xref: /openbmc/linux/fs/f2fs/f2fs.h (revision d23015c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #include <linux/fscrypt.h>
28 #include <linux/fsverity.h>
29 
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition)					\
34 	do {								\
35 		if (unlikely(condition)) {				\
36 			WARN_ON(1);					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 		}							\
39 	} while (0)
40 #endif
41 
42 enum {
43 	FAULT_KMALLOC,
44 	FAULT_KVMALLOC,
45 	FAULT_PAGE_ALLOC,
46 	FAULT_PAGE_GET,
47 	FAULT_ALLOC_BIO,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_READ_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_DISCARD,
57 	FAULT_WRITE_IO,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_BG_GC		0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_ADAPTIVE		0x00020000
95 #define F2FS_MOUNT_LFS			0x00040000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 	block_t unusable_cap;		/* Amount of space allowed to be
141 					 * unusable when disabling checkpoint
142 					 */
143 };
144 
145 #define F2FS_FEATURE_ENCRYPT		0x0001
146 #define F2FS_FEATURE_BLKZONED		0x0002
147 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
148 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
149 #define F2FS_FEATURE_PRJQUOTA		0x0010
150 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
151 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
152 #define F2FS_FEATURE_QUOTA_INO		0x0080
153 #define F2FS_FEATURE_INODE_CRTIME	0x0100
154 #define F2FS_FEATURE_LOST_FOUND		0x0200
155 #define F2FS_FEATURE_VERITY		0x0400
156 #define F2FS_FEATURE_SB_CHKSUM		0x0800
157 #define F2FS_FEATURE_CASEFOLD		0x1000
158 
159 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
160 	((raw_super->feature & cpu_to_le32(mask)) != 0)
161 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
162 #define F2FS_SET_FEATURE(sbi, mask)					\
163 	(sbi->raw_super->feature |= cpu_to_le32(mask))
164 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
165 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
166 
167 /*
168  * Default values for user and/or group using reserved blocks
169  */
170 #define	F2FS_DEF_RESUID		0
171 #define	F2FS_DEF_RESGID		0
172 
173 /*
174  * For checkpoint manager
175  */
176 enum {
177 	NAT_BITMAP,
178 	SIT_BITMAP
179 };
180 
181 #define	CP_UMOUNT	0x00000001
182 #define	CP_FASTBOOT	0x00000002
183 #define	CP_SYNC		0x00000004
184 #define	CP_RECOVERY	0x00000008
185 #define	CP_DISCARD	0x00000010
186 #define CP_TRIMMED	0x00000020
187 #define CP_PAUSE	0x00000040
188 
189 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
190 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
191 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
192 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
193 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
194 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
195 #define DEF_CP_INTERVAL			60	/* 60 secs */
196 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
197 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
198 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
199 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
200 
201 struct cp_control {
202 	int reason;
203 	__u64 trim_start;
204 	__u64 trim_end;
205 	__u64 trim_minlen;
206 };
207 
208 /*
209  * indicate meta/data type
210  */
211 enum {
212 	META_CP,
213 	META_NAT,
214 	META_SIT,
215 	META_SSA,
216 	META_MAX,
217 	META_POR,
218 	DATA_GENERIC,		/* check range only */
219 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
220 	DATA_GENERIC_ENHANCE_READ,	/*
221 					 * strong check on range and segment
222 					 * bitmap but no warning due to race
223 					 * condition of read on truncated area
224 					 * by extent_cache
225 					 */
226 	META_GENERIC,
227 };
228 
229 /* for the list of ino */
230 enum {
231 	ORPHAN_INO,		/* for orphan ino list */
232 	APPEND_INO,		/* for append ino list */
233 	UPDATE_INO,		/* for update ino list */
234 	TRANS_DIR_INO,		/* for trasactions dir ino list */
235 	FLUSH_INO,		/* for multiple device flushing */
236 	MAX_INO_ENTRY,		/* max. list */
237 };
238 
239 struct ino_entry {
240 	struct list_head list;		/* list head */
241 	nid_t ino;			/* inode number */
242 	unsigned int dirty_device;	/* dirty device bitmap */
243 };
244 
245 /* for the list of inodes to be GCed */
246 struct inode_entry {
247 	struct list_head list;	/* list head */
248 	struct inode *inode;	/* vfs inode pointer */
249 };
250 
251 struct fsync_node_entry {
252 	struct list_head list;	/* list head */
253 	struct page *page;	/* warm node page pointer */
254 	unsigned int seq_id;	/* sequence id */
255 };
256 
257 /* for the bitmap indicate blocks to be discarded */
258 struct discard_entry {
259 	struct list_head list;	/* list head */
260 	block_t start_blkaddr;	/* start blockaddr of current segment */
261 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
262 };
263 
264 /* default discard granularity of inner discard thread, unit: block count */
265 #define DEFAULT_DISCARD_GRANULARITY		16
266 
267 /* max discard pend list number */
268 #define MAX_PLIST_NUM		512
269 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
270 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
271 
272 enum {
273 	D_PREP,			/* initial */
274 	D_PARTIAL,		/* partially submitted */
275 	D_SUBMIT,		/* all submitted */
276 	D_DONE,			/* finished */
277 };
278 
279 struct discard_info {
280 	block_t lstart;			/* logical start address */
281 	block_t len;			/* length */
282 	block_t start;			/* actual start address in dev */
283 };
284 
285 struct discard_cmd {
286 	struct rb_node rb_node;		/* rb node located in rb-tree */
287 	union {
288 		struct {
289 			block_t lstart;	/* logical start address */
290 			block_t len;	/* length */
291 			block_t start;	/* actual start address in dev */
292 		};
293 		struct discard_info di;	/* discard info */
294 
295 	};
296 	struct list_head list;		/* command list */
297 	struct completion wait;		/* compleation */
298 	struct block_device *bdev;	/* bdev */
299 	unsigned short ref;		/* reference count */
300 	unsigned char state;		/* state */
301 	unsigned char queued;		/* queued discard */
302 	int error;			/* bio error */
303 	spinlock_t lock;		/* for state/bio_ref updating */
304 	unsigned short bio_ref;		/* bio reference count */
305 };
306 
307 enum {
308 	DPOLICY_BG,
309 	DPOLICY_FORCE,
310 	DPOLICY_FSTRIM,
311 	DPOLICY_UMOUNT,
312 	MAX_DPOLICY,
313 };
314 
315 struct discard_policy {
316 	int type;			/* type of discard */
317 	unsigned int min_interval;	/* used for candidates exist */
318 	unsigned int mid_interval;	/* used for device busy */
319 	unsigned int max_interval;	/* used for candidates not exist */
320 	unsigned int max_requests;	/* # of discards issued per round */
321 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
322 	bool io_aware;			/* issue discard in idle time */
323 	bool sync;			/* submit discard with REQ_SYNC flag */
324 	bool ordered;			/* issue discard by lba order */
325 	unsigned int granularity;	/* discard granularity */
326 	int timeout;			/* discard timeout for put_super */
327 };
328 
329 struct discard_cmd_control {
330 	struct task_struct *f2fs_issue_discard;	/* discard thread */
331 	struct list_head entry_list;		/* 4KB discard entry list */
332 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
333 	struct list_head wait_list;		/* store on-flushing entries */
334 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
335 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
336 	unsigned int discard_wake;		/* to wake up discard thread */
337 	struct mutex cmd_lock;
338 	unsigned int nr_discards;		/* # of discards in the list */
339 	unsigned int max_discards;		/* max. discards to be issued */
340 	unsigned int discard_granularity;	/* discard granularity */
341 	unsigned int undiscard_blks;		/* # of undiscard blocks */
342 	unsigned int next_pos;			/* next discard position */
343 	atomic_t issued_discard;		/* # of issued discard */
344 	atomic_t queued_discard;		/* # of queued discard */
345 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
346 	struct rb_root_cached root;		/* root of discard rb-tree */
347 	bool rbtree_check;			/* config for consistence check */
348 };
349 
350 /* for the list of fsync inodes, used only during recovery */
351 struct fsync_inode_entry {
352 	struct list_head list;	/* list head */
353 	struct inode *inode;	/* vfs inode pointer */
354 	block_t blkaddr;	/* block address locating the last fsync */
355 	block_t last_dentry;	/* block address locating the last dentry */
356 };
357 
358 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
359 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
360 
361 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
362 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
363 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
364 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
365 
366 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
367 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
368 
369 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
370 {
371 	int before = nats_in_cursum(journal);
372 
373 	journal->n_nats = cpu_to_le16(before + i);
374 	return before;
375 }
376 
377 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
378 {
379 	int before = sits_in_cursum(journal);
380 
381 	journal->n_sits = cpu_to_le16(before + i);
382 	return before;
383 }
384 
385 static inline bool __has_cursum_space(struct f2fs_journal *journal,
386 							int size, int type)
387 {
388 	if (type == NAT_JOURNAL)
389 		return size <= MAX_NAT_JENTRIES(journal);
390 	return size <= MAX_SIT_JENTRIES(journal);
391 }
392 
393 /*
394  * ioctl commands
395  */
396 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
397 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
398 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
399 
400 #define F2FS_IOCTL_MAGIC		0xf5
401 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
402 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
403 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
404 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
405 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
406 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
407 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
408 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
409 						struct f2fs_defragment)
410 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
411 						struct f2fs_move_range)
412 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
413 						struct f2fs_flush_device)
414 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
415 						struct f2fs_gc_range)
416 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
417 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
418 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
419 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
420 #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
421 
422 #define F2FS_IOC_GET_VOLUME_NAME	FS_IOC_GETFSLABEL
423 #define F2FS_IOC_SET_VOLUME_NAME	FS_IOC_SETFSLABEL
424 
425 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
426 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
427 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
428 
429 /*
430  * should be same as XFS_IOC_GOINGDOWN.
431  * Flags for going down operation used by FS_IOC_GOINGDOWN
432  */
433 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
434 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
435 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
436 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
437 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
438 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
439 
440 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
441 /*
442  * ioctl commands in 32 bit emulation
443  */
444 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
445 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
446 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
447 #endif
448 
449 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
450 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
451 
452 struct f2fs_gc_range {
453 	u32 sync;
454 	u64 start;
455 	u64 len;
456 };
457 
458 struct f2fs_defragment {
459 	u64 start;
460 	u64 len;
461 };
462 
463 struct f2fs_move_range {
464 	u32 dst_fd;		/* destination fd */
465 	u64 pos_in;		/* start position in src_fd */
466 	u64 pos_out;		/* start position in dst_fd */
467 	u64 len;		/* size to move */
468 };
469 
470 struct f2fs_flush_device {
471 	u32 dev_num;		/* device number to flush */
472 	u32 segments;		/* # of segments to flush */
473 };
474 
475 /* for inline stuff */
476 #define DEF_INLINE_RESERVED_SIZE	1
477 static inline int get_extra_isize(struct inode *inode);
478 static inline int get_inline_xattr_addrs(struct inode *inode);
479 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
480 				(CUR_ADDRS_PER_INODE(inode) -		\
481 				get_inline_xattr_addrs(inode) -	\
482 				DEF_INLINE_RESERVED_SIZE))
483 
484 /* for inline dir */
485 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
486 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
487 				BITS_PER_BYTE + 1))
488 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
489 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
490 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
491 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
492 				NR_INLINE_DENTRY(inode) + \
493 				INLINE_DENTRY_BITMAP_SIZE(inode)))
494 
495 /*
496  * For INODE and NODE manager
497  */
498 /* for directory operations */
499 struct f2fs_dentry_ptr {
500 	struct inode *inode;
501 	void *bitmap;
502 	struct f2fs_dir_entry *dentry;
503 	__u8 (*filename)[F2FS_SLOT_LEN];
504 	int max;
505 	int nr_bitmap;
506 };
507 
508 static inline void make_dentry_ptr_block(struct inode *inode,
509 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
510 {
511 	d->inode = inode;
512 	d->max = NR_DENTRY_IN_BLOCK;
513 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
514 	d->bitmap = t->dentry_bitmap;
515 	d->dentry = t->dentry;
516 	d->filename = t->filename;
517 }
518 
519 static inline void make_dentry_ptr_inline(struct inode *inode,
520 					struct f2fs_dentry_ptr *d, void *t)
521 {
522 	int entry_cnt = NR_INLINE_DENTRY(inode);
523 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
524 	int reserved_size = INLINE_RESERVED_SIZE(inode);
525 
526 	d->inode = inode;
527 	d->max = entry_cnt;
528 	d->nr_bitmap = bitmap_size;
529 	d->bitmap = t;
530 	d->dentry = t + bitmap_size + reserved_size;
531 	d->filename = t + bitmap_size + reserved_size +
532 					SIZE_OF_DIR_ENTRY * entry_cnt;
533 }
534 
535 /*
536  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
537  * as its node offset to distinguish from index node blocks.
538  * But some bits are used to mark the node block.
539  */
540 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
541 				>> OFFSET_BIT_SHIFT)
542 enum {
543 	ALLOC_NODE,			/* allocate a new node page if needed */
544 	LOOKUP_NODE,			/* look up a node without readahead */
545 	LOOKUP_NODE_RA,			/*
546 					 * look up a node with readahead called
547 					 * by get_data_block.
548 					 */
549 };
550 
551 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
552 
553 /* maximum retry quota flush count */
554 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
555 
556 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
557 
558 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
559 
560 /* for in-memory extent cache entry */
561 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
562 
563 /* number of extent info in extent cache we try to shrink */
564 #define EXTENT_CACHE_SHRINK_NUMBER	128
565 
566 struct rb_entry {
567 	struct rb_node rb_node;		/* rb node located in rb-tree */
568 	unsigned int ofs;		/* start offset of the entry */
569 	unsigned int len;		/* length of the entry */
570 };
571 
572 struct extent_info {
573 	unsigned int fofs;		/* start offset in a file */
574 	unsigned int len;		/* length of the extent */
575 	u32 blk;			/* start block address of the extent */
576 };
577 
578 struct extent_node {
579 	struct rb_node rb_node;		/* rb node located in rb-tree */
580 	struct extent_info ei;		/* extent info */
581 	struct list_head list;		/* node in global extent list of sbi */
582 	struct extent_tree *et;		/* extent tree pointer */
583 };
584 
585 struct extent_tree {
586 	nid_t ino;			/* inode number */
587 	struct rb_root_cached root;	/* root of extent info rb-tree */
588 	struct extent_node *cached_en;	/* recently accessed extent node */
589 	struct extent_info largest;	/* largested extent info */
590 	struct list_head list;		/* to be used by sbi->zombie_list */
591 	rwlock_t lock;			/* protect extent info rb-tree */
592 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
593 	bool largest_updated;		/* largest extent updated */
594 };
595 
596 /*
597  * This structure is taken from ext4_map_blocks.
598  *
599  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
600  */
601 #define F2FS_MAP_NEW		(1 << BH_New)
602 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
603 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
604 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
605 				F2FS_MAP_UNWRITTEN)
606 
607 struct f2fs_map_blocks {
608 	block_t m_pblk;
609 	block_t m_lblk;
610 	unsigned int m_len;
611 	unsigned int m_flags;
612 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
613 	pgoff_t *m_next_extent;		/* point to next possible extent */
614 	int m_seg_type;
615 	bool m_may_create;		/* indicate it is from write path */
616 };
617 
618 /* for flag in get_data_block */
619 enum {
620 	F2FS_GET_BLOCK_DEFAULT,
621 	F2FS_GET_BLOCK_FIEMAP,
622 	F2FS_GET_BLOCK_BMAP,
623 	F2FS_GET_BLOCK_DIO,
624 	F2FS_GET_BLOCK_PRE_DIO,
625 	F2FS_GET_BLOCK_PRE_AIO,
626 	F2FS_GET_BLOCK_PRECACHE,
627 };
628 
629 /*
630  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
631  */
632 #define FADVISE_COLD_BIT	0x01
633 #define FADVISE_LOST_PINO_BIT	0x02
634 #define FADVISE_ENCRYPT_BIT	0x04
635 #define FADVISE_ENC_NAME_BIT	0x08
636 #define FADVISE_KEEP_SIZE_BIT	0x10
637 #define FADVISE_HOT_BIT		0x20
638 #define FADVISE_VERITY_BIT	0x40
639 
640 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
641 
642 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
643 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
644 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
645 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
646 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
647 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
648 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
649 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
650 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
651 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
652 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
653 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
654 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
655 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
656 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
657 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
658 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
659 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
660 
661 #define DEF_DIR_LEVEL		0
662 
663 enum {
664 	GC_FAILURE_PIN,
665 	GC_FAILURE_ATOMIC,
666 	MAX_GC_FAILURE
667 };
668 
669 struct f2fs_inode_info {
670 	struct inode vfs_inode;		/* serve a vfs inode */
671 	unsigned long i_flags;		/* keep an inode flags for ioctl */
672 	unsigned char i_advise;		/* use to give file attribute hints */
673 	unsigned char i_dir_level;	/* use for dentry level for large dir */
674 	unsigned int i_current_depth;	/* only for directory depth */
675 	/* for gc failure statistic */
676 	unsigned int i_gc_failures[MAX_GC_FAILURE];
677 	unsigned int i_pino;		/* parent inode number */
678 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
679 
680 	/* Use below internally in f2fs*/
681 	unsigned long flags;		/* use to pass per-file flags */
682 	struct rw_semaphore i_sem;	/* protect fi info */
683 	atomic_t dirty_pages;		/* # of dirty pages */
684 	f2fs_hash_t chash;		/* hash value of given file name */
685 	unsigned int clevel;		/* maximum level of given file name */
686 	struct task_struct *task;	/* lookup and create consistency */
687 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
688 	nid_t i_xattr_nid;		/* node id that contains xattrs */
689 	loff_t	last_disk_size;		/* lastly written file size */
690 
691 #ifdef CONFIG_QUOTA
692 	struct dquot *i_dquot[MAXQUOTAS];
693 
694 	/* quota space reservation, managed internally by quota code */
695 	qsize_t i_reserved_quota;
696 #endif
697 	struct list_head dirty_list;	/* dirty list for dirs and files */
698 	struct list_head gdirty_list;	/* linked in global dirty list */
699 	struct list_head inmem_ilist;	/* list for inmem inodes */
700 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
701 	struct task_struct *inmem_task;	/* store inmemory task */
702 	struct mutex inmem_lock;	/* lock for inmemory pages */
703 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
704 
705 	/* avoid racing between foreground op and gc */
706 	struct rw_semaphore i_gc_rwsem[2];
707 	struct rw_semaphore i_mmap_sem;
708 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
709 
710 	int i_extra_isize;		/* size of extra space located in i_addr */
711 	kprojid_t i_projid;		/* id for project quota */
712 	int i_inline_xattr_size;	/* inline xattr size */
713 	struct timespec64 i_crtime;	/* inode creation time */
714 	struct timespec64 i_disk_time[4];/* inode disk times */
715 };
716 
717 static inline void get_extent_info(struct extent_info *ext,
718 					struct f2fs_extent *i_ext)
719 {
720 	ext->fofs = le32_to_cpu(i_ext->fofs);
721 	ext->blk = le32_to_cpu(i_ext->blk);
722 	ext->len = le32_to_cpu(i_ext->len);
723 }
724 
725 static inline void set_raw_extent(struct extent_info *ext,
726 					struct f2fs_extent *i_ext)
727 {
728 	i_ext->fofs = cpu_to_le32(ext->fofs);
729 	i_ext->blk = cpu_to_le32(ext->blk);
730 	i_ext->len = cpu_to_le32(ext->len);
731 }
732 
733 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
734 						u32 blk, unsigned int len)
735 {
736 	ei->fofs = fofs;
737 	ei->blk = blk;
738 	ei->len = len;
739 }
740 
741 static inline bool __is_discard_mergeable(struct discard_info *back,
742 			struct discard_info *front, unsigned int max_len)
743 {
744 	return (back->lstart + back->len == front->lstart) &&
745 		(back->len + front->len <= max_len);
746 }
747 
748 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
749 			struct discard_info *back, unsigned int max_len)
750 {
751 	return __is_discard_mergeable(back, cur, max_len);
752 }
753 
754 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
755 			struct discard_info *front, unsigned int max_len)
756 {
757 	return __is_discard_mergeable(cur, front, max_len);
758 }
759 
760 static inline bool __is_extent_mergeable(struct extent_info *back,
761 						struct extent_info *front)
762 {
763 	return (back->fofs + back->len == front->fofs &&
764 			back->blk + back->len == front->blk);
765 }
766 
767 static inline bool __is_back_mergeable(struct extent_info *cur,
768 						struct extent_info *back)
769 {
770 	return __is_extent_mergeable(back, cur);
771 }
772 
773 static inline bool __is_front_mergeable(struct extent_info *cur,
774 						struct extent_info *front)
775 {
776 	return __is_extent_mergeable(cur, front);
777 }
778 
779 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
780 static inline void __try_update_largest_extent(struct extent_tree *et,
781 						struct extent_node *en)
782 {
783 	if (en->ei.len > et->largest.len) {
784 		et->largest = en->ei;
785 		et->largest_updated = true;
786 	}
787 }
788 
789 /*
790  * For free nid management
791  */
792 enum nid_state {
793 	FREE_NID,		/* newly added to free nid list */
794 	PREALLOC_NID,		/* it is preallocated */
795 	MAX_NID_STATE,
796 };
797 
798 struct f2fs_nm_info {
799 	block_t nat_blkaddr;		/* base disk address of NAT */
800 	nid_t max_nid;			/* maximum possible node ids */
801 	nid_t available_nids;		/* # of available node ids */
802 	nid_t next_scan_nid;		/* the next nid to be scanned */
803 	unsigned int ram_thresh;	/* control the memory footprint */
804 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
805 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
806 
807 	/* NAT cache management */
808 	struct radix_tree_root nat_root;/* root of the nat entry cache */
809 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
810 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
811 	struct list_head nat_entries;	/* cached nat entry list (clean) */
812 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
813 	unsigned int nat_cnt;		/* the # of cached nat entries */
814 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
815 	unsigned int nat_blocks;	/* # of nat blocks */
816 
817 	/* free node ids management */
818 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
819 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
820 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
821 	spinlock_t nid_list_lock;	/* protect nid lists ops */
822 	struct mutex build_lock;	/* lock for build free nids */
823 	unsigned char **free_nid_bitmap;
824 	unsigned char *nat_block_bitmap;
825 	unsigned short *free_nid_count;	/* free nid count of NAT block */
826 
827 	/* for checkpoint */
828 	char *nat_bitmap;		/* NAT bitmap pointer */
829 
830 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
831 	unsigned char *nat_bits;	/* NAT bits blocks */
832 	unsigned char *full_nat_bits;	/* full NAT pages */
833 	unsigned char *empty_nat_bits;	/* empty NAT pages */
834 #ifdef CONFIG_F2FS_CHECK_FS
835 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
836 #endif
837 	int bitmap_size;		/* bitmap size */
838 };
839 
840 /*
841  * this structure is used as one of function parameters.
842  * all the information are dedicated to a given direct node block determined
843  * by the data offset in a file.
844  */
845 struct dnode_of_data {
846 	struct inode *inode;		/* vfs inode pointer */
847 	struct page *inode_page;	/* its inode page, NULL is possible */
848 	struct page *node_page;		/* cached direct node page */
849 	nid_t nid;			/* node id of the direct node block */
850 	unsigned int ofs_in_node;	/* data offset in the node page */
851 	bool inode_page_locked;		/* inode page is locked or not */
852 	bool node_changed;		/* is node block changed */
853 	char cur_level;			/* level of hole node page */
854 	char max_level;			/* level of current page located */
855 	block_t	data_blkaddr;		/* block address of the node block */
856 };
857 
858 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
859 		struct page *ipage, struct page *npage, nid_t nid)
860 {
861 	memset(dn, 0, sizeof(*dn));
862 	dn->inode = inode;
863 	dn->inode_page = ipage;
864 	dn->node_page = npage;
865 	dn->nid = nid;
866 }
867 
868 /*
869  * For SIT manager
870  *
871  * By default, there are 6 active log areas across the whole main area.
872  * When considering hot and cold data separation to reduce cleaning overhead,
873  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
874  * respectively.
875  * In the current design, you should not change the numbers intentionally.
876  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
877  * logs individually according to the underlying devices. (default: 6)
878  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
879  * data and 8 for node logs.
880  */
881 #define	NR_CURSEG_DATA_TYPE	(3)
882 #define NR_CURSEG_NODE_TYPE	(3)
883 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
884 
885 enum {
886 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
887 	CURSEG_WARM_DATA,	/* data blocks */
888 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
889 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
890 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
891 	CURSEG_COLD_NODE,	/* indirect node blocks */
892 	NO_CHECK_TYPE,
893 	CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */
894 };
895 
896 struct flush_cmd {
897 	struct completion wait;
898 	struct llist_node llnode;
899 	nid_t ino;
900 	int ret;
901 };
902 
903 struct flush_cmd_control {
904 	struct task_struct *f2fs_issue_flush;	/* flush thread */
905 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
906 	atomic_t issued_flush;			/* # of issued flushes */
907 	atomic_t queued_flush;			/* # of queued flushes */
908 	struct llist_head issue_list;		/* list for command issue */
909 	struct llist_node *dispatch_list;	/* list for command dispatch */
910 };
911 
912 struct f2fs_sm_info {
913 	struct sit_info *sit_info;		/* whole segment information */
914 	struct free_segmap_info *free_info;	/* free segment information */
915 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
916 	struct curseg_info *curseg_array;	/* active segment information */
917 
918 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
919 
920 	block_t seg0_blkaddr;		/* block address of 0'th segment */
921 	block_t main_blkaddr;		/* start block address of main area */
922 	block_t ssa_blkaddr;		/* start block address of SSA area */
923 
924 	unsigned int segment_count;	/* total # of segments */
925 	unsigned int main_segments;	/* # of segments in main area */
926 	unsigned int reserved_segments;	/* # of reserved segments */
927 	unsigned int ovp_segments;	/* # of overprovision segments */
928 
929 	/* a threshold to reclaim prefree segments */
930 	unsigned int rec_prefree_segments;
931 
932 	/* for batched trimming */
933 	unsigned int trim_sections;		/* # of sections to trim */
934 
935 	struct list_head sit_entry_set;	/* sit entry set list */
936 
937 	unsigned int ipu_policy;	/* in-place-update policy */
938 	unsigned int min_ipu_util;	/* in-place-update threshold */
939 	unsigned int min_fsync_blocks;	/* threshold for fsync */
940 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
941 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
942 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
943 
944 	/* for flush command control */
945 	struct flush_cmd_control *fcc_info;
946 
947 	/* for discard command control */
948 	struct discard_cmd_control *dcc_info;
949 };
950 
951 /*
952  * For superblock
953  */
954 /*
955  * COUNT_TYPE for monitoring
956  *
957  * f2fs monitors the number of several block types such as on-writeback,
958  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
959  */
960 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
961 enum count_type {
962 	F2FS_DIRTY_DENTS,
963 	F2FS_DIRTY_DATA,
964 	F2FS_DIRTY_QDATA,
965 	F2FS_DIRTY_NODES,
966 	F2FS_DIRTY_META,
967 	F2FS_INMEM_PAGES,
968 	F2FS_DIRTY_IMETA,
969 	F2FS_WB_CP_DATA,
970 	F2FS_WB_DATA,
971 	F2FS_RD_DATA,
972 	F2FS_RD_NODE,
973 	F2FS_RD_META,
974 	F2FS_DIO_WRITE,
975 	F2FS_DIO_READ,
976 	NR_COUNT_TYPE,
977 };
978 
979 /*
980  * The below are the page types of bios used in submit_bio().
981  * The available types are:
982  * DATA			User data pages. It operates as async mode.
983  * NODE			Node pages. It operates as async mode.
984  * META			FS metadata pages such as SIT, NAT, CP.
985  * NR_PAGE_TYPE		The number of page types.
986  * META_FLUSH		Make sure the previous pages are written
987  *			with waiting the bio's completion
988  * ...			Only can be used with META.
989  */
990 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
991 enum page_type {
992 	DATA,
993 	NODE,
994 	META,
995 	NR_PAGE_TYPE,
996 	META_FLUSH,
997 	INMEM,		/* the below types are used by tracepoints only. */
998 	INMEM_DROP,
999 	INMEM_INVALIDATE,
1000 	INMEM_REVOKE,
1001 	IPU,
1002 	OPU,
1003 };
1004 
1005 enum temp_type {
1006 	HOT = 0,	/* must be zero for meta bio */
1007 	WARM,
1008 	COLD,
1009 	NR_TEMP_TYPE,
1010 };
1011 
1012 enum need_lock_type {
1013 	LOCK_REQ = 0,
1014 	LOCK_DONE,
1015 	LOCK_RETRY,
1016 };
1017 
1018 enum cp_reason_type {
1019 	CP_NO_NEEDED,
1020 	CP_NON_REGULAR,
1021 	CP_HARDLINK,
1022 	CP_SB_NEED_CP,
1023 	CP_WRONG_PINO,
1024 	CP_NO_SPC_ROLL,
1025 	CP_NODE_NEED_CP,
1026 	CP_FASTBOOT_MODE,
1027 	CP_SPEC_LOG_NUM,
1028 	CP_RECOVER_DIR,
1029 };
1030 
1031 enum iostat_type {
1032 	APP_DIRECT_IO,			/* app direct IOs */
1033 	APP_BUFFERED_IO,		/* app buffered IOs */
1034 	APP_WRITE_IO,			/* app write IOs */
1035 	APP_MAPPED_IO,			/* app mapped IOs */
1036 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1037 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1038 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1039 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1040 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1041 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1042 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1043 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1044 	FS_DISCARD,			/* discard */
1045 	NR_IO_TYPE,
1046 };
1047 
1048 struct f2fs_io_info {
1049 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1050 	nid_t ino;		/* inode number */
1051 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1052 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1053 	int op;			/* contains REQ_OP_ */
1054 	int op_flags;		/* req_flag_bits */
1055 	block_t new_blkaddr;	/* new block address to be written */
1056 	block_t old_blkaddr;	/* old block address before Cow */
1057 	struct page *page;	/* page to be written */
1058 	struct page *encrypted_page;	/* encrypted page */
1059 	struct list_head list;		/* serialize IOs */
1060 	bool submitted;		/* indicate IO submission */
1061 	int need_lock;		/* indicate we need to lock cp_rwsem */
1062 	bool in_list;		/* indicate fio is in io_list */
1063 	bool is_por;		/* indicate IO is from recovery or not */
1064 	bool retry;		/* need to reallocate block address */
1065 	enum iostat_type io_type;	/* io type */
1066 	struct writeback_control *io_wbc; /* writeback control */
1067 	struct bio **bio;		/* bio for ipu */
1068 	sector_t *last_block;		/* last block number in bio */
1069 	unsigned char version;		/* version of the node */
1070 };
1071 
1072 struct bio_entry {
1073 	struct bio *bio;
1074 	struct list_head list;
1075 };
1076 
1077 #define is_read_io(rw) ((rw) == READ)
1078 struct f2fs_bio_info {
1079 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1080 	struct bio *bio;		/* bios to merge */
1081 	sector_t last_block_in_bio;	/* last block number */
1082 	struct f2fs_io_info fio;	/* store buffered io info. */
1083 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1084 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1085 	struct list_head io_list;	/* track fios */
1086 	struct list_head bio_list;	/* bio entry list head */
1087 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1088 };
1089 
1090 #define FDEV(i)				(sbi->devs[i])
1091 #define RDEV(i)				(raw_super->devs[i])
1092 struct f2fs_dev_info {
1093 	struct block_device *bdev;
1094 	char path[MAX_PATH_LEN];
1095 	unsigned int total_segments;
1096 	block_t start_blk;
1097 	block_t end_blk;
1098 #ifdef CONFIG_BLK_DEV_ZONED
1099 	unsigned int nr_blkz;		/* Total number of zones */
1100 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1101 #endif
1102 };
1103 
1104 enum inode_type {
1105 	DIR_INODE,			/* for dirty dir inode */
1106 	FILE_INODE,			/* for dirty regular/symlink inode */
1107 	DIRTY_META,			/* for all dirtied inode metadata */
1108 	ATOMIC_FILE,			/* for all atomic files */
1109 	NR_INODE_TYPE,
1110 };
1111 
1112 /* for inner inode cache management */
1113 struct inode_management {
1114 	struct radix_tree_root ino_root;	/* ino entry array */
1115 	spinlock_t ino_lock;			/* for ino entry lock */
1116 	struct list_head ino_list;		/* inode list head */
1117 	unsigned long ino_num;			/* number of entries */
1118 };
1119 
1120 /* For s_flag in struct f2fs_sb_info */
1121 enum {
1122 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1123 	SBI_IS_CLOSE,				/* specify unmounting */
1124 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1125 	SBI_POR_DOING,				/* recovery is doing or not */
1126 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1127 	SBI_NEED_CP,				/* need to checkpoint */
1128 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1129 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1130 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1131 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1132 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1133 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1134 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1135 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1136 };
1137 
1138 enum {
1139 	CP_TIME,
1140 	REQ_TIME,
1141 	DISCARD_TIME,
1142 	GC_TIME,
1143 	DISABLE_TIME,
1144 	UMOUNT_DISCARD_TIMEOUT,
1145 	MAX_TIME,
1146 };
1147 
1148 enum {
1149 	GC_NORMAL,
1150 	GC_IDLE_CB,
1151 	GC_IDLE_GREEDY,
1152 	GC_URGENT,
1153 };
1154 
1155 enum {
1156 	WHINT_MODE_OFF,		/* not pass down write hints */
1157 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1158 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1159 };
1160 
1161 enum {
1162 	ALLOC_MODE_DEFAULT,	/* stay default */
1163 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1164 };
1165 
1166 enum fsync_mode {
1167 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1168 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1169 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1170 };
1171 
1172 #ifdef CONFIG_FS_ENCRYPTION
1173 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1174 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1175 #else
1176 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1177 #endif
1178 
1179 struct f2fs_sb_info {
1180 	struct super_block *sb;			/* pointer to VFS super block */
1181 	struct proc_dir_entry *s_proc;		/* proc entry */
1182 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1183 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1184 	int valid_super_block;			/* valid super block no */
1185 	unsigned long s_flag;				/* flags for sbi */
1186 	struct mutex writepages;		/* mutex for writepages() */
1187 #ifdef CONFIG_UNICODE
1188 	struct unicode_map *s_encoding;
1189 	__u16 s_encoding_flags;
1190 #endif
1191 
1192 #ifdef CONFIG_BLK_DEV_ZONED
1193 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1194 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1195 #endif
1196 
1197 	/* for node-related operations */
1198 	struct f2fs_nm_info *nm_info;		/* node manager */
1199 	struct inode *node_inode;		/* cache node blocks */
1200 
1201 	/* for segment-related operations */
1202 	struct f2fs_sm_info *sm_info;		/* segment manager */
1203 
1204 	/* for bio operations */
1205 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1206 	/* keep migration IO order for LFS mode */
1207 	struct rw_semaphore io_order_lock;
1208 	mempool_t *write_io_dummy;		/* Dummy pages */
1209 
1210 	/* for checkpoint */
1211 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1212 	int cur_cp_pack;			/* remain current cp pack */
1213 	spinlock_t cp_lock;			/* for flag in ckpt */
1214 	struct inode *meta_inode;		/* cache meta blocks */
1215 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1216 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1217 	struct rw_semaphore node_write;		/* locking node writes */
1218 	struct rw_semaphore node_change;	/* locking node change */
1219 	wait_queue_head_t cp_wait;
1220 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1221 	long interval_time[MAX_TIME];		/* to store thresholds */
1222 
1223 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1224 
1225 	spinlock_t fsync_node_lock;		/* for node entry lock */
1226 	struct list_head fsync_node_list;	/* node list head */
1227 	unsigned int fsync_seg_id;		/* sequence id */
1228 	unsigned int fsync_node_num;		/* number of node entries */
1229 
1230 	/* for orphan inode, use 0'th array */
1231 	unsigned int max_orphans;		/* max orphan inodes */
1232 
1233 	/* for inode management */
1234 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1235 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1236 	struct mutex flush_lock;		/* for flush exclusion */
1237 
1238 	/* for extent tree cache */
1239 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1240 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1241 	struct list_head extent_list;		/* lru list for shrinker */
1242 	spinlock_t extent_lock;			/* locking extent lru list */
1243 	atomic_t total_ext_tree;		/* extent tree count */
1244 	struct list_head zombie_list;		/* extent zombie tree list */
1245 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1246 	atomic_t total_ext_node;		/* extent info count */
1247 
1248 	/* basic filesystem units */
1249 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1250 	unsigned int log_blocksize;		/* log2 block size */
1251 	unsigned int blocksize;			/* block size */
1252 	unsigned int root_ino_num;		/* root inode number*/
1253 	unsigned int node_ino_num;		/* node inode number*/
1254 	unsigned int meta_ino_num;		/* meta inode number*/
1255 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1256 	unsigned int blocks_per_seg;		/* blocks per segment */
1257 	unsigned int segs_per_sec;		/* segments per section */
1258 	unsigned int secs_per_zone;		/* sections per zone */
1259 	unsigned int total_sections;		/* total section count */
1260 	struct mutex resize_mutex;		/* for resize exclusion */
1261 	unsigned int total_node_count;		/* total node block count */
1262 	unsigned int total_valid_node_count;	/* valid node block count */
1263 	loff_t max_file_blocks;			/* max block index of file */
1264 	int dir_level;				/* directory level */
1265 	int readdir_ra;				/* readahead inode in readdir */
1266 
1267 	block_t user_block_count;		/* # of user blocks */
1268 	block_t total_valid_block_count;	/* # of valid blocks */
1269 	block_t discard_blks;			/* discard command candidats */
1270 	block_t last_valid_block_count;		/* for recovery */
1271 	block_t reserved_blocks;		/* configurable reserved blocks */
1272 	block_t current_reserved_blocks;	/* current reserved blocks */
1273 
1274 	/* Additional tracking for no checkpoint mode */
1275 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1276 
1277 	unsigned int nquota_files;		/* # of quota sysfile */
1278 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1279 
1280 	/* # of pages, see count_type */
1281 	atomic_t nr_pages[NR_COUNT_TYPE];
1282 	/* # of allocated blocks */
1283 	struct percpu_counter alloc_valid_block_count;
1284 
1285 	/* writeback control */
1286 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1287 
1288 	/* valid inode count */
1289 	struct percpu_counter total_valid_inode_count;
1290 
1291 	struct f2fs_mount_info mount_opt;	/* mount options */
1292 
1293 	/* for cleaning operations */
1294 	struct mutex gc_mutex;			/* mutex for GC */
1295 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1296 	unsigned int cur_victim_sec;		/* current victim section num */
1297 	unsigned int gc_mode;			/* current GC state */
1298 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1299 	/* for skip statistic */
1300 	unsigned int atomic_files;              /* # of opened atomic file */
1301 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1302 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1303 
1304 	/* threshold for gc trials on pinned files */
1305 	u64 gc_pin_file_threshold;
1306 	struct rw_semaphore pin_sem;
1307 
1308 	/* maximum # of trials to find a victim segment for SSR and GC */
1309 	unsigned int max_victim_search;
1310 	/* migration granularity of garbage collection, unit: segment */
1311 	unsigned int migration_granularity;
1312 
1313 	/*
1314 	 * for stat information.
1315 	 * one is for the LFS mode, and the other is for the SSR mode.
1316 	 */
1317 #ifdef CONFIG_F2FS_STAT_FS
1318 	struct f2fs_stat_info *stat_info;	/* FS status information */
1319 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1320 	unsigned int segment_count[2];		/* # of allocated segments */
1321 	unsigned int block_count[2];		/* # of allocated blocks */
1322 	atomic_t inplace_count;		/* # of inplace update */
1323 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1324 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1325 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1326 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1327 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1328 	atomic_t inline_inode;			/* # of inline_data inodes */
1329 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1330 	atomic_t aw_cnt;			/* # of atomic writes */
1331 	atomic_t vw_cnt;			/* # of volatile writes */
1332 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1333 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1334 	int bg_gc;				/* background gc calls */
1335 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1336 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1337 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1338 #endif
1339 	spinlock_t stat_lock;			/* lock for stat operations */
1340 
1341 	/* For app/fs IO statistics */
1342 	spinlock_t iostat_lock;
1343 	unsigned long long write_iostat[NR_IO_TYPE];
1344 	bool iostat_enable;
1345 
1346 	/* For sysfs suppport */
1347 	struct kobject s_kobj;
1348 	struct completion s_kobj_unregister;
1349 
1350 	/* For shrinker support */
1351 	struct list_head s_list;
1352 	int s_ndevs;				/* number of devices */
1353 	struct f2fs_dev_info *devs;		/* for device list */
1354 	unsigned int dirty_device;		/* for checkpoint data flush */
1355 	spinlock_t dev_lock;			/* protect dirty_device */
1356 	struct mutex umount_mutex;
1357 	unsigned int shrinker_run_no;
1358 
1359 	/* For write statistics */
1360 	u64 sectors_written_start;
1361 	u64 kbytes_written;
1362 
1363 	/* Reference to checksum algorithm driver via cryptoapi */
1364 	struct crypto_shash *s_chksum_driver;
1365 
1366 	/* Precomputed FS UUID checksum for seeding other checksums */
1367 	__u32 s_chksum_seed;
1368 };
1369 
1370 struct f2fs_private_dio {
1371 	struct inode *inode;
1372 	void *orig_private;
1373 	bio_end_io_t *orig_end_io;
1374 	bool write;
1375 };
1376 
1377 #ifdef CONFIG_F2FS_FAULT_INJECTION
1378 #define f2fs_show_injection_info(sbi, type)					\
1379 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1380 		KERN_INFO, sbi->sb->s_id,				\
1381 		f2fs_fault_name[type],					\
1382 		__func__, __builtin_return_address(0))
1383 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1384 {
1385 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1386 
1387 	if (!ffi->inject_rate)
1388 		return false;
1389 
1390 	if (!IS_FAULT_SET(ffi, type))
1391 		return false;
1392 
1393 	atomic_inc(&ffi->inject_ops);
1394 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1395 		atomic_set(&ffi->inject_ops, 0);
1396 		return true;
1397 	}
1398 	return false;
1399 }
1400 #else
1401 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1402 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1403 {
1404 	return false;
1405 }
1406 #endif
1407 
1408 /*
1409  * Test if the mounted volume is a multi-device volume.
1410  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1411  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1412  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1413  */
1414 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1415 {
1416 	return sbi->s_ndevs > 1;
1417 }
1418 
1419 /* For write statistics. Suppose sector size is 512 bytes,
1420  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1421  */
1422 #define BD_PART_WRITTEN(s)						 \
1423 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1424 		(s)->sectors_written_start) >> 1)
1425 
1426 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1427 {
1428 	unsigned long now = jiffies;
1429 
1430 	sbi->last_time[type] = now;
1431 
1432 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1433 	if (type == REQ_TIME) {
1434 		sbi->last_time[DISCARD_TIME] = now;
1435 		sbi->last_time[GC_TIME] = now;
1436 	}
1437 }
1438 
1439 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1440 {
1441 	unsigned long interval = sbi->interval_time[type] * HZ;
1442 
1443 	return time_after(jiffies, sbi->last_time[type] + interval);
1444 }
1445 
1446 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1447 						int type)
1448 {
1449 	unsigned long interval = sbi->interval_time[type] * HZ;
1450 	unsigned int wait_ms = 0;
1451 	long delta;
1452 
1453 	delta = (sbi->last_time[type] + interval) - jiffies;
1454 	if (delta > 0)
1455 		wait_ms = jiffies_to_msecs(delta);
1456 
1457 	return wait_ms;
1458 }
1459 
1460 /*
1461  * Inline functions
1462  */
1463 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1464 			      const void *address, unsigned int length)
1465 {
1466 	struct {
1467 		struct shash_desc shash;
1468 		char ctx[4];
1469 	} desc;
1470 	int err;
1471 
1472 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1473 
1474 	desc.shash.tfm = sbi->s_chksum_driver;
1475 	*(u32 *)desc.ctx = crc;
1476 
1477 	err = crypto_shash_update(&desc.shash, address, length);
1478 	BUG_ON(err);
1479 
1480 	return *(u32 *)desc.ctx;
1481 }
1482 
1483 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1484 			   unsigned int length)
1485 {
1486 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1487 }
1488 
1489 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1490 				  void *buf, size_t buf_size)
1491 {
1492 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1493 }
1494 
1495 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1496 			      const void *address, unsigned int length)
1497 {
1498 	return __f2fs_crc32(sbi, crc, address, length);
1499 }
1500 
1501 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1502 {
1503 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1504 }
1505 
1506 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1507 {
1508 	return sb->s_fs_info;
1509 }
1510 
1511 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1512 {
1513 	return F2FS_SB(inode->i_sb);
1514 }
1515 
1516 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1517 {
1518 	return F2FS_I_SB(mapping->host);
1519 }
1520 
1521 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1522 {
1523 	return F2FS_M_SB(page_file_mapping(page));
1524 }
1525 
1526 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1527 {
1528 	return (struct f2fs_super_block *)(sbi->raw_super);
1529 }
1530 
1531 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1532 {
1533 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1534 }
1535 
1536 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1537 {
1538 	return (struct f2fs_node *)page_address(page);
1539 }
1540 
1541 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1542 {
1543 	return &((struct f2fs_node *)page_address(page))->i;
1544 }
1545 
1546 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1547 {
1548 	return (struct f2fs_nm_info *)(sbi->nm_info);
1549 }
1550 
1551 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1552 {
1553 	return (struct f2fs_sm_info *)(sbi->sm_info);
1554 }
1555 
1556 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1557 {
1558 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1559 }
1560 
1561 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1562 {
1563 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1564 }
1565 
1566 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1567 {
1568 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1569 }
1570 
1571 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1572 {
1573 	return sbi->meta_inode->i_mapping;
1574 }
1575 
1576 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1577 {
1578 	return sbi->node_inode->i_mapping;
1579 }
1580 
1581 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1582 {
1583 	return test_bit(type, &sbi->s_flag);
1584 }
1585 
1586 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1587 {
1588 	set_bit(type, &sbi->s_flag);
1589 }
1590 
1591 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1592 {
1593 	clear_bit(type, &sbi->s_flag);
1594 }
1595 
1596 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1597 {
1598 	return le64_to_cpu(cp->checkpoint_ver);
1599 }
1600 
1601 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1602 {
1603 	if (type < F2FS_MAX_QUOTAS)
1604 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1605 	return 0;
1606 }
1607 
1608 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1609 {
1610 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1611 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1612 }
1613 
1614 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1615 {
1616 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1617 
1618 	return ckpt_flags & f;
1619 }
1620 
1621 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1622 {
1623 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1624 }
1625 
1626 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1627 {
1628 	unsigned int ckpt_flags;
1629 
1630 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1631 	ckpt_flags |= f;
1632 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1633 }
1634 
1635 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1636 {
1637 	unsigned long flags;
1638 
1639 	spin_lock_irqsave(&sbi->cp_lock, flags);
1640 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1641 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1642 }
1643 
1644 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1645 {
1646 	unsigned int ckpt_flags;
1647 
1648 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1649 	ckpt_flags &= (~f);
1650 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1651 }
1652 
1653 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1654 {
1655 	unsigned long flags;
1656 
1657 	spin_lock_irqsave(&sbi->cp_lock, flags);
1658 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1659 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1660 }
1661 
1662 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1663 {
1664 	unsigned long flags;
1665 	unsigned char *nat_bits;
1666 
1667 	/*
1668 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1669 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1670 	 * so let's rely on regular fsck or unclean shutdown.
1671 	 */
1672 
1673 	if (lock)
1674 		spin_lock_irqsave(&sbi->cp_lock, flags);
1675 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1676 	nat_bits = NM_I(sbi)->nat_bits;
1677 	NM_I(sbi)->nat_bits = NULL;
1678 	if (lock)
1679 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1680 
1681 	kvfree(nat_bits);
1682 }
1683 
1684 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1685 					struct cp_control *cpc)
1686 {
1687 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1688 
1689 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1690 }
1691 
1692 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1693 {
1694 	down_read(&sbi->cp_rwsem);
1695 }
1696 
1697 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1698 {
1699 	return down_read_trylock(&sbi->cp_rwsem);
1700 }
1701 
1702 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1703 {
1704 	up_read(&sbi->cp_rwsem);
1705 }
1706 
1707 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1708 {
1709 	down_write(&sbi->cp_rwsem);
1710 }
1711 
1712 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1713 {
1714 	up_write(&sbi->cp_rwsem);
1715 }
1716 
1717 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1718 {
1719 	int reason = CP_SYNC;
1720 
1721 	if (test_opt(sbi, FASTBOOT))
1722 		reason = CP_FASTBOOT;
1723 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1724 		reason = CP_UMOUNT;
1725 	return reason;
1726 }
1727 
1728 static inline bool __remain_node_summaries(int reason)
1729 {
1730 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1731 }
1732 
1733 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1734 {
1735 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1736 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1737 }
1738 
1739 /*
1740  * Check whether the inode has blocks or not
1741  */
1742 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1743 {
1744 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1745 
1746 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1747 }
1748 
1749 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1750 {
1751 	return ofs == XATTR_NODE_OFFSET;
1752 }
1753 
1754 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1755 					struct inode *inode, bool cap)
1756 {
1757 	if (!inode)
1758 		return true;
1759 	if (!test_opt(sbi, RESERVE_ROOT))
1760 		return false;
1761 	if (IS_NOQUOTA(inode))
1762 		return true;
1763 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1764 		return true;
1765 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1766 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1767 		return true;
1768 	if (cap && capable(CAP_SYS_RESOURCE))
1769 		return true;
1770 	return false;
1771 }
1772 
1773 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1774 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1775 				 struct inode *inode, blkcnt_t *count)
1776 {
1777 	blkcnt_t diff = 0, release = 0;
1778 	block_t avail_user_block_count;
1779 	int ret;
1780 
1781 	ret = dquot_reserve_block(inode, *count);
1782 	if (ret)
1783 		return ret;
1784 
1785 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1786 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1787 		release = *count;
1788 		goto release_quota;
1789 	}
1790 
1791 	/*
1792 	 * let's increase this in prior to actual block count change in order
1793 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1794 	 */
1795 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1796 
1797 	spin_lock(&sbi->stat_lock);
1798 	sbi->total_valid_block_count += (block_t)(*count);
1799 	avail_user_block_count = sbi->user_block_count -
1800 					sbi->current_reserved_blocks;
1801 
1802 	if (!__allow_reserved_blocks(sbi, inode, true))
1803 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1804 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1805 		if (avail_user_block_count > sbi->unusable_block_count)
1806 			avail_user_block_count -= sbi->unusable_block_count;
1807 		else
1808 			avail_user_block_count = 0;
1809 	}
1810 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1811 		diff = sbi->total_valid_block_count - avail_user_block_count;
1812 		if (diff > *count)
1813 			diff = *count;
1814 		*count -= diff;
1815 		release = diff;
1816 		sbi->total_valid_block_count -= diff;
1817 		if (!*count) {
1818 			spin_unlock(&sbi->stat_lock);
1819 			goto enospc;
1820 		}
1821 	}
1822 	spin_unlock(&sbi->stat_lock);
1823 
1824 	if (unlikely(release)) {
1825 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1826 		dquot_release_reservation_block(inode, release);
1827 	}
1828 	f2fs_i_blocks_write(inode, *count, true, true);
1829 	return 0;
1830 
1831 enospc:
1832 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1833 release_quota:
1834 	dquot_release_reservation_block(inode, release);
1835 	return -ENOSPC;
1836 }
1837 
1838 __printf(2, 3)
1839 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
1840 
1841 #define f2fs_err(sbi, fmt, ...)						\
1842 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
1843 #define f2fs_warn(sbi, fmt, ...)					\
1844 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
1845 #define f2fs_notice(sbi, fmt, ...)					\
1846 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
1847 #define f2fs_info(sbi, fmt, ...)					\
1848 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
1849 #define f2fs_debug(sbi, fmt, ...)					\
1850 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
1851 
1852 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1853 						struct inode *inode,
1854 						block_t count)
1855 {
1856 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1857 
1858 	spin_lock(&sbi->stat_lock);
1859 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1860 	sbi->total_valid_block_count -= (block_t)count;
1861 	if (sbi->reserved_blocks &&
1862 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1863 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1864 					sbi->current_reserved_blocks + count);
1865 	spin_unlock(&sbi->stat_lock);
1866 	if (unlikely(inode->i_blocks < sectors)) {
1867 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1868 			  inode->i_ino,
1869 			  (unsigned long long)inode->i_blocks,
1870 			  (unsigned long long)sectors);
1871 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1872 		return;
1873 	}
1874 	f2fs_i_blocks_write(inode, count, false, true);
1875 }
1876 
1877 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1878 {
1879 	atomic_inc(&sbi->nr_pages[count_type]);
1880 
1881 	if (count_type == F2FS_DIRTY_DENTS ||
1882 			count_type == F2FS_DIRTY_NODES ||
1883 			count_type == F2FS_DIRTY_META ||
1884 			count_type == F2FS_DIRTY_QDATA ||
1885 			count_type == F2FS_DIRTY_IMETA)
1886 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1887 }
1888 
1889 static inline void inode_inc_dirty_pages(struct inode *inode)
1890 {
1891 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1892 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1893 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1894 	if (IS_NOQUOTA(inode))
1895 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1896 }
1897 
1898 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1899 {
1900 	atomic_dec(&sbi->nr_pages[count_type]);
1901 }
1902 
1903 static inline void inode_dec_dirty_pages(struct inode *inode)
1904 {
1905 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1906 			!S_ISLNK(inode->i_mode))
1907 		return;
1908 
1909 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1910 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1911 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1912 	if (IS_NOQUOTA(inode))
1913 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1914 }
1915 
1916 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1917 {
1918 	return atomic_read(&sbi->nr_pages[count_type]);
1919 }
1920 
1921 static inline int get_dirty_pages(struct inode *inode)
1922 {
1923 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1924 }
1925 
1926 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1927 {
1928 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1929 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1930 						sbi->log_blocks_per_seg;
1931 
1932 	return segs / sbi->segs_per_sec;
1933 }
1934 
1935 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1936 {
1937 	return sbi->total_valid_block_count;
1938 }
1939 
1940 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1941 {
1942 	return sbi->discard_blks;
1943 }
1944 
1945 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1946 {
1947 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1948 
1949 	/* return NAT or SIT bitmap */
1950 	if (flag == NAT_BITMAP)
1951 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1952 	else if (flag == SIT_BITMAP)
1953 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1954 
1955 	return 0;
1956 }
1957 
1958 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1959 {
1960 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1961 }
1962 
1963 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1964 {
1965 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1966 	int offset;
1967 
1968 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1969 		offset = (flag == SIT_BITMAP) ?
1970 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1971 		/*
1972 		 * if large_nat_bitmap feature is enabled, leave checksum
1973 		 * protection for all nat/sit bitmaps.
1974 		 */
1975 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
1976 	}
1977 
1978 	if (__cp_payload(sbi) > 0) {
1979 		if (flag == NAT_BITMAP)
1980 			return &ckpt->sit_nat_version_bitmap;
1981 		else
1982 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1983 	} else {
1984 		offset = (flag == NAT_BITMAP) ?
1985 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1986 		return &ckpt->sit_nat_version_bitmap + offset;
1987 	}
1988 }
1989 
1990 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1991 {
1992 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1993 
1994 	if (sbi->cur_cp_pack == 2)
1995 		start_addr += sbi->blocks_per_seg;
1996 	return start_addr;
1997 }
1998 
1999 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2000 {
2001 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2002 
2003 	if (sbi->cur_cp_pack == 1)
2004 		start_addr += sbi->blocks_per_seg;
2005 	return start_addr;
2006 }
2007 
2008 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2009 {
2010 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2011 }
2012 
2013 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2014 {
2015 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2016 }
2017 
2018 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2019 					struct inode *inode, bool is_inode)
2020 {
2021 	block_t	valid_block_count;
2022 	unsigned int valid_node_count, user_block_count;
2023 	int err;
2024 
2025 	if (is_inode) {
2026 		if (inode) {
2027 			err = dquot_alloc_inode(inode);
2028 			if (err)
2029 				return err;
2030 		}
2031 	} else {
2032 		err = dquot_reserve_block(inode, 1);
2033 		if (err)
2034 			return err;
2035 	}
2036 
2037 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2038 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2039 		goto enospc;
2040 	}
2041 
2042 	spin_lock(&sbi->stat_lock);
2043 
2044 	valid_block_count = sbi->total_valid_block_count +
2045 					sbi->current_reserved_blocks + 1;
2046 
2047 	if (!__allow_reserved_blocks(sbi, inode, false))
2048 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2049 	user_block_count = sbi->user_block_count;
2050 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2051 		user_block_count -= sbi->unusable_block_count;
2052 
2053 	if (unlikely(valid_block_count > user_block_count)) {
2054 		spin_unlock(&sbi->stat_lock);
2055 		goto enospc;
2056 	}
2057 
2058 	valid_node_count = sbi->total_valid_node_count + 1;
2059 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2060 		spin_unlock(&sbi->stat_lock);
2061 		goto enospc;
2062 	}
2063 
2064 	sbi->total_valid_node_count++;
2065 	sbi->total_valid_block_count++;
2066 	spin_unlock(&sbi->stat_lock);
2067 
2068 	if (inode) {
2069 		if (is_inode)
2070 			f2fs_mark_inode_dirty_sync(inode, true);
2071 		else
2072 			f2fs_i_blocks_write(inode, 1, true, true);
2073 	}
2074 
2075 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2076 	return 0;
2077 
2078 enospc:
2079 	if (is_inode) {
2080 		if (inode)
2081 			dquot_free_inode(inode);
2082 	} else {
2083 		dquot_release_reservation_block(inode, 1);
2084 	}
2085 	return -ENOSPC;
2086 }
2087 
2088 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2089 					struct inode *inode, bool is_inode)
2090 {
2091 	spin_lock(&sbi->stat_lock);
2092 
2093 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2094 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2095 
2096 	sbi->total_valid_node_count--;
2097 	sbi->total_valid_block_count--;
2098 	if (sbi->reserved_blocks &&
2099 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2100 		sbi->current_reserved_blocks++;
2101 
2102 	spin_unlock(&sbi->stat_lock);
2103 
2104 	if (is_inode) {
2105 		dquot_free_inode(inode);
2106 	} else {
2107 		if (unlikely(inode->i_blocks == 0)) {
2108 			f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2109 				  inode->i_ino,
2110 				  (unsigned long long)inode->i_blocks);
2111 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2112 			return;
2113 		}
2114 		f2fs_i_blocks_write(inode, 1, false, true);
2115 	}
2116 }
2117 
2118 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2119 {
2120 	return sbi->total_valid_node_count;
2121 }
2122 
2123 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2124 {
2125 	percpu_counter_inc(&sbi->total_valid_inode_count);
2126 }
2127 
2128 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2129 {
2130 	percpu_counter_dec(&sbi->total_valid_inode_count);
2131 }
2132 
2133 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2134 {
2135 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2136 }
2137 
2138 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2139 						pgoff_t index, bool for_write)
2140 {
2141 	struct page *page;
2142 
2143 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2144 		if (!for_write)
2145 			page = find_get_page_flags(mapping, index,
2146 							FGP_LOCK | FGP_ACCESSED);
2147 		else
2148 			page = find_lock_page(mapping, index);
2149 		if (page)
2150 			return page;
2151 
2152 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2153 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2154 							FAULT_PAGE_ALLOC);
2155 			return NULL;
2156 		}
2157 	}
2158 
2159 	if (!for_write)
2160 		return grab_cache_page(mapping, index);
2161 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2162 }
2163 
2164 static inline struct page *f2fs_pagecache_get_page(
2165 				struct address_space *mapping, pgoff_t index,
2166 				int fgp_flags, gfp_t gfp_mask)
2167 {
2168 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2169 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2170 		return NULL;
2171 	}
2172 
2173 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2174 }
2175 
2176 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2177 {
2178 	char *src_kaddr = kmap(src);
2179 	char *dst_kaddr = kmap(dst);
2180 
2181 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2182 	kunmap(dst);
2183 	kunmap(src);
2184 }
2185 
2186 static inline void f2fs_put_page(struct page *page, int unlock)
2187 {
2188 	if (!page)
2189 		return;
2190 
2191 	if (unlock) {
2192 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2193 		unlock_page(page);
2194 	}
2195 	put_page(page);
2196 }
2197 
2198 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2199 {
2200 	if (dn->node_page)
2201 		f2fs_put_page(dn->node_page, 1);
2202 	if (dn->inode_page && dn->node_page != dn->inode_page)
2203 		f2fs_put_page(dn->inode_page, 0);
2204 	dn->node_page = NULL;
2205 	dn->inode_page = NULL;
2206 }
2207 
2208 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2209 					size_t size)
2210 {
2211 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2212 }
2213 
2214 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2215 						gfp_t flags)
2216 {
2217 	void *entry;
2218 
2219 	entry = kmem_cache_alloc(cachep, flags);
2220 	if (!entry)
2221 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2222 	return entry;
2223 }
2224 
2225 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2226 						int npages, bool no_fail)
2227 {
2228 	struct bio *bio;
2229 
2230 	if (no_fail) {
2231 		/* No failure on bio allocation */
2232 		bio = bio_alloc(GFP_NOIO, npages);
2233 		if (!bio)
2234 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2235 		return bio;
2236 	}
2237 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2238 		f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
2239 		return NULL;
2240 	}
2241 
2242 	return bio_alloc(GFP_KERNEL, npages);
2243 }
2244 
2245 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2246 {
2247 	if (sbi->gc_mode == GC_URGENT)
2248 		return true;
2249 
2250 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2251 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2252 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2253 		get_pages(sbi, F2FS_DIO_READ) ||
2254 		get_pages(sbi, F2FS_DIO_WRITE))
2255 		return false;
2256 
2257 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2258 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2259 		return false;
2260 
2261 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2262 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2263 		return false;
2264 
2265 	return f2fs_time_over(sbi, type);
2266 }
2267 
2268 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2269 				unsigned long index, void *item)
2270 {
2271 	while (radix_tree_insert(root, index, item))
2272 		cond_resched();
2273 }
2274 
2275 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2276 
2277 static inline bool IS_INODE(struct page *page)
2278 {
2279 	struct f2fs_node *p = F2FS_NODE(page);
2280 
2281 	return RAW_IS_INODE(p);
2282 }
2283 
2284 static inline int offset_in_addr(struct f2fs_inode *i)
2285 {
2286 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2287 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2288 }
2289 
2290 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2291 {
2292 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2293 }
2294 
2295 static inline int f2fs_has_extra_attr(struct inode *inode);
2296 static inline block_t datablock_addr(struct inode *inode,
2297 			struct page *node_page, unsigned int offset)
2298 {
2299 	struct f2fs_node *raw_node;
2300 	__le32 *addr_array;
2301 	int base = 0;
2302 	bool is_inode = IS_INODE(node_page);
2303 
2304 	raw_node = F2FS_NODE(node_page);
2305 
2306 	/* from GC path only */
2307 	if (is_inode) {
2308 		if (!inode)
2309 			base = offset_in_addr(&raw_node->i);
2310 		else if (f2fs_has_extra_attr(inode))
2311 			base = get_extra_isize(inode);
2312 	}
2313 
2314 	addr_array = blkaddr_in_node(raw_node);
2315 	return le32_to_cpu(addr_array[base + offset]);
2316 }
2317 
2318 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2319 {
2320 	int mask;
2321 
2322 	addr += (nr >> 3);
2323 	mask = 1 << (7 - (nr & 0x07));
2324 	return mask & *addr;
2325 }
2326 
2327 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2328 {
2329 	int mask;
2330 
2331 	addr += (nr >> 3);
2332 	mask = 1 << (7 - (nr & 0x07));
2333 	*addr |= mask;
2334 }
2335 
2336 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2337 {
2338 	int mask;
2339 
2340 	addr += (nr >> 3);
2341 	mask = 1 << (7 - (nr & 0x07));
2342 	*addr &= ~mask;
2343 }
2344 
2345 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2346 {
2347 	int mask;
2348 	int ret;
2349 
2350 	addr += (nr >> 3);
2351 	mask = 1 << (7 - (nr & 0x07));
2352 	ret = mask & *addr;
2353 	*addr |= mask;
2354 	return ret;
2355 }
2356 
2357 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2358 {
2359 	int mask;
2360 	int ret;
2361 
2362 	addr += (nr >> 3);
2363 	mask = 1 << (7 - (nr & 0x07));
2364 	ret = mask & *addr;
2365 	*addr &= ~mask;
2366 	return ret;
2367 }
2368 
2369 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2370 {
2371 	int mask;
2372 
2373 	addr += (nr >> 3);
2374 	mask = 1 << (7 - (nr & 0x07));
2375 	*addr ^= mask;
2376 }
2377 
2378 /*
2379  * On-disk inode flags (f2fs_inode::i_flags)
2380  */
2381 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2382 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2383 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2384 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2385 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2386 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2387 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2388 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2389 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2390 
2391 /* Flags that should be inherited by new inodes from their parent. */
2392 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2393 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2394 			   F2FS_CASEFOLD_FL)
2395 
2396 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2397 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2398 				F2FS_CASEFOLD_FL))
2399 
2400 /* Flags that are appropriate for non-directories/regular files. */
2401 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2402 
2403 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2404 {
2405 	if (S_ISDIR(mode))
2406 		return flags;
2407 	else if (S_ISREG(mode))
2408 		return flags & F2FS_REG_FLMASK;
2409 	else
2410 		return flags & F2FS_OTHER_FLMASK;
2411 }
2412 
2413 /* used for f2fs_inode_info->flags */
2414 enum {
2415 	FI_NEW_INODE,		/* indicate newly allocated inode */
2416 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2417 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2418 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2419 	FI_INC_LINK,		/* need to increment i_nlink */
2420 	FI_ACL_MODE,		/* indicate acl mode */
2421 	FI_NO_ALLOC,		/* should not allocate any blocks */
2422 	FI_FREE_NID,		/* free allocated nide */
2423 	FI_NO_EXTENT,		/* not to use the extent cache */
2424 	FI_INLINE_XATTR,	/* used for inline xattr */
2425 	FI_INLINE_DATA,		/* used for inline data*/
2426 	FI_INLINE_DENTRY,	/* used for inline dentry */
2427 	FI_APPEND_WRITE,	/* inode has appended data */
2428 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2429 	FI_NEED_IPU,		/* used for ipu per file */
2430 	FI_ATOMIC_FILE,		/* indicate atomic file */
2431 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2432 	FI_VOLATILE_FILE,	/* indicate volatile file */
2433 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2434 	FI_DROP_CACHE,		/* drop dirty page cache */
2435 	FI_DATA_EXIST,		/* indicate data exists */
2436 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2437 	FI_DO_DEFRAG,		/* indicate defragment is running */
2438 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2439 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2440 	FI_HOT_DATA,		/* indicate file is hot */
2441 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2442 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2443 	FI_PIN_FILE,		/* indicate file should not be gced */
2444 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2445 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
2446 };
2447 
2448 static inline void __mark_inode_dirty_flag(struct inode *inode,
2449 						int flag, bool set)
2450 {
2451 	switch (flag) {
2452 	case FI_INLINE_XATTR:
2453 	case FI_INLINE_DATA:
2454 	case FI_INLINE_DENTRY:
2455 	case FI_NEW_INODE:
2456 		if (set)
2457 			return;
2458 		/* fall through */
2459 	case FI_DATA_EXIST:
2460 	case FI_INLINE_DOTS:
2461 	case FI_PIN_FILE:
2462 		f2fs_mark_inode_dirty_sync(inode, true);
2463 	}
2464 }
2465 
2466 static inline void set_inode_flag(struct inode *inode, int flag)
2467 {
2468 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2469 		set_bit(flag, &F2FS_I(inode)->flags);
2470 	__mark_inode_dirty_flag(inode, flag, true);
2471 }
2472 
2473 static inline int is_inode_flag_set(struct inode *inode, int flag)
2474 {
2475 	return test_bit(flag, &F2FS_I(inode)->flags);
2476 }
2477 
2478 static inline void clear_inode_flag(struct inode *inode, int flag)
2479 {
2480 	if (test_bit(flag, &F2FS_I(inode)->flags))
2481 		clear_bit(flag, &F2FS_I(inode)->flags);
2482 	__mark_inode_dirty_flag(inode, flag, false);
2483 }
2484 
2485 static inline bool f2fs_verity_in_progress(struct inode *inode)
2486 {
2487 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2488 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2489 }
2490 
2491 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2492 {
2493 	F2FS_I(inode)->i_acl_mode = mode;
2494 	set_inode_flag(inode, FI_ACL_MODE);
2495 	f2fs_mark_inode_dirty_sync(inode, false);
2496 }
2497 
2498 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2499 {
2500 	if (inc)
2501 		inc_nlink(inode);
2502 	else
2503 		drop_nlink(inode);
2504 	f2fs_mark_inode_dirty_sync(inode, true);
2505 }
2506 
2507 static inline void f2fs_i_blocks_write(struct inode *inode,
2508 					block_t diff, bool add, bool claim)
2509 {
2510 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2511 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2512 
2513 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2514 	if (add) {
2515 		if (claim)
2516 			dquot_claim_block(inode, diff);
2517 		else
2518 			dquot_alloc_block_nofail(inode, diff);
2519 	} else {
2520 		dquot_free_block(inode, diff);
2521 	}
2522 
2523 	f2fs_mark_inode_dirty_sync(inode, true);
2524 	if (clean || recover)
2525 		set_inode_flag(inode, FI_AUTO_RECOVER);
2526 }
2527 
2528 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2529 {
2530 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2531 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2532 
2533 	if (i_size_read(inode) == i_size)
2534 		return;
2535 
2536 	i_size_write(inode, i_size);
2537 	f2fs_mark_inode_dirty_sync(inode, true);
2538 	if (clean || recover)
2539 		set_inode_flag(inode, FI_AUTO_RECOVER);
2540 }
2541 
2542 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2543 {
2544 	F2FS_I(inode)->i_current_depth = depth;
2545 	f2fs_mark_inode_dirty_sync(inode, true);
2546 }
2547 
2548 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2549 					unsigned int count)
2550 {
2551 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2552 	f2fs_mark_inode_dirty_sync(inode, true);
2553 }
2554 
2555 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2556 {
2557 	F2FS_I(inode)->i_xattr_nid = xnid;
2558 	f2fs_mark_inode_dirty_sync(inode, true);
2559 }
2560 
2561 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2562 {
2563 	F2FS_I(inode)->i_pino = pino;
2564 	f2fs_mark_inode_dirty_sync(inode, true);
2565 }
2566 
2567 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2568 {
2569 	struct f2fs_inode_info *fi = F2FS_I(inode);
2570 
2571 	if (ri->i_inline & F2FS_INLINE_XATTR)
2572 		set_bit(FI_INLINE_XATTR, &fi->flags);
2573 	if (ri->i_inline & F2FS_INLINE_DATA)
2574 		set_bit(FI_INLINE_DATA, &fi->flags);
2575 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2576 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2577 	if (ri->i_inline & F2FS_DATA_EXIST)
2578 		set_bit(FI_DATA_EXIST, &fi->flags);
2579 	if (ri->i_inline & F2FS_INLINE_DOTS)
2580 		set_bit(FI_INLINE_DOTS, &fi->flags);
2581 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2582 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2583 	if (ri->i_inline & F2FS_PIN_FILE)
2584 		set_bit(FI_PIN_FILE, &fi->flags);
2585 }
2586 
2587 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2588 {
2589 	ri->i_inline = 0;
2590 
2591 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2592 		ri->i_inline |= F2FS_INLINE_XATTR;
2593 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2594 		ri->i_inline |= F2FS_INLINE_DATA;
2595 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2596 		ri->i_inline |= F2FS_INLINE_DENTRY;
2597 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2598 		ri->i_inline |= F2FS_DATA_EXIST;
2599 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2600 		ri->i_inline |= F2FS_INLINE_DOTS;
2601 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2602 		ri->i_inline |= F2FS_EXTRA_ATTR;
2603 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2604 		ri->i_inline |= F2FS_PIN_FILE;
2605 }
2606 
2607 static inline int f2fs_has_extra_attr(struct inode *inode)
2608 {
2609 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2610 }
2611 
2612 static inline int f2fs_has_inline_xattr(struct inode *inode)
2613 {
2614 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2615 }
2616 
2617 static inline unsigned int addrs_per_inode(struct inode *inode)
2618 {
2619 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2620 				get_inline_xattr_addrs(inode);
2621 	return ALIGN_DOWN(addrs, 1);
2622 }
2623 
2624 static inline unsigned int addrs_per_block(struct inode *inode)
2625 {
2626 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1);
2627 }
2628 
2629 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2630 {
2631 	struct f2fs_inode *ri = F2FS_INODE(page);
2632 
2633 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2634 					get_inline_xattr_addrs(inode)]);
2635 }
2636 
2637 static inline int inline_xattr_size(struct inode *inode)
2638 {
2639 	if (f2fs_has_inline_xattr(inode))
2640 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2641 	return 0;
2642 }
2643 
2644 static inline int f2fs_has_inline_data(struct inode *inode)
2645 {
2646 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2647 }
2648 
2649 static inline int f2fs_exist_data(struct inode *inode)
2650 {
2651 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2652 }
2653 
2654 static inline int f2fs_has_inline_dots(struct inode *inode)
2655 {
2656 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2657 }
2658 
2659 static inline bool f2fs_is_pinned_file(struct inode *inode)
2660 {
2661 	return is_inode_flag_set(inode, FI_PIN_FILE);
2662 }
2663 
2664 static inline bool f2fs_is_atomic_file(struct inode *inode)
2665 {
2666 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2667 }
2668 
2669 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2670 {
2671 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2672 }
2673 
2674 static inline bool f2fs_is_volatile_file(struct inode *inode)
2675 {
2676 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2677 }
2678 
2679 static inline bool f2fs_is_first_block_written(struct inode *inode)
2680 {
2681 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2682 }
2683 
2684 static inline bool f2fs_is_drop_cache(struct inode *inode)
2685 {
2686 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2687 }
2688 
2689 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2690 {
2691 	struct f2fs_inode *ri = F2FS_INODE(page);
2692 	int extra_size = get_extra_isize(inode);
2693 
2694 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2695 }
2696 
2697 static inline int f2fs_has_inline_dentry(struct inode *inode)
2698 {
2699 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2700 }
2701 
2702 static inline int is_file(struct inode *inode, int type)
2703 {
2704 	return F2FS_I(inode)->i_advise & type;
2705 }
2706 
2707 static inline void set_file(struct inode *inode, int type)
2708 {
2709 	F2FS_I(inode)->i_advise |= type;
2710 	f2fs_mark_inode_dirty_sync(inode, true);
2711 }
2712 
2713 static inline void clear_file(struct inode *inode, int type)
2714 {
2715 	F2FS_I(inode)->i_advise &= ~type;
2716 	f2fs_mark_inode_dirty_sync(inode, true);
2717 }
2718 
2719 static inline bool f2fs_is_time_consistent(struct inode *inode)
2720 {
2721 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2722 		return false;
2723 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2724 		return false;
2725 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2726 		return false;
2727 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2728 						&F2FS_I(inode)->i_crtime))
2729 		return false;
2730 	return true;
2731 }
2732 
2733 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2734 {
2735 	bool ret;
2736 
2737 	if (dsync) {
2738 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2739 
2740 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2741 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2742 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2743 		return ret;
2744 	}
2745 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2746 			file_keep_isize(inode) ||
2747 			i_size_read(inode) & ~PAGE_MASK)
2748 		return false;
2749 
2750 	if (!f2fs_is_time_consistent(inode))
2751 		return false;
2752 
2753 	down_read(&F2FS_I(inode)->i_sem);
2754 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2755 	up_read(&F2FS_I(inode)->i_sem);
2756 
2757 	return ret;
2758 }
2759 
2760 static inline bool f2fs_readonly(struct super_block *sb)
2761 {
2762 	return sb_rdonly(sb);
2763 }
2764 
2765 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2766 {
2767 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2768 }
2769 
2770 static inline bool is_dot_dotdot(const struct qstr *str)
2771 {
2772 	if (str->len == 1 && str->name[0] == '.')
2773 		return true;
2774 
2775 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2776 		return true;
2777 
2778 	return false;
2779 }
2780 
2781 static inline bool f2fs_may_extent_tree(struct inode *inode)
2782 {
2783 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2784 
2785 	if (!test_opt(sbi, EXTENT_CACHE) ||
2786 			is_inode_flag_set(inode, FI_NO_EXTENT))
2787 		return false;
2788 
2789 	/*
2790 	 * for recovered files during mount do not create extents
2791 	 * if shrinker is not registered.
2792 	 */
2793 	if (list_empty(&sbi->s_list))
2794 		return false;
2795 
2796 	return S_ISREG(inode->i_mode);
2797 }
2798 
2799 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2800 					size_t size, gfp_t flags)
2801 {
2802 	void *ret;
2803 
2804 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2805 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2806 		return NULL;
2807 	}
2808 
2809 	ret = kmalloc(size, flags);
2810 	if (ret)
2811 		return ret;
2812 
2813 	return kvmalloc(size, flags);
2814 }
2815 
2816 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2817 					size_t size, gfp_t flags)
2818 {
2819 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2820 }
2821 
2822 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2823 					size_t size, gfp_t flags)
2824 {
2825 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2826 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
2827 		return NULL;
2828 	}
2829 
2830 	return kvmalloc(size, flags);
2831 }
2832 
2833 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2834 					size_t size, gfp_t flags)
2835 {
2836 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2837 }
2838 
2839 static inline int get_extra_isize(struct inode *inode)
2840 {
2841 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2842 }
2843 
2844 static inline int get_inline_xattr_addrs(struct inode *inode)
2845 {
2846 	return F2FS_I(inode)->i_inline_xattr_size;
2847 }
2848 
2849 #define f2fs_get_inode_mode(i) \
2850 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2851 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2852 
2853 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2854 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2855 	offsetof(struct f2fs_inode, i_extra_isize))	\
2856 
2857 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2858 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2859 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2860 		sizeof((f2fs_inode)->field))			\
2861 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2862 
2863 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2864 {
2865 	int i;
2866 
2867 	spin_lock(&sbi->iostat_lock);
2868 	for (i = 0; i < NR_IO_TYPE; i++)
2869 		sbi->write_iostat[i] = 0;
2870 	spin_unlock(&sbi->iostat_lock);
2871 }
2872 
2873 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2874 			enum iostat_type type, unsigned long long io_bytes)
2875 {
2876 	if (!sbi->iostat_enable)
2877 		return;
2878 	spin_lock(&sbi->iostat_lock);
2879 	sbi->write_iostat[type] += io_bytes;
2880 
2881 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2882 		sbi->write_iostat[APP_BUFFERED_IO] =
2883 			sbi->write_iostat[APP_WRITE_IO] -
2884 			sbi->write_iostat[APP_DIRECT_IO];
2885 	spin_unlock(&sbi->iostat_lock);
2886 }
2887 
2888 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2889 
2890 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2891 
2892 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2893 					block_t blkaddr, int type);
2894 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2895 					block_t blkaddr, int type)
2896 {
2897 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2898 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
2899 			 blkaddr, type);
2900 		f2fs_bug_on(sbi, 1);
2901 	}
2902 }
2903 
2904 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2905 {
2906 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2907 		return false;
2908 	return true;
2909 }
2910 
2911 static inline void f2fs_set_page_private(struct page *page,
2912 						unsigned long data)
2913 {
2914 	if (PagePrivate(page))
2915 		return;
2916 
2917 	get_page(page);
2918 	SetPagePrivate(page);
2919 	set_page_private(page, data);
2920 }
2921 
2922 static inline void f2fs_clear_page_private(struct page *page)
2923 {
2924 	if (!PagePrivate(page))
2925 		return;
2926 
2927 	set_page_private(page, 0);
2928 	ClearPagePrivate(page);
2929 	f2fs_put_page(page, 0);
2930 }
2931 
2932 /*
2933  * file.c
2934  */
2935 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2936 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2937 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2938 int f2fs_truncate(struct inode *inode);
2939 int f2fs_getattr(const struct path *path, struct kstat *stat,
2940 			u32 request_mask, unsigned int flags);
2941 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2942 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2943 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2944 int f2fs_precache_extents(struct inode *inode);
2945 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2946 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2947 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2948 int f2fs_pin_file_control(struct inode *inode, bool inc);
2949 
2950 /*
2951  * inode.c
2952  */
2953 void f2fs_set_inode_flags(struct inode *inode);
2954 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2955 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2956 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2957 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2958 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2959 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2960 void f2fs_update_inode_page(struct inode *inode);
2961 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2962 void f2fs_evict_inode(struct inode *inode);
2963 void f2fs_handle_failed_inode(struct inode *inode);
2964 
2965 /*
2966  * namei.c
2967  */
2968 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2969 							bool hot, bool set);
2970 struct dentry *f2fs_get_parent(struct dentry *child);
2971 
2972 extern int f2fs_ci_compare(const struct inode *parent,
2973 			   const struct qstr *name,
2974 			   const struct qstr *entry,
2975 			   bool quick);
2976 
2977 /*
2978  * dir.c
2979  */
2980 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2981 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2982 			f2fs_hash_t namehash, int *max_slots,
2983 			struct f2fs_dentry_ptr *d);
2984 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2985 			unsigned int start_pos, struct fscrypt_str *fstr);
2986 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2987 			struct f2fs_dentry_ptr *d);
2988 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2989 			const struct qstr *new_name,
2990 			const struct qstr *orig_name, struct page *dpage);
2991 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2992 			unsigned int current_depth);
2993 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2994 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2995 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2996 			struct fscrypt_name *fname, struct page **res_page);
2997 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2998 			const struct qstr *child, struct page **res_page);
2999 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3000 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3001 			struct page **page);
3002 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3003 			struct page *page, struct inode *inode);
3004 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3005 			const struct qstr *name, f2fs_hash_t name_hash,
3006 			unsigned int bit_pos);
3007 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
3008 			const struct qstr *orig_name,
3009 			struct inode *inode, nid_t ino, umode_t mode);
3010 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
3011 			struct inode *inode, nid_t ino, umode_t mode);
3012 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3013 			struct inode *inode, nid_t ino, umode_t mode);
3014 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3015 			struct inode *dir, struct inode *inode);
3016 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3017 bool f2fs_empty_dir(struct inode *dir);
3018 
3019 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3020 {
3021 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3022 				inode, inode->i_ino, inode->i_mode);
3023 }
3024 
3025 /*
3026  * super.c
3027  */
3028 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3029 void f2fs_inode_synced(struct inode *inode);
3030 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3031 int f2fs_quota_sync(struct super_block *sb, int type);
3032 void f2fs_quota_off_umount(struct super_block *sb);
3033 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3034 int f2fs_sync_fs(struct super_block *sb, int sync);
3035 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3036 
3037 /*
3038  * hash.c
3039  */
3040 f2fs_hash_t f2fs_dentry_hash(const struct inode *dir,
3041 		const struct qstr *name_info, struct fscrypt_name *fname);
3042 
3043 /*
3044  * node.c
3045  */
3046 struct dnode_of_data;
3047 struct node_info;
3048 
3049 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3050 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3051 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3052 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3053 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3054 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3055 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3056 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3057 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3058 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3059 						struct node_info *ni);
3060 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3061 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3062 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3063 int f2fs_truncate_xattr_node(struct inode *inode);
3064 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3065 					unsigned int seq_id);
3066 int f2fs_remove_inode_page(struct inode *inode);
3067 struct page *f2fs_new_inode_page(struct inode *inode);
3068 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3069 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3070 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3071 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3072 int f2fs_move_node_page(struct page *node_page, int gc_type);
3073 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3074 			struct writeback_control *wbc, bool atomic,
3075 			unsigned int *seq_id);
3076 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3077 			struct writeback_control *wbc,
3078 			bool do_balance, enum iostat_type io_type);
3079 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3080 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3081 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3082 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3083 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3084 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3085 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3086 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3087 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3088 			unsigned int segno, struct f2fs_summary_block *sum);
3089 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3090 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3091 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3092 int __init f2fs_create_node_manager_caches(void);
3093 void f2fs_destroy_node_manager_caches(void);
3094 
3095 /*
3096  * segment.c
3097  */
3098 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3099 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3100 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3101 void f2fs_drop_inmem_pages(struct inode *inode);
3102 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3103 int f2fs_commit_inmem_pages(struct inode *inode);
3104 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3105 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3106 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3107 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3108 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3109 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3110 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3111 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3112 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3113 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3114 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3115 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3116 					struct cp_control *cpc);
3117 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3118 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3119 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3120 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3121 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3122 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3123 					unsigned int start, unsigned int end);
3124 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type);
3125 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3126 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3127 					struct cp_control *cpc);
3128 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3129 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3130 					block_t blk_addr);
3131 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3132 						enum iostat_type io_type);
3133 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3134 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3135 			struct f2fs_io_info *fio);
3136 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3137 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3138 			block_t old_blkaddr, block_t new_blkaddr,
3139 			bool recover_curseg, bool recover_newaddr);
3140 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3141 			block_t old_addr, block_t new_addr,
3142 			unsigned char version, bool recover_curseg,
3143 			bool recover_newaddr);
3144 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3145 			block_t old_blkaddr, block_t *new_blkaddr,
3146 			struct f2fs_summary *sum, int type,
3147 			struct f2fs_io_info *fio, bool add_list);
3148 void f2fs_wait_on_page_writeback(struct page *page,
3149 			enum page_type type, bool ordered, bool locked);
3150 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3151 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3152 								block_t len);
3153 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3154 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3155 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3156 			unsigned int val, int alloc);
3157 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3158 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3159 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3160 int __init f2fs_create_segment_manager_caches(void);
3161 void f2fs_destroy_segment_manager_caches(void);
3162 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3163 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3164 			enum page_type type, enum temp_type temp);
3165 
3166 /*
3167  * checkpoint.c
3168  */
3169 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3170 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3171 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3172 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3173 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3174 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3175 					block_t blkaddr, int type);
3176 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3177 			int type, bool sync);
3178 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3179 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3180 			long nr_to_write, enum iostat_type io_type);
3181 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3182 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3183 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3184 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3185 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3186 					unsigned int devidx, int type);
3187 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3188 					unsigned int devidx, int type);
3189 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3190 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3191 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3192 void f2fs_add_orphan_inode(struct inode *inode);
3193 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3194 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3195 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3196 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3197 void f2fs_remove_dirty_inode(struct inode *inode);
3198 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3199 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3200 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3201 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3202 int __init f2fs_create_checkpoint_caches(void);
3203 void f2fs_destroy_checkpoint_caches(void);
3204 
3205 /*
3206  * data.c
3207  */
3208 int f2fs_init_post_read_processing(void);
3209 void f2fs_destroy_post_read_processing(void);
3210 int f2fs_init_bio_entry_cache(void);
3211 void f2fs_destroy_bio_entry_cache(void);
3212 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3213 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3214 				struct inode *inode, struct page *page,
3215 				nid_t ino, enum page_type type);
3216 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3217 					struct bio **bio, struct page *page);
3218 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3219 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3220 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3221 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3222 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3223 			block_t blk_addr, struct bio *bio);
3224 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3225 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3226 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3227 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3228 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3229 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3230 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3231 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3232 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3233 			int op_flags, bool for_write);
3234 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3235 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3236 			bool for_write);
3237 struct page *f2fs_get_new_data_page(struct inode *inode,
3238 			struct page *ipage, pgoff_t index, bool new_i_size);
3239 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3240 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3241 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3242 			int create, int flag);
3243 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3244 			u64 start, u64 len);
3245 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3246 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3247 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3248 			unsigned int length);
3249 int f2fs_release_page(struct page *page, gfp_t wait);
3250 #ifdef CONFIG_MIGRATION
3251 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3252 			struct page *page, enum migrate_mode mode);
3253 #endif
3254 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3255 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3256 
3257 /*
3258  * gc.c
3259  */
3260 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3261 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3262 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3263 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3264 			unsigned int segno);
3265 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3266 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3267 
3268 /*
3269  * recovery.c
3270  */
3271 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3272 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3273 
3274 /*
3275  * debug.c
3276  */
3277 #ifdef CONFIG_F2FS_STAT_FS
3278 struct f2fs_stat_info {
3279 	struct list_head stat_list;
3280 	struct f2fs_sb_info *sbi;
3281 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3282 	int main_area_segs, main_area_sections, main_area_zones;
3283 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3284 	unsigned long long hit_total, total_ext;
3285 	int ext_tree, zombie_tree, ext_node;
3286 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3287 	int ndirty_data, ndirty_qdata;
3288 	int inmem_pages;
3289 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3290 	int nats, dirty_nats, sits, dirty_sits;
3291 	int free_nids, avail_nids, alloc_nids;
3292 	int total_count, utilization;
3293 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3294 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3295 	int nr_dio_read, nr_dio_write;
3296 	unsigned int io_skip_bggc, other_skip_bggc;
3297 	int nr_flushing, nr_flushed, flush_list_empty;
3298 	int nr_discarding, nr_discarded;
3299 	int nr_discard_cmd;
3300 	unsigned int undiscard_blks;
3301 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3302 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3303 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3304 	unsigned int bimodal, avg_vblocks;
3305 	int util_free, util_valid, util_invalid;
3306 	int rsvd_segs, overp_segs;
3307 	int dirty_count, node_pages, meta_pages;
3308 	int prefree_count, call_count, cp_count, bg_cp_count;
3309 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3310 	int bg_node_segs, bg_data_segs;
3311 	int tot_blks, data_blks, node_blks;
3312 	int bg_data_blks, bg_node_blks;
3313 	unsigned long long skipped_atomic_files[2];
3314 	int curseg[NR_CURSEG_TYPE];
3315 	int cursec[NR_CURSEG_TYPE];
3316 	int curzone[NR_CURSEG_TYPE];
3317 
3318 	unsigned int meta_count[META_MAX];
3319 	unsigned int segment_count[2];
3320 	unsigned int block_count[2];
3321 	unsigned int inplace_count;
3322 	unsigned long long base_mem, cache_mem, page_mem;
3323 };
3324 
3325 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3326 {
3327 	return (struct f2fs_stat_info *)sbi->stat_info;
3328 }
3329 
3330 #define stat_inc_cp_count(si)		((si)->cp_count++)
3331 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3332 #define stat_inc_call_count(si)		((si)->call_count++)
3333 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3334 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3335 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3336 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3337 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3338 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3339 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3340 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3341 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3342 #define stat_inc_inline_xattr(inode)					\
3343 	do {								\
3344 		if (f2fs_has_inline_xattr(inode))			\
3345 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3346 	} while (0)
3347 #define stat_dec_inline_xattr(inode)					\
3348 	do {								\
3349 		if (f2fs_has_inline_xattr(inode))			\
3350 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3351 	} while (0)
3352 #define stat_inc_inline_inode(inode)					\
3353 	do {								\
3354 		if (f2fs_has_inline_data(inode))			\
3355 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3356 	} while (0)
3357 #define stat_dec_inline_inode(inode)					\
3358 	do {								\
3359 		if (f2fs_has_inline_data(inode))			\
3360 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3361 	} while (0)
3362 #define stat_inc_inline_dir(inode)					\
3363 	do {								\
3364 		if (f2fs_has_inline_dentry(inode))			\
3365 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3366 	} while (0)
3367 #define stat_dec_inline_dir(inode)					\
3368 	do {								\
3369 		if (f2fs_has_inline_dentry(inode))			\
3370 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3371 	} while (0)
3372 #define stat_inc_meta_count(sbi, blkaddr)				\
3373 	do {								\
3374 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3375 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3376 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3377 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3378 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3379 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3380 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3381 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3382 	} while (0)
3383 #define stat_inc_seg_type(sbi, curseg)					\
3384 		((sbi)->segment_count[(curseg)->alloc_type]++)
3385 #define stat_inc_block_count(sbi, curseg)				\
3386 		((sbi)->block_count[(curseg)->alloc_type]++)
3387 #define stat_inc_inplace_blocks(sbi)					\
3388 		(atomic_inc(&(sbi)->inplace_count))
3389 #define stat_inc_atomic_write(inode)					\
3390 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3391 #define stat_dec_atomic_write(inode)					\
3392 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3393 #define stat_update_max_atomic_write(inode)				\
3394 	do {								\
3395 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3396 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3397 		if (cur > max)						\
3398 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3399 	} while (0)
3400 #define stat_inc_volatile_write(inode)					\
3401 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3402 #define stat_dec_volatile_write(inode)					\
3403 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3404 #define stat_update_max_volatile_write(inode)				\
3405 	do {								\
3406 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3407 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3408 		if (cur > max)						\
3409 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3410 	} while (0)
3411 #define stat_inc_seg_count(sbi, type, gc_type)				\
3412 	do {								\
3413 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3414 		si->tot_segs++;						\
3415 		if ((type) == SUM_TYPE_DATA) {				\
3416 			si->data_segs++;				\
3417 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3418 		} else {						\
3419 			si->node_segs++;				\
3420 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3421 		}							\
3422 	} while (0)
3423 
3424 #define stat_inc_tot_blk_count(si, blks)				\
3425 	((si)->tot_blks += (blks))
3426 
3427 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3428 	do {								\
3429 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3430 		stat_inc_tot_blk_count(si, blks);			\
3431 		si->data_blks += (blks);				\
3432 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3433 	} while (0)
3434 
3435 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3436 	do {								\
3437 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3438 		stat_inc_tot_blk_count(si, blks);			\
3439 		si->node_blks += (blks);				\
3440 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3441 	} while (0)
3442 
3443 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3444 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3445 void __init f2fs_create_root_stats(void);
3446 void f2fs_destroy_root_stats(void);
3447 #else
3448 #define stat_inc_cp_count(si)				do { } while (0)
3449 #define stat_inc_bg_cp_count(si)			do { } while (0)
3450 #define stat_inc_call_count(si)				do { } while (0)
3451 #define stat_inc_bggc_count(si)				do { } while (0)
3452 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3453 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3454 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3455 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3456 #define stat_inc_total_hit(sb)				do { } while (0)
3457 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3458 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3459 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3460 #define stat_inc_inline_xattr(inode)			do { } while (0)
3461 #define stat_dec_inline_xattr(inode)			do { } while (0)
3462 #define stat_inc_inline_inode(inode)			do { } while (0)
3463 #define stat_dec_inline_inode(inode)			do { } while (0)
3464 #define stat_inc_inline_dir(inode)			do { } while (0)
3465 #define stat_dec_inline_dir(inode)			do { } while (0)
3466 #define stat_inc_atomic_write(inode)			do { } while (0)
3467 #define stat_dec_atomic_write(inode)			do { } while (0)
3468 #define stat_update_max_atomic_write(inode)		do { } while (0)
3469 #define stat_inc_volatile_write(inode)			do { } while (0)
3470 #define stat_dec_volatile_write(inode)			do { } while (0)
3471 #define stat_update_max_volatile_write(inode)		do { } while (0)
3472 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3473 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3474 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3475 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3476 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3477 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3478 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3479 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3480 
3481 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3482 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3483 static inline void __init f2fs_create_root_stats(void) { }
3484 static inline void f2fs_destroy_root_stats(void) { }
3485 #endif
3486 
3487 extern const struct file_operations f2fs_dir_operations;
3488 #ifdef CONFIG_UNICODE
3489 extern const struct dentry_operations f2fs_dentry_ops;
3490 #endif
3491 extern const struct file_operations f2fs_file_operations;
3492 extern const struct inode_operations f2fs_file_inode_operations;
3493 extern const struct address_space_operations f2fs_dblock_aops;
3494 extern const struct address_space_operations f2fs_node_aops;
3495 extern const struct address_space_operations f2fs_meta_aops;
3496 extern const struct inode_operations f2fs_dir_inode_operations;
3497 extern const struct inode_operations f2fs_symlink_inode_operations;
3498 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3499 extern const struct inode_operations f2fs_special_inode_operations;
3500 extern struct kmem_cache *f2fs_inode_entry_slab;
3501 
3502 /*
3503  * inline.c
3504  */
3505 bool f2fs_may_inline_data(struct inode *inode);
3506 bool f2fs_may_inline_dentry(struct inode *inode);
3507 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3508 void f2fs_truncate_inline_inode(struct inode *inode,
3509 						struct page *ipage, u64 from);
3510 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3511 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3512 int f2fs_convert_inline_inode(struct inode *inode);
3513 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3514 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3515 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3516 			struct fscrypt_name *fname, struct page **res_page);
3517 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3518 			struct page *ipage);
3519 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3520 			const struct qstr *orig_name,
3521 			struct inode *inode, nid_t ino, umode_t mode);
3522 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3523 				struct page *page, struct inode *dir,
3524 				struct inode *inode);
3525 bool f2fs_empty_inline_dir(struct inode *dir);
3526 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3527 			struct fscrypt_str *fstr);
3528 int f2fs_inline_data_fiemap(struct inode *inode,
3529 			struct fiemap_extent_info *fieinfo,
3530 			__u64 start, __u64 len);
3531 
3532 /*
3533  * shrinker.c
3534  */
3535 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3536 			struct shrink_control *sc);
3537 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3538 			struct shrink_control *sc);
3539 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3540 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3541 
3542 /*
3543  * extent_cache.c
3544  */
3545 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3546 				struct rb_entry *cached_re, unsigned int ofs);
3547 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3548 				struct rb_root_cached *root,
3549 				struct rb_node **parent,
3550 				unsigned int ofs, bool *leftmost);
3551 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3552 		struct rb_entry *cached_re, unsigned int ofs,
3553 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3554 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3555 		bool force, bool *leftmost);
3556 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3557 						struct rb_root_cached *root);
3558 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3559 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3560 void f2fs_drop_extent_tree(struct inode *inode);
3561 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3562 void f2fs_destroy_extent_tree(struct inode *inode);
3563 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3564 			struct extent_info *ei);
3565 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3566 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3567 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3568 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3569 int __init f2fs_create_extent_cache(void);
3570 void f2fs_destroy_extent_cache(void);
3571 
3572 /*
3573  * sysfs.c
3574  */
3575 int __init f2fs_init_sysfs(void);
3576 void f2fs_exit_sysfs(void);
3577 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3578 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3579 
3580 /* verity.c */
3581 extern const struct fsverity_operations f2fs_verityops;
3582 
3583 /*
3584  * crypto support
3585  */
3586 static inline bool f2fs_encrypted_file(struct inode *inode)
3587 {
3588 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3589 }
3590 
3591 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3592 {
3593 #ifdef CONFIG_FS_ENCRYPTION
3594 	file_set_encrypt(inode);
3595 	f2fs_set_inode_flags(inode);
3596 #endif
3597 }
3598 
3599 /*
3600  * Returns true if the reads of the inode's data need to undergo some
3601  * postprocessing step, like decryption or authenticity verification.
3602  */
3603 static inline bool f2fs_post_read_required(struct inode *inode)
3604 {
3605 	return f2fs_encrypted_file(inode) || fsverity_active(inode);
3606 }
3607 
3608 #define F2FS_FEATURE_FUNCS(name, flagname) \
3609 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3610 { \
3611 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3612 }
3613 
3614 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3615 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3616 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3617 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3618 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3619 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3620 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3621 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3622 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3623 F2FS_FEATURE_FUNCS(verity, VERITY);
3624 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3625 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3626 
3627 #ifdef CONFIG_BLK_DEV_ZONED
3628 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3629 				    block_t blkaddr)
3630 {
3631 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3632 
3633 	return test_bit(zno, FDEV(devi).blkz_seq);
3634 }
3635 #endif
3636 
3637 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3638 {
3639 	return f2fs_sb_has_blkzoned(sbi);
3640 }
3641 
3642 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3643 {
3644 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3645 	       bdev_is_zoned(bdev);
3646 }
3647 
3648 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3649 {
3650 	int i;
3651 
3652 	if (!f2fs_is_multi_device(sbi))
3653 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3654 
3655 	for (i = 0; i < sbi->s_ndevs; i++)
3656 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3657 			return true;
3658 	return false;
3659 }
3660 
3661 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3662 {
3663 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3664 					f2fs_hw_should_discard(sbi);
3665 }
3666 
3667 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3668 {
3669 	int i;
3670 
3671 	if (!f2fs_is_multi_device(sbi))
3672 		return bdev_read_only(sbi->sb->s_bdev);
3673 
3674 	for (i = 0; i < sbi->s_ndevs; i++)
3675 		if (bdev_read_only(FDEV(i).bdev))
3676 			return true;
3677 	return false;
3678 }
3679 
3680 
3681 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3682 {
3683 	clear_opt(sbi, ADAPTIVE);
3684 	clear_opt(sbi, LFS);
3685 
3686 	switch (mt) {
3687 	case F2FS_MOUNT_ADAPTIVE:
3688 		set_opt(sbi, ADAPTIVE);
3689 		break;
3690 	case F2FS_MOUNT_LFS:
3691 		set_opt(sbi, LFS);
3692 		break;
3693 	}
3694 }
3695 
3696 static inline bool f2fs_may_encrypt(struct inode *inode)
3697 {
3698 #ifdef CONFIG_FS_ENCRYPTION
3699 	umode_t mode = inode->i_mode;
3700 
3701 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3702 #else
3703 	return false;
3704 #endif
3705 }
3706 
3707 static inline int block_unaligned_IO(struct inode *inode,
3708 				struct kiocb *iocb, struct iov_iter *iter)
3709 {
3710 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3711 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3712 	loff_t offset = iocb->ki_pos;
3713 	unsigned long align = offset | iov_iter_alignment(iter);
3714 
3715 	return align & blocksize_mask;
3716 }
3717 
3718 static inline int allow_outplace_dio(struct inode *inode,
3719 				struct kiocb *iocb, struct iov_iter *iter)
3720 {
3721 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3722 	int rw = iov_iter_rw(iter);
3723 
3724 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3725 				!block_unaligned_IO(inode, iocb, iter));
3726 }
3727 
3728 static inline bool f2fs_force_buffered_io(struct inode *inode,
3729 				struct kiocb *iocb, struct iov_iter *iter)
3730 {
3731 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3732 	int rw = iov_iter_rw(iter);
3733 
3734 	if (f2fs_post_read_required(inode))
3735 		return true;
3736 	if (f2fs_is_multi_device(sbi))
3737 		return true;
3738 	/*
3739 	 * for blkzoned device, fallback direct IO to buffered IO, so
3740 	 * all IOs can be serialized by log-structured write.
3741 	 */
3742 	if (f2fs_sb_has_blkzoned(sbi))
3743 		return true;
3744 	if (test_opt(sbi, LFS) && (rw == WRITE)) {
3745 		if (block_unaligned_IO(inode, iocb, iter))
3746 			return true;
3747 		if (F2FS_IO_ALIGNED(sbi))
3748 			return true;
3749 	}
3750 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
3751 					!IS_SWAPFILE(inode))
3752 		return true;
3753 
3754 	return false;
3755 }
3756 
3757 #ifdef CONFIG_F2FS_FAULT_INJECTION
3758 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3759 							unsigned int type);
3760 #else
3761 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3762 #endif
3763 
3764 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3765 {
3766 #ifdef CONFIG_QUOTA
3767 	if (f2fs_sb_has_quota_ino(sbi))
3768 		return true;
3769 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3770 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3771 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3772 		return true;
3773 #endif
3774 	return false;
3775 }
3776 
3777 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
3778 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
3779 
3780 #endif /* _LINUX_F2FS_H */
3781