xref: /openbmc/linux/fs/f2fs/f2fs.h (revision cf26e043)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	unsigned int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
78 #endif
79 
80 /*
81  * For mount options
82  */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
84 #define F2FS_MOUNT_DISCARD		0x00000004
85 #define F2FS_MOUNT_NOHEAP		0x00000008
86 #define F2FS_MOUNT_XATTR_USER		0x00000010
87 #define F2FS_MOUNT_POSIX_ACL		0x00000020
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
89 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
90 #define F2FS_MOUNT_INLINE_DATA		0x00000100
91 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
92 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
93 #define F2FS_MOUNT_NOBARRIER		0x00000800
94 #define F2FS_MOUNT_FASTBOOT		0x00001000
95 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00002000
96 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
97 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
98 #define F2FS_MOUNT_USRQUOTA		0x00080000
99 #define F2FS_MOUNT_GRPQUOTA		0x00100000
100 #define F2FS_MOUNT_PRJQUOTA		0x00200000
101 #define F2FS_MOUNT_QUOTA		0x00400000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
103 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
105 #define F2FS_MOUNT_NORECOVERY		0x04000000
106 #define F2FS_MOUNT_ATGC			0x08000000
107 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
108 #define	F2FS_MOUNT_GC_MERGE		0x20000000
109 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
110 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x80000000
111 
112 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
113 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
114 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
115 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
116 
117 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
118 		typecheck(unsigned long long, b) &&			\
119 		((long long)((a) - (b)) > 0))
120 
121 typedef u32 block_t;	/*
122 			 * should not change u32, since it is the on-disk block
123 			 * address format, __le32.
124 			 */
125 typedef u32 nid_t;
126 
127 #define COMPRESS_EXT_NUM		16
128 
129 /*
130  * An implementation of an rwsem that is explicitly unfair to readers. This
131  * prevents priority inversion when a low-priority reader acquires the read lock
132  * while sleeping on the write lock but the write lock is needed by
133  * higher-priority clients.
134  */
135 
136 struct f2fs_rwsem {
137         struct rw_semaphore internal_rwsem;
138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
139         wait_queue_head_t read_waiters;
140 #endif
141 };
142 
143 struct f2fs_mount_info {
144 	unsigned int opt;
145 	int write_io_size_bits;		/* Write IO size bits */
146 	block_t root_reserved_blocks;	/* root reserved blocks */
147 	kuid_t s_resuid;		/* reserved blocks for uid */
148 	kgid_t s_resgid;		/* reserved blocks for gid */
149 	int active_logs;		/* # of active logs */
150 	int inline_xattr_size;		/* inline xattr size */
151 #ifdef CONFIG_F2FS_FAULT_INJECTION
152 	struct f2fs_fault_info fault_info;	/* For fault injection */
153 #endif
154 #ifdef CONFIG_QUOTA
155 	/* Names of quota files with journalled quota */
156 	char *s_qf_names[MAXQUOTAS];
157 	int s_jquota_fmt;			/* Format of quota to use */
158 #endif
159 	/* For which write hints are passed down to block layer */
160 	int alloc_mode;			/* segment allocation policy */
161 	int fsync_mode;			/* fsync policy */
162 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
163 	int bggc_mode;			/* bggc mode: off, on or sync */
164 	int memory_mode;		/* memory mode */
165 	int discard_unit;		/*
166 					 * discard command's offset/size should
167 					 * be aligned to this unit: block,
168 					 * segment or section
169 					 */
170 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
171 	block_t unusable_cap_perc;	/* percentage for cap */
172 	block_t unusable_cap;		/* Amount of space allowed to be
173 					 * unusable when disabling checkpoint
174 					 */
175 
176 	/* For compression */
177 	unsigned char compress_algorithm;	/* algorithm type */
178 	unsigned char compress_log_size;	/* cluster log size */
179 	unsigned char compress_level;		/* compress level */
180 	bool compress_chksum;			/* compressed data chksum */
181 	unsigned char compress_ext_cnt;		/* extension count */
182 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
183 	int compress_mode;			/* compression mode */
184 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
185 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
186 };
187 
188 #define F2FS_FEATURE_ENCRYPT		0x0001
189 #define F2FS_FEATURE_BLKZONED		0x0002
190 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
191 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
192 #define F2FS_FEATURE_PRJQUOTA		0x0010
193 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
194 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
195 #define F2FS_FEATURE_QUOTA_INO		0x0080
196 #define F2FS_FEATURE_INODE_CRTIME	0x0100
197 #define F2FS_FEATURE_LOST_FOUND		0x0200
198 #define F2FS_FEATURE_VERITY		0x0400
199 #define F2FS_FEATURE_SB_CHKSUM		0x0800
200 #define F2FS_FEATURE_CASEFOLD		0x1000
201 #define F2FS_FEATURE_COMPRESSION	0x2000
202 #define F2FS_FEATURE_RO			0x4000
203 
204 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
205 	((raw_super->feature & cpu_to_le32(mask)) != 0)
206 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
207 
208 /*
209  * Default values for user and/or group using reserved blocks
210  */
211 #define	F2FS_DEF_RESUID		0
212 #define	F2FS_DEF_RESGID		0
213 
214 /*
215  * For checkpoint manager
216  */
217 enum {
218 	NAT_BITMAP,
219 	SIT_BITMAP
220 };
221 
222 #define	CP_UMOUNT	0x00000001
223 #define	CP_FASTBOOT	0x00000002
224 #define	CP_SYNC		0x00000004
225 #define	CP_RECOVERY	0x00000008
226 #define	CP_DISCARD	0x00000010
227 #define CP_TRIMMED	0x00000020
228 #define CP_PAUSE	0x00000040
229 #define CP_RESIZE 	0x00000080
230 
231 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
232 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
233 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
234 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
235 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
236 #define DEF_CP_INTERVAL			60	/* 60 secs */
237 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
238 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
239 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
240 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
241 
242 struct cp_control {
243 	int reason;
244 	__u64 trim_start;
245 	__u64 trim_end;
246 	__u64 trim_minlen;
247 };
248 
249 /*
250  * indicate meta/data type
251  */
252 enum {
253 	META_CP,
254 	META_NAT,
255 	META_SIT,
256 	META_SSA,
257 	META_MAX,
258 	META_POR,
259 	DATA_GENERIC,		/* check range only */
260 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
261 	DATA_GENERIC_ENHANCE_READ,	/*
262 					 * strong check on range and segment
263 					 * bitmap but no warning due to race
264 					 * condition of read on truncated area
265 					 * by extent_cache
266 					 */
267 	DATA_GENERIC_ENHANCE_UPDATE,	/*
268 					 * strong check on range and segment
269 					 * bitmap for update case
270 					 */
271 	META_GENERIC,
272 };
273 
274 /* for the list of ino */
275 enum {
276 	ORPHAN_INO,		/* for orphan ino list */
277 	APPEND_INO,		/* for append ino list */
278 	UPDATE_INO,		/* for update ino list */
279 	TRANS_DIR_INO,		/* for transactions dir ino list */
280 	FLUSH_INO,		/* for multiple device flushing */
281 	MAX_INO_ENTRY,		/* max. list */
282 };
283 
284 struct ino_entry {
285 	struct list_head list;		/* list head */
286 	nid_t ino;			/* inode number */
287 	unsigned int dirty_device;	/* dirty device bitmap */
288 };
289 
290 /* for the list of inodes to be GCed */
291 struct inode_entry {
292 	struct list_head list;	/* list head */
293 	struct inode *inode;	/* vfs inode pointer */
294 };
295 
296 struct fsync_node_entry {
297 	struct list_head list;	/* list head */
298 	struct page *page;	/* warm node page pointer */
299 	unsigned int seq_id;	/* sequence id */
300 };
301 
302 struct ckpt_req {
303 	struct completion wait;		/* completion for checkpoint done */
304 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
305 	int ret;			/* return code of checkpoint */
306 	ktime_t queue_time;		/* request queued time */
307 };
308 
309 struct ckpt_req_control {
310 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
311 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
312 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
313 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
314 	atomic_t total_ckpt;		/* # of total ckpts */
315 	atomic_t queued_ckpt;		/* # of queued ckpts */
316 	struct llist_head issue_list;	/* list for command issue */
317 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
318 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
319 	unsigned int peak_time;		/* peak wait time in msec until now */
320 };
321 
322 /* for the bitmap indicate blocks to be discarded */
323 struct discard_entry {
324 	struct list_head list;	/* list head */
325 	block_t start_blkaddr;	/* start blockaddr of current segment */
326 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
327 };
328 
329 /* minimum discard granularity, unit: block count */
330 #define MIN_DISCARD_GRANULARITY		1
331 /* default discard granularity of inner discard thread, unit: block count */
332 #define DEFAULT_DISCARD_GRANULARITY		16
333 /* default maximum discard granularity of ordered discard, unit: block count */
334 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
335 
336 /* max discard pend list number */
337 #define MAX_PLIST_NUM		512
338 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
339 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
340 
341 enum {
342 	D_PREP,			/* initial */
343 	D_PARTIAL,		/* partially submitted */
344 	D_SUBMIT,		/* all submitted */
345 	D_DONE,			/* finished */
346 };
347 
348 struct discard_info {
349 	block_t lstart;			/* logical start address */
350 	block_t len;			/* length */
351 	block_t start;			/* actual start address in dev */
352 };
353 
354 struct discard_cmd {
355 	struct rb_node rb_node;		/* rb node located in rb-tree */
356 	union {
357 		struct {
358 			block_t lstart;	/* logical start address */
359 			block_t len;	/* length */
360 			block_t start;	/* actual start address in dev */
361 		};
362 		struct discard_info di;	/* discard info */
363 
364 	};
365 	struct list_head list;		/* command list */
366 	struct completion wait;		/* compleation */
367 	struct block_device *bdev;	/* bdev */
368 	unsigned short ref;		/* reference count */
369 	unsigned char state;		/* state */
370 	unsigned char queued;		/* queued discard */
371 	int error;			/* bio error */
372 	spinlock_t lock;		/* for state/bio_ref updating */
373 	unsigned short bio_ref;		/* bio reference count */
374 };
375 
376 enum {
377 	DPOLICY_BG,
378 	DPOLICY_FORCE,
379 	DPOLICY_FSTRIM,
380 	DPOLICY_UMOUNT,
381 	MAX_DPOLICY,
382 };
383 
384 struct discard_policy {
385 	int type;			/* type of discard */
386 	unsigned int min_interval;	/* used for candidates exist */
387 	unsigned int mid_interval;	/* used for device busy */
388 	unsigned int max_interval;	/* used for candidates not exist */
389 	unsigned int max_requests;	/* # of discards issued per round */
390 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
391 	bool io_aware;			/* issue discard in idle time */
392 	bool sync;			/* submit discard with REQ_SYNC flag */
393 	bool ordered;			/* issue discard by lba order */
394 	bool timeout;			/* discard timeout for put_super */
395 	unsigned int granularity;	/* discard granularity */
396 };
397 
398 struct discard_cmd_control {
399 	struct task_struct *f2fs_issue_discard;	/* discard thread */
400 	struct list_head entry_list;		/* 4KB discard entry list */
401 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
402 	struct list_head wait_list;		/* store on-flushing entries */
403 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
404 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
405 	unsigned int discard_wake;		/* to wake up discard thread */
406 	struct mutex cmd_lock;
407 	unsigned int nr_discards;		/* # of discards in the list */
408 	unsigned int max_discards;		/* max. discards to be issued */
409 	unsigned int max_discard_request;	/* max. discard request per round */
410 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
411 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
412 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
413 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
414 	unsigned int discard_granularity;	/* discard granularity */
415 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
416 	unsigned int undiscard_blks;		/* # of undiscard blocks */
417 	unsigned int next_pos;			/* next discard position */
418 	atomic_t issued_discard;		/* # of issued discard */
419 	atomic_t queued_discard;		/* # of queued discard */
420 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
421 	struct rb_root_cached root;		/* root of discard rb-tree */
422 	bool rbtree_check;			/* config for consistence check */
423 };
424 
425 /* for the list of fsync inodes, used only during recovery */
426 struct fsync_inode_entry {
427 	struct list_head list;	/* list head */
428 	struct inode *inode;	/* vfs inode pointer */
429 	block_t blkaddr;	/* block address locating the last fsync */
430 	block_t last_dentry;	/* block address locating the last dentry */
431 };
432 
433 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
434 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
435 
436 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
437 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
438 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
439 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
440 
441 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
442 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
443 
444 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
445 {
446 	int before = nats_in_cursum(journal);
447 
448 	journal->n_nats = cpu_to_le16(before + i);
449 	return before;
450 }
451 
452 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
453 {
454 	int before = sits_in_cursum(journal);
455 
456 	journal->n_sits = cpu_to_le16(before + i);
457 	return before;
458 }
459 
460 static inline bool __has_cursum_space(struct f2fs_journal *journal,
461 							int size, int type)
462 {
463 	if (type == NAT_JOURNAL)
464 		return size <= MAX_NAT_JENTRIES(journal);
465 	return size <= MAX_SIT_JENTRIES(journal);
466 }
467 
468 /* for inline stuff */
469 #define DEF_INLINE_RESERVED_SIZE	1
470 static inline int get_extra_isize(struct inode *inode);
471 static inline int get_inline_xattr_addrs(struct inode *inode);
472 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
473 				(CUR_ADDRS_PER_INODE(inode) -		\
474 				get_inline_xattr_addrs(inode) -	\
475 				DEF_INLINE_RESERVED_SIZE))
476 
477 /* for inline dir */
478 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
479 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
480 				BITS_PER_BYTE + 1))
481 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
482 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
483 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
484 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
485 				NR_INLINE_DENTRY(inode) + \
486 				INLINE_DENTRY_BITMAP_SIZE(inode)))
487 
488 /*
489  * For INODE and NODE manager
490  */
491 /* for directory operations */
492 
493 struct f2fs_filename {
494 	/*
495 	 * The filename the user specified.  This is NULL for some
496 	 * filesystem-internal operations, e.g. converting an inline directory
497 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
498 	 */
499 	const struct qstr *usr_fname;
500 
501 	/*
502 	 * The on-disk filename.  For encrypted directories, this is encrypted.
503 	 * This may be NULL for lookups in an encrypted dir without the key.
504 	 */
505 	struct fscrypt_str disk_name;
506 
507 	/* The dirhash of this filename */
508 	f2fs_hash_t hash;
509 
510 #ifdef CONFIG_FS_ENCRYPTION
511 	/*
512 	 * For lookups in encrypted directories: either the buffer backing
513 	 * disk_name, or a buffer that holds the decoded no-key name.
514 	 */
515 	struct fscrypt_str crypto_buf;
516 #endif
517 #if IS_ENABLED(CONFIG_UNICODE)
518 	/*
519 	 * For casefolded directories: the casefolded name, but it's left NULL
520 	 * if the original name is not valid Unicode, if the original name is
521 	 * "." or "..", if the directory is both casefolded and encrypted and
522 	 * its encryption key is unavailable, or if the filesystem is doing an
523 	 * internal operation where usr_fname is also NULL.  In all these cases
524 	 * we fall back to treating the name as an opaque byte sequence.
525 	 */
526 	struct fscrypt_str cf_name;
527 #endif
528 };
529 
530 struct f2fs_dentry_ptr {
531 	struct inode *inode;
532 	void *bitmap;
533 	struct f2fs_dir_entry *dentry;
534 	__u8 (*filename)[F2FS_SLOT_LEN];
535 	int max;
536 	int nr_bitmap;
537 };
538 
539 static inline void make_dentry_ptr_block(struct inode *inode,
540 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
541 {
542 	d->inode = inode;
543 	d->max = NR_DENTRY_IN_BLOCK;
544 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
545 	d->bitmap = t->dentry_bitmap;
546 	d->dentry = t->dentry;
547 	d->filename = t->filename;
548 }
549 
550 static inline void make_dentry_ptr_inline(struct inode *inode,
551 					struct f2fs_dentry_ptr *d, void *t)
552 {
553 	int entry_cnt = NR_INLINE_DENTRY(inode);
554 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
555 	int reserved_size = INLINE_RESERVED_SIZE(inode);
556 
557 	d->inode = inode;
558 	d->max = entry_cnt;
559 	d->nr_bitmap = bitmap_size;
560 	d->bitmap = t;
561 	d->dentry = t + bitmap_size + reserved_size;
562 	d->filename = t + bitmap_size + reserved_size +
563 					SIZE_OF_DIR_ENTRY * entry_cnt;
564 }
565 
566 /*
567  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
568  * as its node offset to distinguish from index node blocks.
569  * But some bits are used to mark the node block.
570  */
571 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
572 				>> OFFSET_BIT_SHIFT)
573 enum {
574 	ALLOC_NODE,			/* allocate a new node page if needed */
575 	LOOKUP_NODE,			/* look up a node without readahead */
576 	LOOKUP_NODE_RA,			/*
577 					 * look up a node with readahead called
578 					 * by get_data_block.
579 					 */
580 };
581 
582 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
583 
584 /* congestion wait timeout value, default: 20ms */
585 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
586 
587 /* maximum retry quota flush count */
588 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
589 
590 /* maximum retry of EIO'ed page */
591 #define MAX_RETRY_PAGE_EIO			100
592 
593 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
594 
595 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
596 
597 /* dirty segments threshold for triggering CP */
598 #define DEFAULT_DIRTY_THRESHOLD		4
599 
600 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
601 #define RECOVERY_MIN_RA_BLOCKS		1
602 
603 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
604 
605 /* for in-memory extent cache entry */
606 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
607 
608 /* number of extent info in extent cache we try to shrink */
609 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
610 
611 /* number of age extent info in extent cache we try to shrink */
612 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
613 #define LAST_AGE_WEIGHT			30
614 #define SAME_AGE_REGION			1024
615 
616 /*
617  * Define data block with age less than 1GB as hot data
618  * define data block with age less than 10GB but more than 1GB as warm data
619  */
620 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
621 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
622 
623 /* extent cache type */
624 enum extent_type {
625 	EX_READ,
626 	EX_BLOCK_AGE,
627 	NR_EXTENT_CACHES,
628 };
629 
630 struct rb_entry {
631 	struct rb_node rb_node;		/* rb node located in rb-tree */
632 	union {
633 		struct {
634 			unsigned int ofs;	/* start offset of the entry */
635 			unsigned int len;	/* length of the entry */
636 		};
637 		unsigned long long key;		/* 64-bits key */
638 	} __packed;
639 };
640 
641 struct extent_info {
642 	unsigned int fofs;		/* start offset in a file */
643 	unsigned int len;		/* length of the extent */
644 	union {
645 		/* read extent_cache */
646 		struct {
647 			/* start block address of the extent */
648 			block_t blk;
649 #ifdef CONFIG_F2FS_FS_COMPRESSION
650 			/* physical extent length of compressed blocks */
651 			unsigned int c_len;
652 #endif
653 		};
654 		/* block age extent_cache */
655 		struct {
656 			/* block age of the extent */
657 			unsigned long long age;
658 			/* last total blocks allocated */
659 			unsigned long long last_blocks;
660 		};
661 	};
662 };
663 
664 struct extent_node {
665 	struct rb_node rb_node;		/* rb node located in rb-tree */
666 	struct extent_info ei;		/* extent info */
667 	struct list_head list;		/* node in global extent list of sbi */
668 	struct extent_tree *et;		/* extent tree pointer */
669 };
670 
671 struct extent_tree {
672 	nid_t ino;			/* inode number */
673 	enum extent_type type;		/* keep the extent tree type */
674 	struct rb_root_cached root;	/* root of extent info rb-tree */
675 	struct extent_node *cached_en;	/* recently accessed extent node */
676 	struct list_head list;		/* to be used by sbi->zombie_list */
677 	rwlock_t lock;			/* protect extent info rb-tree */
678 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
679 	bool largest_updated;		/* largest extent updated */
680 	struct extent_info largest;	/* largest cached extent for EX_READ */
681 };
682 
683 struct extent_tree_info {
684 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
685 	struct mutex extent_tree_lock;	/* locking extent radix tree */
686 	struct list_head extent_list;		/* lru list for shrinker */
687 	spinlock_t extent_lock;			/* locking extent lru list */
688 	atomic_t total_ext_tree;		/* extent tree count */
689 	struct list_head zombie_list;		/* extent zombie tree list */
690 	atomic_t total_zombie_tree;		/* extent zombie tree count */
691 	atomic_t total_ext_node;		/* extent info count */
692 };
693 
694 /*
695  * This structure is taken from ext4_map_blocks.
696  *
697  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
698  */
699 #define F2FS_MAP_NEW		(1 << BH_New)
700 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
701 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
702 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
703 				F2FS_MAP_UNWRITTEN)
704 
705 struct f2fs_map_blocks {
706 	struct block_device *m_bdev;	/* for multi-device dio */
707 	block_t m_pblk;
708 	block_t m_lblk;
709 	unsigned int m_len;
710 	unsigned int m_flags;
711 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
712 	pgoff_t *m_next_extent;		/* point to next possible extent */
713 	int m_seg_type;
714 	bool m_may_create;		/* indicate it is from write path */
715 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
716 };
717 
718 /* for flag in get_data_block */
719 enum {
720 	F2FS_GET_BLOCK_DEFAULT,
721 	F2FS_GET_BLOCK_FIEMAP,
722 	F2FS_GET_BLOCK_BMAP,
723 	F2FS_GET_BLOCK_DIO,
724 	F2FS_GET_BLOCK_PRE_DIO,
725 	F2FS_GET_BLOCK_PRE_AIO,
726 	F2FS_GET_BLOCK_PRECACHE,
727 };
728 
729 /*
730  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
731  */
732 #define FADVISE_COLD_BIT	0x01
733 #define FADVISE_LOST_PINO_BIT	0x02
734 #define FADVISE_ENCRYPT_BIT	0x04
735 #define FADVISE_ENC_NAME_BIT	0x08
736 #define FADVISE_KEEP_SIZE_BIT	0x10
737 #define FADVISE_HOT_BIT		0x20
738 #define FADVISE_VERITY_BIT	0x40
739 #define FADVISE_TRUNC_BIT	0x80
740 
741 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
742 
743 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
744 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
745 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
746 
747 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
748 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
749 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
750 
751 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
752 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
753 
754 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
755 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
756 
757 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
758 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
759 
760 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
761 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
762 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
763 
764 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
765 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
766 
767 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
768 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
769 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
770 
771 #define DEF_DIR_LEVEL		0
772 
773 enum {
774 	GC_FAILURE_PIN,
775 	MAX_GC_FAILURE
776 };
777 
778 /* used for f2fs_inode_info->flags */
779 enum {
780 	FI_NEW_INODE,		/* indicate newly allocated inode */
781 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
782 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
783 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
784 	FI_INC_LINK,		/* need to increment i_nlink */
785 	FI_ACL_MODE,		/* indicate acl mode */
786 	FI_NO_ALLOC,		/* should not allocate any blocks */
787 	FI_FREE_NID,		/* free allocated nide */
788 	FI_NO_EXTENT,		/* not to use the extent cache */
789 	FI_INLINE_XATTR,	/* used for inline xattr */
790 	FI_INLINE_DATA,		/* used for inline data*/
791 	FI_INLINE_DENTRY,	/* used for inline dentry */
792 	FI_APPEND_WRITE,	/* inode has appended data */
793 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
794 	FI_NEED_IPU,		/* used for ipu per file */
795 	FI_ATOMIC_FILE,		/* indicate atomic file */
796 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
797 	FI_DROP_CACHE,		/* drop dirty page cache */
798 	FI_DATA_EXIST,		/* indicate data exists */
799 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
800 	FI_SKIP_WRITES,		/* should skip data page writeback */
801 	FI_OPU_WRITE,		/* used for opu per file */
802 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
803 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
804 	FI_HOT_DATA,		/* indicate file is hot */
805 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
806 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
807 	FI_PIN_FILE,		/* indicate file should not be gced */
808 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
809 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
810 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
811 	FI_MMAP_FILE,		/* indicate file was mmapped */
812 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
813 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
814 	FI_ALIGNED_WRITE,	/* enable aligned write */
815 	FI_COW_FILE,		/* indicate COW file */
816 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
817 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
818 	FI_MAX,			/* max flag, never be used */
819 };
820 
821 struct f2fs_inode_info {
822 	struct inode vfs_inode;		/* serve a vfs inode */
823 	unsigned long i_flags;		/* keep an inode flags for ioctl */
824 	unsigned char i_advise;		/* use to give file attribute hints */
825 	unsigned char i_dir_level;	/* use for dentry level for large dir */
826 	unsigned int i_current_depth;	/* only for directory depth */
827 	/* for gc failure statistic */
828 	unsigned int i_gc_failures[MAX_GC_FAILURE];
829 	unsigned int i_pino;		/* parent inode number */
830 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
831 
832 	/* Use below internally in f2fs*/
833 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
834 	struct f2fs_rwsem i_sem;	/* protect fi info */
835 	atomic_t dirty_pages;		/* # of dirty pages */
836 	f2fs_hash_t chash;		/* hash value of given file name */
837 	unsigned int clevel;		/* maximum level of given file name */
838 	struct task_struct *task;	/* lookup and create consistency */
839 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
840 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
841 	nid_t i_xattr_nid;		/* node id that contains xattrs */
842 	loff_t	last_disk_size;		/* lastly written file size */
843 	spinlock_t i_size_lock;		/* protect last_disk_size */
844 
845 #ifdef CONFIG_QUOTA
846 	struct dquot *i_dquot[MAXQUOTAS];
847 
848 	/* quota space reservation, managed internally by quota code */
849 	qsize_t i_reserved_quota;
850 #endif
851 	struct list_head dirty_list;	/* dirty list for dirs and files */
852 	struct list_head gdirty_list;	/* linked in global dirty list */
853 	struct task_struct *atomic_write_task;	/* store atomic write task */
854 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
855 					/* cached extent_tree entry */
856 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
857 
858 	/* avoid racing between foreground op and gc */
859 	struct f2fs_rwsem i_gc_rwsem[2];
860 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
861 
862 	int i_extra_isize;		/* size of extra space located in i_addr */
863 	kprojid_t i_projid;		/* id for project quota */
864 	int i_inline_xattr_size;	/* inline xattr size */
865 	struct timespec64 i_crtime;	/* inode creation time */
866 	struct timespec64 i_disk_time[4];/* inode disk times */
867 
868 	/* for file compress */
869 	atomic_t i_compr_blocks;		/* # of compressed blocks */
870 	unsigned char i_compress_algorithm;	/* algorithm type */
871 	unsigned char i_log_cluster_size;	/* log of cluster size */
872 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
873 	unsigned short i_compress_flag;		/* compress flag */
874 	unsigned int i_cluster_size;		/* cluster size */
875 
876 	unsigned int atomic_write_cnt;
877 	loff_t original_i_size;		/* original i_size before atomic write */
878 };
879 
880 static inline void get_read_extent_info(struct extent_info *ext,
881 					struct f2fs_extent *i_ext)
882 {
883 	ext->fofs = le32_to_cpu(i_ext->fofs);
884 	ext->blk = le32_to_cpu(i_ext->blk);
885 	ext->len = le32_to_cpu(i_ext->len);
886 }
887 
888 static inline void set_raw_read_extent(struct extent_info *ext,
889 					struct f2fs_extent *i_ext)
890 {
891 	i_ext->fofs = cpu_to_le32(ext->fofs);
892 	i_ext->blk = cpu_to_le32(ext->blk);
893 	i_ext->len = cpu_to_le32(ext->len);
894 }
895 
896 static inline bool __is_discard_mergeable(struct discard_info *back,
897 			struct discard_info *front, unsigned int max_len)
898 {
899 	return (back->lstart + back->len == front->lstart) &&
900 		(back->len + front->len <= max_len);
901 }
902 
903 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
904 			struct discard_info *back, unsigned int max_len)
905 {
906 	return __is_discard_mergeable(back, cur, max_len);
907 }
908 
909 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
910 			struct discard_info *front, unsigned int max_len)
911 {
912 	return __is_discard_mergeable(cur, front, max_len);
913 }
914 
915 /*
916  * For free nid management
917  */
918 enum nid_state {
919 	FREE_NID,		/* newly added to free nid list */
920 	PREALLOC_NID,		/* it is preallocated */
921 	MAX_NID_STATE,
922 };
923 
924 enum nat_state {
925 	TOTAL_NAT,
926 	DIRTY_NAT,
927 	RECLAIMABLE_NAT,
928 	MAX_NAT_STATE,
929 };
930 
931 struct f2fs_nm_info {
932 	block_t nat_blkaddr;		/* base disk address of NAT */
933 	nid_t max_nid;			/* maximum possible node ids */
934 	nid_t available_nids;		/* # of available node ids */
935 	nid_t next_scan_nid;		/* the next nid to be scanned */
936 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
937 	unsigned int ram_thresh;	/* control the memory footprint */
938 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
939 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
940 
941 	/* NAT cache management */
942 	struct radix_tree_root nat_root;/* root of the nat entry cache */
943 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
944 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
945 	struct list_head nat_entries;	/* cached nat entry list (clean) */
946 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
947 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
948 	unsigned int nat_blocks;	/* # of nat blocks */
949 
950 	/* free node ids management */
951 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
952 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
953 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
954 	spinlock_t nid_list_lock;	/* protect nid lists ops */
955 	struct mutex build_lock;	/* lock for build free nids */
956 	unsigned char **free_nid_bitmap;
957 	unsigned char *nat_block_bitmap;
958 	unsigned short *free_nid_count;	/* free nid count of NAT block */
959 
960 	/* for checkpoint */
961 	char *nat_bitmap;		/* NAT bitmap pointer */
962 
963 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
964 	unsigned char *nat_bits;	/* NAT bits blocks */
965 	unsigned char *full_nat_bits;	/* full NAT pages */
966 	unsigned char *empty_nat_bits;	/* empty NAT pages */
967 #ifdef CONFIG_F2FS_CHECK_FS
968 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
969 #endif
970 	int bitmap_size;		/* bitmap size */
971 };
972 
973 /*
974  * this structure is used as one of function parameters.
975  * all the information are dedicated to a given direct node block determined
976  * by the data offset in a file.
977  */
978 struct dnode_of_data {
979 	struct inode *inode;		/* vfs inode pointer */
980 	struct page *inode_page;	/* its inode page, NULL is possible */
981 	struct page *node_page;		/* cached direct node page */
982 	nid_t nid;			/* node id of the direct node block */
983 	unsigned int ofs_in_node;	/* data offset in the node page */
984 	bool inode_page_locked;		/* inode page is locked or not */
985 	bool node_changed;		/* is node block changed */
986 	char cur_level;			/* level of hole node page */
987 	char max_level;			/* level of current page located */
988 	block_t	data_blkaddr;		/* block address of the node block */
989 };
990 
991 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
992 		struct page *ipage, struct page *npage, nid_t nid)
993 {
994 	memset(dn, 0, sizeof(*dn));
995 	dn->inode = inode;
996 	dn->inode_page = ipage;
997 	dn->node_page = npage;
998 	dn->nid = nid;
999 }
1000 
1001 /*
1002  * For SIT manager
1003  *
1004  * By default, there are 6 active log areas across the whole main area.
1005  * When considering hot and cold data separation to reduce cleaning overhead,
1006  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1007  * respectively.
1008  * In the current design, you should not change the numbers intentionally.
1009  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1010  * logs individually according to the underlying devices. (default: 6)
1011  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1012  * data and 8 for node logs.
1013  */
1014 #define	NR_CURSEG_DATA_TYPE	(3)
1015 #define NR_CURSEG_NODE_TYPE	(3)
1016 #define NR_CURSEG_INMEM_TYPE	(2)
1017 #define NR_CURSEG_RO_TYPE	(2)
1018 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1019 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1020 
1021 enum {
1022 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1023 	CURSEG_WARM_DATA,	/* data blocks */
1024 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1025 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1026 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1027 	CURSEG_COLD_NODE,	/* indirect node blocks */
1028 	NR_PERSISTENT_LOG,	/* number of persistent log */
1029 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1030 				/* pinned file that needs consecutive block address */
1031 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1032 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1033 };
1034 
1035 struct flush_cmd {
1036 	struct completion wait;
1037 	struct llist_node llnode;
1038 	nid_t ino;
1039 	int ret;
1040 };
1041 
1042 struct flush_cmd_control {
1043 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1044 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1045 	atomic_t issued_flush;			/* # of issued flushes */
1046 	atomic_t queued_flush;			/* # of queued flushes */
1047 	struct llist_head issue_list;		/* list for command issue */
1048 	struct llist_node *dispatch_list;	/* list for command dispatch */
1049 };
1050 
1051 struct f2fs_sm_info {
1052 	struct sit_info *sit_info;		/* whole segment information */
1053 	struct free_segmap_info *free_info;	/* free segment information */
1054 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1055 	struct curseg_info *curseg_array;	/* active segment information */
1056 
1057 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1058 
1059 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1060 	block_t main_blkaddr;		/* start block address of main area */
1061 	block_t ssa_blkaddr;		/* start block address of SSA area */
1062 
1063 	unsigned int segment_count;	/* total # of segments */
1064 	unsigned int main_segments;	/* # of segments in main area */
1065 	unsigned int reserved_segments;	/* # of reserved segments */
1066 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1067 	unsigned int ovp_segments;	/* # of overprovision segments */
1068 
1069 	/* a threshold to reclaim prefree segments */
1070 	unsigned int rec_prefree_segments;
1071 
1072 	struct list_head sit_entry_set;	/* sit entry set list */
1073 
1074 	unsigned int ipu_policy;	/* in-place-update policy */
1075 	unsigned int min_ipu_util;	/* in-place-update threshold */
1076 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1077 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1078 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1079 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1080 
1081 	/* for flush command control */
1082 	struct flush_cmd_control *fcc_info;
1083 
1084 	/* for discard command control */
1085 	struct discard_cmd_control *dcc_info;
1086 };
1087 
1088 /*
1089  * For superblock
1090  */
1091 /*
1092  * COUNT_TYPE for monitoring
1093  *
1094  * f2fs monitors the number of several block types such as on-writeback,
1095  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1096  */
1097 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1098 enum count_type {
1099 	F2FS_DIRTY_DENTS,
1100 	F2FS_DIRTY_DATA,
1101 	F2FS_DIRTY_QDATA,
1102 	F2FS_DIRTY_NODES,
1103 	F2FS_DIRTY_META,
1104 	F2FS_DIRTY_IMETA,
1105 	F2FS_WB_CP_DATA,
1106 	F2FS_WB_DATA,
1107 	F2FS_RD_DATA,
1108 	F2FS_RD_NODE,
1109 	F2FS_RD_META,
1110 	F2FS_DIO_WRITE,
1111 	F2FS_DIO_READ,
1112 	NR_COUNT_TYPE,
1113 };
1114 
1115 /*
1116  * The below are the page types of bios used in submit_bio().
1117  * The available types are:
1118  * DATA			User data pages. It operates as async mode.
1119  * NODE			Node pages. It operates as async mode.
1120  * META			FS metadata pages such as SIT, NAT, CP.
1121  * NR_PAGE_TYPE		The number of page types.
1122  * META_FLUSH		Make sure the previous pages are written
1123  *			with waiting the bio's completion
1124  * ...			Only can be used with META.
1125  */
1126 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1127 enum page_type {
1128 	DATA = 0,
1129 	NODE = 1,	/* should not change this */
1130 	META,
1131 	NR_PAGE_TYPE,
1132 	META_FLUSH,
1133 	IPU,		/* the below types are used by tracepoints only. */
1134 	OPU,
1135 };
1136 
1137 enum temp_type {
1138 	HOT = 0,	/* must be zero for meta bio */
1139 	WARM,
1140 	COLD,
1141 	NR_TEMP_TYPE,
1142 };
1143 
1144 enum need_lock_type {
1145 	LOCK_REQ = 0,
1146 	LOCK_DONE,
1147 	LOCK_RETRY,
1148 };
1149 
1150 enum cp_reason_type {
1151 	CP_NO_NEEDED,
1152 	CP_NON_REGULAR,
1153 	CP_COMPRESSED,
1154 	CP_HARDLINK,
1155 	CP_SB_NEED_CP,
1156 	CP_WRONG_PINO,
1157 	CP_NO_SPC_ROLL,
1158 	CP_NODE_NEED_CP,
1159 	CP_FASTBOOT_MODE,
1160 	CP_SPEC_LOG_NUM,
1161 	CP_RECOVER_DIR,
1162 };
1163 
1164 enum iostat_type {
1165 	/* WRITE IO */
1166 	APP_DIRECT_IO,			/* app direct write IOs */
1167 	APP_BUFFERED_IO,		/* app buffered write IOs */
1168 	APP_WRITE_IO,			/* app write IOs */
1169 	APP_MAPPED_IO,			/* app mapped IOs */
1170 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1171 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1172 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1173 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1174 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1175 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1176 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1177 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1178 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1179 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1180 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1181 
1182 	/* READ IO */
1183 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1184 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1185 	APP_READ_IO,			/* app read IOs */
1186 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1187 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1188 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1189 	FS_DATA_READ_IO,		/* data read IOs */
1190 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1191 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1192 	FS_NODE_READ_IO,		/* node read IOs */
1193 	FS_META_READ_IO,		/* meta read IOs */
1194 
1195 	/* other */
1196 	FS_DISCARD,			/* discard */
1197 	NR_IO_TYPE,
1198 };
1199 
1200 struct f2fs_io_info {
1201 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1202 	nid_t ino;		/* inode number */
1203 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1204 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1205 	enum req_op op;		/* contains REQ_OP_ */
1206 	blk_opf_t op_flags;	/* req_flag_bits */
1207 	block_t new_blkaddr;	/* new block address to be written */
1208 	block_t old_blkaddr;	/* old block address before Cow */
1209 	struct page *page;	/* page to be written */
1210 	struct page *encrypted_page;	/* encrypted page */
1211 	struct page *compressed_page;	/* compressed page */
1212 	struct list_head list;		/* serialize IOs */
1213 	bool submitted;		/* indicate IO submission */
1214 	int need_lock;		/* indicate we need to lock cp_rwsem */
1215 	bool in_list;		/* indicate fio is in io_list */
1216 	bool is_por;		/* indicate IO is from recovery or not */
1217 	bool retry;		/* need to reallocate block address */
1218 	int compr_blocks;	/* # of compressed block addresses */
1219 	bool encrypted;		/* indicate file is encrypted */
1220 	bool post_read;		/* require post read */
1221 	enum iostat_type io_type;	/* io type */
1222 	struct writeback_control *io_wbc; /* writeback control */
1223 	struct bio **bio;		/* bio for ipu */
1224 	sector_t *last_block;		/* last block number in bio */
1225 	unsigned char version;		/* version of the node */
1226 };
1227 
1228 struct bio_entry {
1229 	struct bio *bio;
1230 	struct list_head list;
1231 };
1232 
1233 #define is_read_io(rw) ((rw) == READ)
1234 struct f2fs_bio_info {
1235 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1236 	struct bio *bio;		/* bios to merge */
1237 	sector_t last_block_in_bio;	/* last block number */
1238 	struct f2fs_io_info fio;	/* store buffered io info. */
1239 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1240 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1241 	struct list_head io_list;	/* track fios */
1242 	struct list_head bio_list;	/* bio entry list head */
1243 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1244 };
1245 
1246 #define FDEV(i)				(sbi->devs[i])
1247 #define RDEV(i)				(raw_super->devs[i])
1248 struct f2fs_dev_info {
1249 	struct block_device *bdev;
1250 	char path[MAX_PATH_LEN];
1251 	unsigned int total_segments;
1252 	block_t start_blk;
1253 	block_t end_blk;
1254 #ifdef CONFIG_BLK_DEV_ZONED
1255 	unsigned int nr_blkz;		/* Total number of zones */
1256 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1257 #endif
1258 };
1259 
1260 enum inode_type {
1261 	DIR_INODE,			/* for dirty dir inode */
1262 	FILE_INODE,			/* for dirty regular/symlink inode */
1263 	DIRTY_META,			/* for all dirtied inode metadata */
1264 	NR_INODE_TYPE,
1265 };
1266 
1267 /* for inner inode cache management */
1268 struct inode_management {
1269 	struct radix_tree_root ino_root;	/* ino entry array */
1270 	spinlock_t ino_lock;			/* for ino entry lock */
1271 	struct list_head ino_list;		/* inode list head */
1272 	unsigned long ino_num;			/* number of entries */
1273 };
1274 
1275 /* for GC_AT */
1276 struct atgc_management {
1277 	bool atgc_enabled;			/* ATGC is enabled or not */
1278 	struct rb_root_cached root;		/* root of victim rb-tree */
1279 	struct list_head victim_list;		/* linked with all victim entries */
1280 	unsigned int victim_count;		/* victim count in rb-tree */
1281 	unsigned int candidate_ratio;		/* candidate ratio */
1282 	unsigned int max_candidate_count;	/* max candidate count */
1283 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1284 	unsigned long long age_threshold;	/* age threshold */
1285 };
1286 
1287 struct f2fs_gc_control {
1288 	unsigned int victim_segno;	/* target victim segment number */
1289 	int init_gc_type;		/* FG_GC or BG_GC */
1290 	bool no_bg_gc;			/* check the space and stop bg_gc */
1291 	bool should_migrate_blocks;	/* should migrate blocks */
1292 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1293 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1294 };
1295 
1296 /* For s_flag in struct f2fs_sb_info */
1297 enum {
1298 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1299 	SBI_IS_CLOSE,				/* specify unmounting */
1300 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1301 	SBI_POR_DOING,				/* recovery is doing or not */
1302 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1303 	SBI_NEED_CP,				/* need to checkpoint */
1304 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1305 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1306 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1307 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1308 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1309 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1310 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1311 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1312 	SBI_IS_FREEZING,			/* freezefs is in process */
1313 };
1314 
1315 enum {
1316 	CP_TIME,
1317 	REQ_TIME,
1318 	DISCARD_TIME,
1319 	GC_TIME,
1320 	DISABLE_TIME,
1321 	UMOUNT_DISCARD_TIMEOUT,
1322 	MAX_TIME,
1323 };
1324 
1325 /* Note that you need to keep synchronization with this gc_mode_names array */
1326 enum {
1327 	GC_NORMAL,
1328 	GC_IDLE_CB,
1329 	GC_IDLE_GREEDY,
1330 	GC_IDLE_AT,
1331 	GC_URGENT_HIGH,
1332 	GC_URGENT_LOW,
1333 	GC_URGENT_MID,
1334 	MAX_GC_MODE,
1335 };
1336 
1337 enum {
1338 	BGGC_MODE_ON,		/* background gc is on */
1339 	BGGC_MODE_OFF,		/* background gc is off */
1340 	BGGC_MODE_SYNC,		/*
1341 				 * background gc is on, migrating blocks
1342 				 * like foreground gc
1343 				 */
1344 };
1345 
1346 enum {
1347 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1348 	FS_MODE_LFS,			/* use lfs allocation only */
1349 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1350 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1351 };
1352 
1353 enum {
1354 	ALLOC_MODE_DEFAULT,	/* stay default */
1355 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1356 };
1357 
1358 enum fsync_mode {
1359 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1360 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1361 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1362 };
1363 
1364 enum {
1365 	COMPR_MODE_FS,		/*
1366 				 * automatically compress compression
1367 				 * enabled files
1368 				 */
1369 	COMPR_MODE_USER,	/*
1370 				 * automatical compression is disabled.
1371 				 * user can control the file compression
1372 				 * using ioctls
1373 				 */
1374 };
1375 
1376 enum {
1377 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1378 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1379 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1380 };
1381 
1382 enum {
1383 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1384 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1385 };
1386 
1387 
1388 
1389 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1390 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1391 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1392 
1393 /*
1394  * Layout of f2fs page.private:
1395  *
1396  * Layout A: lowest bit should be 1
1397  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1398  * bit 0	PAGE_PRIVATE_NOT_POINTER
1399  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1400  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1401  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1402  * bit 4	PAGE_PRIVATE_INLINE_INODE
1403  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1404  * bit 6-	f2fs private data
1405  *
1406  * Layout B: lowest bit should be 0
1407  * page.private is a wrapped pointer.
1408  */
1409 enum {
1410 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1411 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1412 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1413 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1414 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1415 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1416 	PAGE_PRIVATE_MAX
1417 };
1418 
1419 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1420 static inline bool page_private_##name(struct page *page) \
1421 { \
1422 	return PagePrivate(page) && \
1423 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1424 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1425 }
1426 
1427 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1428 static inline void set_page_private_##name(struct page *page) \
1429 { \
1430 	if (!PagePrivate(page)) { \
1431 		get_page(page); \
1432 		SetPagePrivate(page); \
1433 		set_page_private(page, 0); \
1434 	} \
1435 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1436 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1437 }
1438 
1439 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1440 static inline void clear_page_private_##name(struct page *page) \
1441 { \
1442 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1443 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1444 		set_page_private(page, 0); \
1445 		if (PagePrivate(page)) { \
1446 			ClearPagePrivate(page); \
1447 			put_page(page); \
1448 		}\
1449 	} \
1450 }
1451 
1452 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1453 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1454 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1455 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1456 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1457 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1458 
1459 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1460 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1461 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1462 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1463 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1464 
1465 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1466 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1467 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1468 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1469 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1470 
1471 static inline unsigned long get_page_private_data(struct page *page)
1472 {
1473 	unsigned long data = page_private(page);
1474 
1475 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1476 		return 0;
1477 	return data >> PAGE_PRIVATE_MAX;
1478 }
1479 
1480 static inline void set_page_private_data(struct page *page, unsigned long data)
1481 {
1482 	if (!PagePrivate(page)) {
1483 		get_page(page);
1484 		SetPagePrivate(page);
1485 		set_page_private(page, 0);
1486 	}
1487 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1488 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1489 }
1490 
1491 static inline void clear_page_private_data(struct page *page)
1492 {
1493 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1494 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1495 		set_page_private(page, 0);
1496 		if (PagePrivate(page)) {
1497 			ClearPagePrivate(page);
1498 			put_page(page);
1499 		}
1500 	}
1501 }
1502 
1503 /* For compression */
1504 enum compress_algorithm_type {
1505 	COMPRESS_LZO,
1506 	COMPRESS_LZ4,
1507 	COMPRESS_ZSTD,
1508 	COMPRESS_LZORLE,
1509 	COMPRESS_MAX,
1510 };
1511 
1512 enum compress_flag {
1513 	COMPRESS_CHKSUM,
1514 	COMPRESS_MAX_FLAG,
1515 };
1516 
1517 #define	COMPRESS_WATERMARK			20
1518 #define	COMPRESS_PERCENT			20
1519 
1520 #define COMPRESS_DATA_RESERVED_SIZE		4
1521 struct compress_data {
1522 	__le32 clen;			/* compressed data size */
1523 	__le32 chksum;			/* compressed data chksum */
1524 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1525 	u8 cdata[];			/* compressed data */
1526 };
1527 
1528 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1529 
1530 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1531 
1532 #define	COMPRESS_LEVEL_OFFSET	8
1533 
1534 /* compress context */
1535 struct compress_ctx {
1536 	struct inode *inode;		/* inode the context belong to */
1537 	pgoff_t cluster_idx;		/* cluster index number */
1538 	unsigned int cluster_size;	/* page count in cluster */
1539 	unsigned int log_cluster_size;	/* log of cluster size */
1540 	struct page **rpages;		/* pages store raw data in cluster */
1541 	unsigned int nr_rpages;		/* total page number in rpages */
1542 	struct page **cpages;		/* pages store compressed data in cluster */
1543 	unsigned int nr_cpages;		/* total page number in cpages */
1544 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1545 	void *rbuf;			/* virtual mapped address on rpages */
1546 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1547 	size_t rlen;			/* valid data length in rbuf */
1548 	size_t clen;			/* valid data length in cbuf */
1549 	void *private;			/* payload buffer for specified compression algorithm */
1550 	void *private2;			/* extra payload buffer */
1551 };
1552 
1553 /* compress context for write IO path */
1554 struct compress_io_ctx {
1555 	u32 magic;			/* magic number to indicate page is compressed */
1556 	struct inode *inode;		/* inode the context belong to */
1557 	struct page **rpages;		/* pages store raw data in cluster */
1558 	unsigned int nr_rpages;		/* total page number in rpages */
1559 	atomic_t pending_pages;		/* in-flight compressed page count */
1560 };
1561 
1562 /* Context for decompressing one cluster on the read IO path */
1563 struct decompress_io_ctx {
1564 	u32 magic;			/* magic number to indicate page is compressed */
1565 	struct inode *inode;		/* inode the context belong to */
1566 	pgoff_t cluster_idx;		/* cluster index number */
1567 	unsigned int cluster_size;	/* page count in cluster */
1568 	unsigned int log_cluster_size;	/* log of cluster size */
1569 	struct page **rpages;		/* pages store raw data in cluster */
1570 	unsigned int nr_rpages;		/* total page number in rpages */
1571 	struct page **cpages;		/* pages store compressed data in cluster */
1572 	unsigned int nr_cpages;		/* total page number in cpages */
1573 	struct page **tpages;		/* temp pages to pad holes in cluster */
1574 	void *rbuf;			/* virtual mapped address on rpages */
1575 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1576 	size_t rlen;			/* valid data length in rbuf */
1577 	size_t clen;			/* valid data length in cbuf */
1578 
1579 	/*
1580 	 * The number of compressed pages remaining to be read in this cluster.
1581 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1582 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1583 	 * is decompressed (or an error is reported).
1584 	 *
1585 	 * If an error occurs before all the pages have been submitted for I/O,
1586 	 * then this will never reach 0.  In this case the I/O submitter is
1587 	 * responsible for calling f2fs_decompress_end_io() instead.
1588 	 */
1589 	atomic_t remaining_pages;
1590 
1591 	/*
1592 	 * Number of references to this decompress_io_ctx.
1593 	 *
1594 	 * One reference is held for I/O completion.  This reference is dropped
1595 	 * after the pagecache pages are updated and unlocked -- either after
1596 	 * decompression (and verity if enabled), or after an error.
1597 	 *
1598 	 * In addition, each compressed page holds a reference while it is in a
1599 	 * bio.  These references are necessary prevent compressed pages from
1600 	 * being freed while they are still in a bio.
1601 	 */
1602 	refcount_t refcnt;
1603 
1604 	bool failed;			/* IO error occurred before decompression? */
1605 	bool need_verity;		/* need fs-verity verification after decompression? */
1606 	void *private;			/* payload buffer for specified decompression algorithm */
1607 	void *private2;			/* extra payload buffer */
1608 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1609 	struct work_struct free_work;	/* work for late free this structure itself */
1610 };
1611 
1612 #define NULL_CLUSTER			((unsigned int)(~0))
1613 #define MIN_COMPRESS_LOG_SIZE		2
1614 #define MAX_COMPRESS_LOG_SIZE		8
1615 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1616 
1617 struct f2fs_sb_info {
1618 	struct super_block *sb;			/* pointer to VFS super block */
1619 	struct proc_dir_entry *s_proc;		/* proc entry */
1620 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1621 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1622 	int valid_super_block;			/* valid super block no */
1623 	unsigned long s_flag;				/* flags for sbi */
1624 	struct mutex writepages;		/* mutex for writepages() */
1625 
1626 #ifdef CONFIG_BLK_DEV_ZONED
1627 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1628 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1629 #endif
1630 
1631 	/* for node-related operations */
1632 	struct f2fs_nm_info *nm_info;		/* node manager */
1633 	struct inode *node_inode;		/* cache node blocks */
1634 
1635 	/* for segment-related operations */
1636 	struct f2fs_sm_info *sm_info;		/* segment manager */
1637 
1638 	/* for bio operations */
1639 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1640 	/* keep migration IO order for LFS mode */
1641 	struct f2fs_rwsem io_order_lock;
1642 	mempool_t *write_io_dummy;		/* Dummy pages */
1643 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1644 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1645 
1646 	/* for checkpoint */
1647 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1648 	int cur_cp_pack;			/* remain current cp pack */
1649 	spinlock_t cp_lock;			/* for flag in ckpt */
1650 	struct inode *meta_inode;		/* cache meta blocks */
1651 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1652 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1653 	struct f2fs_rwsem node_write;		/* locking node writes */
1654 	struct f2fs_rwsem node_change;	/* locking node change */
1655 	wait_queue_head_t cp_wait;
1656 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1657 	long interval_time[MAX_TIME];		/* to store thresholds */
1658 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1659 
1660 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1661 
1662 	spinlock_t fsync_node_lock;		/* for node entry lock */
1663 	struct list_head fsync_node_list;	/* node list head */
1664 	unsigned int fsync_seg_id;		/* sequence id */
1665 	unsigned int fsync_node_num;		/* number of node entries */
1666 
1667 	/* for orphan inode, use 0'th array */
1668 	unsigned int max_orphans;		/* max orphan inodes */
1669 
1670 	/* for inode management */
1671 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1672 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1673 	struct mutex flush_lock;		/* for flush exclusion */
1674 
1675 	/* for extent tree cache */
1676 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1677 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1678 
1679 	/* The threshold used for hot and warm data seperation*/
1680 	unsigned int hot_data_age_threshold;
1681 	unsigned int warm_data_age_threshold;
1682 
1683 	/* basic filesystem units */
1684 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1685 	unsigned int log_blocksize;		/* log2 block size */
1686 	unsigned int blocksize;			/* block size */
1687 	unsigned int root_ino_num;		/* root inode number*/
1688 	unsigned int node_ino_num;		/* node inode number*/
1689 	unsigned int meta_ino_num;		/* meta inode number*/
1690 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1691 	unsigned int blocks_per_seg;		/* blocks per segment */
1692 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1693 	unsigned int segs_per_sec;		/* segments per section */
1694 	unsigned int secs_per_zone;		/* sections per zone */
1695 	unsigned int total_sections;		/* total section count */
1696 	unsigned int total_node_count;		/* total node block count */
1697 	unsigned int total_valid_node_count;	/* valid node block count */
1698 	int dir_level;				/* directory level */
1699 	bool readdir_ra;			/* readahead inode in readdir */
1700 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1701 
1702 	block_t user_block_count;		/* # of user blocks */
1703 	block_t total_valid_block_count;	/* # of valid blocks */
1704 	block_t discard_blks;			/* discard command candidats */
1705 	block_t last_valid_block_count;		/* for recovery */
1706 	block_t reserved_blocks;		/* configurable reserved blocks */
1707 	block_t current_reserved_blocks;	/* current reserved blocks */
1708 
1709 	/* Additional tracking for no checkpoint mode */
1710 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1711 
1712 	unsigned int nquota_files;		/* # of quota sysfile */
1713 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1714 
1715 	/* # of pages, see count_type */
1716 	atomic_t nr_pages[NR_COUNT_TYPE];
1717 	/* # of allocated blocks */
1718 	struct percpu_counter alloc_valid_block_count;
1719 	/* # of node block writes as roll forward recovery */
1720 	struct percpu_counter rf_node_block_count;
1721 
1722 	/* writeback control */
1723 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1724 
1725 	/* valid inode count */
1726 	struct percpu_counter total_valid_inode_count;
1727 
1728 	struct f2fs_mount_info mount_opt;	/* mount options */
1729 
1730 	/* for cleaning operations */
1731 	struct f2fs_rwsem gc_lock;		/*
1732 						 * semaphore for GC, avoid
1733 						 * race between GC and GC or CP
1734 						 */
1735 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1736 	struct atgc_management am;		/* atgc management */
1737 	unsigned int cur_victim_sec;		/* current victim section num */
1738 	unsigned int gc_mode;			/* current GC state */
1739 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1740 	spinlock_t gc_remaining_trials_lock;
1741 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1742 	unsigned int gc_remaining_trials;
1743 
1744 	/* for skip statistic */
1745 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1746 
1747 	/* threshold for gc trials on pinned files */
1748 	u64 gc_pin_file_threshold;
1749 	struct f2fs_rwsem pin_sem;
1750 
1751 	/* maximum # of trials to find a victim segment for SSR and GC */
1752 	unsigned int max_victim_search;
1753 	/* migration granularity of garbage collection, unit: segment */
1754 	unsigned int migration_granularity;
1755 
1756 	/*
1757 	 * for stat information.
1758 	 * one is for the LFS mode, and the other is for the SSR mode.
1759 	 */
1760 #ifdef CONFIG_F2FS_STAT_FS
1761 	struct f2fs_stat_info *stat_info;	/* FS status information */
1762 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1763 	unsigned int segment_count[2];		/* # of allocated segments */
1764 	unsigned int block_count[2];		/* # of allocated blocks */
1765 	atomic_t inplace_count;		/* # of inplace update */
1766 	/* # of lookup extent cache */
1767 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1768 	/* # of hit rbtree extent node */
1769 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1770 	/* # of hit cached extent node */
1771 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1772 	/* # of hit largest extent node in read extent cache */
1773 	atomic64_t read_hit_largest;
1774 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1775 	atomic_t inline_inode;			/* # of inline_data inodes */
1776 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1777 	atomic_t compr_inode;			/* # of compressed inodes */
1778 	atomic64_t compr_blocks;		/* # of compressed blocks */
1779 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1780 	atomic_t atomic_files;			/* # of opened atomic file */
1781 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1782 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1783 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1784 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1785 #endif
1786 	spinlock_t stat_lock;			/* lock for stat operations */
1787 
1788 	/* to attach REQ_META|REQ_FUA flags */
1789 	unsigned int data_io_flag;
1790 	unsigned int node_io_flag;
1791 
1792 	/* For sysfs support */
1793 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1794 	struct completion s_kobj_unregister;
1795 
1796 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1797 	struct completion s_stat_kobj_unregister;
1798 
1799 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1800 	struct completion s_feature_list_kobj_unregister;
1801 
1802 	/* For shrinker support */
1803 	struct list_head s_list;
1804 	struct mutex umount_mutex;
1805 	unsigned int shrinker_run_no;
1806 
1807 	/* For multi devices */
1808 	int s_ndevs;				/* number of devices */
1809 	struct f2fs_dev_info *devs;		/* for device list */
1810 	unsigned int dirty_device;		/* for checkpoint data flush */
1811 	spinlock_t dev_lock;			/* protect dirty_device */
1812 	bool aligned_blksize;			/* all devices has the same logical blksize */
1813 
1814 	/* For write statistics */
1815 	u64 sectors_written_start;
1816 	u64 kbytes_written;
1817 
1818 	/* Reference to checksum algorithm driver via cryptoapi */
1819 	struct crypto_shash *s_chksum_driver;
1820 
1821 	/* Precomputed FS UUID checksum for seeding other checksums */
1822 	__u32 s_chksum_seed;
1823 
1824 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1825 
1826 	unsigned char errors[MAX_F2FS_ERRORS];	/* error flags */
1827 	spinlock_t error_lock;			/* protect errors array */
1828 	bool error_dirty;			/* errors of sb is dirty */
1829 
1830 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1831 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1832 
1833 	/* For reclaimed segs statistics per each GC mode */
1834 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1835 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1836 
1837 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1838 
1839 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1840 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1841 
1842 	/* For atomic write statistics */
1843 	atomic64_t current_atomic_write;
1844 	s64 peak_atomic_write;
1845 	u64 committed_atomic_block;
1846 	u64 revoked_atomic_block;
1847 
1848 #ifdef CONFIG_F2FS_FS_COMPRESSION
1849 	struct kmem_cache *page_array_slab;	/* page array entry */
1850 	unsigned int page_array_slab_size;	/* default page array slab size */
1851 
1852 	/* For runtime compression statistics */
1853 	u64 compr_written_block;
1854 	u64 compr_saved_block;
1855 	u32 compr_new_inode;
1856 
1857 	/* For compressed block cache */
1858 	struct inode *compress_inode;		/* cache compressed blocks */
1859 	unsigned int compress_percent;		/* cache page percentage */
1860 	unsigned int compress_watermark;	/* cache page watermark */
1861 	atomic_t compress_page_hit;		/* cache hit count */
1862 #endif
1863 
1864 #ifdef CONFIG_F2FS_IOSTAT
1865 	/* For app/fs IO statistics */
1866 	spinlock_t iostat_lock;
1867 	unsigned long long rw_iostat[NR_IO_TYPE];
1868 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1869 	bool iostat_enable;
1870 	unsigned long iostat_next_period;
1871 	unsigned int iostat_period_ms;
1872 
1873 	/* For io latency related statistics info in one iostat period */
1874 	spinlock_t iostat_lat_lock;
1875 	struct iostat_lat_info *iostat_io_lat;
1876 #endif
1877 };
1878 
1879 #ifdef CONFIG_F2FS_FAULT_INJECTION
1880 #define f2fs_show_injection_info(sbi, type)					\
1881 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1882 		KERN_INFO, sbi->sb->s_id,				\
1883 		f2fs_fault_name[type],					\
1884 		__func__, __builtin_return_address(0))
1885 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1886 {
1887 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1888 
1889 	if (!ffi->inject_rate)
1890 		return false;
1891 
1892 	if (!IS_FAULT_SET(ffi, type))
1893 		return false;
1894 
1895 	atomic_inc(&ffi->inject_ops);
1896 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1897 		atomic_set(&ffi->inject_ops, 0);
1898 		return true;
1899 	}
1900 	return false;
1901 }
1902 #else
1903 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1904 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1905 {
1906 	return false;
1907 }
1908 #endif
1909 
1910 /*
1911  * Test if the mounted volume is a multi-device volume.
1912  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1913  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1914  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1915  */
1916 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1917 {
1918 	return sbi->s_ndevs > 1;
1919 }
1920 
1921 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1922 {
1923 	unsigned long now = jiffies;
1924 
1925 	sbi->last_time[type] = now;
1926 
1927 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1928 	if (type == REQ_TIME) {
1929 		sbi->last_time[DISCARD_TIME] = now;
1930 		sbi->last_time[GC_TIME] = now;
1931 	}
1932 }
1933 
1934 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1935 {
1936 	unsigned long interval = sbi->interval_time[type] * HZ;
1937 
1938 	return time_after(jiffies, sbi->last_time[type] + interval);
1939 }
1940 
1941 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1942 						int type)
1943 {
1944 	unsigned long interval = sbi->interval_time[type] * HZ;
1945 	unsigned int wait_ms = 0;
1946 	long delta;
1947 
1948 	delta = (sbi->last_time[type] + interval) - jiffies;
1949 	if (delta > 0)
1950 		wait_ms = jiffies_to_msecs(delta);
1951 
1952 	return wait_ms;
1953 }
1954 
1955 /*
1956  * Inline functions
1957  */
1958 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1959 			      const void *address, unsigned int length)
1960 {
1961 	struct {
1962 		struct shash_desc shash;
1963 		char ctx[4];
1964 	} desc;
1965 	int err;
1966 
1967 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1968 
1969 	desc.shash.tfm = sbi->s_chksum_driver;
1970 	*(u32 *)desc.ctx = crc;
1971 
1972 	err = crypto_shash_update(&desc.shash, address, length);
1973 	BUG_ON(err);
1974 
1975 	return *(u32 *)desc.ctx;
1976 }
1977 
1978 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1979 			   unsigned int length)
1980 {
1981 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1982 }
1983 
1984 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1985 				  void *buf, size_t buf_size)
1986 {
1987 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1988 }
1989 
1990 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1991 			      const void *address, unsigned int length)
1992 {
1993 	return __f2fs_crc32(sbi, crc, address, length);
1994 }
1995 
1996 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1997 {
1998 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1999 }
2000 
2001 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
2002 {
2003 	return sb->s_fs_info;
2004 }
2005 
2006 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2007 {
2008 	return F2FS_SB(inode->i_sb);
2009 }
2010 
2011 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2012 {
2013 	return F2FS_I_SB(mapping->host);
2014 }
2015 
2016 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2017 {
2018 	return F2FS_M_SB(page_file_mapping(page));
2019 }
2020 
2021 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2022 {
2023 	return (struct f2fs_super_block *)(sbi->raw_super);
2024 }
2025 
2026 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2027 {
2028 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2029 }
2030 
2031 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2032 {
2033 	return (struct f2fs_node *)page_address(page);
2034 }
2035 
2036 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2037 {
2038 	return &((struct f2fs_node *)page_address(page))->i;
2039 }
2040 
2041 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2042 {
2043 	return (struct f2fs_nm_info *)(sbi->nm_info);
2044 }
2045 
2046 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2047 {
2048 	return (struct f2fs_sm_info *)(sbi->sm_info);
2049 }
2050 
2051 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2052 {
2053 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2054 }
2055 
2056 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2057 {
2058 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2059 }
2060 
2061 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2062 {
2063 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2064 }
2065 
2066 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2067 {
2068 	return sbi->meta_inode->i_mapping;
2069 }
2070 
2071 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2072 {
2073 	return sbi->node_inode->i_mapping;
2074 }
2075 
2076 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2077 {
2078 	return test_bit(type, &sbi->s_flag);
2079 }
2080 
2081 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2082 {
2083 	set_bit(type, &sbi->s_flag);
2084 }
2085 
2086 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2087 {
2088 	clear_bit(type, &sbi->s_flag);
2089 }
2090 
2091 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2092 {
2093 	return le64_to_cpu(cp->checkpoint_ver);
2094 }
2095 
2096 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2097 {
2098 	if (type < F2FS_MAX_QUOTAS)
2099 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2100 	return 0;
2101 }
2102 
2103 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2104 {
2105 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2106 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2107 }
2108 
2109 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2110 {
2111 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2112 
2113 	return ckpt_flags & f;
2114 }
2115 
2116 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2117 {
2118 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2119 }
2120 
2121 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2122 {
2123 	unsigned int ckpt_flags;
2124 
2125 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2126 	ckpt_flags |= f;
2127 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2128 }
2129 
2130 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2131 {
2132 	unsigned long flags;
2133 
2134 	spin_lock_irqsave(&sbi->cp_lock, flags);
2135 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2136 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2137 }
2138 
2139 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2140 {
2141 	unsigned int ckpt_flags;
2142 
2143 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2144 	ckpt_flags &= (~f);
2145 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2146 }
2147 
2148 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2149 {
2150 	unsigned long flags;
2151 
2152 	spin_lock_irqsave(&sbi->cp_lock, flags);
2153 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2154 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2155 }
2156 
2157 #define init_f2fs_rwsem(sem)					\
2158 do {								\
2159 	static struct lock_class_key __key;			\
2160 								\
2161 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2162 } while (0)
2163 
2164 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2165 		const char *sem_name, struct lock_class_key *key)
2166 {
2167 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2168 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2169 	init_waitqueue_head(&sem->read_waiters);
2170 #endif
2171 }
2172 
2173 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2174 {
2175 	return rwsem_is_locked(&sem->internal_rwsem);
2176 }
2177 
2178 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2179 {
2180 	return rwsem_is_contended(&sem->internal_rwsem);
2181 }
2182 
2183 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2184 {
2185 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2186 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2187 #else
2188 	down_read(&sem->internal_rwsem);
2189 #endif
2190 }
2191 
2192 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2193 {
2194 	return down_read_trylock(&sem->internal_rwsem);
2195 }
2196 
2197 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2198 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2199 {
2200 	down_read_nested(&sem->internal_rwsem, subclass);
2201 }
2202 #else
2203 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2204 #endif
2205 
2206 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2207 {
2208 	up_read(&sem->internal_rwsem);
2209 }
2210 
2211 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2212 {
2213 	down_write(&sem->internal_rwsem);
2214 }
2215 
2216 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2217 {
2218 	return down_write_trylock(&sem->internal_rwsem);
2219 }
2220 
2221 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2222 {
2223 	up_write(&sem->internal_rwsem);
2224 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2225 	wake_up_all(&sem->read_waiters);
2226 #endif
2227 }
2228 
2229 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2230 {
2231 	f2fs_down_read(&sbi->cp_rwsem);
2232 }
2233 
2234 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2235 {
2236 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2237 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2238 		return 0;
2239 	}
2240 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2241 }
2242 
2243 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2244 {
2245 	f2fs_up_read(&sbi->cp_rwsem);
2246 }
2247 
2248 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2249 {
2250 	f2fs_down_write(&sbi->cp_rwsem);
2251 }
2252 
2253 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2254 {
2255 	f2fs_up_write(&sbi->cp_rwsem);
2256 }
2257 
2258 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2259 {
2260 	int reason = CP_SYNC;
2261 
2262 	if (test_opt(sbi, FASTBOOT))
2263 		reason = CP_FASTBOOT;
2264 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2265 		reason = CP_UMOUNT;
2266 	return reason;
2267 }
2268 
2269 static inline bool __remain_node_summaries(int reason)
2270 {
2271 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2272 }
2273 
2274 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2275 {
2276 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2277 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2278 }
2279 
2280 /*
2281  * Check whether the inode has blocks or not
2282  */
2283 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2284 {
2285 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2286 
2287 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2288 }
2289 
2290 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2291 {
2292 	return ofs == XATTR_NODE_OFFSET;
2293 }
2294 
2295 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2296 					struct inode *inode, bool cap)
2297 {
2298 	if (!inode)
2299 		return true;
2300 	if (!test_opt(sbi, RESERVE_ROOT))
2301 		return false;
2302 	if (IS_NOQUOTA(inode))
2303 		return true;
2304 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2305 		return true;
2306 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2307 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2308 		return true;
2309 	if (cap && capable(CAP_SYS_RESOURCE))
2310 		return true;
2311 	return false;
2312 }
2313 
2314 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2315 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2316 				 struct inode *inode, blkcnt_t *count)
2317 {
2318 	blkcnt_t diff = 0, release = 0;
2319 	block_t avail_user_block_count;
2320 	int ret;
2321 
2322 	ret = dquot_reserve_block(inode, *count);
2323 	if (ret)
2324 		return ret;
2325 
2326 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2327 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2328 		release = *count;
2329 		goto release_quota;
2330 	}
2331 
2332 	/*
2333 	 * let's increase this in prior to actual block count change in order
2334 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2335 	 */
2336 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2337 
2338 	spin_lock(&sbi->stat_lock);
2339 	sbi->total_valid_block_count += (block_t)(*count);
2340 	avail_user_block_count = sbi->user_block_count -
2341 					sbi->current_reserved_blocks;
2342 
2343 	if (!__allow_reserved_blocks(sbi, inode, true))
2344 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2345 
2346 	if (F2FS_IO_ALIGNED(sbi))
2347 		avail_user_block_count -= sbi->blocks_per_seg *
2348 				SM_I(sbi)->additional_reserved_segments;
2349 
2350 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2351 		if (avail_user_block_count > sbi->unusable_block_count)
2352 			avail_user_block_count -= sbi->unusable_block_count;
2353 		else
2354 			avail_user_block_count = 0;
2355 	}
2356 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2357 		diff = sbi->total_valid_block_count - avail_user_block_count;
2358 		if (diff > *count)
2359 			diff = *count;
2360 		*count -= diff;
2361 		release = diff;
2362 		sbi->total_valid_block_count -= diff;
2363 		if (!*count) {
2364 			spin_unlock(&sbi->stat_lock);
2365 			goto enospc;
2366 		}
2367 	}
2368 	spin_unlock(&sbi->stat_lock);
2369 
2370 	if (unlikely(release)) {
2371 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2372 		dquot_release_reservation_block(inode, release);
2373 	}
2374 	f2fs_i_blocks_write(inode, *count, true, true);
2375 	return 0;
2376 
2377 enospc:
2378 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2379 release_quota:
2380 	dquot_release_reservation_block(inode, release);
2381 	return -ENOSPC;
2382 }
2383 
2384 __printf(2, 3)
2385 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2386 
2387 #define f2fs_err(sbi, fmt, ...)						\
2388 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2389 #define f2fs_warn(sbi, fmt, ...)					\
2390 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2391 #define f2fs_notice(sbi, fmt, ...)					\
2392 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2393 #define f2fs_info(sbi, fmt, ...)					\
2394 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2395 #define f2fs_debug(sbi, fmt, ...)					\
2396 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2397 
2398 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2399 						struct inode *inode,
2400 						block_t count)
2401 {
2402 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2403 
2404 	spin_lock(&sbi->stat_lock);
2405 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2406 	sbi->total_valid_block_count -= (block_t)count;
2407 	if (sbi->reserved_blocks &&
2408 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2409 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2410 					sbi->current_reserved_blocks + count);
2411 	spin_unlock(&sbi->stat_lock);
2412 	if (unlikely(inode->i_blocks < sectors)) {
2413 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2414 			  inode->i_ino,
2415 			  (unsigned long long)inode->i_blocks,
2416 			  (unsigned long long)sectors);
2417 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2418 		return;
2419 	}
2420 	f2fs_i_blocks_write(inode, count, false, true);
2421 }
2422 
2423 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2424 {
2425 	atomic_inc(&sbi->nr_pages[count_type]);
2426 
2427 	if (count_type == F2FS_DIRTY_DENTS ||
2428 			count_type == F2FS_DIRTY_NODES ||
2429 			count_type == F2FS_DIRTY_META ||
2430 			count_type == F2FS_DIRTY_QDATA ||
2431 			count_type == F2FS_DIRTY_IMETA)
2432 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2433 }
2434 
2435 static inline void inode_inc_dirty_pages(struct inode *inode)
2436 {
2437 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2438 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2439 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2440 	if (IS_NOQUOTA(inode))
2441 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2442 }
2443 
2444 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2445 {
2446 	atomic_dec(&sbi->nr_pages[count_type]);
2447 }
2448 
2449 static inline void inode_dec_dirty_pages(struct inode *inode)
2450 {
2451 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2452 			!S_ISLNK(inode->i_mode))
2453 		return;
2454 
2455 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2456 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2457 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2458 	if (IS_NOQUOTA(inode))
2459 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2460 }
2461 
2462 static inline void inc_atomic_write_cnt(struct inode *inode)
2463 {
2464 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2465 	struct f2fs_inode_info *fi = F2FS_I(inode);
2466 	u64 current_write;
2467 
2468 	fi->atomic_write_cnt++;
2469 	atomic64_inc(&sbi->current_atomic_write);
2470 	current_write = atomic64_read(&sbi->current_atomic_write);
2471 	if (current_write > sbi->peak_atomic_write)
2472 		sbi->peak_atomic_write = current_write;
2473 }
2474 
2475 static inline void release_atomic_write_cnt(struct inode *inode)
2476 {
2477 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2478 	struct f2fs_inode_info *fi = F2FS_I(inode);
2479 
2480 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2481 	fi->atomic_write_cnt = 0;
2482 }
2483 
2484 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2485 {
2486 	return atomic_read(&sbi->nr_pages[count_type]);
2487 }
2488 
2489 static inline int get_dirty_pages(struct inode *inode)
2490 {
2491 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2492 }
2493 
2494 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2495 {
2496 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2497 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2498 						sbi->log_blocks_per_seg;
2499 
2500 	return segs / sbi->segs_per_sec;
2501 }
2502 
2503 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2504 {
2505 	return sbi->total_valid_block_count;
2506 }
2507 
2508 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2509 {
2510 	return sbi->discard_blks;
2511 }
2512 
2513 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2514 {
2515 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2516 
2517 	/* return NAT or SIT bitmap */
2518 	if (flag == NAT_BITMAP)
2519 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2520 	else if (flag == SIT_BITMAP)
2521 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2522 
2523 	return 0;
2524 }
2525 
2526 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2527 {
2528 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2529 }
2530 
2531 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2532 {
2533 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2534 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2535 	int offset;
2536 
2537 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2538 		offset = (flag == SIT_BITMAP) ?
2539 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2540 		/*
2541 		 * if large_nat_bitmap feature is enabled, leave checksum
2542 		 * protection for all nat/sit bitmaps.
2543 		 */
2544 		return tmp_ptr + offset + sizeof(__le32);
2545 	}
2546 
2547 	if (__cp_payload(sbi) > 0) {
2548 		if (flag == NAT_BITMAP)
2549 			return tmp_ptr;
2550 		else
2551 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2552 	} else {
2553 		offset = (flag == NAT_BITMAP) ?
2554 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2555 		return tmp_ptr + offset;
2556 	}
2557 }
2558 
2559 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2560 {
2561 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2562 
2563 	if (sbi->cur_cp_pack == 2)
2564 		start_addr += sbi->blocks_per_seg;
2565 	return start_addr;
2566 }
2567 
2568 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2569 {
2570 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2571 
2572 	if (sbi->cur_cp_pack == 1)
2573 		start_addr += sbi->blocks_per_seg;
2574 	return start_addr;
2575 }
2576 
2577 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2578 {
2579 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2580 }
2581 
2582 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2583 {
2584 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2585 }
2586 
2587 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2588 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2589 					struct inode *inode, bool is_inode)
2590 {
2591 	block_t	valid_block_count;
2592 	unsigned int valid_node_count, user_block_count;
2593 	int err;
2594 
2595 	if (is_inode) {
2596 		if (inode) {
2597 			err = dquot_alloc_inode(inode);
2598 			if (err)
2599 				return err;
2600 		}
2601 	} else {
2602 		err = dquot_reserve_block(inode, 1);
2603 		if (err)
2604 			return err;
2605 	}
2606 
2607 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2608 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2609 		goto enospc;
2610 	}
2611 
2612 	spin_lock(&sbi->stat_lock);
2613 
2614 	valid_block_count = sbi->total_valid_block_count +
2615 					sbi->current_reserved_blocks + 1;
2616 
2617 	if (!__allow_reserved_blocks(sbi, inode, false))
2618 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2619 
2620 	if (F2FS_IO_ALIGNED(sbi))
2621 		valid_block_count += sbi->blocks_per_seg *
2622 				SM_I(sbi)->additional_reserved_segments;
2623 
2624 	user_block_count = sbi->user_block_count;
2625 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2626 		user_block_count -= sbi->unusable_block_count;
2627 
2628 	if (unlikely(valid_block_count > user_block_count)) {
2629 		spin_unlock(&sbi->stat_lock);
2630 		goto enospc;
2631 	}
2632 
2633 	valid_node_count = sbi->total_valid_node_count + 1;
2634 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2635 		spin_unlock(&sbi->stat_lock);
2636 		goto enospc;
2637 	}
2638 
2639 	sbi->total_valid_node_count++;
2640 	sbi->total_valid_block_count++;
2641 	spin_unlock(&sbi->stat_lock);
2642 
2643 	if (inode) {
2644 		if (is_inode)
2645 			f2fs_mark_inode_dirty_sync(inode, true);
2646 		else
2647 			f2fs_i_blocks_write(inode, 1, true, true);
2648 	}
2649 
2650 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2651 	return 0;
2652 
2653 enospc:
2654 	if (is_inode) {
2655 		if (inode)
2656 			dquot_free_inode(inode);
2657 	} else {
2658 		dquot_release_reservation_block(inode, 1);
2659 	}
2660 	return -ENOSPC;
2661 }
2662 
2663 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2664 					struct inode *inode, bool is_inode)
2665 {
2666 	spin_lock(&sbi->stat_lock);
2667 
2668 	if (unlikely(!sbi->total_valid_block_count ||
2669 			!sbi->total_valid_node_count)) {
2670 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2671 			  sbi->total_valid_block_count,
2672 			  sbi->total_valid_node_count);
2673 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2674 	} else {
2675 		sbi->total_valid_block_count--;
2676 		sbi->total_valid_node_count--;
2677 	}
2678 
2679 	if (sbi->reserved_blocks &&
2680 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2681 		sbi->current_reserved_blocks++;
2682 
2683 	spin_unlock(&sbi->stat_lock);
2684 
2685 	if (is_inode) {
2686 		dquot_free_inode(inode);
2687 	} else {
2688 		if (unlikely(inode->i_blocks == 0)) {
2689 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2690 				  inode->i_ino,
2691 				  (unsigned long long)inode->i_blocks);
2692 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2693 			return;
2694 		}
2695 		f2fs_i_blocks_write(inode, 1, false, true);
2696 	}
2697 }
2698 
2699 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2700 {
2701 	return sbi->total_valid_node_count;
2702 }
2703 
2704 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2705 {
2706 	percpu_counter_inc(&sbi->total_valid_inode_count);
2707 }
2708 
2709 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2710 {
2711 	percpu_counter_dec(&sbi->total_valid_inode_count);
2712 }
2713 
2714 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2715 {
2716 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2717 }
2718 
2719 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2720 						pgoff_t index, bool for_write)
2721 {
2722 	struct page *page;
2723 	unsigned int flags;
2724 
2725 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2726 		if (!for_write)
2727 			page = find_get_page_flags(mapping, index,
2728 							FGP_LOCK | FGP_ACCESSED);
2729 		else
2730 			page = find_lock_page(mapping, index);
2731 		if (page)
2732 			return page;
2733 
2734 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2735 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2736 							FAULT_PAGE_ALLOC);
2737 			return NULL;
2738 		}
2739 	}
2740 
2741 	if (!for_write)
2742 		return grab_cache_page(mapping, index);
2743 
2744 	flags = memalloc_nofs_save();
2745 	page = grab_cache_page_write_begin(mapping, index);
2746 	memalloc_nofs_restore(flags);
2747 
2748 	return page;
2749 }
2750 
2751 static inline struct page *f2fs_pagecache_get_page(
2752 				struct address_space *mapping, pgoff_t index,
2753 				int fgp_flags, gfp_t gfp_mask)
2754 {
2755 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2756 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2757 		return NULL;
2758 	}
2759 
2760 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2761 }
2762 
2763 static inline void f2fs_put_page(struct page *page, int unlock)
2764 {
2765 	if (!page)
2766 		return;
2767 
2768 	if (unlock) {
2769 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2770 		unlock_page(page);
2771 	}
2772 	put_page(page);
2773 }
2774 
2775 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2776 {
2777 	if (dn->node_page)
2778 		f2fs_put_page(dn->node_page, 1);
2779 	if (dn->inode_page && dn->node_page != dn->inode_page)
2780 		f2fs_put_page(dn->inode_page, 0);
2781 	dn->node_page = NULL;
2782 	dn->inode_page = NULL;
2783 }
2784 
2785 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2786 					size_t size)
2787 {
2788 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2789 }
2790 
2791 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2792 						gfp_t flags)
2793 {
2794 	void *entry;
2795 
2796 	entry = kmem_cache_alloc(cachep, flags);
2797 	if (!entry)
2798 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2799 	return entry;
2800 }
2801 
2802 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2803 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2804 {
2805 	if (nofail)
2806 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2807 
2808 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2809 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2810 		return NULL;
2811 	}
2812 
2813 	return kmem_cache_alloc(cachep, flags);
2814 }
2815 
2816 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2817 {
2818 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2819 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2820 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2821 		get_pages(sbi, F2FS_DIO_READ) ||
2822 		get_pages(sbi, F2FS_DIO_WRITE))
2823 		return true;
2824 
2825 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2826 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2827 		return true;
2828 
2829 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2830 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2831 		return true;
2832 	return false;
2833 }
2834 
2835 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2836 {
2837 	if (sbi->gc_mode == GC_URGENT_HIGH)
2838 		return true;
2839 
2840 	if (is_inflight_io(sbi, type))
2841 		return false;
2842 
2843 	if (sbi->gc_mode == GC_URGENT_MID)
2844 		return true;
2845 
2846 	if (sbi->gc_mode == GC_URGENT_LOW &&
2847 			(type == DISCARD_TIME || type == GC_TIME))
2848 		return true;
2849 
2850 	return f2fs_time_over(sbi, type);
2851 }
2852 
2853 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2854 				unsigned long index, void *item)
2855 {
2856 	while (radix_tree_insert(root, index, item))
2857 		cond_resched();
2858 }
2859 
2860 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2861 
2862 static inline bool IS_INODE(struct page *page)
2863 {
2864 	struct f2fs_node *p = F2FS_NODE(page);
2865 
2866 	return RAW_IS_INODE(p);
2867 }
2868 
2869 static inline int offset_in_addr(struct f2fs_inode *i)
2870 {
2871 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2872 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2873 }
2874 
2875 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2876 {
2877 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2878 }
2879 
2880 static inline int f2fs_has_extra_attr(struct inode *inode);
2881 static inline block_t data_blkaddr(struct inode *inode,
2882 			struct page *node_page, unsigned int offset)
2883 {
2884 	struct f2fs_node *raw_node;
2885 	__le32 *addr_array;
2886 	int base = 0;
2887 	bool is_inode = IS_INODE(node_page);
2888 
2889 	raw_node = F2FS_NODE(node_page);
2890 
2891 	if (is_inode) {
2892 		if (!inode)
2893 			/* from GC path only */
2894 			base = offset_in_addr(&raw_node->i);
2895 		else if (f2fs_has_extra_attr(inode))
2896 			base = get_extra_isize(inode);
2897 	}
2898 
2899 	addr_array = blkaddr_in_node(raw_node);
2900 	return le32_to_cpu(addr_array[base + offset]);
2901 }
2902 
2903 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2904 {
2905 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2906 }
2907 
2908 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2909 {
2910 	int mask;
2911 
2912 	addr += (nr >> 3);
2913 	mask = 1 << (7 - (nr & 0x07));
2914 	return mask & *addr;
2915 }
2916 
2917 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2918 {
2919 	int mask;
2920 
2921 	addr += (nr >> 3);
2922 	mask = 1 << (7 - (nr & 0x07));
2923 	*addr |= mask;
2924 }
2925 
2926 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2927 {
2928 	int mask;
2929 
2930 	addr += (nr >> 3);
2931 	mask = 1 << (7 - (nr & 0x07));
2932 	*addr &= ~mask;
2933 }
2934 
2935 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2936 {
2937 	int mask;
2938 	int ret;
2939 
2940 	addr += (nr >> 3);
2941 	mask = 1 << (7 - (nr & 0x07));
2942 	ret = mask & *addr;
2943 	*addr |= mask;
2944 	return ret;
2945 }
2946 
2947 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2948 {
2949 	int mask;
2950 	int ret;
2951 
2952 	addr += (nr >> 3);
2953 	mask = 1 << (7 - (nr & 0x07));
2954 	ret = mask & *addr;
2955 	*addr &= ~mask;
2956 	return ret;
2957 }
2958 
2959 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2960 {
2961 	int mask;
2962 
2963 	addr += (nr >> 3);
2964 	mask = 1 << (7 - (nr & 0x07));
2965 	*addr ^= mask;
2966 }
2967 
2968 /*
2969  * On-disk inode flags (f2fs_inode::i_flags)
2970  */
2971 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2972 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2973 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2974 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2975 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2976 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2977 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2978 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2979 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2980 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2981 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2982 
2983 /* Flags that should be inherited by new inodes from their parent. */
2984 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2985 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2986 			   F2FS_CASEFOLD_FL)
2987 
2988 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2989 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2990 				F2FS_CASEFOLD_FL))
2991 
2992 /* Flags that are appropriate for non-directories/regular files. */
2993 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2994 
2995 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2996 {
2997 	if (S_ISDIR(mode))
2998 		return flags;
2999 	else if (S_ISREG(mode))
3000 		return flags & F2FS_REG_FLMASK;
3001 	else
3002 		return flags & F2FS_OTHER_FLMASK;
3003 }
3004 
3005 static inline void __mark_inode_dirty_flag(struct inode *inode,
3006 						int flag, bool set)
3007 {
3008 	switch (flag) {
3009 	case FI_INLINE_XATTR:
3010 	case FI_INLINE_DATA:
3011 	case FI_INLINE_DENTRY:
3012 	case FI_NEW_INODE:
3013 		if (set)
3014 			return;
3015 		fallthrough;
3016 	case FI_DATA_EXIST:
3017 	case FI_INLINE_DOTS:
3018 	case FI_PIN_FILE:
3019 	case FI_COMPRESS_RELEASED:
3020 		f2fs_mark_inode_dirty_sync(inode, true);
3021 	}
3022 }
3023 
3024 static inline void set_inode_flag(struct inode *inode, int flag)
3025 {
3026 	set_bit(flag, F2FS_I(inode)->flags);
3027 	__mark_inode_dirty_flag(inode, flag, true);
3028 }
3029 
3030 static inline int is_inode_flag_set(struct inode *inode, int flag)
3031 {
3032 	return test_bit(flag, F2FS_I(inode)->flags);
3033 }
3034 
3035 static inline void clear_inode_flag(struct inode *inode, int flag)
3036 {
3037 	clear_bit(flag, F2FS_I(inode)->flags);
3038 	__mark_inode_dirty_flag(inode, flag, false);
3039 }
3040 
3041 static inline bool f2fs_verity_in_progress(struct inode *inode)
3042 {
3043 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3044 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3045 }
3046 
3047 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3048 {
3049 	F2FS_I(inode)->i_acl_mode = mode;
3050 	set_inode_flag(inode, FI_ACL_MODE);
3051 	f2fs_mark_inode_dirty_sync(inode, false);
3052 }
3053 
3054 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3055 {
3056 	if (inc)
3057 		inc_nlink(inode);
3058 	else
3059 		drop_nlink(inode);
3060 	f2fs_mark_inode_dirty_sync(inode, true);
3061 }
3062 
3063 static inline void f2fs_i_blocks_write(struct inode *inode,
3064 					block_t diff, bool add, bool claim)
3065 {
3066 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3067 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3068 
3069 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3070 	if (add) {
3071 		if (claim)
3072 			dquot_claim_block(inode, diff);
3073 		else
3074 			dquot_alloc_block_nofail(inode, diff);
3075 	} else {
3076 		dquot_free_block(inode, diff);
3077 	}
3078 
3079 	f2fs_mark_inode_dirty_sync(inode, true);
3080 	if (clean || recover)
3081 		set_inode_flag(inode, FI_AUTO_RECOVER);
3082 }
3083 
3084 static inline bool f2fs_is_atomic_file(struct inode *inode);
3085 
3086 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3087 {
3088 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3089 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3090 
3091 	if (i_size_read(inode) == i_size)
3092 		return;
3093 
3094 	i_size_write(inode, i_size);
3095 
3096 	if (f2fs_is_atomic_file(inode))
3097 		return;
3098 
3099 	f2fs_mark_inode_dirty_sync(inode, true);
3100 	if (clean || recover)
3101 		set_inode_flag(inode, FI_AUTO_RECOVER);
3102 }
3103 
3104 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3105 {
3106 	F2FS_I(inode)->i_current_depth = depth;
3107 	f2fs_mark_inode_dirty_sync(inode, true);
3108 }
3109 
3110 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3111 					unsigned int count)
3112 {
3113 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3114 	f2fs_mark_inode_dirty_sync(inode, true);
3115 }
3116 
3117 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3118 {
3119 	F2FS_I(inode)->i_xattr_nid = xnid;
3120 	f2fs_mark_inode_dirty_sync(inode, true);
3121 }
3122 
3123 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3124 {
3125 	F2FS_I(inode)->i_pino = pino;
3126 	f2fs_mark_inode_dirty_sync(inode, true);
3127 }
3128 
3129 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3130 {
3131 	struct f2fs_inode_info *fi = F2FS_I(inode);
3132 
3133 	if (ri->i_inline & F2FS_INLINE_XATTR)
3134 		set_bit(FI_INLINE_XATTR, fi->flags);
3135 	if (ri->i_inline & F2FS_INLINE_DATA)
3136 		set_bit(FI_INLINE_DATA, fi->flags);
3137 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3138 		set_bit(FI_INLINE_DENTRY, fi->flags);
3139 	if (ri->i_inline & F2FS_DATA_EXIST)
3140 		set_bit(FI_DATA_EXIST, fi->flags);
3141 	if (ri->i_inline & F2FS_INLINE_DOTS)
3142 		set_bit(FI_INLINE_DOTS, fi->flags);
3143 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3144 		set_bit(FI_EXTRA_ATTR, fi->flags);
3145 	if (ri->i_inline & F2FS_PIN_FILE)
3146 		set_bit(FI_PIN_FILE, fi->flags);
3147 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3148 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3149 }
3150 
3151 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3152 {
3153 	ri->i_inline = 0;
3154 
3155 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3156 		ri->i_inline |= F2FS_INLINE_XATTR;
3157 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3158 		ri->i_inline |= F2FS_INLINE_DATA;
3159 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3160 		ri->i_inline |= F2FS_INLINE_DENTRY;
3161 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3162 		ri->i_inline |= F2FS_DATA_EXIST;
3163 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3164 		ri->i_inline |= F2FS_INLINE_DOTS;
3165 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3166 		ri->i_inline |= F2FS_EXTRA_ATTR;
3167 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3168 		ri->i_inline |= F2FS_PIN_FILE;
3169 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3170 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3171 }
3172 
3173 static inline int f2fs_has_extra_attr(struct inode *inode)
3174 {
3175 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3176 }
3177 
3178 static inline int f2fs_has_inline_xattr(struct inode *inode)
3179 {
3180 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3181 }
3182 
3183 static inline int f2fs_compressed_file(struct inode *inode)
3184 {
3185 	return S_ISREG(inode->i_mode) &&
3186 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3187 }
3188 
3189 static inline bool f2fs_need_compress_data(struct inode *inode)
3190 {
3191 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3192 
3193 	if (!f2fs_compressed_file(inode))
3194 		return false;
3195 
3196 	if (compress_mode == COMPR_MODE_FS)
3197 		return true;
3198 	else if (compress_mode == COMPR_MODE_USER &&
3199 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3200 		return true;
3201 
3202 	return false;
3203 }
3204 
3205 static inline unsigned int addrs_per_inode(struct inode *inode)
3206 {
3207 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3208 				get_inline_xattr_addrs(inode);
3209 
3210 	if (!f2fs_compressed_file(inode))
3211 		return addrs;
3212 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3213 }
3214 
3215 static inline unsigned int addrs_per_block(struct inode *inode)
3216 {
3217 	if (!f2fs_compressed_file(inode))
3218 		return DEF_ADDRS_PER_BLOCK;
3219 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3220 }
3221 
3222 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3223 {
3224 	struct f2fs_inode *ri = F2FS_INODE(page);
3225 
3226 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3227 					get_inline_xattr_addrs(inode)]);
3228 }
3229 
3230 static inline int inline_xattr_size(struct inode *inode)
3231 {
3232 	if (f2fs_has_inline_xattr(inode))
3233 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3234 	return 0;
3235 }
3236 
3237 /*
3238  * Notice: check inline_data flag without inode page lock is unsafe.
3239  * It could change at any time by f2fs_convert_inline_page().
3240  */
3241 static inline int f2fs_has_inline_data(struct inode *inode)
3242 {
3243 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3244 }
3245 
3246 static inline int f2fs_exist_data(struct inode *inode)
3247 {
3248 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3249 }
3250 
3251 static inline int f2fs_has_inline_dots(struct inode *inode)
3252 {
3253 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3254 }
3255 
3256 static inline int f2fs_is_mmap_file(struct inode *inode)
3257 {
3258 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3259 }
3260 
3261 static inline bool f2fs_is_pinned_file(struct inode *inode)
3262 {
3263 	return is_inode_flag_set(inode, FI_PIN_FILE);
3264 }
3265 
3266 static inline bool f2fs_is_atomic_file(struct inode *inode)
3267 {
3268 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3269 }
3270 
3271 static inline bool f2fs_is_cow_file(struct inode *inode)
3272 {
3273 	return is_inode_flag_set(inode, FI_COW_FILE);
3274 }
3275 
3276 static inline bool f2fs_is_first_block_written(struct inode *inode)
3277 {
3278 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3279 }
3280 
3281 static inline bool f2fs_is_drop_cache(struct inode *inode)
3282 {
3283 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3284 }
3285 
3286 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3287 {
3288 	struct f2fs_inode *ri = F2FS_INODE(page);
3289 	int extra_size = get_extra_isize(inode);
3290 
3291 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3292 }
3293 
3294 static inline int f2fs_has_inline_dentry(struct inode *inode)
3295 {
3296 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3297 }
3298 
3299 static inline int is_file(struct inode *inode, int type)
3300 {
3301 	return F2FS_I(inode)->i_advise & type;
3302 }
3303 
3304 static inline void set_file(struct inode *inode, int type)
3305 {
3306 	if (is_file(inode, type))
3307 		return;
3308 	F2FS_I(inode)->i_advise |= type;
3309 	f2fs_mark_inode_dirty_sync(inode, true);
3310 }
3311 
3312 static inline void clear_file(struct inode *inode, int type)
3313 {
3314 	if (!is_file(inode, type))
3315 		return;
3316 	F2FS_I(inode)->i_advise &= ~type;
3317 	f2fs_mark_inode_dirty_sync(inode, true);
3318 }
3319 
3320 static inline bool f2fs_is_time_consistent(struct inode *inode)
3321 {
3322 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3323 		return false;
3324 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3325 		return false;
3326 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3327 		return false;
3328 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3329 						&F2FS_I(inode)->i_crtime))
3330 		return false;
3331 	return true;
3332 }
3333 
3334 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3335 {
3336 	bool ret;
3337 
3338 	if (dsync) {
3339 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3340 
3341 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3342 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3343 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3344 		return ret;
3345 	}
3346 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3347 			file_keep_isize(inode) ||
3348 			i_size_read(inode) & ~PAGE_MASK)
3349 		return false;
3350 
3351 	if (!f2fs_is_time_consistent(inode))
3352 		return false;
3353 
3354 	spin_lock(&F2FS_I(inode)->i_size_lock);
3355 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3356 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3357 
3358 	return ret;
3359 }
3360 
3361 static inline bool f2fs_readonly(struct super_block *sb)
3362 {
3363 	return sb_rdonly(sb);
3364 }
3365 
3366 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3367 {
3368 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3369 }
3370 
3371 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3372 {
3373 	if (len == 1 && name[0] == '.')
3374 		return true;
3375 
3376 	if (len == 2 && name[0] == '.' && name[1] == '.')
3377 		return true;
3378 
3379 	return false;
3380 }
3381 
3382 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3383 					size_t size, gfp_t flags)
3384 {
3385 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3386 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3387 		return NULL;
3388 	}
3389 
3390 	return kmalloc(size, flags);
3391 }
3392 
3393 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3394 					size_t size, gfp_t flags)
3395 {
3396 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3397 }
3398 
3399 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3400 					size_t size, gfp_t flags)
3401 {
3402 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3403 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3404 		return NULL;
3405 	}
3406 
3407 	return kvmalloc(size, flags);
3408 }
3409 
3410 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3411 					size_t size, gfp_t flags)
3412 {
3413 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3414 }
3415 
3416 static inline int get_extra_isize(struct inode *inode)
3417 {
3418 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3419 }
3420 
3421 static inline int get_inline_xattr_addrs(struct inode *inode)
3422 {
3423 	return F2FS_I(inode)->i_inline_xattr_size;
3424 }
3425 
3426 #define f2fs_get_inode_mode(i) \
3427 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3428 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3429 
3430 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3431 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3432 	offsetof(struct f2fs_inode, i_extra_isize))	\
3433 
3434 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3435 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3436 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3437 		sizeof((f2fs_inode)->field))			\
3438 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3439 
3440 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3441 
3442 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3443 
3444 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3445 					block_t blkaddr, int type);
3446 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3447 					block_t blkaddr, int type)
3448 {
3449 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3450 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3451 			 blkaddr, type);
3452 		f2fs_bug_on(sbi, 1);
3453 	}
3454 }
3455 
3456 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3457 {
3458 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3459 			blkaddr == COMPRESS_ADDR)
3460 		return false;
3461 	return true;
3462 }
3463 
3464 /*
3465  * file.c
3466  */
3467 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3468 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3469 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3470 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3471 int f2fs_truncate(struct inode *inode);
3472 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3473 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3474 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3475 		 struct iattr *attr);
3476 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3477 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3478 int f2fs_precache_extents(struct inode *inode);
3479 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3480 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3481 		      struct dentry *dentry, struct fileattr *fa);
3482 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3483 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3484 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3485 int f2fs_pin_file_control(struct inode *inode, bool inc);
3486 
3487 /*
3488  * inode.c
3489  */
3490 void f2fs_set_inode_flags(struct inode *inode);
3491 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3492 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3493 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3494 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3495 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3496 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3497 void f2fs_update_inode_page(struct inode *inode);
3498 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3499 void f2fs_evict_inode(struct inode *inode);
3500 void f2fs_handle_failed_inode(struct inode *inode);
3501 
3502 /*
3503  * namei.c
3504  */
3505 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3506 							bool hot, bool set);
3507 struct dentry *f2fs_get_parent(struct dentry *child);
3508 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3509 		     struct inode **new_inode);
3510 
3511 /*
3512  * dir.c
3513  */
3514 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3515 int f2fs_init_casefolded_name(const struct inode *dir,
3516 			      struct f2fs_filename *fname);
3517 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3518 			int lookup, struct f2fs_filename *fname);
3519 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3520 			struct f2fs_filename *fname);
3521 void f2fs_free_filename(struct f2fs_filename *fname);
3522 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3523 			const struct f2fs_filename *fname, int *max_slots);
3524 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3525 			unsigned int start_pos, struct fscrypt_str *fstr);
3526 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3527 			struct f2fs_dentry_ptr *d);
3528 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3529 			const struct f2fs_filename *fname, struct page *dpage);
3530 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3531 			unsigned int current_depth);
3532 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3533 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3534 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3535 					 const struct f2fs_filename *fname,
3536 					 struct page **res_page);
3537 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3538 			const struct qstr *child, struct page **res_page);
3539 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3540 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3541 			struct page **page);
3542 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3543 			struct page *page, struct inode *inode);
3544 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3545 			  const struct f2fs_filename *fname);
3546 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3547 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3548 			unsigned int bit_pos);
3549 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3550 			struct inode *inode, nid_t ino, umode_t mode);
3551 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3552 			struct inode *inode, nid_t ino, umode_t mode);
3553 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3554 			struct inode *inode, nid_t ino, umode_t mode);
3555 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3556 			struct inode *dir, struct inode *inode);
3557 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3558 bool f2fs_empty_dir(struct inode *dir);
3559 
3560 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3561 {
3562 	if (fscrypt_is_nokey_name(dentry))
3563 		return -ENOKEY;
3564 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3565 				inode, inode->i_ino, inode->i_mode);
3566 }
3567 
3568 /*
3569  * super.c
3570  */
3571 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3572 void f2fs_inode_synced(struct inode *inode);
3573 int f2fs_dquot_initialize(struct inode *inode);
3574 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3575 int f2fs_quota_sync(struct super_block *sb, int type);
3576 loff_t max_file_blocks(struct inode *inode);
3577 void f2fs_quota_off_umount(struct super_block *sb);
3578 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3579 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3580 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3581 int f2fs_sync_fs(struct super_block *sb, int sync);
3582 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3583 
3584 /*
3585  * hash.c
3586  */
3587 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3588 
3589 /*
3590  * node.c
3591  */
3592 struct node_info;
3593 
3594 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3595 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3596 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3597 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3598 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3599 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3600 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3601 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3602 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3603 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3604 				struct node_info *ni, bool checkpoint_context);
3605 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3606 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3607 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3608 int f2fs_truncate_xattr_node(struct inode *inode);
3609 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3610 					unsigned int seq_id);
3611 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3612 int f2fs_remove_inode_page(struct inode *inode);
3613 struct page *f2fs_new_inode_page(struct inode *inode);
3614 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3615 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3616 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3617 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3618 int f2fs_move_node_page(struct page *node_page, int gc_type);
3619 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3620 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3621 			struct writeback_control *wbc, bool atomic,
3622 			unsigned int *seq_id);
3623 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3624 			struct writeback_control *wbc,
3625 			bool do_balance, enum iostat_type io_type);
3626 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3627 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3628 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3629 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3630 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3631 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3632 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3633 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3634 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3635 			unsigned int segno, struct f2fs_summary_block *sum);
3636 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3637 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3638 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3639 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3640 int __init f2fs_create_node_manager_caches(void);
3641 void f2fs_destroy_node_manager_caches(void);
3642 
3643 /*
3644  * segment.c
3645  */
3646 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3647 int f2fs_commit_atomic_write(struct inode *inode);
3648 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3649 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3650 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3651 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3652 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3653 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3654 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3655 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3656 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3657 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3658 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3659 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3660 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3661 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3662 					struct cp_control *cpc);
3663 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3664 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3665 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3666 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3667 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3668 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3669 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3670 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3671 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3672 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3673 			unsigned int *newseg, bool new_sec, int dir);
3674 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3675 					unsigned int start, unsigned int end);
3676 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3677 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3678 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3679 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3680 					struct cp_control *cpc);
3681 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3682 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3683 					block_t blk_addr);
3684 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3685 						enum iostat_type io_type);
3686 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3687 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3688 			struct f2fs_io_info *fio);
3689 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3690 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3691 			block_t old_blkaddr, block_t new_blkaddr,
3692 			bool recover_curseg, bool recover_newaddr,
3693 			bool from_gc);
3694 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3695 			block_t old_addr, block_t new_addr,
3696 			unsigned char version, bool recover_curseg,
3697 			bool recover_newaddr);
3698 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3699 			block_t old_blkaddr, block_t *new_blkaddr,
3700 			struct f2fs_summary *sum, int type,
3701 			struct f2fs_io_info *fio);
3702 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3703 					block_t blkaddr, unsigned int blkcnt);
3704 void f2fs_wait_on_page_writeback(struct page *page,
3705 			enum page_type type, bool ordered, bool locked);
3706 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3707 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3708 								block_t len);
3709 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3710 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3711 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3712 			unsigned int val, int alloc);
3713 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3714 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3715 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3716 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3717 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3718 int __init f2fs_create_segment_manager_caches(void);
3719 void f2fs_destroy_segment_manager_caches(void);
3720 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3721 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3722 			unsigned int segno);
3723 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3724 			unsigned int segno);
3725 
3726 #define DEF_FRAGMENT_SIZE	4
3727 #define MIN_FRAGMENT_SIZE	1
3728 #define MAX_FRAGMENT_SIZE	512
3729 
3730 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3731 {
3732 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3733 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3734 }
3735 
3736 /*
3737  * checkpoint.c
3738  */
3739 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3740 							unsigned char reason);
3741 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3742 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3743 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3744 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3745 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3746 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3747 					block_t blkaddr, int type);
3748 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3749 			int type, bool sync);
3750 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3751 							unsigned int ra_blocks);
3752 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3753 			long nr_to_write, enum iostat_type io_type);
3754 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3755 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3756 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3757 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3758 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3759 					unsigned int devidx, int type);
3760 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3761 					unsigned int devidx, int type);
3762 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3763 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3764 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3765 void f2fs_add_orphan_inode(struct inode *inode);
3766 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3767 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3768 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3769 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3770 void f2fs_remove_dirty_inode(struct inode *inode);
3771 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3772 								bool from_cp);
3773 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3774 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3775 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3776 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3777 int __init f2fs_create_checkpoint_caches(void);
3778 void f2fs_destroy_checkpoint_caches(void);
3779 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3780 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3781 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3782 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3783 
3784 /*
3785  * data.c
3786  */
3787 int __init f2fs_init_bioset(void);
3788 void f2fs_destroy_bioset(void);
3789 int f2fs_init_bio_entry_cache(void);
3790 void f2fs_destroy_bio_entry_cache(void);
3791 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3792 				struct bio *bio, enum page_type type);
3793 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3794 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3795 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3796 				struct inode *inode, struct page *page,
3797 				nid_t ino, enum page_type type);
3798 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3799 					struct bio **bio, struct page *page);
3800 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3801 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3802 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3803 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3804 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3805 		block_t blk_addr, sector_t *sector);
3806 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3807 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3808 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3809 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3810 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3811 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3812 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3813 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3814 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3815 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3816 							pgoff_t *next_pgofs);
3817 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3818 			bool for_write);
3819 struct page *f2fs_get_new_data_page(struct inode *inode,
3820 			struct page *ipage, pgoff_t index, bool new_i_size);
3821 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3822 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3823 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3824 			int create, int flag);
3825 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3826 			u64 start, u64 len);
3827 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3828 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3829 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3830 int f2fs_write_single_data_page(struct page *page, int *submitted,
3831 				struct bio **bio, sector_t *last_block,
3832 				struct writeback_control *wbc,
3833 				enum iostat_type io_type,
3834 				int compr_blocks, bool allow_balance);
3835 void f2fs_write_failed(struct inode *inode, loff_t to);
3836 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3837 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3838 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3839 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3840 int f2fs_init_post_read_processing(void);
3841 void f2fs_destroy_post_read_processing(void);
3842 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3843 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3844 extern const struct iomap_ops f2fs_iomap_ops;
3845 
3846 /*
3847  * gc.c
3848  */
3849 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3850 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3851 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3852 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3853 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3854 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3855 int __init f2fs_create_garbage_collection_cache(void);
3856 void f2fs_destroy_garbage_collection_cache(void);
3857 
3858 /*
3859  * recovery.c
3860  */
3861 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3862 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3863 int __init f2fs_create_recovery_cache(void);
3864 void f2fs_destroy_recovery_cache(void);
3865 
3866 /*
3867  * debug.c
3868  */
3869 #ifdef CONFIG_F2FS_STAT_FS
3870 struct f2fs_stat_info {
3871 	struct list_head stat_list;
3872 	struct f2fs_sb_info *sbi;
3873 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3874 	int main_area_segs, main_area_sections, main_area_zones;
3875 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3876 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3877 	unsigned long long total_ext[NR_EXTENT_CACHES];
3878 	unsigned long long hit_total[NR_EXTENT_CACHES];
3879 	int ext_tree[NR_EXTENT_CACHES];
3880 	int zombie_tree[NR_EXTENT_CACHES];
3881 	int ext_node[NR_EXTENT_CACHES];
3882 	/* to count memory footprint */
3883 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3884 	/* for read extent cache */
3885 	unsigned long long hit_largest;
3886 	/* for block age extent cache */
3887 	unsigned long long allocated_data_blocks;
3888 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3889 	int ndirty_data, ndirty_qdata;
3890 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3891 	int nats, dirty_nats, sits, dirty_sits;
3892 	int free_nids, avail_nids, alloc_nids;
3893 	int total_count, utilization;
3894 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3895 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3896 	int nr_dio_read, nr_dio_write;
3897 	unsigned int io_skip_bggc, other_skip_bggc;
3898 	int nr_flushing, nr_flushed, flush_list_empty;
3899 	int nr_discarding, nr_discarded;
3900 	int nr_discard_cmd;
3901 	unsigned int undiscard_blks;
3902 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3903 	unsigned int cur_ckpt_time, peak_ckpt_time;
3904 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3905 	int compr_inode, swapfile_inode;
3906 	unsigned long long compr_blocks;
3907 	int aw_cnt, max_aw_cnt;
3908 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3909 	unsigned int bimodal, avg_vblocks;
3910 	int util_free, util_valid, util_invalid;
3911 	int rsvd_segs, overp_segs;
3912 	int dirty_count, node_pages, meta_pages, compress_pages;
3913 	int compress_page_hit;
3914 	int prefree_count, call_count, cp_count, bg_cp_count;
3915 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3916 	int bg_node_segs, bg_data_segs;
3917 	int tot_blks, data_blks, node_blks;
3918 	int bg_data_blks, bg_node_blks;
3919 	int curseg[NR_CURSEG_TYPE];
3920 	int cursec[NR_CURSEG_TYPE];
3921 	int curzone[NR_CURSEG_TYPE];
3922 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3923 	unsigned int full_seg[NR_CURSEG_TYPE];
3924 	unsigned int valid_blks[NR_CURSEG_TYPE];
3925 
3926 	unsigned int meta_count[META_MAX];
3927 	unsigned int segment_count[2];
3928 	unsigned int block_count[2];
3929 	unsigned int inplace_count;
3930 	unsigned long long base_mem, cache_mem, page_mem;
3931 };
3932 
3933 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3934 {
3935 	return (struct f2fs_stat_info *)sbi->stat_info;
3936 }
3937 
3938 #define stat_inc_cp_count(si)		((si)->cp_count++)
3939 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3940 #define stat_inc_call_count(si)		((si)->call_count++)
3941 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3942 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3943 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3944 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3945 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3946 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3947 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3948 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3949 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3950 #define stat_inc_inline_xattr(inode)					\
3951 	do {								\
3952 		if (f2fs_has_inline_xattr(inode))			\
3953 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3954 	} while (0)
3955 #define stat_dec_inline_xattr(inode)					\
3956 	do {								\
3957 		if (f2fs_has_inline_xattr(inode))			\
3958 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3959 	} while (0)
3960 #define stat_inc_inline_inode(inode)					\
3961 	do {								\
3962 		if (f2fs_has_inline_data(inode))			\
3963 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3964 	} while (0)
3965 #define stat_dec_inline_inode(inode)					\
3966 	do {								\
3967 		if (f2fs_has_inline_data(inode))			\
3968 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3969 	} while (0)
3970 #define stat_inc_inline_dir(inode)					\
3971 	do {								\
3972 		if (f2fs_has_inline_dentry(inode))			\
3973 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3974 	} while (0)
3975 #define stat_dec_inline_dir(inode)					\
3976 	do {								\
3977 		if (f2fs_has_inline_dentry(inode))			\
3978 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3979 	} while (0)
3980 #define stat_inc_compr_inode(inode)					\
3981 	do {								\
3982 		if (f2fs_compressed_file(inode))			\
3983 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3984 	} while (0)
3985 #define stat_dec_compr_inode(inode)					\
3986 	do {								\
3987 		if (f2fs_compressed_file(inode))			\
3988 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3989 	} while (0)
3990 #define stat_add_compr_blocks(inode, blocks)				\
3991 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3992 #define stat_sub_compr_blocks(inode, blocks)				\
3993 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3994 #define stat_inc_swapfile_inode(inode)					\
3995 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3996 #define stat_dec_swapfile_inode(inode)					\
3997 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3998 #define stat_inc_atomic_inode(inode)					\
3999 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4000 #define stat_dec_atomic_inode(inode)					\
4001 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4002 #define stat_inc_meta_count(sbi, blkaddr)				\
4003 	do {								\
4004 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4005 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4006 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4007 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4008 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4009 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4010 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4011 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4012 	} while (0)
4013 #define stat_inc_seg_type(sbi, curseg)					\
4014 		((sbi)->segment_count[(curseg)->alloc_type]++)
4015 #define stat_inc_block_count(sbi, curseg)				\
4016 		((sbi)->block_count[(curseg)->alloc_type]++)
4017 #define stat_inc_inplace_blocks(sbi)					\
4018 		(atomic_inc(&(sbi)->inplace_count))
4019 #define stat_update_max_atomic_write(inode)				\
4020 	do {								\
4021 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4022 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4023 		if (cur > max)						\
4024 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4025 	} while (0)
4026 #define stat_inc_seg_count(sbi, type, gc_type)				\
4027 	do {								\
4028 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4029 		si->tot_segs++;						\
4030 		if ((type) == SUM_TYPE_DATA) {				\
4031 			si->data_segs++;				\
4032 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
4033 		} else {						\
4034 			si->node_segs++;				\
4035 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
4036 		}							\
4037 	} while (0)
4038 
4039 #define stat_inc_tot_blk_count(si, blks)				\
4040 	((si)->tot_blks += (blks))
4041 
4042 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4043 	do {								\
4044 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4045 		stat_inc_tot_blk_count(si, blks);			\
4046 		si->data_blks += (blks);				\
4047 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4048 	} while (0)
4049 
4050 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4051 	do {								\
4052 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4053 		stat_inc_tot_blk_count(si, blks);			\
4054 		si->node_blks += (blks);				\
4055 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4056 	} while (0)
4057 
4058 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4059 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4060 void __init f2fs_create_root_stats(void);
4061 void f2fs_destroy_root_stats(void);
4062 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4063 #else
4064 #define stat_inc_cp_count(si)				do { } while (0)
4065 #define stat_inc_bg_cp_count(si)			do { } while (0)
4066 #define stat_inc_call_count(si)				do { } while (0)
4067 #define stat_inc_bggc_count(si)				do { } while (0)
4068 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4069 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4070 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4071 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4072 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4073 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4074 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4075 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4076 #define stat_inc_inline_xattr(inode)			do { } while (0)
4077 #define stat_dec_inline_xattr(inode)			do { } while (0)
4078 #define stat_inc_inline_inode(inode)			do { } while (0)
4079 #define stat_dec_inline_inode(inode)			do { } while (0)
4080 #define stat_inc_inline_dir(inode)			do { } while (0)
4081 #define stat_dec_inline_dir(inode)			do { } while (0)
4082 #define stat_inc_compr_inode(inode)			do { } while (0)
4083 #define stat_dec_compr_inode(inode)			do { } while (0)
4084 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4085 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4086 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4087 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4088 #define stat_inc_atomic_inode(inode)			do { } while (0)
4089 #define stat_dec_atomic_inode(inode)			do { } while (0)
4090 #define stat_update_max_atomic_write(inode)		do { } while (0)
4091 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4092 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4093 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4094 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4095 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4096 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4097 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4098 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4099 
4100 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4101 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4102 static inline void __init f2fs_create_root_stats(void) { }
4103 static inline void f2fs_destroy_root_stats(void) { }
4104 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4105 #endif
4106 
4107 extern const struct file_operations f2fs_dir_operations;
4108 extern const struct file_operations f2fs_file_operations;
4109 extern const struct inode_operations f2fs_file_inode_operations;
4110 extern const struct address_space_operations f2fs_dblock_aops;
4111 extern const struct address_space_operations f2fs_node_aops;
4112 extern const struct address_space_operations f2fs_meta_aops;
4113 extern const struct inode_operations f2fs_dir_inode_operations;
4114 extern const struct inode_operations f2fs_symlink_inode_operations;
4115 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4116 extern const struct inode_operations f2fs_special_inode_operations;
4117 extern struct kmem_cache *f2fs_inode_entry_slab;
4118 
4119 /*
4120  * inline.c
4121  */
4122 bool f2fs_may_inline_data(struct inode *inode);
4123 bool f2fs_sanity_check_inline_data(struct inode *inode);
4124 bool f2fs_may_inline_dentry(struct inode *inode);
4125 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4126 void f2fs_truncate_inline_inode(struct inode *inode,
4127 						struct page *ipage, u64 from);
4128 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4129 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4130 int f2fs_convert_inline_inode(struct inode *inode);
4131 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4132 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4133 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4134 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4135 					const struct f2fs_filename *fname,
4136 					struct page **res_page);
4137 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4138 			struct page *ipage);
4139 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4140 			struct inode *inode, nid_t ino, umode_t mode);
4141 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4142 				struct page *page, struct inode *dir,
4143 				struct inode *inode);
4144 bool f2fs_empty_inline_dir(struct inode *dir);
4145 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4146 			struct fscrypt_str *fstr);
4147 int f2fs_inline_data_fiemap(struct inode *inode,
4148 			struct fiemap_extent_info *fieinfo,
4149 			__u64 start, __u64 len);
4150 
4151 /*
4152  * shrinker.c
4153  */
4154 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4155 			struct shrink_control *sc);
4156 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4157 			struct shrink_control *sc);
4158 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4159 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4160 
4161 /*
4162  * extent_cache.c
4163  */
4164 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4165 				struct rb_entry *cached_re, unsigned int ofs);
4166 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4167 				struct rb_root_cached *root,
4168 				struct rb_node **parent,
4169 				unsigned long long key, bool *left_most);
4170 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4171 				struct rb_root_cached *root,
4172 				struct rb_node **parent,
4173 				unsigned int ofs, bool *leftmost);
4174 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4175 		struct rb_entry *cached_re, unsigned int ofs,
4176 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4177 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4178 		bool force, bool *leftmost);
4179 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4180 				struct rb_root_cached *root, bool check_key);
4181 void f2fs_init_extent_tree(struct inode *inode);
4182 void f2fs_drop_extent_tree(struct inode *inode);
4183 void f2fs_destroy_extent_node(struct inode *inode);
4184 void f2fs_destroy_extent_tree(struct inode *inode);
4185 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4186 int __init f2fs_create_extent_cache(void);
4187 void f2fs_destroy_extent_cache(void);
4188 
4189 /* read extent cache ops */
4190 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4191 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4192 			struct extent_info *ei);
4193 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4194 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4195 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4196 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4197 			int nr_shrink);
4198 
4199 /* block age extent cache ops */
4200 void f2fs_init_age_extent_tree(struct inode *inode);
4201 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4202 			struct extent_info *ei);
4203 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4204 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4205 			pgoff_t fofs, unsigned int len);
4206 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4207 			int nr_shrink);
4208 
4209 /*
4210  * sysfs.c
4211  */
4212 #define MIN_RA_MUL	2
4213 #define MAX_RA_MUL	256
4214 
4215 int __init f2fs_init_sysfs(void);
4216 void f2fs_exit_sysfs(void);
4217 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4218 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4219 
4220 /* verity.c */
4221 extern const struct fsverity_operations f2fs_verityops;
4222 
4223 /*
4224  * crypto support
4225  */
4226 static inline bool f2fs_encrypted_file(struct inode *inode)
4227 {
4228 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4229 }
4230 
4231 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4232 {
4233 #ifdef CONFIG_FS_ENCRYPTION
4234 	file_set_encrypt(inode);
4235 	f2fs_set_inode_flags(inode);
4236 #endif
4237 }
4238 
4239 /*
4240  * Returns true if the reads of the inode's data need to undergo some
4241  * postprocessing step, like decryption or authenticity verification.
4242  */
4243 static inline bool f2fs_post_read_required(struct inode *inode)
4244 {
4245 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4246 		f2fs_compressed_file(inode);
4247 }
4248 
4249 /*
4250  * compress.c
4251  */
4252 #ifdef CONFIG_F2FS_FS_COMPRESSION
4253 bool f2fs_is_compressed_page(struct page *page);
4254 struct page *f2fs_compress_control_page(struct page *page);
4255 int f2fs_prepare_compress_overwrite(struct inode *inode,
4256 			struct page **pagep, pgoff_t index, void **fsdata);
4257 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4258 					pgoff_t index, unsigned copied);
4259 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4260 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4261 bool f2fs_is_compress_backend_ready(struct inode *inode);
4262 int f2fs_init_compress_mempool(void);
4263 void f2fs_destroy_compress_mempool(void);
4264 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4265 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4266 				block_t blkaddr, bool in_task);
4267 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4268 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4269 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4270 				int index, int nr_pages, bool uptodate);
4271 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4272 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4273 int f2fs_write_multi_pages(struct compress_ctx *cc,
4274 						int *submitted,
4275 						struct writeback_control *wbc,
4276 						enum iostat_type io_type);
4277 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4278 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4279 				pgoff_t fofs, block_t blkaddr,
4280 				unsigned int llen, unsigned int c_len);
4281 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4282 				unsigned nr_pages, sector_t *last_block_in_bio,
4283 				bool is_readahead, bool for_write);
4284 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4285 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4286 				bool in_task);
4287 void f2fs_put_page_dic(struct page *page, bool in_task);
4288 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4289 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4290 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4291 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4292 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4293 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4294 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4295 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4296 int __init f2fs_init_compress_cache(void);
4297 void f2fs_destroy_compress_cache(void);
4298 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4299 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4300 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4301 						nid_t ino, block_t blkaddr);
4302 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4303 								block_t blkaddr);
4304 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4305 #define inc_compr_inode_stat(inode)					\
4306 	do {								\
4307 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4308 		sbi->compr_new_inode++;					\
4309 	} while (0)
4310 #define add_compr_block_stat(inode, blocks)				\
4311 	do {								\
4312 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4313 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4314 		sbi->compr_written_block += blocks;			\
4315 		sbi->compr_saved_block += diff;				\
4316 	} while (0)
4317 #else
4318 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4319 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4320 {
4321 	if (!f2fs_compressed_file(inode))
4322 		return true;
4323 	/* not support compression */
4324 	return false;
4325 }
4326 static inline struct page *f2fs_compress_control_page(struct page *page)
4327 {
4328 	WARN_ON_ONCE(1);
4329 	return ERR_PTR(-EINVAL);
4330 }
4331 static inline int f2fs_init_compress_mempool(void) { return 0; }
4332 static inline void f2fs_destroy_compress_mempool(void) { }
4333 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4334 				bool in_task) { }
4335 static inline void f2fs_end_read_compressed_page(struct page *page,
4336 				bool failed, block_t blkaddr, bool in_task)
4337 {
4338 	WARN_ON_ONCE(1);
4339 }
4340 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4341 {
4342 	WARN_ON_ONCE(1);
4343 }
4344 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4345 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4346 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4347 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4348 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4349 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4350 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4351 static inline void f2fs_destroy_compress_cache(void) { }
4352 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4353 				block_t blkaddr) { }
4354 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4355 				struct page *page, nid_t ino, block_t blkaddr) { }
4356 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4357 				struct page *page, block_t blkaddr) { return false; }
4358 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4359 							nid_t ino) { }
4360 #define inc_compr_inode_stat(inode)		do { } while (0)
4361 static inline void f2fs_update_read_extent_tree_range_compressed(
4362 				struct inode *inode,
4363 				pgoff_t fofs, block_t blkaddr,
4364 				unsigned int llen, unsigned int c_len) { }
4365 #endif
4366 
4367 static inline int set_compress_context(struct inode *inode)
4368 {
4369 #ifdef CONFIG_F2FS_FS_COMPRESSION
4370 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4371 
4372 	F2FS_I(inode)->i_compress_algorithm =
4373 			F2FS_OPTION(sbi).compress_algorithm;
4374 	F2FS_I(inode)->i_log_cluster_size =
4375 			F2FS_OPTION(sbi).compress_log_size;
4376 	F2FS_I(inode)->i_compress_flag =
4377 			F2FS_OPTION(sbi).compress_chksum ?
4378 				1 << COMPRESS_CHKSUM : 0;
4379 	F2FS_I(inode)->i_cluster_size =
4380 			1 << F2FS_I(inode)->i_log_cluster_size;
4381 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4382 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4383 			F2FS_OPTION(sbi).compress_level)
4384 		F2FS_I(inode)->i_compress_flag |=
4385 				F2FS_OPTION(sbi).compress_level <<
4386 				COMPRESS_LEVEL_OFFSET;
4387 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4388 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4389 	stat_inc_compr_inode(inode);
4390 	inc_compr_inode_stat(inode);
4391 	f2fs_mark_inode_dirty_sync(inode, true);
4392 	return 0;
4393 #else
4394 	return -EOPNOTSUPP;
4395 #endif
4396 }
4397 
4398 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4399 {
4400 	struct f2fs_inode_info *fi = F2FS_I(inode);
4401 
4402 	if (!f2fs_compressed_file(inode))
4403 		return true;
4404 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4405 		return false;
4406 
4407 	fi->i_flags &= ~F2FS_COMPR_FL;
4408 	stat_dec_compr_inode(inode);
4409 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4410 	f2fs_mark_inode_dirty_sync(inode, true);
4411 	return true;
4412 }
4413 
4414 #define F2FS_FEATURE_FUNCS(name, flagname) \
4415 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4416 { \
4417 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4418 }
4419 
4420 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4421 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4422 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4423 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4424 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4425 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4426 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4427 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4428 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4429 F2FS_FEATURE_FUNCS(verity, VERITY);
4430 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4431 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4432 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4433 F2FS_FEATURE_FUNCS(readonly, RO);
4434 
4435 #ifdef CONFIG_BLK_DEV_ZONED
4436 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4437 				    block_t blkaddr)
4438 {
4439 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4440 
4441 	return test_bit(zno, FDEV(devi).blkz_seq);
4442 }
4443 #endif
4444 
4445 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4446 {
4447 	return f2fs_sb_has_blkzoned(sbi);
4448 }
4449 
4450 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4451 {
4452 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4453 }
4454 
4455 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4456 {
4457 	int i;
4458 
4459 	if (!f2fs_is_multi_device(sbi))
4460 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4461 
4462 	for (i = 0; i < sbi->s_ndevs; i++)
4463 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4464 			return true;
4465 	return false;
4466 }
4467 
4468 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4469 {
4470 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4471 					f2fs_hw_should_discard(sbi);
4472 }
4473 
4474 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4475 {
4476 	int i;
4477 
4478 	if (!f2fs_is_multi_device(sbi))
4479 		return bdev_read_only(sbi->sb->s_bdev);
4480 
4481 	for (i = 0; i < sbi->s_ndevs; i++)
4482 		if (bdev_read_only(FDEV(i).bdev))
4483 			return true;
4484 	return false;
4485 }
4486 
4487 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4488 {
4489 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4490 }
4491 
4492 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4493 {
4494 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4495 }
4496 
4497 static inline bool f2fs_may_compress(struct inode *inode)
4498 {
4499 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4500 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4501 		return false;
4502 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4503 }
4504 
4505 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4506 						u64 blocks, bool add)
4507 {
4508 	struct f2fs_inode_info *fi = F2FS_I(inode);
4509 	int diff = fi->i_cluster_size - blocks;
4510 
4511 	/* don't update i_compr_blocks if saved blocks were released */
4512 	if (!add && !atomic_read(&fi->i_compr_blocks))
4513 		return;
4514 
4515 	if (add) {
4516 		atomic_add(diff, &fi->i_compr_blocks);
4517 		stat_add_compr_blocks(inode, diff);
4518 	} else {
4519 		atomic_sub(diff, &fi->i_compr_blocks);
4520 		stat_sub_compr_blocks(inode, diff);
4521 	}
4522 	f2fs_mark_inode_dirty_sync(inode, true);
4523 }
4524 
4525 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4526 								int flag)
4527 {
4528 	if (!f2fs_is_multi_device(sbi))
4529 		return false;
4530 	if (flag != F2FS_GET_BLOCK_DIO)
4531 		return false;
4532 	return sbi->aligned_blksize;
4533 }
4534 
4535 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4536 {
4537 	return fsverity_active(inode) &&
4538 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4539 }
4540 
4541 #ifdef CONFIG_F2FS_FAULT_INJECTION
4542 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4543 							unsigned int type);
4544 #else
4545 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4546 #endif
4547 
4548 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4549 {
4550 #ifdef CONFIG_QUOTA
4551 	if (f2fs_sb_has_quota_ino(sbi))
4552 		return true;
4553 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4554 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4555 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4556 		return true;
4557 #endif
4558 	return false;
4559 }
4560 
4561 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4562 {
4563 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4564 }
4565 
4566 static inline void f2fs_io_schedule_timeout(long timeout)
4567 {
4568 	set_current_state(TASK_UNINTERRUPTIBLE);
4569 	io_schedule_timeout(timeout);
4570 }
4571 
4572 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4573 					enum page_type type)
4574 {
4575 	if (unlikely(f2fs_cp_error(sbi)))
4576 		return;
4577 
4578 	if (ofs == sbi->page_eio_ofs[type]) {
4579 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4580 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4581 	} else {
4582 		sbi->page_eio_ofs[type] = ofs;
4583 		sbi->page_eio_cnt[type] = 0;
4584 	}
4585 }
4586 
4587 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4588 {
4589 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4590 }
4591 
4592 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4593 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4594 
4595 #endif /* _LINUX_F2FS_H */
4596