xref: /openbmc/linux/fs/f2fs/f2fs.h (revision d3741027)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_MAX,
64 };
65 
66 #ifdef CONFIG_F2FS_FAULT_INJECTION
67 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
68 
69 struct f2fs_fault_info {
70 	atomic_t inject_ops;
71 	unsigned int inject_rate;
72 	unsigned int inject_type;
73 };
74 
75 extern const char *f2fs_fault_name[FAULT_MAX];
76 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
77 #endif
78 
79 /*
80  * For mount options
81  */
82 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
83 #define F2FS_MOUNT_DISCARD		0x00000004
84 #define F2FS_MOUNT_NOHEAP		0x00000008
85 #define F2FS_MOUNT_XATTR_USER		0x00000010
86 #define F2FS_MOUNT_POSIX_ACL		0x00000020
87 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
88 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
89 #define F2FS_MOUNT_INLINE_DATA		0x00000100
90 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
91 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
92 #define F2FS_MOUNT_NOBARRIER		0x00000800
93 #define F2FS_MOUNT_FASTBOOT		0x00001000
94 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
95 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
96 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
97 #define F2FS_MOUNT_USRQUOTA		0x00080000
98 #define F2FS_MOUNT_GRPQUOTA		0x00100000
99 #define F2FS_MOUNT_PRJQUOTA		0x00200000
100 #define F2FS_MOUNT_QUOTA		0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
103 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
104 #define F2FS_MOUNT_NORECOVERY		0x04000000
105 #define F2FS_MOUNT_ATGC			0x08000000
106 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
107 #define	F2FS_MOUNT_GC_MERGE		0x20000000
108 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
109 
110 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
111 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
112 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
113 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
114 
115 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
116 		typecheck(unsigned long long, b) &&			\
117 		((long long)((a) - (b)) > 0))
118 
119 typedef u32 block_t;	/*
120 			 * should not change u32, since it is the on-disk block
121 			 * address format, __le32.
122 			 */
123 typedef u32 nid_t;
124 
125 #define COMPRESS_EXT_NUM		16
126 
127 /*
128  * An implementation of an rwsem that is explicitly unfair to readers. This
129  * prevents priority inversion when a low-priority reader acquires the read lock
130  * while sleeping on the write lock but the write lock is needed by
131  * higher-priority clients.
132  */
133 
134 struct f2fs_rwsem {
135         struct rw_semaphore internal_rwsem;
136 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
137         wait_queue_head_t read_waiters;
138 #endif
139 };
140 
141 struct f2fs_mount_info {
142 	unsigned int opt;
143 	int write_io_size_bits;		/* Write IO size bits */
144 	block_t root_reserved_blocks;	/* root reserved blocks */
145 	kuid_t s_resuid;		/* reserved blocks for uid */
146 	kgid_t s_resgid;		/* reserved blocks for gid */
147 	int active_logs;		/* # of active logs */
148 	int inline_xattr_size;		/* inline xattr size */
149 #ifdef CONFIG_F2FS_FAULT_INJECTION
150 	struct f2fs_fault_info fault_info;	/* For fault injection */
151 #endif
152 #ifdef CONFIG_QUOTA
153 	/* Names of quota files with journalled quota */
154 	char *s_qf_names[MAXQUOTAS];
155 	int s_jquota_fmt;			/* Format of quota to use */
156 #endif
157 	/* For which write hints are passed down to block layer */
158 	int alloc_mode;			/* segment allocation policy */
159 	int fsync_mode;			/* fsync policy */
160 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
161 	int bggc_mode;			/* bggc mode: off, on or sync */
162 	int discard_unit;		/*
163 					 * discard command's offset/size should
164 					 * be aligned to this unit: block,
165 					 * segment or section
166 					 */
167 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
168 	block_t unusable_cap_perc;	/* percentage for cap */
169 	block_t unusable_cap;		/* Amount of space allowed to be
170 					 * unusable when disabling checkpoint
171 					 */
172 
173 	/* For compression */
174 	unsigned char compress_algorithm;	/* algorithm type */
175 	unsigned char compress_log_size;	/* cluster log size */
176 	unsigned char compress_level;		/* compress level */
177 	bool compress_chksum;			/* compressed data chksum */
178 	unsigned char compress_ext_cnt;		/* extension count */
179 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
180 	int compress_mode;			/* compression mode */
181 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
182 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
183 };
184 
185 #define F2FS_FEATURE_ENCRYPT		0x0001
186 #define F2FS_FEATURE_BLKZONED		0x0002
187 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
188 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
189 #define F2FS_FEATURE_PRJQUOTA		0x0010
190 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
191 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
192 #define F2FS_FEATURE_QUOTA_INO		0x0080
193 #define F2FS_FEATURE_INODE_CRTIME	0x0100
194 #define F2FS_FEATURE_LOST_FOUND		0x0200
195 #define F2FS_FEATURE_VERITY		0x0400
196 #define F2FS_FEATURE_SB_CHKSUM		0x0800
197 #define F2FS_FEATURE_CASEFOLD		0x1000
198 #define F2FS_FEATURE_COMPRESSION	0x2000
199 #define F2FS_FEATURE_RO			0x4000
200 
201 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
202 	((raw_super->feature & cpu_to_le32(mask)) != 0)
203 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
204 #define F2FS_SET_FEATURE(sbi, mask)					\
205 	(sbi->raw_super->feature |= cpu_to_le32(mask))
206 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
207 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
208 
209 /*
210  * Default values for user and/or group using reserved blocks
211  */
212 #define	F2FS_DEF_RESUID		0
213 #define	F2FS_DEF_RESGID		0
214 
215 /*
216  * For checkpoint manager
217  */
218 enum {
219 	NAT_BITMAP,
220 	SIT_BITMAP
221 };
222 
223 #define	CP_UMOUNT	0x00000001
224 #define	CP_FASTBOOT	0x00000002
225 #define	CP_SYNC		0x00000004
226 #define	CP_RECOVERY	0x00000008
227 #define	CP_DISCARD	0x00000010
228 #define CP_TRIMMED	0x00000020
229 #define CP_PAUSE	0x00000040
230 #define CP_RESIZE 	0x00000080
231 
232 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
233 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
234 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
235 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
236 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
237 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
238 #define DEF_CP_INTERVAL			60	/* 60 secs */
239 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
240 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
241 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
242 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
243 
244 struct cp_control {
245 	int reason;
246 	__u64 trim_start;
247 	__u64 trim_end;
248 	__u64 trim_minlen;
249 };
250 
251 /*
252  * indicate meta/data type
253  */
254 enum {
255 	META_CP,
256 	META_NAT,
257 	META_SIT,
258 	META_SSA,
259 	META_MAX,
260 	META_POR,
261 	DATA_GENERIC,		/* check range only */
262 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
263 	DATA_GENERIC_ENHANCE_READ,	/*
264 					 * strong check on range and segment
265 					 * bitmap but no warning due to race
266 					 * condition of read on truncated area
267 					 * by extent_cache
268 					 */
269 	META_GENERIC,
270 };
271 
272 /* for the list of ino */
273 enum {
274 	ORPHAN_INO,		/* for orphan ino list */
275 	APPEND_INO,		/* for append ino list */
276 	UPDATE_INO,		/* for update ino list */
277 	TRANS_DIR_INO,		/* for trasactions dir ino list */
278 	FLUSH_INO,		/* for multiple device flushing */
279 	MAX_INO_ENTRY,		/* max. list */
280 };
281 
282 struct ino_entry {
283 	struct list_head list;		/* list head */
284 	nid_t ino;			/* inode number */
285 	unsigned int dirty_device;	/* dirty device bitmap */
286 };
287 
288 /* for the list of inodes to be GCed */
289 struct inode_entry {
290 	struct list_head list;	/* list head */
291 	struct inode *inode;	/* vfs inode pointer */
292 };
293 
294 struct fsync_node_entry {
295 	struct list_head list;	/* list head */
296 	struct page *page;	/* warm node page pointer */
297 	unsigned int seq_id;	/* sequence id */
298 };
299 
300 struct ckpt_req {
301 	struct completion wait;		/* completion for checkpoint done */
302 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
303 	int ret;			/* return code of checkpoint */
304 	ktime_t queue_time;		/* request queued time */
305 };
306 
307 struct ckpt_req_control {
308 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
309 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
310 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
311 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
312 	atomic_t total_ckpt;		/* # of total ckpts */
313 	atomic_t queued_ckpt;		/* # of queued ckpts */
314 	struct llist_head issue_list;	/* list for command issue */
315 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
316 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
317 	unsigned int peak_time;		/* peak wait time in msec until now */
318 };
319 
320 /* for the bitmap indicate blocks to be discarded */
321 struct discard_entry {
322 	struct list_head list;	/* list head */
323 	block_t start_blkaddr;	/* start blockaddr of current segment */
324 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
325 };
326 
327 /* default discard granularity of inner discard thread, unit: block count */
328 #define DEFAULT_DISCARD_GRANULARITY		16
329 
330 /* max discard pend list number */
331 #define MAX_PLIST_NUM		512
332 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
333 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
334 
335 enum {
336 	D_PREP,			/* initial */
337 	D_PARTIAL,		/* partially submitted */
338 	D_SUBMIT,		/* all submitted */
339 	D_DONE,			/* finished */
340 };
341 
342 struct discard_info {
343 	block_t lstart;			/* logical start address */
344 	block_t len;			/* length */
345 	block_t start;			/* actual start address in dev */
346 };
347 
348 struct discard_cmd {
349 	struct rb_node rb_node;		/* rb node located in rb-tree */
350 	union {
351 		struct {
352 			block_t lstart;	/* logical start address */
353 			block_t len;	/* length */
354 			block_t start;	/* actual start address in dev */
355 		};
356 		struct discard_info di;	/* discard info */
357 
358 	};
359 	struct list_head list;		/* command list */
360 	struct completion wait;		/* compleation */
361 	struct block_device *bdev;	/* bdev */
362 	unsigned short ref;		/* reference count */
363 	unsigned char state;		/* state */
364 	unsigned char queued;		/* queued discard */
365 	int error;			/* bio error */
366 	spinlock_t lock;		/* for state/bio_ref updating */
367 	unsigned short bio_ref;		/* bio reference count */
368 };
369 
370 enum {
371 	DPOLICY_BG,
372 	DPOLICY_FORCE,
373 	DPOLICY_FSTRIM,
374 	DPOLICY_UMOUNT,
375 	MAX_DPOLICY,
376 };
377 
378 struct discard_policy {
379 	int type;			/* type of discard */
380 	unsigned int min_interval;	/* used for candidates exist */
381 	unsigned int mid_interval;	/* used for device busy */
382 	unsigned int max_interval;	/* used for candidates not exist */
383 	unsigned int max_requests;	/* # of discards issued per round */
384 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
385 	bool io_aware;			/* issue discard in idle time */
386 	bool sync;			/* submit discard with REQ_SYNC flag */
387 	bool ordered;			/* issue discard by lba order */
388 	bool timeout;			/* discard timeout for put_super */
389 	unsigned int granularity;	/* discard granularity */
390 };
391 
392 struct discard_cmd_control {
393 	struct task_struct *f2fs_issue_discard;	/* discard thread */
394 	struct list_head entry_list;		/* 4KB discard entry list */
395 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
396 	struct list_head wait_list;		/* store on-flushing entries */
397 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
398 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
399 	unsigned int discard_wake;		/* to wake up discard thread */
400 	struct mutex cmd_lock;
401 	unsigned int nr_discards;		/* # of discards in the list */
402 	unsigned int max_discards;		/* max. discards to be issued */
403 	unsigned int max_discard_request;	/* max. discard request per round */
404 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
405 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
406 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
407 	unsigned int discard_granularity;	/* discard granularity */
408 	unsigned int undiscard_blks;		/* # of undiscard blocks */
409 	unsigned int next_pos;			/* next discard position */
410 	atomic_t issued_discard;		/* # of issued discard */
411 	atomic_t queued_discard;		/* # of queued discard */
412 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
413 	struct rb_root_cached root;		/* root of discard rb-tree */
414 	bool rbtree_check;			/* config for consistence check */
415 };
416 
417 /* for the list of fsync inodes, used only during recovery */
418 struct fsync_inode_entry {
419 	struct list_head list;	/* list head */
420 	struct inode *inode;	/* vfs inode pointer */
421 	block_t blkaddr;	/* block address locating the last fsync */
422 	block_t last_dentry;	/* block address locating the last dentry */
423 };
424 
425 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
426 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
427 
428 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
429 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
430 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
431 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
432 
433 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
434 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
435 
436 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
437 {
438 	int before = nats_in_cursum(journal);
439 
440 	journal->n_nats = cpu_to_le16(before + i);
441 	return before;
442 }
443 
444 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
445 {
446 	int before = sits_in_cursum(journal);
447 
448 	journal->n_sits = cpu_to_le16(before + i);
449 	return before;
450 }
451 
452 static inline bool __has_cursum_space(struct f2fs_journal *journal,
453 							int size, int type)
454 {
455 	if (type == NAT_JOURNAL)
456 		return size <= MAX_NAT_JENTRIES(journal);
457 	return size <= MAX_SIT_JENTRIES(journal);
458 }
459 
460 /* for inline stuff */
461 #define DEF_INLINE_RESERVED_SIZE	1
462 static inline int get_extra_isize(struct inode *inode);
463 static inline int get_inline_xattr_addrs(struct inode *inode);
464 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
465 				(CUR_ADDRS_PER_INODE(inode) -		\
466 				get_inline_xattr_addrs(inode) -	\
467 				DEF_INLINE_RESERVED_SIZE))
468 
469 /* for inline dir */
470 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
471 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
472 				BITS_PER_BYTE + 1))
473 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
474 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
475 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
476 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
477 				NR_INLINE_DENTRY(inode) + \
478 				INLINE_DENTRY_BITMAP_SIZE(inode)))
479 
480 /*
481  * For INODE and NODE manager
482  */
483 /* for directory operations */
484 
485 struct f2fs_filename {
486 	/*
487 	 * The filename the user specified.  This is NULL for some
488 	 * filesystem-internal operations, e.g. converting an inline directory
489 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
490 	 */
491 	const struct qstr *usr_fname;
492 
493 	/*
494 	 * The on-disk filename.  For encrypted directories, this is encrypted.
495 	 * This may be NULL for lookups in an encrypted dir without the key.
496 	 */
497 	struct fscrypt_str disk_name;
498 
499 	/* The dirhash of this filename */
500 	f2fs_hash_t hash;
501 
502 #ifdef CONFIG_FS_ENCRYPTION
503 	/*
504 	 * For lookups in encrypted directories: either the buffer backing
505 	 * disk_name, or a buffer that holds the decoded no-key name.
506 	 */
507 	struct fscrypt_str crypto_buf;
508 #endif
509 #if IS_ENABLED(CONFIG_UNICODE)
510 	/*
511 	 * For casefolded directories: the casefolded name, but it's left NULL
512 	 * if the original name is not valid Unicode, if the original name is
513 	 * "." or "..", if the directory is both casefolded and encrypted and
514 	 * its encryption key is unavailable, or if the filesystem is doing an
515 	 * internal operation where usr_fname is also NULL.  In all these cases
516 	 * we fall back to treating the name as an opaque byte sequence.
517 	 */
518 	struct fscrypt_str cf_name;
519 #endif
520 };
521 
522 struct f2fs_dentry_ptr {
523 	struct inode *inode;
524 	void *bitmap;
525 	struct f2fs_dir_entry *dentry;
526 	__u8 (*filename)[F2FS_SLOT_LEN];
527 	int max;
528 	int nr_bitmap;
529 };
530 
531 static inline void make_dentry_ptr_block(struct inode *inode,
532 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
533 {
534 	d->inode = inode;
535 	d->max = NR_DENTRY_IN_BLOCK;
536 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
537 	d->bitmap = t->dentry_bitmap;
538 	d->dentry = t->dentry;
539 	d->filename = t->filename;
540 }
541 
542 static inline void make_dentry_ptr_inline(struct inode *inode,
543 					struct f2fs_dentry_ptr *d, void *t)
544 {
545 	int entry_cnt = NR_INLINE_DENTRY(inode);
546 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
547 	int reserved_size = INLINE_RESERVED_SIZE(inode);
548 
549 	d->inode = inode;
550 	d->max = entry_cnt;
551 	d->nr_bitmap = bitmap_size;
552 	d->bitmap = t;
553 	d->dentry = t + bitmap_size + reserved_size;
554 	d->filename = t + bitmap_size + reserved_size +
555 					SIZE_OF_DIR_ENTRY * entry_cnt;
556 }
557 
558 /*
559  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
560  * as its node offset to distinguish from index node blocks.
561  * But some bits are used to mark the node block.
562  */
563 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
564 				>> OFFSET_BIT_SHIFT)
565 enum {
566 	ALLOC_NODE,			/* allocate a new node page if needed */
567 	LOOKUP_NODE,			/* look up a node without readahead */
568 	LOOKUP_NODE_RA,			/*
569 					 * look up a node with readahead called
570 					 * by get_data_block.
571 					 */
572 };
573 
574 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
575 
576 /* congestion wait timeout value, default: 20ms */
577 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
578 
579 /* maximum retry quota flush count */
580 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
581 
582 /* maximum retry of EIO'ed page */
583 #define MAX_RETRY_PAGE_EIO			100
584 
585 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
586 
587 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
588 
589 /* dirty segments threshold for triggering CP */
590 #define DEFAULT_DIRTY_THRESHOLD		4
591 
592 /* for in-memory extent cache entry */
593 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
594 
595 /* number of extent info in extent cache we try to shrink */
596 #define EXTENT_CACHE_SHRINK_NUMBER	128
597 
598 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
599 #define RECOVERY_MIN_RA_BLOCKS		1
600 
601 struct rb_entry {
602 	struct rb_node rb_node;		/* rb node located in rb-tree */
603 	union {
604 		struct {
605 			unsigned int ofs;	/* start offset of the entry */
606 			unsigned int len;	/* length of the entry */
607 		};
608 		unsigned long long key;		/* 64-bits key */
609 	} __packed;
610 };
611 
612 struct extent_info {
613 	unsigned int fofs;		/* start offset in a file */
614 	unsigned int len;		/* length of the extent */
615 	u32 blk;			/* start block address of the extent */
616 #ifdef CONFIG_F2FS_FS_COMPRESSION
617 	unsigned int c_len;		/* physical extent length of compressed blocks */
618 #endif
619 };
620 
621 struct extent_node {
622 	struct rb_node rb_node;		/* rb node located in rb-tree */
623 	struct extent_info ei;		/* extent info */
624 	struct list_head list;		/* node in global extent list of sbi */
625 	struct extent_tree *et;		/* extent tree pointer */
626 };
627 
628 struct extent_tree {
629 	nid_t ino;			/* inode number */
630 	struct rb_root_cached root;	/* root of extent info rb-tree */
631 	struct extent_node *cached_en;	/* recently accessed extent node */
632 	struct extent_info largest;	/* largested extent info */
633 	struct list_head list;		/* to be used by sbi->zombie_list */
634 	rwlock_t lock;			/* protect extent info rb-tree */
635 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
636 	bool largest_updated;		/* largest extent updated */
637 };
638 
639 /*
640  * This structure is taken from ext4_map_blocks.
641  *
642  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
643  */
644 #define F2FS_MAP_NEW		(1 << BH_New)
645 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
646 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
647 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
648 				F2FS_MAP_UNWRITTEN)
649 
650 struct f2fs_map_blocks {
651 	struct block_device *m_bdev;	/* for multi-device dio */
652 	block_t m_pblk;
653 	block_t m_lblk;
654 	unsigned int m_len;
655 	unsigned int m_flags;
656 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
657 	pgoff_t *m_next_extent;		/* point to next possible extent */
658 	int m_seg_type;
659 	bool m_may_create;		/* indicate it is from write path */
660 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
661 };
662 
663 /* for flag in get_data_block */
664 enum {
665 	F2FS_GET_BLOCK_DEFAULT,
666 	F2FS_GET_BLOCK_FIEMAP,
667 	F2FS_GET_BLOCK_BMAP,
668 	F2FS_GET_BLOCK_DIO,
669 	F2FS_GET_BLOCK_PRE_DIO,
670 	F2FS_GET_BLOCK_PRE_AIO,
671 	F2FS_GET_BLOCK_PRECACHE,
672 };
673 
674 /*
675  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
676  */
677 #define FADVISE_COLD_BIT	0x01
678 #define FADVISE_LOST_PINO_BIT	0x02
679 #define FADVISE_ENCRYPT_BIT	0x04
680 #define FADVISE_ENC_NAME_BIT	0x08
681 #define FADVISE_KEEP_SIZE_BIT	0x10
682 #define FADVISE_HOT_BIT		0x20
683 #define FADVISE_VERITY_BIT	0x40
684 #define FADVISE_TRUNC_BIT	0x80
685 
686 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
687 
688 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
689 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
690 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
691 
692 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
693 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
694 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
695 
696 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
697 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
698 
699 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
700 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
701 
702 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
703 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
704 
705 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
706 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
707 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
708 
709 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
710 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
711 
712 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
713 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
714 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
715 
716 #define DEF_DIR_LEVEL		0
717 
718 enum {
719 	GC_FAILURE_PIN,
720 	MAX_GC_FAILURE
721 };
722 
723 /* used for f2fs_inode_info->flags */
724 enum {
725 	FI_NEW_INODE,		/* indicate newly allocated inode */
726 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
727 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
728 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
729 	FI_INC_LINK,		/* need to increment i_nlink */
730 	FI_ACL_MODE,		/* indicate acl mode */
731 	FI_NO_ALLOC,		/* should not allocate any blocks */
732 	FI_FREE_NID,		/* free allocated nide */
733 	FI_NO_EXTENT,		/* not to use the extent cache */
734 	FI_INLINE_XATTR,	/* used for inline xattr */
735 	FI_INLINE_DATA,		/* used for inline data*/
736 	FI_INLINE_DENTRY,	/* used for inline dentry */
737 	FI_APPEND_WRITE,	/* inode has appended data */
738 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
739 	FI_NEED_IPU,		/* used for ipu per file */
740 	FI_ATOMIC_FILE,		/* indicate atomic file */
741 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
742 	FI_DROP_CACHE,		/* drop dirty page cache */
743 	FI_DATA_EXIST,		/* indicate data exists */
744 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
745 	FI_SKIP_WRITES,		/* should skip data page writeback */
746 	FI_OPU_WRITE,		/* used for opu per file */
747 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
748 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
749 	FI_HOT_DATA,		/* indicate file is hot */
750 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
751 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
752 	FI_PIN_FILE,		/* indicate file should not be gced */
753 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
754 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
755 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
756 	FI_MMAP_FILE,		/* indicate file was mmapped */
757 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
758 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
759 	FI_ALIGNED_WRITE,	/* enable aligned write */
760 	FI_MAX,			/* max flag, never be used */
761 };
762 
763 struct f2fs_inode_info {
764 	struct inode vfs_inode;		/* serve a vfs inode */
765 	unsigned long i_flags;		/* keep an inode flags for ioctl */
766 	unsigned char i_advise;		/* use to give file attribute hints */
767 	unsigned char i_dir_level;	/* use for dentry level for large dir */
768 	unsigned int i_current_depth;	/* only for directory depth */
769 	/* for gc failure statistic */
770 	unsigned int i_gc_failures[MAX_GC_FAILURE];
771 	unsigned int i_pino;		/* parent inode number */
772 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
773 
774 	/* Use below internally in f2fs*/
775 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
776 	struct f2fs_rwsem i_sem;	/* protect fi info */
777 	atomic_t dirty_pages;		/* # of dirty pages */
778 	f2fs_hash_t chash;		/* hash value of given file name */
779 	unsigned int clevel;		/* maximum level of given file name */
780 	struct task_struct *task;	/* lookup and create consistency */
781 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
782 	nid_t i_xattr_nid;		/* node id that contains xattrs */
783 	loff_t	last_disk_size;		/* lastly written file size */
784 	spinlock_t i_size_lock;		/* protect last_disk_size */
785 
786 #ifdef CONFIG_QUOTA
787 	struct dquot *i_dquot[MAXQUOTAS];
788 
789 	/* quota space reservation, managed internally by quota code */
790 	qsize_t i_reserved_quota;
791 #endif
792 	struct list_head dirty_list;	/* dirty list for dirs and files */
793 	struct list_head gdirty_list;	/* linked in global dirty list */
794 	struct task_struct *atomic_write_task;	/* store atomic write task */
795 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
796 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
797 
798 	/* avoid racing between foreground op and gc */
799 	struct f2fs_rwsem i_gc_rwsem[2];
800 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
801 
802 	int i_extra_isize;		/* size of extra space located in i_addr */
803 	kprojid_t i_projid;		/* id for project quota */
804 	int i_inline_xattr_size;	/* inline xattr size */
805 	struct timespec64 i_crtime;	/* inode creation time */
806 	struct timespec64 i_disk_time[4];/* inode disk times */
807 
808 	/* for file compress */
809 	atomic_t i_compr_blocks;		/* # of compressed blocks */
810 	unsigned char i_compress_algorithm;	/* algorithm type */
811 	unsigned char i_log_cluster_size;	/* log of cluster size */
812 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
813 	unsigned short i_compress_flag;		/* compress flag */
814 	unsigned int i_cluster_size;		/* cluster size */
815 };
816 
817 static inline void get_extent_info(struct extent_info *ext,
818 					struct f2fs_extent *i_ext)
819 {
820 	ext->fofs = le32_to_cpu(i_ext->fofs);
821 	ext->blk = le32_to_cpu(i_ext->blk);
822 	ext->len = le32_to_cpu(i_ext->len);
823 }
824 
825 static inline void set_raw_extent(struct extent_info *ext,
826 					struct f2fs_extent *i_ext)
827 {
828 	i_ext->fofs = cpu_to_le32(ext->fofs);
829 	i_ext->blk = cpu_to_le32(ext->blk);
830 	i_ext->len = cpu_to_le32(ext->len);
831 }
832 
833 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
834 						u32 blk, unsigned int len)
835 {
836 	ei->fofs = fofs;
837 	ei->blk = blk;
838 	ei->len = len;
839 #ifdef CONFIG_F2FS_FS_COMPRESSION
840 	ei->c_len = 0;
841 #endif
842 }
843 
844 static inline bool __is_discard_mergeable(struct discard_info *back,
845 			struct discard_info *front, unsigned int max_len)
846 {
847 	return (back->lstart + back->len == front->lstart) &&
848 		(back->len + front->len <= max_len);
849 }
850 
851 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
852 			struct discard_info *back, unsigned int max_len)
853 {
854 	return __is_discard_mergeable(back, cur, max_len);
855 }
856 
857 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
858 			struct discard_info *front, unsigned int max_len)
859 {
860 	return __is_discard_mergeable(cur, front, max_len);
861 }
862 
863 static inline bool __is_extent_mergeable(struct extent_info *back,
864 						struct extent_info *front)
865 {
866 #ifdef CONFIG_F2FS_FS_COMPRESSION
867 	if (back->c_len && back->len != back->c_len)
868 		return false;
869 	if (front->c_len && front->len != front->c_len)
870 		return false;
871 #endif
872 	return (back->fofs + back->len == front->fofs &&
873 			back->blk + back->len == front->blk);
874 }
875 
876 static inline bool __is_back_mergeable(struct extent_info *cur,
877 						struct extent_info *back)
878 {
879 	return __is_extent_mergeable(back, cur);
880 }
881 
882 static inline bool __is_front_mergeable(struct extent_info *cur,
883 						struct extent_info *front)
884 {
885 	return __is_extent_mergeable(cur, front);
886 }
887 
888 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
889 static inline void __try_update_largest_extent(struct extent_tree *et,
890 						struct extent_node *en)
891 {
892 	if (en->ei.len > et->largest.len) {
893 		et->largest = en->ei;
894 		et->largest_updated = true;
895 	}
896 }
897 
898 /*
899  * For free nid management
900  */
901 enum nid_state {
902 	FREE_NID,		/* newly added to free nid list */
903 	PREALLOC_NID,		/* it is preallocated */
904 	MAX_NID_STATE,
905 };
906 
907 enum nat_state {
908 	TOTAL_NAT,
909 	DIRTY_NAT,
910 	RECLAIMABLE_NAT,
911 	MAX_NAT_STATE,
912 };
913 
914 struct f2fs_nm_info {
915 	block_t nat_blkaddr;		/* base disk address of NAT */
916 	nid_t max_nid;			/* maximum possible node ids */
917 	nid_t available_nids;		/* # of available node ids */
918 	nid_t next_scan_nid;		/* the next nid to be scanned */
919 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
920 	unsigned int ram_thresh;	/* control the memory footprint */
921 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
922 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
923 
924 	/* NAT cache management */
925 	struct radix_tree_root nat_root;/* root of the nat entry cache */
926 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
927 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
928 	struct list_head nat_entries;	/* cached nat entry list (clean) */
929 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
930 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
931 	unsigned int nat_blocks;	/* # of nat blocks */
932 
933 	/* free node ids management */
934 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
935 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
936 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
937 	spinlock_t nid_list_lock;	/* protect nid lists ops */
938 	struct mutex build_lock;	/* lock for build free nids */
939 	unsigned char **free_nid_bitmap;
940 	unsigned char *nat_block_bitmap;
941 	unsigned short *free_nid_count;	/* free nid count of NAT block */
942 
943 	/* for checkpoint */
944 	char *nat_bitmap;		/* NAT bitmap pointer */
945 
946 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
947 	unsigned char *nat_bits;	/* NAT bits blocks */
948 	unsigned char *full_nat_bits;	/* full NAT pages */
949 	unsigned char *empty_nat_bits;	/* empty NAT pages */
950 #ifdef CONFIG_F2FS_CHECK_FS
951 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
952 #endif
953 	int bitmap_size;		/* bitmap size */
954 };
955 
956 /*
957  * this structure is used as one of function parameters.
958  * all the information are dedicated to a given direct node block determined
959  * by the data offset in a file.
960  */
961 struct dnode_of_data {
962 	struct inode *inode;		/* vfs inode pointer */
963 	struct page *inode_page;	/* its inode page, NULL is possible */
964 	struct page *node_page;		/* cached direct node page */
965 	nid_t nid;			/* node id of the direct node block */
966 	unsigned int ofs_in_node;	/* data offset in the node page */
967 	bool inode_page_locked;		/* inode page is locked or not */
968 	bool node_changed;		/* is node block changed */
969 	char cur_level;			/* level of hole node page */
970 	char max_level;			/* level of current page located */
971 	block_t	data_blkaddr;		/* block address of the node block */
972 };
973 
974 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
975 		struct page *ipage, struct page *npage, nid_t nid)
976 {
977 	memset(dn, 0, sizeof(*dn));
978 	dn->inode = inode;
979 	dn->inode_page = ipage;
980 	dn->node_page = npage;
981 	dn->nid = nid;
982 }
983 
984 /*
985  * For SIT manager
986  *
987  * By default, there are 6 active log areas across the whole main area.
988  * When considering hot and cold data separation to reduce cleaning overhead,
989  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
990  * respectively.
991  * In the current design, you should not change the numbers intentionally.
992  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
993  * logs individually according to the underlying devices. (default: 6)
994  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
995  * data and 8 for node logs.
996  */
997 #define	NR_CURSEG_DATA_TYPE	(3)
998 #define NR_CURSEG_NODE_TYPE	(3)
999 #define NR_CURSEG_INMEM_TYPE	(2)
1000 #define NR_CURSEG_RO_TYPE	(2)
1001 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1002 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1003 
1004 enum {
1005 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1006 	CURSEG_WARM_DATA,	/* data blocks */
1007 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1008 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1009 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1010 	CURSEG_COLD_NODE,	/* indirect node blocks */
1011 	NR_PERSISTENT_LOG,	/* number of persistent log */
1012 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1013 				/* pinned file that needs consecutive block address */
1014 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1015 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1016 };
1017 
1018 struct flush_cmd {
1019 	struct completion wait;
1020 	struct llist_node llnode;
1021 	nid_t ino;
1022 	int ret;
1023 };
1024 
1025 struct flush_cmd_control {
1026 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1027 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1028 	atomic_t issued_flush;			/* # of issued flushes */
1029 	atomic_t queued_flush;			/* # of queued flushes */
1030 	struct llist_head issue_list;		/* list for command issue */
1031 	struct llist_node *dispatch_list;	/* list for command dispatch */
1032 };
1033 
1034 struct f2fs_sm_info {
1035 	struct sit_info *sit_info;		/* whole segment information */
1036 	struct free_segmap_info *free_info;	/* free segment information */
1037 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1038 	struct curseg_info *curseg_array;	/* active segment information */
1039 
1040 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1041 
1042 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1043 	block_t main_blkaddr;		/* start block address of main area */
1044 	block_t ssa_blkaddr;		/* start block address of SSA area */
1045 
1046 	unsigned int segment_count;	/* total # of segments */
1047 	unsigned int main_segments;	/* # of segments in main area */
1048 	unsigned int reserved_segments;	/* # of reserved segments */
1049 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1050 	unsigned int ovp_segments;	/* # of overprovision segments */
1051 
1052 	/* a threshold to reclaim prefree segments */
1053 	unsigned int rec_prefree_segments;
1054 
1055 	/* for batched trimming */
1056 	unsigned int trim_sections;		/* # of sections to trim */
1057 
1058 	struct list_head sit_entry_set;	/* sit entry set list */
1059 
1060 	unsigned int ipu_policy;	/* in-place-update policy */
1061 	unsigned int min_ipu_util;	/* in-place-update threshold */
1062 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1063 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1064 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1065 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1066 
1067 	/* for flush command control */
1068 	struct flush_cmd_control *fcc_info;
1069 
1070 	/* for discard command control */
1071 	struct discard_cmd_control *dcc_info;
1072 };
1073 
1074 /*
1075  * For superblock
1076  */
1077 /*
1078  * COUNT_TYPE for monitoring
1079  *
1080  * f2fs monitors the number of several block types such as on-writeback,
1081  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1082  */
1083 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1084 enum count_type {
1085 	F2FS_DIRTY_DENTS,
1086 	F2FS_DIRTY_DATA,
1087 	F2FS_DIRTY_QDATA,
1088 	F2FS_DIRTY_NODES,
1089 	F2FS_DIRTY_META,
1090 	F2FS_DIRTY_IMETA,
1091 	F2FS_WB_CP_DATA,
1092 	F2FS_WB_DATA,
1093 	F2FS_RD_DATA,
1094 	F2FS_RD_NODE,
1095 	F2FS_RD_META,
1096 	F2FS_DIO_WRITE,
1097 	F2FS_DIO_READ,
1098 	NR_COUNT_TYPE,
1099 };
1100 
1101 /*
1102  * The below are the page types of bios used in submit_bio().
1103  * The available types are:
1104  * DATA			User data pages. It operates as async mode.
1105  * NODE			Node pages. It operates as async mode.
1106  * META			FS metadata pages such as SIT, NAT, CP.
1107  * NR_PAGE_TYPE		The number of page types.
1108  * META_FLUSH		Make sure the previous pages are written
1109  *			with waiting the bio's completion
1110  * ...			Only can be used with META.
1111  */
1112 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1113 enum page_type {
1114 	DATA = 0,
1115 	NODE = 1,	/* should not change this */
1116 	META,
1117 	NR_PAGE_TYPE,
1118 	META_FLUSH,
1119 	IPU,		/* the below types are used by tracepoints only. */
1120 	OPU,
1121 };
1122 
1123 enum temp_type {
1124 	HOT = 0,	/* must be zero for meta bio */
1125 	WARM,
1126 	COLD,
1127 	NR_TEMP_TYPE,
1128 };
1129 
1130 enum need_lock_type {
1131 	LOCK_REQ = 0,
1132 	LOCK_DONE,
1133 	LOCK_RETRY,
1134 };
1135 
1136 enum cp_reason_type {
1137 	CP_NO_NEEDED,
1138 	CP_NON_REGULAR,
1139 	CP_COMPRESSED,
1140 	CP_HARDLINK,
1141 	CP_SB_NEED_CP,
1142 	CP_WRONG_PINO,
1143 	CP_NO_SPC_ROLL,
1144 	CP_NODE_NEED_CP,
1145 	CP_FASTBOOT_MODE,
1146 	CP_SPEC_LOG_NUM,
1147 	CP_RECOVER_DIR,
1148 };
1149 
1150 enum iostat_type {
1151 	/* WRITE IO */
1152 	APP_DIRECT_IO,			/* app direct write IOs */
1153 	APP_BUFFERED_IO,		/* app buffered write IOs */
1154 	APP_WRITE_IO,			/* app write IOs */
1155 	APP_MAPPED_IO,			/* app mapped IOs */
1156 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1157 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1158 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1159 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1160 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1161 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1162 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1163 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1164 
1165 	/* READ IO */
1166 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1167 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1168 	APP_READ_IO,			/* app read IOs */
1169 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1170 	FS_DATA_READ_IO,		/* data read IOs */
1171 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1172 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1173 	FS_NODE_READ_IO,		/* node read IOs */
1174 	FS_META_READ_IO,		/* meta read IOs */
1175 
1176 	/* other */
1177 	FS_DISCARD,			/* discard */
1178 	NR_IO_TYPE,
1179 };
1180 
1181 struct f2fs_io_info {
1182 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1183 	nid_t ino;		/* inode number */
1184 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1185 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1186 	int op;			/* contains REQ_OP_ */
1187 	int op_flags;		/* req_flag_bits */
1188 	block_t new_blkaddr;	/* new block address to be written */
1189 	block_t old_blkaddr;	/* old block address before Cow */
1190 	struct page *page;	/* page to be written */
1191 	struct page *encrypted_page;	/* encrypted page */
1192 	struct page *compressed_page;	/* compressed page */
1193 	struct list_head list;		/* serialize IOs */
1194 	bool submitted;		/* indicate IO submission */
1195 	int need_lock;		/* indicate we need to lock cp_rwsem */
1196 	bool in_list;		/* indicate fio is in io_list */
1197 	bool is_por;		/* indicate IO is from recovery or not */
1198 	bool retry;		/* need to reallocate block address */
1199 	int compr_blocks;	/* # of compressed block addresses */
1200 	bool encrypted;		/* indicate file is encrypted */
1201 	enum iostat_type io_type;	/* io type */
1202 	struct writeback_control *io_wbc; /* writeback control */
1203 	struct bio **bio;		/* bio for ipu */
1204 	sector_t *last_block;		/* last block number in bio */
1205 	unsigned char version;		/* version of the node */
1206 };
1207 
1208 struct bio_entry {
1209 	struct bio *bio;
1210 	struct list_head list;
1211 };
1212 
1213 #define is_read_io(rw) ((rw) == READ)
1214 struct f2fs_bio_info {
1215 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1216 	struct bio *bio;		/* bios to merge */
1217 	sector_t last_block_in_bio;	/* last block number */
1218 	struct f2fs_io_info fio;	/* store buffered io info. */
1219 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1220 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1221 	struct list_head io_list;	/* track fios */
1222 	struct list_head bio_list;	/* bio entry list head */
1223 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1224 };
1225 
1226 #define FDEV(i)				(sbi->devs[i])
1227 #define RDEV(i)				(raw_super->devs[i])
1228 struct f2fs_dev_info {
1229 	struct block_device *bdev;
1230 	char path[MAX_PATH_LEN];
1231 	unsigned int total_segments;
1232 	block_t start_blk;
1233 	block_t end_blk;
1234 #ifdef CONFIG_BLK_DEV_ZONED
1235 	unsigned int nr_blkz;		/* Total number of zones */
1236 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1237 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1238 #endif
1239 };
1240 
1241 enum inode_type {
1242 	DIR_INODE,			/* for dirty dir inode */
1243 	FILE_INODE,			/* for dirty regular/symlink inode */
1244 	DIRTY_META,			/* for all dirtied inode metadata */
1245 	ATOMIC_FILE,			/* for all atomic files */
1246 	NR_INODE_TYPE,
1247 };
1248 
1249 /* for inner inode cache management */
1250 struct inode_management {
1251 	struct radix_tree_root ino_root;	/* ino entry array */
1252 	spinlock_t ino_lock;			/* for ino entry lock */
1253 	struct list_head ino_list;		/* inode list head */
1254 	unsigned long ino_num;			/* number of entries */
1255 };
1256 
1257 /* for GC_AT */
1258 struct atgc_management {
1259 	bool atgc_enabled;			/* ATGC is enabled or not */
1260 	struct rb_root_cached root;		/* root of victim rb-tree */
1261 	struct list_head victim_list;		/* linked with all victim entries */
1262 	unsigned int victim_count;		/* victim count in rb-tree */
1263 	unsigned int candidate_ratio;		/* candidate ratio */
1264 	unsigned int max_candidate_count;	/* max candidate count */
1265 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1266 	unsigned long long age_threshold;	/* age threshold */
1267 };
1268 
1269 struct f2fs_gc_control {
1270 	unsigned int victim_segno;	/* target victim segment number */
1271 	int init_gc_type;		/* FG_GC or BG_GC */
1272 	bool no_bg_gc;			/* check the space and stop bg_gc */
1273 	bool should_migrate_blocks;	/* should migrate blocks */
1274 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1275 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1276 };
1277 
1278 /* For s_flag in struct f2fs_sb_info */
1279 enum {
1280 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1281 	SBI_IS_CLOSE,				/* specify unmounting */
1282 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1283 	SBI_POR_DOING,				/* recovery is doing or not */
1284 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1285 	SBI_NEED_CP,				/* need to checkpoint */
1286 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1287 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1288 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1289 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1290 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1291 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1292 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1293 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1294 	SBI_IS_FREEZING,			/* freezefs is in process */
1295 };
1296 
1297 enum {
1298 	CP_TIME,
1299 	REQ_TIME,
1300 	DISCARD_TIME,
1301 	GC_TIME,
1302 	DISABLE_TIME,
1303 	UMOUNT_DISCARD_TIMEOUT,
1304 	MAX_TIME,
1305 };
1306 
1307 enum {
1308 	GC_NORMAL,
1309 	GC_IDLE_CB,
1310 	GC_IDLE_GREEDY,
1311 	GC_IDLE_AT,
1312 	GC_URGENT_HIGH,
1313 	GC_URGENT_LOW,
1314 	GC_URGENT_MID,
1315 	MAX_GC_MODE,
1316 };
1317 
1318 enum {
1319 	BGGC_MODE_ON,		/* background gc is on */
1320 	BGGC_MODE_OFF,		/* background gc is off */
1321 	BGGC_MODE_SYNC,		/*
1322 				 * background gc is on, migrating blocks
1323 				 * like foreground gc
1324 				 */
1325 };
1326 
1327 enum {
1328 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1329 	FS_MODE_LFS,			/* use lfs allocation only */
1330 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1331 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1332 };
1333 
1334 enum {
1335 	ALLOC_MODE_DEFAULT,	/* stay default */
1336 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1337 };
1338 
1339 enum fsync_mode {
1340 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1341 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1342 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1343 };
1344 
1345 enum {
1346 	COMPR_MODE_FS,		/*
1347 				 * automatically compress compression
1348 				 * enabled files
1349 				 */
1350 	COMPR_MODE_USER,	/*
1351 				 * automatical compression is disabled.
1352 				 * user can control the file compression
1353 				 * using ioctls
1354 				 */
1355 };
1356 
1357 enum {
1358 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1359 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1360 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1361 };
1362 
1363 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1364 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1365 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1366 
1367 /*
1368  * Layout of f2fs page.private:
1369  *
1370  * Layout A: lowest bit should be 1
1371  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1372  * bit 0	PAGE_PRIVATE_NOT_POINTER
1373  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1374  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1375  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1376  * bit 4	PAGE_PRIVATE_INLINE_INODE
1377  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1378  * bit 6-	f2fs private data
1379  *
1380  * Layout B: lowest bit should be 0
1381  * page.private is a wrapped pointer.
1382  */
1383 enum {
1384 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1385 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1386 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1387 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1388 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1389 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1390 	PAGE_PRIVATE_MAX
1391 };
1392 
1393 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1394 static inline bool page_private_##name(struct page *page) \
1395 { \
1396 	return PagePrivate(page) && \
1397 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1398 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1399 }
1400 
1401 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1402 static inline void set_page_private_##name(struct page *page) \
1403 { \
1404 	if (!PagePrivate(page)) { \
1405 		get_page(page); \
1406 		SetPagePrivate(page); \
1407 		set_page_private(page, 0); \
1408 	} \
1409 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1410 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1411 }
1412 
1413 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1414 static inline void clear_page_private_##name(struct page *page) \
1415 { \
1416 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1417 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1418 		set_page_private(page, 0); \
1419 		if (PagePrivate(page)) { \
1420 			ClearPagePrivate(page); \
1421 			put_page(page); \
1422 		}\
1423 	} \
1424 }
1425 
1426 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1427 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1428 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1429 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1430 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1431 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1432 
1433 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1434 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1435 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1436 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1437 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1438 
1439 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1440 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1441 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1442 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1443 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1444 
1445 static inline unsigned long get_page_private_data(struct page *page)
1446 {
1447 	unsigned long data = page_private(page);
1448 
1449 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1450 		return 0;
1451 	return data >> PAGE_PRIVATE_MAX;
1452 }
1453 
1454 static inline void set_page_private_data(struct page *page, unsigned long data)
1455 {
1456 	if (!PagePrivate(page)) {
1457 		get_page(page);
1458 		SetPagePrivate(page);
1459 		set_page_private(page, 0);
1460 	}
1461 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1462 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1463 }
1464 
1465 static inline void clear_page_private_data(struct page *page)
1466 {
1467 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1468 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1469 		set_page_private(page, 0);
1470 		if (PagePrivate(page)) {
1471 			ClearPagePrivate(page);
1472 			put_page(page);
1473 		}
1474 	}
1475 }
1476 
1477 /* For compression */
1478 enum compress_algorithm_type {
1479 	COMPRESS_LZO,
1480 	COMPRESS_LZ4,
1481 	COMPRESS_ZSTD,
1482 	COMPRESS_LZORLE,
1483 	COMPRESS_MAX,
1484 };
1485 
1486 enum compress_flag {
1487 	COMPRESS_CHKSUM,
1488 	COMPRESS_MAX_FLAG,
1489 };
1490 
1491 #define	COMPRESS_WATERMARK			20
1492 #define	COMPRESS_PERCENT			20
1493 
1494 #define COMPRESS_DATA_RESERVED_SIZE		4
1495 struct compress_data {
1496 	__le32 clen;			/* compressed data size */
1497 	__le32 chksum;			/* compressed data chksum */
1498 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1499 	u8 cdata[];			/* compressed data */
1500 };
1501 
1502 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1503 
1504 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1505 
1506 #define	COMPRESS_LEVEL_OFFSET	8
1507 
1508 /* compress context */
1509 struct compress_ctx {
1510 	struct inode *inode;		/* inode the context belong to */
1511 	pgoff_t cluster_idx;		/* cluster index number */
1512 	unsigned int cluster_size;	/* page count in cluster */
1513 	unsigned int log_cluster_size;	/* log of cluster size */
1514 	struct page **rpages;		/* pages store raw data in cluster */
1515 	unsigned int nr_rpages;		/* total page number in rpages */
1516 	struct page **cpages;		/* pages store compressed data in cluster */
1517 	unsigned int nr_cpages;		/* total page number in cpages */
1518 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1519 	void *rbuf;			/* virtual mapped address on rpages */
1520 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1521 	size_t rlen;			/* valid data length in rbuf */
1522 	size_t clen;			/* valid data length in cbuf */
1523 	void *private;			/* payload buffer for specified compression algorithm */
1524 	void *private2;			/* extra payload buffer */
1525 };
1526 
1527 /* compress context for write IO path */
1528 struct compress_io_ctx {
1529 	u32 magic;			/* magic number to indicate page is compressed */
1530 	struct inode *inode;		/* inode the context belong to */
1531 	struct page **rpages;		/* pages store raw data in cluster */
1532 	unsigned int nr_rpages;		/* total page number in rpages */
1533 	atomic_t pending_pages;		/* in-flight compressed page count */
1534 };
1535 
1536 /* Context for decompressing one cluster on the read IO path */
1537 struct decompress_io_ctx {
1538 	u32 magic;			/* magic number to indicate page is compressed */
1539 	struct inode *inode;		/* inode the context belong to */
1540 	pgoff_t cluster_idx;		/* cluster index number */
1541 	unsigned int cluster_size;	/* page count in cluster */
1542 	unsigned int log_cluster_size;	/* log of cluster size */
1543 	struct page **rpages;		/* pages store raw data in cluster */
1544 	unsigned int nr_rpages;		/* total page number in rpages */
1545 	struct page **cpages;		/* pages store compressed data in cluster */
1546 	unsigned int nr_cpages;		/* total page number in cpages */
1547 	struct page **tpages;		/* temp pages to pad holes in cluster */
1548 	void *rbuf;			/* virtual mapped address on rpages */
1549 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1550 	size_t rlen;			/* valid data length in rbuf */
1551 	size_t clen;			/* valid data length in cbuf */
1552 
1553 	/*
1554 	 * The number of compressed pages remaining to be read in this cluster.
1555 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1556 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1557 	 * is decompressed (or an error is reported).
1558 	 *
1559 	 * If an error occurs before all the pages have been submitted for I/O,
1560 	 * then this will never reach 0.  In this case the I/O submitter is
1561 	 * responsible for calling f2fs_decompress_end_io() instead.
1562 	 */
1563 	atomic_t remaining_pages;
1564 
1565 	/*
1566 	 * Number of references to this decompress_io_ctx.
1567 	 *
1568 	 * One reference is held for I/O completion.  This reference is dropped
1569 	 * after the pagecache pages are updated and unlocked -- either after
1570 	 * decompression (and verity if enabled), or after an error.
1571 	 *
1572 	 * In addition, each compressed page holds a reference while it is in a
1573 	 * bio.  These references are necessary prevent compressed pages from
1574 	 * being freed while they are still in a bio.
1575 	 */
1576 	refcount_t refcnt;
1577 
1578 	bool failed;			/* IO error occurred before decompression? */
1579 	bool need_verity;		/* need fs-verity verification after decompression? */
1580 	void *private;			/* payload buffer for specified decompression algorithm */
1581 	void *private2;			/* extra payload buffer */
1582 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1583 };
1584 
1585 #define NULL_CLUSTER			((unsigned int)(~0))
1586 #define MIN_COMPRESS_LOG_SIZE		2
1587 #define MAX_COMPRESS_LOG_SIZE		8
1588 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1589 
1590 struct f2fs_sb_info {
1591 	struct super_block *sb;			/* pointer to VFS super block */
1592 	struct proc_dir_entry *s_proc;		/* proc entry */
1593 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1594 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1595 	int valid_super_block;			/* valid super block no */
1596 	unsigned long s_flag;				/* flags for sbi */
1597 	struct mutex writepages;		/* mutex for writepages() */
1598 
1599 #ifdef CONFIG_BLK_DEV_ZONED
1600 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1601 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1602 #endif
1603 
1604 	/* for node-related operations */
1605 	struct f2fs_nm_info *nm_info;		/* node manager */
1606 	struct inode *node_inode;		/* cache node blocks */
1607 
1608 	/* for segment-related operations */
1609 	struct f2fs_sm_info *sm_info;		/* segment manager */
1610 
1611 	/* for bio operations */
1612 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1613 	/* keep migration IO order for LFS mode */
1614 	struct f2fs_rwsem io_order_lock;
1615 	mempool_t *write_io_dummy;		/* Dummy pages */
1616 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1617 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1618 
1619 	/* for checkpoint */
1620 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1621 	int cur_cp_pack;			/* remain current cp pack */
1622 	spinlock_t cp_lock;			/* for flag in ckpt */
1623 	struct inode *meta_inode;		/* cache meta blocks */
1624 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1625 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1626 	struct f2fs_rwsem node_write;		/* locking node writes */
1627 	struct f2fs_rwsem node_change;	/* locking node change */
1628 	wait_queue_head_t cp_wait;
1629 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1630 	long interval_time[MAX_TIME];		/* to store thresholds */
1631 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1632 
1633 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1634 
1635 	spinlock_t fsync_node_lock;		/* for node entry lock */
1636 	struct list_head fsync_node_list;	/* node list head */
1637 	unsigned int fsync_seg_id;		/* sequence id */
1638 	unsigned int fsync_node_num;		/* number of node entries */
1639 
1640 	/* for orphan inode, use 0'th array */
1641 	unsigned int max_orphans;		/* max orphan inodes */
1642 
1643 	/* for inode management */
1644 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1645 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1646 	struct mutex flush_lock;		/* for flush exclusion */
1647 
1648 	/* for extent tree cache */
1649 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1650 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1651 	struct list_head extent_list;		/* lru list for shrinker */
1652 	spinlock_t extent_lock;			/* locking extent lru list */
1653 	atomic_t total_ext_tree;		/* extent tree count */
1654 	struct list_head zombie_list;		/* extent zombie tree list */
1655 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1656 	atomic_t total_ext_node;		/* extent info count */
1657 
1658 	/* basic filesystem units */
1659 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1660 	unsigned int log_blocksize;		/* log2 block size */
1661 	unsigned int blocksize;			/* block size */
1662 	unsigned int root_ino_num;		/* root inode number*/
1663 	unsigned int node_ino_num;		/* node inode number*/
1664 	unsigned int meta_ino_num;		/* meta inode number*/
1665 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1666 	unsigned int blocks_per_seg;		/* blocks per segment */
1667 	unsigned int segs_per_sec;		/* segments per section */
1668 	unsigned int secs_per_zone;		/* sections per zone */
1669 	unsigned int total_sections;		/* total section count */
1670 	unsigned int total_node_count;		/* total node block count */
1671 	unsigned int total_valid_node_count;	/* valid node block count */
1672 	int dir_level;				/* directory level */
1673 	int readdir_ra;				/* readahead inode in readdir */
1674 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1675 
1676 	block_t user_block_count;		/* # of user blocks */
1677 	block_t total_valid_block_count;	/* # of valid blocks */
1678 	block_t discard_blks;			/* discard command candidats */
1679 	block_t last_valid_block_count;		/* for recovery */
1680 	block_t reserved_blocks;		/* configurable reserved blocks */
1681 	block_t current_reserved_blocks;	/* current reserved blocks */
1682 
1683 	/* Additional tracking for no checkpoint mode */
1684 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1685 
1686 	unsigned int nquota_files;		/* # of quota sysfile */
1687 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1688 
1689 	/* # of pages, see count_type */
1690 	atomic_t nr_pages[NR_COUNT_TYPE];
1691 	/* # of allocated blocks */
1692 	struct percpu_counter alloc_valid_block_count;
1693 	/* # of node block writes as roll forward recovery */
1694 	struct percpu_counter rf_node_block_count;
1695 
1696 	/* writeback control */
1697 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1698 
1699 	/* valid inode count */
1700 	struct percpu_counter total_valid_inode_count;
1701 
1702 	struct f2fs_mount_info mount_opt;	/* mount options */
1703 
1704 	/* for cleaning operations */
1705 	struct f2fs_rwsem gc_lock;		/*
1706 						 * semaphore for GC, avoid
1707 						 * race between GC and GC or CP
1708 						 */
1709 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1710 	struct atgc_management am;		/* atgc management */
1711 	unsigned int cur_victim_sec;		/* current victim section num */
1712 	unsigned int gc_mode;			/* current GC state */
1713 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1714 	spinlock_t gc_urgent_high_lock;
1715 	bool gc_urgent_high_limited;		/* indicates having limited trial count */
1716 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1717 
1718 	/* for skip statistic */
1719 	unsigned int atomic_files;		/* # of opened atomic file */
1720 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1721 
1722 	/* threshold for gc trials on pinned files */
1723 	u64 gc_pin_file_threshold;
1724 	struct f2fs_rwsem pin_sem;
1725 
1726 	/* maximum # of trials to find a victim segment for SSR and GC */
1727 	unsigned int max_victim_search;
1728 	/* migration granularity of garbage collection, unit: segment */
1729 	unsigned int migration_granularity;
1730 
1731 	/*
1732 	 * for stat information.
1733 	 * one is for the LFS mode, and the other is for the SSR mode.
1734 	 */
1735 #ifdef CONFIG_F2FS_STAT_FS
1736 	struct f2fs_stat_info *stat_info;	/* FS status information */
1737 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1738 	unsigned int segment_count[2];		/* # of allocated segments */
1739 	unsigned int block_count[2];		/* # of allocated blocks */
1740 	atomic_t inplace_count;		/* # of inplace update */
1741 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1742 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1743 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1744 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1745 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1746 	atomic_t inline_inode;			/* # of inline_data inodes */
1747 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1748 	atomic_t compr_inode;			/* # of compressed inodes */
1749 	atomic64_t compr_blocks;		/* # of compressed blocks */
1750 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1751 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1752 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1753 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1754 #endif
1755 	spinlock_t stat_lock;			/* lock for stat operations */
1756 
1757 	/* to attach REQ_META|REQ_FUA flags */
1758 	unsigned int data_io_flag;
1759 	unsigned int node_io_flag;
1760 
1761 	/* For sysfs support */
1762 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1763 	struct completion s_kobj_unregister;
1764 
1765 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1766 	struct completion s_stat_kobj_unregister;
1767 
1768 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1769 	struct completion s_feature_list_kobj_unregister;
1770 
1771 	/* For shrinker support */
1772 	struct list_head s_list;
1773 	struct mutex umount_mutex;
1774 	unsigned int shrinker_run_no;
1775 
1776 	/* For multi devices */
1777 	int s_ndevs;				/* number of devices */
1778 	struct f2fs_dev_info *devs;		/* for device list */
1779 	unsigned int dirty_device;		/* for checkpoint data flush */
1780 	spinlock_t dev_lock;			/* protect dirty_device */
1781 	bool aligned_blksize;			/* all devices has the same logical blksize */
1782 
1783 	/* For write statistics */
1784 	u64 sectors_written_start;
1785 	u64 kbytes_written;
1786 
1787 	/* Reference to checksum algorithm driver via cryptoapi */
1788 	struct crypto_shash *s_chksum_driver;
1789 
1790 	/* Precomputed FS UUID checksum for seeding other checksums */
1791 	__u32 s_chksum_seed;
1792 
1793 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1794 
1795 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1796 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1797 
1798 	/* For reclaimed segs statistics per each GC mode */
1799 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1800 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1801 
1802 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1803 
1804 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1805 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1806 
1807 #ifdef CONFIG_F2FS_FS_COMPRESSION
1808 	struct kmem_cache *page_array_slab;	/* page array entry */
1809 	unsigned int page_array_slab_size;	/* default page array slab size */
1810 
1811 	/* For runtime compression statistics */
1812 	u64 compr_written_block;
1813 	u64 compr_saved_block;
1814 	u32 compr_new_inode;
1815 
1816 	/* For compressed block cache */
1817 	struct inode *compress_inode;		/* cache compressed blocks */
1818 	unsigned int compress_percent;		/* cache page percentage */
1819 	unsigned int compress_watermark;	/* cache page watermark */
1820 	atomic_t compress_page_hit;		/* cache hit count */
1821 #endif
1822 
1823 #ifdef CONFIG_F2FS_IOSTAT
1824 	/* For app/fs IO statistics */
1825 	spinlock_t iostat_lock;
1826 	unsigned long long rw_iostat[NR_IO_TYPE];
1827 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1828 	bool iostat_enable;
1829 	unsigned long iostat_next_period;
1830 	unsigned int iostat_period_ms;
1831 
1832 	/* For io latency related statistics info in one iostat period */
1833 	spinlock_t iostat_lat_lock;
1834 	struct iostat_lat_info *iostat_io_lat;
1835 #endif
1836 };
1837 
1838 #ifdef CONFIG_F2FS_FAULT_INJECTION
1839 #define f2fs_show_injection_info(sbi, type)					\
1840 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1841 		KERN_INFO, sbi->sb->s_id,				\
1842 		f2fs_fault_name[type],					\
1843 		__func__, __builtin_return_address(0))
1844 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1845 {
1846 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1847 
1848 	if (!ffi->inject_rate)
1849 		return false;
1850 
1851 	if (!IS_FAULT_SET(ffi, type))
1852 		return false;
1853 
1854 	atomic_inc(&ffi->inject_ops);
1855 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1856 		atomic_set(&ffi->inject_ops, 0);
1857 		return true;
1858 	}
1859 	return false;
1860 }
1861 #else
1862 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1863 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1864 {
1865 	return false;
1866 }
1867 #endif
1868 
1869 /*
1870  * Test if the mounted volume is a multi-device volume.
1871  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1872  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1873  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1874  */
1875 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1876 {
1877 	return sbi->s_ndevs > 1;
1878 }
1879 
1880 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1881 {
1882 	unsigned long now = jiffies;
1883 
1884 	sbi->last_time[type] = now;
1885 
1886 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1887 	if (type == REQ_TIME) {
1888 		sbi->last_time[DISCARD_TIME] = now;
1889 		sbi->last_time[GC_TIME] = now;
1890 	}
1891 }
1892 
1893 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1894 {
1895 	unsigned long interval = sbi->interval_time[type] * HZ;
1896 
1897 	return time_after(jiffies, sbi->last_time[type] + interval);
1898 }
1899 
1900 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1901 						int type)
1902 {
1903 	unsigned long interval = sbi->interval_time[type] * HZ;
1904 	unsigned int wait_ms = 0;
1905 	long delta;
1906 
1907 	delta = (sbi->last_time[type] + interval) - jiffies;
1908 	if (delta > 0)
1909 		wait_ms = jiffies_to_msecs(delta);
1910 
1911 	return wait_ms;
1912 }
1913 
1914 /*
1915  * Inline functions
1916  */
1917 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1918 			      const void *address, unsigned int length)
1919 {
1920 	struct {
1921 		struct shash_desc shash;
1922 		char ctx[4];
1923 	} desc;
1924 	int err;
1925 
1926 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1927 
1928 	desc.shash.tfm = sbi->s_chksum_driver;
1929 	*(u32 *)desc.ctx = crc;
1930 
1931 	err = crypto_shash_update(&desc.shash, address, length);
1932 	BUG_ON(err);
1933 
1934 	return *(u32 *)desc.ctx;
1935 }
1936 
1937 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1938 			   unsigned int length)
1939 {
1940 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1941 }
1942 
1943 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1944 				  void *buf, size_t buf_size)
1945 {
1946 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1947 }
1948 
1949 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1950 			      const void *address, unsigned int length)
1951 {
1952 	return __f2fs_crc32(sbi, crc, address, length);
1953 }
1954 
1955 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1956 {
1957 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1958 }
1959 
1960 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1961 {
1962 	return sb->s_fs_info;
1963 }
1964 
1965 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1966 {
1967 	return F2FS_SB(inode->i_sb);
1968 }
1969 
1970 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1971 {
1972 	return F2FS_I_SB(mapping->host);
1973 }
1974 
1975 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1976 {
1977 	return F2FS_M_SB(page_file_mapping(page));
1978 }
1979 
1980 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1981 {
1982 	return (struct f2fs_super_block *)(sbi->raw_super);
1983 }
1984 
1985 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1986 {
1987 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1988 }
1989 
1990 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1991 {
1992 	return (struct f2fs_node *)page_address(page);
1993 }
1994 
1995 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1996 {
1997 	return &((struct f2fs_node *)page_address(page))->i;
1998 }
1999 
2000 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2001 {
2002 	return (struct f2fs_nm_info *)(sbi->nm_info);
2003 }
2004 
2005 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2006 {
2007 	return (struct f2fs_sm_info *)(sbi->sm_info);
2008 }
2009 
2010 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2011 {
2012 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2013 }
2014 
2015 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2016 {
2017 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2018 }
2019 
2020 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2021 {
2022 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2023 }
2024 
2025 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2026 {
2027 	return sbi->meta_inode->i_mapping;
2028 }
2029 
2030 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2031 {
2032 	return sbi->node_inode->i_mapping;
2033 }
2034 
2035 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2036 {
2037 	return test_bit(type, &sbi->s_flag);
2038 }
2039 
2040 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2041 {
2042 	set_bit(type, &sbi->s_flag);
2043 }
2044 
2045 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2046 {
2047 	clear_bit(type, &sbi->s_flag);
2048 }
2049 
2050 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2051 {
2052 	return le64_to_cpu(cp->checkpoint_ver);
2053 }
2054 
2055 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2056 {
2057 	if (type < F2FS_MAX_QUOTAS)
2058 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2059 	return 0;
2060 }
2061 
2062 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2063 {
2064 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2065 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2066 }
2067 
2068 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2069 {
2070 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2071 
2072 	return ckpt_flags & f;
2073 }
2074 
2075 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2076 {
2077 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2078 }
2079 
2080 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2081 {
2082 	unsigned int ckpt_flags;
2083 
2084 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2085 	ckpt_flags |= f;
2086 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2087 }
2088 
2089 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2090 {
2091 	unsigned long flags;
2092 
2093 	spin_lock_irqsave(&sbi->cp_lock, flags);
2094 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2095 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2096 }
2097 
2098 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2099 {
2100 	unsigned int ckpt_flags;
2101 
2102 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2103 	ckpt_flags &= (~f);
2104 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2105 }
2106 
2107 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2108 {
2109 	unsigned long flags;
2110 
2111 	spin_lock_irqsave(&sbi->cp_lock, flags);
2112 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2113 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2114 }
2115 
2116 #define init_f2fs_rwsem(sem)					\
2117 do {								\
2118 	static struct lock_class_key __key;			\
2119 								\
2120 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2121 } while (0)
2122 
2123 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2124 		const char *sem_name, struct lock_class_key *key)
2125 {
2126 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2127 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2128 	init_waitqueue_head(&sem->read_waiters);
2129 #endif
2130 }
2131 
2132 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2133 {
2134 	return rwsem_is_locked(&sem->internal_rwsem);
2135 }
2136 
2137 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2138 {
2139 	return rwsem_is_contended(&sem->internal_rwsem);
2140 }
2141 
2142 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2143 {
2144 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2145 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2146 #else
2147 	down_read(&sem->internal_rwsem);
2148 #endif
2149 }
2150 
2151 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2152 {
2153 	return down_read_trylock(&sem->internal_rwsem);
2154 }
2155 
2156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2157 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2158 {
2159 	down_read_nested(&sem->internal_rwsem, subclass);
2160 }
2161 #else
2162 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2163 #endif
2164 
2165 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2166 {
2167 	up_read(&sem->internal_rwsem);
2168 }
2169 
2170 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2171 {
2172 	down_write(&sem->internal_rwsem);
2173 }
2174 
2175 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2176 {
2177 	return down_write_trylock(&sem->internal_rwsem);
2178 }
2179 
2180 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2181 {
2182 	up_write(&sem->internal_rwsem);
2183 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2184 	wake_up_all(&sem->read_waiters);
2185 #endif
2186 }
2187 
2188 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2189 {
2190 	f2fs_down_read(&sbi->cp_rwsem);
2191 }
2192 
2193 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2194 {
2195 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2196 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2197 		return 0;
2198 	}
2199 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2200 }
2201 
2202 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2203 {
2204 	f2fs_up_read(&sbi->cp_rwsem);
2205 }
2206 
2207 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2208 {
2209 	f2fs_down_write(&sbi->cp_rwsem);
2210 }
2211 
2212 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2213 {
2214 	f2fs_up_write(&sbi->cp_rwsem);
2215 }
2216 
2217 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2218 {
2219 	int reason = CP_SYNC;
2220 
2221 	if (test_opt(sbi, FASTBOOT))
2222 		reason = CP_FASTBOOT;
2223 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2224 		reason = CP_UMOUNT;
2225 	return reason;
2226 }
2227 
2228 static inline bool __remain_node_summaries(int reason)
2229 {
2230 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2231 }
2232 
2233 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2234 {
2235 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2236 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2237 }
2238 
2239 /*
2240  * Check whether the inode has blocks or not
2241  */
2242 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2243 {
2244 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2245 
2246 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2247 }
2248 
2249 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2250 {
2251 	return ofs == XATTR_NODE_OFFSET;
2252 }
2253 
2254 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2255 					struct inode *inode, bool cap)
2256 {
2257 	if (!inode)
2258 		return true;
2259 	if (!test_opt(sbi, RESERVE_ROOT))
2260 		return false;
2261 	if (IS_NOQUOTA(inode))
2262 		return true;
2263 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2264 		return true;
2265 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2266 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2267 		return true;
2268 	if (cap && capable(CAP_SYS_RESOURCE))
2269 		return true;
2270 	return false;
2271 }
2272 
2273 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2274 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2275 				 struct inode *inode, blkcnt_t *count)
2276 {
2277 	blkcnt_t diff = 0, release = 0;
2278 	block_t avail_user_block_count;
2279 	int ret;
2280 
2281 	ret = dquot_reserve_block(inode, *count);
2282 	if (ret)
2283 		return ret;
2284 
2285 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2286 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2287 		release = *count;
2288 		goto release_quota;
2289 	}
2290 
2291 	/*
2292 	 * let's increase this in prior to actual block count change in order
2293 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2294 	 */
2295 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2296 
2297 	spin_lock(&sbi->stat_lock);
2298 	sbi->total_valid_block_count += (block_t)(*count);
2299 	avail_user_block_count = sbi->user_block_count -
2300 					sbi->current_reserved_blocks;
2301 
2302 	if (!__allow_reserved_blocks(sbi, inode, true))
2303 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2304 
2305 	if (F2FS_IO_ALIGNED(sbi))
2306 		avail_user_block_count -= sbi->blocks_per_seg *
2307 				SM_I(sbi)->additional_reserved_segments;
2308 
2309 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2310 		if (avail_user_block_count > sbi->unusable_block_count)
2311 			avail_user_block_count -= sbi->unusable_block_count;
2312 		else
2313 			avail_user_block_count = 0;
2314 	}
2315 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2316 		diff = sbi->total_valid_block_count - avail_user_block_count;
2317 		if (diff > *count)
2318 			diff = *count;
2319 		*count -= diff;
2320 		release = diff;
2321 		sbi->total_valid_block_count -= diff;
2322 		if (!*count) {
2323 			spin_unlock(&sbi->stat_lock);
2324 			goto enospc;
2325 		}
2326 	}
2327 	spin_unlock(&sbi->stat_lock);
2328 
2329 	if (unlikely(release)) {
2330 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2331 		dquot_release_reservation_block(inode, release);
2332 	}
2333 	f2fs_i_blocks_write(inode, *count, true, true);
2334 	return 0;
2335 
2336 enospc:
2337 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2338 release_quota:
2339 	dquot_release_reservation_block(inode, release);
2340 	return -ENOSPC;
2341 }
2342 
2343 __printf(2, 3)
2344 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2345 
2346 #define f2fs_err(sbi, fmt, ...)						\
2347 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2348 #define f2fs_warn(sbi, fmt, ...)					\
2349 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2350 #define f2fs_notice(sbi, fmt, ...)					\
2351 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2352 #define f2fs_info(sbi, fmt, ...)					\
2353 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2354 #define f2fs_debug(sbi, fmt, ...)					\
2355 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2356 
2357 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2358 						struct inode *inode,
2359 						block_t count)
2360 {
2361 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2362 
2363 	spin_lock(&sbi->stat_lock);
2364 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2365 	sbi->total_valid_block_count -= (block_t)count;
2366 	if (sbi->reserved_blocks &&
2367 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2368 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2369 					sbi->current_reserved_blocks + count);
2370 	spin_unlock(&sbi->stat_lock);
2371 	if (unlikely(inode->i_blocks < sectors)) {
2372 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2373 			  inode->i_ino,
2374 			  (unsigned long long)inode->i_blocks,
2375 			  (unsigned long long)sectors);
2376 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2377 		return;
2378 	}
2379 	f2fs_i_blocks_write(inode, count, false, true);
2380 }
2381 
2382 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2383 {
2384 	atomic_inc(&sbi->nr_pages[count_type]);
2385 
2386 	if (count_type == F2FS_DIRTY_DENTS ||
2387 			count_type == F2FS_DIRTY_NODES ||
2388 			count_type == F2FS_DIRTY_META ||
2389 			count_type == F2FS_DIRTY_QDATA ||
2390 			count_type == F2FS_DIRTY_IMETA)
2391 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2392 }
2393 
2394 static inline void inode_inc_dirty_pages(struct inode *inode)
2395 {
2396 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2397 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2398 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2399 	if (IS_NOQUOTA(inode))
2400 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2401 }
2402 
2403 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2404 {
2405 	atomic_dec(&sbi->nr_pages[count_type]);
2406 }
2407 
2408 static inline void inode_dec_dirty_pages(struct inode *inode)
2409 {
2410 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2411 			!S_ISLNK(inode->i_mode))
2412 		return;
2413 
2414 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2415 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2416 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2417 	if (IS_NOQUOTA(inode))
2418 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2419 }
2420 
2421 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2422 {
2423 	return atomic_read(&sbi->nr_pages[count_type]);
2424 }
2425 
2426 static inline int get_dirty_pages(struct inode *inode)
2427 {
2428 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2429 }
2430 
2431 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2432 {
2433 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2434 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2435 						sbi->log_blocks_per_seg;
2436 
2437 	return segs / sbi->segs_per_sec;
2438 }
2439 
2440 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2441 {
2442 	return sbi->total_valid_block_count;
2443 }
2444 
2445 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2446 {
2447 	return sbi->discard_blks;
2448 }
2449 
2450 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2451 {
2452 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2453 
2454 	/* return NAT or SIT bitmap */
2455 	if (flag == NAT_BITMAP)
2456 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2457 	else if (flag == SIT_BITMAP)
2458 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2459 
2460 	return 0;
2461 }
2462 
2463 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2464 {
2465 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2466 }
2467 
2468 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2469 {
2470 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2471 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2472 	int offset;
2473 
2474 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2475 		offset = (flag == SIT_BITMAP) ?
2476 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2477 		/*
2478 		 * if large_nat_bitmap feature is enabled, leave checksum
2479 		 * protection for all nat/sit bitmaps.
2480 		 */
2481 		return tmp_ptr + offset + sizeof(__le32);
2482 	}
2483 
2484 	if (__cp_payload(sbi) > 0) {
2485 		if (flag == NAT_BITMAP)
2486 			return &ckpt->sit_nat_version_bitmap;
2487 		else
2488 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2489 	} else {
2490 		offset = (flag == NAT_BITMAP) ?
2491 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2492 		return tmp_ptr + offset;
2493 	}
2494 }
2495 
2496 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2497 {
2498 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2499 
2500 	if (sbi->cur_cp_pack == 2)
2501 		start_addr += sbi->blocks_per_seg;
2502 	return start_addr;
2503 }
2504 
2505 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2506 {
2507 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2508 
2509 	if (sbi->cur_cp_pack == 1)
2510 		start_addr += sbi->blocks_per_seg;
2511 	return start_addr;
2512 }
2513 
2514 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2515 {
2516 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2517 }
2518 
2519 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2520 {
2521 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2522 }
2523 
2524 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2525 					struct inode *inode, bool is_inode)
2526 {
2527 	block_t	valid_block_count;
2528 	unsigned int valid_node_count, user_block_count;
2529 	int err;
2530 
2531 	if (is_inode) {
2532 		if (inode) {
2533 			err = dquot_alloc_inode(inode);
2534 			if (err)
2535 				return err;
2536 		}
2537 	} else {
2538 		err = dquot_reserve_block(inode, 1);
2539 		if (err)
2540 			return err;
2541 	}
2542 
2543 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2544 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2545 		goto enospc;
2546 	}
2547 
2548 	spin_lock(&sbi->stat_lock);
2549 
2550 	valid_block_count = sbi->total_valid_block_count +
2551 					sbi->current_reserved_blocks + 1;
2552 
2553 	if (!__allow_reserved_blocks(sbi, inode, false))
2554 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2555 
2556 	if (F2FS_IO_ALIGNED(sbi))
2557 		valid_block_count += sbi->blocks_per_seg *
2558 				SM_I(sbi)->additional_reserved_segments;
2559 
2560 	user_block_count = sbi->user_block_count;
2561 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2562 		user_block_count -= sbi->unusable_block_count;
2563 
2564 	if (unlikely(valid_block_count > user_block_count)) {
2565 		spin_unlock(&sbi->stat_lock);
2566 		goto enospc;
2567 	}
2568 
2569 	valid_node_count = sbi->total_valid_node_count + 1;
2570 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2571 		spin_unlock(&sbi->stat_lock);
2572 		goto enospc;
2573 	}
2574 
2575 	sbi->total_valid_node_count++;
2576 	sbi->total_valid_block_count++;
2577 	spin_unlock(&sbi->stat_lock);
2578 
2579 	if (inode) {
2580 		if (is_inode)
2581 			f2fs_mark_inode_dirty_sync(inode, true);
2582 		else
2583 			f2fs_i_blocks_write(inode, 1, true, true);
2584 	}
2585 
2586 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2587 	return 0;
2588 
2589 enospc:
2590 	if (is_inode) {
2591 		if (inode)
2592 			dquot_free_inode(inode);
2593 	} else {
2594 		dquot_release_reservation_block(inode, 1);
2595 	}
2596 	return -ENOSPC;
2597 }
2598 
2599 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2600 					struct inode *inode, bool is_inode)
2601 {
2602 	spin_lock(&sbi->stat_lock);
2603 
2604 	if (unlikely(!sbi->total_valid_block_count ||
2605 			!sbi->total_valid_node_count)) {
2606 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2607 			  sbi->total_valid_block_count,
2608 			  sbi->total_valid_node_count);
2609 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2610 	} else {
2611 		sbi->total_valid_block_count--;
2612 		sbi->total_valid_node_count--;
2613 	}
2614 
2615 	if (sbi->reserved_blocks &&
2616 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2617 		sbi->current_reserved_blocks++;
2618 
2619 	spin_unlock(&sbi->stat_lock);
2620 
2621 	if (is_inode) {
2622 		dquot_free_inode(inode);
2623 	} else {
2624 		if (unlikely(inode->i_blocks == 0)) {
2625 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2626 				  inode->i_ino,
2627 				  (unsigned long long)inode->i_blocks);
2628 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2629 			return;
2630 		}
2631 		f2fs_i_blocks_write(inode, 1, false, true);
2632 	}
2633 }
2634 
2635 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2636 {
2637 	return sbi->total_valid_node_count;
2638 }
2639 
2640 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2641 {
2642 	percpu_counter_inc(&sbi->total_valid_inode_count);
2643 }
2644 
2645 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2646 {
2647 	percpu_counter_dec(&sbi->total_valid_inode_count);
2648 }
2649 
2650 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2651 {
2652 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2653 }
2654 
2655 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2656 						pgoff_t index, bool for_write)
2657 {
2658 	struct page *page;
2659 	unsigned int flags;
2660 
2661 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2662 		if (!for_write)
2663 			page = find_get_page_flags(mapping, index,
2664 							FGP_LOCK | FGP_ACCESSED);
2665 		else
2666 			page = find_lock_page(mapping, index);
2667 		if (page)
2668 			return page;
2669 
2670 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2671 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2672 							FAULT_PAGE_ALLOC);
2673 			return NULL;
2674 		}
2675 	}
2676 
2677 	if (!for_write)
2678 		return grab_cache_page(mapping, index);
2679 
2680 	flags = memalloc_nofs_save();
2681 	page = grab_cache_page_write_begin(mapping, index);
2682 	memalloc_nofs_restore(flags);
2683 
2684 	return page;
2685 }
2686 
2687 static inline struct page *f2fs_pagecache_get_page(
2688 				struct address_space *mapping, pgoff_t index,
2689 				int fgp_flags, gfp_t gfp_mask)
2690 {
2691 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2692 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2693 		return NULL;
2694 	}
2695 
2696 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2697 }
2698 
2699 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2700 {
2701 	char *src_kaddr = kmap(src);
2702 	char *dst_kaddr = kmap(dst);
2703 
2704 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2705 	kunmap(dst);
2706 	kunmap(src);
2707 }
2708 
2709 static inline void f2fs_put_page(struct page *page, int unlock)
2710 {
2711 	if (!page)
2712 		return;
2713 
2714 	if (unlock) {
2715 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2716 		unlock_page(page);
2717 	}
2718 	put_page(page);
2719 }
2720 
2721 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2722 {
2723 	if (dn->node_page)
2724 		f2fs_put_page(dn->node_page, 1);
2725 	if (dn->inode_page && dn->node_page != dn->inode_page)
2726 		f2fs_put_page(dn->inode_page, 0);
2727 	dn->node_page = NULL;
2728 	dn->inode_page = NULL;
2729 }
2730 
2731 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2732 					size_t size)
2733 {
2734 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2735 }
2736 
2737 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2738 						gfp_t flags)
2739 {
2740 	void *entry;
2741 
2742 	entry = kmem_cache_alloc(cachep, flags);
2743 	if (!entry)
2744 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2745 	return entry;
2746 }
2747 
2748 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2749 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2750 {
2751 	if (nofail)
2752 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2753 
2754 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2755 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2756 		return NULL;
2757 	}
2758 
2759 	return kmem_cache_alloc(cachep, flags);
2760 }
2761 
2762 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2763 {
2764 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2765 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2766 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2767 		get_pages(sbi, F2FS_DIO_READ) ||
2768 		get_pages(sbi, F2FS_DIO_WRITE))
2769 		return true;
2770 
2771 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2772 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2773 		return true;
2774 
2775 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2776 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2777 		return true;
2778 	return false;
2779 }
2780 
2781 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2782 {
2783 	if (sbi->gc_mode == GC_URGENT_HIGH)
2784 		return true;
2785 
2786 	if (is_inflight_io(sbi, type))
2787 		return false;
2788 
2789 	if (sbi->gc_mode == GC_URGENT_MID)
2790 		return true;
2791 
2792 	if (sbi->gc_mode == GC_URGENT_LOW &&
2793 			(type == DISCARD_TIME || type == GC_TIME))
2794 		return true;
2795 
2796 	return f2fs_time_over(sbi, type);
2797 }
2798 
2799 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2800 				unsigned long index, void *item)
2801 {
2802 	while (radix_tree_insert(root, index, item))
2803 		cond_resched();
2804 }
2805 
2806 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2807 
2808 static inline bool IS_INODE(struct page *page)
2809 {
2810 	struct f2fs_node *p = F2FS_NODE(page);
2811 
2812 	return RAW_IS_INODE(p);
2813 }
2814 
2815 static inline int offset_in_addr(struct f2fs_inode *i)
2816 {
2817 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2818 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2819 }
2820 
2821 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2822 {
2823 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2824 }
2825 
2826 static inline int f2fs_has_extra_attr(struct inode *inode);
2827 static inline block_t data_blkaddr(struct inode *inode,
2828 			struct page *node_page, unsigned int offset)
2829 {
2830 	struct f2fs_node *raw_node;
2831 	__le32 *addr_array;
2832 	int base = 0;
2833 	bool is_inode = IS_INODE(node_page);
2834 
2835 	raw_node = F2FS_NODE(node_page);
2836 
2837 	if (is_inode) {
2838 		if (!inode)
2839 			/* from GC path only */
2840 			base = offset_in_addr(&raw_node->i);
2841 		else if (f2fs_has_extra_attr(inode))
2842 			base = get_extra_isize(inode);
2843 	}
2844 
2845 	addr_array = blkaddr_in_node(raw_node);
2846 	return le32_to_cpu(addr_array[base + offset]);
2847 }
2848 
2849 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2850 {
2851 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2852 }
2853 
2854 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2855 {
2856 	int mask;
2857 
2858 	addr += (nr >> 3);
2859 	mask = 1 << (7 - (nr & 0x07));
2860 	return mask & *addr;
2861 }
2862 
2863 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2864 {
2865 	int mask;
2866 
2867 	addr += (nr >> 3);
2868 	mask = 1 << (7 - (nr & 0x07));
2869 	*addr |= mask;
2870 }
2871 
2872 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2873 {
2874 	int mask;
2875 
2876 	addr += (nr >> 3);
2877 	mask = 1 << (7 - (nr & 0x07));
2878 	*addr &= ~mask;
2879 }
2880 
2881 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2882 {
2883 	int mask;
2884 	int ret;
2885 
2886 	addr += (nr >> 3);
2887 	mask = 1 << (7 - (nr & 0x07));
2888 	ret = mask & *addr;
2889 	*addr |= mask;
2890 	return ret;
2891 }
2892 
2893 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2894 {
2895 	int mask;
2896 	int ret;
2897 
2898 	addr += (nr >> 3);
2899 	mask = 1 << (7 - (nr & 0x07));
2900 	ret = mask & *addr;
2901 	*addr &= ~mask;
2902 	return ret;
2903 }
2904 
2905 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2906 {
2907 	int mask;
2908 
2909 	addr += (nr >> 3);
2910 	mask = 1 << (7 - (nr & 0x07));
2911 	*addr ^= mask;
2912 }
2913 
2914 /*
2915  * On-disk inode flags (f2fs_inode::i_flags)
2916  */
2917 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2918 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2919 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2920 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2921 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2922 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2923 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2924 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2925 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2926 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2927 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2928 
2929 /* Flags that should be inherited by new inodes from their parent. */
2930 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2931 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2932 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2933 
2934 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2935 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2936 				F2FS_CASEFOLD_FL))
2937 
2938 /* Flags that are appropriate for non-directories/regular files. */
2939 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2940 
2941 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2942 {
2943 	if (S_ISDIR(mode))
2944 		return flags;
2945 	else if (S_ISREG(mode))
2946 		return flags & F2FS_REG_FLMASK;
2947 	else
2948 		return flags & F2FS_OTHER_FLMASK;
2949 }
2950 
2951 static inline void __mark_inode_dirty_flag(struct inode *inode,
2952 						int flag, bool set)
2953 {
2954 	switch (flag) {
2955 	case FI_INLINE_XATTR:
2956 	case FI_INLINE_DATA:
2957 	case FI_INLINE_DENTRY:
2958 	case FI_NEW_INODE:
2959 		if (set)
2960 			return;
2961 		fallthrough;
2962 	case FI_DATA_EXIST:
2963 	case FI_INLINE_DOTS:
2964 	case FI_PIN_FILE:
2965 	case FI_COMPRESS_RELEASED:
2966 		f2fs_mark_inode_dirty_sync(inode, true);
2967 	}
2968 }
2969 
2970 static inline void set_inode_flag(struct inode *inode, int flag)
2971 {
2972 	set_bit(flag, F2FS_I(inode)->flags);
2973 	__mark_inode_dirty_flag(inode, flag, true);
2974 }
2975 
2976 static inline int is_inode_flag_set(struct inode *inode, int flag)
2977 {
2978 	return test_bit(flag, F2FS_I(inode)->flags);
2979 }
2980 
2981 static inline void clear_inode_flag(struct inode *inode, int flag)
2982 {
2983 	clear_bit(flag, F2FS_I(inode)->flags);
2984 	__mark_inode_dirty_flag(inode, flag, false);
2985 }
2986 
2987 static inline bool f2fs_verity_in_progress(struct inode *inode)
2988 {
2989 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2990 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2991 }
2992 
2993 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2994 {
2995 	F2FS_I(inode)->i_acl_mode = mode;
2996 	set_inode_flag(inode, FI_ACL_MODE);
2997 	f2fs_mark_inode_dirty_sync(inode, false);
2998 }
2999 
3000 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3001 {
3002 	if (inc)
3003 		inc_nlink(inode);
3004 	else
3005 		drop_nlink(inode);
3006 	f2fs_mark_inode_dirty_sync(inode, true);
3007 }
3008 
3009 static inline void f2fs_i_blocks_write(struct inode *inode,
3010 					block_t diff, bool add, bool claim)
3011 {
3012 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3013 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3014 
3015 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3016 	if (add) {
3017 		if (claim)
3018 			dquot_claim_block(inode, diff);
3019 		else
3020 			dquot_alloc_block_nofail(inode, diff);
3021 	} else {
3022 		dquot_free_block(inode, diff);
3023 	}
3024 
3025 	f2fs_mark_inode_dirty_sync(inode, true);
3026 	if (clean || recover)
3027 		set_inode_flag(inode, FI_AUTO_RECOVER);
3028 }
3029 
3030 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3031 {
3032 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3033 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3034 
3035 	if (i_size_read(inode) == i_size)
3036 		return;
3037 
3038 	i_size_write(inode, i_size);
3039 	f2fs_mark_inode_dirty_sync(inode, true);
3040 	if (clean || recover)
3041 		set_inode_flag(inode, FI_AUTO_RECOVER);
3042 }
3043 
3044 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3045 {
3046 	F2FS_I(inode)->i_current_depth = depth;
3047 	f2fs_mark_inode_dirty_sync(inode, true);
3048 }
3049 
3050 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3051 					unsigned int count)
3052 {
3053 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3054 	f2fs_mark_inode_dirty_sync(inode, true);
3055 }
3056 
3057 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3058 {
3059 	F2FS_I(inode)->i_xattr_nid = xnid;
3060 	f2fs_mark_inode_dirty_sync(inode, true);
3061 }
3062 
3063 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3064 {
3065 	F2FS_I(inode)->i_pino = pino;
3066 	f2fs_mark_inode_dirty_sync(inode, true);
3067 }
3068 
3069 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3070 {
3071 	struct f2fs_inode_info *fi = F2FS_I(inode);
3072 
3073 	if (ri->i_inline & F2FS_INLINE_XATTR)
3074 		set_bit(FI_INLINE_XATTR, fi->flags);
3075 	if (ri->i_inline & F2FS_INLINE_DATA)
3076 		set_bit(FI_INLINE_DATA, fi->flags);
3077 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3078 		set_bit(FI_INLINE_DENTRY, fi->flags);
3079 	if (ri->i_inline & F2FS_DATA_EXIST)
3080 		set_bit(FI_DATA_EXIST, fi->flags);
3081 	if (ri->i_inline & F2FS_INLINE_DOTS)
3082 		set_bit(FI_INLINE_DOTS, fi->flags);
3083 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3084 		set_bit(FI_EXTRA_ATTR, fi->flags);
3085 	if (ri->i_inline & F2FS_PIN_FILE)
3086 		set_bit(FI_PIN_FILE, fi->flags);
3087 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3088 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3089 }
3090 
3091 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3092 {
3093 	ri->i_inline = 0;
3094 
3095 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3096 		ri->i_inline |= F2FS_INLINE_XATTR;
3097 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3098 		ri->i_inline |= F2FS_INLINE_DATA;
3099 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3100 		ri->i_inline |= F2FS_INLINE_DENTRY;
3101 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3102 		ri->i_inline |= F2FS_DATA_EXIST;
3103 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3104 		ri->i_inline |= F2FS_INLINE_DOTS;
3105 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3106 		ri->i_inline |= F2FS_EXTRA_ATTR;
3107 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3108 		ri->i_inline |= F2FS_PIN_FILE;
3109 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3110 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3111 }
3112 
3113 static inline int f2fs_has_extra_attr(struct inode *inode)
3114 {
3115 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3116 }
3117 
3118 static inline int f2fs_has_inline_xattr(struct inode *inode)
3119 {
3120 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3121 }
3122 
3123 static inline int f2fs_compressed_file(struct inode *inode)
3124 {
3125 	return S_ISREG(inode->i_mode) &&
3126 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3127 }
3128 
3129 static inline bool f2fs_need_compress_data(struct inode *inode)
3130 {
3131 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3132 
3133 	if (!f2fs_compressed_file(inode))
3134 		return false;
3135 
3136 	if (compress_mode == COMPR_MODE_FS)
3137 		return true;
3138 	else if (compress_mode == COMPR_MODE_USER &&
3139 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3140 		return true;
3141 
3142 	return false;
3143 }
3144 
3145 static inline unsigned int addrs_per_inode(struct inode *inode)
3146 {
3147 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3148 				get_inline_xattr_addrs(inode);
3149 
3150 	if (!f2fs_compressed_file(inode))
3151 		return addrs;
3152 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3153 }
3154 
3155 static inline unsigned int addrs_per_block(struct inode *inode)
3156 {
3157 	if (!f2fs_compressed_file(inode))
3158 		return DEF_ADDRS_PER_BLOCK;
3159 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3160 }
3161 
3162 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3163 {
3164 	struct f2fs_inode *ri = F2FS_INODE(page);
3165 
3166 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3167 					get_inline_xattr_addrs(inode)]);
3168 }
3169 
3170 static inline int inline_xattr_size(struct inode *inode)
3171 {
3172 	if (f2fs_has_inline_xattr(inode))
3173 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3174 	return 0;
3175 }
3176 
3177 /*
3178  * Notice: check inline_data flag without inode page lock is unsafe.
3179  * It could change at any time by f2fs_convert_inline_page().
3180  */
3181 static inline int f2fs_has_inline_data(struct inode *inode)
3182 {
3183 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3184 }
3185 
3186 static inline int f2fs_exist_data(struct inode *inode)
3187 {
3188 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3189 }
3190 
3191 static inline int f2fs_has_inline_dots(struct inode *inode)
3192 {
3193 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3194 }
3195 
3196 static inline int f2fs_is_mmap_file(struct inode *inode)
3197 {
3198 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3199 }
3200 
3201 static inline bool f2fs_is_pinned_file(struct inode *inode)
3202 {
3203 	return is_inode_flag_set(inode, FI_PIN_FILE);
3204 }
3205 
3206 static inline bool f2fs_is_atomic_file(struct inode *inode)
3207 {
3208 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3209 }
3210 
3211 static inline bool f2fs_is_first_block_written(struct inode *inode)
3212 {
3213 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3214 }
3215 
3216 static inline bool f2fs_is_drop_cache(struct inode *inode)
3217 {
3218 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3219 }
3220 
3221 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3222 {
3223 	struct f2fs_inode *ri = F2FS_INODE(page);
3224 	int extra_size = get_extra_isize(inode);
3225 
3226 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3227 }
3228 
3229 static inline int f2fs_has_inline_dentry(struct inode *inode)
3230 {
3231 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3232 }
3233 
3234 static inline int is_file(struct inode *inode, int type)
3235 {
3236 	return F2FS_I(inode)->i_advise & type;
3237 }
3238 
3239 static inline void set_file(struct inode *inode, int type)
3240 {
3241 	if (is_file(inode, type))
3242 		return;
3243 	F2FS_I(inode)->i_advise |= type;
3244 	f2fs_mark_inode_dirty_sync(inode, true);
3245 }
3246 
3247 static inline void clear_file(struct inode *inode, int type)
3248 {
3249 	if (!is_file(inode, type))
3250 		return;
3251 	F2FS_I(inode)->i_advise &= ~type;
3252 	f2fs_mark_inode_dirty_sync(inode, true);
3253 }
3254 
3255 static inline bool f2fs_is_time_consistent(struct inode *inode)
3256 {
3257 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3258 		return false;
3259 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3260 		return false;
3261 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3262 		return false;
3263 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3264 						&F2FS_I(inode)->i_crtime))
3265 		return false;
3266 	return true;
3267 }
3268 
3269 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3270 {
3271 	bool ret;
3272 
3273 	if (dsync) {
3274 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3275 
3276 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3277 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3278 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3279 		return ret;
3280 	}
3281 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3282 			file_keep_isize(inode) ||
3283 			i_size_read(inode) & ~PAGE_MASK)
3284 		return false;
3285 
3286 	if (!f2fs_is_time_consistent(inode))
3287 		return false;
3288 
3289 	spin_lock(&F2FS_I(inode)->i_size_lock);
3290 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3291 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3292 
3293 	return ret;
3294 }
3295 
3296 static inline bool f2fs_readonly(struct super_block *sb)
3297 {
3298 	return sb_rdonly(sb);
3299 }
3300 
3301 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3302 {
3303 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3304 }
3305 
3306 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3307 {
3308 	if (len == 1 && name[0] == '.')
3309 		return true;
3310 
3311 	if (len == 2 && name[0] == '.' && name[1] == '.')
3312 		return true;
3313 
3314 	return false;
3315 }
3316 
3317 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3318 					size_t size, gfp_t flags)
3319 {
3320 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3321 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3322 		return NULL;
3323 	}
3324 
3325 	return kmalloc(size, flags);
3326 }
3327 
3328 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3329 					size_t size, gfp_t flags)
3330 {
3331 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3332 }
3333 
3334 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3335 					size_t size, gfp_t flags)
3336 {
3337 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3338 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3339 		return NULL;
3340 	}
3341 
3342 	return kvmalloc(size, flags);
3343 }
3344 
3345 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3346 					size_t size, gfp_t flags)
3347 {
3348 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3349 }
3350 
3351 static inline int get_extra_isize(struct inode *inode)
3352 {
3353 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3354 }
3355 
3356 static inline int get_inline_xattr_addrs(struct inode *inode)
3357 {
3358 	return F2FS_I(inode)->i_inline_xattr_size;
3359 }
3360 
3361 #define f2fs_get_inode_mode(i) \
3362 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3363 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3364 
3365 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3366 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3367 	offsetof(struct f2fs_inode, i_extra_isize))	\
3368 
3369 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3370 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3371 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3372 		sizeof((f2fs_inode)->field))			\
3373 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3374 
3375 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3376 
3377 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3378 
3379 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3380 					block_t blkaddr, int type);
3381 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3382 					block_t blkaddr, int type)
3383 {
3384 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3385 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3386 			 blkaddr, type);
3387 		f2fs_bug_on(sbi, 1);
3388 	}
3389 }
3390 
3391 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3392 {
3393 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3394 			blkaddr == COMPRESS_ADDR)
3395 		return false;
3396 	return true;
3397 }
3398 
3399 /*
3400  * file.c
3401  */
3402 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3403 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3404 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3405 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3406 int f2fs_truncate(struct inode *inode);
3407 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3408 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3409 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3410 		 struct iattr *attr);
3411 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3412 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3413 int f2fs_precache_extents(struct inode *inode);
3414 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3415 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3416 		      struct dentry *dentry, struct fileattr *fa);
3417 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3418 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3419 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3420 int f2fs_pin_file_control(struct inode *inode, bool inc);
3421 
3422 /*
3423  * inode.c
3424  */
3425 void f2fs_set_inode_flags(struct inode *inode);
3426 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3427 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3428 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3429 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3430 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3431 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3432 void f2fs_update_inode_page(struct inode *inode);
3433 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3434 void f2fs_evict_inode(struct inode *inode);
3435 void f2fs_handle_failed_inode(struct inode *inode);
3436 
3437 /*
3438  * namei.c
3439  */
3440 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3441 							bool hot, bool set);
3442 struct dentry *f2fs_get_parent(struct dentry *child);
3443 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3444 		     struct inode **new_inode);
3445 
3446 /*
3447  * dir.c
3448  */
3449 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3450 int f2fs_init_casefolded_name(const struct inode *dir,
3451 			      struct f2fs_filename *fname);
3452 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3453 			int lookup, struct f2fs_filename *fname);
3454 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3455 			struct f2fs_filename *fname);
3456 void f2fs_free_filename(struct f2fs_filename *fname);
3457 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3458 			const struct f2fs_filename *fname, int *max_slots);
3459 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3460 			unsigned int start_pos, struct fscrypt_str *fstr);
3461 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3462 			struct f2fs_dentry_ptr *d);
3463 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3464 			const struct f2fs_filename *fname, struct page *dpage);
3465 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3466 			unsigned int current_depth);
3467 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3468 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3469 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3470 					 const struct f2fs_filename *fname,
3471 					 struct page **res_page);
3472 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3473 			const struct qstr *child, struct page **res_page);
3474 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3475 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3476 			struct page **page);
3477 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3478 			struct page *page, struct inode *inode);
3479 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3480 			  const struct f2fs_filename *fname);
3481 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3482 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3483 			unsigned int bit_pos);
3484 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3485 			struct inode *inode, nid_t ino, umode_t mode);
3486 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3487 			struct inode *inode, nid_t ino, umode_t mode);
3488 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3489 			struct inode *inode, nid_t ino, umode_t mode);
3490 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3491 			struct inode *dir, struct inode *inode);
3492 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3493 bool f2fs_empty_dir(struct inode *dir);
3494 
3495 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3496 {
3497 	if (fscrypt_is_nokey_name(dentry))
3498 		return -ENOKEY;
3499 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3500 				inode, inode->i_ino, inode->i_mode);
3501 }
3502 
3503 /*
3504  * super.c
3505  */
3506 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3507 void f2fs_inode_synced(struct inode *inode);
3508 int f2fs_dquot_initialize(struct inode *inode);
3509 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3510 int f2fs_quota_sync(struct super_block *sb, int type);
3511 loff_t max_file_blocks(struct inode *inode);
3512 void f2fs_quota_off_umount(struct super_block *sb);
3513 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3514 int f2fs_sync_fs(struct super_block *sb, int sync);
3515 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3516 
3517 /*
3518  * hash.c
3519  */
3520 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3521 
3522 /*
3523  * node.c
3524  */
3525 struct node_info;
3526 
3527 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3528 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3529 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3530 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3531 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3532 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3533 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3534 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3535 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3536 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3537 				struct node_info *ni, bool checkpoint_context);
3538 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3539 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3540 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3541 int f2fs_truncate_xattr_node(struct inode *inode);
3542 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3543 					unsigned int seq_id);
3544 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3545 int f2fs_remove_inode_page(struct inode *inode);
3546 struct page *f2fs_new_inode_page(struct inode *inode);
3547 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3548 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3549 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3550 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3551 int f2fs_move_node_page(struct page *node_page, int gc_type);
3552 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3553 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3554 			struct writeback_control *wbc, bool atomic,
3555 			unsigned int *seq_id);
3556 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3557 			struct writeback_control *wbc,
3558 			bool do_balance, enum iostat_type io_type);
3559 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3560 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3561 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3562 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3563 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3564 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3565 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3566 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3567 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3568 			unsigned int segno, struct f2fs_summary_block *sum);
3569 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3570 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3571 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3572 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3573 int __init f2fs_create_node_manager_caches(void);
3574 void f2fs_destroy_node_manager_caches(void);
3575 
3576 /*
3577  * segment.c
3578  */
3579 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3580 int f2fs_commit_atomic_write(struct inode *inode);
3581 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3582 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3583 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3584 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3585 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3586 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3587 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3588 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3589 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3590 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3591 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3592 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3593 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3594 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3595 					struct cp_control *cpc);
3596 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3597 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3598 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3599 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3600 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3601 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3602 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3603 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3604 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3605 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3606 			unsigned int *newseg, bool new_sec, int dir);
3607 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3608 					unsigned int start, unsigned int end);
3609 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3610 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3611 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3612 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3613 					struct cp_control *cpc);
3614 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3615 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3616 					block_t blk_addr);
3617 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3618 						enum iostat_type io_type);
3619 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3620 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3621 			struct f2fs_io_info *fio);
3622 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3623 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3624 			block_t old_blkaddr, block_t new_blkaddr,
3625 			bool recover_curseg, bool recover_newaddr,
3626 			bool from_gc);
3627 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3628 			block_t old_addr, block_t new_addr,
3629 			unsigned char version, bool recover_curseg,
3630 			bool recover_newaddr);
3631 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3632 			block_t old_blkaddr, block_t *new_blkaddr,
3633 			struct f2fs_summary *sum, int type,
3634 			struct f2fs_io_info *fio);
3635 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3636 					block_t blkaddr, unsigned int blkcnt);
3637 void f2fs_wait_on_page_writeback(struct page *page,
3638 			enum page_type type, bool ordered, bool locked);
3639 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3640 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3641 								block_t len);
3642 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3643 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3644 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3645 			unsigned int val, int alloc);
3646 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3647 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3648 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3649 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3650 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3651 int __init f2fs_create_segment_manager_caches(void);
3652 void f2fs_destroy_segment_manager_caches(void);
3653 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3654 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3655 			unsigned int segno);
3656 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3657 			unsigned int segno);
3658 
3659 #define DEF_FRAGMENT_SIZE	4
3660 #define MIN_FRAGMENT_SIZE	1
3661 #define MAX_FRAGMENT_SIZE	512
3662 
3663 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3664 {
3665 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3666 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3667 }
3668 
3669 /*
3670  * checkpoint.c
3671  */
3672 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3673 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3674 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3675 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3676 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3677 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3678 					block_t blkaddr, int type);
3679 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3680 			int type, bool sync);
3681 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3682 							unsigned int ra_blocks);
3683 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3684 			long nr_to_write, enum iostat_type io_type);
3685 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3686 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3687 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3688 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3689 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3690 					unsigned int devidx, int type);
3691 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3692 					unsigned int devidx, int type);
3693 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3694 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3695 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3696 void f2fs_add_orphan_inode(struct inode *inode);
3697 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3698 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3699 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3700 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3701 void f2fs_remove_dirty_inode(struct inode *inode);
3702 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3703 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3704 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3705 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3706 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3707 int __init f2fs_create_checkpoint_caches(void);
3708 void f2fs_destroy_checkpoint_caches(void);
3709 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3710 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3711 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3712 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3713 
3714 /*
3715  * data.c
3716  */
3717 int __init f2fs_init_bioset(void);
3718 void f2fs_destroy_bioset(void);
3719 int f2fs_init_bio_entry_cache(void);
3720 void f2fs_destroy_bio_entry_cache(void);
3721 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3722 				struct bio *bio, enum page_type type);
3723 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3724 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3725 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3726 				struct inode *inode, struct page *page,
3727 				nid_t ino, enum page_type type);
3728 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3729 					struct bio **bio, struct page *page);
3730 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3731 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3732 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3733 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3734 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3735 		block_t blk_addr, sector_t *sector);
3736 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3737 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3738 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3739 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3740 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3741 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3742 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3743 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3744 			int op_flags, bool for_write);
3745 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3746 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3747 			bool for_write);
3748 struct page *f2fs_get_new_data_page(struct inode *inode,
3749 			struct page *ipage, pgoff_t index, bool new_i_size);
3750 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3751 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3752 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3753 			int create, int flag);
3754 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3755 			u64 start, u64 len);
3756 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3757 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3758 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3759 int f2fs_write_single_data_page(struct page *page, int *submitted,
3760 				struct bio **bio, sector_t *last_block,
3761 				struct writeback_control *wbc,
3762 				enum iostat_type io_type,
3763 				int compr_blocks, bool allow_balance);
3764 void f2fs_write_failed(struct inode *inode, loff_t to);
3765 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3766 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3767 #ifdef CONFIG_MIGRATION
3768 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3769 			struct page *page, enum migrate_mode mode);
3770 #endif
3771 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3772 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3773 int f2fs_init_post_read_processing(void);
3774 void f2fs_destroy_post_read_processing(void);
3775 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3776 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3777 extern const struct iomap_ops f2fs_iomap_ops;
3778 
3779 /*
3780  * gc.c
3781  */
3782 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3783 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3784 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3785 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3786 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3787 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3788 int __init f2fs_create_garbage_collection_cache(void);
3789 void f2fs_destroy_garbage_collection_cache(void);
3790 
3791 /*
3792  * recovery.c
3793  */
3794 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3795 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3796 int __init f2fs_create_recovery_cache(void);
3797 void f2fs_destroy_recovery_cache(void);
3798 
3799 /*
3800  * debug.c
3801  */
3802 #ifdef CONFIG_F2FS_STAT_FS
3803 struct f2fs_stat_info {
3804 	struct list_head stat_list;
3805 	struct f2fs_sb_info *sbi;
3806 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3807 	int main_area_segs, main_area_sections, main_area_zones;
3808 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3809 	unsigned long long hit_total, total_ext;
3810 	int ext_tree, zombie_tree, ext_node;
3811 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3812 	int ndirty_data, ndirty_qdata;
3813 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3814 	int nats, dirty_nats, sits, dirty_sits;
3815 	int free_nids, avail_nids, alloc_nids;
3816 	int total_count, utilization;
3817 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3818 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3819 	int nr_dio_read, nr_dio_write;
3820 	unsigned int io_skip_bggc, other_skip_bggc;
3821 	int nr_flushing, nr_flushed, flush_list_empty;
3822 	int nr_discarding, nr_discarded;
3823 	int nr_discard_cmd;
3824 	unsigned int undiscard_blks;
3825 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3826 	unsigned int cur_ckpt_time, peak_ckpt_time;
3827 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3828 	int compr_inode;
3829 	unsigned long long compr_blocks;
3830 	int aw_cnt, max_aw_cnt;
3831 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3832 	unsigned int bimodal, avg_vblocks;
3833 	int util_free, util_valid, util_invalid;
3834 	int rsvd_segs, overp_segs;
3835 	int dirty_count, node_pages, meta_pages, compress_pages;
3836 	int compress_page_hit;
3837 	int prefree_count, call_count, cp_count, bg_cp_count;
3838 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3839 	int bg_node_segs, bg_data_segs;
3840 	int tot_blks, data_blks, node_blks;
3841 	int bg_data_blks, bg_node_blks;
3842 	int curseg[NR_CURSEG_TYPE];
3843 	int cursec[NR_CURSEG_TYPE];
3844 	int curzone[NR_CURSEG_TYPE];
3845 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3846 	unsigned int full_seg[NR_CURSEG_TYPE];
3847 	unsigned int valid_blks[NR_CURSEG_TYPE];
3848 
3849 	unsigned int meta_count[META_MAX];
3850 	unsigned int segment_count[2];
3851 	unsigned int block_count[2];
3852 	unsigned int inplace_count;
3853 	unsigned long long base_mem, cache_mem, page_mem;
3854 };
3855 
3856 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3857 {
3858 	return (struct f2fs_stat_info *)sbi->stat_info;
3859 }
3860 
3861 #define stat_inc_cp_count(si)		((si)->cp_count++)
3862 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3863 #define stat_inc_call_count(si)		((si)->call_count++)
3864 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3865 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3866 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3867 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3868 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3869 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3870 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3871 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3872 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3873 #define stat_inc_inline_xattr(inode)					\
3874 	do {								\
3875 		if (f2fs_has_inline_xattr(inode))			\
3876 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3877 	} while (0)
3878 #define stat_dec_inline_xattr(inode)					\
3879 	do {								\
3880 		if (f2fs_has_inline_xattr(inode))			\
3881 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3882 	} while (0)
3883 #define stat_inc_inline_inode(inode)					\
3884 	do {								\
3885 		if (f2fs_has_inline_data(inode))			\
3886 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3887 	} while (0)
3888 #define stat_dec_inline_inode(inode)					\
3889 	do {								\
3890 		if (f2fs_has_inline_data(inode))			\
3891 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3892 	} while (0)
3893 #define stat_inc_inline_dir(inode)					\
3894 	do {								\
3895 		if (f2fs_has_inline_dentry(inode))			\
3896 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3897 	} while (0)
3898 #define stat_dec_inline_dir(inode)					\
3899 	do {								\
3900 		if (f2fs_has_inline_dentry(inode))			\
3901 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3902 	} while (0)
3903 #define stat_inc_compr_inode(inode)					\
3904 	do {								\
3905 		if (f2fs_compressed_file(inode))			\
3906 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3907 	} while (0)
3908 #define stat_dec_compr_inode(inode)					\
3909 	do {								\
3910 		if (f2fs_compressed_file(inode))			\
3911 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3912 	} while (0)
3913 #define stat_add_compr_blocks(inode, blocks)				\
3914 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3915 #define stat_sub_compr_blocks(inode, blocks)				\
3916 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3917 #define stat_inc_meta_count(sbi, blkaddr)				\
3918 	do {								\
3919 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3920 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3921 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3922 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3923 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3924 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3925 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3926 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3927 	} while (0)
3928 #define stat_inc_seg_type(sbi, curseg)					\
3929 		((sbi)->segment_count[(curseg)->alloc_type]++)
3930 #define stat_inc_block_count(sbi, curseg)				\
3931 		((sbi)->block_count[(curseg)->alloc_type]++)
3932 #define stat_inc_inplace_blocks(sbi)					\
3933 		(atomic_inc(&(sbi)->inplace_count))
3934 #define stat_update_max_atomic_write(inode)				\
3935 	do {								\
3936 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3937 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3938 		if (cur > max)						\
3939 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3940 	} while (0)
3941 #define stat_inc_seg_count(sbi, type, gc_type)				\
3942 	do {								\
3943 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3944 		si->tot_segs++;						\
3945 		if ((type) == SUM_TYPE_DATA) {				\
3946 			si->data_segs++;				\
3947 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3948 		} else {						\
3949 			si->node_segs++;				\
3950 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3951 		}							\
3952 	} while (0)
3953 
3954 #define stat_inc_tot_blk_count(si, blks)				\
3955 	((si)->tot_blks += (blks))
3956 
3957 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3958 	do {								\
3959 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3960 		stat_inc_tot_blk_count(si, blks);			\
3961 		si->data_blks += (blks);				\
3962 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3963 	} while (0)
3964 
3965 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3966 	do {								\
3967 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3968 		stat_inc_tot_blk_count(si, blks);			\
3969 		si->node_blks += (blks);				\
3970 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3971 	} while (0)
3972 
3973 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3974 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3975 void __init f2fs_create_root_stats(void);
3976 void f2fs_destroy_root_stats(void);
3977 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3978 #else
3979 #define stat_inc_cp_count(si)				do { } while (0)
3980 #define stat_inc_bg_cp_count(si)			do { } while (0)
3981 #define stat_inc_call_count(si)				do { } while (0)
3982 #define stat_inc_bggc_count(si)				do { } while (0)
3983 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3984 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3985 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3986 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3987 #define stat_inc_total_hit(sbi)				do { } while (0)
3988 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3989 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3990 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3991 #define stat_inc_inline_xattr(inode)			do { } while (0)
3992 #define stat_dec_inline_xattr(inode)			do { } while (0)
3993 #define stat_inc_inline_inode(inode)			do { } while (0)
3994 #define stat_dec_inline_inode(inode)			do { } while (0)
3995 #define stat_inc_inline_dir(inode)			do { } while (0)
3996 #define stat_dec_inline_dir(inode)			do { } while (0)
3997 #define stat_inc_compr_inode(inode)			do { } while (0)
3998 #define stat_dec_compr_inode(inode)			do { } while (0)
3999 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4000 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4001 #define stat_update_max_atomic_write(inode)		do { } while (0)
4002 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4003 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4004 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4005 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4006 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4007 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4008 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4009 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4010 
4011 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4012 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4013 static inline void __init f2fs_create_root_stats(void) { }
4014 static inline void f2fs_destroy_root_stats(void) { }
4015 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4016 #endif
4017 
4018 extern const struct file_operations f2fs_dir_operations;
4019 extern const struct file_operations f2fs_file_operations;
4020 extern const struct inode_operations f2fs_file_inode_operations;
4021 extern const struct address_space_operations f2fs_dblock_aops;
4022 extern const struct address_space_operations f2fs_node_aops;
4023 extern const struct address_space_operations f2fs_meta_aops;
4024 extern const struct inode_operations f2fs_dir_inode_operations;
4025 extern const struct inode_operations f2fs_symlink_inode_operations;
4026 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4027 extern const struct inode_operations f2fs_special_inode_operations;
4028 extern struct kmem_cache *f2fs_inode_entry_slab;
4029 
4030 /*
4031  * inline.c
4032  */
4033 bool f2fs_may_inline_data(struct inode *inode);
4034 bool f2fs_sanity_check_inline_data(struct inode *inode);
4035 bool f2fs_may_inline_dentry(struct inode *inode);
4036 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4037 void f2fs_truncate_inline_inode(struct inode *inode,
4038 						struct page *ipage, u64 from);
4039 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4040 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4041 int f2fs_convert_inline_inode(struct inode *inode);
4042 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4043 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4044 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4045 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4046 					const struct f2fs_filename *fname,
4047 					struct page **res_page);
4048 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4049 			struct page *ipage);
4050 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4051 			struct inode *inode, nid_t ino, umode_t mode);
4052 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4053 				struct page *page, struct inode *dir,
4054 				struct inode *inode);
4055 bool f2fs_empty_inline_dir(struct inode *dir);
4056 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4057 			struct fscrypt_str *fstr);
4058 int f2fs_inline_data_fiemap(struct inode *inode,
4059 			struct fiemap_extent_info *fieinfo,
4060 			__u64 start, __u64 len);
4061 
4062 /*
4063  * shrinker.c
4064  */
4065 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4066 			struct shrink_control *sc);
4067 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4068 			struct shrink_control *sc);
4069 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4070 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4071 
4072 /*
4073  * extent_cache.c
4074  */
4075 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4076 				struct rb_entry *cached_re, unsigned int ofs);
4077 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4078 				struct rb_root_cached *root,
4079 				struct rb_node **parent,
4080 				unsigned long long key, bool *left_most);
4081 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4082 				struct rb_root_cached *root,
4083 				struct rb_node **parent,
4084 				unsigned int ofs, bool *leftmost);
4085 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4086 		struct rb_entry *cached_re, unsigned int ofs,
4087 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4088 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4089 		bool force, bool *leftmost);
4090 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4091 				struct rb_root_cached *root, bool check_key);
4092 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4093 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4094 void f2fs_drop_extent_tree(struct inode *inode);
4095 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4096 void f2fs_destroy_extent_tree(struct inode *inode);
4097 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4098 			struct extent_info *ei);
4099 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4100 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4101 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4102 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4103 int __init f2fs_create_extent_cache(void);
4104 void f2fs_destroy_extent_cache(void);
4105 
4106 /*
4107  * sysfs.c
4108  */
4109 #define MIN_RA_MUL	2
4110 #define MAX_RA_MUL	256
4111 
4112 int __init f2fs_init_sysfs(void);
4113 void f2fs_exit_sysfs(void);
4114 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4115 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4116 
4117 /* verity.c */
4118 extern const struct fsverity_operations f2fs_verityops;
4119 
4120 /*
4121  * crypto support
4122  */
4123 static inline bool f2fs_encrypted_file(struct inode *inode)
4124 {
4125 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4126 }
4127 
4128 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4129 {
4130 #ifdef CONFIG_FS_ENCRYPTION
4131 	file_set_encrypt(inode);
4132 	f2fs_set_inode_flags(inode);
4133 #endif
4134 }
4135 
4136 /*
4137  * Returns true if the reads of the inode's data need to undergo some
4138  * postprocessing step, like decryption or authenticity verification.
4139  */
4140 static inline bool f2fs_post_read_required(struct inode *inode)
4141 {
4142 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4143 		f2fs_compressed_file(inode);
4144 }
4145 
4146 /*
4147  * compress.c
4148  */
4149 #ifdef CONFIG_F2FS_FS_COMPRESSION
4150 bool f2fs_is_compressed_page(struct page *page);
4151 struct page *f2fs_compress_control_page(struct page *page);
4152 int f2fs_prepare_compress_overwrite(struct inode *inode,
4153 			struct page **pagep, pgoff_t index, void **fsdata);
4154 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4155 					pgoff_t index, unsigned copied);
4156 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4157 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4158 bool f2fs_is_compress_backend_ready(struct inode *inode);
4159 int f2fs_init_compress_mempool(void);
4160 void f2fs_destroy_compress_mempool(void);
4161 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4162 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4163 							block_t blkaddr);
4164 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4165 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4166 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4167 				int index, int nr_pages);
4168 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4169 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4170 int f2fs_write_multi_pages(struct compress_ctx *cc,
4171 						int *submitted,
4172 						struct writeback_control *wbc,
4173 						enum iostat_type io_type);
4174 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4175 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4176 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4177 				unsigned int c_len);
4178 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4179 				unsigned nr_pages, sector_t *last_block_in_bio,
4180 				bool is_readahead, bool for_write);
4181 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4182 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4183 void f2fs_put_page_dic(struct page *page);
4184 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4185 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4186 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4187 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4188 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4189 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4190 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4191 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4192 int __init f2fs_init_compress_cache(void);
4193 void f2fs_destroy_compress_cache(void);
4194 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4195 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4196 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4197 						nid_t ino, block_t blkaddr);
4198 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4199 								block_t blkaddr);
4200 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4201 #define inc_compr_inode_stat(inode)					\
4202 	do {								\
4203 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4204 		sbi->compr_new_inode++;					\
4205 	} while (0)
4206 #define add_compr_block_stat(inode, blocks)				\
4207 	do {								\
4208 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4209 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4210 		sbi->compr_written_block += blocks;			\
4211 		sbi->compr_saved_block += diff;				\
4212 	} while (0)
4213 #else
4214 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4215 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4216 {
4217 	if (!f2fs_compressed_file(inode))
4218 		return true;
4219 	/* not support compression */
4220 	return false;
4221 }
4222 static inline struct page *f2fs_compress_control_page(struct page *page)
4223 {
4224 	WARN_ON_ONCE(1);
4225 	return ERR_PTR(-EINVAL);
4226 }
4227 static inline int f2fs_init_compress_mempool(void) { return 0; }
4228 static inline void f2fs_destroy_compress_mempool(void) { }
4229 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4230 static inline void f2fs_end_read_compressed_page(struct page *page,
4231 						bool failed, block_t blkaddr)
4232 {
4233 	WARN_ON_ONCE(1);
4234 }
4235 static inline void f2fs_put_page_dic(struct page *page)
4236 {
4237 	WARN_ON_ONCE(1);
4238 }
4239 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4240 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4241 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4242 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4243 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4244 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4245 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4246 static inline void f2fs_destroy_compress_cache(void) { }
4247 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4248 				block_t blkaddr) { }
4249 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4250 				struct page *page, nid_t ino, block_t blkaddr) { }
4251 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4252 				struct page *page, block_t blkaddr) { return false; }
4253 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4254 							nid_t ino) { }
4255 #define inc_compr_inode_stat(inode)		do { } while (0)
4256 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4257 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4258 				unsigned int c_len) { }
4259 #endif
4260 
4261 static inline void set_compress_context(struct inode *inode)
4262 {
4263 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4264 
4265 	F2FS_I(inode)->i_compress_algorithm =
4266 			F2FS_OPTION(sbi).compress_algorithm;
4267 	F2FS_I(inode)->i_log_cluster_size =
4268 			F2FS_OPTION(sbi).compress_log_size;
4269 	F2FS_I(inode)->i_compress_flag =
4270 			F2FS_OPTION(sbi).compress_chksum ?
4271 				1 << COMPRESS_CHKSUM : 0;
4272 	F2FS_I(inode)->i_cluster_size =
4273 			1 << F2FS_I(inode)->i_log_cluster_size;
4274 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4275 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4276 			F2FS_OPTION(sbi).compress_level)
4277 		F2FS_I(inode)->i_compress_flag |=
4278 				F2FS_OPTION(sbi).compress_level <<
4279 				COMPRESS_LEVEL_OFFSET;
4280 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4281 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4282 	stat_inc_compr_inode(inode);
4283 	inc_compr_inode_stat(inode);
4284 	f2fs_mark_inode_dirty_sync(inode, true);
4285 }
4286 
4287 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4288 {
4289 	struct f2fs_inode_info *fi = F2FS_I(inode);
4290 
4291 	if (!f2fs_compressed_file(inode))
4292 		return true;
4293 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4294 		return false;
4295 
4296 	fi->i_flags &= ~F2FS_COMPR_FL;
4297 	stat_dec_compr_inode(inode);
4298 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4299 	f2fs_mark_inode_dirty_sync(inode, true);
4300 	return true;
4301 }
4302 
4303 #define F2FS_FEATURE_FUNCS(name, flagname) \
4304 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4305 { \
4306 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4307 }
4308 
4309 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4310 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4311 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4312 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4313 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4314 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4315 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4316 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4317 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4318 F2FS_FEATURE_FUNCS(verity, VERITY);
4319 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4320 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4321 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4322 F2FS_FEATURE_FUNCS(readonly, RO);
4323 
4324 static inline bool f2fs_may_extent_tree(struct inode *inode)
4325 {
4326 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4327 
4328 	if (!test_opt(sbi, EXTENT_CACHE) ||
4329 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4330 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4331 			 !f2fs_sb_has_readonly(sbi)))
4332 		return false;
4333 
4334 	/*
4335 	 * for recovered files during mount do not create extents
4336 	 * if shrinker is not registered.
4337 	 */
4338 	if (list_empty(&sbi->s_list))
4339 		return false;
4340 
4341 	return S_ISREG(inode->i_mode);
4342 }
4343 
4344 #ifdef CONFIG_BLK_DEV_ZONED
4345 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4346 				    block_t blkaddr)
4347 {
4348 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4349 
4350 	return test_bit(zno, FDEV(devi).blkz_seq);
4351 }
4352 #endif
4353 
4354 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4355 {
4356 	return f2fs_sb_has_blkzoned(sbi);
4357 }
4358 
4359 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4360 {
4361 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4362 }
4363 
4364 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4365 {
4366 	int i;
4367 
4368 	if (!f2fs_is_multi_device(sbi))
4369 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4370 
4371 	for (i = 0; i < sbi->s_ndevs; i++)
4372 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4373 			return true;
4374 	return false;
4375 }
4376 
4377 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4378 {
4379 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4380 					f2fs_hw_should_discard(sbi);
4381 }
4382 
4383 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4384 {
4385 	int i;
4386 
4387 	if (!f2fs_is_multi_device(sbi))
4388 		return bdev_read_only(sbi->sb->s_bdev);
4389 
4390 	for (i = 0; i < sbi->s_ndevs; i++)
4391 		if (bdev_read_only(FDEV(i).bdev))
4392 			return true;
4393 	return false;
4394 }
4395 
4396 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4397 {
4398 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4399 }
4400 
4401 static inline bool f2fs_may_compress(struct inode *inode)
4402 {
4403 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4404 				f2fs_is_atomic_file(inode))
4405 		return false;
4406 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4407 }
4408 
4409 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4410 						u64 blocks, bool add)
4411 {
4412 	struct f2fs_inode_info *fi = F2FS_I(inode);
4413 	int diff = fi->i_cluster_size - blocks;
4414 
4415 	/* don't update i_compr_blocks if saved blocks were released */
4416 	if (!add && !atomic_read(&fi->i_compr_blocks))
4417 		return;
4418 
4419 	if (add) {
4420 		atomic_add(diff, &fi->i_compr_blocks);
4421 		stat_add_compr_blocks(inode, diff);
4422 	} else {
4423 		atomic_sub(diff, &fi->i_compr_blocks);
4424 		stat_sub_compr_blocks(inode, diff);
4425 	}
4426 	f2fs_mark_inode_dirty_sync(inode, true);
4427 }
4428 
4429 static inline int block_unaligned_IO(struct inode *inode,
4430 				struct kiocb *iocb, struct iov_iter *iter)
4431 {
4432 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4433 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4434 	loff_t offset = iocb->ki_pos;
4435 	unsigned long align = offset | iov_iter_alignment(iter);
4436 
4437 	return align & blocksize_mask;
4438 }
4439 
4440 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4441 								int flag)
4442 {
4443 	if (!f2fs_is_multi_device(sbi))
4444 		return false;
4445 	if (flag != F2FS_GET_BLOCK_DIO)
4446 		return false;
4447 	return sbi->aligned_blksize;
4448 }
4449 
4450 static inline bool f2fs_force_buffered_io(struct inode *inode,
4451 				struct kiocb *iocb, struct iov_iter *iter)
4452 {
4453 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4454 	int rw = iov_iter_rw(iter);
4455 
4456 	if (!fscrypt_dio_supported(iocb, iter))
4457 		return true;
4458 	if (fsverity_active(inode))
4459 		return true;
4460 	if (f2fs_compressed_file(inode))
4461 		return true;
4462 
4463 	/* disallow direct IO if any of devices has unaligned blksize */
4464 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4465 		return true;
4466 	/*
4467 	 * for blkzoned device, fallback direct IO to buffered IO, so
4468 	 * all IOs can be serialized by log-structured write.
4469 	 */
4470 	if (f2fs_sb_has_blkzoned(sbi))
4471 		return true;
4472 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4473 		if (block_unaligned_IO(inode, iocb, iter))
4474 			return true;
4475 		if (F2FS_IO_ALIGNED(sbi))
4476 			return true;
4477 	}
4478 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4479 		return true;
4480 
4481 	return false;
4482 }
4483 
4484 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4485 {
4486 	return fsverity_active(inode) &&
4487 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4488 }
4489 
4490 #ifdef CONFIG_F2FS_FAULT_INJECTION
4491 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4492 							unsigned int type);
4493 #else
4494 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4495 #endif
4496 
4497 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4498 {
4499 #ifdef CONFIG_QUOTA
4500 	if (f2fs_sb_has_quota_ino(sbi))
4501 		return true;
4502 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4503 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4504 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4505 		return true;
4506 #endif
4507 	return false;
4508 }
4509 
4510 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4511 {
4512 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4513 }
4514 
4515 static inline void f2fs_io_schedule_timeout(long timeout)
4516 {
4517 	set_current_state(TASK_UNINTERRUPTIBLE);
4518 	io_schedule_timeout(timeout);
4519 }
4520 
4521 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4522 					enum page_type type)
4523 {
4524 	if (unlikely(f2fs_cp_error(sbi)))
4525 		return;
4526 
4527 	if (ofs == sbi->page_eio_ofs[type]) {
4528 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4529 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4530 	} else {
4531 		sbi->page_eio_ofs[type] = ofs;
4532 		sbi->page_eio_cnt[type] = 0;
4533 	}
4534 }
4535 
4536 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4537 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4538 
4539 #endif /* _LINUX_F2FS_H */
4540