1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #ifdef CONFIG_F2FS_FS_ENCRYPTION 27 #include <linux/fscrypt_supp.h> 28 #else 29 #include <linux/fscrypt_notsupp.h> 30 #endif 31 #include <crypto/hash.h> 32 33 #ifdef CONFIG_F2FS_CHECK_FS 34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 35 #else 36 #define f2fs_bug_on(sbi, condition) \ 37 do { \ 38 if (unlikely(condition)) { \ 39 WARN_ON(1); \ 40 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 41 } \ 42 } while (0) 43 #endif 44 45 #ifdef CONFIG_F2FS_FAULT_INJECTION 46 enum { 47 FAULT_KMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_ALLOC_NID, 50 FAULT_ORPHAN, 51 FAULT_BLOCK, 52 FAULT_DIR_DEPTH, 53 FAULT_EVICT_INODE, 54 FAULT_TRUNCATE, 55 FAULT_IO, 56 FAULT_CHECKPOINT, 57 FAULT_MAX, 58 }; 59 60 struct f2fs_fault_info { 61 atomic_t inject_ops; 62 unsigned int inject_rate; 63 unsigned int inject_type; 64 }; 65 66 extern char *fault_name[FAULT_MAX]; 67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 68 #endif 69 70 /* 71 * For mount options 72 */ 73 #define F2FS_MOUNT_BG_GC 0x00000001 74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 75 #define F2FS_MOUNT_DISCARD 0x00000004 76 #define F2FS_MOUNT_NOHEAP 0x00000008 77 #define F2FS_MOUNT_XATTR_USER 0x00000010 78 #define F2FS_MOUNT_POSIX_ACL 0x00000020 79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 81 #define F2FS_MOUNT_INLINE_DATA 0x00000100 82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 84 #define F2FS_MOUNT_NOBARRIER 0x00000800 85 #define F2FS_MOUNT_FASTBOOT 0x00001000 86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 90 #define F2FS_MOUNT_ADAPTIVE 0x00020000 91 #define F2FS_MOUNT_LFS 0x00040000 92 #define F2FS_MOUNT_USRQUOTA 0x00080000 93 #define F2FS_MOUNT_GRPQUOTA 0x00100000 94 95 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) 96 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) 97 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) 98 99 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 100 typecheck(unsigned long long, b) && \ 101 ((long long)((a) - (b)) > 0)) 102 103 typedef u32 block_t; /* 104 * should not change u32, since it is the on-disk block 105 * address format, __le32. 106 */ 107 typedef u32 nid_t; 108 109 struct f2fs_mount_info { 110 unsigned int opt; 111 }; 112 113 #define F2FS_FEATURE_ENCRYPT 0x0001 114 #define F2FS_FEATURE_BLKZONED 0x0002 115 116 #define F2FS_HAS_FEATURE(sb, mask) \ 117 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 118 #define F2FS_SET_FEATURE(sb, mask) \ 119 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 120 #define F2FS_CLEAR_FEATURE(sb, mask) \ 121 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 122 123 /* 124 * For checkpoint manager 125 */ 126 enum { 127 NAT_BITMAP, 128 SIT_BITMAP 129 }; 130 131 #define CP_UMOUNT 0x00000001 132 #define CP_FASTBOOT 0x00000002 133 #define CP_SYNC 0x00000004 134 #define CP_RECOVERY 0x00000008 135 #define CP_DISCARD 0x00000010 136 #define CP_TRIMMED 0x00000020 137 138 #define DEF_BATCHED_TRIM_SECTIONS 2048 139 #define BATCHED_TRIM_SEGMENTS(sbi) \ 140 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 141 #define BATCHED_TRIM_BLOCKS(sbi) \ 142 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 143 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 144 #define DISCARD_ISSUE_RATE 8 145 #define DEF_CP_INTERVAL 60 /* 60 secs */ 146 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 147 148 struct cp_control { 149 int reason; 150 __u64 trim_start; 151 __u64 trim_end; 152 __u64 trim_minlen; 153 __u64 trimmed; 154 }; 155 156 /* 157 * For CP/NAT/SIT/SSA readahead 158 */ 159 enum { 160 META_CP, 161 META_NAT, 162 META_SIT, 163 META_SSA, 164 META_POR, 165 }; 166 167 /* for the list of ino */ 168 enum { 169 ORPHAN_INO, /* for orphan ino list */ 170 APPEND_INO, /* for append ino list */ 171 UPDATE_INO, /* for update ino list */ 172 MAX_INO_ENTRY, /* max. list */ 173 }; 174 175 struct ino_entry { 176 struct list_head list; /* list head */ 177 nid_t ino; /* inode number */ 178 }; 179 180 /* for the list of inodes to be GCed */ 181 struct inode_entry { 182 struct list_head list; /* list head */ 183 struct inode *inode; /* vfs inode pointer */ 184 }; 185 186 /* for the bitmap indicate blocks to be discarded */ 187 struct discard_entry { 188 struct list_head list; /* list head */ 189 block_t start_blkaddr; /* start blockaddr of current segment */ 190 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 191 }; 192 193 /* max discard pend list number */ 194 #define MAX_PLIST_NUM 512 195 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 196 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 197 198 enum { 199 D_PREP, 200 D_SUBMIT, 201 D_DONE, 202 }; 203 204 struct discard_info { 205 block_t lstart; /* logical start address */ 206 block_t len; /* length */ 207 block_t start; /* actual start address in dev */ 208 }; 209 210 struct discard_cmd { 211 struct rb_node rb_node; /* rb node located in rb-tree */ 212 union { 213 struct { 214 block_t lstart; /* logical start address */ 215 block_t len; /* length */ 216 block_t start; /* actual start address in dev */ 217 }; 218 struct discard_info di; /* discard info */ 219 220 }; 221 struct list_head list; /* command list */ 222 struct completion wait; /* compleation */ 223 struct block_device *bdev; /* bdev */ 224 unsigned short ref; /* reference count */ 225 unsigned char state; /* state */ 226 int error; /* bio error */ 227 }; 228 229 struct discard_cmd_control { 230 struct task_struct *f2fs_issue_discard; /* discard thread */ 231 struct list_head entry_list; /* 4KB discard entry list */ 232 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 233 struct list_head wait_list; /* store on-flushing entries */ 234 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 235 struct mutex cmd_lock; 236 unsigned int nr_discards; /* # of discards in the list */ 237 unsigned int max_discards; /* max. discards to be issued */ 238 unsigned int undiscard_blks; /* # of undiscard blocks */ 239 atomic_t issued_discard; /* # of issued discard */ 240 atomic_t issing_discard; /* # of issing discard */ 241 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 242 struct rb_root root; /* root of discard rb-tree */ 243 }; 244 245 /* for the list of fsync inodes, used only during recovery */ 246 struct fsync_inode_entry { 247 struct list_head list; /* list head */ 248 struct inode *inode; /* vfs inode pointer */ 249 block_t blkaddr; /* block address locating the last fsync */ 250 block_t last_dentry; /* block address locating the last dentry */ 251 }; 252 253 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 254 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 255 256 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 257 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 258 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 259 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 260 261 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 262 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 263 264 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 265 { 266 int before = nats_in_cursum(journal); 267 268 journal->n_nats = cpu_to_le16(before + i); 269 return before; 270 } 271 272 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 273 { 274 int before = sits_in_cursum(journal); 275 276 journal->n_sits = cpu_to_le16(before + i); 277 return before; 278 } 279 280 static inline bool __has_cursum_space(struct f2fs_journal *journal, 281 int size, int type) 282 { 283 if (type == NAT_JOURNAL) 284 return size <= MAX_NAT_JENTRIES(journal); 285 return size <= MAX_SIT_JENTRIES(journal); 286 } 287 288 /* 289 * ioctl commands 290 */ 291 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 292 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 293 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 294 295 #define F2FS_IOCTL_MAGIC 0xf5 296 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 297 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 298 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 299 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 300 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 301 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 302 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 303 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 304 struct f2fs_defragment) 305 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 306 struct f2fs_move_range) 307 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 308 struct f2fs_flush_device) 309 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 310 struct f2fs_gc_range) 311 312 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 313 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 314 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 315 316 /* 317 * should be same as XFS_IOC_GOINGDOWN. 318 * Flags for going down operation used by FS_IOC_GOINGDOWN 319 */ 320 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 321 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 322 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 323 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 324 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 325 326 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 327 /* 328 * ioctl commands in 32 bit emulation 329 */ 330 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 331 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 332 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 333 #endif 334 335 struct f2fs_gc_range { 336 u32 sync; 337 u64 start; 338 u64 len; 339 }; 340 341 struct f2fs_defragment { 342 u64 start; 343 u64 len; 344 }; 345 346 struct f2fs_move_range { 347 u32 dst_fd; /* destination fd */ 348 u64 pos_in; /* start position in src_fd */ 349 u64 pos_out; /* start position in dst_fd */ 350 u64 len; /* size to move */ 351 }; 352 353 struct f2fs_flush_device { 354 u32 dev_num; /* device number to flush */ 355 u32 segments; /* # of segments to flush */ 356 }; 357 358 /* 359 * For INODE and NODE manager 360 */ 361 /* for directory operations */ 362 struct f2fs_dentry_ptr { 363 struct inode *inode; 364 const void *bitmap; 365 struct f2fs_dir_entry *dentry; 366 __u8 (*filename)[F2FS_SLOT_LEN]; 367 int max; 368 }; 369 370 static inline void make_dentry_ptr_block(struct inode *inode, 371 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 372 { 373 d->inode = inode; 374 d->max = NR_DENTRY_IN_BLOCK; 375 d->bitmap = &t->dentry_bitmap; 376 d->dentry = t->dentry; 377 d->filename = t->filename; 378 } 379 380 static inline void make_dentry_ptr_inline(struct inode *inode, 381 struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t) 382 { 383 d->inode = inode; 384 d->max = NR_INLINE_DENTRY; 385 d->bitmap = &t->dentry_bitmap; 386 d->dentry = t->dentry; 387 d->filename = t->filename; 388 } 389 390 /* 391 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 392 * as its node offset to distinguish from index node blocks. 393 * But some bits are used to mark the node block. 394 */ 395 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 396 >> OFFSET_BIT_SHIFT) 397 enum { 398 ALLOC_NODE, /* allocate a new node page if needed */ 399 LOOKUP_NODE, /* look up a node without readahead */ 400 LOOKUP_NODE_RA, /* 401 * look up a node with readahead called 402 * by get_data_block. 403 */ 404 }; 405 406 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 407 408 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 409 410 /* vector size for gang look-up from extent cache that consists of radix tree */ 411 #define EXT_TREE_VEC_SIZE 64 412 413 /* for in-memory extent cache entry */ 414 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 415 416 /* number of extent info in extent cache we try to shrink */ 417 #define EXTENT_CACHE_SHRINK_NUMBER 128 418 419 struct rb_entry { 420 struct rb_node rb_node; /* rb node located in rb-tree */ 421 unsigned int ofs; /* start offset of the entry */ 422 unsigned int len; /* length of the entry */ 423 }; 424 425 struct extent_info { 426 unsigned int fofs; /* start offset in a file */ 427 unsigned int len; /* length of the extent */ 428 u32 blk; /* start block address of the extent */ 429 }; 430 431 struct extent_node { 432 struct rb_node rb_node; 433 union { 434 struct { 435 unsigned int fofs; 436 unsigned int len; 437 u32 blk; 438 }; 439 struct extent_info ei; /* extent info */ 440 441 }; 442 struct list_head list; /* node in global extent list of sbi */ 443 struct extent_tree *et; /* extent tree pointer */ 444 }; 445 446 struct extent_tree { 447 nid_t ino; /* inode number */ 448 struct rb_root root; /* root of extent info rb-tree */ 449 struct extent_node *cached_en; /* recently accessed extent node */ 450 struct extent_info largest; /* largested extent info */ 451 struct list_head list; /* to be used by sbi->zombie_list */ 452 rwlock_t lock; /* protect extent info rb-tree */ 453 atomic_t node_cnt; /* # of extent node in rb-tree*/ 454 }; 455 456 /* 457 * This structure is taken from ext4_map_blocks. 458 * 459 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 460 */ 461 #define F2FS_MAP_NEW (1 << BH_New) 462 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 463 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 464 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 465 F2FS_MAP_UNWRITTEN) 466 467 struct f2fs_map_blocks { 468 block_t m_pblk; 469 block_t m_lblk; 470 unsigned int m_len; 471 unsigned int m_flags; 472 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 473 }; 474 475 /* for flag in get_data_block */ 476 #define F2FS_GET_BLOCK_READ 0 477 #define F2FS_GET_BLOCK_DIO 1 478 #define F2FS_GET_BLOCK_FIEMAP 2 479 #define F2FS_GET_BLOCK_BMAP 3 480 #define F2FS_GET_BLOCK_PRE_DIO 4 481 #define F2FS_GET_BLOCK_PRE_AIO 5 482 483 /* 484 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 485 */ 486 #define FADVISE_COLD_BIT 0x01 487 #define FADVISE_LOST_PINO_BIT 0x02 488 #define FADVISE_ENCRYPT_BIT 0x04 489 #define FADVISE_ENC_NAME_BIT 0x08 490 #define FADVISE_KEEP_SIZE_BIT 0x10 491 492 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 493 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 494 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 495 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 496 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 497 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 498 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 499 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 500 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 501 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 502 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 503 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 504 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 505 506 #define DEF_DIR_LEVEL 0 507 508 struct f2fs_inode_info { 509 struct inode vfs_inode; /* serve a vfs inode */ 510 unsigned long i_flags; /* keep an inode flags for ioctl */ 511 unsigned char i_advise; /* use to give file attribute hints */ 512 unsigned char i_dir_level; /* use for dentry level for large dir */ 513 unsigned int i_current_depth; /* use only in directory structure */ 514 unsigned int i_pino; /* parent inode number */ 515 umode_t i_acl_mode; /* keep file acl mode temporarily */ 516 517 /* Use below internally in f2fs*/ 518 unsigned long flags; /* use to pass per-file flags */ 519 struct rw_semaphore i_sem; /* protect fi info */ 520 atomic_t dirty_pages; /* # of dirty pages */ 521 f2fs_hash_t chash; /* hash value of given file name */ 522 unsigned int clevel; /* maximum level of given file name */ 523 struct task_struct *task; /* lookup and create consistency */ 524 nid_t i_xattr_nid; /* node id that contains xattrs */ 525 loff_t last_disk_size; /* lastly written file size */ 526 527 #ifdef CONFIG_QUOTA 528 struct dquot *i_dquot[MAXQUOTAS]; 529 530 /* quota space reservation, managed internally by quota code */ 531 qsize_t i_reserved_quota; 532 #endif 533 struct list_head dirty_list; /* dirty list for dirs and files */ 534 struct list_head gdirty_list; /* linked in global dirty list */ 535 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 536 struct mutex inmem_lock; /* lock for inmemory pages */ 537 struct extent_tree *extent_tree; /* cached extent_tree entry */ 538 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 539 struct rw_semaphore i_mmap_sem; 540 }; 541 542 static inline void get_extent_info(struct extent_info *ext, 543 struct f2fs_extent *i_ext) 544 { 545 ext->fofs = le32_to_cpu(i_ext->fofs); 546 ext->blk = le32_to_cpu(i_ext->blk); 547 ext->len = le32_to_cpu(i_ext->len); 548 } 549 550 static inline void set_raw_extent(struct extent_info *ext, 551 struct f2fs_extent *i_ext) 552 { 553 i_ext->fofs = cpu_to_le32(ext->fofs); 554 i_ext->blk = cpu_to_le32(ext->blk); 555 i_ext->len = cpu_to_le32(ext->len); 556 } 557 558 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 559 u32 blk, unsigned int len) 560 { 561 ei->fofs = fofs; 562 ei->blk = blk; 563 ei->len = len; 564 } 565 566 static inline bool __is_discard_mergeable(struct discard_info *back, 567 struct discard_info *front) 568 { 569 return back->lstart + back->len == front->lstart; 570 } 571 572 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 573 struct discard_info *back) 574 { 575 return __is_discard_mergeable(back, cur); 576 } 577 578 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 579 struct discard_info *front) 580 { 581 return __is_discard_mergeable(cur, front); 582 } 583 584 static inline bool __is_extent_mergeable(struct extent_info *back, 585 struct extent_info *front) 586 { 587 return (back->fofs + back->len == front->fofs && 588 back->blk + back->len == front->blk); 589 } 590 591 static inline bool __is_back_mergeable(struct extent_info *cur, 592 struct extent_info *back) 593 { 594 return __is_extent_mergeable(back, cur); 595 } 596 597 static inline bool __is_front_mergeable(struct extent_info *cur, 598 struct extent_info *front) 599 { 600 return __is_extent_mergeable(cur, front); 601 } 602 603 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 604 static inline void __try_update_largest_extent(struct inode *inode, 605 struct extent_tree *et, struct extent_node *en) 606 { 607 if (en->ei.len > et->largest.len) { 608 et->largest = en->ei; 609 f2fs_mark_inode_dirty_sync(inode, true); 610 } 611 } 612 613 enum nid_list { 614 FREE_NID_LIST, 615 ALLOC_NID_LIST, 616 MAX_NID_LIST, 617 }; 618 619 struct f2fs_nm_info { 620 block_t nat_blkaddr; /* base disk address of NAT */ 621 nid_t max_nid; /* maximum possible node ids */ 622 nid_t available_nids; /* # of available node ids */ 623 nid_t next_scan_nid; /* the next nid to be scanned */ 624 unsigned int ram_thresh; /* control the memory footprint */ 625 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 626 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 627 628 /* NAT cache management */ 629 struct radix_tree_root nat_root;/* root of the nat entry cache */ 630 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 631 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 632 struct list_head nat_entries; /* cached nat entry list (clean) */ 633 unsigned int nat_cnt; /* the # of cached nat entries */ 634 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 635 unsigned int nat_blocks; /* # of nat blocks */ 636 637 /* free node ids management */ 638 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 639 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ 640 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ 641 spinlock_t nid_list_lock; /* protect nid lists ops */ 642 struct mutex build_lock; /* lock for build free nids */ 643 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 644 unsigned char *nat_block_bitmap; 645 unsigned short *free_nid_count; /* free nid count of NAT block */ 646 647 /* for checkpoint */ 648 char *nat_bitmap; /* NAT bitmap pointer */ 649 650 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 651 unsigned char *nat_bits; /* NAT bits blocks */ 652 unsigned char *full_nat_bits; /* full NAT pages */ 653 unsigned char *empty_nat_bits; /* empty NAT pages */ 654 #ifdef CONFIG_F2FS_CHECK_FS 655 char *nat_bitmap_mir; /* NAT bitmap mirror */ 656 #endif 657 int bitmap_size; /* bitmap size */ 658 }; 659 660 /* 661 * this structure is used as one of function parameters. 662 * all the information are dedicated to a given direct node block determined 663 * by the data offset in a file. 664 */ 665 struct dnode_of_data { 666 struct inode *inode; /* vfs inode pointer */ 667 struct page *inode_page; /* its inode page, NULL is possible */ 668 struct page *node_page; /* cached direct node page */ 669 nid_t nid; /* node id of the direct node block */ 670 unsigned int ofs_in_node; /* data offset in the node page */ 671 bool inode_page_locked; /* inode page is locked or not */ 672 bool node_changed; /* is node block changed */ 673 char cur_level; /* level of hole node page */ 674 char max_level; /* level of current page located */ 675 block_t data_blkaddr; /* block address of the node block */ 676 }; 677 678 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 679 struct page *ipage, struct page *npage, nid_t nid) 680 { 681 memset(dn, 0, sizeof(*dn)); 682 dn->inode = inode; 683 dn->inode_page = ipage; 684 dn->node_page = npage; 685 dn->nid = nid; 686 } 687 688 /* 689 * For SIT manager 690 * 691 * By default, there are 6 active log areas across the whole main area. 692 * When considering hot and cold data separation to reduce cleaning overhead, 693 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 694 * respectively. 695 * In the current design, you should not change the numbers intentionally. 696 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 697 * logs individually according to the underlying devices. (default: 6) 698 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 699 * data and 8 for node logs. 700 */ 701 #define NR_CURSEG_DATA_TYPE (3) 702 #define NR_CURSEG_NODE_TYPE (3) 703 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 704 705 enum { 706 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 707 CURSEG_WARM_DATA, /* data blocks */ 708 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 709 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 710 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 711 CURSEG_COLD_NODE, /* indirect node blocks */ 712 NO_CHECK_TYPE, 713 }; 714 715 struct flush_cmd { 716 struct completion wait; 717 struct llist_node llnode; 718 int ret; 719 }; 720 721 struct flush_cmd_control { 722 struct task_struct *f2fs_issue_flush; /* flush thread */ 723 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 724 atomic_t issued_flush; /* # of issued flushes */ 725 atomic_t issing_flush; /* # of issing flushes */ 726 struct llist_head issue_list; /* list for command issue */ 727 struct llist_node *dispatch_list; /* list for command dispatch */ 728 }; 729 730 struct f2fs_sm_info { 731 struct sit_info *sit_info; /* whole segment information */ 732 struct free_segmap_info *free_info; /* free segment information */ 733 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 734 struct curseg_info *curseg_array; /* active segment information */ 735 736 block_t seg0_blkaddr; /* block address of 0'th segment */ 737 block_t main_blkaddr; /* start block address of main area */ 738 block_t ssa_blkaddr; /* start block address of SSA area */ 739 740 unsigned int segment_count; /* total # of segments */ 741 unsigned int main_segments; /* # of segments in main area */ 742 unsigned int reserved_segments; /* # of reserved segments */ 743 unsigned int ovp_segments; /* # of overprovision segments */ 744 745 /* a threshold to reclaim prefree segments */ 746 unsigned int rec_prefree_segments; 747 748 /* for batched trimming */ 749 unsigned int trim_sections; /* # of sections to trim */ 750 751 struct list_head sit_entry_set; /* sit entry set list */ 752 753 unsigned int ipu_policy; /* in-place-update policy */ 754 unsigned int min_ipu_util; /* in-place-update threshold */ 755 unsigned int min_fsync_blocks; /* threshold for fsync */ 756 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 757 758 /* for flush command control */ 759 struct flush_cmd_control *fcc_info; 760 761 /* for discard command control */ 762 struct discard_cmd_control *dcc_info; 763 }; 764 765 /* 766 * For superblock 767 */ 768 /* 769 * COUNT_TYPE for monitoring 770 * 771 * f2fs monitors the number of several block types such as on-writeback, 772 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 773 */ 774 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 775 enum count_type { 776 F2FS_DIRTY_DENTS, 777 F2FS_DIRTY_DATA, 778 F2FS_DIRTY_NODES, 779 F2FS_DIRTY_META, 780 F2FS_INMEM_PAGES, 781 F2FS_DIRTY_IMETA, 782 F2FS_WB_CP_DATA, 783 F2FS_WB_DATA, 784 NR_COUNT_TYPE, 785 }; 786 787 /* 788 * The below are the page types of bios used in submit_bio(). 789 * The available types are: 790 * DATA User data pages. It operates as async mode. 791 * NODE Node pages. It operates as async mode. 792 * META FS metadata pages such as SIT, NAT, CP. 793 * NR_PAGE_TYPE The number of page types. 794 * META_FLUSH Make sure the previous pages are written 795 * with waiting the bio's completion 796 * ... Only can be used with META. 797 */ 798 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 799 enum page_type { 800 DATA, 801 NODE, 802 META, 803 NR_PAGE_TYPE, 804 META_FLUSH, 805 INMEM, /* the below types are used by tracepoints only. */ 806 INMEM_DROP, 807 INMEM_INVALIDATE, 808 INMEM_REVOKE, 809 IPU, 810 OPU, 811 }; 812 813 enum temp_type { 814 HOT = 0, /* must be zero for meta bio */ 815 WARM, 816 COLD, 817 NR_TEMP_TYPE, 818 }; 819 820 enum need_lock_type { 821 LOCK_REQ = 0, 822 LOCK_DONE, 823 LOCK_RETRY, 824 }; 825 826 struct f2fs_io_info { 827 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 828 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 829 enum temp_type temp; /* contains HOT/WARM/COLD */ 830 int op; /* contains REQ_OP_ */ 831 int op_flags; /* req_flag_bits */ 832 block_t new_blkaddr; /* new block address to be written */ 833 block_t old_blkaddr; /* old block address before Cow */ 834 struct page *page; /* page to be written */ 835 struct page *encrypted_page; /* encrypted page */ 836 struct list_head list; /* serialize IOs */ 837 bool submitted; /* indicate IO submission */ 838 int need_lock; /* indicate we need to lock cp_rwsem */ 839 bool in_list; /* indicate fio is in io_list */ 840 }; 841 842 #define is_read_io(rw) ((rw) == READ) 843 struct f2fs_bio_info { 844 struct f2fs_sb_info *sbi; /* f2fs superblock */ 845 struct bio *bio; /* bios to merge */ 846 sector_t last_block_in_bio; /* last block number */ 847 struct f2fs_io_info fio; /* store buffered io info. */ 848 struct rw_semaphore io_rwsem; /* blocking op for bio */ 849 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 850 struct list_head io_list; /* track fios */ 851 }; 852 853 #define FDEV(i) (sbi->devs[i]) 854 #define RDEV(i) (raw_super->devs[i]) 855 struct f2fs_dev_info { 856 struct block_device *bdev; 857 char path[MAX_PATH_LEN]; 858 unsigned int total_segments; 859 block_t start_blk; 860 block_t end_blk; 861 #ifdef CONFIG_BLK_DEV_ZONED 862 unsigned int nr_blkz; /* Total number of zones */ 863 u8 *blkz_type; /* Array of zones type */ 864 #endif 865 }; 866 867 enum inode_type { 868 DIR_INODE, /* for dirty dir inode */ 869 FILE_INODE, /* for dirty regular/symlink inode */ 870 DIRTY_META, /* for all dirtied inode metadata */ 871 NR_INODE_TYPE, 872 }; 873 874 /* for inner inode cache management */ 875 struct inode_management { 876 struct radix_tree_root ino_root; /* ino entry array */ 877 spinlock_t ino_lock; /* for ino entry lock */ 878 struct list_head ino_list; /* inode list head */ 879 unsigned long ino_num; /* number of entries */ 880 }; 881 882 /* For s_flag in struct f2fs_sb_info */ 883 enum { 884 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 885 SBI_IS_CLOSE, /* specify unmounting */ 886 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 887 SBI_POR_DOING, /* recovery is doing or not */ 888 SBI_NEED_SB_WRITE, /* need to recover superblock */ 889 SBI_NEED_CP, /* need to checkpoint */ 890 }; 891 892 enum { 893 CP_TIME, 894 REQ_TIME, 895 MAX_TIME, 896 }; 897 898 struct f2fs_sb_info { 899 struct super_block *sb; /* pointer to VFS super block */ 900 struct proc_dir_entry *s_proc; /* proc entry */ 901 struct f2fs_super_block *raw_super; /* raw super block pointer */ 902 int valid_super_block; /* valid super block no */ 903 unsigned long s_flag; /* flags for sbi */ 904 905 #ifdef CONFIG_BLK_DEV_ZONED 906 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 907 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 908 #endif 909 910 /* for node-related operations */ 911 struct f2fs_nm_info *nm_info; /* node manager */ 912 struct inode *node_inode; /* cache node blocks */ 913 914 /* for segment-related operations */ 915 struct f2fs_sm_info *sm_info; /* segment manager */ 916 917 /* for bio operations */ 918 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 919 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 920 /* bio ordering for NODE/DATA */ 921 int write_io_size_bits; /* Write IO size bits */ 922 mempool_t *write_io_dummy; /* Dummy pages */ 923 924 /* for checkpoint */ 925 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 926 int cur_cp_pack; /* remain current cp pack */ 927 spinlock_t cp_lock; /* for flag in ckpt */ 928 struct inode *meta_inode; /* cache meta blocks */ 929 struct mutex cp_mutex; /* checkpoint procedure lock */ 930 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 931 struct rw_semaphore node_write; /* locking node writes */ 932 struct rw_semaphore node_change; /* locking node change */ 933 wait_queue_head_t cp_wait; 934 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 935 long interval_time[MAX_TIME]; /* to store thresholds */ 936 937 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 938 939 /* for orphan inode, use 0'th array */ 940 unsigned int max_orphans; /* max orphan inodes */ 941 942 /* for inode management */ 943 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 944 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 945 946 /* for extent tree cache */ 947 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 948 struct mutex extent_tree_lock; /* locking extent radix tree */ 949 struct list_head extent_list; /* lru list for shrinker */ 950 spinlock_t extent_lock; /* locking extent lru list */ 951 atomic_t total_ext_tree; /* extent tree count */ 952 struct list_head zombie_list; /* extent zombie tree list */ 953 atomic_t total_zombie_tree; /* extent zombie tree count */ 954 atomic_t total_ext_node; /* extent info count */ 955 956 /* basic filesystem units */ 957 unsigned int log_sectors_per_block; /* log2 sectors per block */ 958 unsigned int log_blocksize; /* log2 block size */ 959 unsigned int blocksize; /* block size */ 960 unsigned int root_ino_num; /* root inode number*/ 961 unsigned int node_ino_num; /* node inode number*/ 962 unsigned int meta_ino_num; /* meta inode number*/ 963 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 964 unsigned int blocks_per_seg; /* blocks per segment */ 965 unsigned int segs_per_sec; /* segments per section */ 966 unsigned int secs_per_zone; /* sections per zone */ 967 unsigned int total_sections; /* total section count */ 968 unsigned int total_node_count; /* total node block count */ 969 unsigned int total_valid_node_count; /* valid node block count */ 970 loff_t max_file_blocks; /* max block index of file */ 971 int active_logs; /* # of active logs */ 972 int dir_level; /* directory level */ 973 974 block_t user_block_count; /* # of user blocks */ 975 block_t total_valid_block_count; /* # of valid blocks */ 976 block_t discard_blks; /* discard command candidats */ 977 block_t last_valid_block_count; /* for recovery */ 978 block_t reserved_blocks; /* configurable reserved blocks */ 979 980 u32 s_next_generation; /* for NFS support */ 981 982 /* # of pages, see count_type */ 983 atomic_t nr_pages[NR_COUNT_TYPE]; 984 /* # of allocated blocks */ 985 struct percpu_counter alloc_valid_block_count; 986 987 /* writeback control */ 988 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 989 990 /* valid inode count */ 991 struct percpu_counter total_valid_inode_count; 992 993 struct f2fs_mount_info mount_opt; /* mount options */ 994 995 /* for cleaning operations */ 996 struct mutex gc_mutex; /* mutex for GC */ 997 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 998 unsigned int cur_victim_sec; /* current victim section num */ 999 1000 /* threshold for converting bg victims for fg */ 1001 u64 fggc_threshold; 1002 1003 /* maximum # of trials to find a victim segment for SSR and GC */ 1004 unsigned int max_victim_search; 1005 1006 /* 1007 * for stat information. 1008 * one is for the LFS mode, and the other is for the SSR mode. 1009 */ 1010 #ifdef CONFIG_F2FS_STAT_FS 1011 struct f2fs_stat_info *stat_info; /* FS status information */ 1012 unsigned int segment_count[2]; /* # of allocated segments */ 1013 unsigned int block_count[2]; /* # of allocated blocks */ 1014 atomic_t inplace_count; /* # of inplace update */ 1015 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1016 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1017 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1018 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1019 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1020 atomic_t inline_inode; /* # of inline_data inodes */ 1021 atomic_t inline_dir; /* # of inline_dentry inodes */ 1022 atomic_t aw_cnt; /* # of atomic writes */ 1023 atomic_t vw_cnt; /* # of volatile writes */ 1024 atomic_t max_aw_cnt; /* max # of atomic writes */ 1025 atomic_t max_vw_cnt; /* max # of volatile writes */ 1026 int bg_gc; /* background gc calls */ 1027 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1028 #endif 1029 spinlock_t stat_lock; /* lock for stat operations */ 1030 1031 /* For sysfs suppport */ 1032 struct kobject s_kobj; 1033 struct completion s_kobj_unregister; 1034 1035 /* For shrinker support */ 1036 struct list_head s_list; 1037 int s_ndevs; /* number of devices */ 1038 struct f2fs_dev_info *devs; /* for device list */ 1039 struct mutex umount_mutex; 1040 unsigned int shrinker_run_no; 1041 1042 /* For write statistics */ 1043 u64 sectors_written_start; 1044 u64 kbytes_written; 1045 1046 /* Reference to checksum algorithm driver via cryptoapi */ 1047 struct crypto_shash *s_chksum_driver; 1048 1049 /* For fault injection */ 1050 #ifdef CONFIG_F2FS_FAULT_INJECTION 1051 struct f2fs_fault_info fault_info; 1052 #endif 1053 }; 1054 1055 #ifdef CONFIG_F2FS_FAULT_INJECTION 1056 #define f2fs_show_injection_info(type) \ 1057 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1058 KERN_INFO, fault_name[type], \ 1059 __func__, __builtin_return_address(0)) 1060 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1061 { 1062 struct f2fs_fault_info *ffi = &sbi->fault_info; 1063 1064 if (!ffi->inject_rate) 1065 return false; 1066 1067 if (!IS_FAULT_SET(ffi, type)) 1068 return false; 1069 1070 atomic_inc(&ffi->inject_ops); 1071 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1072 atomic_set(&ffi->inject_ops, 0); 1073 return true; 1074 } 1075 return false; 1076 } 1077 #endif 1078 1079 /* For write statistics. Suppose sector size is 512 bytes, 1080 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1081 */ 1082 #define BD_PART_WRITTEN(s) \ 1083 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1084 (s)->sectors_written_start) >> 1) 1085 1086 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1087 { 1088 sbi->last_time[type] = jiffies; 1089 } 1090 1091 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1092 { 1093 struct timespec ts = {sbi->interval_time[type], 0}; 1094 unsigned long interval = timespec_to_jiffies(&ts); 1095 1096 return time_after(jiffies, sbi->last_time[type] + interval); 1097 } 1098 1099 static inline bool is_idle(struct f2fs_sb_info *sbi) 1100 { 1101 struct block_device *bdev = sbi->sb->s_bdev; 1102 struct request_queue *q = bdev_get_queue(bdev); 1103 struct request_list *rl = &q->root_rl; 1104 1105 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1106 return 0; 1107 1108 return f2fs_time_over(sbi, REQ_TIME); 1109 } 1110 1111 /* 1112 * Inline functions 1113 */ 1114 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1115 unsigned int length) 1116 { 1117 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 1118 u32 *ctx = (u32 *)shash_desc_ctx(shash); 1119 u32 retval; 1120 int err; 1121 1122 shash->tfm = sbi->s_chksum_driver; 1123 shash->flags = 0; 1124 *ctx = F2FS_SUPER_MAGIC; 1125 1126 err = crypto_shash_update(shash, address, length); 1127 BUG_ON(err); 1128 1129 retval = *ctx; 1130 barrier_data(ctx); 1131 return retval; 1132 } 1133 1134 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1135 void *buf, size_t buf_size) 1136 { 1137 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1138 } 1139 1140 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1141 { 1142 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1143 } 1144 1145 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1146 { 1147 return sb->s_fs_info; 1148 } 1149 1150 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1151 { 1152 return F2FS_SB(inode->i_sb); 1153 } 1154 1155 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1156 { 1157 return F2FS_I_SB(mapping->host); 1158 } 1159 1160 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1161 { 1162 return F2FS_M_SB(page->mapping); 1163 } 1164 1165 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1166 { 1167 return (struct f2fs_super_block *)(sbi->raw_super); 1168 } 1169 1170 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1171 { 1172 return (struct f2fs_checkpoint *)(sbi->ckpt); 1173 } 1174 1175 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1176 { 1177 return (struct f2fs_node *)page_address(page); 1178 } 1179 1180 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1181 { 1182 return &((struct f2fs_node *)page_address(page))->i; 1183 } 1184 1185 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1186 { 1187 return (struct f2fs_nm_info *)(sbi->nm_info); 1188 } 1189 1190 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1191 { 1192 return (struct f2fs_sm_info *)(sbi->sm_info); 1193 } 1194 1195 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1196 { 1197 return (struct sit_info *)(SM_I(sbi)->sit_info); 1198 } 1199 1200 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1201 { 1202 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1203 } 1204 1205 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1206 { 1207 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1208 } 1209 1210 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1211 { 1212 return sbi->meta_inode->i_mapping; 1213 } 1214 1215 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1216 { 1217 return sbi->node_inode->i_mapping; 1218 } 1219 1220 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1221 { 1222 return test_bit(type, &sbi->s_flag); 1223 } 1224 1225 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1226 { 1227 set_bit(type, &sbi->s_flag); 1228 } 1229 1230 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1231 { 1232 clear_bit(type, &sbi->s_flag); 1233 } 1234 1235 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1236 { 1237 return le64_to_cpu(cp->checkpoint_ver); 1238 } 1239 1240 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1241 { 1242 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1243 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1244 } 1245 1246 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1247 { 1248 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1249 1250 return ckpt_flags & f; 1251 } 1252 1253 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1254 { 1255 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1256 } 1257 1258 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1259 { 1260 unsigned int ckpt_flags; 1261 1262 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1263 ckpt_flags |= f; 1264 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1265 } 1266 1267 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1268 { 1269 unsigned long flags; 1270 1271 spin_lock_irqsave(&sbi->cp_lock, flags); 1272 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1273 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1274 } 1275 1276 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1277 { 1278 unsigned int ckpt_flags; 1279 1280 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1281 ckpt_flags &= (~f); 1282 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1283 } 1284 1285 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1286 { 1287 unsigned long flags; 1288 1289 spin_lock_irqsave(&sbi->cp_lock, flags); 1290 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1291 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1292 } 1293 1294 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1295 { 1296 unsigned long flags; 1297 1298 set_sbi_flag(sbi, SBI_NEED_FSCK); 1299 1300 if (lock) 1301 spin_lock_irqsave(&sbi->cp_lock, flags); 1302 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1303 kfree(NM_I(sbi)->nat_bits); 1304 NM_I(sbi)->nat_bits = NULL; 1305 if (lock) 1306 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1307 } 1308 1309 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1310 struct cp_control *cpc) 1311 { 1312 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1313 1314 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1315 } 1316 1317 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1318 { 1319 down_read(&sbi->cp_rwsem); 1320 } 1321 1322 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1323 { 1324 return down_read_trylock(&sbi->cp_rwsem); 1325 } 1326 1327 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1328 { 1329 up_read(&sbi->cp_rwsem); 1330 } 1331 1332 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1333 { 1334 down_write(&sbi->cp_rwsem); 1335 } 1336 1337 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1338 { 1339 up_write(&sbi->cp_rwsem); 1340 } 1341 1342 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1343 { 1344 int reason = CP_SYNC; 1345 1346 if (test_opt(sbi, FASTBOOT)) 1347 reason = CP_FASTBOOT; 1348 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1349 reason = CP_UMOUNT; 1350 return reason; 1351 } 1352 1353 static inline bool __remain_node_summaries(int reason) 1354 { 1355 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1356 } 1357 1358 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1359 { 1360 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1361 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1362 } 1363 1364 /* 1365 * Check whether the given nid is within node id range. 1366 */ 1367 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1368 { 1369 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1370 return -EINVAL; 1371 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1372 return -EINVAL; 1373 return 0; 1374 } 1375 1376 /* 1377 * Check whether the inode has blocks or not 1378 */ 1379 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1380 { 1381 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1382 1383 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1384 } 1385 1386 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1387 { 1388 return ofs == XATTR_NODE_OFFSET; 1389 } 1390 1391 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1392 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1393 struct inode *inode, blkcnt_t *count) 1394 { 1395 blkcnt_t diff = 0, release = 0; 1396 block_t avail_user_block_count; 1397 int ret; 1398 1399 ret = dquot_reserve_block(inode, *count); 1400 if (ret) 1401 return ret; 1402 1403 #ifdef CONFIG_F2FS_FAULT_INJECTION 1404 if (time_to_inject(sbi, FAULT_BLOCK)) { 1405 f2fs_show_injection_info(FAULT_BLOCK); 1406 release = *count; 1407 goto enospc; 1408 } 1409 #endif 1410 /* 1411 * let's increase this in prior to actual block count change in order 1412 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1413 */ 1414 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1415 1416 spin_lock(&sbi->stat_lock); 1417 sbi->total_valid_block_count += (block_t)(*count); 1418 avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks; 1419 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1420 diff = sbi->total_valid_block_count - avail_user_block_count; 1421 *count -= diff; 1422 release = diff; 1423 sbi->total_valid_block_count = avail_user_block_count; 1424 if (!*count) { 1425 spin_unlock(&sbi->stat_lock); 1426 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1427 goto enospc; 1428 } 1429 } 1430 spin_unlock(&sbi->stat_lock); 1431 1432 if (release) 1433 dquot_release_reservation_block(inode, release); 1434 f2fs_i_blocks_write(inode, *count, true, true); 1435 return 0; 1436 1437 enospc: 1438 dquot_release_reservation_block(inode, release); 1439 return -ENOSPC; 1440 } 1441 1442 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1443 struct inode *inode, 1444 block_t count) 1445 { 1446 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1447 1448 spin_lock(&sbi->stat_lock); 1449 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1450 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1451 sbi->total_valid_block_count -= (block_t)count; 1452 spin_unlock(&sbi->stat_lock); 1453 f2fs_i_blocks_write(inode, count, false, true); 1454 } 1455 1456 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1457 { 1458 atomic_inc(&sbi->nr_pages[count_type]); 1459 1460 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1461 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1462 return; 1463 1464 set_sbi_flag(sbi, SBI_IS_DIRTY); 1465 } 1466 1467 static inline void inode_inc_dirty_pages(struct inode *inode) 1468 { 1469 atomic_inc(&F2FS_I(inode)->dirty_pages); 1470 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1471 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1472 } 1473 1474 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1475 { 1476 atomic_dec(&sbi->nr_pages[count_type]); 1477 } 1478 1479 static inline void inode_dec_dirty_pages(struct inode *inode) 1480 { 1481 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1482 !S_ISLNK(inode->i_mode)) 1483 return; 1484 1485 atomic_dec(&F2FS_I(inode)->dirty_pages); 1486 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1487 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1488 } 1489 1490 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1491 { 1492 return atomic_read(&sbi->nr_pages[count_type]); 1493 } 1494 1495 static inline int get_dirty_pages(struct inode *inode) 1496 { 1497 return atomic_read(&F2FS_I(inode)->dirty_pages); 1498 } 1499 1500 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1501 { 1502 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1503 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1504 sbi->log_blocks_per_seg; 1505 1506 return segs / sbi->segs_per_sec; 1507 } 1508 1509 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1510 { 1511 return sbi->total_valid_block_count; 1512 } 1513 1514 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1515 { 1516 return sbi->discard_blks; 1517 } 1518 1519 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1520 { 1521 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1522 1523 /* return NAT or SIT bitmap */ 1524 if (flag == NAT_BITMAP) 1525 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1526 else if (flag == SIT_BITMAP) 1527 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1528 1529 return 0; 1530 } 1531 1532 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1533 { 1534 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1535 } 1536 1537 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1538 { 1539 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1540 int offset; 1541 1542 if (__cp_payload(sbi) > 0) { 1543 if (flag == NAT_BITMAP) 1544 return &ckpt->sit_nat_version_bitmap; 1545 else 1546 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1547 } else { 1548 offset = (flag == NAT_BITMAP) ? 1549 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1550 return &ckpt->sit_nat_version_bitmap + offset; 1551 } 1552 } 1553 1554 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1555 { 1556 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1557 1558 if (sbi->cur_cp_pack == 2) 1559 start_addr += sbi->blocks_per_seg; 1560 return start_addr; 1561 } 1562 1563 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1564 { 1565 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1566 1567 if (sbi->cur_cp_pack == 1) 1568 start_addr += sbi->blocks_per_seg; 1569 return start_addr; 1570 } 1571 1572 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1573 { 1574 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1575 } 1576 1577 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1578 { 1579 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1580 } 1581 1582 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1583 struct inode *inode, bool is_inode) 1584 { 1585 block_t valid_block_count; 1586 unsigned int valid_node_count; 1587 bool quota = inode && !is_inode; 1588 1589 if (quota) { 1590 int ret = dquot_reserve_block(inode, 1); 1591 if (ret) 1592 return ret; 1593 } 1594 1595 spin_lock(&sbi->stat_lock); 1596 1597 valid_block_count = sbi->total_valid_block_count + 1; 1598 if (unlikely(valid_block_count + sbi->reserved_blocks > 1599 sbi->user_block_count)) { 1600 spin_unlock(&sbi->stat_lock); 1601 goto enospc; 1602 } 1603 1604 valid_node_count = sbi->total_valid_node_count + 1; 1605 if (unlikely(valid_node_count > sbi->total_node_count)) { 1606 spin_unlock(&sbi->stat_lock); 1607 goto enospc; 1608 } 1609 1610 sbi->total_valid_node_count++; 1611 sbi->total_valid_block_count++; 1612 spin_unlock(&sbi->stat_lock); 1613 1614 if (inode) { 1615 if (is_inode) 1616 f2fs_mark_inode_dirty_sync(inode, true); 1617 else 1618 f2fs_i_blocks_write(inode, 1, true, true); 1619 } 1620 1621 percpu_counter_inc(&sbi->alloc_valid_block_count); 1622 return 0; 1623 1624 enospc: 1625 if (quota) 1626 dquot_release_reservation_block(inode, 1); 1627 return -ENOSPC; 1628 } 1629 1630 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1631 struct inode *inode, bool is_inode) 1632 { 1633 spin_lock(&sbi->stat_lock); 1634 1635 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1636 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1637 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1638 1639 sbi->total_valid_node_count--; 1640 sbi->total_valid_block_count--; 1641 1642 spin_unlock(&sbi->stat_lock); 1643 1644 if (!is_inode) 1645 f2fs_i_blocks_write(inode, 1, false, true); 1646 } 1647 1648 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1649 { 1650 return sbi->total_valid_node_count; 1651 } 1652 1653 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1654 { 1655 percpu_counter_inc(&sbi->total_valid_inode_count); 1656 } 1657 1658 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1659 { 1660 percpu_counter_dec(&sbi->total_valid_inode_count); 1661 } 1662 1663 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1664 { 1665 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1666 } 1667 1668 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1669 pgoff_t index, bool for_write) 1670 { 1671 #ifdef CONFIG_F2FS_FAULT_INJECTION 1672 struct page *page = find_lock_page(mapping, index); 1673 1674 if (page) 1675 return page; 1676 1677 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1678 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1679 return NULL; 1680 } 1681 #endif 1682 if (!for_write) 1683 return grab_cache_page(mapping, index); 1684 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1685 } 1686 1687 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1688 { 1689 char *src_kaddr = kmap(src); 1690 char *dst_kaddr = kmap(dst); 1691 1692 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1693 kunmap(dst); 1694 kunmap(src); 1695 } 1696 1697 static inline void f2fs_put_page(struct page *page, int unlock) 1698 { 1699 if (!page) 1700 return; 1701 1702 if (unlock) { 1703 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1704 unlock_page(page); 1705 } 1706 put_page(page); 1707 } 1708 1709 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1710 { 1711 if (dn->node_page) 1712 f2fs_put_page(dn->node_page, 1); 1713 if (dn->inode_page && dn->node_page != dn->inode_page) 1714 f2fs_put_page(dn->inode_page, 0); 1715 dn->node_page = NULL; 1716 dn->inode_page = NULL; 1717 } 1718 1719 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1720 size_t size) 1721 { 1722 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1723 } 1724 1725 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1726 gfp_t flags) 1727 { 1728 void *entry; 1729 1730 entry = kmem_cache_alloc(cachep, flags); 1731 if (!entry) 1732 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1733 return entry; 1734 } 1735 1736 static inline struct bio *f2fs_bio_alloc(int npages) 1737 { 1738 struct bio *bio; 1739 1740 /* No failure on bio allocation */ 1741 bio = bio_alloc(GFP_NOIO, npages); 1742 if (!bio) 1743 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1744 return bio; 1745 } 1746 1747 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1748 unsigned long index, void *item) 1749 { 1750 while (radix_tree_insert(root, index, item)) 1751 cond_resched(); 1752 } 1753 1754 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1755 1756 static inline bool IS_INODE(struct page *page) 1757 { 1758 struct f2fs_node *p = F2FS_NODE(page); 1759 1760 return RAW_IS_INODE(p); 1761 } 1762 1763 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1764 { 1765 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1766 } 1767 1768 static inline block_t datablock_addr(struct page *node_page, 1769 unsigned int offset) 1770 { 1771 struct f2fs_node *raw_node; 1772 __le32 *addr_array; 1773 1774 raw_node = F2FS_NODE(node_page); 1775 addr_array = blkaddr_in_node(raw_node); 1776 return le32_to_cpu(addr_array[offset]); 1777 } 1778 1779 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1780 { 1781 int mask; 1782 1783 addr += (nr >> 3); 1784 mask = 1 << (7 - (nr & 0x07)); 1785 return mask & *addr; 1786 } 1787 1788 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1789 { 1790 int mask; 1791 1792 addr += (nr >> 3); 1793 mask = 1 << (7 - (nr & 0x07)); 1794 *addr |= mask; 1795 } 1796 1797 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1798 { 1799 int mask; 1800 1801 addr += (nr >> 3); 1802 mask = 1 << (7 - (nr & 0x07)); 1803 *addr &= ~mask; 1804 } 1805 1806 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1807 { 1808 int mask; 1809 int ret; 1810 1811 addr += (nr >> 3); 1812 mask = 1 << (7 - (nr & 0x07)); 1813 ret = mask & *addr; 1814 *addr |= mask; 1815 return ret; 1816 } 1817 1818 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1819 { 1820 int mask; 1821 int ret; 1822 1823 addr += (nr >> 3); 1824 mask = 1 << (7 - (nr & 0x07)); 1825 ret = mask & *addr; 1826 *addr &= ~mask; 1827 return ret; 1828 } 1829 1830 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1831 { 1832 int mask; 1833 1834 addr += (nr >> 3); 1835 mask = 1 << (7 - (nr & 0x07)); 1836 *addr ^= mask; 1837 } 1838 1839 /* used for f2fs_inode_info->flags */ 1840 enum { 1841 FI_NEW_INODE, /* indicate newly allocated inode */ 1842 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1843 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1844 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1845 FI_INC_LINK, /* need to increment i_nlink */ 1846 FI_ACL_MODE, /* indicate acl mode */ 1847 FI_NO_ALLOC, /* should not allocate any blocks */ 1848 FI_FREE_NID, /* free allocated nide */ 1849 FI_NO_EXTENT, /* not to use the extent cache */ 1850 FI_INLINE_XATTR, /* used for inline xattr */ 1851 FI_INLINE_DATA, /* used for inline data*/ 1852 FI_INLINE_DENTRY, /* used for inline dentry */ 1853 FI_APPEND_WRITE, /* inode has appended data */ 1854 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1855 FI_NEED_IPU, /* used for ipu per file */ 1856 FI_ATOMIC_FILE, /* indicate atomic file */ 1857 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 1858 FI_VOLATILE_FILE, /* indicate volatile file */ 1859 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1860 FI_DROP_CACHE, /* drop dirty page cache */ 1861 FI_DATA_EXIST, /* indicate data exists */ 1862 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1863 FI_DO_DEFRAG, /* indicate defragment is running */ 1864 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1865 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 1866 FI_HOT_DATA, /* indicate file is hot */ 1867 }; 1868 1869 static inline void __mark_inode_dirty_flag(struct inode *inode, 1870 int flag, bool set) 1871 { 1872 switch (flag) { 1873 case FI_INLINE_XATTR: 1874 case FI_INLINE_DATA: 1875 case FI_INLINE_DENTRY: 1876 if (set) 1877 return; 1878 case FI_DATA_EXIST: 1879 case FI_INLINE_DOTS: 1880 f2fs_mark_inode_dirty_sync(inode, true); 1881 } 1882 } 1883 1884 static inline void set_inode_flag(struct inode *inode, int flag) 1885 { 1886 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1887 set_bit(flag, &F2FS_I(inode)->flags); 1888 __mark_inode_dirty_flag(inode, flag, true); 1889 } 1890 1891 static inline int is_inode_flag_set(struct inode *inode, int flag) 1892 { 1893 return test_bit(flag, &F2FS_I(inode)->flags); 1894 } 1895 1896 static inline void clear_inode_flag(struct inode *inode, int flag) 1897 { 1898 if (test_bit(flag, &F2FS_I(inode)->flags)) 1899 clear_bit(flag, &F2FS_I(inode)->flags); 1900 __mark_inode_dirty_flag(inode, flag, false); 1901 } 1902 1903 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1904 { 1905 F2FS_I(inode)->i_acl_mode = mode; 1906 set_inode_flag(inode, FI_ACL_MODE); 1907 f2fs_mark_inode_dirty_sync(inode, false); 1908 } 1909 1910 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1911 { 1912 if (inc) 1913 inc_nlink(inode); 1914 else 1915 drop_nlink(inode); 1916 f2fs_mark_inode_dirty_sync(inode, true); 1917 } 1918 1919 static inline void f2fs_i_blocks_write(struct inode *inode, 1920 block_t diff, bool add, bool claim) 1921 { 1922 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1923 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1924 1925 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 1926 if (add) { 1927 if (claim) 1928 dquot_claim_block(inode, diff); 1929 else 1930 dquot_alloc_block_nofail(inode, diff); 1931 } else { 1932 dquot_free_block(inode, diff); 1933 } 1934 1935 f2fs_mark_inode_dirty_sync(inode, true); 1936 if (clean || recover) 1937 set_inode_flag(inode, FI_AUTO_RECOVER); 1938 } 1939 1940 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1941 { 1942 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1943 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1944 1945 if (i_size_read(inode) == i_size) 1946 return; 1947 1948 i_size_write(inode, i_size); 1949 f2fs_mark_inode_dirty_sync(inode, true); 1950 if (clean || recover) 1951 set_inode_flag(inode, FI_AUTO_RECOVER); 1952 } 1953 1954 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1955 { 1956 F2FS_I(inode)->i_current_depth = depth; 1957 f2fs_mark_inode_dirty_sync(inode, true); 1958 } 1959 1960 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1961 { 1962 F2FS_I(inode)->i_xattr_nid = xnid; 1963 f2fs_mark_inode_dirty_sync(inode, true); 1964 } 1965 1966 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1967 { 1968 F2FS_I(inode)->i_pino = pino; 1969 f2fs_mark_inode_dirty_sync(inode, true); 1970 } 1971 1972 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1973 { 1974 struct f2fs_inode_info *fi = F2FS_I(inode); 1975 1976 if (ri->i_inline & F2FS_INLINE_XATTR) 1977 set_bit(FI_INLINE_XATTR, &fi->flags); 1978 if (ri->i_inline & F2FS_INLINE_DATA) 1979 set_bit(FI_INLINE_DATA, &fi->flags); 1980 if (ri->i_inline & F2FS_INLINE_DENTRY) 1981 set_bit(FI_INLINE_DENTRY, &fi->flags); 1982 if (ri->i_inline & F2FS_DATA_EXIST) 1983 set_bit(FI_DATA_EXIST, &fi->flags); 1984 if (ri->i_inline & F2FS_INLINE_DOTS) 1985 set_bit(FI_INLINE_DOTS, &fi->flags); 1986 } 1987 1988 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1989 { 1990 ri->i_inline = 0; 1991 1992 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1993 ri->i_inline |= F2FS_INLINE_XATTR; 1994 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1995 ri->i_inline |= F2FS_INLINE_DATA; 1996 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1997 ri->i_inline |= F2FS_INLINE_DENTRY; 1998 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1999 ri->i_inline |= F2FS_DATA_EXIST; 2000 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2001 ri->i_inline |= F2FS_INLINE_DOTS; 2002 } 2003 2004 static inline int f2fs_has_inline_xattr(struct inode *inode) 2005 { 2006 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2007 } 2008 2009 static inline unsigned int addrs_per_inode(struct inode *inode) 2010 { 2011 if (f2fs_has_inline_xattr(inode)) 2012 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 2013 return DEF_ADDRS_PER_INODE; 2014 } 2015 2016 static inline void *inline_xattr_addr(struct page *page) 2017 { 2018 struct f2fs_inode *ri = F2FS_INODE(page); 2019 2020 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2021 F2FS_INLINE_XATTR_ADDRS]); 2022 } 2023 2024 static inline int inline_xattr_size(struct inode *inode) 2025 { 2026 if (f2fs_has_inline_xattr(inode)) 2027 return F2FS_INLINE_XATTR_ADDRS << 2; 2028 else 2029 return 0; 2030 } 2031 2032 static inline int f2fs_has_inline_data(struct inode *inode) 2033 { 2034 return is_inode_flag_set(inode, FI_INLINE_DATA); 2035 } 2036 2037 static inline int f2fs_exist_data(struct inode *inode) 2038 { 2039 return is_inode_flag_set(inode, FI_DATA_EXIST); 2040 } 2041 2042 static inline int f2fs_has_inline_dots(struct inode *inode) 2043 { 2044 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2045 } 2046 2047 static inline bool f2fs_is_atomic_file(struct inode *inode) 2048 { 2049 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2050 } 2051 2052 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2053 { 2054 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2055 } 2056 2057 static inline bool f2fs_is_volatile_file(struct inode *inode) 2058 { 2059 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2060 } 2061 2062 static inline bool f2fs_is_first_block_written(struct inode *inode) 2063 { 2064 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2065 } 2066 2067 static inline bool f2fs_is_drop_cache(struct inode *inode) 2068 { 2069 return is_inode_flag_set(inode, FI_DROP_CACHE); 2070 } 2071 2072 static inline void *inline_data_addr(struct page *page) 2073 { 2074 struct f2fs_inode *ri = F2FS_INODE(page); 2075 2076 return (void *)&(ri->i_addr[1]); 2077 } 2078 2079 static inline int f2fs_has_inline_dentry(struct inode *inode) 2080 { 2081 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2082 } 2083 2084 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 2085 { 2086 if (!f2fs_has_inline_dentry(dir)) 2087 kunmap(page); 2088 } 2089 2090 static inline int is_file(struct inode *inode, int type) 2091 { 2092 return F2FS_I(inode)->i_advise & type; 2093 } 2094 2095 static inline void set_file(struct inode *inode, int type) 2096 { 2097 F2FS_I(inode)->i_advise |= type; 2098 f2fs_mark_inode_dirty_sync(inode, true); 2099 } 2100 2101 static inline void clear_file(struct inode *inode, int type) 2102 { 2103 F2FS_I(inode)->i_advise &= ~type; 2104 f2fs_mark_inode_dirty_sync(inode, true); 2105 } 2106 2107 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2108 { 2109 if (dsync) { 2110 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2111 bool ret; 2112 2113 spin_lock(&sbi->inode_lock[DIRTY_META]); 2114 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2115 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2116 return ret; 2117 } 2118 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2119 file_keep_isize(inode) || 2120 i_size_read(inode) & PAGE_MASK) 2121 return false; 2122 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 2123 } 2124 2125 static inline int f2fs_readonly(struct super_block *sb) 2126 { 2127 return sb->s_flags & MS_RDONLY; 2128 } 2129 2130 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2131 { 2132 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2133 } 2134 2135 static inline bool is_dot_dotdot(const struct qstr *str) 2136 { 2137 if (str->len == 1 && str->name[0] == '.') 2138 return true; 2139 2140 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2141 return true; 2142 2143 return false; 2144 } 2145 2146 static inline bool f2fs_may_extent_tree(struct inode *inode) 2147 { 2148 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2149 is_inode_flag_set(inode, FI_NO_EXTENT)) 2150 return false; 2151 2152 return S_ISREG(inode->i_mode); 2153 } 2154 2155 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2156 size_t size, gfp_t flags) 2157 { 2158 #ifdef CONFIG_F2FS_FAULT_INJECTION 2159 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2160 f2fs_show_injection_info(FAULT_KMALLOC); 2161 return NULL; 2162 } 2163 #endif 2164 return kmalloc(size, flags); 2165 } 2166 2167 #define get_inode_mode(i) \ 2168 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2169 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2170 2171 /* 2172 * file.c 2173 */ 2174 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2175 void truncate_data_blocks(struct dnode_of_data *dn); 2176 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2177 int f2fs_truncate(struct inode *inode); 2178 int f2fs_getattr(const struct path *path, struct kstat *stat, 2179 u32 request_mask, unsigned int flags); 2180 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2181 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2182 int truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2183 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2184 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2185 2186 /* 2187 * inode.c 2188 */ 2189 void f2fs_set_inode_flags(struct inode *inode); 2190 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2191 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2192 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2193 int update_inode(struct inode *inode, struct page *node_page); 2194 int update_inode_page(struct inode *inode); 2195 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2196 void f2fs_evict_inode(struct inode *inode); 2197 void handle_failed_inode(struct inode *inode); 2198 2199 /* 2200 * namei.c 2201 */ 2202 struct dentry *f2fs_get_parent(struct dentry *child); 2203 2204 /* 2205 * dir.c 2206 */ 2207 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2208 unsigned char get_de_type(struct f2fs_dir_entry *de); 2209 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2210 f2fs_hash_t namehash, int *max_slots, 2211 struct f2fs_dentry_ptr *d); 2212 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2213 unsigned int start_pos, struct fscrypt_str *fstr); 2214 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2215 struct f2fs_dentry_ptr *d); 2216 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2217 const struct qstr *new_name, 2218 const struct qstr *orig_name, struct page *dpage); 2219 void update_parent_metadata(struct inode *dir, struct inode *inode, 2220 unsigned int current_depth); 2221 int room_for_filename(const void *bitmap, int slots, int max_slots); 2222 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2223 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2224 struct fscrypt_name *fname, struct page **res_page); 2225 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2226 const struct qstr *child, struct page **res_page); 2227 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2228 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2229 struct page **page); 2230 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2231 struct page *page, struct inode *inode); 2232 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2233 const struct qstr *name, f2fs_hash_t name_hash, 2234 unsigned int bit_pos); 2235 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2236 const struct qstr *orig_name, 2237 struct inode *inode, nid_t ino, umode_t mode); 2238 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2239 struct inode *inode, nid_t ino, umode_t mode); 2240 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2241 struct inode *inode, nid_t ino, umode_t mode); 2242 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2243 struct inode *dir, struct inode *inode); 2244 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2245 bool f2fs_empty_dir(struct inode *dir); 2246 2247 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2248 { 2249 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2250 inode, inode->i_ino, inode->i_mode); 2251 } 2252 2253 /* 2254 * super.c 2255 */ 2256 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2257 void f2fs_inode_synced(struct inode *inode); 2258 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2259 int f2fs_sync_fs(struct super_block *sb, int sync); 2260 extern __printf(3, 4) 2261 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2262 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2263 2264 /* 2265 * hash.c 2266 */ 2267 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2268 struct fscrypt_name *fname); 2269 2270 /* 2271 * node.c 2272 */ 2273 struct dnode_of_data; 2274 struct node_info; 2275 2276 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2277 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2278 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2279 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2280 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2281 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2282 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2283 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2284 int truncate_xattr_node(struct inode *inode, struct page *page); 2285 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2286 int remove_inode_page(struct inode *inode); 2287 struct page *new_inode_page(struct inode *inode); 2288 struct page *new_node_page(struct dnode_of_data *dn, 2289 unsigned int ofs, struct page *ipage); 2290 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2291 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2292 struct page *get_node_page_ra(struct page *parent, int start); 2293 void move_node_page(struct page *node_page, int gc_type); 2294 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2295 struct writeback_control *wbc, bool atomic); 2296 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc); 2297 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2298 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2299 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2300 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2301 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2302 void recover_inline_xattr(struct inode *inode, struct page *page); 2303 int recover_xattr_data(struct inode *inode, struct page *page, 2304 block_t blkaddr); 2305 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2306 int restore_node_summary(struct f2fs_sb_info *sbi, 2307 unsigned int segno, struct f2fs_summary_block *sum); 2308 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2309 int build_node_manager(struct f2fs_sb_info *sbi); 2310 void destroy_node_manager(struct f2fs_sb_info *sbi); 2311 int __init create_node_manager_caches(void); 2312 void destroy_node_manager_caches(void); 2313 2314 /* 2315 * segment.c 2316 */ 2317 void register_inmem_page(struct inode *inode, struct page *page); 2318 void drop_inmem_pages(struct inode *inode); 2319 void drop_inmem_page(struct inode *inode, struct page *page); 2320 int commit_inmem_pages(struct inode *inode); 2321 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2322 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2323 int f2fs_issue_flush(struct f2fs_sb_info *sbi); 2324 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2325 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2326 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2327 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2328 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new); 2329 void stop_discard_thread(struct f2fs_sb_info *sbi); 2330 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2331 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2332 void release_discard_addrs(struct f2fs_sb_info *sbi); 2333 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2334 void allocate_new_segments(struct f2fs_sb_info *sbi); 2335 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2336 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2337 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2338 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2339 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page); 2340 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2341 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2342 int rewrite_data_page(struct f2fs_io_info *fio); 2343 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2344 block_t old_blkaddr, block_t new_blkaddr, 2345 bool recover_curseg, bool recover_newaddr); 2346 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2347 block_t old_addr, block_t new_addr, 2348 unsigned char version, bool recover_curseg, 2349 bool recover_newaddr); 2350 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2351 block_t old_blkaddr, block_t *new_blkaddr, 2352 struct f2fs_summary *sum, int type, 2353 struct f2fs_io_info *fio, bool add_list); 2354 void f2fs_wait_on_page_writeback(struct page *page, 2355 enum page_type type, bool ordered); 2356 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 2357 block_t blkaddr); 2358 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2359 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2360 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2361 unsigned int val, int alloc); 2362 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2363 int build_segment_manager(struct f2fs_sb_info *sbi); 2364 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2365 int __init create_segment_manager_caches(void); 2366 void destroy_segment_manager_caches(void); 2367 2368 /* 2369 * checkpoint.c 2370 */ 2371 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2372 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2373 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2374 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2375 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2376 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2377 int type, bool sync); 2378 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2379 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2380 long nr_to_write); 2381 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2382 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2383 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2384 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2385 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2386 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2387 void release_orphan_inode(struct f2fs_sb_info *sbi); 2388 void add_orphan_inode(struct inode *inode); 2389 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2390 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2391 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2392 void update_dirty_page(struct inode *inode, struct page *page); 2393 void remove_dirty_inode(struct inode *inode); 2394 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2395 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2396 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2397 int __init create_checkpoint_caches(void); 2398 void destroy_checkpoint_caches(void); 2399 2400 /* 2401 * data.c 2402 */ 2403 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2404 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2405 struct inode *inode, nid_t ino, pgoff_t idx, 2406 enum page_type type); 2407 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2408 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2409 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2410 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2411 block_t blk_addr, struct bio *bio); 2412 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2413 void set_data_blkaddr(struct dnode_of_data *dn); 2414 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2415 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2416 int reserve_new_block(struct dnode_of_data *dn); 2417 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2418 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2419 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2420 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2421 int op_flags, bool for_write); 2422 struct page *find_data_page(struct inode *inode, pgoff_t index); 2423 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2424 bool for_write); 2425 struct page *get_new_data_page(struct inode *inode, 2426 struct page *ipage, pgoff_t index, bool new_i_size); 2427 int do_write_data_page(struct f2fs_io_info *fio); 2428 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2429 int create, int flag); 2430 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2431 u64 start, u64 len); 2432 void f2fs_set_page_dirty_nobuffers(struct page *page); 2433 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2434 unsigned int length); 2435 int f2fs_release_page(struct page *page, gfp_t wait); 2436 #ifdef CONFIG_MIGRATION 2437 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2438 struct page *page, enum migrate_mode mode); 2439 #endif 2440 2441 /* 2442 * gc.c 2443 */ 2444 int start_gc_thread(struct f2fs_sb_info *sbi); 2445 void stop_gc_thread(struct f2fs_sb_info *sbi); 2446 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2447 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2448 unsigned int segno); 2449 void build_gc_manager(struct f2fs_sb_info *sbi); 2450 2451 /* 2452 * recovery.c 2453 */ 2454 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2455 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2456 2457 /* 2458 * debug.c 2459 */ 2460 #ifdef CONFIG_F2FS_STAT_FS 2461 struct f2fs_stat_info { 2462 struct list_head stat_list; 2463 struct f2fs_sb_info *sbi; 2464 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2465 int main_area_segs, main_area_sections, main_area_zones; 2466 unsigned long long hit_largest, hit_cached, hit_rbtree; 2467 unsigned long long hit_total, total_ext; 2468 int ext_tree, zombie_tree, ext_node; 2469 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2470 int inmem_pages; 2471 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2472 int nats, dirty_nats, sits, dirty_sits; 2473 int free_nids, avail_nids, alloc_nids; 2474 int total_count, utilization; 2475 int bg_gc, nr_wb_cp_data, nr_wb_data; 2476 int nr_flushing, nr_flushed, nr_discarding, nr_discarded; 2477 int nr_discard_cmd; 2478 unsigned int undiscard_blks; 2479 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2480 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2481 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2482 unsigned int bimodal, avg_vblocks; 2483 int util_free, util_valid, util_invalid; 2484 int rsvd_segs, overp_segs; 2485 int dirty_count, node_pages, meta_pages; 2486 int prefree_count, call_count, cp_count, bg_cp_count; 2487 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2488 int bg_node_segs, bg_data_segs; 2489 int tot_blks, data_blks, node_blks; 2490 int bg_data_blks, bg_node_blks; 2491 int curseg[NR_CURSEG_TYPE]; 2492 int cursec[NR_CURSEG_TYPE]; 2493 int curzone[NR_CURSEG_TYPE]; 2494 2495 unsigned int segment_count[2]; 2496 unsigned int block_count[2]; 2497 unsigned int inplace_count; 2498 unsigned long long base_mem, cache_mem, page_mem; 2499 }; 2500 2501 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2502 { 2503 return (struct f2fs_stat_info *)sbi->stat_info; 2504 } 2505 2506 #define stat_inc_cp_count(si) ((si)->cp_count++) 2507 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2508 #define stat_inc_call_count(si) ((si)->call_count++) 2509 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2510 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2511 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2512 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2513 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2514 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2515 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2516 #define stat_inc_inline_xattr(inode) \ 2517 do { \ 2518 if (f2fs_has_inline_xattr(inode)) \ 2519 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2520 } while (0) 2521 #define stat_dec_inline_xattr(inode) \ 2522 do { \ 2523 if (f2fs_has_inline_xattr(inode)) \ 2524 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2525 } while (0) 2526 #define stat_inc_inline_inode(inode) \ 2527 do { \ 2528 if (f2fs_has_inline_data(inode)) \ 2529 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2530 } while (0) 2531 #define stat_dec_inline_inode(inode) \ 2532 do { \ 2533 if (f2fs_has_inline_data(inode)) \ 2534 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2535 } while (0) 2536 #define stat_inc_inline_dir(inode) \ 2537 do { \ 2538 if (f2fs_has_inline_dentry(inode)) \ 2539 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2540 } while (0) 2541 #define stat_dec_inline_dir(inode) \ 2542 do { \ 2543 if (f2fs_has_inline_dentry(inode)) \ 2544 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2545 } while (0) 2546 #define stat_inc_seg_type(sbi, curseg) \ 2547 ((sbi)->segment_count[(curseg)->alloc_type]++) 2548 #define stat_inc_block_count(sbi, curseg) \ 2549 ((sbi)->block_count[(curseg)->alloc_type]++) 2550 #define stat_inc_inplace_blocks(sbi) \ 2551 (atomic_inc(&(sbi)->inplace_count)) 2552 #define stat_inc_atomic_write(inode) \ 2553 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2554 #define stat_dec_atomic_write(inode) \ 2555 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2556 #define stat_update_max_atomic_write(inode) \ 2557 do { \ 2558 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2559 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2560 if (cur > max) \ 2561 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2562 } while (0) 2563 #define stat_inc_volatile_write(inode) \ 2564 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 2565 #define stat_dec_volatile_write(inode) \ 2566 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 2567 #define stat_update_max_volatile_write(inode) \ 2568 do { \ 2569 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 2570 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 2571 if (cur > max) \ 2572 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 2573 } while (0) 2574 #define stat_inc_seg_count(sbi, type, gc_type) \ 2575 do { \ 2576 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2577 si->tot_segs++; \ 2578 if ((type) == SUM_TYPE_DATA) { \ 2579 si->data_segs++; \ 2580 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2581 } else { \ 2582 si->node_segs++; \ 2583 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2584 } \ 2585 } while (0) 2586 2587 #define stat_inc_tot_blk_count(si, blks) \ 2588 ((si)->tot_blks += (blks)) 2589 2590 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2591 do { \ 2592 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2593 stat_inc_tot_blk_count(si, blks); \ 2594 si->data_blks += (blks); \ 2595 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2596 } while (0) 2597 2598 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2599 do { \ 2600 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2601 stat_inc_tot_blk_count(si, blks); \ 2602 si->node_blks += (blks); \ 2603 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2604 } while (0) 2605 2606 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2607 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2608 int __init f2fs_create_root_stats(void); 2609 void f2fs_destroy_root_stats(void); 2610 #else 2611 #define stat_inc_cp_count(si) do { } while (0) 2612 #define stat_inc_bg_cp_count(si) do { } while (0) 2613 #define stat_inc_call_count(si) do { } while (0) 2614 #define stat_inc_bggc_count(si) do { } while (0) 2615 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 2616 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 2617 #define stat_inc_total_hit(sb) do { } while (0) 2618 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 2619 #define stat_inc_largest_node_hit(sbi) do { } while (0) 2620 #define stat_inc_cached_node_hit(sbi) do { } while (0) 2621 #define stat_inc_inline_xattr(inode) do { } while (0) 2622 #define stat_dec_inline_xattr(inode) do { } while (0) 2623 #define stat_inc_inline_inode(inode) do { } while (0) 2624 #define stat_dec_inline_inode(inode) do { } while (0) 2625 #define stat_inc_inline_dir(inode) do { } while (0) 2626 #define stat_dec_inline_dir(inode) do { } while (0) 2627 #define stat_inc_atomic_write(inode) do { } while (0) 2628 #define stat_dec_atomic_write(inode) do { } while (0) 2629 #define stat_update_max_atomic_write(inode) do { } while (0) 2630 #define stat_inc_volatile_write(inode) do { } while (0) 2631 #define stat_dec_volatile_write(inode) do { } while (0) 2632 #define stat_update_max_volatile_write(inode) do { } while (0) 2633 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 2634 #define stat_inc_block_count(sbi, curseg) do { } while (0) 2635 #define stat_inc_inplace_blocks(sbi) do { } while (0) 2636 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 2637 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 2638 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 2639 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 2640 2641 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2642 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2643 static inline int __init f2fs_create_root_stats(void) { return 0; } 2644 static inline void f2fs_destroy_root_stats(void) { } 2645 #endif 2646 2647 extern const struct file_operations f2fs_dir_operations; 2648 extern const struct file_operations f2fs_file_operations; 2649 extern const struct inode_operations f2fs_file_inode_operations; 2650 extern const struct address_space_operations f2fs_dblock_aops; 2651 extern const struct address_space_operations f2fs_node_aops; 2652 extern const struct address_space_operations f2fs_meta_aops; 2653 extern const struct inode_operations f2fs_dir_inode_operations; 2654 extern const struct inode_operations f2fs_symlink_inode_operations; 2655 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2656 extern const struct inode_operations f2fs_special_inode_operations; 2657 extern struct kmem_cache *inode_entry_slab; 2658 2659 /* 2660 * inline.c 2661 */ 2662 bool f2fs_may_inline_data(struct inode *inode); 2663 bool f2fs_may_inline_dentry(struct inode *inode); 2664 void read_inline_data(struct page *page, struct page *ipage); 2665 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 2666 int f2fs_read_inline_data(struct inode *inode, struct page *page); 2667 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 2668 int f2fs_convert_inline_inode(struct inode *inode); 2669 int f2fs_write_inline_data(struct inode *inode, struct page *page); 2670 bool recover_inline_data(struct inode *inode, struct page *npage); 2671 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 2672 struct fscrypt_name *fname, struct page **res_page); 2673 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 2674 struct page *ipage); 2675 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 2676 const struct qstr *orig_name, 2677 struct inode *inode, nid_t ino, umode_t mode); 2678 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 2679 struct inode *dir, struct inode *inode); 2680 bool f2fs_empty_inline_dir(struct inode *dir); 2681 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 2682 struct fscrypt_str *fstr); 2683 int f2fs_inline_data_fiemap(struct inode *inode, 2684 struct fiemap_extent_info *fieinfo, 2685 __u64 start, __u64 len); 2686 2687 /* 2688 * shrinker.c 2689 */ 2690 unsigned long f2fs_shrink_count(struct shrinker *shrink, 2691 struct shrink_control *sc); 2692 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 2693 struct shrink_control *sc); 2694 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 2695 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 2696 2697 /* 2698 * extent_cache.c 2699 */ 2700 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 2701 struct rb_entry *cached_re, unsigned int ofs); 2702 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 2703 struct rb_root *root, struct rb_node **parent, 2704 unsigned int ofs); 2705 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 2706 struct rb_entry *cached_re, unsigned int ofs, 2707 struct rb_entry **prev_entry, struct rb_entry **next_entry, 2708 struct rb_node ***insert_p, struct rb_node **insert_parent, 2709 bool force); 2710 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 2711 struct rb_root *root); 2712 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 2713 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 2714 void f2fs_drop_extent_tree(struct inode *inode); 2715 unsigned int f2fs_destroy_extent_node(struct inode *inode); 2716 void f2fs_destroy_extent_tree(struct inode *inode); 2717 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 2718 struct extent_info *ei); 2719 void f2fs_update_extent_cache(struct dnode_of_data *dn); 2720 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2721 pgoff_t fofs, block_t blkaddr, unsigned int len); 2722 void init_extent_cache_info(struct f2fs_sb_info *sbi); 2723 int __init create_extent_cache(void); 2724 void destroy_extent_cache(void); 2725 2726 /* 2727 * sysfs.c 2728 */ 2729 int __init f2fs_register_sysfs(void); 2730 void f2fs_unregister_sysfs(void); 2731 int f2fs_init_sysfs(struct f2fs_sb_info *sbi); 2732 void f2fs_exit_sysfs(struct f2fs_sb_info *sbi); 2733 2734 /* 2735 * crypto support 2736 */ 2737 static inline bool f2fs_encrypted_inode(struct inode *inode) 2738 { 2739 return file_is_encrypt(inode); 2740 } 2741 2742 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2743 { 2744 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2745 file_set_encrypt(inode); 2746 #endif 2747 } 2748 2749 static inline bool f2fs_bio_encrypted(struct bio *bio) 2750 { 2751 return bio->bi_private != NULL; 2752 } 2753 2754 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2755 { 2756 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2757 } 2758 2759 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 2760 { 2761 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 2762 } 2763 2764 #ifdef CONFIG_BLK_DEV_ZONED 2765 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 2766 struct block_device *bdev, block_t blkaddr) 2767 { 2768 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 2769 int i; 2770 2771 for (i = 0; i < sbi->s_ndevs; i++) 2772 if (FDEV(i).bdev == bdev) 2773 return FDEV(i).blkz_type[zno]; 2774 return -EINVAL; 2775 } 2776 #endif 2777 2778 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 2779 { 2780 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 2781 2782 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 2783 } 2784 2785 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2786 { 2787 clear_opt(sbi, ADAPTIVE); 2788 clear_opt(sbi, LFS); 2789 2790 switch (mt) { 2791 case F2FS_MOUNT_ADAPTIVE: 2792 set_opt(sbi, ADAPTIVE); 2793 break; 2794 case F2FS_MOUNT_LFS: 2795 set_opt(sbi, LFS); 2796 break; 2797 } 2798 } 2799 2800 static inline bool f2fs_may_encrypt(struct inode *inode) 2801 { 2802 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2803 umode_t mode = inode->i_mode; 2804 2805 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2806 #else 2807 return 0; 2808 #endif 2809 } 2810 2811 #endif 2812