, &sbi->s_flag);
1762 }
1763 
1764 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1765 {
1766 	set_bit(type, &sbi->s_flag);
1767 }
1768 
1769 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1770 {
1771 	clear_bit(type, &sbi->s_flag);
1772 }
1773 
1774 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1775 {
1776 	return le64_to_cpu(cp->checkpoint_ver);
1777 }
1778 
1779 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1780 {
1781 	if (type < F2FS_MAX_QUOTAS)
1782 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1783 	return 0;
1784 }
1785 
1786 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1787 {
1788 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1789 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1790 }
1791 
1792 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1793 {
1794 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1795 
1796 	return ckpt_flags & f;
1797 }
1798 
1799 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1800 {
1801 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1802 }
1803 
1804 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1805 {
1806 	unsigned int ckpt_flags;
1807 
1808 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1809 	ckpt_flags |= f;
1810 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1811 }
1812 
1813 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1814 {
1815 	unsigned long flags;
1816 
1817 	spin_lock_irqsave(&sbi->cp_lock, flags);
1818 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1819 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1820 }
1821 
1822 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1823 {
1824 	unsigned int ckpt_flags;
1825 
1826 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1827 	ckpt_flags &= (~f);
1828 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1829 }
1830 
1831 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1832 {
1833 	unsigned long flags;
1834 
1835 	spin_lock_irqsave(&sbi->cp_lock, flags);
1836 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1837 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1838 }
1839 
1840 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1841 {
1842 	unsigned long flags;
1843 	unsigned char *nat_bits;
1844 
1845 	/*
1846 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1847 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1848 	 * so let's rely on regular fsck or unclean shutdown.
1849 	 */
1850 
1851 	if (lock)
1852 		spin_lock_irqsave(&sbi->cp_lock, flags);
1853 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1854 	nat_bits = NM_I(sbi)->nat_bits;
1855 	NM_I(sbi)->nat_bits = NULL;
1856 	if (lock)
1857 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1858 
1859 	kvfree(nat_bits);
1860 }
1861 
1862 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1863 					struct cp_control *cpc)
1864 {
1865 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1866 
1867 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1868 }
1869 
1870 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1871 {
1872 	down_read(&sbi->cp_rwsem);
1873 }
1874 
1875 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1876 {
1877 	return down_read_trylock(&sbi->cp_rwsem);
1878 }
1879 
1880 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1881 {
1882 	up_read(&sbi->cp_rwsem);
1883 }
1884 
1885 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1886 {
1887 	down_write(&sbi->cp_rwsem);
1888 }
1889 
1890 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1891 {
1892 	up_write(&sbi->cp_rwsem);
1893 }
1894 
1895 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1896 {
1897 	int reason = CP_SYNC;
1898 
1899 	if (test_opt(sbi, FASTBOOT))
1900 		reason = CP_FASTBOOT;
1901 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1902 		reason = CP_UMOUNT;
1903 	return reason;
1904 }
1905 
1906 static inline bool __remain_node_summaries(int reason)
1907 {
1908 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1909 }
1910 
1911 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1912 {
1913 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1914 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1915 }
1916 
1917 /*
1918  * Check whether the inode has blocks or not
1919  */
1920 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1921 {
1922 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1923 
1924 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1925 }
1926 
1927 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1928 {
1929 	return ofs == XATTR_NODE_OFFSET;
1930 }
1931 
1932 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1933 					struct inode *inode, bool cap)
1934 {
1935 	if (!inode)
1936 		return true;
1937 	if (!test_opt(sbi, RESERVE_ROOT))
1938 		return false;
1939 	if (IS_NOQUOTA(inode))
1940 		return true;
1941 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1942 		return true;
1943 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1944 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1945 		return true;
1946 	if (cap && capable(CAP_SYS_RESOURCE))
1947 		return true;
1948 	return false;
1949 }
1950 
1951 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1952 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1953 				 struct inode *inode, blkcnt_t *count)
1954 {
1955 	blkcnt_t diff = 0, release = 0;
1956 	block_t avail_user_block_count;
1957 	int ret;
1958 
1959 	ret = dquot_reserve_block(inode, *count);
1960 	if (ret)
1961 		return ret;
1962 
1963 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1964 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1965 		release = *count;
1966 		goto release_quota;
1967 	}
1968 
1969 	/*
1970 	 * let's increase this in prior to actual block count change in order
1971 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1972 	 */
1973 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1974 
1975 	spin_lock(&sbi->stat_lock);
1976 	sbi->total_valid_block_count += (block_t)(*count);
1977 	avail_user_block_count = sbi->user_block_count -
1978 					sbi->current_reserved_blocks;
1979 
1980 	if (!__allow_reserved_blocks(sbi, inode, true))
1981 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1982 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1983 		if (avail_user_block_count > sbi->unusable_block_count)
1984 			avail_user_block_count -= sbi->unusable_block_count;
1985 		else
1986 			avail_user_block_count = 0;
1987 	}
1988 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1989 		diff = sbi->total_valid_block_count - avail_user_block_count;
1990 		if (diff > *count)
1991 			diff = *count;
1992 		*count -= diff;
1993 		release = diff;
1994 		sbi->total_valid_block_count -= diff;
1995 		if (!*count) {
1996 			spin_unlock(&sbi->stat_lock);
1997 			goto enospc;
1998 		}
1999 	}
2000 	spin_unlock(&sbi->stat_lock);
2001 
2002 	if (unlikely(release)) {
2003 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2004 		dquot_release_reservation_block(inode, release);
2005 	}
2006 	f2fs_i_blocks_write(inode, *count, true, true);
2007 	return 0;
2008 
2009 enospc:
2010 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2011 release_quota:
2012 	dquot_release_reservation_block(inode, release);
2013 	return -ENOSPC;
2014 }
2015 
2016 __printf(2, 3)
2017 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2018 
2019 #define f2fs_err(sbi, fmt, ...)						\
2020 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2021 #define f2fs_warn(sbi, fmt, ...)					\
2022 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2023 #define f2fs_notice(sbi, fmt, ...)					\
2024 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2025 #define f2fs_info(sbi, fmt, ...)					\
2026 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2027 #define f2fs_debug(sbi, fmt, ...)					\
2028 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2029 
2030 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2031 						struct inode *inode,
2032 						block_t count)
2033 {
2034 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2035 
2036 	spin_lock(&sbi->stat_lock);
2037 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2038 	sbi->total_valid_block_count -= (block_t)count;
2039 	if (sbi->reserved_blocks &&
2040 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2041 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2042 					sbi->current_reserved_blocks + count);
2043 	spin_unlock(&sbi->stat_lock);
2044 	if (unlikely(inode->i_blocks < sectors)) {
2045 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2046 			  inode->i_ino,
2047 			  (unsigned long long)inode->i_blocks,
2048 			  (unsigned long long)sectors);
2049 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2050 		return;
2051 	}
2052 	f2fs_i_blocks_write(inode, count, false, true);
2053 }
2054 
2055 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2056 {
2057 	atomic_inc(&sbi->nr_pages[count_type]);
2058 
2059 	if (count_type == F2FS_DIRTY_DENTS ||
2060 			count_type == F2FS_DIRTY_NODES ||
2061 			count_type == F2FS_DIRTY_META ||
2062 			count_type == F2FS_DIRTY_QDATA ||
2063 			count_type == F2FS_DIRTY_IMETA)
2064 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2065 }
2066 
2067 static inline void inode_inc_dirty_pages(struct inode *inode)
2068 {
2069 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2070 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2071 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2072 	if (IS_NOQUOTA(inode))
2073 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2074 }
2075 
2076 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2077 {
2078 	atomic_dec(&sbi->nr_pages[count_type]);
2079 }
2080 
2081 static inline void inode_dec_dirty_pages(struct inode *inode)
2082 {
2083 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2084 			!S_ISLNK(inode->i_mode))
2085 		return;
2086 
2087 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2088 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2089 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2090 	if (IS_NOQUOTA(inode))
2091 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2092 }
2093 
2094 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2095 {
2096 	return atomic_read(&sbi->nr_pages[count_type]);
2097 }
2098 
2099 static inline int get_dirty_pages(struct inode *inode)
2100 {
2101 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2102 }
2103 
2104 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2105 {
2106 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2107 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2108 						sbi->log_blocks_per_seg;
2109 
2110 	return segs / sbi->segs_per_sec;
2111 }
2112 
2113 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2114 {
2115 	return sbi->total_valid_block_count;
2116 }
2117 
2118 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2119 {
2120 	return sbi->discard_blks;
2121 }
2122 
2123 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2124 {
2125 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2126 
2127 	/* return NAT or SIT bitmap */
2128 	if (flag == NAT_BITMAP)
2129 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2130 	else if (flag == SIT_BITMAP)
2131 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2132 
2133 	return 0;
2134 }
2135 
2136 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2137 {
2138 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2139 }
2140 
2141 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2142 {
2143 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2144 	int offset;
2145 
2146 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2147 		offset = (flag == SIT_BITMAP) ?
2148 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2149 		/*
2150 		 * if large_nat_bitmap feature is enabled, leave checksum
2151 		 * protection for all nat/sit bitmaps.
2152 		 */
2153 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2154 	}
2155 
2156 	if (__cp_payload(sbi) > 0) {
2157 		if (flag == NAT_BITMAP)
2158 			return &ckpt->sit_nat_version_bitmap;
2159 		else
2160 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2161 	} else {
2162 		offset = (flag == NAT_BITMAP) ?
2163 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2164 		return &ckpt->sit_nat_version_bitmap + offset;
2165 	}
2166 }
2167 
2168 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2169 {
2170 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2171 
2172 	if (sbi->cur_cp_pack == 2)
2173 		start_addr += sbi->blocks_per_seg;
2174 	return start_addr;
2175 }
2176 
2177 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2178 {
2179 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2180 
2181 	if (sbi->cur_cp_pack == 1)
2182 		start_addr += sbi->blocks_per_seg;
2183 	return start_addr;
2184 }
2185 
2186 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2187 {
2188 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2189 }
2190 
2191 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2192 {
2193 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2194 }
2195 
2196 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2197 					struct inode *inode, bool is_inode)
2198 {
2199 	block_t	valid_block_count;
2200 	unsigned int valid_node_count, user_block_count;
2201 	int err;
2202 
2203 	if (is_inode) {
2204 		if (inode) {
2205 			err = dquot_alloc_inode(inode);
2206 			if (err)
2207 				return err;
2208 		}
2209 	} else {
2210 		err = dquot_reserve_block(inode, 1);
2211 		if (err)
2212 			return err;
2213 	}
2214 
2215 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2216 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2217 		goto enospc;
2218 	}
2219 
2220 	spin_lock(&sbi->stat_lock);
2221 
2222 	valid_block_count = sbi->total_valid_block_count +
2223 					sbi->current_reserved_blocks + 1;
2224 
2225 	if (!__allow_reserved_blocks(sbi, inode, false))
2226 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2227 	user_block_count = sbi->user_block_count;
2228 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2229 		user_block_count -= sbi->unusable_block_count;
2230 
2231 	if (unlikely(valid_block_count > user_block_count)) {
2232 		spin_unlock(&sbi->stat_lock);
2233 		goto enospc;
2234 	}
2235 
2236 	valid_node_count = sbi->total_valid_node_count + 1;
2237 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2238 		spin_unlock(&sbi->stat_lock);
2239 		goto enospc;
2240 	}
2241 
2242 	sbi->total_valid_node_count++;
2243 	sbi->total_valid_block_count++;
2244 	spin_unlock(&sbi->stat_lock);
2245 
2246 	if (inode) {
2247 		if (is_inode)
2248 			f2fs_mark_inode_dirty_sync(inode, true);
2249 		else
2250 			f2fs_i_blocks_write(inode, 1, true, true);
2251 	}
2252 
2253 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2254 	return 0;
2255 
2256 enospc:
2257 	if (is_inode) {
2258 		if (inode)
2259 			dquot_free_inode(inode);
2260 	} else {
2261 		dquot_release_reservation_block(inode, 1);
2262 	}
2263 	return -ENOSPC;
2264 }
2265 
2266 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2267 					struct inode *inode, bool is_inode)
2268 {
2269 	spin_lock(&sbi->stat_lock);
2270 
2271 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2272 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2273 
2274 	sbi->total_valid_node_count--;
2275 	sbi->total_valid_block_count--;
2276 	if (sbi->reserved_blocks &&
2277 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2278 		sbi->current_reserved_blocks++;
2279 
2280 	spin_unlock(&sbi->stat_lock);
2281 
2282 	if (is_inode) {
2283 		dquot_free_inode(inode);
2284 	} else {
2285 		if (unlikely(inode->i_blocks == 0)) {
2286 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2287 				  inode->i_ino,
2288 				  (unsigned long long)inode->i_blocks);
2289 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2290 			return;
2291 		}
2292 		f2fs_i_blocks_write(inode, 1, false, true);
2293 	}
2294 }
2295 
2296 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2297 {
2298 	return sbi->total_valid_node_count;
2299 }
2300 
2301 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2302 {
2303 	percpu_counter_inc(&sbi->total_valid_inode_count);
2304 }
2305 
2306 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2307 {
2308 	percpu_counter_dec(&sbi->total_valid_inode_count);
2309 }
2310 
2311 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2312 {
2313 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2314 }
2315 
2316 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2317 						pgoff_t index, bool for_write)
2318 {
2319 	struct page *page;
2320 
2321 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2322 		if (!for_write)
2323 			page = find_get_page_flags(mapping, index,
2324 							FGP_LOCK | FGP_ACCESSED);
2325 		else
2326 			page = find_lock_page(mapping, index);
2327 		if (page)
2328 			return page;
2329 
2330 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2331 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2332 							FAULT_PAGE_ALLOC);
2333 			return NULL;
2334 		}
2335 	}
2336 
2337 	if (!for_write)
2338 		return grab_cache_page(mapping, index);
2339 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2340 }
2341 
2342 static inline struct page *f2fs_pagecache_get_page(
2343 				struct address_space *mapping, pgoff_t index,
2344 				int fgp_flags, gfp_t gfp_mask)
2345 {
2346 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2347 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2348 		return NULL;
2349 	}
2350 
2351 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2352 }
2353 
2354 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2355 {
2356 	char *src_kaddr = kmap(src);
2357 	char *dst_kaddr = kmap(dst);
2358 
2359 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2360 	kunmap(dst);
2361 	kunmap(src);
2362 }
2363 
2364 static inline void f2fs_put_page(struct page *page, int unlock)
2365 {
2366 	if (!page)
2367 		return;
2368 
2369 	if (unlock) {
2370 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2371 		unlock_page(page);
2372 	}
2373 	put_page(page);
2374 }
2375 
2376 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2377 {
2378 	if (dn->node_page)
2379 		f2fs_put_page(dn->node_page, 1);
2380 	if (dn->inode_page && dn->node_page != dn->inode_page)
2381 		f2fs_put_page(dn->inode_page, 0);
2382 	dn->node_page = NULL;
2383 	dn->inode_page = NULL;
2384 }
2385 
2386 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2387 					size_t size)
2388 {
2389 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2390 }
2391 
2392 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2393 						gfp_t flags)
2394 {
2395 	void *entry;
2396 
2397 	entry = kmem_cache_alloc(cachep, flags);
2398 	if (!entry)
2399 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2400 	return entry;
2401 }
2402 
2403 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2404 {
2405 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2406 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2407 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2408 		get_pages(sbi, F2FS_DIO_READ) ||
2409 		get_pages(sbi, F2FS_DIO_WRITE))
2410 		return true;
2411 
2412 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2413 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2414 		return true;
2415 
2416 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2417 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2418 		return true;
2419 	return false;
2420 }
2421 
2422 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2423 {
2424 	if (sbi->gc_mode == GC_URGENT_HIGH)
2425 		return true;
2426 
2427 	if (is_inflight_io(sbi, type))
2428 		return false;
2429 
2430 	if (sbi->gc_mode == GC_URGENT_LOW &&
2431 			(type == DISCARD_TIME || type == GC_TIME))
2432 		return true;
2433 
2434 	return f2fs_time_over(sbi, type);
2435 }
2436 
2437 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2438 				unsigned long index, void *item)
2439 {
2440 	while (radix_tree_insert(root, index, item))
2441 		cond_resched();
2442 }
2443 
2444 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2445 
2446 static inline bool IS_INODE(struct page *page)
2447 {
2448 	struct f2fs_node *p = F2FS_NODE(page);
2449 
2450 	return RAW_IS_INODE(p);
2451 }
2452 
2453 static inline int offset_in_addr(struct f2fs_inode *i)
2454 {
2455 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2456 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2457 }
2458 
2459 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2460 {
2461 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2462 }
2463 
2464 static inline int f2fs_has_extra_attr(struct inode *inode);
2465 static inline block_t data_blkaddr(struct inode *inode,
2466 			struct page *node_page, unsigned int offset)
2467 {
2468 	struct f2fs_node *raw_node;
2469 	__le32 *addr_array;
2470 	int base = 0;
2471 	bool is_inode = IS_INODE(node_page);
2472 
2473 	raw_node = F2FS_NODE(node_page);
2474 
2475 	if (is_inode) {
2476 		if (!inode)
2477 			/* from GC path only */
2478 			base = offset_in_addr(&raw_node->i);
2479 		else if (f2fs_has_extra_attr(inode))
2480 			base = get_extra_isize(inode);
2481 	}
2482 
2483 	addr_array = blkaddr_in_node(raw_node);
2484 	return le32_to_cpu(addr_array[base + offset]);
2485 }
2486 
2487 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2488 {
2489 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2490 }
2491 
2492 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2493 {
2494 	int mask;
2495 
2496 	addr += (nr >> 3);
2497 	mask = 1 << (7 - (nr & 0x07));
2498 	return mask & *addr;
2499 }
2500 
2501 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2502 {
2503 	int mask;
2504 
2505 	addr += (nr >> 3);
2506 	mask = 1 << (7 - (nr & 0x07));
2507 	*addr |= mask;
2508 }
2509 
2510 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2511 {
2512 	int mask;
2513 
2514 	addr += (nr >> 3);
2515 	mask = 1 << (7 - (nr & 0x07));
2516 	*addr &= ~mask;
2517 }
2518 
2519 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2520 {
2521 	int mask;
2522 	int ret;
2523 
2524 	addr += (nr >> 3);
2525 	mask = 1 << (7 - (nr & 0x07));
2526 	ret = mask & *addr;
2527 	*addr |= mask;
2528 	return ret;
2529 }
2530 
2531 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2532 {
2533 	int mask;
2534 	int ret;
2535 
2536 	addr += (nr >> 3);
2537 	mask = 1 << (7 - (nr & 0x07));
2538 	ret = mask & *addr;
2539 	*addr &= ~mask;
2540 	return ret;
2541 }
2542 
2543 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2544 {
2545 	int mask;
2546 
2547 	addr += (nr >> 3);
2548 	mask = 1 << (7 - (nr & 0x07));
2549 	*addr ^= mask;
2550 }
2551 
2552 /*
2553  * On-disk inode flags (f2fs_inode::i_flags)
2554  */
2555 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2556 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2557 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2558 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2559 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2560 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2561 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2562 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2563 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2564 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2565 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2566 
2567 /* Flags that should be inherited by new inodes from their parent. */
2568 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2569 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2570 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2571 
2572 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2573 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2574 				F2FS_CASEFOLD_FL))
2575 
2576 /* Flags that are appropriate for non-directories/regular files. */
2577 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2578 
2579 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2580 {
2581 	if (S_ISDIR(mode))
2582 		return flags;
2583 	else if (S_ISREG(mode))
2584 		return flags & F2FS_REG_FLMASK;
2585 	else
2586 		return flags & F2FS_OTHER_FLMASK;
2587 }
2588 
2589 static inline void __mark_inode_dirty_flag(struct inode *inode,
2590 						int flag, bool set)
2591 {
2592 	switch (flag) {
2593 	case FI_INLINE_XATTR:
2594 	case FI_INLINE_DATA:
2595 	case FI_INLINE_DENTRY:
2596 	case FI_NEW_INODE:
2597 		if (set)
2598 			return;
2599 		fallthrough;
2600 	case FI_DATA_EXIST:
2601 	case FI_INLINE_DOTS:
2602 	case FI_PIN_FILE:
2603 		f2fs_mark_inode_dirty_sync(inode, true);
2604 	}
2605 }
2606 
2607 static inline void set_inode_flag(struct inode *inode, int flag)
2608 {
2609 	set_bit(flag, F2FS_I(inode)->flags);
2610 	__mark_inode_dirty_flag(inode, flag, true);
2611 }
2612 
2613 static inline int is_inode_flag_set(struct inode *inode, int flag)
2614 {
2615 	return test_bit(flag, F2FS_I(inode)->flags);
2616 }
2617 
2618 static inline void clear_inode_flag(struct inode *inode, int flag)
2619 {
2620 	clear_bit(flag, F2FS_I(inode)->flags);
2621 	__mark_inode_dirty_flag(inode, flag, false);
2622 }
2623 
2624 static inline bool f2fs_verity_in_progress(struct inode *inode)
2625 {
2626 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2627 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2628 }
2629 
2630 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2631 {
2632 	F2FS_I(inode)->i_acl_mode = mode;
2633 	set_inode_flag(inode, FI_ACL_MODE);
2634 	f2fs_mark_inode_dirty_sync(inode, false);
2635 }
2636 
2637 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2638 {
2639 	if (inc)
2640 		inc_nlink(inode);
2641 	else
2642 		drop_nlink(inode);
2643 	f2fs_mark_inode_dirty_sync(inode, true);
2644 }
2645 
2646 static inline void f2fs_i_blocks_write(struct inode *inode,
2647 					block_t diff, bool add, bool claim)
2648 {
2649 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2650 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2651 
2652 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2653 	if (add) {
2654 		if (claim)
2655 			dquot_claim_block(inode, diff);
2656 		else
2657 			dquot_alloc_block_nofail(inode, diff);
2658 	} else {
2659 		dquot_free_block(inode, diff);
2660 	}
2661 
2662 	f2fs_mark_inode_dirty_sync(inode, true);
2663 	if (clean || recover)
2664 		set_inode_flag(inode, FI_AUTO_RECOVER);
2665 }
2666 
2667 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2668 {
2669 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2670 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2671 
2672 	if (i_size_read(inode) == i_size)
2673 		return;
2674 
2675 	i_size_write(inode, i_size);
2676 	f2fs_mark_inode_dirty_sync(inode, true);
2677 	if (clean || recover)
2678 		set_inode_flag(inode, FI_AUTO_RECOVER);
2679 }
2680 
2681 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2682 {
2683 	F2FS_I(inode)->i_current_depth = depth;
2684 	f2fs_mark_inode_dirty_sync(inode, true);
2685 }
2686 
2687 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2688 					unsigned int count)
2689 {
2690 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2691 	f2fs_mark_inode_dirty_sync(inode, true);
2692 }
2693 
2694 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2695 {
2696 	F2FS_I(inode)->i_xattr_nid = xnid;
2697 	f2fs_mark_inode_dirty_sync(inode, true);
2698 }
2699 
2700 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2701 {
2702 	F2FS_I(inode)->i_pino = pino;
2703 	f2fs_mark_inode_dirty_sync(inode, true);
2704 }
2705 
2706 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2707 {
2708 	struct f2fs_inode_info *fi = F2FS_I(inode);
2709 
2710 	if (ri->i_inline & F2FS_INLINE_XATTR)
2711 		set_bit(FI_INLINE_XATTR, fi->flags);
2712 	if (ri->i_inline & F2FS_INLINE_DATA)
2713 		set_bit(FI_INLINE_DATA, fi->flags);
2714 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2715 		set_bit(FI_INLINE_DENTRY, fi->flags);
2716 	if (ri->i_inline & F2FS_DATA_EXIST)
2717 		set_bit(FI_DATA_EXIST, fi->flags);
2718 	if (ri->i_inline & F2FS_INLINE_DOTS)
2719 		set_bit(FI_INLINE_DOTS, fi->flags);
2720 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2721 		set_bit(FI_EXTRA_ATTR, fi->flags);
2722 	if (ri->i_inline & F2FS_PIN_FILE)
2723 		set_bit(FI_PIN_FILE, fi->flags);
2724 }
2725 
2726 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2727 {
2728 	ri->i_inline = 0;
2729 
2730 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2731 		ri->i_inline |= F2FS_INLINE_XATTR;
2732 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2733 		ri->i_inline |= F2FS_INLINE_DATA;
2734 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2735 		ri->i_inline |= F2FS_INLINE_DENTRY;
2736 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2737 		ri->i_inline |= F2FS_DATA_EXIST;
2738 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2739 		ri->i_inline |= F2FS_INLINE_DOTS;
2740 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2741 		ri->i_inline |= F2FS_EXTRA_ATTR;
2742 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2743 		ri->i_inline |= F2FS_PIN_FILE;
2744 }
2745 
2746 static inline int f2fs_has_extra_attr(struct inode *inode)
2747 {
2748 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2749 }
2750 
2751 static inline int f2fs_has_inline_xattr(struct inode *inode)
2752 {
2753 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2754 }
2755 
2756 static inline int f2fs_compressed_file(struct inode *inode)
2757 {
2758 	return S_ISREG(inode->i_mode) &&
2759 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2760 }
2761 
2762 static inline unsigned int addrs_per_inode(struct inode *inode)
2763 {
2764 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2765 				get_inline_xattr_addrs(inode);
2766 
2767 	if (!f2fs_compressed_file(inode))
2768 		return addrs;
2769 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2770 }
2771 
2772 static inline unsigned int addrs_per_block(struct inode *inode)
2773 {
2774 	if (!f2fs_compressed_file(inode))
2775 		return DEF_ADDRS_PER_BLOCK;
2776 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2777 }
2778 
2779 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2780 {
2781 	struct f2fs_inode *ri = F2FS_INODE(page);
2782 
2783 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2784 					get_inline_xattr_addrs(inode)]);
2785 }
2786 
2787 static inline int inline_xattr_size(struct inode *inode)
2788 {
2789 	if (f2fs_has_inline_xattr(inode))
2790 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2791 	return 0;
2792 }
2793 
2794 static inline int f2fs_has_inline_data(struct inode *inode)
2795 {
2796 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2797 }
2798 
2799 static inline int f2fs_exist_data(struct inode *inode)
2800 {
2801 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2802 }
2803 
2804 static inline int f2fs_has_inline_dots(struct inode *inode)
2805 {
2806 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2807 }
2808 
2809 static inline int f2fs_is_mmap_file(struct inode *inode)
2810 {
2811 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2812 }
2813 
2814 static inline bool f2fs_is_pinned_file(struct inode *inode)
2815 {
2816 	return is_inode_flag_set(inode, FI_PIN_FILE);
2817 }
2818 
2819 static inline bool f2fs_is_atomic_file(struct inode *inode)
2820 {
2821 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2822 }
2823 
2824 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2825 {
2826 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2827 }
2828 
2829 static inline bool f2fs_is_volatile_file(struct inode *inode)
2830 {
2831 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2832 }
2833 
2834 static inline bool f2fs_is_first_block_written(struct inode *inode)
2835 {
2836 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2837 }
2838 
2839 static inline bool f2fs_is_drop_cache(struct inode *inode)
2840 {
2841 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2842 }
2843 
2844 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2845 {
2846 	struct f2fs_inode *ri = F2FS_INODE(page);
2847 	int extra_size = get_extra_isize(inode);
2848 
2849 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2850 }
2851 
2852 static inline int f2fs_has_inline_dentry(struct inode *inode)
2853 {
2854 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2855 }
2856 
2857 static inline int is_file(struct inode *inode, int type)
2858 {
2859 	return F2FS_I(inode)->i_advise & type;
2860 }
2861 
2862 static inline void set_file(struct inode *inode, int type)
2863 {
2864 	F2FS_I(inode)->i_advise |= type;
2865 	f2fs_mark_inode_dirty_sync(inode, true);
2866 }
2867 
2868 static inline void clear_file(struct inode *inode, int type)
2869 {
2870 	F2FS_I(inode)->i_advise &= ~type;
2871 	f2fs_mark_inode_dirty_sync(inode, true);
2872 }
2873 
2874 static inline bool f2fs_is_time_consistent(struct inode *inode)
2875 {
2876 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2877 		return false;
2878 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2879 		return false;
2880 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2881 		return false;
2882 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2883 						&F2FS_I(inode)->i_crtime))
2884 		return false;
2885 	return true;
2886 }
2887 
2888 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2889 {
2890 	bool ret;
2891 
2892 	if (dsync) {
2893 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2894 
2895 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2896 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2897 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2898 		return ret;
2899 	}
2900 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2901 			file_keep_isize(inode) ||
2902 			i_size_read(inode) & ~PAGE_MASK)
2903 		return false;
2904 
2905 	if (!f2fs_is_time_consistent(inode))
2906 		return false;
2907 
2908 	spin_lock(&F2FS_I(inode)->i_size_lock);
2909 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2910 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2911 
2912 	return ret;
2913 }
2914 
2915 static inline bool f2fs_readonly(struct super_block *sb)
2916 {
2917 	return sb_rdonly(sb);
2918 }
2919 
2920 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2921 {
2922 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2923 }
2924 
2925 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2926 {
2927 	if (len == 1 && name[0] == '.')
2928 		return true;
2929 
2930 	if (len == 2 && name[0] == '.' && name[1] == '.')
2931 		return true;
2932 
2933 	return false;
2934 }
2935 
2936 static inline bool f2fs_may_extent_tree(struct inode *inode)
2937 {
2938 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2939 
2940 	if (!test_opt(sbi, EXTENT_CACHE) ||
2941 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2942 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2943 		return false;
2944 
2945 	/*
2946 	 * for recovered files during mount do not create extents
2947 	 * if shrinker is not registered.
2948 	 */
2949 	if (list_empty(&sbi->s_list))
2950 		return false;
2951 
2952 	return S_ISREG(inode->i_mode);
2953 }
2954 
2955 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2956 					size_t size, gfp_t flags)
2957 {
2958 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2959 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2960 		return NULL;
2961 	}
2962 
2963 	return kmalloc(size, flags);
2964 }
2965 
2966 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2967 					size_t size, gfp_t flags)
2968 {
2969 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2970 }
2971 
2972 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2973 					size_t size, gfp_t flags)
2974 {
2975 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2976 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
2977 		return NULL;
2978 	}
2979 
2980 	return kvmalloc(size, flags);
2981 }
2982 
2983 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2984 					size_t size, gfp_t flags)
2985 {
2986 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2987 }
2988 
2989 static inline int get_extra_isize(struct inode *inode)
2990 {
2991 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2992 }
2993 
2994 static inline int get_inline_xattr_addrs(struct inode *inode)
2995 {
2996 	return F2FS_I(inode)->i_inline_xattr_size;
2997 }
2998 
2999 #define f2fs_get_inode_mode(i) \
3000 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3001 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3002 
3003 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3004 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3005 	offsetof(struct f2fs_inode, i_extra_isize))	\
3006 
3007 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3008 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3009 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3010 		sizeof((f2fs_inode)->field))			\
3011 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3012 
3013 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3014 #define MIN_IOSTAT_PERIOD_MS		100
3015 /* maximum period of iostat tracing is 1 day */
3016 #define MAX_IOSTAT_PERIOD_MS		8640000
3017 
3018 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3019 {
3020 	int i;
3021 
3022 	spin_lock(&sbi->iostat_lock);
3023 	for (i = 0; i < NR_IO_TYPE; i++) {
3024 		sbi->rw_iostat[i] = 0;
3025 		sbi->prev_rw_iostat[i] = 0;
3026 	}
3027 	spin_unlock(&sbi->iostat_lock);
3028 }
3029 
3030 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3031 
3032 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3033 			enum iostat_type type, unsigned long long io_bytes)
3034 {
3035 	if (!sbi->iostat_enable)
3036 		return;
3037 	spin_lock(&sbi->iostat_lock);
3038 	sbi->rw_iostat[type] += io_bytes;
3039 
3040 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3041 		sbi->rw_iostat[APP_BUFFERED_IO] =
3042 			sbi->rw_iostat[APP_WRITE_IO] -
3043 			sbi->rw_iostat[APP_DIRECT_IO];
3044 
3045 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3046 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3047 			sbi->rw_iostat[APP_READ_IO] -
3048 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3049 	spin_unlock(&sbi->iostat_lock);
3050 
3051 	f2fs_record_iostat(sbi);
3052 }
3053 
3054 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3055 
3056 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3057 
3058 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3059 					block_t blkaddr, int type);
3060 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3061 					block_t blkaddr, int type)
3062 {
3063 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3064 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3065 			 blkaddr, type);
3066 		f2fs_bug_on(sbi, 1);
3067 	}
3068 }
3069 
3070 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3071 {
3072 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3073 			blkaddr == COMPRESS_ADDR)
3074 		return false;
3075 	return true;
3076 }
3077 
3078 static inline void f2fs_set_page_private(struct page *page,
3079 						unsigned long data)
3080 {
3081 	if (PagePrivate(page))
3082 		return;
3083 
3084 	attach_page_private(page, (void *)data);
3085 }
3086 
3087 static inline void f2fs_clear_page_private(struct page *page)
3088 {
3089 	detach_page_private(page);
3090 }
3091 
3092 /*
3093  * file.c
3094  */
3095 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3096 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3097 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3098 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3099 int f2fs_truncate(struct inode *inode);
3100 int f2fs_getattr(const struct path *path, struct kstat *stat,
3101 			u32 request_mask, unsigned int flags);
3102 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3103 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3104 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3105 int f2fs_precache_extents(struct inode *inode);
3106 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3107 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3108 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3109 int f2fs_pin_file_control(struct inode *inode, bool inc);
3110 
3111 /*
3112  * inode.c
3113  */
3114 void f2fs_set_inode_flags(struct inode *inode);
3115 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3116 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3117 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3118 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3119 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3120 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3121 void f2fs_update_inode_page(struct inode *inode);
3122 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3123 void f2fs_evict_inode(struct inode *inode);
3124 void f2fs_handle_failed_inode(struct inode *inode);
3125 
3126 /*
3127  * namei.c
3128  */
3129 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3130 							bool hot, bool set);
3131 struct dentry *f2fs_get_parent(struct dentry *child);
3132 
3133 /*
3134  * dir.c
3135  */
3136 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3137 int f2fs_init_casefolded_name(const struct inode *dir,
3138 			      struct f2fs_filename *fname);
3139 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3140 			int lookup, struct f2fs_filename *fname);
3141 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3142 			struct f2fs_filename *fname);
3143 void f2fs_free_filename(struct f2fs_filename *fname);
3144 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3145 			const struct f2fs_filename *fname, int *max_slots);
3146 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3147 			unsigned int start_pos, struct fscrypt_str *fstr);
3148 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3149 			struct f2fs_dentry_ptr *d);
3150 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3151 			const struct f2fs_filename *fname, struct page *dpage);
3152 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3153 			unsigned int current_depth);
3154 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3155 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3156 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3157 					 const struct f2fs_filename *fname,
3158 					 struct page **res_page);
3159 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3160 			const struct qstr *child, struct page **res_page);
3161 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3162 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3163 			struct page **page);
3164 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3165 			struct page *page, struct inode *inode);
3166 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3167 			  const struct f2fs_filename *fname);
3168 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3169 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3170 			unsigned int bit_pos);
3171 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3172 			struct inode *inode, nid_t ino, umode_t mode);
3173 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3174 			struct inode *inode, nid_t ino, umode_t mode);
3175 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3176 			struct inode *inode, nid_t ino, umode_t mode);
3177 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3178 			struct inode *dir, struct inode *inode);
3179 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3180 bool f2fs_empty_dir(struct inode *dir);
3181 
3182 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3183 {
3184 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3185 				inode, inode->i_ino, inode->i_mode);
3186 }
3187 
3188 /*
3189  * super.c
3190  */
3191 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3192 void f2fs_inode_synced(struct inode *inode);
3193 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3194 int f2fs_quota_sync(struct super_block *sb, int type);
3195 void f2fs_quota_off_umount(struct super_block *sb);
3196 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3197 int f2fs_sync_fs(struct super_block *sb, int sync);
3198 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3199 
3200 /*
3201  * hash.c
3202  */
3203 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3204 
3205 /*
3206  * node.c
3207  */
3208 struct dnode_of_data;
3209 struct node_info;
3210 
3211 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3212 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3213 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3214 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3215 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3216 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3217 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3218 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3219 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3220 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3221 						struct node_info *ni);
3222 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3223 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3224 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3225 int f2fs_truncate_xattr_node(struct inode *inode);
3226 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3227 					unsigned int seq_id);
3228 int f2fs_remove_inode_page(struct inode *inode);
3229 struct page *f2fs_new_inode_page(struct inode *inode);
3230 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3231 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3232 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3233 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3234 int f2fs_move_node_page(struct page *node_page, int gc_type);
3235 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3236 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3237 			struct writeback_control *wbc, bool atomic,
3238 			unsigned int *seq_id);
3239 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3240 			struct writeback_control *wbc,
3241 			bool do_balance, enum iostat_type io_type);
3242 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3243 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3244 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3245 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3246 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3247 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3248 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3249 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3250 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3251 			unsigned int segno, struct f2fs_summary_block *sum);
3252 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3253 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3254 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3255 int __init f2fs_create_node_manager_caches(void);
3256 void f2fs_destroy_node_manager_caches(void);
3257 
3258 /*
3259  * segment.c
3260  */
3261 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3262 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3263 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3264 void f2fs_drop_inmem_pages(struct inode *inode);
3265 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3266 int f2fs_commit_inmem_pages(struct inode *inode);
3267 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3268 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3269 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3270 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3271 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3272 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3273 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3274 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3275 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3276 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3277 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3278 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3279 					struct cp_control *cpc);
3280 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3281 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3282 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3283 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3284 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3285 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3286 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3287 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3288 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3289 			unsigned int *newseg, bool new_sec, int dir);
3290 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3291 					unsigned int start, unsigned int end);
3292 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3293 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3294 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3295 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3296 					struct cp_control *cpc);
3297 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3298 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3299 					block_t blk_addr);
3300 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3301 						enum iostat_type io_type);
3302 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3303 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3304 			struct f2fs_io_info *fio);
3305 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3306 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3307 			block_t old_blkaddr, block_t new_blkaddr,
3308 			bool recover_curseg, bool recover_newaddr,
3309 			bool from_gc);
3310 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3311 			block_t old_addr, block_t new_addr,
3312 			unsigned char version, bool recover_curseg,
3313 			bool recover_newaddr);
3314 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3315 			block_t old_blkaddr, block_t *new_blkaddr,
3316 			struct f2fs_summary *sum, int type,
3317 			struct f2fs_io_info *fio);
3318 void f2fs_wait_on_page_writeback(struct page *page,
3319 			enum page_type type, bool ordered, bool locked);
3320 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3321 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3322 								block_t len);
3323 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3324 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3325 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3326 			unsigned int val, int alloc);
3327 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3328 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3329 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3330 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3331 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3332 int __init f2fs_create_segment_manager_caches(void);
3333 void f2fs_destroy_segment_manager_caches(void);
3334 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3335 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3336 			enum page_type type, enum temp_type temp);
3337 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3338 			unsigned int segno);
3339 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3340 			unsigned int segno);
3341 
3342 /*
3343  * checkpoint.c
3344  */
3345 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3346 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3347 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3348 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3349 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3350 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3351 					block_t blkaddr, int type);
3352 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3353 			int type, bool sync);
3354 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3355 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3356 			long nr_to_write, enum iostat_type io_type);
3357 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3358 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3359 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3360 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3361 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3362 					unsigned int devidx, int type);
3363 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3364 					unsigned int devidx, int type);
3365 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3366 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3367 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3368 void f2fs_add_orphan_inode(struct inode *inode);
3369 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3370 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3371 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3372 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3373 void f2fs_remove_dirty_inode(struct inode *inode);
3374 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3375 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3376 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3377 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3378 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3379 int __init f2fs_create_checkpoint_caches(void);
3380 void f2fs_destroy_checkpoint_caches(void);
3381 
3382 /*
3383  * data.c
3384  */
3385 int __init f2fs_init_bioset(void);
3386 void f2fs_destroy_bioset(void);
3387 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3388 int f2fs_init_bio_entry_cache(void);
3389 void f2fs_destroy_bio_entry_cache(void);
3390 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3391 				struct bio *bio, enum page_type type);
3392 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3393 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3394 				struct inode *inode, struct page *page,
3395 				nid_t ino, enum page_type type);
3396 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3397 					struct bio **bio, struct page *page);
3398 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3399 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3400 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3401 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3402 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3403 			block_t blk_addr, struct bio *bio);
3404 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3405 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3406 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3407 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3408 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3409 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3410 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3411 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3412 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3413 			int op_flags, bool for_write);
3414 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3415 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3416 			bool for_write);
3417 struct page *f2fs_get_new_data_page(struct inode *inode,
3418 			struct page *ipage, pgoff_t index, bool new_i_size);
3419 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3420 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3421 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3422 			int create, int flag);
3423 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3424 			u64 start, u64 len);
3425 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3426 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3427 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3428 int f2fs_write_single_data_page(struct page *page, int *submitted,
3429 				struct bio **bio, sector_t *last_block,
3430 				struct writeback_control *wbc,
3431 				enum iostat_type io_type,
3432 				int compr_blocks);
3433 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3434 			unsigned int length);
3435 int f2fs_release_page(struct page *page, gfp_t wait);
3436 #ifdef CONFIG_MIGRATION
3437 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3438 			struct page *page, enum migrate_mode mode);
3439 #endif
3440 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3441 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3442 int f2fs_init_post_read_processing(void);
3443 void f2fs_destroy_post_read_processing(void);
3444 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3445 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3446 
3447 /*
3448  * gc.c
3449  */
3450 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3451 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3452 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3453 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3454 			unsigned int segno);
3455 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3456 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3457 int __init f2fs_create_garbage_collection_cache(void);
3458 void f2fs_destroy_garbage_collection_cache(void);
3459 
3460 /*
3461  * recovery.c
3462  */
3463 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3464 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3465 
3466 /*
3467  * debug.c
3468  */
3469 #ifdef CONFIG_F2FS_STAT_FS
3470 struct f2fs_stat_info {
3471 	struct list_head stat_list;
3472 	struct f2fs_sb_info *sbi;
3473 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3474 	int main_area_segs, main_area_sections, main_area_zones;
3475 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3476 	unsigned long long hit_total, total_ext;
3477 	int ext_tree, zombie_tree, ext_node;
3478 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3479 	int ndirty_data, ndirty_qdata;
3480 	int inmem_pages;
3481 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3482 	int nats, dirty_nats, sits, dirty_sits;
3483 	int free_nids, avail_nids, alloc_nids;
3484 	int total_count, utilization;
3485 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3486 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3487 	int nr_dio_read, nr_dio_write;
3488 	unsigned int io_skip_bggc, other_skip_bggc;
3489 	int nr_flushing, nr_flushed, flush_list_empty;
3490 	int nr_discarding, nr_discarded;
3491 	int nr_discard_cmd;
3492 	unsigned int undiscard_blks;
3493 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3494 	int compr_inode;
3495 	unsigned long long compr_blocks;
3496 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3497 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3498 	unsigned int bimodal, avg_vblocks;
3499 	int util_free, util_valid, util_invalid;
3500 	int rsvd_segs, overp_segs;
3501 	int dirty_count, node_pages, meta_pages;
3502 	int prefree_count, call_count, cp_count, bg_cp_count;
3503 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3504 	int bg_node_segs, bg_data_segs;
3505 	int tot_blks, data_blks, node_blks;
3506 	int bg_data_blks, bg_node_blks;
3507 	unsigned long long skipped_atomic_files[2];
3508 	int curseg[NR_CURSEG_TYPE];
3509 	int cursec[NR_CURSEG_TYPE];
3510 	int curzone[NR_CURSEG_TYPE];
3511 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3512 	unsigned int full_seg[NR_CURSEG_TYPE];
3513 	unsigned int valid_blks[NR_CURSEG_TYPE];
3514 
3515 	unsigned int meta_count[META_MAX];
3516 	unsigned int segment_count[2];
3517 	unsigned int block_count[2];
3518 	unsigned int inplace_count;
3519 	unsigned long long base_mem, cache_mem, page_mem;
3520 };
3521 
3522 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3523 {
3524 	return (struct f2fs_stat_info *)sbi->stat_info;
3525 }
3526 
3527 #define stat_inc_cp_count(si)		((si)->cp_count++)
3528 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3529 #define stat_inc_call_count(si)		((si)->call_count++)
3530 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3531 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3532 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3533 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3534 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3535 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3536 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3537 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3538 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3539 #define stat_inc_inline_xattr(inode)					\
3540 	do {								\
3541 		if (f2fs_has_inline_xattr(inode))			\
3542 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3543 	} while (0)
3544 #define stat_dec_inline_xattr(inode)					\
3545 	do {								\
3546 		if (f2fs_has_inline_xattr(inode))			\
3547 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3548 	} while (0)
3549 #define stat_inc_inline_inode(inode)					\
3550 	do {								\
3551 		if (f2fs_has_inline_data(inode))			\
3552 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3553 	} while (0)
3554 #define stat_dec_inline_inode(inode)					\
3555 	do {								\
3556 		if (f2fs_has_inline_data(inode))			\
3557 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3558 	} while (0)
3559 #define stat_inc_inline_dir(inode)					\
3560 	do {								\
3561 		if (f2fs_has_inline_dentry(inode))			\
3562 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3563 	} while (0)
3564 #define stat_dec_inline_dir(inode)					\
3565 	do {								\
3566 		if (f2fs_has_inline_dentry(inode))			\
3567 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3568 	} while (0)
3569 #define stat_inc_compr_inode(inode)					\
3570 	do {								\
3571 		if (f2fs_compressed_file(inode))			\
3572 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3573 	} while (0)
3574 #define stat_dec_compr_inode(inode)					\
3575 	do {								\
3576 		if (f2fs_compressed_file(inode))			\
3577 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3578 	} while (0)
3579 #define stat_add_compr_blocks(inode, blocks)				\
3580 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3581 #define stat_sub_compr_blocks(inode, blocks)				\
3582 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3583 #define stat_inc_meta_count(sbi, blkaddr)				\
3584 	do {								\
3585 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3586 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3587 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3588 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3589 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3590 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3591 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3592 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3593 	} while (0)
3594 #define stat_inc_seg_type(sbi, curseg)					\
3595 		((sbi)->segment_count[(curseg)->alloc_type]++)
3596 #define stat_inc_block_count(sbi, curseg)				\
3597 		((sbi)->block_count[(curseg)->alloc_type]++)
3598 #define stat_inc_inplace_blocks(sbi)					\
3599 		(atomic_inc(&(sbi)->inplace_count))
3600 #define stat_update_max_atomic_write(inode)				\
3601 	do {								\
3602 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3603 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3604 		if (cur > max)						\
3605 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3606 	} while (0)
3607 #define stat_inc_volatile_write(inode)					\
3608 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3609 #define stat_dec_volatile_write(inode)					\
3610 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3611 #define stat_update_max_volatile_write(inode)				\
3612 	do {								\
3613 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3614 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3615 		if (cur > max)						\
3616 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3617 	} while (0)
3618 #define stat_inc_seg_count(sbi, type, gc_type)				\
3619 	do {								\
3620 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3621 		si->tot_segs++;						\
3622 		if ((type) == SUM_TYPE_DATA) {				\
3623 			si->data_segs++;				\
3624 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3625 		} else {						\
3626 			si->node_segs++;				\
3627 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3628 		}							\
3629 	} while (0)
3630 
3631 #define stat_inc_tot_blk_count(si, blks)				\
3632 	((si)->tot_blks += (blks))
3633 
3634 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3635 	do {								\
3636 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3637 		stat_inc_tot_blk_count(si, blks);			\
3638 		si->data_blks += (blks);				\
3639 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3640 	} while (0)
3641 
3642 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3643 	do {								\
3644 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3645 		stat_inc_tot_blk_count(si, blks);			\
3646 		si->node_blks += (blks);				\
3647 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3648 	} while (0)
3649 
3650 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3651 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3652 void __init f2fs_create_root_stats(void);
3653 void f2fs_destroy_root_stats(void);
3654 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3655 #else
3656 #define stat_inc_cp_count(si)				do { } while (0)
3657 #define stat_inc_bg_cp_count(si)			do { } while (0)
3658 #define stat_inc_call_count(si)				do { } while (0)
3659 #define stat_inc_bggc_count(si)				do { } while (0)
3660 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3661 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3662 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3663 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3664 #define stat_inc_total_hit(sbi)				do { } while (0)
3665 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3666 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3667 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3668 #define stat_inc_inline_xattr(inode)			do { } while (0)
3669 #define stat_dec_inline_xattr(inode)			do { } while (0)
3670 #define stat_inc_inline_inode(inode)			do { } while (0)
3671 #define stat_dec_inline_inode(inode)			do { } while (0)
3672 #define stat_inc_inline_dir(inode)			do { } while (0)
3673 #define stat_dec_inline_dir(inode)			do { } while (0)
3674 #define stat_inc_compr_inode(inode)			do { } while (0)
3675 #define stat_dec_compr_inode(inode)			do { } while (0)
3676 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3677 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3678 #define stat_inc_atomic_write(inode)			do { } while (0)
3679 #define stat_dec_atomic_write(inode)			do { } while (0)
3680 #define stat_update_max_atomic_write(inode)		do { } while (0)
3681 #define stat_inc_volatile_write(inode)			do { } while (0)
3682 #define stat_dec_volatile_write(inode)			do { } while (0)
3683 #define stat_update_max_volatile_write(inode)		do { } while (0)
3684 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3685 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3686 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3687 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3688 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3689 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3690 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3691 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3692 
3693 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3694 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3695 static inline void __init f2fs_create_root_stats(void) { }
3696 static inline void f2fs_destroy_root_stats(void) { }
3697 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3698 #endif
3699 
3700 extern const struct file_operations f2fs_dir_operations;
3701 extern const struct file_operations f2fs_file_operations;
3702 extern const struct inode_operations f2fs_file_inode_operations;
3703 extern const struct address_space_operations f2fs_dblock_aops;
3704 extern const struct address_space_operations f2fs_node_aops;
3705 extern const struct address_space_operations f2fs_meta_aops;
3706 extern const struct inode_operations f2fs_dir_inode_operations;
3707 extern const struct inode_operations f2fs_symlink_inode_operations;
3708 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3709 extern const struct inode_operations f2fs_special_inode_operations;
3710 extern struct kmem_cache *f2fs_inode_entry_slab;
3711 
3712 /*
3713  * inline.c
3714  */
3715 bool f2fs_may_inline_data(struct inode *inode);
3716 bool f2fs_may_inline_dentry(struct inode *inode);
3717 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3718 void f2fs_truncate_inline_inode(struct inode *inode,
3719 						struct page *ipage, u64 from);
3720 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3721 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3722 int f2fs_convert_inline_inode(struct inode *inode);
3723 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3724 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3725 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3726 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3727 					const struct f2fs_filename *fname,
3728 					struct page **res_page);
3729 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3730 			struct page *ipage);
3731 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3732 			struct inode *inode, nid_t ino, umode_t mode);
3733 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3734 				struct page *page, struct inode *dir,
3735 				struct inode *inode);
3736 bool f2fs_empty_inline_dir(struct inode *dir);
3737 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3738 			struct fscrypt_str *fstr);
3739 int f2fs_inline_data_fiemap(struct inode *inode,
3740 			struct fiemap_extent_info *fieinfo,
3741 			__u64 start, __u64 len);
3742 
3743 /*
3744  * shrinker.c
3745  */
3746 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3747 			struct shrink_control *sc);
3748 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3749 			struct shrink_control *sc);
3750 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3751 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3752 
3753 /*
3754  * extent_cache.c
3755  */
3756 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3757 				struct rb_entry *cached_re, unsigned int ofs);
3758 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3759 				struct rb_root_cached *root,
3760 				struct rb_node **parent,
3761 				unsigned long long key, bool *left_most);
3762 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3763 				struct rb_root_cached *root,
3764 				struct rb_node **parent,
3765 				unsigned int ofs, bool *leftmost);
3766 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3767 		struct rb_entry *cached_re, unsigned int ofs,
3768 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3769 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3770 		bool force, bool *leftmost);
3771 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3772 				struct rb_root_cached *root, bool check_key);
3773 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3774 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3775 void f2fs_drop_extent_tree(struct inode *inode);
3776 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3777 void f2fs_destroy_extent_tree(struct inode *inode);
3778 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3779 			struct extent_info *ei);
3780 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3781 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3782 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3783 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3784 int __init f2fs_create_extent_cache(void);
3785 void f2fs_destroy_extent_cache(void);
3786 
3787 /*
3788  * sysfs.c
3789  */
3790 int __init f2fs_init_sysfs(void);
3791 void f2fs_exit_sysfs(void);
3792 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3793 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3794 
3795 /* verity.c */
3796 extern const struct fsverity_operations f2fs_verityops;
3797 
3798 /*
3799  * crypto support
3800  */
3801 static inline bool f2fs_encrypted_file(struct inode *inode)
3802 {
3803 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3804 }
3805 
3806 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3807 {
3808 #ifdef CONFIG_FS_ENCRYPTION
3809 	file_set_encrypt(inode);
3810 	f2fs_set_inode_flags(inode);
3811 #endif
3812 }
3813 
3814 /*
3815  * Returns true if the reads of the inode's data need to undergo some
3816  * postprocessing step, like decryption or authenticity verification.
3817  */
3818 static inline bool f2fs_post_read_required(struct inode *inode)
3819 {
3820 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3821 		f2fs_compressed_file(inode);
3822 }
3823 
3824 /*
3825  * compress.c
3826  */
3827 #ifdef CONFIG_F2FS_FS_COMPRESSION
3828 bool f2fs_is_compressed_page(struct page *page);
3829 struct page *f2fs_compress_control_page(struct page *page);
3830 int f2fs_prepare_compress_overwrite(struct inode *inode,
3831 			struct page **pagep, pgoff_t index, void **fsdata);
3832 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3833 					pgoff_t index, unsigned copied);
3834 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3835 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3836 bool f2fs_is_compress_backend_ready(struct inode *inode);
3837 int f2fs_init_compress_mempool(void);
3838 void f2fs_destroy_compress_mempool(void);
3839 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3840 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3841 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3842 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3843 int f2fs_write_multi_pages(struct compress_ctx *cc,
3844 						int *submitted,
3845 						struct writeback_control *wbc,
3846 						enum iostat_type io_type);
3847 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3848 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3849 				unsigned nr_pages, sector_t *last_block_in_bio,
3850 				bool is_readahead, bool for_write);
3851 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3852 void f2fs_free_dic(struct decompress_io_ctx *dic);
3853 void f2fs_decompress_end_io(struct page **rpages,
3854 			unsigned int cluster_size, bool err, bool verity);
3855 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3856 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3857 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3858 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3859 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3860 int __init f2fs_init_compress_cache(void);
3861 void f2fs_destroy_compress_cache(void);
3862 #else
3863 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3864 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3865 {
3866 	if (!f2fs_compressed_file(inode))
3867 		return true;
3868 	/* not support compression */
3869 	return false;
3870 }
3871 static inline struct page *f2fs_compress_control_page(struct page *page)
3872 {
3873 	WARN_ON_ONCE(1);
3874 	return ERR_PTR(-EINVAL);
3875 }
3876 static inline int f2fs_init_compress_mempool(void) { return 0; }
3877 static inline void f2fs_destroy_compress_mempool(void) { }
3878 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3879 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3880 static inline int __init f2fs_init_compress_cache(void) { return 0; }
3881 static inline void f2fs_destroy_compress_cache(void) { }
3882 #endif
3883 
3884 static inline void set_compress_context(struct inode *inode)
3885 {
3886 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3887 
3888 	F2FS_I(inode)->i_compress_algorithm =
3889 			F2FS_OPTION(sbi).compress_algorithm;
3890 	F2FS_I(inode)->i_log_cluster_size =
3891 			F2FS_OPTION(sbi).compress_log_size;
3892 	F2FS_I(inode)->i_compress_flag =
3893 			F2FS_OPTION(sbi).compress_chksum ?
3894 				1 << COMPRESS_CHKSUM : 0;
3895 	F2FS_I(inode)->i_cluster_size =
3896 			1 << F2FS_I(inode)->i_log_cluster_size;
3897 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3898 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3899 	stat_inc_compr_inode(inode);
3900 	f2fs_mark_inode_dirty_sync(inode, true);
3901 }
3902 
3903 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3904 {
3905 	struct f2fs_inode_info *fi = F2FS_I(inode);
3906 
3907 	if (!f2fs_compressed_file(inode))
3908 		return true;
3909 	if (S_ISREG(inode->i_mode) &&
3910 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3911 		return false;
3912 
3913 	fi->i_flags &= ~F2FS_COMPR_FL;
3914 	stat_dec_compr_inode(inode);
3915 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3916 	f2fs_mark_inode_dirty_sync(inode, true);
3917 	return true;
3918 }
3919 
3920 #define F2FS_FEATURE_FUNCS(name, flagname) \
3921 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3922 { \
3923 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3924 }
3925 
3926 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3927 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3928 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3929 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3930 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3931 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3932 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3933 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3934 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3935 F2FS_FEATURE_FUNCS(verity, VERITY);
3936 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3937 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3938 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3939 
3940 #ifdef CONFIG_BLK_DEV_ZONED
3941 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3942 				    block_t blkaddr)
3943 {
3944 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3945 
3946 	return test_bit(zno, FDEV(devi).blkz_seq);
3947 }
3948 #endif
3949 
3950 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3951 {
3952 	return f2fs_sb_has_blkzoned(sbi);
3953 }
3954 
3955 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3956 {
3957 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3958 	       bdev_is_zoned(bdev);
3959 }
3960 
3961 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3962 {
3963 	int i;
3964 
3965 	if (!f2fs_is_multi_device(sbi))
3966 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3967 
3968 	for (i = 0; i < sbi->s_ndevs; i++)
3969 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3970 			return true;
3971 	return false;
3972 }
3973 
3974 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3975 {
3976 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3977 					f2fs_hw_should_discard(sbi);
3978 }
3979 
3980 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3981 {
3982 	int i;
3983 
3984 	if (!f2fs_is_multi_device(sbi))
3985 		return bdev_read_only(sbi->sb->s_bdev);
3986 
3987 	for (i = 0; i < sbi->s_ndevs; i++)
3988 		if (bdev_read_only(FDEV(i).bdev))
3989 			return true;
3990 	return false;
3991 }
3992 
3993 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
3994 {
3995 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
3996 }
3997 
3998 static inline bool f2fs_may_compress(struct inode *inode)
3999 {
4000 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4001 				f2fs_is_atomic_file(inode) ||
4002 				f2fs_is_volatile_file(inode))
4003 		return false;
4004 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4005 }
4006 
4007 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4008 						u64 blocks, bool add)
4009 {
4010 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4011 	struct f2fs_inode_info *fi = F2FS_I(inode);
4012 
4013 	/* don't update i_compr_blocks if saved blocks were released */
4014 	if (!add && !atomic_read(&fi->i_compr_blocks))
4015 		return;
4016 
4017 	if (add) {
4018 		atomic_add(diff, &fi->i_compr_blocks);
4019 		stat_add_compr_blocks(inode, diff);
4020 	} else {
4021 		atomic_sub(diff, &fi->i_compr_blocks);
4022 		stat_sub_compr_blocks(inode, diff);
4023 	}
4024 	f2fs_mark_inode_dirty_sync(inode, true);
4025 }
4026 
4027 static inline int block_unaligned_IO(struct inode *inode,
4028 				struct kiocb *iocb, struct iov_iter *iter)
4029 {
4030 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4031 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4032 	loff_t offset = iocb->ki_pos;
4033 	unsigned long align = offset | iov_iter_alignment(iter);
4034 
4035 	return align & blocksize_mask;
4036 }
4037 
4038 static inline int allow_outplace_dio(struct inode *inode,
4039 				struct kiocb *iocb, struct iov_iter *iter)
4040 {
4041 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4042 	int rw = iov_iter_rw(iter);
4043 
4044 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4045 				!block_unaligned_IO(inode, iocb, iter));
4046 }
4047 
4048 static inline bool f2fs_force_buffered_io(struct inode *inode,
4049 				struct kiocb *iocb, struct iov_iter *iter)
4050 {
4051 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4052 	int rw = iov_iter_rw(iter);
4053 
4054 	if (f2fs_post_read_required(inode))
4055 		return true;
4056 	if (f2fs_is_multi_device(sbi))
4057 		return true;
4058 	/*
4059 	 * for blkzoned device, fallback direct IO to buffered IO, so
4060 	 * all IOs can be serialized by log-structured write.
4061 	 */
4062 	if (f2fs_sb_has_blkzoned(sbi))
4063 		return true;
4064 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4065 		if (block_unaligned_IO(inode, iocb, iter))
4066 			return true;
4067 		if (F2FS_IO_ALIGNED(sbi))
4068 			return true;
4069 	}
4070 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4071 					!IS_SWAPFILE(inode))
4072 		return true;
4073 
4074 	return false;
4075 }
4076 
4077 #ifdef CONFIG_F2FS_FAULT_INJECTION
4078 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4079 							unsigned int type);
4080 #else
4081 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4082 #endif
4083 
4084 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4085 {
4086 #ifdef CONFIG_QUOTA
4087 	if (f2fs_sb_has_quota_ino(sbi))
4088 		return true;
4089 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4090 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4091 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4092 		return true;
4093 #endif
4094 	return false;
4095 }
4096 
4097 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4098 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4099 
4100 #endif /* _LINUX_F2FS_H */
4101