1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 23 #ifdef CONFIG_F2FS_CHECK_FS 24 #define f2fs_bug_on(condition) BUG_ON(condition) 25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y) 26 #else 27 #define f2fs_bug_on(condition) 28 #define f2fs_down_write(x, y) down_write(x) 29 #endif 30 31 /* 32 * For mount options 33 */ 34 #define F2FS_MOUNT_BG_GC 0x00000001 35 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 36 #define F2FS_MOUNT_DISCARD 0x00000004 37 #define F2FS_MOUNT_NOHEAP 0x00000008 38 #define F2FS_MOUNT_XATTR_USER 0x00000010 39 #define F2FS_MOUNT_POSIX_ACL 0x00000020 40 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 41 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 42 #define F2FS_MOUNT_INLINE_DATA 0x00000100 43 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200 44 45 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 46 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 47 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 48 49 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 50 typecheck(unsigned long long, b) && \ 51 ((long long)((a) - (b)) > 0)) 52 53 typedef u32 block_t; /* 54 * should not change u32, since it is the on-disk block 55 * address format, __le32. 56 */ 57 typedef u32 nid_t; 58 59 struct f2fs_mount_info { 60 unsigned int opt; 61 }; 62 63 #define CRCPOLY_LE 0xedb88320 64 65 static inline __u32 f2fs_crc32(void *buf, size_t len) 66 { 67 unsigned char *p = (unsigned char *)buf; 68 __u32 crc = F2FS_SUPER_MAGIC; 69 int i; 70 71 while (len--) { 72 crc ^= *p++; 73 for (i = 0; i < 8; i++) 74 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 75 } 76 return crc; 77 } 78 79 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 80 { 81 return f2fs_crc32(buf, buf_size) == blk_crc; 82 } 83 84 /* 85 * For checkpoint manager 86 */ 87 enum { 88 NAT_BITMAP, 89 SIT_BITMAP 90 }; 91 92 /* 93 * For CP/NAT/SIT/SSA readahead 94 */ 95 enum { 96 META_CP, 97 META_NAT, 98 META_SIT, 99 META_SSA 100 }; 101 102 /* for the list of orphan inodes */ 103 struct orphan_inode_entry { 104 struct list_head list; /* list head */ 105 nid_t ino; /* inode number */ 106 }; 107 108 /* for the list of directory inodes */ 109 struct dir_inode_entry { 110 struct list_head list; /* list head */ 111 struct inode *inode; /* vfs inode pointer */ 112 }; 113 114 /* for the list of blockaddresses to be discarded */ 115 struct discard_entry { 116 struct list_head list; /* list head */ 117 block_t blkaddr; /* block address to be discarded */ 118 int len; /* # of consecutive blocks of the discard */ 119 }; 120 121 /* for the list of fsync inodes, used only during recovery */ 122 struct fsync_inode_entry { 123 struct list_head list; /* list head */ 124 struct inode *inode; /* vfs inode pointer */ 125 block_t blkaddr; /* block address locating the last inode */ 126 }; 127 128 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 129 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 130 131 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 132 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 133 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 134 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 135 136 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 137 { 138 int before = nats_in_cursum(rs); 139 rs->n_nats = cpu_to_le16(before + i); 140 return before; 141 } 142 143 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 144 { 145 int before = sits_in_cursum(rs); 146 rs->n_sits = cpu_to_le16(before + i); 147 return before; 148 } 149 150 /* 151 * ioctl commands 152 */ 153 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 154 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 155 156 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 157 /* 158 * ioctl commands in 32 bit emulation 159 */ 160 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 161 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 162 #endif 163 164 /* 165 * For INODE and NODE manager 166 */ 167 /* 168 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 169 * as its node offset to distinguish from index node blocks. 170 * But some bits are used to mark the node block. 171 */ 172 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 173 >> OFFSET_BIT_SHIFT) 174 enum { 175 ALLOC_NODE, /* allocate a new node page if needed */ 176 LOOKUP_NODE, /* look up a node without readahead */ 177 LOOKUP_NODE_RA, /* 178 * look up a node with readahead called 179 * by get_data_block. 180 */ 181 }; 182 183 #define F2FS_LINK_MAX 32000 /* maximum link count per file */ 184 185 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 186 187 /* for in-memory extent cache entry */ 188 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */ 189 190 struct extent_info { 191 rwlock_t ext_lock; /* rwlock for consistency */ 192 unsigned int fofs; /* start offset in a file */ 193 u32 blk_addr; /* start block address of the extent */ 194 unsigned int len; /* length of the extent */ 195 }; 196 197 /* 198 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 199 */ 200 #define FADVISE_COLD_BIT 0x01 201 #define FADVISE_LOST_PINO_BIT 0x02 202 203 #define DEF_DIR_LEVEL 0 204 205 struct f2fs_inode_info { 206 struct inode vfs_inode; /* serve a vfs inode */ 207 unsigned long i_flags; /* keep an inode flags for ioctl */ 208 unsigned char i_advise; /* use to give file attribute hints */ 209 unsigned char i_dir_level; /* use for dentry level for large dir */ 210 unsigned int i_current_depth; /* use only in directory structure */ 211 unsigned int i_pino; /* parent inode number */ 212 umode_t i_acl_mode; /* keep file acl mode temporarily */ 213 214 /* Use below internally in f2fs*/ 215 unsigned long flags; /* use to pass per-file flags */ 216 struct rw_semaphore i_sem; /* protect fi info */ 217 atomic_t dirty_dents; /* # of dirty dentry pages */ 218 f2fs_hash_t chash; /* hash value of given file name */ 219 unsigned int clevel; /* maximum level of given file name */ 220 nid_t i_xattr_nid; /* node id that contains xattrs */ 221 unsigned long long xattr_ver; /* cp version of xattr modification */ 222 struct extent_info ext; /* in-memory extent cache entry */ 223 struct dir_inode_entry *dirty_dir; /* the pointer of dirty dir */ 224 }; 225 226 static inline void get_extent_info(struct extent_info *ext, 227 struct f2fs_extent i_ext) 228 { 229 write_lock(&ext->ext_lock); 230 ext->fofs = le32_to_cpu(i_ext.fofs); 231 ext->blk_addr = le32_to_cpu(i_ext.blk_addr); 232 ext->len = le32_to_cpu(i_ext.len); 233 write_unlock(&ext->ext_lock); 234 } 235 236 static inline void set_raw_extent(struct extent_info *ext, 237 struct f2fs_extent *i_ext) 238 { 239 read_lock(&ext->ext_lock); 240 i_ext->fofs = cpu_to_le32(ext->fofs); 241 i_ext->blk_addr = cpu_to_le32(ext->blk_addr); 242 i_ext->len = cpu_to_le32(ext->len); 243 read_unlock(&ext->ext_lock); 244 } 245 246 struct f2fs_nm_info { 247 block_t nat_blkaddr; /* base disk address of NAT */ 248 nid_t max_nid; /* maximum possible node ids */ 249 nid_t available_nids; /* maximum available node ids */ 250 nid_t next_scan_nid; /* the next nid to be scanned */ 251 unsigned int ram_thresh; /* control the memory footprint */ 252 253 /* NAT cache management */ 254 struct radix_tree_root nat_root;/* root of the nat entry cache */ 255 rwlock_t nat_tree_lock; /* protect nat_tree_lock */ 256 unsigned int nat_cnt; /* the # of cached nat entries */ 257 struct list_head nat_entries; /* cached nat entry list (clean) */ 258 struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */ 259 260 /* free node ids management */ 261 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 262 struct list_head free_nid_list; /* a list for free nids */ 263 spinlock_t free_nid_list_lock; /* protect free nid list */ 264 unsigned int fcnt; /* the number of free node id */ 265 struct mutex build_lock; /* lock for build free nids */ 266 267 /* for checkpoint */ 268 char *nat_bitmap; /* NAT bitmap pointer */ 269 int bitmap_size; /* bitmap size */ 270 }; 271 272 /* 273 * this structure is used as one of function parameters. 274 * all the information are dedicated to a given direct node block determined 275 * by the data offset in a file. 276 */ 277 struct dnode_of_data { 278 struct inode *inode; /* vfs inode pointer */ 279 struct page *inode_page; /* its inode page, NULL is possible */ 280 struct page *node_page; /* cached direct node page */ 281 nid_t nid; /* node id of the direct node block */ 282 unsigned int ofs_in_node; /* data offset in the node page */ 283 bool inode_page_locked; /* inode page is locked or not */ 284 block_t data_blkaddr; /* block address of the node block */ 285 }; 286 287 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 288 struct page *ipage, struct page *npage, nid_t nid) 289 { 290 memset(dn, 0, sizeof(*dn)); 291 dn->inode = inode; 292 dn->inode_page = ipage; 293 dn->node_page = npage; 294 dn->nid = nid; 295 } 296 297 /* 298 * For SIT manager 299 * 300 * By default, there are 6 active log areas across the whole main area. 301 * When considering hot and cold data separation to reduce cleaning overhead, 302 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 303 * respectively. 304 * In the current design, you should not change the numbers intentionally. 305 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 306 * logs individually according to the underlying devices. (default: 6) 307 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 308 * data and 8 for node logs. 309 */ 310 #define NR_CURSEG_DATA_TYPE (3) 311 #define NR_CURSEG_NODE_TYPE (3) 312 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 313 314 enum { 315 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 316 CURSEG_WARM_DATA, /* data blocks */ 317 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 318 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 319 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 320 CURSEG_COLD_NODE, /* indirect node blocks */ 321 NO_CHECK_TYPE 322 }; 323 324 struct flush_cmd { 325 struct flush_cmd *next; 326 struct completion wait; 327 int ret; 328 }; 329 330 struct flush_cmd_control { 331 struct task_struct *f2fs_issue_flush; /* flush thread */ 332 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 333 struct flush_cmd *issue_list; /* list for command issue */ 334 struct flush_cmd *dispatch_list; /* list for command dispatch */ 335 spinlock_t issue_lock; /* for issue list lock */ 336 struct flush_cmd *issue_tail; /* list tail of issue list */ 337 }; 338 339 struct f2fs_sm_info { 340 struct sit_info *sit_info; /* whole segment information */ 341 struct free_segmap_info *free_info; /* free segment information */ 342 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 343 struct curseg_info *curseg_array; /* active segment information */ 344 345 block_t seg0_blkaddr; /* block address of 0'th segment */ 346 block_t main_blkaddr; /* start block address of main area */ 347 block_t ssa_blkaddr; /* start block address of SSA area */ 348 349 unsigned int segment_count; /* total # of segments */ 350 unsigned int main_segments; /* # of segments in main area */ 351 unsigned int reserved_segments; /* # of reserved segments */ 352 unsigned int ovp_segments; /* # of overprovision segments */ 353 354 /* a threshold to reclaim prefree segments */ 355 unsigned int rec_prefree_segments; 356 357 /* for small discard management */ 358 struct list_head discard_list; /* 4KB discard list */ 359 int nr_discards; /* # of discards in the list */ 360 int max_discards; /* max. discards to be issued */ 361 362 unsigned int ipu_policy; /* in-place-update policy */ 363 unsigned int min_ipu_util; /* in-place-update threshold */ 364 365 /* for flush command control */ 366 struct flush_cmd_control *cmd_control_info; 367 368 }; 369 370 /* 371 * For superblock 372 */ 373 /* 374 * COUNT_TYPE for monitoring 375 * 376 * f2fs monitors the number of several block types such as on-writeback, 377 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 378 */ 379 enum count_type { 380 F2FS_WRITEBACK, 381 F2FS_DIRTY_DENTS, 382 F2FS_DIRTY_NODES, 383 F2FS_DIRTY_META, 384 NR_COUNT_TYPE, 385 }; 386 387 /* 388 * The below are the page types of bios used in submti_bio(). 389 * The available types are: 390 * DATA User data pages. It operates as async mode. 391 * NODE Node pages. It operates as async mode. 392 * META FS metadata pages such as SIT, NAT, CP. 393 * NR_PAGE_TYPE The number of page types. 394 * META_FLUSH Make sure the previous pages are written 395 * with waiting the bio's completion 396 * ... Only can be used with META. 397 */ 398 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 399 enum page_type { 400 DATA, 401 NODE, 402 META, 403 NR_PAGE_TYPE, 404 META_FLUSH, 405 }; 406 407 struct f2fs_io_info { 408 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 409 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 410 }; 411 412 #define is_read_io(rw) (((rw) & 1) == READ) 413 struct f2fs_bio_info { 414 struct f2fs_sb_info *sbi; /* f2fs superblock */ 415 struct bio *bio; /* bios to merge */ 416 sector_t last_block_in_bio; /* last block number */ 417 struct f2fs_io_info fio; /* store buffered io info. */ 418 struct rw_semaphore io_rwsem; /* blocking op for bio */ 419 }; 420 421 struct f2fs_sb_info { 422 struct super_block *sb; /* pointer to VFS super block */ 423 struct proc_dir_entry *s_proc; /* proc entry */ 424 struct buffer_head *raw_super_buf; /* buffer head of raw sb */ 425 struct f2fs_super_block *raw_super; /* raw super block pointer */ 426 int s_dirty; /* dirty flag for checkpoint */ 427 428 /* for node-related operations */ 429 struct f2fs_nm_info *nm_info; /* node manager */ 430 struct inode *node_inode; /* cache node blocks */ 431 432 /* for segment-related operations */ 433 struct f2fs_sm_info *sm_info; /* segment manager */ 434 435 /* for bio operations */ 436 struct f2fs_bio_info read_io; /* for read bios */ 437 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 438 struct completion *wait_io; /* for completion bios */ 439 440 /* for checkpoint */ 441 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 442 struct inode *meta_inode; /* cache meta blocks */ 443 struct mutex cp_mutex; /* checkpoint procedure lock */ 444 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 445 struct mutex node_write; /* locking node writes */ 446 struct mutex writepages; /* mutex for writepages() */ 447 bool por_doing; /* recovery is doing or not */ 448 wait_queue_head_t cp_wait; 449 450 /* for orphan inode management */ 451 struct list_head orphan_inode_list; /* orphan inode list */ 452 spinlock_t orphan_inode_lock; /* for orphan inode list */ 453 unsigned int n_orphans; /* # of orphan inodes */ 454 unsigned int max_orphans; /* max orphan inodes */ 455 456 /* for directory inode management */ 457 struct list_head dir_inode_list; /* dir inode list */ 458 spinlock_t dir_inode_lock; /* for dir inode list lock */ 459 460 /* basic file system units */ 461 unsigned int log_sectors_per_block; /* log2 sectors per block */ 462 unsigned int log_blocksize; /* log2 block size */ 463 unsigned int blocksize; /* block size */ 464 unsigned int root_ino_num; /* root inode number*/ 465 unsigned int node_ino_num; /* node inode number*/ 466 unsigned int meta_ino_num; /* meta inode number*/ 467 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 468 unsigned int blocks_per_seg; /* blocks per segment */ 469 unsigned int segs_per_sec; /* segments per section */ 470 unsigned int secs_per_zone; /* sections per zone */ 471 unsigned int total_sections; /* total section count */ 472 unsigned int total_node_count; /* total node block count */ 473 unsigned int total_valid_node_count; /* valid node block count */ 474 unsigned int total_valid_inode_count; /* valid inode count */ 475 int active_logs; /* # of active logs */ 476 int dir_level; /* directory level */ 477 478 block_t user_block_count; /* # of user blocks */ 479 block_t total_valid_block_count; /* # of valid blocks */ 480 block_t alloc_valid_block_count; /* # of allocated blocks */ 481 block_t last_valid_block_count; /* for recovery */ 482 u32 s_next_generation; /* for NFS support */ 483 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 484 485 struct f2fs_mount_info mount_opt; /* mount options */ 486 487 /* for cleaning operations */ 488 struct mutex gc_mutex; /* mutex for GC */ 489 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 490 unsigned int cur_victim_sec; /* current victim section num */ 491 492 /* maximum # of trials to find a victim segment for SSR and GC */ 493 unsigned int max_victim_search; 494 495 /* 496 * for stat information. 497 * one is for the LFS mode, and the other is for the SSR mode. 498 */ 499 #ifdef CONFIG_F2FS_STAT_FS 500 struct f2fs_stat_info *stat_info; /* FS status information */ 501 unsigned int segment_count[2]; /* # of allocated segments */ 502 unsigned int block_count[2]; /* # of allocated blocks */ 503 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */ 504 int inline_inode; /* # of inline_data inodes */ 505 int bg_gc; /* background gc calls */ 506 unsigned int n_dirty_dirs; /* # of dir inodes */ 507 #endif 508 unsigned int last_victim[2]; /* last victim segment # */ 509 spinlock_t stat_lock; /* lock for stat operations */ 510 511 /* For sysfs suppport */ 512 struct kobject s_kobj; 513 struct completion s_kobj_unregister; 514 }; 515 516 /* 517 * Inline functions 518 */ 519 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 520 { 521 return container_of(inode, struct f2fs_inode_info, vfs_inode); 522 } 523 524 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 525 { 526 return sb->s_fs_info; 527 } 528 529 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 530 { 531 return (struct f2fs_super_block *)(sbi->raw_super); 532 } 533 534 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 535 { 536 return (struct f2fs_checkpoint *)(sbi->ckpt); 537 } 538 539 static inline struct f2fs_node *F2FS_NODE(struct page *page) 540 { 541 return (struct f2fs_node *)page_address(page); 542 } 543 544 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 545 { 546 return &((struct f2fs_node *)page_address(page))->i; 547 } 548 549 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 550 { 551 return (struct f2fs_nm_info *)(sbi->nm_info); 552 } 553 554 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 555 { 556 return (struct f2fs_sm_info *)(sbi->sm_info); 557 } 558 559 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 560 { 561 return (struct sit_info *)(SM_I(sbi)->sit_info); 562 } 563 564 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 565 { 566 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 567 } 568 569 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 570 { 571 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 572 } 573 574 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 575 { 576 return sbi->meta_inode->i_mapping; 577 } 578 579 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 580 { 581 return sbi->node_inode->i_mapping; 582 } 583 584 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi) 585 { 586 sbi->s_dirty = 1; 587 } 588 589 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi) 590 { 591 sbi->s_dirty = 0; 592 } 593 594 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 595 { 596 return le64_to_cpu(cp->checkpoint_ver); 597 } 598 599 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 600 { 601 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 602 return ckpt_flags & f; 603 } 604 605 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 606 { 607 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 608 ckpt_flags |= f; 609 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 610 } 611 612 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 613 { 614 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 615 ckpt_flags &= (~f); 616 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 617 } 618 619 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 620 { 621 down_read(&sbi->cp_rwsem); 622 } 623 624 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 625 { 626 up_read(&sbi->cp_rwsem); 627 } 628 629 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 630 { 631 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex); 632 } 633 634 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 635 { 636 up_write(&sbi->cp_rwsem); 637 } 638 639 /* 640 * Check whether the given nid is within node id range. 641 */ 642 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 643 { 644 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 645 return -EINVAL; 646 if (unlikely(nid >= NM_I(sbi)->max_nid)) 647 return -EINVAL; 648 return 0; 649 } 650 651 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 652 653 /* 654 * Check whether the inode has blocks or not 655 */ 656 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 657 { 658 if (F2FS_I(inode)->i_xattr_nid) 659 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 660 else 661 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 662 } 663 664 static inline bool f2fs_has_xattr_block(unsigned int ofs) 665 { 666 return ofs == XATTR_NODE_OFFSET; 667 } 668 669 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 670 struct inode *inode, blkcnt_t count) 671 { 672 block_t valid_block_count; 673 674 spin_lock(&sbi->stat_lock); 675 valid_block_count = 676 sbi->total_valid_block_count + (block_t)count; 677 if (unlikely(valid_block_count > sbi->user_block_count)) { 678 spin_unlock(&sbi->stat_lock); 679 return false; 680 } 681 inode->i_blocks += count; 682 sbi->total_valid_block_count = valid_block_count; 683 sbi->alloc_valid_block_count += (block_t)count; 684 spin_unlock(&sbi->stat_lock); 685 return true; 686 } 687 688 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 689 struct inode *inode, 690 blkcnt_t count) 691 { 692 spin_lock(&sbi->stat_lock); 693 f2fs_bug_on(sbi->total_valid_block_count < (block_t) count); 694 f2fs_bug_on(inode->i_blocks < count); 695 inode->i_blocks -= count; 696 sbi->total_valid_block_count -= (block_t)count; 697 spin_unlock(&sbi->stat_lock); 698 } 699 700 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 701 { 702 atomic_inc(&sbi->nr_pages[count_type]); 703 F2FS_SET_SB_DIRT(sbi); 704 } 705 706 static inline void inode_inc_dirty_dents(struct inode *inode) 707 { 708 inc_page_count(F2FS_SB(inode->i_sb), F2FS_DIRTY_DENTS); 709 atomic_inc(&F2FS_I(inode)->dirty_dents); 710 } 711 712 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 713 { 714 atomic_dec(&sbi->nr_pages[count_type]); 715 } 716 717 static inline void inode_dec_dirty_dents(struct inode *inode) 718 { 719 if (!S_ISDIR(inode->i_mode)) 720 return; 721 722 dec_page_count(F2FS_SB(inode->i_sb), F2FS_DIRTY_DENTS); 723 atomic_dec(&F2FS_I(inode)->dirty_dents); 724 } 725 726 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 727 { 728 return atomic_read(&sbi->nr_pages[count_type]); 729 } 730 731 static inline int get_dirty_dents(struct inode *inode) 732 { 733 return atomic_read(&F2FS_I(inode)->dirty_dents); 734 } 735 736 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 737 { 738 unsigned int pages_per_sec = sbi->segs_per_sec * 739 (1 << sbi->log_blocks_per_seg); 740 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 741 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 742 } 743 744 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 745 { 746 return sbi->total_valid_block_count; 747 } 748 749 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 750 { 751 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 752 753 /* return NAT or SIT bitmap */ 754 if (flag == NAT_BITMAP) 755 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 756 else if (flag == SIT_BITMAP) 757 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 758 759 return 0; 760 } 761 762 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 763 { 764 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 765 int offset; 766 767 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) { 768 if (flag == NAT_BITMAP) 769 return &ckpt->sit_nat_version_bitmap; 770 else 771 return ((unsigned char *)ckpt + F2FS_BLKSIZE); 772 } else { 773 offset = (flag == NAT_BITMAP) ? 774 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 775 return &ckpt->sit_nat_version_bitmap + offset; 776 } 777 } 778 779 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 780 { 781 block_t start_addr; 782 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 783 unsigned long long ckpt_version = cur_cp_version(ckpt); 784 785 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 786 787 /* 788 * odd numbered checkpoint should at cp segment 0 789 * and even segent must be at cp segment 1 790 */ 791 if (!(ckpt_version & 1)) 792 start_addr += sbi->blocks_per_seg; 793 794 return start_addr; 795 } 796 797 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 798 { 799 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 800 } 801 802 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 803 struct inode *inode) 804 { 805 block_t valid_block_count; 806 unsigned int valid_node_count; 807 808 spin_lock(&sbi->stat_lock); 809 810 valid_block_count = sbi->total_valid_block_count + 1; 811 if (unlikely(valid_block_count > sbi->user_block_count)) { 812 spin_unlock(&sbi->stat_lock); 813 return false; 814 } 815 816 valid_node_count = sbi->total_valid_node_count + 1; 817 if (unlikely(valid_node_count > sbi->total_node_count)) { 818 spin_unlock(&sbi->stat_lock); 819 return false; 820 } 821 822 if (inode) 823 inode->i_blocks++; 824 825 sbi->alloc_valid_block_count++; 826 sbi->total_valid_node_count++; 827 sbi->total_valid_block_count++; 828 spin_unlock(&sbi->stat_lock); 829 830 return true; 831 } 832 833 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 834 struct inode *inode) 835 { 836 spin_lock(&sbi->stat_lock); 837 838 f2fs_bug_on(!sbi->total_valid_block_count); 839 f2fs_bug_on(!sbi->total_valid_node_count); 840 f2fs_bug_on(!inode->i_blocks); 841 842 inode->i_blocks--; 843 sbi->total_valid_node_count--; 844 sbi->total_valid_block_count--; 845 846 spin_unlock(&sbi->stat_lock); 847 } 848 849 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 850 { 851 return sbi->total_valid_node_count; 852 } 853 854 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 855 { 856 spin_lock(&sbi->stat_lock); 857 f2fs_bug_on(sbi->total_valid_inode_count == sbi->total_node_count); 858 sbi->total_valid_inode_count++; 859 spin_unlock(&sbi->stat_lock); 860 } 861 862 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 863 { 864 spin_lock(&sbi->stat_lock); 865 f2fs_bug_on(!sbi->total_valid_inode_count); 866 sbi->total_valid_inode_count--; 867 spin_unlock(&sbi->stat_lock); 868 } 869 870 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 871 { 872 return sbi->total_valid_inode_count; 873 } 874 875 static inline void f2fs_put_page(struct page *page, int unlock) 876 { 877 if (!page) 878 return; 879 880 if (unlock) { 881 f2fs_bug_on(!PageLocked(page)); 882 unlock_page(page); 883 } 884 page_cache_release(page); 885 } 886 887 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 888 { 889 if (dn->node_page) 890 f2fs_put_page(dn->node_page, 1); 891 if (dn->inode_page && dn->node_page != dn->inode_page) 892 f2fs_put_page(dn->inode_page, 0); 893 dn->node_page = NULL; 894 dn->inode_page = NULL; 895 } 896 897 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 898 size_t size) 899 { 900 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 901 } 902 903 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 904 gfp_t flags) 905 { 906 void *entry; 907 retry: 908 entry = kmem_cache_alloc(cachep, flags); 909 if (!entry) { 910 cond_resched(); 911 goto retry; 912 } 913 914 return entry; 915 } 916 917 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 918 919 static inline bool IS_INODE(struct page *page) 920 { 921 struct f2fs_node *p = F2FS_NODE(page); 922 return RAW_IS_INODE(p); 923 } 924 925 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 926 { 927 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 928 } 929 930 static inline block_t datablock_addr(struct page *node_page, 931 unsigned int offset) 932 { 933 struct f2fs_node *raw_node; 934 __le32 *addr_array; 935 raw_node = F2FS_NODE(node_page); 936 addr_array = blkaddr_in_node(raw_node); 937 return le32_to_cpu(addr_array[offset]); 938 } 939 940 static inline int f2fs_test_bit(unsigned int nr, char *addr) 941 { 942 int mask; 943 944 addr += (nr >> 3); 945 mask = 1 << (7 - (nr & 0x07)); 946 return mask & *addr; 947 } 948 949 static inline int f2fs_set_bit(unsigned int nr, char *addr) 950 { 951 int mask; 952 int ret; 953 954 addr += (nr >> 3); 955 mask = 1 << (7 - (nr & 0x07)); 956 ret = mask & *addr; 957 *addr |= mask; 958 return ret; 959 } 960 961 static inline int f2fs_clear_bit(unsigned int nr, char *addr) 962 { 963 int mask; 964 int ret; 965 966 addr += (nr >> 3); 967 mask = 1 << (7 - (nr & 0x07)); 968 ret = mask & *addr; 969 *addr &= ~mask; 970 return ret; 971 } 972 973 /* used for f2fs_inode_info->flags */ 974 enum { 975 FI_NEW_INODE, /* indicate newly allocated inode */ 976 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 977 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 978 FI_INC_LINK, /* need to increment i_nlink */ 979 FI_ACL_MODE, /* indicate acl mode */ 980 FI_NO_ALLOC, /* should not allocate any blocks */ 981 FI_UPDATE_DIR, /* should update inode block for consistency */ 982 FI_DELAY_IPUT, /* used for the recovery */ 983 FI_NO_EXTENT, /* not to use the extent cache */ 984 FI_INLINE_XATTR, /* used for inline xattr */ 985 FI_INLINE_DATA, /* used for inline data*/ 986 }; 987 988 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 989 { 990 set_bit(flag, &fi->flags); 991 } 992 993 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 994 { 995 return test_bit(flag, &fi->flags); 996 } 997 998 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 999 { 1000 clear_bit(flag, &fi->flags); 1001 } 1002 1003 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1004 { 1005 fi->i_acl_mode = mode; 1006 set_inode_flag(fi, FI_ACL_MODE); 1007 } 1008 1009 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1010 { 1011 if (is_inode_flag_set(fi, FI_ACL_MODE)) { 1012 clear_inode_flag(fi, FI_ACL_MODE); 1013 return 1; 1014 } 1015 return 0; 1016 } 1017 1018 static inline void get_inline_info(struct f2fs_inode_info *fi, 1019 struct f2fs_inode *ri) 1020 { 1021 if (ri->i_inline & F2FS_INLINE_XATTR) 1022 set_inode_flag(fi, FI_INLINE_XATTR); 1023 if (ri->i_inline & F2FS_INLINE_DATA) 1024 set_inode_flag(fi, FI_INLINE_DATA); 1025 } 1026 1027 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1028 struct f2fs_inode *ri) 1029 { 1030 ri->i_inline = 0; 1031 1032 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1033 ri->i_inline |= F2FS_INLINE_XATTR; 1034 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1035 ri->i_inline |= F2FS_INLINE_DATA; 1036 } 1037 1038 static inline int f2fs_has_inline_xattr(struct inode *inode) 1039 { 1040 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1041 } 1042 1043 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi) 1044 { 1045 if (f2fs_has_inline_xattr(&fi->vfs_inode)) 1046 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1047 return DEF_ADDRS_PER_INODE; 1048 } 1049 1050 static inline void *inline_xattr_addr(struct page *page) 1051 { 1052 struct f2fs_inode *ri = F2FS_INODE(page); 1053 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1054 F2FS_INLINE_XATTR_ADDRS]); 1055 } 1056 1057 static inline int inline_xattr_size(struct inode *inode) 1058 { 1059 if (f2fs_has_inline_xattr(inode)) 1060 return F2FS_INLINE_XATTR_ADDRS << 2; 1061 else 1062 return 0; 1063 } 1064 1065 static inline int f2fs_has_inline_data(struct inode *inode) 1066 { 1067 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1068 } 1069 1070 static inline void *inline_data_addr(struct page *page) 1071 { 1072 struct f2fs_inode *ri = F2FS_INODE(page); 1073 return (void *)&(ri->i_addr[1]); 1074 } 1075 1076 static inline int f2fs_readonly(struct super_block *sb) 1077 { 1078 return sb->s_flags & MS_RDONLY; 1079 } 1080 1081 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi) 1082 { 1083 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1084 sbi->sb->s_flags |= MS_RDONLY; 1085 } 1086 1087 #define get_inode_mode(i) \ 1088 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1089 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1090 1091 /* get offset of first page in next direct node */ 1092 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \ 1093 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \ 1094 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \ 1095 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi)) 1096 1097 /* 1098 * file.c 1099 */ 1100 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1101 void truncate_data_blocks(struct dnode_of_data *); 1102 int truncate_blocks(struct inode *, u64); 1103 void f2fs_truncate(struct inode *); 1104 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1105 int f2fs_setattr(struct dentry *, struct iattr *); 1106 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1107 int truncate_data_blocks_range(struct dnode_of_data *, int); 1108 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1109 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1110 1111 /* 1112 * inode.c 1113 */ 1114 void f2fs_set_inode_flags(struct inode *); 1115 struct inode *f2fs_iget(struct super_block *, unsigned long); 1116 int try_to_free_nats(struct f2fs_sb_info *, int); 1117 void update_inode(struct inode *, struct page *); 1118 void update_inode_page(struct inode *); 1119 int f2fs_write_inode(struct inode *, struct writeback_control *); 1120 void f2fs_evict_inode(struct inode *); 1121 1122 /* 1123 * namei.c 1124 */ 1125 struct dentry *f2fs_get_parent(struct dentry *child); 1126 1127 /* 1128 * dir.c 1129 */ 1130 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1131 struct page **); 1132 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1133 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1134 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1135 struct page *, struct inode *); 1136 int update_dent_inode(struct inode *, const struct qstr *); 1137 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *); 1138 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *); 1139 int f2fs_make_empty(struct inode *, struct inode *); 1140 bool f2fs_empty_dir(struct inode *); 1141 1142 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1143 { 1144 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name, 1145 inode); 1146 } 1147 1148 /* 1149 * super.c 1150 */ 1151 int f2fs_sync_fs(struct super_block *, int); 1152 extern __printf(3, 4) 1153 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1154 1155 /* 1156 * hash.c 1157 */ 1158 f2fs_hash_t f2fs_dentry_hash(const char *, size_t); 1159 1160 /* 1161 * node.c 1162 */ 1163 struct dnode_of_data; 1164 struct node_info; 1165 1166 bool available_free_memory(struct f2fs_sb_info *, int); 1167 int is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1168 bool fsync_mark_done(struct f2fs_sb_info *, nid_t); 1169 void fsync_mark_clear(struct f2fs_sb_info *, nid_t); 1170 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1171 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1172 int truncate_inode_blocks(struct inode *, pgoff_t); 1173 int truncate_xattr_node(struct inode *, struct page *); 1174 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1175 void remove_inode_page(struct inode *); 1176 struct page *new_inode_page(struct inode *, const struct qstr *); 1177 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1178 void ra_node_page(struct f2fs_sb_info *, nid_t); 1179 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1180 struct page *get_node_page_ra(struct page *, int); 1181 void sync_inode_page(struct dnode_of_data *); 1182 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1183 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1184 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1185 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1186 void recover_node_page(struct f2fs_sb_info *, struct page *, 1187 struct f2fs_summary *, struct node_info *, block_t); 1188 bool recover_xattr_data(struct inode *, struct page *, block_t); 1189 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1190 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1191 struct f2fs_summary_block *); 1192 void flush_nat_entries(struct f2fs_sb_info *); 1193 int build_node_manager(struct f2fs_sb_info *); 1194 void destroy_node_manager(struct f2fs_sb_info *); 1195 int __init create_node_manager_caches(void); 1196 void destroy_node_manager_caches(void); 1197 1198 /* 1199 * segment.c 1200 */ 1201 void f2fs_balance_fs(struct f2fs_sb_info *); 1202 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1203 int f2fs_issue_flush(struct f2fs_sb_info *); 1204 int create_flush_cmd_control(struct f2fs_sb_info *); 1205 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1206 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1207 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1208 void clear_prefree_segments(struct f2fs_sb_info *); 1209 void discard_next_dnode(struct f2fs_sb_info *); 1210 int npages_for_summary_flush(struct f2fs_sb_info *); 1211 void allocate_new_segments(struct f2fs_sb_info *); 1212 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1213 void write_meta_page(struct f2fs_sb_info *, struct page *); 1214 void write_node_page(struct f2fs_sb_info *, struct page *, 1215 struct f2fs_io_info *, unsigned int, block_t, block_t *); 1216 void write_data_page(struct page *, struct dnode_of_data *, block_t *, 1217 struct f2fs_io_info *); 1218 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *); 1219 void recover_data_page(struct f2fs_sb_info *, struct page *, 1220 struct f2fs_summary *, block_t, block_t); 1221 void rewrite_node_page(struct f2fs_sb_info *, struct page *, 1222 struct f2fs_summary *, block_t, block_t); 1223 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1224 block_t, block_t *, struct f2fs_summary *, int); 1225 void f2fs_wait_on_page_writeback(struct page *, enum page_type); 1226 void write_data_summaries(struct f2fs_sb_info *, block_t); 1227 void write_node_summaries(struct f2fs_sb_info *, block_t); 1228 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1229 int, unsigned int, int); 1230 void flush_sit_entries(struct f2fs_sb_info *); 1231 int build_segment_manager(struct f2fs_sb_info *); 1232 void destroy_segment_manager(struct f2fs_sb_info *); 1233 int __init create_segment_manager_caches(void); 1234 void destroy_segment_manager_caches(void); 1235 1236 /* 1237 * checkpoint.c 1238 */ 1239 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1240 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1241 int ra_meta_pages(struct f2fs_sb_info *, int, int, int); 1242 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1243 int acquire_orphan_inode(struct f2fs_sb_info *); 1244 void release_orphan_inode(struct f2fs_sb_info *); 1245 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1246 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1247 void recover_orphan_inodes(struct f2fs_sb_info *); 1248 int get_valid_checkpoint(struct f2fs_sb_info *); 1249 void set_dirty_dir_page(struct inode *, struct page *); 1250 void add_dirty_dir_inode(struct inode *); 1251 void remove_dirty_dir_inode(struct inode *); 1252 void sync_dirty_dir_inodes(struct f2fs_sb_info *); 1253 void write_checkpoint(struct f2fs_sb_info *, bool); 1254 void init_orphan_info(struct f2fs_sb_info *); 1255 int __init create_checkpoint_caches(void); 1256 void destroy_checkpoint_caches(void); 1257 1258 /* 1259 * data.c 1260 */ 1261 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1262 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int); 1263 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t, 1264 struct f2fs_io_info *); 1265 int reserve_new_block(struct dnode_of_data *); 1266 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1267 void update_extent_cache(block_t, struct dnode_of_data *); 1268 struct page *find_data_page(struct inode *, pgoff_t, bool); 1269 struct page *get_lock_data_page(struct inode *, pgoff_t); 1270 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1271 int do_write_data_page(struct page *, struct f2fs_io_info *); 1272 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1273 1274 /* 1275 * gc.c 1276 */ 1277 int start_gc_thread(struct f2fs_sb_info *); 1278 void stop_gc_thread(struct f2fs_sb_info *); 1279 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *); 1280 int f2fs_gc(struct f2fs_sb_info *); 1281 void build_gc_manager(struct f2fs_sb_info *); 1282 int __init create_gc_caches(void); 1283 void destroy_gc_caches(void); 1284 1285 /* 1286 * recovery.c 1287 */ 1288 int recover_fsync_data(struct f2fs_sb_info *); 1289 bool space_for_roll_forward(struct f2fs_sb_info *); 1290 1291 /* 1292 * debug.c 1293 */ 1294 #ifdef CONFIG_F2FS_STAT_FS 1295 struct f2fs_stat_info { 1296 struct list_head stat_list; 1297 struct f2fs_sb_info *sbi; 1298 struct mutex stat_lock; 1299 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1300 int main_area_segs, main_area_sections, main_area_zones; 1301 int hit_ext, total_ext; 1302 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; 1303 int nats, sits, fnids; 1304 int total_count, utilization; 1305 int bg_gc, inline_inode; 1306 unsigned int valid_count, valid_node_count, valid_inode_count; 1307 unsigned int bimodal, avg_vblocks; 1308 int util_free, util_valid, util_invalid; 1309 int rsvd_segs, overp_segs; 1310 int dirty_count, node_pages, meta_pages; 1311 int prefree_count, call_count, cp_count; 1312 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1313 int tot_blks, data_blks, node_blks; 1314 int curseg[NR_CURSEG_TYPE]; 1315 int cursec[NR_CURSEG_TYPE]; 1316 int curzone[NR_CURSEG_TYPE]; 1317 1318 unsigned int segment_count[2]; 1319 unsigned int block_count[2]; 1320 unsigned base_mem, cache_mem; 1321 }; 1322 1323 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1324 { 1325 return (struct f2fs_stat_info *)sbi->stat_info; 1326 } 1327 1328 #define stat_inc_cp_count(si) ((si)->cp_count++) 1329 #define stat_inc_call_count(si) ((si)->call_count++) 1330 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1331 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++) 1332 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--) 1333 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++) 1334 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++) 1335 #define stat_inc_inline_inode(inode) \ 1336 do { \ 1337 if (f2fs_has_inline_data(inode)) \ 1338 ((F2FS_SB(inode->i_sb))->inline_inode++); \ 1339 } while (0) 1340 #define stat_dec_inline_inode(inode) \ 1341 do { \ 1342 if (f2fs_has_inline_data(inode)) \ 1343 ((F2FS_SB(inode->i_sb))->inline_inode--); \ 1344 } while (0) 1345 1346 #define stat_inc_seg_type(sbi, curseg) \ 1347 ((sbi)->segment_count[(curseg)->alloc_type]++) 1348 #define stat_inc_block_count(sbi, curseg) \ 1349 ((sbi)->block_count[(curseg)->alloc_type]++) 1350 1351 #define stat_inc_seg_count(sbi, type) \ 1352 do { \ 1353 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1354 (si)->tot_segs++; \ 1355 if (type == SUM_TYPE_DATA) \ 1356 si->data_segs++; \ 1357 else \ 1358 si->node_segs++; \ 1359 } while (0) 1360 1361 #define stat_inc_tot_blk_count(si, blks) \ 1362 (si->tot_blks += (blks)) 1363 1364 #define stat_inc_data_blk_count(sbi, blks) \ 1365 do { \ 1366 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1367 stat_inc_tot_blk_count(si, blks); \ 1368 si->data_blks += (blks); \ 1369 } while (0) 1370 1371 #define stat_inc_node_blk_count(sbi, blks) \ 1372 do { \ 1373 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1374 stat_inc_tot_blk_count(si, blks); \ 1375 si->node_blks += (blks); \ 1376 } while (0) 1377 1378 int f2fs_build_stats(struct f2fs_sb_info *); 1379 void f2fs_destroy_stats(struct f2fs_sb_info *); 1380 void __init f2fs_create_root_stats(void); 1381 void f2fs_destroy_root_stats(void); 1382 #else 1383 #define stat_inc_cp_count(si) 1384 #define stat_inc_call_count(si) 1385 #define stat_inc_bggc_count(si) 1386 #define stat_inc_dirty_dir(sbi) 1387 #define stat_dec_dirty_dir(sbi) 1388 #define stat_inc_total_hit(sb) 1389 #define stat_inc_read_hit(sb) 1390 #define stat_inc_inline_inode(inode) 1391 #define stat_dec_inline_inode(inode) 1392 #define stat_inc_seg_type(sbi, curseg) 1393 #define stat_inc_block_count(sbi, curseg) 1394 #define stat_inc_seg_count(si, type) 1395 #define stat_inc_tot_blk_count(si, blks) 1396 #define stat_inc_data_blk_count(si, blks) 1397 #define stat_inc_node_blk_count(sbi, blks) 1398 1399 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 1400 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 1401 static inline void __init f2fs_create_root_stats(void) { } 1402 static inline void f2fs_destroy_root_stats(void) { } 1403 #endif 1404 1405 extern const struct file_operations f2fs_dir_operations; 1406 extern const struct file_operations f2fs_file_operations; 1407 extern const struct inode_operations f2fs_file_inode_operations; 1408 extern const struct address_space_operations f2fs_dblock_aops; 1409 extern const struct address_space_operations f2fs_node_aops; 1410 extern const struct address_space_operations f2fs_meta_aops; 1411 extern const struct inode_operations f2fs_dir_inode_operations; 1412 extern const struct inode_operations f2fs_symlink_inode_operations; 1413 extern const struct inode_operations f2fs_special_inode_operations; 1414 1415 /* 1416 * inline.c 1417 */ 1418 bool f2fs_may_inline(struct inode *); 1419 int f2fs_read_inline_data(struct inode *, struct page *); 1420 int f2fs_convert_inline_data(struct inode *, pgoff_t); 1421 int f2fs_write_inline_data(struct inode *, struct page *, unsigned int); 1422 void truncate_inline_data(struct inode *, u64); 1423 int recover_inline_data(struct inode *, struct page *); 1424 #endif 1425