xref: /openbmc/linux/fs/f2fs/f2fs.h (revision c0c74acb)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #ifdef CONFIG_F2FS_FS_ENCRYPTION
26 #include <linux/fscrypt_supp.h>
27 #else
28 #include <linux/fscrypt_notsupp.h>
29 #endif
30 #include <crypto/hash.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_MAX,
56 };
57 
58 struct f2fs_fault_info {
59 	atomic_t inject_ops;
60 	unsigned int inject_rate;
61 	unsigned int inject_type;
62 };
63 
64 extern char *fault_name[FAULT_MAX];
65 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
66 #endif
67 
68 /*
69  * For mount options
70  */
71 #define F2FS_MOUNT_BG_GC		0x00000001
72 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
73 #define F2FS_MOUNT_DISCARD		0x00000004
74 #define F2FS_MOUNT_NOHEAP		0x00000008
75 #define F2FS_MOUNT_XATTR_USER		0x00000010
76 #define F2FS_MOUNT_POSIX_ACL		0x00000020
77 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
78 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
79 #define F2FS_MOUNT_INLINE_DATA		0x00000100
80 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
81 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
82 #define F2FS_MOUNT_NOBARRIER		0x00000800
83 #define F2FS_MOUNT_FASTBOOT		0x00001000
84 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
85 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
86 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
87 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
88 #define F2FS_MOUNT_ADAPTIVE		0x00020000
89 #define F2FS_MOUNT_LFS			0x00040000
90 
91 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
92 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
93 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
94 
95 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
96 		typecheck(unsigned long long, b) &&			\
97 		((long long)((a) - (b)) > 0))
98 
99 typedef u32 block_t;	/*
100 			 * should not change u32, since it is the on-disk block
101 			 * address format, __le32.
102 			 */
103 typedef u32 nid_t;
104 
105 struct f2fs_mount_info {
106 	unsigned int	opt;
107 };
108 
109 #define F2FS_FEATURE_ENCRYPT	0x0001
110 #define F2FS_FEATURE_BLKZONED	0x0002
111 
112 #define F2FS_HAS_FEATURE(sb, mask)					\
113 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
114 #define F2FS_SET_FEATURE(sb, mask)					\
115 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
116 #define F2FS_CLEAR_FEATURE(sb, mask)					\
117 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
118 
119 /*
120  * For checkpoint manager
121  */
122 enum {
123 	NAT_BITMAP,
124 	SIT_BITMAP
125 };
126 
127 enum {
128 	CP_UMOUNT,
129 	CP_FASTBOOT,
130 	CP_SYNC,
131 	CP_RECOVERY,
132 	CP_DISCARD,
133 };
134 
135 #define DEF_BATCHED_TRIM_SECTIONS	2048
136 #define BATCHED_TRIM_SEGMENTS(sbi)	\
137 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
138 #define BATCHED_TRIM_BLOCKS(sbi)	\
139 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
140 #define MAX_DISCARD_BLOCKS(sbi)						\
141 		((1 << (sbi)->log_blocks_per_seg) * (sbi)->segs_per_sec)
142 #define DISCARD_ISSUE_RATE	8
143 #define DEF_CP_INTERVAL			60	/* 60 secs */
144 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
145 
146 struct cp_control {
147 	int reason;
148 	__u64 trim_start;
149 	__u64 trim_end;
150 	__u64 trim_minlen;
151 	__u64 trimmed;
152 };
153 
154 /*
155  * For CP/NAT/SIT/SSA readahead
156  */
157 enum {
158 	META_CP,
159 	META_NAT,
160 	META_SIT,
161 	META_SSA,
162 	META_POR,
163 };
164 
165 /* for the list of ino */
166 enum {
167 	ORPHAN_INO,		/* for orphan ino list */
168 	APPEND_INO,		/* for append ino list */
169 	UPDATE_INO,		/* for update ino list */
170 	MAX_INO_ENTRY,		/* max. list */
171 };
172 
173 struct ino_entry {
174 	struct list_head list;	/* list head */
175 	nid_t ino;		/* inode number */
176 };
177 
178 /* for the list of inodes to be GCed */
179 struct inode_entry {
180 	struct list_head list;	/* list head */
181 	struct inode *inode;	/* vfs inode pointer */
182 };
183 
184 /* for the list of blockaddresses to be discarded */
185 struct discard_entry {
186 	struct list_head list;	/* list head */
187 	block_t blkaddr;	/* block address to be discarded */
188 	int len;		/* # of consecutive blocks of the discard */
189 };
190 
191 enum {
192 	D_PREP,
193 	D_SUBMIT,
194 	D_DONE,
195 };
196 
197 struct discard_cmd {
198 	struct list_head list;		/* command list */
199 	struct completion wait;		/* compleation */
200 	block_t lstart;			/* logical start address */
201 	block_t len;			/* length */
202 	struct bio *bio;		/* bio */
203 	int state;			/* state */
204 };
205 
206 struct discard_cmd_control {
207 	struct task_struct *f2fs_issue_discard;	/* discard thread */
208 	struct list_head discard_entry_list;	/* 4KB discard entry list */
209 	int nr_discards;			/* # of discards in the list */
210 	struct list_head discard_cmd_list;	/* discard cmd list */
211 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
212 	struct mutex cmd_lock;
213 	int max_discards;			/* max. discards to be issued */
214 	atomic_t submit_discard;		/* # of issued discard */
215 };
216 
217 /* for the list of fsync inodes, used only during recovery */
218 struct fsync_inode_entry {
219 	struct list_head list;	/* list head */
220 	struct inode *inode;	/* vfs inode pointer */
221 	block_t blkaddr;	/* block address locating the last fsync */
222 	block_t last_dentry;	/* block address locating the last dentry */
223 };
224 
225 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
226 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
227 
228 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
229 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
230 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
231 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
232 
233 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
234 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
235 
236 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
237 {
238 	int before = nats_in_cursum(journal);
239 
240 	journal->n_nats = cpu_to_le16(before + i);
241 	return before;
242 }
243 
244 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
245 {
246 	int before = sits_in_cursum(journal);
247 
248 	journal->n_sits = cpu_to_le16(before + i);
249 	return before;
250 }
251 
252 static inline bool __has_cursum_space(struct f2fs_journal *journal,
253 							int size, int type)
254 {
255 	if (type == NAT_JOURNAL)
256 		return size <= MAX_NAT_JENTRIES(journal);
257 	return size <= MAX_SIT_JENTRIES(journal);
258 }
259 
260 /*
261  * ioctl commands
262  */
263 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
264 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
265 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
266 
267 #define F2FS_IOCTL_MAGIC		0xf5
268 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
269 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
270 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
271 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
272 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
273 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
274 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
275 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
276 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
277 						struct f2fs_move_range)
278 
279 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
280 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
281 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
282 
283 /*
284  * should be same as XFS_IOC_GOINGDOWN.
285  * Flags for going down operation used by FS_IOC_GOINGDOWN
286  */
287 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
288 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
289 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
290 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
291 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
292 
293 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
294 /*
295  * ioctl commands in 32 bit emulation
296  */
297 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
298 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
299 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
300 #endif
301 
302 struct f2fs_defragment {
303 	u64 start;
304 	u64 len;
305 };
306 
307 struct f2fs_move_range {
308 	u32 dst_fd;		/* destination fd */
309 	u64 pos_in;		/* start position in src_fd */
310 	u64 pos_out;		/* start position in dst_fd */
311 	u64 len;		/* size to move */
312 };
313 
314 /*
315  * For INODE and NODE manager
316  */
317 /* for directory operations */
318 struct f2fs_dentry_ptr {
319 	struct inode *inode;
320 	const void *bitmap;
321 	struct f2fs_dir_entry *dentry;
322 	__u8 (*filename)[F2FS_SLOT_LEN];
323 	int max;
324 };
325 
326 static inline void make_dentry_ptr(struct inode *inode,
327 		struct f2fs_dentry_ptr *d, void *src, int type)
328 {
329 	d->inode = inode;
330 
331 	if (type == 1) {
332 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
333 
334 		d->max = NR_DENTRY_IN_BLOCK;
335 		d->bitmap = &t->dentry_bitmap;
336 		d->dentry = t->dentry;
337 		d->filename = t->filename;
338 	} else {
339 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
340 
341 		d->max = NR_INLINE_DENTRY;
342 		d->bitmap = &t->dentry_bitmap;
343 		d->dentry = t->dentry;
344 		d->filename = t->filename;
345 	}
346 }
347 
348 /*
349  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
350  * as its node offset to distinguish from index node blocks.
351  * But some bits are used to mark the node block.
352  */
353 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
354 				>> OFFSET_BIT_SHIFT)
355 enum {
356 	ALLOC_NODE,			/* allocate a new node page if needed */
357 	LOOKUP_NODE,			/* look up a node without readahead */
358 	LOOKUP_NODE_RA,			/*
359 					 * look up a node with readahead called
360 					 * by get_data_block.
361 					 */
362 };
363 
364 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
365 
366 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
367 
368 /* vector size for gang look-up from extent cache that consists of radix tree */
369 #define EXT_TREE_VEC_SIZE	64
370 
371 /* for in-memory extent cache entry */
372 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
373 
374 /* number of extent info in extent cache we try to shrink */
375 #define EXTENT_CACHE_SHRINK_NUMBER	128
376 
377 struct extent_info {
378 	unsigned int fofs;		/* start offset in a file */
379 	u32 blk;			/* start block address of the extent */
380 	unsigned int len;		/* length of the extent */
381 };
382 
383 struct extent_node {
384 	struct rb_node rb_node;		/* rb node located in rb-tree */
385 	struct list_head list;		/* node in global extent list of sbi */
386 	struct extent_info ei;		/* extent info */
387 	struct extent_tree *et;		/* extent tree pointer */
388 };
389 
390 struct extent_tree {
391 	nid_t ino;			/* inode number */
392 	struct rb_root root;		/* root of extent info rb-tree */
393 	struct extent_node *cached_en;	/* recently accessed extent node */
394 	struct extent_info largest;	/* largested extent info */
395 	struct list_head list;		/* to be used by sbi->zombie_list */
396 	rwlock_t lock;			/* protect extent info rb-tree */
397 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
398 };
399 
400 /*
401  * This structure is taken from ext4_map_blocks.
402  *
403  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
404  */
405 #define F2FS_MAP_NEW		(1 << BH_New)
406 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
407 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
408 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
409 				F2FS_MAP_UNWRITTEN)
410 
411 struct f2fs_map_blocks {
412 	block_t m_pblk;
413 	block_t m_lblk;
414 	unsigned int m_len;
415 	unsigned int m_flags;
416 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
417 };
418 
419 /* for flag in get_data_block */
420 #define F2FS_GET_BLOCK_READ		0
421 #define F2FS_GET_BLOCK_DIO		1
422 #define F2FS_GET_BLOCK_FIEMAP		2
423 #define F2FS_GET_BLOCK_BMAP		3
424 #define F2FS_GET_BLOCK_PRE_DIO		4
425 #define F2FS_GET_BLOCK_PRE_AIO		5
426 
427 /*
428  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
429  */
430 #define FADVISE_COLD_BIT	0x01
431 #define FADVISE_LOST_PINO_BIT	0x02
432 #define FADVISE_ENCRYPT_BIT	0x04
433 #define FADVISE_ENC_NAME_BIT	0x08
434 #define FADVISE_KEEP_SIZE_BIT	0x10
435 
436 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
437 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
438 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
439 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
440 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
441 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
442 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
443 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
444 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
445 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
446 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
447 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
448 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
449 
450 #define DEF_DIR_LEVEL		0
451 
452 struct f2fs_inode_info {
453 	struct inode vfs_inode;		/* serve a vfs inode */
454 	unsigned long i_flags;		/* keep an inode flags for ioctl */
455 	unsigned char i_advise;		/* use to give file attribute hints */
456 	unsigned char i_dir_level;	/* use for dentry level for large dir */
457 	unsigned int i_current_depth;	/* use only in directory structure */
458 	unsigned int i_pino;		/* parent inode number */
459 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
460 
461 	/* Use below internally in f2fs*/
462 	unsigned long flags;		/* use to pass per-file flags */
463 	struct rw_semaphore i_sem;	/* protect fi info */
464 	atomic_t dirty_pages;		/* # of dirty pages */
465 	f2fs_hash_t chash;		/* hash value of given file name */
466 	unsigned int clevel;		/* maximum level of given file name */
467 	struct task_struct *task;	/* lookup and create consistency */
468 	nid_t i_xattr_nid;		/* node id that contains xattrs */
469 	loff_t	last_disk_size;		/* lastly written file size */
470 
471 	struct list_head dirty_list;	/* dirty list for dirs and files */
472 	struct list_head gdirty_list;	/* linked in global dirty list */
473 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
474 	struct mutex inmem_lock;	/* lock for inmemory pages */
475 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
476 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
477 };
478 
479 static inline void get_extent_info(struct extent_info *ext,
480 					struct f2fs_extent *i_ext)
481 {
482 	ext->fofs = le32_to_cpu(i_ext->fofs);
483 	ext->blk = le32_to_cpu(i_ext->blk);
484 	ext->len = le32_to_cpu(i_ext->len);
485 }
486 
487 static inline void set_raw_extent(struct extent_info *ext,
488 					struct f2fs_extent *i_ext)
489 {
490 	i_ext->fofs = cpu_to_le32(ext->fofs);
491 	i_ext->blk = cpu_to_le32(ext->blk);
492 	i_ext->len = cpu_to_le32(ext->len);
493 }
494 
495 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
496 						u32 blk, unsigned int len)
497 {
498 	ei->fofs = fofs;
499 	ei->blk = blk;
500 	ei->len = len;
501 }
502 
503 static inline bool __is_extent_mergeable(struct extent_info *back,
504 						struct extent_info *front)
505 {
506 	return (back->fofs + back->len == front->fofs &&
507 			back->blk + back->len == front->blk);
508 }
509 
510 static inline bool __is_back_mergeable(struct extent_info *cur,
511 						struct extent_info *back)
512 {
513 	return __is_extent_mergeable(back, cur);
514 }
515 
516 static inline bool __is_front_mergeable(struct extent_info *cur,
517 						struct extent_info *front)
518 {
519 	return __is_extent_mergeable(cur, front);
520 }
521 
522 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
523 static inline void __try_update_largest_extent(struct inode *inode,
524 			struct extent_tree *et, struct extent_node *en)
525 {
526 	if (en->ei.len > et->largest.len) {
527 		et->largest = en->ei;
528 		f2fs_mark_inode_dirty_sync(inode, true);
529 	}
530 }
531 
532 enum nid_list {
533 	FREE_NID_LIST,
534 	ALLOC_NID_LIST,
535 	MAX_NID_LIST,
536 };
537 
538 struct f2fs_nm_info {
539 	block_t nat_blkaddr;		/* base disk address of NAT */
540 	nid_t max_nid;			/* maximum possible node ids */
541 	nid_t available_nids;		/* # of available node ids */
542 	nid_t next_scan_nid;		/* the next nid to be scanned */
543 	unsigned int ram_thresh;	/* control the memory footprint */
544 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
545 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
546 
547 	/* NAT cache management */
548 	struct radix_tree_root nat_root;/* root of the nat entry cache */
549 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
550 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
551 	struct list_head nat_entries;	/* cached nat entry list (clean) */
552 	unsigned int nat_cnt;		/* the # of cached nat entries */
553 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
554 	unsigned int nat_blocks;	/* # of nat blocks */
555 
556 	/* free node ids management */
557 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
558 	struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
559 	unsigned int nid_cnt[MAX_NID_LIST];	/* the number of free node id */
560 	spinlock_t nid_list_lock;	/* protect nid lists ops */
561 	struct mutex build_lock;	/* lock for build free nids */
562 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
563 	unsigned char *nat_block_bitmap;
564 	unsigned short *free_nid_count;	/* free nid count of NAT block */
565 	spinlock_t free_nid_lock;	/* protect updating of nid count */
566 
567 	/* for checkpoint */
568 	char *nat_bitmap;		/* NAT bitmap pointer */
569 
570 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
571 	unsigned char *nat_bits;	/* NAT bits blocks */
572 	unsigned char *full_nat_bits;	/* full NAT pages */
573 	unsigned char *empty_nat_bits;	/* empty NAT pages */
574 #ifdef CONFIG_F2FS_CHECK_FS
575 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
576 #endif
577 	int bitmap_size;		/* bitmap size */
578 };
579 
580 /*
581  * this structure is used as one of function parameters.
582  * all the information are dedicated to a given direct node block determined
583  * by the data offset in a file.
584  */
585 struct dnode_of_data {
586 	struct inode *inode;		/* vfs inode pointer */
587 	struct page *inode_page;	/* its inode page, NULL is possible */
588 	struct page *node_page;		/* cached direct node page */
589 	nid_t nid;			/* node id of the direct node block */
590 	unsigned int ofs_in_node;	/* data offset in the node page */
591 	bool inode_page_locked;		/* inode page is locked or not */
592 	bool node_changed;		/* is node block changed */
593 	char cur_level;			/* level of hole node page */
594 	char max_level;			/* level of current page located */
595 	block_t	data_blkaddr;		/* block address of the node block */
596 };
597 
598 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
599 		struct page *ipage, struct page *npage, nid_t nid)
600 {
601 	memset(dn, 0, sizeof(*dn));
602 	dn->inode = inode;
603 	dn->inode_page = ipage;
604 	dn->node_page = npage;
605 	dn->nid = nid;
606 }
607 
608 /*
609  * For SIT manager
610  *
611  * By default, there are 6 active log areas across the whole main area.
612  * When considering hot and cold data separation to reduce cleaning overhead,
613  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
614  * respectively.
615  * In the current design, you should not change the numbers intentionally.
616  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
617  * logs individually according to the underlying devices. (default: 6)
618  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
619  * data and 8 for node logs.
620  */
621 #define	NR_CURSEG_DATA_TYPE	(3)
622 #define NR_CURSEG_NODE_TYPE	(3)
623 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
624 
625 enum {
626 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
627 	CURSEG_WARM_DATA,	/* data blocks */
628 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
629 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
630 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
631 	CURSEG_COLD_NODE,	/* indirect node blocks */
632 	NO_CHECK_TYPE,
633 };
634 
635 struct flush_cmd {
636 	struct completion wait;
637 	struct llist_node llnode;
638 	int ret;
639 };
640 
641 struct flush_cmd_control {
642 	struct task_struct *f2fs_issue_flush;	/* flush thread */
643 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
644 	atomic_t submit_flush;			/* # of issued flushes */
645 	struct llist_head issue_list;		/* list for command issue */
646 	struct llist_node *dispatch_list;	/* list for command dispatch */
647 };
648 
649 struct f2fs_sm_info {
650 	struct sit_info *sit_info;		/* whole segment information */
651 	struct free_segmap_info *free_info;	/* free segment information */
652 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
653 	struct curseg_info *curseg_array;	/* active segment information */
654 
655 	block_t seg0_blkaddr;		/* block address of 0'th segment */
656 	block_t main_blkaddr;		/* start block address of main area */
657 	block_t ssa_blkaddr;		/* start block address of SSA area */
658 
659 	unsigned int segment_count;	/* total # of segments */
660 	unsigned int main_segments;	/* # of segments in main area */
661 	unsigned int reserved_segments;	/* # of reserved segments */
662 	unsigned int ovp_segments;	/* # of overprovision segments */
663 
664 	/* a threshold to reclaim prefree segments */
665 	unsigned int rec_prefree_segments;
666 
667 	/* for batched trimming */
668 	unsigned int trim_sections;		/* # of sections to trim */
669 
670 	struct list_head sit_entry_set;	/* sit entry set list */
671 
672 	unsigned int ipu_policy;	/* in-place-update policy */
673 	unsigned int min_ipu_util;	/* in-place-update threshold */
674 	unsigned int min_fsync_blocks;	/* threshold for fsync */
675 
676 	/* for flush command control */
677 	struct flush_cmd_control *fcc_info;
678 
679 	/* for discard command control */
680 	struct discard_cmd_control *dcc_info;
681 };
682 
683 /*
684  * For superblock
685  */
686 /*
687  * COUNT_TYPE for monitoring
688  *
689  * f2fs monitors the number of several block types such as on-writeback,
690  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
691  */
692 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
693 enum count_type {
694 	F2FS_DIRTY_DENTS,
695 	F2FS_DIRTY_DATA,
696 	F2FS_DIRTY_NODES,
697 	F2FS_DIRTY_META,
698 	F2FS_INMEM_PAGES,
699 	F2FS_DIRTY_IMETA,
700 	F2FS_WB_CP_DATA,
701 	F2FS_WB_DATA,
702 	NR_COUNT_TYPE,
703 };
704 
705 /*
706  * The below are the page types of bios used in submit_bio().
707  * The available types are:
708  * DATA			User data pages. It operates as async mode.
709  * NODE			Node pages. It operates as async mode.
710  * META			FS metadata pages such as SIT, NAT, CP.
711  * NR_PAGE_TYPE		The number of page types.
712  * META_FLUSH		Make sure the previous pages are written
713  *			with waiting the bio's completion
714  * ...			Only can be used with META.
715  */
716 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
717 enum page_type {
718 	DATA,
719 	NODE,
720 	META,
721 	NR_PAGE_TYPE,
722 	META_FLUSH,
723 	INMEM,		/* the below types are used by tracepoints only. */
724 	INMEM_DROP,
725 	INMEM_REVOKE,
726 	IPU,
727 	OPU,
728 };
729 
730 struct f2fs_io_info {
731 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
732 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
733 	int op;			/* contains REQ_OP_ */
734 	int op_flags;		/* req_flag_bits */
735 	block_t new_blkaddr;	/* new block address to be written */
736 	block_t old_blkaddr;	/* old block address before Cow */
737 	struct page *page;	/* page to be written */
738 	struct page *encrypted_page;	/* encrypted page */
739 	bool submitted;		/* indicate IO submission */
740 };
741 
742 #define is_read_io(rw) (rw == READ)
743 struct f2fs_bio_info {
744 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
745 	struct bio *bio;		/* bios to merge */
746 	sector_t last_block_in_bio;	/* last block number */
747 	struct f2fs_io_info fio;	/* store buffered io info. */
748 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
749 };
750 
751 #define FDEV(i)				(sbi->devs[i])
752 #define RDEV(i)				(raw_super->devs[i])
753 struct f2fs_dev_info {
754 	struct block_device *bdev;
755 	char path[MAX_PATH_LEN];
756 	unsigned int total_segments;
757 	block_t start_blk;
758 	block_t end_blk;
759 #ifdef CONFIG_BLK_DEV_ZONED
760 	unsigned int nr_blkz;			/* Total number of zones */
761 	u8 *blkz_type;				/* Array of zones type */
762 #endif
763 };
764 
765 enum inode_type {
766 	DIR_INODE,			/* for dirty dir inode */
767 	FILE_INODE,			/* for dirty regular/symlink inode */
768 	DIRTY_META,			/* for all dirtied inode metadata */
769 	NR_INODE_TYPE,
770 };
771 
772 /* for inner inode cache management */
773 struct inode_management {
774 	struct radix_tree_root ino_root;	/* ino entry array */
775 	spinlock_t ino_lock;			/* for ino entry lock */
776 	struct list_head ino_list;		/* inode list head */
777 	unsigned long ino_num;			/* number of entries */
778 };
779 
780 /* For s_flag in struct f2fs_sb_info */
781 enum {
782 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
783 	SBI_IS_CLOSE,				/* specify unmounting */
784 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
785 	SBI_POR_DOING,				/* recovery is doing or not */
786 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
787 	SBI_NEED_CP,				/* need to checkpoint */
788 };
789 
790 enum {
791 	CP_TIME,
792 	REQ_TIME,
793 	MAX_TIME,
794 };
795 
796 struct f2fs_sb_info {
797 	struct super_block *sb;			/* pointer to VFS super block */
798 	struct proc_dir_entry *s_proc;		/* proc entry */
799 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
800 	int valid_super_block;			/* valid super block no */
801 	unsigned long s_flag;				/* flags for sbi */
802 
803 #ifdef CONFIG_BLK_DEV_ZONED
804 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
805 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
806 #endif
807 
808 	/* for node-related operations */
809 	struct f2fs_nm_info *nm_info;		/* node manager */
810 	struct inode *node_inode;		/* cache node blocks */
811 
812 	/* for segment-related operations */
813 	struct f2fs_sm_info *sm_info;		/* segment manager */
814 
815 	/* for bio operations */
816 	struct f2fs_bio_info read_io;			/* for read bios */
817 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
818 	struct mutex wio_mutex[NODE + 1];	/* bio ordering for NODE/DATA */
819 	int write_io_size_bits;			/* Write IO size bits */
820 	mempool_t *write_io_dummy;		/* Dummy pages */
821 
822 	/* for checkpoint */
823 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
824 	int cur_cp_pack;			/* remain current cp pack */
825 	spinlock_t cp_lock;			/* for flag in ckpt */
826 	struct inode *meta_inode;		/* cache meta blocks */
827 	struct mutex cp_mutex;			/* checkpoint procedure lock */
828 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
829 	struct rw_semaphore node_write;		/* locking node writes */
830 	wait_queue_head_t cp_wait;
831 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
832 	long interval_time[MAX_TIME];		/* to store thresholds */
833 
834 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
835 
836 	/* for orphan inode, use 0'th array */
837 	unsigned int max_orphans;		/* max orphan inodes */
838 
839 	/* for inode management */
840 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
841 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
842 
843 	/* for extent tree cache */
844 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
845 	struct mutex extent_tree_lock;	/* locking extent radix tree */
846 	struct list_head extent_list;		/* lru list for shrinker */
847 	spinlock_t extent_lock;			/* locking extent lru list */
848 	atomic_t total_ext_tree;		/* extent tree count */
849 	struct list_head zombie_list;		/* extent zombie tree list */
850 	atomic_t total_zombie_tree;		/* extent zombie tree count */
851 	atomic_t total_ext_node;		/* extent info count */
852 
853 	/* basic filesystem units */
854 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
855 	unsigned int log_blocksize;		/* log2 block size */
856 	unsigned int blocksize;			/* block size */
857 	unsigned int root_ino_num;		/* root inode number*/
858 	unsigned int node_ino_num;		/* node inode number*/
859 	unsigned int meta_ino_num;		/* meta inode number*/
860 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
861 	unsigned int blocks_per_seg;		/* blocks per segment */
862 	unsigned int segs_per_sec;		/* segments per section */
863 	unsigned int secs_per_zone;		/* sections per zone */
864 	unsigned int total_sections;		/* total section count */
865 	unsigned int total_node_count;		/* total node block count */
866 	unsigned int total_valid_node_count;	/* valid node block count */
867 	loff_t max_file_blocks;			/* max block index of file */
868 	int active_logs;			/* # of active logs */
869 	int dir_level;				/* directory level */
870 
871 	block_t user_block_count;		/* # of user blocks */
872 	block_t total_valid_block_count;	/* # of valid blocks */
873 	block_t discard_blks;			/* discard command candidats */
874 	block_t last_valid_block_count;		/* for recovery */
875 	u32 s_next_generation;			/* for NFS support */
876 
877 	/* # of pages, see count_type */
878 	atomic_t nr_pages[NR_COUNT_TYPE];
879 	/* # of allocated blocks */
880 	struct percpu_counter alloc_valid_block_count;
881 
882 	/* valid inode count */
883 	struct percpu_counter total_valid_inode_count;
884 
885 	struct f2fs_mount_info mount_opt;	/* mount options */
886 
887 	/* for cleaning operations */
888 	struct mutex gc_mutex;			/* mutex for GC */
889 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
890 	unsigned int cur_victim_sec;		/* current victim section num */
891 
892 	/* threshold for converting bg victims for fg */
893 	u64 fggc_threshold;
894 
895 	/* maximum # of trials to find a victim segment for SSR and GC */
896 	unsigned int max_victim_search;
897 
898 	/*
899 	 * for stat information.
900 	 * one is for the LFS mode, and the other is for the SSR mode.
901 	 */
902 #ifdef CONFIG_F2FS_STAT_FS
903 	struct f2fs_stat_info *stat_info;	/* FS status information */
904 	unsigned int segment_count[2];		/* # of allocated segments */
905 	unsigned int block_count[2];		/* # of allocated blocks */
906 	atomic_t inplace_count;		/* # of inplace update */
907 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
908 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
909 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
910 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
911 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
912 	atomic_t inline_inode;			/* # of inline_data inodes */
913 	atomic_t inline_dir;			/* # of inline_dentry inodes */
914 	atomic_t aw_cnt;			/* # of atomic writes */
915 	atomic_t max_aw_cnt;			/* max # of atomic writes */
916 	int bg_gc;				/* background gc calls */
917 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
918 #endif
919 	unsigned int last_victim[2];		/* last victim segment # */
920 	spinlock_t stat_lock;			/* lock for stat operations */
921 
922 	/* For sysfs suppport */
923 	struct kobject s_kobj;
924 	struct completion s_kobj_unregister;
925 
926 	/* For shrinker support */
927 	struct list_head s_list;
928 	int s_ndevs;				/* number of devices */
929 	struct f2fs_dev_info *devs;		/* for device list */
930 	struct mutex umount_mutex;
931 	unsigned int shrinker_run_no;
932 
933 	/* For write statistics */
934 	u64 sectors_written_start;
935 	u64 kbytes_written;
936 
937 	/* Reference to checksum algorithm driver via cryptoapi */
938 	struct crypto_shash *s_chksum_driver;
939 
940 	/* For fault injection */
941 #ifdef CONFIG_F2FS_FAULT_INJECTION
942 	struct f2fs_fault_info fault_info;
943 #endif
944 };
945 
946 #ifdef CONFIG_F2FS_FAULT_INJECTION
947 #define f2fs_show_injection_info(type)				\
948 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
949 		KERN_INFO, fault_name[type],			\
950 		__func__, __builtin_return_address(0))
951 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
952 {
953 	struct f2fs_fault_info *ffi = &sbi->fault_info;
954 
955 	if (!ffi->inject_rate)
956 		return false;
957 
958 	if (!IS_FAULT_SET(ffi, type))
959 		return false;
960 
961 	atomic_inc(&ffi->inject_ops);
962 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
963 		atomic_set(&ffi->inject_ops, 0);
964 		return true;
965 	}
966 	return false;
967 }
968 #endif
969 
970 /* For write statistics. Suppose sector size is 512 bytes,
971  * and the return value is in kbytes. s is of struct f2fs_sb_info.
972  */
973 #define BD_PART_WRITTEN(s)						 \
974 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
975 		s->sectors_written_start) >> 1)
976 
977 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
978 {
979 	sbi->last_time[type] = jiffies;
980 }
981 
982 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
983 {
984 	struct timespec ts = {sbi->interval_time[type], 0};
985 	unsigned long interval = timespec_to_jiffies(&ts);
986 
987 	return time_after(jiffies, sbi->last_time[type] + interval);
988 }
989 
990 static inline bool is_idle(struct f2fs_sb_info *sbi)
991 {
992 	struct block_device *bdev = sbi->sb->s_bdev;
993 	struct request_queue *q = bdev_get_queue(bdev);
994 	struct request_list *rl = &q->root_rl;
995 
996 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
997 		return 0;
998 
999 	return f2fs_time_over(sbi, REQ_TIME);
1000 }
1001 
1002 /*
1003  * Inline functions
1004  */
1005 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1006 			   unsigned int length)
1007 {
1008 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1009 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
1010 	int err;
1011 
1012 	shash->tfm = sbi->s_chksum_driver;
1013 	shash->flags = 0;
1014 	*ctx = F2FS_SUPER_MAGIC;
1015 
1016 	err = crypto_shash_update(shash, address, length);
1017 	BUG_ON(err);
1018 
1019 	return *ctx;
1020 }
1021 
1022 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1023 				  void *buf, size_t buf_size)
1024 {
1025 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1026 }
1027 
1028 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1029 {
1030 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1031 }
1032 
1033 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1034 {
1035 	return sb->s_fs_info;
1036 }
1037 
1038 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1039 {
1040 	return F2FS_SB(inode->i_sb);
1041 }
1042 
1043 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1044 {
1045 	return F2FS_I_SB(mapping->host);
1046 }
1047 
1048 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1049 {
1050 	return F2FS_M_SB(page->mapping);
1051 }
1052 
1053 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1054 {
1055 	return (struct f2fs_super_block *)(sbi->raw_super);
1056 }
1057 
1058 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1059 {
1060 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1061 }
1062 
1063 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1064 {
1065 	return (struct f2fs_node *)page_address(page);
1066 }
1067 
1068 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1069 {
1070 	return &((struct f2fs_node *)page_address(page))->i;
1071 }
1072 
1073 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1074 {
1075 	return (struct f2fs_nm_info *)(sbi->nm_info);
1076 }
1077 
1078 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1079 {
1080 	return (struct f2fs_sm_info *)(sbi->sm_info);
1081 }
1082 
1083 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1084 {
1085 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1086 }
1087 
1088 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1089 {
1090 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1091 }
1092 
1093 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1094 {
1095 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1096 }
1097 
1098 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1099 {
1100 	return sbi->meta_inode->i_mapping;
1101 }
1102 
1103 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1104 {
1105 	return sbi->node_inode->i_mapping;
1106 }
1107 
1108 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1109 {
1110 	return test_bit(type, &sbi->s_flag);
1111 }
1112 
1113 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1114 {
1115 	set_bit(type, &sbi->s_flag);
1116 }
1117 
1118 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1119 {
1120 	clear_bit(type, &sbi->s_flag);
1121 }
1122 
1123 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1124 {
1125 	return le64_to_cpu(cp->checkpoint_ver);
1126 }
1127 
1128 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1129 {
1130 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1131 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1132 }
1133 
1134 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1135 {
1136 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1137 
1138 	return ckpt_flags & f;
1139 }
1140 
1141 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1142 {
1143 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1144 }
1145 
1146 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1147 {
1148 	unsigned int ckpt_flags;
1149 
1150 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1151 	ckpt_flags |= f;
1152 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1153 }
1154 
1155 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1156 {
1157 	spin_lock(&sbi->cp_lock);
1158 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1159 	spin_unlock(&sbi->cp_lock);
1160 }
1161 
1162 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1163 {
1164 	unsigned int ckpt_flags;
1165 
1166 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1167 	ckpt_flags &= (~f);
1168 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1169 }
1170 
1171 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1172 {
1173 	spin_lock(&sbi->cp_lock);
1174 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1175 	spin_unlock(&sbi->cp_lock);
1176 }
1177 
1178 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1179 {
1180 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1181 
1182 	if (lock)
1183 		spin_lock(&sbi->cp_lock);
1184 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1185 	kfree(NM_I(sbi)->nat_bits);
1186 	NM_I(sbi)->nat_bits = NULL;
1187 	if (lock)
1188 		spin_unlock(&sbi->cp_lock);
1189 }
1190 
1191 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1192 					struct cp_control *cpc)
1193 {
1194 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1195 
1196 	return (cpc) ? (cpc->reason == CP_UMOUNT) && set : set;
1197 }
1198 
1199 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1200 {
1201 	down_read(&sbi->cp_rwsem);
1202 }
1203 
1204 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1205 {
1206 	up_read(&sbi->cp_rwsem);
1207 }
1208 
1209 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1210 {
1211 	down_write(&sbi->cp_rwsem);
1212 }
1213 
1214 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1215 {
1216 	up_write(&sbi->cp_rwsem);
1217 }
1218 
1219 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1220 {
1221 	int reason = CP_SYNC;
1222 
1223 	if (test_opt(sbi, FASTBOOT))
1224 		reason = CP_FASTBOOT;
1225 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1226 		reason = CP_UMOUNT;
1227 	return reason;
1228 }
1229 
1230 static inline bool __remain_node_summaries(int reason)
1231 {
1232 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1233 }
1234 
1235 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1236 {
1237 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1238 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1239 }
1240 
1241 /*
1242  * Check whether the given nid is within node id range.
1243  */
1244 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1245 {
1246 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1247 		return -EINVAL;
1248 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1249 		return -EINVAL;
1250 	return 0;
1251 }
1252 
1253 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1254 
1255 /*
1256  * Check whether the inode has blocks or not
1257  */
1258 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1259 {
1260 	if (F2FS_I(inode)->i_xattr_nid)
1261 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1262 	else
1263 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1264 }
1265 
1266 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1267 {
1268 	return ofs == XATTR_NODE_OFFSET;
1269 }
1270 
1271 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1272 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1273 				 struct inode *inode, blkcnt_t *count)
1274 {
1275 	blkcnt_t diff;
1276 
1277 #ifdef CONFIG_F2FS_FAULT_INJECTION
1278 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1279 		f2fs_show_injection_info(FAULT_BLOCK);
1280 		return false;
1281 	}
1282 #endif
1283 	/*
1284 	 * let's increase this in prior to actual block count change in order
1285 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1286 	 */
1287 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1288 
1289 	spin_lock(&sbi->stat_lock);
1290 	sbi->total_valid_block_count += (block_t)(*count);
1291 	if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1292 		diff = sbi->total_valid_block_count - sbi->user_block_count;
1293 		*count -= diff;
1294 		sbi->total_valid_block_count = sbi->user_block_count;
1295 		if (!*count) {
1296 			spin_unlock(&sbi->stat_lock);
1297 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1298 			return false;
1299 		}
1300 	}
1301 	spin_unlock(&sbi->stat_lock);
1302 
1303 	f2fs_i_blocks_write(inode, *count, true);
1304 	return true;
1305 }
1306 
1307 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1308 						struct inode *inode,
1309 						blkcnt_t count)
1310 {
1311 	spin_lock(&sbi->stat_lock);
1312 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1313 	f2fs_bug_on(sbi, inode->i_blocks < count);
1314 	sbi->total_valid_block_count -= (block_t)count;
1315 	spin_unlock(&sbi->stat_lock);
1316 	f2fs_i_blocks_write(inode, count, false);
1317 }
1318 
1319 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1320 {
1321 	atomic_inc(&sbi->nr_pages[count_type]);
1322 
1323 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1324 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1325 		return;
1326 
1327 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1328 }
1329 
1330 static inline void inode_inc_dirty_pages(struct inode *inode)
1331 {
1332 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1333 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1334 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1335 }
1336 
1337 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1338 {
1339 	atomic_dec(&sbi->nr_pages[count_type]);
1340 }
1341 
1342 static inline void inode_dec_dirty_pages(struct inode *inode)
1343 {
1344 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1345 			!S_ISLNK(inode->i_mode))
1346 		return;
1347 
1348 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1349 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1350 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1351 }
1352 
1353 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1354 {
1355 	return atomic_read(&sbi->nr_pages[count_type]);
1356 }
1357 
1358 static inline int get_dirty_pages(struct inode *inode)
1359 {
1360 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1361 }
1362 
1363 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1364 {
1365 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1366 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1367 						sbi->log_blocks_per_seg;
1368 
1369 	return segs / sbi->segs_per_sec;
1370 }
1371 
1372 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1373 {
1374 	return sbi->total_valid_block_count;
1375 }
1376 
1377 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1378 {
1379 	return sbi->discard_blks;
1380 }
1381 
1382 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1383 {
1384 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1385 
1386 	/* return NAT or SIT bitmap */
1387 	if (flag == NAT_BITMAP)
1388 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1389 	else if (flag == SIT_BITMAP)
1390 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1391 
1392 	return 0;
1393 }
1394 
1395 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1396 {
1397 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1398 }
1399 
1400 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1401 {
1402 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1403 	int offset;
1404 
1405 	if (__cp_payload(sbi) > 0) {
1406 		if (flag == NAT_BITMAP)
1407 			return &ckpt->sit_nat_version_bitmap;
1408 		else
1409 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1410 	} else {
1411 		offset = (flag == NAT_BITMAP) ?
1412 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1413 		return &ckpt->sit_nat_version_bitmap + offset;
1414 	}
1415 }
1416 
1417 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1418 {
1419 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1420 
1421 	if (sbi->cur_cp_pack == 2)
1422 		start_addr += sbi->blocks_per_seg;
1423 	return start_addr;
1424 }
1425 
1426 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1427 {
1428 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1429 
1430 	if (sbi->cur_cp_pack == 1)
1431 		start_addr += sbi->blocks_per_seg;
1432 	return start_addr;
1433 }
1434 
1435 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1436 {
1437 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1438 }
1439 
1440 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1441 {
1442 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1443 }
1444 
1445 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1446 						struct inode *inode)
1447 {
1448 	block_t	valid_block_count;
1449 	unsigned int valid_node_count;
1450 
1451 	spin_lock(&sbi->stat_lock);
1452 
1453 	valid_block_count = sbi->total_valid_block_count + 1;
1454 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1455 		spin_unlock(&sbi->stat_lock);
1456 		return false;
1457 	}
1458 
1459 	valid_node_count = sbi->total_valid_node_count + 1;
1460 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1461 		spin_unlock(&sbi->stat_lock);
1462 		return false;
1463 	}
1464 
1465 	if (inode)
1466 		f2fs_i_blocks_write(inode, 1, true);
1467 
1468 	sbi->total_valid_node_count++;
1469 	sbi->total_valid_block_count++;
1470 	spin_unlock(&sbi->stat_lock);
1471 
1472 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1473 	return true;
1474 }
1475 
1476 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1477 						struct inode *inode)
1478 {
1479 	spin_lock(&sbi->stat_lock);
1480 
1481 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1482 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1483 	f2fs_bug_on(sbi, !inode->i_blocks);
1484 
1485 	f2fs_i_blocks_write(inode, 1, false);
1486 	sbi->total_valid_node_count--;
1487 	sbi->total_valid_block_count--;
1488 
1489 	spin_unlock(&sbi->stat_lock);
1490 }
1491 
1492 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1493 {
1494 	return sbi->total_valid_node_count;
1495 }
1496 
1497 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1498 {
1499 	percpu_counter_inc(&sbi->total_valid_inode_count);
1500 }
1501 
1502 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1503 {
1504 	percpu_counter_dec(&sbi->total_valid_inode_count);
1505 }
1506 
1507 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1508 {
1509 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1510 }
1511 
1512 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1513 						pgoff_t index, bool for_write)
1514 {
1515 #ifdef CONFIG_F2FS_FAULT_INJECTION
1516 	struct page *page = find_lock_page(mapping, index);
1517 
1518 	if (page)
1519 		return page;
1520 
1521 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1522 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1523 		return NULL;
1524 	}
1525 #endif
1526 	if (!for_write)
1527 		return grab_cache_page(mapping, index);
1528 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1529 }
1530 
1531 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1532 {
1533 	char *src_kaddr = kmap(src);
1534 	char *dst_kaddr = kmap(dst);
1535 
1536 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1537 	kunmap(dst);
1538 	kunmap(src);
1539 }
1540 
1541 static inline void f2fs_put_page(struct page *page, int unlock)
1542 {
1543 	if (!page)
1544 		return;
1545 
1546 	if (unlock) {
1547 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1548 		unlock_page(page);
1549 	}
1550 	put_page(page);
1551 }
1552 
1553 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1554 {
1555 	if (dn->node_page)
1556 		f2fs_put_page(dn->node_page, 1);
1557 	if (dn->inode_page && dn->node_page != dn->inode_page)
1558 		f2fs_put_page(dn->inode_page, 0);
1559 	dn->node_page = NULL;
1560 	dn->inode_page = NULL;
1561 }
1562 
1563 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1564 					size_t size)
1565 {
1566 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1567 }
1568 
1569 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1570 						gfp_t flags)
1571 {
1572 	void *entry;
1573 
1574 	entry = kmem_cache_alloc(cachep, flags);
1575 	if (!entry)
1576 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1577 	return entry;
1578 }
1579 
1580 static inline struct bio *f2fs_bio_alloc(int npages)
1581 {
1582 	struct bio *bio;
1583 
1584 	/* No failure on bio allocation */
1585 	bio = bio_alloc(GFP_NOIO, npages);
1586 	if (!bio)
1587 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1588 	return bio;
1589 }
1590 
1591 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1592 				unsigned long index, void *item)
1593 {
1594 	while (radix_tree_insert(root, index, item))
1595 		cond_resched();
1596 }
1597 
1598 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1599 
1600 static inline bool IS_INODE(struct page *page)
1601 {
1602 	struct f2fs_node *p = F2FS_NODE(page);
1603 
1604 	return RAW_IS_INODE(p);
1605 }
1606 
1607 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1608 {
1609 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1610 }
1611 
1612 static inline block_t datablock_addr(struct page *node_page,
1613 		unsigned int offset)
1614 {
1615 	struct f2fs_node *raw_node;
1616 	__le32 *addr_array;
1617 
1618 	raw_node = F2FS_NODE(node_page);
1619 	addr_array = blkaddr_in_node(raw_node);
1620 	return le32_to_cpu(addr_array[offset]);
1621 }
1622 
1623 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1624 {
1625 	int mask;
1626 
1627 	addr += (nr >> 3);
1628 	mask = 1 << (7 - (nr & 0x07));
1629 	return mask & *addr;
1630 }
1631 
1632 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1633 {
1634 	int mask;
1635 
1636 	addr += (nr >> 3);
1637 	mask = 1 << (7 - (nr & 0x07));
1638 	*addr |= mask;
1639 }
1640 
1641 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1642 {
1643 	int mask;
1644 
1645 	addr += (nr >> 3);
1646 	mask = 1 << (7 - (nr & 0x07));
1647 	*addr &= ~mask;
1648 }
1649 
1650 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1651 {
1652 	int mask;
1653 	int ret;
1654 
1655 	addr += (nr >> 3);
1656 	mask = 1 << (7 - (nr & 0x07));
1657 	ret = mask & *addr;
1658 	*addr |= mask;
1659 	return ret;
1660 }
1661 
1662 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1663 {
1664 	int mask;
1665 	int ret;
1666 
1667 	addr += (nr >> 3);
1668 	mask = 1 << (7 - (nr & 0x07));
1669 	ret = mask & *addr;
1670 	*addr &= ~mask;
1671 	return ret;
1672 }
1673 
1674 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1675 {
1676 	int mask;
1677 
1678 	addr += (nr >> 3);
1679 	mask = 1 << (7 - (nr & 0x07));
1680 	*addr ^= mask;
1681 }
1682 
1683 /* used for f2fs_inode_info->flags */
1684 enum {
1685 	FI_NEW_INODE,		/* indicate newly allocated inode */
1686 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1687 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1688 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1689 	FI_INC_LINK,		/* need to increment i_nlink */
1690 	FI_ACL_MODE,		/* indicate acl mode */
1691 	FI_NO_ALLOC,		/* should not allocate any blocks */
1692 	FI_FREE_NID,		/* free allocated nide */
1693 	FI_NO_EXTENT,		/* not to use the extent cache */
1694 	FI_INLINE_XATTR,	/* used for inline xattr */
1695 	FI_INLINE_DATA,		/* used for inline data*/
1696 	FI_INLINE_DENTRY,	/* used for inline dentry */
1697 	FI_APPEND_WRITE,	/* inode has appended data */
1698 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1699 	FI_NEED_IPU,		/* used for ipu per file */
1700 	FI_ATOMIC_FILE,		/* indicate atomic file */
1701 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
1702 	FI_VOLATILE_FILE,	/* indicate volatile file */
1703 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1704 	FI_DROP_CACHE,		/* drop dirty page cache */
1705 	FI_DATA_EXIST,		/* indicate data exists */
1706 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1707 	FI_DO_DEFRAG,		/* indicate defragment is running */
1708 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1709 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
1710 };
1711 
1712 static inline void __mark_inode_dirty_flag(struct inode *inode,
1713 						int flag, bool set)
1714 {
1715 	switch (flag) {
1716 	case FI_INLINE_XATTR:
1717 	case FI_INLINE_DATA:
1718 	case FI_INLINE_DENTRY:
1719 		if (set)
1720 			return;
1721 	case FI_DATA_EXIST:
1722 	case FI_INLINE_DOTS:
1723 		f2fs_mark_inode_dirty_sync(inode, true);
1724 	}
1725 }
1726 
1727 static inline void set_inode_flag(struct inode *inode, int flag)
1728 {
1729 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1730 		set_bit(flag, &F2FS_I(inode)->flags);
1731 	__mark_inode_dirty_flag(inode, flag, true);
1732 }
1733 
1734 static inline int is_inode_flag_set(struct inode *inode, int flag)
1735 {
1736 	return test_bit(flag, &F2FS_I(inode)->flags);
1737 }
1738 
1739 static inline void clear_inode_flag(struct inode *inode, int flag)
1740 {
1741 	if (test_bit(flag, &F2FS_I(inode)->flags))
1742 		clear_bit(flag, &F2FS_I(inode)->flags);
1743 	__mark_inode_dirty_flag(inode, flag, false);
1744 }
1745 
1746 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1747 {
1748 	F2FS_I(inode)->i_acl_mode = mode;
1749 	set_inode_flag(inode, FI_ACL_MODE);
1750 	f2fs_mark_inode_dirty_sync(inode, false);
1751 }
1752 
1753 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1754 {
1755 	if (inc)
1756 		inc_nlink(inode);
1757 	else
1758 		drop_nlink(inode);
1759 	f2fs_mark_inode_dirty_sync(inode, true);
1760 }
1761 
1762 static inline void f2fs_i_blocks_write(struct inode *inode,
1763 					blkcnt_t diff, bool add)
1764 {
1765 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1766 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1767 
1768 	inode->i_blocks = add ? inode->i_blocks + diff :
1769 				inode->i_blocks - diff;
1770 	f2fs_mark_inode_dirty_sync(inode, true);
1771 	if (clean || recover)
1772 		set_inode_flag(inode, FI_AUTO_RECOVER);
1773 }
1774 
1775 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1776 {
1777 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1778 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1779 
1780 	if (i_size_read(inode) == i_size)
1781 		return;
1782 
1783 	i_size_write(inode, i_size);
1784 	f2fs_mark_inode_dirty_sync(inode, true);
1785 	if (clean || recover)
1786 		set_inode_flag(inode, FI_AUTO_RECOVER);
1787 }
1788 
1789 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1790 {
1791 	F2FS_I(inode)->i_current_depth = depth;
1792 	f2fs_mark_inode_dirty_sync(inode, true);
1793 }
1794 
1795 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1796 {
1797 	F2FS_I(inode)->i_xattr_nid = xnid;
1798 	f2fs_mark_inode_dirty_sync(inode, true);
1799 }
1800 
1801 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1802 {
1803 	F2FS_I(inode)->i_pino = pino;
1804 	f2fs_mark_inode_dirty_sync(inode, true);
1805 }
1806 
1807 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1808 {
1809 	struct f2fs_inode_info *fi = F2FS_I(inode);
1810 
1811 	if (ri->i_inline & F2FS_INLINE_XATTR)
1812 		set_bit(FI_INLINE_XATTR, &fi->flags);
1813 	if (ri->i_inline & F2FS_INLINE_DATA)
1814 		set_bit(FI_INLINE_DATA, &fi->flags);
1815 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1816 		set_bit(FI_INLINE_DENTRY, &fi->flags);
1817 	if (ri->i_inline & F2FS_DATA_EXIST)
1818 		set_bit(FI_DATA_EXIST, &fi->flags);
1819 	if (ri->i_inline & F2FS_INLINE_DOTS)
1820 		set_bit(FI_INLINE_DOTS, &fi->flags);
1821 }
1822 
1823 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1824 {
1825 	ri->i_inline = 0;
1826 
1827 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1828 		ri->i_inline |= F2FS_INLINE_XATTR;
1829 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
1830 		ri->i_inline |= F2FS_INLINE_DATA;
1831 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1832 		ri->i_inline |= F2FS_INLINE_DENTRY;
1833 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
1834 		ri->i_inline |= F2FS_DATA_EXIST;
1835 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1836 		ri->i_inline |= F2FS_INLINE_DOTS;
1837 }
1838 
1839 static inline int f2fs_has_inline_xattr(struct inode *inode)
1840 {
1841 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
1842 }
1843 
1844 static inline unsigned int addrs_per_inode(struct inode *inode)
1845 {
1846 	if (f2fs_has_inline_xattr(inode))
1847 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1848 	return DEF_ADDRS_PER_INODE;
1849 }
1850 
1851 static inline void *inline_xattr_addr(struct page *page)
1852 {
1853 	struct f2fs_inode *ri = F2FS_INODE(page);
1854 
1855 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1856 					F2FS_INLINE_XATTR_ADDRS]);
1857 }
1858 
1859 static inline int inline_xattr_size(struct inode *inode)
1860 {
1861 	if (f2fs_has_inline_xattr(inode))
1862 		return F2FS_INLINE_XATTR_ADDRS << 2;
1863 	else
1864 		return 0;
1865 }
1866 
1867 static inline int f2fs_has_inline_data(struct inode *inode)
1868 {
1869 	return is_inode_flag_set(inode, FI_INLINE_DATA);
1870 }
1871 
1872 static inline void f2fs_clear_inline_inode(struct inode *inode)
1873 {
1874 	clear_inode_flag(inode, FI_INLINE_DATA);
1875 	clear_inode_flag(inode, FI_DATA_EXIST);
1876 }
1877 
1878 static inline int f2fs_exist_data(struct inode *inode)
1879 {
1880 	return is_inode_flag_set(inode, FI_DATA_EXIST);
1881 }
1882 
1883 static inline int f2fs_has_inline_dots(struct inode *inode)
1884 {
1885 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
1886 }
1887 
1888 static inline bool f2fs_is_atomic_file(struct inode *inode)
1889 {
1890 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1891 }
1892 
1893 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
1894 {
1895 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
1896 }
1897 
1898 static inline bool f2fs_is_volatile_file(struct inode *inode)
1899 {
1900 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1901 }
1902 
1903 static inline bool f2fs_is_first_block_written(struct inode *inode)
1904 {
1905 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1906 }
1907 
1908 static inline bool f2fs_is_drop_cache(struct inode *inode)
1909 {
1910 	return is_inode_flag_set(inode, FI_DROP_CACHE);
1911 }
1912 
1913 static inline void *inline_data_addr(struct page *page)
1914 {
1915 	struct f2fs_inode *ri = F2FS_INODE(page);
1916 
1917 	return (void *)&(ri->i_addr[1]);
1918 }
1919 
1920 static inline int f2fs_has_inline_dentry(struct inode *inode)
1921 {
1922 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1923 }
1924 
1925 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1926 {
1927 	if (!f2fs_has_inline_dentry(dir))
1928 		kunmap(page);
1929 }
1930 
1931 static inline int is_file(struct inode *inode, int type)
1932 {
1933 	return F2FS_I(inode)->i_advise & type;
1934 }
1935 
1936 static inline void set_file(struct inode *inode, int type)
1937 {
1938 	F2FS_I(inode)->i_advise |= type;
1939 	f2fs_mark_inode_dirty_sync(inode, true);
1940 }
1941 
1942 static inline void clear_file(struct inode *inode, int type)
1943 {
1944 	F2FS_I(inode)->i_advise &= ~type;
1945 	f2fs_mark_inode_dirty_sync(inode, true);
1946 }
1947 
1948 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1949 {
1950 	if (dsync) {
1951 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1952 		bool ret;
1953 
1954 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1955 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
1956 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1957 		return ret;
1958 	}
1959 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1960 			file_keep_isize(inode) ||
1961 			i_size_read(inode) & PAGE_MASK)
1962 		return false;
1963 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1964 }
1965 
1966 static inline int f2fs_readonly(struct super_block *sb)
1967 {
1968 	return sb->s_flags & MS_RDONLY;
1969 }
1970 
1971 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1972 {
1973 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1974 }
1975 
1976 static inline bool is_dot_dotdot(const struct qstr *str)
1977 {
1978 	if (str->len == 1 && str->name[0] == '.')
1979 		return true;
1980 
1981 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1982 		return true;
1983 
1984 	return false;
1985 }
1986 
1987 static inline bool f2fs_may_extent_tree(struct inode *inode)
1988 {
1989 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1990 			is_inode_flag_set(inode, FI_NO_EXTENT))
1991 		return false;
1992 
1993 	return S_ISREG(inode->i_mode);
1994 }
1995 
1996 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1997 					size_t size, gfp_t flags)
1998 {
1999 #ifdef CONFIG_F2FS_FAULT_INJECTION
2000 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2001 		f2fs_show_injection_info(FAULT_KMALLOC);
2002 		return NULL;
2003 	}
2004 #endif
2005 	return kmalloc(size, flags);
2006 }
2007 
2008 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
2009 {
2010 	void *ret;
2011 
2012 	ret = kmalloc(size, flags | __GFP_NOWARN);
2013 	if (!ret)
2014 		ret = __vmalloc(size, flags, PAGE_KERNEL);
2015 	return ret;
2016 }
2017 
2018 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
2019 {
2020 	void *ret;
2021 
2022 	ret = kzalloc(size, flags | __GFP_NOWARN);
2023 	if (!ret)
2024 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2025 	return ret;
2026 }
2027 
2028 #define get_inode_mode(i) \
2029 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2030 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2031 
2032 /* get offset of first page in next direct node */
2033 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
2034 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
2035 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
2036 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
2037 
2038 /*
2039  * file.c
2040  */
2041 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2042 void truncate_data_blocks(struct dnode_of_data *dn);
2043 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2044 int f2fs_truncate(struct inode *inode);
2045 int f2fs_getattr(const struct path *path, struct kstat *stat,
2046 			u32 request_mask, unsigned int flags);
2047 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2048 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2049 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2050 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2051 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2052 
2053 /*
2054  * inode.c
2055  */
2056 void f2fs_set_inode_flags(struct inode *inode);
2057 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2058 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2059 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2060 int update_inode(struct inode *inode, struct page *node_page);
2061 int update_inode_page(struct inode *inode);
2062 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2063 void f2fs_evict_inode(struct inode *inode);
2064 void handle_failed_inode(struct inode *inode);
2065 
2066 /*
2067  * namei.c
2068  */
2069 struct dentry *f2fs_get_parent(struct dentry *child);
2070 
2071 /*
2072  * dir.c
2073  */
2074 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2075 unsigned char get_de_type(struct f2fs_dir_entry *de);
2076 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2077 			f2fs_hash_t namehash, int *max_slots,
2078 			struct f2fs_dentry_ptr *d);
2079 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2080 			unsigned int start_pos, struct fscrypt_str *fstr);
2081 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2082 			struct f2fs_dentry_ptr *d);
2083 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2084 			const struct qstr *new_name,
2085 			const struct qstr *orig_name, struct page *dpage);
2086 void update_parent_metadata(struct inode *dir, struct inode *inode,
2087 			unsigned int current_depth);
2088 int room_for_filename(const void *bitmap, int slots, int max_slots);
2089 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2090 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2091 			struct fscrypt_name *fname, struct page **res_page);
2092 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2093 			const struct qstr *child, struct page **res_page);
2094 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2095 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2096 			struct page **page);
2097 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2098 			struct page *page, struct inode *inode);
2099 int update_dent_inode(struct inode *inode, struct inode *to,
2100 			const struct qstr *name);
2101 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2102 			const struct qstr *name, f2fs_hash_t name_hash,
2103 			unsigned int bit_pos);
2104 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2105 			const struct qstr *orig_name,
2106 			struct inode *inode, nid_t ino, umode_t mode);
2107 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2108 			struct inode *inode, nid_t ino, umode_t mode);
2109 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2110 			struct inode *inode, nid_t ino, umode_t mode);
2111 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2112 			struct inode *dir, struct inode *inode);
2113 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2114 bool f2fs_empty_dir(struct inode *dir);
2115 
2116 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2117 {
2118 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2119 				inode, inode->i_ino, inode->i_mode);
2120 }
2121 
2122 /*
2123  * super.c
2124  */
2125 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2126 void f2fs_inode_synced(struct inode *inode);
2127 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2128 int f2fs_sync_fs(struct super_block *sb, int sync);
2129 extern __printf(3, 4)
2130 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2131 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2132 
2133 /*
2134  * hash.c
2135  */
2136 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info);
2137 
2138 /*
2139  * node.c
2140  */
2141 struct dnode_of_data;
2142 struct node_info;
2143 
2144 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2145 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2146 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2147 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2148 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2149 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2150 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2151 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2152 int truncate_xattr_node(struct inode *inode, struct page *page);
2153 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2154 int remove_inode_page(struct inode *inode);
2155 struct page *new_inode_page(struct inode *inode);
2156 struct page *new_node_page(struct dnode_of_data *dn,
2157 			unsigned int ofs, struct page *ipage);
2158 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2159 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2160 struct page *get_node_page_ra(struct page *parent, int start);
2161 void move_node_page(struct page *node_page, int gc_type);
2162 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2163 			struct writeback_control *wbc, bool atomic);
2164 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2165 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2166 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2167 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2168 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2169 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2170 void recover_inline_xattr(struct inode *inode, struct page *page);
2171 int recover_xattr_data(struct inode *inode, struct page *page,
2172 			block_t blkaddr);
2173 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2174 int restore_node_summary(struct f2fs_sb_info *sbi,
2175 			unsigned int segno, struct f2fs_summary_block *sum);
2176 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2177 int build_node_manager(struct f2fs_sb_info *sbi);
2178 void destroy_node_manager(struct f2fs_sb_info *sbi);
2179 int __init create_node_manager_caches(void);
2180 void destroy_node_manager_caches(void);
2181 
2182 /*
2183  * segment.c
2184  */
2185 void register_inmem_page(struct inode *inode, struct page *page);
2186 void drop_inmem_pages(struct inode *inode);
2187 int commit_inmem_pages(struct inode *inode);
2188 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2189 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2190 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2191 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2192 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2193 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2194 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2195 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2196 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr);
2197 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2198 void release_discard_addrs(struct f2fs_sb_info *sbi);
2199 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2200 void allocate_new_segments(struct f2fs_sb_info *sbi);
2201 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2202 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2203 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2204 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2205 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2206 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2207 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2208 void rewrite_data_page(struct f2fs_io_info *fio);
2209 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2210 			block_t old_blkaddr, block_t new_blkaddr,
2211 			bool recover_curseg, bool recover_newaddr);
2212 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2213 			block_t old_addr, block_t new_addr,
2214 			unsigned char version, bool recover_curseg,
2215 			bool recover_newaddr);
2216 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2217 			block_t old_blkaddr, block_t *new_blkaddr,
2218 			struct f2fs_summary *sum, int type);
2219 void f2fs_wait_on_page_writeback(struct page *page,
2220 			enum page_type type, bool ordered);
2221 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2222 			block_t blkaddr);
2223 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2224 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2225 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2226 			unsigned int val, int alloc);
2227 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2228 int build_segment_manager(struct f2fs_sb_info *sbi);
2229 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2230 int __init create_segment_manager_caches(void);
2231 void destroy_segment_manager_caches(void);
2232 
2233 /*
2234  * checkpoint.c
2235  */
2236 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2237 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2238 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2239 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2240 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2241 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2242 			int type, bool sync);
2243 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2244 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2245 			long nr_to_write);
2246 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2247 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2248 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2249 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2250 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2251 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2252 void release_orphan_inode(struct f2fs_sb_info *sbi);
2253 void add_orphan_inode(struct inode *inode);
2254 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2255 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2256 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2257 void update_dirty_page(struct inode *inode, struct page *page);
2258 void remove_dirty_inode(struct inode *inode);
2259 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2260 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2261 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2262 int __init create_checkpoint_caches(void);
2263 void destroy_checkpoint_caches(void);
2264 
2265 /*
2266  * data.c
2267  */
2268 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
2269 			int rw);
2270 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
2271 				struct inode *inode, nid_t ino, pgoff_t idx,
2272 				enum page_type type, int rw);
2273 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi);
2274 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2275 int f2fs_submit_page_mbio(struct f2fs_io_info *fio);
2276 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2277 			block_t blk_addr, struct bio *bio);
2278 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2279 void set_data_blkaddr(struct dnode_of_data *dn);
2280 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2281 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2282 int reserve_new_block(struct dnode_of_data *dn);
2283 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2284 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2285 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2286 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2287 			int op_flags, bool for_write);
2288 struct page *find_data_page(struct inode *inode, pgoff_t index);
2289 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2290 			bool for_write);
2291 struct page *get_new_data_page(struct inode *inode,
2292 			struct page *ipage, pgoff_t index, bool new_i_size);
2293 int do_write_data_page(struct f2fs_io_info *fio);
2294 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2295 			int create, int flag);
2296 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2297 			u64 start, u64 len);
2298 void f2fs_set_page_dirty_nobuffers(struct page *page);
2299 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2300 			unsigned int length);
2301 int f2fs_release_page(struct page *page, gfp_t wait);
2302 #ifdef CONFIG_MIGRATION
2303 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2304 			struct page *page, enum migrate_mode mode);
2305 #endif
2306 
2307 /*
2308  * gc.c
2309  */
2310 int start_gc_thread(struct f2fs_sb_info *sbi);
2311 void stop_gc_thread(struct f2fs_sb_info *sbi);
2312 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2313 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background);
2314 void build_gc_manager(struct f2fs_sb_info *sbi);
2315 
2316 /*
2317  * recovery.c
2318  */
2319 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2320 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2321 
2322 /*
2323  * debug.c
2324  */
2325 #ifdef CONFIG_F2FS_STAT_FS
2326 struct f2fs_stat_info {
2327 	struct list_head stat_list;
2328 	struct f2fs_sb_info *sbi;
2329 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2330 	int main_area_segs, main_area_sections, main_area_zones;
2331 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2332 	unsigned long long hit_total, total_ext;
2333 	int ext_tree, zombie_tree, ext_node;
2334 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2335 	int inmem_pages;
2336 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2337 	int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2338 	int total_count, utilization;
2339 	int bg_gc, nr_wb_cp_data, nr_wb_data, nr_flush, nr_discard;
2340 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2341 	int aw_cnt, max_aw_cnt;
2342 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2343 	unsigned int bimodal, avg_vblocks;
2344 	int util_free, util_valid, util_invalid;
2345 	int rsvd_segs, overp_segs;
2346 	int dirty_count, node_pages, meta_pages;
2347 	int prefree_count, call_count, cp_count, bg_cp_count;
2348 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2349 	int bg_node_segs, bg_data_segs;
2350 	int tot_blks, data_blks, node_blks;
2351 	int bg_data_blks, bg_node_blks;
2352 	int curseg[NR_CURSEG_TYPE];
2353 	int cursec[NR_CURSEG_TYPE];
2354 	int curzone[NR_CURSEG_TYPE];
2355 
2356 	unsigned int segment_count[2];
2357 	unsigned int block_count[2];
2358 	unsigned int inplace_count;
2359 	unsigned long long base_mem, cache_mem, page_mem;
2360 };
2361 
2362 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2363 {
2364 	return (struct f2fs_stat_info *)sbi->stat_info;
2365 }
2366 
2367 #define stat_inc_cp_count(si)		((si)->cp_count++)
2368 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2369 #define stat_inc_call_count(si)		((si)->call_count++)
2370 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2371 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2372 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2373 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2374 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2375 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2376 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2377 #define stat_inc_inline_xattr(inode)					\
2378 	do {								\
2379 		if (f2fs_has_inline_xattr(inode))			\
2380 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2381 	} while (0)
2382 #define stat_dec_inline_xattr(inode)					\
2383 	do {								\
2384 		if (f2fs_has_inline_xattr(inode))			\
2385 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2386 	} while (0)
2387 #define stat_inc_inline_inode(inode)					\
2388 	do {								\
2389 		if (f2fs_has_inline_data(inode))			\
2390 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2391 	} while (0)
2392 #define stat_dec_inline_inode(inode)					\
2393 	do {								\
2394 		if (f2fs_has_inline_data(inode))			\
2395 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2396 	} while (0)
2397 #define stat_inc_inline_dir(inode)					\
2398 	do {								\
2399 		if (f2fs_has_inline_dentry(inode))			\
2400 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2401 	} while (0)
2402 #define stat_dec_inline_dir(inode)					\
2403 	do {								\
2404 		if (f2fs_has_inline_dentry(inode))			\
2405 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2406 	} while (0)
2407 #define stat_inc_seg_type(sbi, curseg)					\
2408 		((sbi)->segment_count[(curseg)->alloc_type]++)
2409 #define stat_inc_block_count(sbi, curseg)				\
2410 		((sbi)->block_count[(curseg)->alloc_type]++)
2411 #define stat_inc_inplace_blocks(sbi)					\
2412 		(atomic_inc(&(sbi)->inplace_count))
2413 #define stat_inc_atomic_write(inode)					\
2414 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2415 #define stat_dec_atomic_write(inode)					\
2416 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2417 #define stat_update_max_atomic_write(inode)				\
2418 	do {								\
2419 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2420 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2421 		if (cur > max)						\
2422 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2423 	} while (0)
2424 #define stat_inc_seg_count(sbi, type, gc_type)				\
2425 	do {								\
2426 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2427 		(si)->tot_segs++;					\
2428 		if (type == SUM_TYPE_DATA) {				\
2429 			si->data_segs++;				\
2430 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2431 		} else {						\
2432 			si->node_segs++;				\
2433 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2434 		}							\
2435 	} while (0)
2436 
2437 #define stat_inc_tot_blk_count(si, blks)				\
2438 	(si->tot_blks += (blks))
2439 
2440 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2441 	do {								\
2442 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2443 		stat_inc_tot_blk_count(si, blks);			\
2444 		si->data_blks += (blks);				\
2445 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2446 	} while (0)
2447 
2448 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2449 	do {								\
2450 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2451 		stat_inc_tot_blk_count(si, blks);			\
2452 		si->node_blks += (blks);				\
2453 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2454 	} while (0)
2455 
2456 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2457 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2458 int __init f2fs_create_root_stats(void);
2459 void f2fs_destroy_root_stats(void);
2460 #else
2461 #define stat_inc_cp_count(si)
2462 #define stat_inc_bg_cp_count(si)
2463 #define stat_inc_call_count(si)
2464 #define stat_inc_bggc_count(si)
2465 #define stat_inc_dirty_inode(sbi, type)
2466 #define stat_dec_dirty_inode(sbi, type)
2467 #define stat_inc_total_hit(sb)
2468 #define stat_inc_rbtree_node_hit(sb)
2469 #define stat_inc_largest_node_hit(sbi)
2470 #define stat_inc_cached_node_hit(sbi)
2471 #define stat_inc_inline_xattr(inode)
2472 #define stat_dec_inline_xattr(inode)
2473 #define stat_inc_inline_inode(inode)
2474 #define stat_dec_inline_inode(inode)
2475 #define stat_inc_inline_dir(inode)
2476 #define stat_dec_inline_dir(inode)
2477 #define stat_inc_atomic_write(inode)
2478 #define stat_dec_atomic_write(inode)
2479 #define stat_update_max_atomic_write(inode)
2480 #define stat_inc_seg_type(sbi, curseg)
2481 #define stat_inc_block_count(sbi, curseg)
2482 #define stat_inc_inplace_blocks(sbi)
2483 #define stat_inc_seg_count(sbi, type, gc_type)
2484 #define stat_inc_tot_blk_count(si, blks)
2485 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2486 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2487 
2488 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2489 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2490 static inline int __init f2fs_create_root_stats(void) { return 0; }
2491 static inline void f2fs_destroy_root_stats(void) { }
2492 #endif
2493 
2494 extern const struct file_operations f2fs_dir_operations;
2495 extern const struct file_operations f2fs_file_operations;
2496 extern const struct inode_operations f2fs_file_inode_operations;
2497 extern const struct address_space_operations f2fs_dblock_aops;
2498 extern const struct address_space_operations f2fs_node_aops;
2499 extern const struct address_space_operations f2fs_meta_aops;
2500 extern const struct inode_operations f2fs_dir_inode_operations;
2501 extern const struct inode_operations f2fs_symlink_inode_operations;
2502 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2503 extern const struct inode_operations f2fs_special_inode_operations;
2504 extern struct kmem_cache *inode_entry_slab;
2505 
2506 /*
2507  * inline.c
2508  */
2509 bool f2fs_may_inline_data(struct inode *inode);
2510 bool f2fs_may_inline_dentry(struct inode *inode);
2511 void read_inline_data(struct page *page, struct page *ipage);
2512 bool truncate_inline_inode(struct page *ipage, u64 from);
2513 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2514 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2515 int f2fs_convert_inline_inode(struct inode *inode);
2516 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2517 bool recover_inline_data(struct inode *inode, struct page *npage);
2518 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2519 			struct fscrypt_name *fname, struct page **res_page);
2520 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2521 			struct page *ipage);
2522 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2523 			const struct qstr *orig_name,
2524 			struct inode *inode, nid_t ino, umode_t mode);
2525 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2526 			struct inode *dir, struct inode *inode);
2527 bool f2fs_empty_inline_dir(struct inode *dir);
2528 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2529 			struct fscrypt_str *fstr);
2530 int f2fs_inline_data_fiemap(struct inode *inode,
2531 			struct fiemap_extent_info *fieinfo,
2532 			__u64 start, __u64 len);
2533 
2534 /*
2535  * shrinker.c
2536  */
2537 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2538 			struct shrink_control *sc);
2539 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2540 			struct shrink_control *sc);
2541 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2542 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2543 
2544 /*
2545  * extent_cache.c
2546  */
2547 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2548 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2549 void f2fs_drop_extent_tree(struct inode *inode);
2550 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2551 void f2fs_destroy_extent_tree(struct inode *inode);
2552 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2553 			struct extent_info *ei);
2554 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2555 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2556 			pgoff_t fofs, block_t blkaddr, unsigned int len);
2557 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2558 int __init create_extent_cache(void);
2559 void destroy_extent_cache(void);
2560 
2561 /*
2562  * crypto support
2563  */
2564 static inline bool f2fs_encrypted_inode(struct inode *inode)
2565 {
2566 	return file_is_encrypt(inode);
2567 }
2568 
2569 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2570 {
2571 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2572 	file_set_encrypt(inode);
2573 #endif
2574 }
2575 
2576 static inline bool f2fs_bio_encrypted(struct bio *bio)
2577 {
2578 	return bio->bi_private != NULL;
2579 }
2580 
2581 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2582 {
2583 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2584 }
2585 
2586 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2587 {
2588 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2589 }
2590 
2591 #ifdef CONFIG_BLK_DEV_ZONED
2592 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2593 			struct block_device *bdev, block_t blkaddr)
2594 {
2595 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2596 	int i;
2597 
2598 	for (i = 0; i < sbi->s_ndevs; i++)
2599 		if (FDEV(i).bdev == bdev)
2600 			return FDEV(i).blkz_type[zno];
2601 	return -EINVAL;
2602 }
2603 #endif
2604 
2605 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2606 {
2607 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2608 
2609 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2610 }
2611 
2612 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2613 {
2614 	clear_opt(sbi, ADAPTIVE);
2615 	clear_opt(sbi, LFS);
2616 
2617 	switch (mt) {
2618 	case F2FS_MOUNT_ADAPTIVE:
2619 		set_opt(sbi, ADAPTIVE);
2620 		break;
2621 	case F2FS_MOUNT_LFS:
2622 		set_opt(sbi, LFS);
2623 		break;
2624 	}
2625 }
2626 
2627 static inline bool f2fs_may_encrypt(struct inode *inode)
2628 {
2629 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2630 	umode_t mode = inode->i_mode;
2631 
2632 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2633 #else
2634 	return 0;
2635 #endif
2636 }
2637 
2638 #endif
2639