xref: /openbmc/linux/fs/f2fs/f2fs.h (revision d2c43ff1)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #ifdef CONFIG_F2FS_FS_ENCRYPTION
27 #include <linux/fscrypt_supp.h>
28 #else
29 #include <linux/fscrypt_notsupp.h>
30 #endif
31 #include <crypto/hash.h>
32 
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition)					\
37 	do {								\
38 		if (unlikely(condition)) {				\
39 			WARN_ON(1);					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 		}							\
42 	} while (0)
43 #endif
44 
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 enum {
47 	FAULT_KMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_MAX,
58 };
59 
60 struct f2fs_fault_info {
61 	atomic_t inject_ops;
62 	unsigned int inject_rate;
63 	unsigned int inject_type;
64 };
65 
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69 
70 /*
71  * For mount options
72  */
73 #define F2FS_MOUNT_BG_GC		0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
75 #define F2FS_MOUNT_DISCARD		0x00000004
76 #define F2FS_MOUNT_NOHEAP		0x00000008
77 #define F2FS_MOUNT_XATTR_USER		0x00000010
78 #define F2FS_MOUNT_POSIX_ACL		0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
81 #define F2FS_MOUNT_INLINE_DATA		0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
84 #define F2FS_MOUNT_NOBARRIER		0x00000800
85 #define F2FS_MOUNT_FASTBOOT		0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_ADAPTIVE		0x00020000
91 #define F2FS_MOUNT_LFS			0x00040000
92 #define F2FS_MOUNT_USRQUOTA		0x00080000
93 #define F2FS_MOUNT_GRPQUOTA		0x00100000
94 
95 #define clear_opt(sbi, option)	((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
96 #define set_opt(sbi, option)	((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
97 #define test_opt(sbi, option)	((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
98 
99 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
100 		typecheck(unsigned long long, b) &&			\
101 		((long long)((a) - (b)) > 0))
102 
103 typedef u32 block_t;	/*
104 			 * should not change u32, since it is the on-disk block
105 			 * address format, __le32.
106 			 */
107 typedef u32 nid_t;
108 
109 struct f2fs_mount_info {
110 	unsigned int	opt;
111 };
112 
113 #define F2FS_FEATURE_ENCRYPT	0x0001
114 #define F2FS_FEATURE_BLKZONED	0x0002
115 
116 #define F2FS_HAS_FEATURE(sb, mask)					\
117 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
118 #define F2FS_SET_FEATURE(sb, mask)					\
119 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
120 #define F2FS_CLEAR_FEATURE(sb, mask)					\
121 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
122 
123 /*
124  * For checkpoint manager
125  */
126 enum {
127 	NAT_BITMAP,
128 	SIT_BITMAP
129 };
130 
131 #define	CP_UMOUNT	0x00000001
132 #define	CP_FASTBOOT	0x00000002
133 #define	CP_SYNC		0x00000004
134 #define	CP_RECOVERY	0x00000008
135 #define	CP_DISCARD	0x00000010
136 #define CP_TRIMMED	0x00000020
137 
138 #define DEF_BATCHED_TRIM_SECTIONS	2048
139 #define BATCHED_TRIM_SEGMENTS(sbi)	\
140 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
141 #define BATCHED_TRIM_BLOCKS(sbi)	\
142 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
143 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
144 #define DISCARD_ISSUE_RATE		8
145 #define DEF_CP_INTERVAL			60	/* 60 secs */
146 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
147 
148 struct cp_control {
149 	int reason;
150 	__u64 trim_start;
151 	__u64 trim_end;
152 	__u64 trim_minlen;
153 	__u64 trimmed;
154 };
155 
156 /*
157  * For CP/NAT/SIT/SSA readahead
158  */
159 enum {
160 	META_CP,
161 	META_NAT,
162 	META_SIT,
163 	META_SSA,
164 	META_POR,
165 };
166 
167 /* for the list of ino */
168 enum {
169 	ORPHAN_INO,		/* for orphan ino list */
170 	APPEND_INO,		/* for append ino list */
171 	UPDATE_INO,		/* for update ino list */
172 	MAX_INO_ENTRY,		/* max. list */
173 };
174 
175 struct ino_entry {
176 	struct list_head list;	/* list head */
177 	nid_t ino;		/* inode number */
178 };
179 
180 /* for the list of inodes to be GCed */
181 struct inode_entry {
182 	struct list_head list;	/* list head */
183 	struct inode *inode;	/* vfs inode pointer */
184 };
185 
186 /* for the bitmap indicate blocks to be discarded */
187 struct discard_entry {
188 	struct list_head list;	/* list head */
189 	block_t start_blkaddr;	/* start blockaddr of current segment */
190 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
191 };
192 
193 /* max discard pend list number */
194 #define MAX_PLIST_NUM		512
195 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
196 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
197 
198 enum {
199 	D_PREP,
200 	D_SUBMIT,
201 	D_DONE,
202 };
203 
204 struct discard_info {
205 	block_t lstart;			/* logical start address */
206 	block_t len;			/* length */
207 	block_t start;			/* actual start address in dev */
208 };
209 
210 struct discard_cmd {
211 	struct rb_node rb_node;		/* rb node located in rb-tree */
212 	union {
213 		struct {
214 			block_t lstart;	/* logical start address */
215 			block_t len;	/* length */
216 			block_t start;	/* actual start address in dev */
217 		};
218 		struct discard_info di;	/* discard info */
219 
220 	};
221 	struct list_head list;		/* command list */
222 	struct completion wait;		/* compleation */
223 	struct block_device *bdev;	/* bdev */
224 	unsigned short ref;		/* reference count */
225 	unsigned char state;		/* state */
226 	int error;			/* bio error */
227 };
228 
229 struct discard_cmd_control {
230 	struct task_struct *f2fs_issue_discard;	/* discard thread */
231 	struct list_head entry_list;		/* 4KB discard entry list */
232 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
233 	struct list_head wait_list;		/* store on-flushing entries */
234 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
235 	struct mutex cmd_lock;
236 	unsigned int nr_discards;		/* # of discards in the list */
237 	unsigned int max_discards;		/* max. discards to be issued */
238 	unsigned int undiscard_blks;		/* # of undiscard blocks */
239 	atomic_t issued_discard;		/* # of issued discard */
240 	atomic_t issing_discard;		/* # of issing discard */
241 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
242 	struct rb_root root;			/* root of discard rb-tree */
243 };
244 
245 /* for the list of fsync inodes, used only during recovery */
246 struct fsync_inode_entry {
247 	struct list_head list;	/* list head */
248 	struct inode *inode;	/* vfs inode pointer */
249 	block_t blkaddr;	/* block address locating the last fsync */
250 	block_t last_dentry;	/* block address locating the last dentry */
251 };
252 
253 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
254 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
255 
256 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
257 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
258 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
259 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
260 
261 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
262 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
263 
264 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
265 {
266 	int before = nats_in_cursum(journal);
267 
268 	journal->n_nats = cpu_to_le16(before + i);
269 	return before;
270 }
271 
272 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
273 {
274 	int before = sits_in_cursum(journal);
275 
276 	journal->n_sits = cpu_to_le16(before + i);
277 	return before;
278 }
279 
280 static inline bool __has_cursum_space(struct f2fs_journal *journal,
281 							int size, int type)
282 {
283 	if (type == NAT_JOURNAL)
284 		return size <= MAX_NAT_JENTRIES(journal);
285 	return size <= MAX_SIT_JENTRIES(journal);
286 }
287 
288 /*
289  * ioctl commands
290  */
291 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
292 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
293 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
294 
295 #define F2FS_IOCTL_MAGIC		0xf5
296 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
297 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
298 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
299 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
300 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
301 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
302 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
303 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
304 						struct f2fs_defragment)
305 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
306 						struct f2fs_move_range)
307 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
308 						struct f2fs_flush_device)
309 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
310 						struct f2fs_gc_range)
311 
312 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
313 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
314 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
315 
316 /*
317  * should be same as XFS_IOC_GOINGDOWN.
318  * Flags for going down operation used by FS_IOC_GOINGDOWN
319  */
320 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
321 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
322 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
323 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
324 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
325 
326 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
327 /*
328  * ioctl commands in 32 bit emulation
329  */
330 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
331 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
332 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
333 #endif
334 
335 struct f2fs_gc_range {
336 	u32 sync;
337 	u64 start;
338 	u64 len;
339 };
340 
341 struct f2fs_defragment {
342 	u64 start;
343 	u64 len;
344 };
345 
346 struct f2fs_move_range {
347 	u32 dst_fd;		/* destination fd */
348 	u64 pos_in;		/* start position in src_fd */
349 	u64 pos_out;		/* start position in dst_fd */
350 	u64 len;		/* size to move */
351 };
352 
353 struct f2fs_flush_device {
354 	u32 dev_num;		/* device number to flush */
355 	u32 segments;		/* # of segments to flush */
356 };
357 
358 /*
359  * For INODE and NODE manager
360  */
361 /* for directory operations */
362 struct f2fs_dentry_ptr {
363 	struct inode *inode;
364 	const void *bitmap;
365 	struct f2fs_dir_entry *dentry;
366 	__u8 (*filename)[F2FS_SLOT_LEN];
367 	int max;
368 };
369 
370 static inline void make_dentry_ptr_block(struct inode *inode,
371 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
372 {
373 	d->inode = inode;
374 	d->max = NR_DENTRY_IN_BLOCK;
375 	d->bitmap = &t->dentry_bitmap;
376 	d->dentry = t->dentry;
377 	d->filename = t->filename;
378 }
379 
380 static inline void make_dentry_ptr_inline(struct inode *inode,
381 		struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t)
382 {
383 	d->inode = inode;
384 	d->max = NR_INLINE_DENTRY;
385 	d->bitmap = &t->dentry_bitmap;
386 	d->dentry = t->dentry;
387 	d->filename = t->filename;
388 }
389 
390 /*
391  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
392  * as its node offset to distinguish from index node blocks.
393  * But some bits are used to mark the node block.
394  */
395 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
396 				>> OFFSET_BIT_SHIFT)
397 enum {
398 	ALLOC_NODE,			/* allocate a new node page if needed */
399 	LOOKUP_NODE,			/* look up a node without readahead */
400 	LOOKUP_NODE_RA,			/*
401 					 * look up a node with readahead called
402 					 * by get_data_block.
403 					 */
404 };
405 
406 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
407 
408 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
409 
410 /* vector size for gang look-up from extent cache that consists of radix tree */
411 #define EXT_TREE_VEC_SIZE	64
412 
413 /* for in-memory extent cache entry */
414 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
415 
416 /* number of extent info in extent cache we try to shrink */
417 #define EXTENT_CACHE_SHRINK_NUMBER	128
418 
419 struct rb_entry {
420 	struct rb_node rb_node;		/* rb node located in rb-tree */
421 	unsigned int ofs;		/* start offset of the entry */
422 	unsigned int len;		/* length of the entry */
423 };
424 
425 struct extent_info {
426 	unsigned int fofs;		/* start offset in a file */
427 	unsigned int len;		/* length of the extent */
428 	u32 blk;			/* start block address of the extent */
429 };
430 
431 struct extent_node {
432 	struct rb_node rb_node;
433 	union {
434 		struct {
435 			unsigned int fofs;
436 			unsigned int len;
437 			u32 blk;
438 		};
439 		struct extent_info ei;	/* extent info */
440 
441 	};
442 	struct list_head list;		/* node in global extent list of sbi */
443 	struct extent_tree *et;		/* extent tree pointer */
444 };
445 
446 struct extent_tree {
447 	nid_t ino;			/* inode number */
448 	struct rb_root root;		/* root of extent info rb-tree */
449 	struct extent_node *cached_en;	/* recently accessed extent node */
450 	struct extent_info largest;	/* largested extent info */
451 	struct list_head list;		/* to be used by sbi->zombie_list */
452 	rwlock_t lock;			/* protect extent info rb-tree */
453 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
454 };
455 
456 /*
457  * This structure is taken from ext4_map_blocks.
458  *
459  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
460  */
461 #define F2FS_MAP_NEW		(1 << BH_New)
462 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
463 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
464 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
465 				F2FS_MAP_UNWRITTEN)
466 
467 struct f2fs_map_blocks {
468 	block_t m_pblk;
469 	block_t m_lblk;
470 	unsigned int m_len;
471 	unsigned int m_flags;
472 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
473 };
474 
475 /* for flag in get_data_block */
476 #define F2FS_GET_BLOCK_READ		0
477 #define F2FS_GET_BLOCK_DIO		1
478 #define F2FS_GET_BLOCK_FIEMAP		2
479 #define F2FS_GET_BLOCK_BMAP		3
480 #define F2FS_GET_BLOCK_PRE_DIO		4
481 #define F2FS_GET_BLOCK_PRE_AIO		5
482 
483 /*
484  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
485  */
486 #define FADVISE_COLD_BIT	0x01
487 #define FADVISE_LOST_PINO_BIT	0x02
488 #define FADVISE_ENCRYPT_BIT	0x04
489 #define FADVISE_ENC_NAME_BIT	0x08
490 #define FADVISE_KEEP_SIZE_BIT	0x10
491 
492 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
493 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
494 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
495 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
496 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
497 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
498 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
499 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
500 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
501 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
502 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
503 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
504 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
505 
506 #define DEF_DIR_LEVEL		0
507 
508 struct f2fs_inode_info {
509 	struct inode vfs_inode;		/* serve a vfs inode */
510 	unsigned long i_flags;		/* keep an inode flags for ioctl */
511 	unsigned char i_advise;		/* use to give file attribute hints */
512 	unsigned char i_dir_level;	/* use for dentry level for large dir */
513 	unsigned int i_current_depth;	/* use only in directory structure */
514 	unsigned int i_pino;		/* parent inode number */
515 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
516 
517 	/* Use below internally in f2fs*/
518 	unsigned long flags;		/* use to pass per-file flags */
519 	struct rw_semaphore i_sem;	/* protect fi info */
520 	atomic_t dirty_pages;		/* # of dirty pages */
521 	f2fs_hash_t chash;		/* hash value of given file name */
522 	unsigned int clevel;		/* maximum level of given file name */
523 	struct task_struct *task;	/* lookup and create consistency */
524 	nid_t i_xattr_nid;		/* node id that contains xattrs */
525 	loff_t	last_disk_size;		/* lastly written file size */
526 
527 #ifdef CONFIG_QUOTA
528 	struct dquot *i_dquot[MAXQUOTAS];
529 
530 	/* quota space reservation, managed internally by quota code */
531 	qsize_t i_reserved_quota;
532 #endif
533 	struct list_head dirty_list;	/* dirty list for dirs and files */
534 	struct list_head gdirty_list;	/* linked in global dirty list */
535 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
536 	struct mutex inmem_lock;	/* lock for inmemory pages */
537 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
538 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
539 	struct rw_semaphore i_mmap_sem;
540 };
541 
542 static inline void get_extent_info(struct extent_info *ext,
543 					struct f2fs_extent *i_ext)
544 {
545 	ext->fofs = le32_to_cpu(i_ext->fofs);
546 	ext->blk = le32_to_cpu(i_ext->blk);
547 	ext->len = le32_to_cpu(i_ext->len);
548 }
549 
550 static inline void set_raw_extent(struct extent_info *ext,
551 					struct f2fs_extent *i_ext)
552 {
553 	i_ext->fofs = cpu_to_le32(ext->fofs);
554 	i_ext->blk = cpu_to_le32(ext->blk);
555 	i_ext->len = cpu_to_le32(ext->len);
556 }
557 
558 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
559 						u32 blk, unsigned int len)
560 {
561 	ei->fofs = fofs;
562 	ei->blk = blk;
563 	ei->len = len;
564 }
565 
566 static inline bool __is_discard_mergeable(struct discard_info *back,
567 						struct discard_info *front)
568 {
569 	return back->lstart + back->len == front->lstart;
570 }
571 
572 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
573 						struct discard_info *back)
574 {
575 	return __is_discard_mergeable(back, cur);
576 }
577 
578 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
579 						struct discard_info *front)
580 {
581 	return __is_discard_mergeable(cur, front);
582 }
583 
584 static inline bool __is_extent_mergeable(struct extent_info *back,
585 						struct extent_info *front)
586 {
587 	return (back->fofs + back->len == front->fofs &&
588 			back->blk + back->len == front->blk);
589 }
590 
591 static inline bool __is_back_mergeable(struct extent_info *cur,
592 						struct extent_info *back)
593 {
594 	return __is_extent_mergeable(back, cur);
595 }
596 
597 static inline bool __is_front_mergeable(struct extent_info *cur,
598 						struct extent_info *front)
599 {
600 	return __is_extent_mergeable(cur, front);
601 }
602 
603 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
604 static inline void __try_update_largest_extent(struct inode *inode,
605 			struct extent_tree *et, struct extent_node *en)
606 {
607 	if (en->ei.len > et->largest.len) {
608 		et->largest = en->ei;
609 		f2fs_mark_inode_dirty_sync(inode, true);
610 	}
611 }
612 
613 enum nid_list {
614 	FREE_NID_LIST,
615 	ALLOC_NID_LIST,
616 	MAX_NID_LIST,
617 };
618 
619 struct f2fs_nm_info {
620 	block_t nat_blkaddr;		/* base disk address of NAT */
621 	nid_t max_nid;			/* maximum possible node ids */
622 	nid_t available_nids;		/* # of available node ids */
623 	nid_t next_scan_nid;		/* the next nid to be scanned */
624 	unsigned int ram_thresh;	/* control the memory footprint */
625 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
626 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
627 
628 	/* NAT cache management */
629 	struct radix_tree_root nat_root;/* root of the nat entry cache */
630 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
631 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
632 	struct list_head nat_entries;	/* cached nat entry list (clean) */
633 	unsigned int nat_cnt;		/* the # of cached nat entries */
634 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
635 	unsigned int nat_blocks;	/* # of nat blocks */
636 
637 	/* free node ids management */
638 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
639 	struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
640 	unsigned int nid_cnt[MAX_NID_LIST];	/* the number of free node id */
641 	spinlock_t nid_list_lock;	/* protect nid lists ops */
642 	struct mutex build_lock;	/* lock for build free nids */
643 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
644 	unsigned char *nat_block_bitmap;
645 	unsigned short *free_nid_count;	/* free nid count of NAT block */
646 
647 	/* for checkpoint */
648 	char *nat_bitmap;		/* NAT bitmap pointer */
649 
650 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
651 	unsigned char *nat_bits;	/* NAT bits blocks */
652 	unsigned char *full_nat_bits;	/* full NAT pages */
653 	unsigned char *empty_nat_bits;	/* empty NAT pages */
654 #ifdef CONFIG_F2FS_CHECK_FS
655 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
656 #endif
657 	int bitmap_size;		/* bitmap size */
658 };
659 
660 /*
661  * this structure is used as one of function parameters.
662  * all the information are dedicated to a given direct node block determined
663  * by the data offset in a file.
664  */
665 struct dnode_of_data {
666 	struct inode *inode;		/* vfs inode pointer */
667 	struct page *inode_page;	/* its inode page, NULL is possible */
668 	struct page *node_page;		/* cached direct node page */
669 	nid_t nid;			/* node id of the direct node block */
670 	unsigned int ofs_in_node;	/* data offset in the node page */
671 	bool inode_page_locked;		/* inode page is locked or not */
672 	bool node_changed;		/* is node block changed */
673 	char cur_level;			/* level of hole node page */
674 	char max_level;			/* level of current page located */
675 	block_t	data_blkaddr;		/* block address of the node block */
676 };
677 
678 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
679 		struct page *ipage, struct page *npage, nid_t nid)
680 {
681 	memset(dn, 0, sizeof(*dn));
682 	dn->inode = inode;
683 	dn->inode_page = ipage;
684 	dn->node_page = npage;
685 	dn->nid = nid;
686 }
687 
688 /*
689  * For SIT manager
690  *
691  * By default, there are 6 active log areas across the whole main area.
692  * When considering hot and cold data separation to reduce cleaning overhead,
693  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
694  * respectively.
695  * In the current design, you should not change the numbers intentionally.
696  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
697  * logs individually according to the underlying devices. (default: 6)
698  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
699  * data and 8 for node logs.
700  */
701 #define	NR_CURSEG_DATA_TYPE	(3)
702 #define NR_CURSEG_NODE_TYPE	(3)
703 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
704 
705 enum {
706 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
707 	CURSEG_WARM_DATA,	/* data blocks */
708 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
709 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
710 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
711 	CURSEG_COLD_NODE,	/* indirect node blocks */
712 	NO_CHECK_TYPE,
713 };
714 
715 struct flush_cmd {
716 	struct completion wait;
717 	struct llist_node llnode;
718 	int ret;
719 };
720 
721 struct flush_cmd_control {
722 	struct task_struct *f2fs_issue_flush;	/* flush thread */
723 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
724 	atomic_t issued_flush;			/* # of issued flushes */
725 	atomic_t issing_flush;			/* # of issing flushes */
726 	struct llist_head issue_list;		/* list for command issue */
727 	struct llist_node *dispatch_list;	/* list for command dispatch */
728 };
729 
730 struct f2fs_sm_info {
731 	struct sit_info *sit_info;		/* whole segment information */
732 	struct free_segmap_info *free_info;	/* free segment information */
733 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
734 	struct curseg_info *curseg_array;	/* active segment information */
735 
736 	block_t seg0_blkaddr;		/* block address of 0'th segment */
737 	block_t main_blkaddr;		/* start block address of main area */
738 	block_t ssa_blkaddr;		/* start block address of SSA area */
739 
740 	unsigned int segment_count;	/* total # of segments */
741 	unsigned int main_segments;	/* # of segments in main area */
742 	unsigned int reserved_segments;	/* # of reserved segments */
743 	unsigned int ovp_segments;	/* # of overprovision segments */
744 
745 	/* a threshold to reclaim prefree segments */
746 	unsigned int rec_prefree_segments;
747 
748 	/* for batched trimming */
749 	unsigned int trim_sections;		/* # of sections to trim */
750 
751 	struct list_head sit_entry_set;	/* sit entry set list */
752 
753 	unsigned int ipu_policy;	/* in-place-update policy */
754 	unsigned int min_ipu_util;	/* in-place-update threshold */
755 	unsigned int min_fsync_blocks;	/* threshold for fsync */
756 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
757 
758 	/* for flush command control */
759 	struct flush_cmd_control *fcc_info;
760 
761 	/* for discard command control */
762 	struct discard_cmd_control *dcc_info;
763 };
764 
765 /*
766  * For superblock
767  */
768 /*
769  * COUNT_TYPE for monitoring
770  *
771  * f2fs monitors the number of several block types such as on-writeback,
772  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
773  */
774 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
775 enum count_type {
776 	F2FS_DIRTY_DENTS,
777 	F2FS_DIRTY_DATA,
778 	F2FS_DIRTY_NODES,
779 	F2FS_DIRTY_META,
780 	F2FS_INMEM_PAGES,
781 	F2FS_DIRTY_IMETA,
782 	F2FS_WB_CP_DATA,
783 	F2FS_WB_DATA,
784 	NR_COUNT_TYPE,
785 };
786 
787 /*
788  * The below are the page types of bios used in submit_bio().
789  * The available types are:
790  * DATA			User data pages. It operates as async mode.
791  * NODE			Node pages. It operates as async mode.
792  * META			FS metadata pages such as SIT, NAT, CP.
793  * NR_PAGE_TYPE		The number of page types.
794  * META_FLUSH		Make sure the previous pages are written
795  *			with waiting the bio's completion
796  * ...			Only can be used with META.
797  */
798 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
799 enum page_type {
800 	DATA,
801 	NODE,
802 	META,
803 	NR_PAGE_TYPE,
804 	META_FLUSH,
805 	INMEM,		/* the below types are used by tracepoints only. */
806 	INMEM_DROP,
807 	INMEM_INVALIDATE,
808 	INMEM_REVOKE,
809 	IPU,
810 	OPU,
811 };
812 
813 enum temp_type {
814 	HOT = 0,	/* must be zero for meta bio */
815 	WARM,
816 	COLD,
817 	NR_TEMP_TYPE,
818 };
819 
820 enum need_lock_type {
821 	LOCK_REQ = 0,
822 	LOCK_DONE,
823 	LOCK_RETRY,
824 };
825 
826 struct f2fs_io_info {
827 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
828 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
829 	enum temp_type temp;	/* contains HOT/WARM/COLD */
830 	int op;			/* contains REQ_OP_ */
831 	int op_flags;		/* req_flag_bits */
832 	block_t new_blkaddr;	/* new block address to be written */
833 	block_t old_blkaddr;	/* old block address before Cow */
834 	struct page *page;	/* page to be written */
835 	struct page *encrypted_page;	/* encrypted page */
836 	struct list_head list;		/* serialize IOs */
837 	bool submitted;		/* indicate IO submission */
838 	int need_lock;		/* indicate we need to lock cp_rwsem */
839 	bool in_list;		/* indicate fio is in io_list */
840 };
841 
842 #define is_read_io(rw) ((rw) == READ)
843 struct f2fs_bio_info {
844 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
845 	struct bio *bio;		/* bios to merge */
846 	sector_t last_block_in_bio;	/* last block number */
847 	struct f2fs_io_info fio;	/* store buffered io info. */
848 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
849 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
850 	struct list_head io_list;	/* track fios */
851 };
852 
853 #define FDEV(i)				(sbi->devs[i])
854 #define RDEV(i)				(raw_super->devs[i])
855 struct f2fs_dev_info {
856 	struct block_device *bdev;
857 	char path[MAX_PATH_LEN];
858 	unsigned int total_segments;
859 	block_t start_blk;
860 	block_t end_blk;
861 #ifdef CONFIG_BLK_DEV_ZONED
862 	unsigned int nr_blkz;			/* Total number of zones */
863 	u8 *blkz_type;				/* Array of zones type */
864 #endif
865 };
866 
867 enum inode_type {
868 	DIR_INODE,			/* for dirty dir inode */
869 	FILE_INODE,			/* for dirty regular/symlink inode */
870 	DIRTY_META,			/* for all dirtied inode metadata */
871 	NR_INODE_TYPE,
872 };
873 
874 /* for inner inode cache management */
875 struct inode_management {
876 	struct radix_tree_root ino_root;	/* ino entry array */
877 	spinlock_t ino_lock;			/* for ino entry lock */
878 	struct list_head ino_list;		/* inode list head */
879 	unsigned long ino_num;			/* number of entries */
880 };
881 
882 /* For s_flag in struct f2fs_sb_info */
883 enum {
884 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
885 	SBI_IS_CLOSE,				/* specify unmounting */
886 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
887 	SBI_POR_DOING,				/* recovery is doing or not */
888 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
889 	SBI_NEED_CP,				/* need to checkpoint */
890 };
891 
892 enum {
893 	CP_TIME,
894 	REQ_TIME,
895 	MAX_TIME,
896 };
897 
898 struct f2fs_sb_info {
899 	struct super_block *sb;			/* pointer to VFS super block */
900 	struct proc_dir_entry *s_proc;		/* proc entry */
901 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
902 	int valid_super_block;			/* valid super block no */
903 	unsigned long s_flag;				/* flags for sbi */
904 
905 #ifdef CONFIG_BLK_DEV_ZONED
906 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
907 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
908 #endif
909 
910 	/* for node-related operations */
911 	struct f2fs_nm_info *nm_info;		/* node manager */
912 	struct inode *node_inode;		/* cache node blocks */
913 
914 	/* for segment-related operations */
915 	struct f2fs_sm_info *sm_info;		/* segment manager */
916 
917 	/* for bio operations */
918 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
919 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
920 						/* bio ordering for NODE/DATA */
921 	int write_io_size_bits;			/* Write IO size bits */
922 	mempool_t *write_io_dummy;		/* Dummy pages */
923 
924 	/* for checkpoint */
925 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
926 	int cur_cp_pack;			/* remain current cp pack */
927 	spinlock_t cp_lock;			/* for flag in ckpt */
928 	struct inode *meta_inode;		/* cache meta blocks */
929 	struct mutex cp_mutex;			/* checkpoint procedure lock */
930 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
931 	struct rw_semaphore node_write;		/* locking node writes */
932 	struct rw_semaphore node_change;	/* locking node change */
933 	wait_queue_head_t cp_wait;
934 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
935 	long interval_time[MAX_TIME];		/* to store thresholds */
936 
937 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
938 
939 	/* for orphan inode, use 0'th array */
940 	unsigned int max_orphans;		/* max orphan inodes */
941 
942 	/* for inode management */
943 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
944 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
945 
946 	/* for extent tree cache */
947 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
948 	struct mutex extent_tree_lock;	/* locking extent radix tree */
949 	struct list_head extent_list;		/* lru list for shrinker */
950 	spinlock_t extent_lock;			/* locking extent lru list */
951 	atomic_t total_ext_tree;		/* extent tree count */
952 	struct list_head zombie_list;		/* extent zombie tree list */
953 	atomic_t total_zombie_tree;		/* extent zombie tree count */
954 	atomic_t total_ext_node;		/* extent info count */
955 
956 	/* basic filesystem units */
957 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
958 	unsigned int log_blocksize;		/* log2 block size */
959 	unsigned int blocksize;			/* block size */
960 	unsigned int root_ino_num;		/* root inode number*/
961 	unsigned int node_ino_num;		/* node inode number*/
962 	unsigned int meta_ino_num;		/* meta inode number*/
963 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
964 	unsigned int blocks_per_seg;		/* blocks per segment */
965 	unsigned int segs_per_sec;		/* segments per section */
966 	unsigned int secs_per_zone;		/* sections per zone */
967 	unsigned int total_sections;		/* total section count */
968 	unsigned int total_node_count;		/* total node block count */
969 	unsigned int total_valid_node_count;	/* valid node block count */
970 	loff_t max_file_blocks;			/* max block index of file */
971 	int active_logs;			/* # of active logs */
972 	int dir_level;				/* directory level */
973 
974 	block_t user_block_count;		/* # of user blocks */
975 	block_t total_valid_block_count;	/* # of valid blocks */
976 	block_t discard_blks;			/* discard command candidats */
977 	block_t last_valid_block_count;		/* for recovery */
978 	block_t reserved_blocks;		/* configurable reserved blocks */
979 
980 	u32 s_next_generation;			/* for NFS support */
981 
982 	/* # of pages, see count_type */
983 	atomic_t nr_pages[NR_COUNT_TYPE];
984 	/* # of allocated blocks */
985 	struct percpu_counter alloc_valid_block_count;
986 
987 	/* writeback control */
988 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
989 
990 	/* valid inode count */
991 	struct percpu_counter total_valid_inode_count;
992 
993 	struct f2fs_mount_info mount_opt;	/* mount options */
994 
995 	/* for cleaning operations */
996 	struct mutex gc_mutex;			/* mutex for GC */
997 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
998 	unsigned int cur_victim_sec;		/* current victim section num */
999 
1000 	/* threshold for converting bg victims for fg */
1001 	u64 fggc_threshold;
1002 
1003 	/* maximum # of trials to find a victim segment for SSR and GC */
1004 	unsigned int max_victim_search;
1005 
1006 	/*
1007 	 * for stat information.
1008 	 * one is for the LFS mode, and the other is for the SSR mode.
1009 	 */
1010 #ifdef CONFIG_F2FS_STAT_FS
1011 	struct f2fs_stat_info *stat_info;	/* FS status information */
1012 	unsigned int segment_count[2];		/* # of allocated segments */
1013 	unsigned int block_count[2];		/* # of allocated blocks */
1014 	atomic_t inplace_count;		/* # of inplace update */
1015 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1016 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1017 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1018 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1019 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1020 	atomic_t inline_inode;			/* # of inline_data inodes */
1021 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1022 	atomic_t aw_cnt;			/* # of atomic writes */
1023 	atomic_t vw_cnt;			/* # of volatile writes */
1024 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1025 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1026 	int bg_gc;				/* background gc calls */
1027 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1028 #endif
1029 	spinlock_t stat_lock;			/* lock for stat operations */
1030 
1031 	/* For sysfs suppport */
1032 	struct kobject s_kobj;
1033 	struct completion s_kobj_unregister;
1034 
1035 	/* For shrinker support */
1036 	struct list_head s_list;
1037 	int s_ndevs;				/* number of devices */
1038 	struct f2fs_dev_info *devs;		/* for device list */
1039 	struct mutex umount_mutex;
1040 	unsigned int shrinker_run_no;
1041 
1042 	/* For write statistics */
1043 	u64 sectors_written_start;
1044 	u64 kbytes_written;
1045 
1046 	/* Reference to checksum algorithm driver via cryptoapi */
1047 	struct crypto_shash *s_chksum_driver;
1048 
1049 	/* For fault injection */
1050 #ifdef CONFIG_F2FS_FAULT_INJECTION
1051 	struct f2fs_fault_info fault_info;
1052 #endif
1053 };
1054 
1055 #ifdef CONFIG_F2FS_FAULT_INJECTION
1056 #define f2fs_show_injection_info(type)				\
1057 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1058 		KERN_INFO, fault_name[type],			\
1059 		__func__, __builtin_return_address(0))
1060 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1061 {
1062 	struct f2fs_fault_info *ffi = &sbi->fault_info;
1063 
1064 	if (!ffi->inject_rate)
1065 		return false;
1066 
1067 	if (!IS_FAULT_SET(ffi, type))
1068 		return false;
1069 
1070 	atomic_inc(&ffi->inject_ops);
1071 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1072 		atomic_set(&ffi->inject_ops, 0);
1073 		return true;
1074 	}
1075 	return false;
1076 }
1077 #endif
1078 
1079 /* For write statistics. Suppose sector size is 512 bytes,
1080  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1081  */
1082 #define BD_PART_WRITTEN(s)						 \
1083 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1084 		(s)->sectors_written_start) >> 1)
1085 
1086 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1087 {
1088 	sbi->last_time[type] = jiffies;
1089 }
1090 
1091 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1092 {
1093 	struct timespec ts = {sbi->interval_time[type], 0};
1094 	unsigned long interval = timespec_to_jiffies(&ts);
1095 
1096 	return time_after(jiffies, sbi->last_time[type] + interval);
1097 }
1098 
1099 static inline bool is_idle(struct f2fs_sb_info *sbi)
1100 {
1101 	struct block_device *bdev = sbi->sb->s_bdev;
1102 	struct request_queue *q = bdev_get_queue(bdev);
1103 	struct request_list *rl = &q->root_rl;
1104 
1105 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1106 		return 0;
1107 
1108 	return f2fs_time_over(sbi, REQ_TIME);
1109 }
1110 
1111 /*
1112  * Inline functions
1113  */
1114 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1115 			   unsigned int length)
1116 {
1117 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1118 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
1119 	u32 retval;
1120 	int err;
1121 
1122 	shash->tfm = sbi->s_chksum_driver;
1123 	shash->flags = 0;
1124 	*ctx = F2FS_SUPER_MAGIC;
1125 
1126 	err = crypto_shash_update(shash, address, length);
1127 	BUG_ON(err);
1128 
1129 	retval = *ctx;
1130 	barrier_data(ctx);
1131 	return retval;
1132 }
1133 
1134 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1135 				  void *buf, size_t buf_size)
1136 {
1137 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1138 }
1139 
1140 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1141 {
1142 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1143 }
1144 
1145 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1146 {
1147 	return sb->s_fs_info;
1148 }
1149 
1150 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1151 {
1152 	return F2FS_SB(inode->i_sb);
1153 }
1154 
1155 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1156 {
1157 	return F2FS_I_SB(mapping->host);
1158 }
1159 
1160 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1161 {
1162 	return F2FS_M_SB(page->mapping);
1163 }
1164 
1165 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1166 {
1167 	return (struct f2fs_super_block *)(sbi->raw_super);
1168 }
1169 
1170 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1171 {
1172 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1173 }
1174 
1175 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1176 {
1177 	return (struct f2fs_node *)page_address(page);
1178 }
1179 
1180 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1181 {
1182 	return &((struct f2fs_node *)page_address(page))->i;
1183 }
1184 
1185 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1186 {
1187 	return (struct f2fs_nm_info *)(sbi->nm_info);
1188 }
1189 
1190 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1191 {
1192 	return (struct f2fs_sm_info *)(sbi->sm_info);
1193 }
1194 
1195 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1196 {
1197 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1198 }
1199 
1200 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1201 {
1202 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1203 }
1204 
1205 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1206 {
1207 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1208 }
1209 
1210 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1211 {
1212 	return sbi->meta_inode->i_mapping;
1213 }
1214 
1215 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1216 {
1217 	return sbi->node_inode->i_mapping;
1218 }
1219 
1220 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1221 {
1222 	return test_bit(type, &sbi->s_flag);
1223 }
1224 
1225 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1226 {
1227 	set_bit(type, &sbi->s_flag);
1228 }
1229 
1230 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1231 {
1232 	clear_bit(type, &sbi->s_flag);
1233 }
1234 
1235 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1236 {
1237 	return le64_to_cpu(cp->checkpoint_ver);
1238 }
1239 
1240 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1241 {
1242 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1243 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1244 }
1245 
1246 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1247 {
1248 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1249 
1250 	return ckpt_flags & f;
1251 }
1252 
1253 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1254 {
1255 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1256 }
1257 
1258 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1259 {
1260 	unsigned int ckpt_flags;
1261 
1262 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1263 	ckpt_flags |= f;
1264 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1265 }
1266 
1267 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1268 {
1269 	unsigned long flags;
1270 
1271 	spin_lock_irqsave(&sbi->cp_lock, flags);
1272 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1273 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1274 }
1275 
1276 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1277 {
1278 	unsigned int ckpt_flags;
1279 
1280 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1281 	ckpt_flags &= (~f);
1282 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1283 }
1284 
1285 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1286 {
1287 	unsigned long flags;
1288 
1289 	spin_lock_irqsave(&sbi->cp_lock, flags);
1290 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1291 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1292 }
1293 
1294 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1295 {
1296 	unsigned long flags;
1297 
1298 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1299 
1300 	if (lock)
1301 		spin_lock_irqsave(&sbi->cp_lock, flags);
1302 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1303 	kfree(NM_I(sbi)->nat_bits);
1304 	NM_I(sbi)->nat_bits = NULL;
1305 	if (lock)
1306 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1307 }
1308 
1309 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1310 					struct cp_control *cpc)
1311 {
1312 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1313 
1314 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1315 }
1316 
1317 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1318 {
1319 	down_read(&sbi->cp_rwsem);
1320 }
1321 
1322 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1323 {
1324 	return down_read_trylock(&sbi->cp_rwsem);
1325 }
1326 
1327 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1328 {
1329 	up_read(&sbi->cp_rwsem);
1330 }
1331 
1332 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1333 {
1334 	down_write(&sbi->cp_rwsem);
1335 }
1336 
1337 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1338 {
1339 	up_write(&sbi->cp_rwsem);
1340 }
1341 
1342 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1343 {
1344 	int reason = CP_SYNC;
1345 
1346 	if (test_opt(sbi, FASTBOOT))
1347 		reason = CP_FASTBOOT;
1348 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1349 		reason = CP_UMOUNT;
1350 	return reason;
1351 }
1352 
1353 static inline bool __remain_node_summaries(int reason)
1354 {
1355 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1356 }
1357 
1358 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1359 {
1360 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1361 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1362 }
1363 
1364 /*
1365  * Check whether the given nid is within node id range.
1366  */
1367 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1368 {
1369 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1370 		return -EINVAL;
1371 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1372 		return -EINVAL;
1373 	return 0;
1374 }
1375 
1376 /*
1377  * Check whether the inode has blocks or not
1378  */
1379 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1380 {
1381 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1382 
1383 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1384 }
1385 
1386 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1387 {
1388 	return ofs == XATTR_NODE_OFFSET;
1389 }
1390 
1391 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1392 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1393 				 struct inode *inode, blkcnt_t *count)
1394 {
1395 	blkcnt_t diff = 0, release = 0;
1396 	block_t avail_user_block_count;
1397 	int ret;
1398 
1399 	ret = dquot_reserve_block(inode, *count);
1400 	if (ret)
1401 		return ret;
1402 
1403 #ifdef CONFIG_F2FS_FAULT_INJECTION
1404 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1405 		f2fs_show_injection_info(FAULT_BLOCK);
1406 		release = *count;
1407 		goto enospc;
1408 	}
1409 #endif
1410 	/*
1411 	 * let's increase this in prior to actual block count change in order
1412 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1413 	 */
1414 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1415 
1416 	spin_lock(&sbi->stat_lock);
1417 	sbi->total_valid_block_count += (block_t)(*count);
1418 	avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks;
1419 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1420 		diff = sbi->total_valid_block_count - avail_user_block_count;
1421 		*count -= diff;
1422 		release = diff;
1423 		sbi->total_valid_block_count = avail_user_block_count;
1424 		if (!*count) {
1425 			spin_unlock(&sbi->stat_lock);
1426 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1427 			goto enospc;
1428 		}
1429 	}
1430 	spin_unlock(&sbi->stat_lock);
1431 
1432 	if (release)
1433 		dquot_release_reservation_block(inode, release);
1434 	f2fs_i_blocks_write(inode, *count, true, true);
1435 	return 0;
1436 
1437 enospc:
1438 	dquot_release_reservation_block(inode, release);
1439 	return -ENOSPC;
1440 }
1441 
1442 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1443 						struct inode *inode,
1444 						block_t count)
1445 {
1446 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1447 
1448 	spin_lock(&sbi->stat_lock);
1449 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1450 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1451 	sbi->total_valid_block_count -= (block_t)count;
1452 	spin_unlock(&sbi->stat_lock);
1453 	f2fs_i_blocks_write(inode, count, false, true);
1454 }
1455 
1456 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1457 {
1458 	atomic_inc(&sbi->nr_pages[count_type]);
1459 
1460 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1461 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1462 		return;
1463 
1464 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1465 }
1466 
1467 static inline void inode_inc_dirty_pages(struct inode *inode)
1468 {
1469 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1470 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1471 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1472 }
1473 
1474 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1475 {
1476 	atomic_dec(&sbi->nr_pages[count_type]);
1477 }
1478 
1479 static inline void inode_dec_dirty_pages(struct inode *inode)
1480 {
1481 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1482 			!S_ISLNK(inode->i_mode))
1483 		return;
1484 
1485 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1486 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1487 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1488 }
1489 
1490 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1491 {
1492 	return atomic_read(&sbi->nr_pages[count_type]);
1493 }
1494 
1495 static inline int get_dirty_pages(struct inode *inode)
1496 {
1497 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1498 }
1499 
1500 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1501 {
1502 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1503 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1504 						sbi->log_blocks_per_seg;
1505 
1506 	return segs / sbi->segs_per_sec;
1507 }
1508 
1509 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1510 {
1511 	return sbi->total_valid_block_count;
1512 }
1513 
1514 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1515 {
1516 	return sbi->discard_blks;
1517 }
1518 
1519 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1520 {
1521 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1522 
1523 	/* return NAT or SIT bitmap */
1524 	if (flag == NAT_BITMAP)
1525 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1526 	else if (flag == SIT_BITMAP)
1527 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1528 
1529 	return 0;
1530 }
1531 
1532 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1533 {
1534 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1535 }
1536 
1537 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1538 {
1539 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1540 	int offset;
1541 
1542 	if (__cp_payload(sbi) > 0) {
1543 		if (flag == NAT_BITMAP)
1544 			return &ckpt->sit_nat_version_bitmap;
1545 		else
1546 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1547 	} else {
1548 		offset = (flag == NAT_BITMAP) ?
1549 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1550 		return &ckpt->sit_nat_version_bitmap + offset;
1551 	}
1552 }
1553 
1554 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1555 {
1556 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1557 
1558 	if (sbi->cur_cp_pack == 2)
1559 		start_addr += sbi->blocks_per_seg;
1560 	return start_addr;
1561 }
1562 
1563 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1564 {
1565 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1566 
1567 	if (sbi->cur_cp_pack == 1)
1568 		start_addr += sbi->blocks_per_seg;
1569 	return start_addr;
1570 }
1571 
1572 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1573 {
1574 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1575 }
1576 
1577 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1578 {
1579 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1580 }
1581 
1582 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1583 					struct inode *inode, bool is_inode)
1584 {
1585 	block_t	valid_block_count;
1586 	unsigned int valid_node_count;
1587 	bool quota = inode && !is_inode;
1588 
1589 	if (quota) {
1590 		int ret = dquot_reserve_block(inode, 1);
1591 		if (ret)
1592 			return ret;
1593 	}
1594 
1595 	spin_lock(&sbi->stat_lock);
1596 
1597 	valid_block_count = sbi->total_valid_block_count + 1;
1598 	if (unlikely(valid_block_count + sbi->reserved_blocks >
1599 						sbi->user_block_count)) {
1600 		spin_unlock(&sbi->stat_lock);
1601 		goto enospc;
1602 	}
1603 
1604 	valid_node_count = sbi->total_valid_node_count + 1;
1605 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1606 		spin_unlock(&sbi->stat_lock);
1607 		goto enospc;
1608 	}
1609 
1610 	sbi->total_valid_node_count++;
1611 	sbi->total_valid_block_count++;
1612 	spin_unlock(&sbi->stat_lock);
1613 
1614 	if (inode) {
1615 		if (is_inode)
1616 			f2fs_mark_inode_dirty_sync(inode, true);
1617 		else
1618 			f2fs_i_blocks_write(inode, 1, true, true);
1619 	}
1620 
1621 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1622 	return 0;
1623 
1624 enospc:
1625 	if (quota)
1626 		dquot_release_reservation_block(inode, 1);
1627 	return -ENOSPC;
1628 }
1629 
1630 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1631 					struct inode *inode, bool is_inode)
1632 {
1633 	spin_lock(&sbi->stat_lock);
1634 
1635 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1636 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1637 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1638 
1639 	sbi->total_valid_node_count--;
1640 	sbi->total_valid_block_count--;
1641 
1642 	spin_unlock(&sbi->stat_lock);
1643 
1644 	if (!is_inode)
1645 		f2fs_i_blocks_write(inode, 1, false, true);
1646 }
1647 
1648 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1649 {
1650 	return sbi->total_valid_node_count;
1651 }
1652 
1653 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1654 {
1655 	percpu_counter_inc(&sbi->total_valid_inode_count);
1656 }
1657 
1658 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1659 {
1660 	percpu_counter_dec(&sbi->total_valid_inode_count);
1661 }
1662 
1663 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1664 {
1665 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1666 }
1667 
1668 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1669 						pgoff_t index, bool for_write)
1670 {
1671 #ifdef CONFIG_F2FS_FAULT_INJECTION
1672 	struct page *page = find_lock_page(mapping, index);
1673 
1674 	if (page)
1675 		return page;
1676 
1677 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1678 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1679 		return NULL;
1680 	}
1681 #endif
1682 	if (!for_write)
1683 		return grab_cache_page(mapping, index);
1684 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1685 }
1686 
1687 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1688 {
1689 	char *src_kaddr = kmap(src);
1690 	char *dst_kaddr = kmap(dst);
1691 
1692 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1693 	kunmap(dst);
1694 	kunmap(src);
1695 }
1696 
1697 static inline void f2fs_put_page(struct page *page, int unlock)
1698 {
1699 	if (!page)
1700 		return;
1701 
1702 	if (unlock) {
1703 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1704 		unlock_page(page);
1705 	}
1706 	put_page(page);
1707 }
1708 
1709 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1710 {
1711 	if (dn->node_page)
1712 		f2fs_put_page(dn->node_page, 1);
1713 	if (dn->inode_page && dn->node_page != dn->inode_page)
1714 		f2fs_put_page(dn->inode_page, 0);
1715 	dn->node_page = NULL;
1716 	dn->inode_page = NULL;
1717 }
1718 
1719 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1720 					size_t size)
1721 {
1722 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1723 }
1724 
1725 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1726 						gfp_t flags)
1727 {
1728 	void *entry;
1729 
1730 	entry = kmem_cache_alloc(cachep, flags);
1731 	if (!entry)
1732 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1733 	return entry;
1734 }
1735 
1736 static inline struct bio *f2fs_bio_alloc(int npages)
1737 {
1738 	struct bio *bio;
1739 
1740 	/* No failure on bio allocation */
1741 	bio = bio_alloc(GFP_NOIO, npages);
1742 	if (!bio)
1743 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1744 	return bio;
1745 }
1746 
1747 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1748 				unsigned long index, void *item)
1749 {
1750 	while (radix_tree_insert(root, index, item))
1751 		cond_resched();
1752 }
1753 
1754 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1755 
1756 static inline bool IS_INODE(struct page *page)
1757 {
1758 	struct f2fs_node *p = F2FS_NODE(page);
1759 
1760 	return RAW_IS_INODE(p);
1761 }
1762 
1763 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1764 {
1765 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1766 }
1767 
1768 static inline block_t datablock_addr(struct page *node_page,
1769 		unsigned int offset)
1770 {
1771 	struct f2fs_node *raw_node;
1772 	__le32 *addr_array;
1773 
1774 	raw_node = F2FS_NODE(node_page);
1775 	addr_array = blkaddr_in_node(raw_node);
1776 	return le32_to_cpu(addr_array[offset]);
1777 }
1778 
1779 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1780 {
1781 	int mask;
1782 
1783 	addr += (nr >> 3);
1784 	mask = 1 << (7 - (nr & 0x07));
1785 	return mask & *addr;
1786 }
1787 
1788 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1789 {
1790 	int mask;
1791 
1792 	addr += (nr >> 3);
1793 	mask = 1 << (7 - (nr & 0x07));
1794 	*addr |= mask;
1795 }
1796 
1797 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1798 {
1799 	int mask;
1800 
1801 	addr += (nr >> 3);
1802 	mask = 1 << (7 - (nr & 0x07));
1803 	*addr &= ~mask;
1804 }
1805 
1806 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1807 {
1808 	int mask;
1809 	int ret;
1810 
1811 	addr += (nr >> 3);
1812 	mask = 1 << (7 - (nr & 0x07));
1813 	ret = mask & *addr;
1814 	*addr |= mask;
1815 	return ret;
1816 }
1817 
1818 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1819 {
1820 	int mask;
1821 	int ret;
1822 
1823 	addr += (nr >> 3);
1824 	mask = 1 << (7 - (nr & 0x07));
1825 	ret = mask & *addr;
1826 	*addr &= ~mask;
1827 	return ret;
1828 }
1829 
1830 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1831 {
1832 	int mask;
1833 
1834 	addr += (nr >> 3);
1835 	mask = 1 << (7 - (nr & 0x07));
1836 	*addr ^= mask;
1837 }
1838 
1839 /* used for f2fs_inode_info->flags */
1840 enum {
1841 	FI_NEW_INODE,		/* indicate newly allocated inode */
1842 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1843 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1844 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1845 	FI_INC_LINK,		/* need to increment i_nlink */
1846 	FI_ACL_MODE,		/* indicate acl mode */
1847 	FI_NO_ALLOC,		/* should not allocate any blocks */
1848 	FI_FREE_NID,		/* free allocated nide */
1849 	FI_NO_EXTENT,		/* not to use the extent cache */
1850 	FI_INLINE_XATTR,	/* used for inline xattr */
1851 	FI_INLINE_DATA,		/* used for inline data*/
1852 	FI_INLINE_DENTRY,	/* used for inline dentry */
1853 	FI_APPEND_WRITE,	/* inode has appended data */
1854 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1855 	FI_NEED_IPU,		/* used for ipu per file */
1856 	FI_ATOMIC_FILE,		/* indicate atomic file */
1857 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
1858 	FI_VOLATILE_FILE,	/* indicate volatile file */
1859 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1860 	FI_DROP_CACHE,		/* drop dirty page cache */
1861 	FI_DATA_EXIST,		/* indicate data exists */
1862 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1863 	FI_DO_DEFRAG,		/* indicate defragment is running */
1864 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1865 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
1866 	FI_HOT_DATA,		/* indicate file is hot */
1867 };
1868 
1869 static inline void __mark_inode_dirty_flag(struct inode *inode,
1870 						int flag, bool set)
1871 {
1872 	switch (flag) {
1873 	case FI_INLINE_XATTR:
1874 	case FI_INLINE_DATA:
1875 	case FI_INLINE_DENTRY:
1876 		if (set)
1877 			return;
1878 	case FI_DATA_EXIST:
1879 	case FI_INLINE_DOTS:
1880 		f2fs_mark_inode_dirty_sync(inode, true);
1881 	}
1882 }
1883 
1884 static inline void set_inode_flag(struct inode *inode, int flag)
1885 {
1886 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1887 		set_bit(flag, &F2FS_I(inode)->flags);
1888 	__mark_inode_dirty_flag(inode, flag, true);
1889 }
1890 
1891 static inline int is_inode_flag_set(struct inode *inode, int flag)
1892 {
1893 	return test_bit(flag, &F2FS_I(inode)->flags);
1894 }
1895 
1896 static inline void clear_inode_flag(struct inode *inode, int flag)
1897 {
1898 	if (test_bit(flag, &F2FS_I(inode)->flags))
1899 		clear_bit(flag, &F2FS_I(inode)->flags);
1900 	__mark_inode_dirty_flag(inode, flag, false);
1901 }
1902 
1903 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1904 {
1905 	F2FS_I(inode)->i_acl_mode = mode;
1906 	set_inode_flag(inode, FI_ACL_MODE);
1907 	f2fs_mark_inode_dirty_sync(inode, false);
1908 }
1909 
1910 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1911 {
1912 	if (inc)
1913 		inc_nlink(inode);
1914 	else
1915 		drop_nlink(inode);
1916 	f2fs_mark_inode_dirty_sync(inode, true);
1917 }
1918 
1919 static inline void f2fs_i_blocks_write(struct inode *inode,
1920 					block_t diff, bool add, bool claim)
1921 {
1922 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1923 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1924 
1925 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
1926 	if (add) {
1927 		if (claim)
1928 			dquot_claim_block(inode, diff);
1929 		else
1930 			dquot_alloc_block_nofail(inode, diff);
1931 	} else {
1932 		dquot_free_block(inode, diff);
1933 	}
1934 
1935 	f2fs_mark_inode_dirty_sync(inode, true);
1936 	if (clean || recover)
1937 		set_inode_flag(inode, FI_AUTO_RECOVER);
1938 }
1939 
1940 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1941 {
1942 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1943 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1944 
1945 	if (i_size_read(inode) == i_size)
1946 		return;
1947 
1948 	i_size_write(inode, i_size);
1949 	f2fs_mark_inode_dirty_sync(inode, true);
1950 	if (clean || recover)
1951 		set_inode_flag(inode, FI_AUTO_RECOVER);
1952 }
1953 
1954 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1955 {
1956 	F2FS_I(inode)->i_current_depth = depth;
1957 	f2fs_mark_inode_dirty_sync(inode, true);
1958 }
1959 
1960 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1961 {
1962 	F2FS_I(inode)->i_xattr_nid = xnid;
1963 	f2fs_mark_inode_dirty_sync(inode, true);
1964 }
1965 
1966 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1967 {
1968 	F2FS_I(inode)->i_pino = pino;
1969 	f2fs_mark_inode_dirty_sync(inode, true);
1970 }
1971 
1972 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1973 {
1974 	struct f2fs_inode_info *fi = F2FS_I(inode);
1975 
1976 	if (ri->i_inline & F2FS_INLINE_XATTR)
1977 		set_bit(FI_INLINE_XATTR, &fi->flags);
1978 	if (ri->i_inline & F2FS_INLINE_DATA)
1979 		set_bit(FI_INLINE_DATA, &fi->flags);
1980 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1981 		set_bit(FI_INLINE_DENTRY, &fi->flags);
1982 	if (ri->i_inline & F2FS_DATA_EXIST)
1983 		set_bit(FI_DATA_EXIST, &fi->flags);
1984 	if (ri->i_inline & F2FS_INLINE_DOTS)
1985 		set_bit(FI_INLINE_DOTS, &fi->flags);
1986 }
1987 
1988 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1989 {
1990 	ri->i_inline = 0;
1991 
1992 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1993 		ri->i_inline |= F2FS_INLINE_XATTR;
1994 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
1995 		ri->i_inline |= F2FS_INLINE_DATA;
1996 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1997 		ri->i_inline |= F2FS_INLINE_DENTRY;
1998 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
1999 		ri->i_inline |= F2FS_DATA_EXIST;
2000 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2001 		ri->i_inline |= F2FS_INLINE_DOTS;
2002 }
2003 
2004 static inline int f2fs_has_inline_xattr(struct inode *inode)
2005 {
2006 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2007 }
2008 
2009 static inline unsigned int addrs_per_inode(struct inode *inode)
2010 {
2011 	if (f2fs_has_inline_xattr(inode))
2012 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
2013 	return DEF_ADDRS_PER_INODE;
2014 }
2015 
2016 static inline void *inline_xattr_addr(struct page *page)
2017 {
2018 	struct f2fs_inode *ri = F2FS_INODE(page);
2019 
2020 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2021 					F2FS_INLINE_XATTR_ADDRS]);
2022 }
2023 
2024 static inline int inline_xattr_size(struct inode *inode)
2025 {
2026 	if (f2fs_has_inline_xattr(inode))
2027 		return F2FS_INLINE_XATTR_ADDRS << 2;
2028 	else
2029 		return 0;
2030 }
2031 
2032 static inline int f2fs_has_inline_data(struct inode *inode)
2033 {
2034 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2035 }
2036 
2037 static inline int f2fs_exist_data(struct inode *inode)
2038 {
2039 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2040 }
2041 
2042 static inline int f2fs_has_inline_dots(struct inode *inode)
2043 {
2044 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2045 }
2046 
2047 static inline bool f2fs_is_atomic_file(struct inode *inode)
2048 {
2049 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2050 }
2051 
2052 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2053 {
2054 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2055 }
2056 
2057 static inline bool f2fs_is_volatile_file(struct inode *inode)
2058 {
2059 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2060 }
2061 
2062 static inline bool f2fs_is_first_block_written(struct inode *inode)
2063 {
2064 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2065 }
2066 
2067 static inline bool f2fs_is_drop_cache(struct inode *inode)
2068 {
2069 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2070 }
2071 
2072 static inline void *inline_data_addr(struct page *page)
2073 {
2074 	struct f2fs_inode *ri = F2FS_INODE(page);
2075 
2076 	return (void *)&(ri->i_addr[1]);
2077 }
2078 
2079 static inline int f2fs_has_inline_dentry(struct inode *inode)
2080 {
2081 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2082 }
2083 
2084 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2085 {
2086 	if (!f2fs_has_inline_dentry(dir))
2087 		kunmap(page);
2088 }
2089 
2090 static inline int is_file(struct inode *inode, int type)
2091 {
2092 	return F2FS_I(inode)->i_advise & type;
2093 }
2094 
2095 static inline void set_file(struct inode *inode, int type)
2096 {
2097 	F2FS_I(inode)->i_advise |= type;
2098 	f2fs_mark_inode_dirty_sync(inode, true);
2099 }
2100 
2101 static inline void clear_file(struct inode *inode, int type)
2102 {
2103 	F2FS_I(inode)->i_advise &= ~type;
2104 	f2fs_mark_inode_dirty_sync(inode, true);
2105 }
2106 
2107 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2108 {
2109 	if (dsync) {
2110 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2111 		bool ret;
2112 
2113 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2114 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2115 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2116 		return ret;
2117 	}
2118 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2119 			file_keep_isize(inode) ||
2120 			i_size_read(inode) & PAGE_MASK)
2121 		return false;
2122 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2123 }
2124 
2125 static inline int f2fs_readonly(struct super_block *sb)
2126 {
2127 	return sb->s_flags & MS_RDONLY;
2128 }
2129 
2130 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2131 {
2132 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2133 }
2134 
2135 static inline bool is_dot_dotdot(const struct qstr *str)
2136 {
2137 	if (str->len == 1 && str->name[0] == '.')
2138 		return true;
2139 
2140 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2141 		return true;
2142 
2143 	return false;
2144 }
2145 
2146 static inline bool f2fs_may_extent_tree(struct inode *inode)
2147 {
2148 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2149 			is_inode_flag_set(inode, FI_NO_EXTENT))
2150 		return false;
2151 
2152 	return S_ISREG(inode->i_mode);
2153 }
2154 
2155 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2156 					size_t size, gfp_t flags)
2157 {
2158 #ifdef CONFIG_F2FS_FAULT_INJECTION
2159 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2160 		f2fs_show_injection_info(FAULT_KMALLOC);
2161 		return NULL;
2162 	}
2163 #endif
2164 	return kmalloc(size, flags);
2165 }
2166 
2167 #define get_inode_mode(i) \
2168 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2169 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2170 
2171 /*
2172  * file.c
2173  */
2174 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2175 void truncate_data_blocks(struct dnode_of_data *dn);
2176 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2177 int f2fs_truncate(struct inode *inode);
2178 int f2fs_getattr(const struct path *path, struct kstat *stat,
2179 			u32 request_mask, unsigned int flags);
2180 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2181 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2182 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2183 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2184 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2185 
2186 /*
2187  * inode.c
2188  */
2189 void f2fs_set_inode_flags(struct inode *inode);
2190 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2191 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2192 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2193 int update_inode(struct inode *inode, struct page *node_page);
2194 int update_inode_page(struct inode *inode);
2195 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2196 void f2fs_evict_inode(struct inode *inode);
2197 void handle_failed_inode(struct inode *inode);
2198 
2199 /*
2200  * namei.c
2201  */
2202 struct dentry *f2fs_get_parent(struct dentry *child);
2203 
2204 /*
2205  * dir.c
2206  */
2207 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2208 unsigned char get_de_type(struct f2fs_dir_entry *de);
2209 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2210 			f2fs_hash_t namehash, int *max_slots,
2211 			struct f2fs_dentry_ptr *d);
2212 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2213 			unsigned int start_pos, struct fscrypt_str *fstr);
2214 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2215 			struct f2fs_dentry_ptr *d);
2216 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2217 			const struct qstr *new_name,
2218 			const struct qstr *orig_name, struct page *dpage);
2219 void update_parent_metadata(struct inode *dir, struct inode *inode,
2220 			unsigned int current_depth);
2221 int room_for_filename(const void *bitmap, int slots, int max_slots);
2222 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2223 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2224 			struct fscrypt_name *fname, struct page **res_page);
2225 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2226 			const struct qstr *child, struct page **res_page);
2227 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2228 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2229 			struct page **page);
2230 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2231 			struct page *page, struct inode *inode);
2232 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2233 			const struct qstr *name, f2fs_hash_t name_hash,
2234 			unsigned int bit_pos);
2235 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2236 			const struct qstr *orig_name,
2237 			struct inode *inode, nid_t ino, umode_t mode);
2238 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2239 			struct inode *inode, nid_t ino, umode_t mode);
2240 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2241 			struct inode *inode, nid_t ino, umode_t mode);
2242 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2243 			struct inode *dir, struct inode *inode);
2244 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2245 bool f2fs_empty_dir(struct inode *dir);
2246 
2247 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2248 {
2249 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2250 				inode, inode->i_ino, inode->i_mode);
2251 }
2252 
2253 /*
2254  * super.c
2255  */
2256 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2257 void f2fs_inode_synced(struct inode *inode);
2258 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2259 int f2fs_sync_fs(struct super_block *sb, int sync);
2260 extern __printf(3, 4)
2261 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2262 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2263 
2264 /*
2265  * hash.c
2266  */
2267 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2268 				struct fscrypt_name *fname);
2269 
2270 /*
2271  * node.c
2272  */
2273 struct dnode_of_data;
2274 struct node_info;
2275 
2276 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2277 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2278 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2279 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2280 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2281 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2282 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2283 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2284 int truncate_xattr_node(struct inode *inode, struct page *page);
2285 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2286 int remove_inode_page(struct inode *inode);
2287 struct page *new_inode_page(struct inode *inode);
2288 struct page *new_node_page(struct dnode_of_data *dn,
2289 			unsigned int ofs, struct page *ipage);
2290 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2291 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2292 struct page *get_node_page_ra(struct page *parent, int start);
2293 void move_node_page(struct page *node_page, int gc_type);
2294 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2295 			struct writeback_control *wbc, bool atomic);
2296 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2297 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2298 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2299 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2300 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2301 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2302 void recover_inline_xattr(struct inode *inode, struct page *page);
2303 int recover_xattr_data(struct inode *inode, struct page *page,
2304 			block_t blkaddr);
2305 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2306 int restore_node_summary(struct f2fs_sb_info *sbi,
2307 			unsigned int segno, struct f2fs_summary_block *sum);
2308 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2309 int build_node_manager(struct f2fs_sb_info *sbi);
2310 void destroy_node_manager(struct f2fs_sb_info *sbi);
2311 int __init create_node_manager_caches(void);
2312 void destroy_node_manager_caches(void);
2313 
2314 /*
2315  * segment.c
2316  */
2317 void register_inmem_page(struct inode *inode, struct page *page);
2318 void drop_inmem_pages(struct inode *inode);
2319 void drop_inmem_page(struct inode *inode, struct page *page);
2320 int commit_inmem_pages(struct inode *inode);
2321 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2322 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2323 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2324 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2325 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2326 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2327 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2328 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2329 void stop_discard_thread(struct f2fs_sb_info *sbi);
2330 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2331 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2332 void release_discard_addrs(struct f2fs_sb_info *sbi);
2333 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2334 void allocate_new_segments(struct f2fs_sb_info *sbi);
2335 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2336 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2337 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2338 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2339 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2340 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2341 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2342 int rewrite_data_page(struct f2fs_io_info *fio);
2343 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2344 			block_t old_blkaddr, block_t new_blkaddr,
2345 			bool recover_curseg, bool recover_newaddr);
2346 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2347 			block_t old_addr, block_t new_addr,
2348 			unsigned char version, bool recover_curseg,
2349 			bool recover_newaddr);
2350 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2351 			block_t old_blkaddr, block_t *new_blkaddr,
2352 			struct f2fs_summary *sum, int type,
2353 			struct f2fs_io_info *fio, bool add_list);
2354 void f2fs_wait_on_page_writeback(struct page *page,
2355 			enum page_type type, bool ordered);
2356 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2357 			block_t blkaddr);
2358 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2359 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2360 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2361 			unsigned int val, int alloc);
2362 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2363 int build_segment_manager(struct f2fs_sb_info *sbi);
2364 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2365 int __init create_segment_manager_caches(void);
2366 void destroy_segment_manager_caches(void);
2367 
2368 /*
2369  * checkpoint.c
2370  */
2371 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2372 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2373 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2374 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2375 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2376 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2377 			int type, bool sync);
2378 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2379 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2380 			long nr_to_write);
2381 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2382 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2383 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2384 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2385 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2386 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2387 void release_orphan_inode(struct f2fs_sb_info *sbi);
2388 void add_orphan_inode(struct inode *inode);
2389 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2390 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2391 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2392 void update_dirty_page(struct inode *inode, struct page *page);
2393 void remove_dirty_inode(struct inode *inode);
2394 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2395 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2396 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2397 int __init create_checkpoint_caches(void);
2398 void destroy_checkpoint_caches(void);
2399 
2400 /*
2401  * data.c
2402  */
2403 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2404 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2405 				struct inode *inode, nid_t ino, pgoff_t idx,
2406 				enum page_type type);
2407 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2408 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2409 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2410 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2411 			block_t blk_addr, struct bio *bio);
2412 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2413 void set_data_blkaddr(struct dnode_of_data *dn);
2414 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2415 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2416 int reserve_new_block(struct dnode_of_data *dn);
2417 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2418 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2419 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2420 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2421 			int op_flags, bool for_write);
2422 struct page *find_data_page(struct inode *inode, pgoff_t index);
2423 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2424 			bool for_write);
2425 struct page *get_new_data_page(struct inode *inode,
2426 			struct page *ipage, pgoff_t index, bool new_i_size);
2427 int do_write_data_page(struct f2fs_io_info *fio);
2428 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2429 			int create, int flag);
2430 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2431 			u64 start, u64 len);
2432 void f2fs_set_page_dirty_nobuffers(struct page *page);
2433 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2434 			unsigned int length);
2435 int f2fs_release_page(struct page *page, gfp_t wait);
2436 #ifdef CONFIG_MIGRATION
2437 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2438 			struct page *page, enum migrate_mode mode);
2439 #endif
2440 
2441 /*
2442  * gc.c
2443  */
2444 int start_gc_thread(struct f2fs_sb_info *sbi);
2445 void stop_gc_thread(struct f2fs_sb_info *sbi);
2446 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2447 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2448 			unsigned int segno);
2449 void build_gc_manager(struct f2fs_sb_info *sbi);
2450 
2451 /*
2452  * recovery.c
2453  */
2454 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2455 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2456 
2457 /*
2458  * debug.c
2459  */
2460 #ifdef CONFIG_F2FS_STAT_FS
2461 struct f2fs_stat_info {
2462 	struct list_head stat_list;
2463 	struct f2fs_sb_info *sbi;
2464 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2465 	int main_area_segs, main_area_sections, main_area_zones;
2466 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2467 	unsigned long long hit_total, total_ext;
2468 	int ext_tree, zombie_tree, ext_node;
2469 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2470 	int inmem_pages;
2471 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2472 	int nats, dirty_nats, sits, dirty_sits;
2473 	int free_nids, avail_nids, alloc_nids;
2474 	int total_count, utilization;
2475 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2476 	int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2477 	int nr_discard_cmd;
2478 	unsigned int undiscard_blks;
2479 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2480 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2481 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2482 	unsigned int bimodal, avg_vblocks;
2483 	int util_free, util_valid, util_invalid;
2484 	int rsvd_segs, overp_segs;
2485 	int dirty_count, node_pages, meta_pages;
2486 	int prefree_count, call_count, cp_count, bg_cp_count;
2487 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2488 	int bg_node_segs, bg_data_segs;
2489 	int tot_blks, data_blks, node_blks;
2490 	int bg_data_blks, bg_node_blks;
2491 	int curseg[NR_CURSEG_TYPE];
2492 	int cursec[NR_CURSEG_TYPE];
2493 	int curzone[NR_CURSEG_TYPE];
2494 
2495 	unsigned int segment_count[2];
2496 	unsigned int block_count[2];
2497 	unsigned int inplace_count;
2498 	unsigned long long base_mem, cache_mem, page_mem;
2499 };
2500 
2501 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2502 {
2503 	return (struct f2fs_stat_info *)sbi->stat_info;
2504 }
2505 
2506 #define stat_inc_cp_count(si)		((si)->cp_count++)
2507 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2508 #define stat_inc_call_count(si)		((si)->call_count++)
2509 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2510 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2511 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2512 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2513 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2514 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2515 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2516 #define stat_inc_inline_xattr(inode)					\
2517 	do {								\
2518 		if (f2fs_has_inline_xattr(inode))			\
2519 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2520 	} while (0)
2521 #define stat_dec_inline_xattr(inode)					\
2522 	do {								\
2523 		if (f2fs_has_inline_xattr(inode))			\
2524 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2525 	} while (0)
2526 #define stat_inc_inline_inode(inode)					\
2527 	do {								\
2528 		if (f2fs_has_inline_data(inode))			\
2529 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2530 	} while (0)
2531 #define stat_dec_inline_inode(inode)					\
2532 	do {								\
2533 		if (f2fs_has_inline_data(inode))			\
2534 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2535 	} while (0)
2536 #define stat_inc_inline_dir(inode)					\
2537 	do {								\
2538 		if (f2fs_has_inline_dentry(inode))			\
2539 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2540 	} while (0)
2541 #define stat_dec_inline_dir(inode)					\
2542 	do {								\
2543 		if (f2fs_has_inline_dentry(inode))			\
2544 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2545 	} while (0)
2546 #define stat_inc_seg_type(sbi, curseg)					\
2547 		((sbi)->segment_count[(curseg)->alloc_type]++)
2548 #define stat_inc_block_count(sbi, curseg)				\
2549 		((sbi)->block_count[(curseg)->alloc_type]++)
2550 #define stat_inc_inplace_blocks(sbi)					\
2551 		(atomic_inc(&(sbi)->inplace_count))
2552 #define stat_inc_atomic_write(inode)					\
2553 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2554 #define stat_dec_atomic_write(inode)					\
2555 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2556 #define stat_update_max_atomic_write(inode)				\
2557 	do {								\
2558 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2559 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2560 		if (cur > max)						\
2561 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2562 	} while (0)
2563 #define stat_inc_volatile_write(inode)					\
2564 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2565 #define stat_dec_volatile_write(inode)					\
2566 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2567 #define stat_update_max_volatile_write(inode)				\
2568 	do {								\
2569 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
2570 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
2571 		if (cur > max)						\
2572 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
2573 	} while (0)
2574 #define stat_inc_seg_count(sbi, type, gc_type)				\
2575 	do {								\
2576 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2577 		si->tot_segs++;						\
2578 		if ((type) == SUM_TYPE_DATA) {				\
2579 			si->data_segs++;				\
2580 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2581 		} else {						\
2582 			si->node_segs++;				\
2583 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2584 		}							\
2585 	} while (0)
2586 
2587 #define stat_inc_tot_blk_count(si, blks)				\
2588 	((si)->tot_blks += (blks))
2589 
2590 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2591 	do {								\
2592 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2593 		stat_inc_tot_blk_count(si, blks);			\
2594 		si->data_blks += (blks);				\
2595 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2596 	} while (0)
2597 
2598 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2599 	do {								\
2600 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2601 		stat_inc_tot_blk_count(si, blks);			\
2602 		si->node_blks += (blks);				\
2603 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2604 	} while (0)
2605 
2606 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2607 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2608 int __init f2fs_create_root_stats(void);
2609 void f2fs_destroy_root_stats(void);
2610 #else
2611 #define stat_inc_cp_count(si)				do { } while (0)
2612 #define stat_inc_bg_cp_count(si)			do { } while (0)
2613 #define stat_inc_call_count(si)				do { } while (0)
2614 #define stat_inc_bggc_count(si)				do { } while (0)
2615 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
2616 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
2617 #define stat_inc_total_hit(sb)				do { } while (0)
2618 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
2619 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
2620 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
2621 #define stat_inc_inline_xattr(inode)			do { } while (0)
2622 #define stat_dec_inline_xattr(inode)			do { } while (0)
2623 #define stat_inc_inline_inode(inode)			do { } while (0)
2624 #define stat_dec_inline_inode(inode)			do { } while (0)
2625 #define stat_inc_inline_dir(inode)			do { } while (0)
2626 #define stat_dec_inline_dir(inode)			do { } while (0)
2627 #define stat_inc_atomic_write(inode)			do { } while (0)
2628 #define stat_dec_atomic_write(inode)			do { } while (0)
2629 #define stat_update_max_atomic_write(inode)		do { } while (0)
2630 #define stat_inc_volatile_write(inode)			do { } while (0)
2631 #define stat_dec_volatile_write(inode)			do { } while (0)
2632 #define stat_update_max_volatile_write(inode)		do { } while (0)
2633 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
2634 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
2635 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
2636 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
2637 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
2638 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
2639 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
2640 
2641 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2642 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2643 static inline int __init f2fs_create_root_stats(void) { return 0; }
2644 static inline void f2fs_destroy_root_stats(void) { }
2645 #endif
2646 
2647 extern const struct file_operations f2fs_dir_operations;
2648 extern const struct file_operations f2fs_file_operations;
2649 extern const struct inode_operations f2fs_file_inode_operations;
2650 extern const struct address_space_operations f2fs_dblock_aops;
2651 extern const struct address_space_operations f2fs_node_aops;
2652 extern const struct address_space_operations f2fs_meta_aops;
2653 extern const struct inode_operations f2fs_dir_inode_operations;
2654 extern const struct inode_operations f2fs_symlink_inode_operations;
2655 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2656 extern const struct inode_operations f2fs_special_inode_operations;
2657 extern struct kmem_cache *inode_entry_slab;
2658 
2659 /*
2660  * inline.c
2661  */
2662 bool f2fs_may_inline_data(struct inode *inode);
2663 bool f2fs_may_inline_dentry(struct inode *inode);
2664 void read_inline_data(struct page *page, struct page *ipage);
2665 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2666 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2667 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2668 int f2fs_convert_inline_inode(struct inode *inode);
2669 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2670 bool recover_inline_data(struct inode *inode, struct page *npage);
2671 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2672 			struct fscrypt_name *fname, struct page **res_page);
2673 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2674 			struct page *ipage);
2675 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2676 			const struct qstr *orig_name,
2677 			struct inode *inode, nid_t ino, umode_t mode);
2678 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2679 			struct inode *dir, struct inode *inode);
2680 bool f2fs_empty_inline_dir(struct inode *dir);
2681 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2682 			struct fscrypt_str *fstr);
2683 int f2fs_inline_data_fiemap(struct inode *inode,
2684 			struct fiemap_extent_info *fieinfo,
2685 			__u64 start, __u64 len);
2686 
2687 /*
2688  * shrinker.c
2689  */
2690 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2691 			struct shrink_control *sc);
2692 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2693 			struct shrink_control *sc);
2694 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2695 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2696 
2697 /*
2698  * extent_cache.c
2699  */
2700 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2701 				struct rb_entry *cached_re, unsigned int ofs);
2702 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2703 				struct rb_root *root, struct rb_node **parent,
2704 				unsigned int ofs);
2705 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2706 		struct rb_entry *cached_re, unsigned int ofs,
2707 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
2708 		struct rb_node ***insert_p, struct rb_node **insert_parent,
2709 		bool force);
2710 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2711 						struct rb_root *root);
2712 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2713 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2714 void f2fs_drop_extent_tree(struct inode *inode);
2715 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2716 void f2fs_destroy_extent_tree(struct inode *inode);
2717 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2718 			struct extent_info *ei);
2719 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2720 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2721 			pgoff_t fofs, block_t blkaddr, unsigned int len);
2722 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2723 int __init create_extent_cache(void);
2724 void destroy_extent_cache(void);
2725 
2726 /*
2727  * sysfs.c
2728  */
2729 int __init f2fs_register_sysfs(void);
2730 void f2fs_unregister_sysfs(void);
2731 int f2fs_init_sysfs(struct f2fs_sb_info *sbi);
2732 void f2fs_exit_sysfs(struct f2fs_sb_info *sbi);
2733 
2734 /*
2735  * crypto support
2736  */
2737 static inline bool f2fs_encrypted_inode(struct inode *inode)
2738 {
2739 	return file_is_encrypt(inode);
2740 }
2741 
2742 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2743 {
2744 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2745 	file_set_encrypt(inode);
2746 #endif
2747 }
2748 
2749 static inline bool f2fs_bio_encrypted(struct bio *bio)
2750 {
2751 	return bio->bi_private != NULL;
2752 }
2753 
2754 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2755 {
2756 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2757 }
2758 
2759 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2760 {
2761 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2762 }
2763 
2764 #ifdef CONFIG_BLK_DEV_ZONED
2765 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2766 			struct block_device *bdev, block_t blkaddr)
2767 {
2768 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2769 	int i;
2770 
2771 	for (i = 0; i < sbi->s_ndevs; i++)
2772 		if (FDEV(i).bdev == bdev)
2773 			return FDEV(i).blkz_type[zno];
2774 	return -EINVAL;
2775 }
2776 #endif
2777 
2778 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2779 {
2780 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2781 
2782 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2783 }
2784 
2785 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2786 {
2787 	clear_opt(sbi, ADAPTIVE);
2788 	clear_opt(sbi, LFS);
2789 
2790 	switch (mt) {
2791 	case F2FS_MOUNT_ADAPTIVE:
2792 		set_opt(sbi, ADAPTIVE);
2793 		break;
2794 	case F2FS_MOUNT_LFS:
2795 		set_opt(sbi, LFS);
2796 		break;
2797 	}
2798 }
2799 
2800 static inline bool f2fs_may_encrypt(struct inode *inode)
2801 {
2802 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2803 	umode_t mode = inode->i_mode;
2804 
2805 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2806 #else
2807 	return 0;
2808 #endif
2809 }
2810 
2811 #endif
2812