1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/fscrypto.h> 26 #include <crypto/hash.h> 27 28 #ifdef CONFIG_F2FS_CHECK_FS 29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 30 #else 31 #define f2fs_bug_on(sbi, condition) \ 32 do { \ 33 if (unlikely(condition)) { \ 34 WARN_ON(1); \ 35 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 36 } \ 37 } while (0) 38 #endif 39 40 #ifdef CONFIG_F2FS_FAULT_INJECTION 41 enum { 42 FAULT_KMALLOC, 43 FAULT_PAGE_ALLOC, 44 FAULT_ALLOC_NID, 45 FAULT_ORPHAN, 46 FAULT_BLOCK, 47 FAULT_DIR_DEPTH, 48 FAULT_EVICT_INODE, 49 FAULT_MAX, 50 }; 51 52 struct f2fs_fault_info { 53 atomic_t inject_ops; 54 unsigned int inject_rate; 55 unsigned int inject_type; 56 }; 57 58 extern struct f2fs_fault_info f2fs_fault; 59 extern char *fault_name[FAULT_MAX]; 60 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type))) 61 62 static inline bool time_to_inject(int type) 63 { 64 if (!f2fs_fault.inject_rate) 65 return false; 66 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type)) 67 return false; 68 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type)) 69 return false; 70 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type)) 71 return false; 72 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type)) 73 return false; 74 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type)) 75 return false; 76 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type)) 77 return false; 78 else if (type == FAULT_EVICT_INODE && !IS_FAULT_SET(type)) 79 return false; 80 81 atomic_inc(&f2fs_fault.inject_ops); 82 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) { 83 atomic_set(&f2fs_fault.inject_ops, 0); 84 printk("%sF2FS-fs : inject %s in %pF\n", 85 KERN_INFO, 86 fault_name[type], 87 __builtin_return_address(0)); 88 return true; 89 } 90 return false; 91 } 92 #endif 93 94 /* 95 * For mount options 96 */ 97 #define F2FS_MOUNT_BG_GC 0x00000001 98 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 99 #define F2FS_MOUNT_DISCARD 0x00000004 100 #define F2FS_MOUNT_NOHEAP 0x00000008 101 #define F2FS_MOUNT_XATTR_USER 0x00000010 102 #define F2FS_MOUNT_POSIX_ACL 0x00000020 103 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 104 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 105 #define F2FS_MOUNT_INLINE_DATA 0x00000100 106 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 107 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 108 #define F2FS_MOUNT_NOBARRIER 0x00000800 109 #define F2FS_MOUNT_FASTBOOT 0x00001000 110 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 111 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 112 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 113 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 114 #define F2FS_MOUNT_ADAPTIVE 0x00020000 115 #define F2FS_MOUNT_LFS 0x00040000 116 117 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 118 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 119 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 120 121 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 122 typecheck(unsigned long long, b) && \ 123 ((long long)((a) - (b)) > 0)) 124 125 typedef u32 block_t; /* 126 * should not change u32, since it is the on-disk block 127 * address format, __le32. 128 */ 129 typedef u32 nid_t; 130 131 struct f2fs_mount_info { 132 unsigned int opt; 133 }; 134 135 #define F2FS_FEATURE_ENCRYPT 0x0001 136 #define F2FS_FEATURE_HMSMR 0x0002 137 138 #define F2FS_HAS_FEATURE(sb, mask) \ 139 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 140 #define F2FS_SET_FEATURE(sb, mask) \ 141 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 142 #define F2FS_CLEAR_FEATURE(sb, mask) \ 143 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 144 145 /* 146 * For checkpoint manager 147 */ 148 enum { 149 NAT_BITMAP, 150 SIT_BITMAP 151 }; 152 153 enum { 154 CP_UMOUNT, 155 CP_FASTBOOT, 156 CP_SYNC, 157 CP_RECOVERY, 158 CP_DISCARD, 159 }; 160 161 #define DEF_BATCHED_TRIM_SECTIONS 32 162 #define BATCHED_TRIM_SEGMENTS(sbi) \ 163 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 164 #define BATCHED_TRIM_BLOCKS(sbi) \ 165 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 166 #define DEF_CP_INTERVAL 60 /* 60 secs */ 167 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 168 169 struct cp_control { 170 int reason; 171 __u64 trim_start; 172 __u64 trim_end; 173 __u64 trim_minlen; 174 __u64 trimmed; 175 }; 176 177 /* 178 * For CP/NAT/SIT/SSA readahead 179 */ 180 enum { 181 META_CP, 182 META_NAT, 183 META_SIT, 184 META_SSA, 185 META_POR, 186 }; 187 188 /* for the list of ino */ 189 enum { 190 ORPHAN_INO, /* for orphan ino list */ 191 APPEND_INO, /* for append ino list */ 192 UPDATE_INO, /* for update ino list */ 193 MAX_INO_ENTRY, /* max. list */ 194 }; 195 196 struct ino_entry { 197 struct list_head list; /* list head */ 198 nid_t ino; /* inode number */ 199 }; 200 201 /* for the list of inodes to be GCed */ 202 struct inode_entry { 203 struct list_head list; /* list head */ 204 struct inode *inode; /* vfs inode pointer */ 205 }; 206 207 /* for the list of blockaddresses to be discarded */ 208 struct discard_entry { 209 struct list_head list; /* list head */ 210 block_t blkaddr; /* block address to be discarded */ 211 int len; /* # of consecutive blocks of the discard */ 212 }; 213 214 /* for the list of fsync inodes, used only during recovery */ 215 struct fsync_inode_entry { 216 struct list_head list; /* list head */ 217 struct inode *inode; /* vfs inode pointer */ 218 block_t blkaddr; /* block address locating the last fsync */ 219 block_t last_dentry; /* block address locating the last dentry */ 220 }; 221 222 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 223 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 224 225 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 226 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 227 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 228 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 229 230 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 231 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 232 233 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 234 { 235 int before = nats_in_cursum(journal); 236 journal->n_nats = cpu_to_le16(before + i); 237 return before; 238 } 239 240 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 241 { 242 int before = sits_in_cursum(journal); 243 journal->n_sits = cpu_to_le16(before + i); 244 return before; 245 } 246 247 static inline bool __has_cursum_space(struct f2fs_journal *journal, 248 int size, int type) 249 { 250 if (type == NAT_JOURNAL) 251 return size <= MAX_NAT_JENTRIES(journal); 252 return size <= MAX_SIT_JENTRIES(journal); 253 } 254 255 /* 256 * ioctl commands 257 */ 258 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 259 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 260 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 261 262 #define F2FS_IOCTL_MAGIC 0xf5 263 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 264 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 265 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 266 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 267 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 268 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 269 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 270 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 271 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 272 struct f2fs_move_range) 273 274 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 275 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 276 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 277 278 /* 279 * should be same as XFS_IOC_GOINGDOWN. 280 * Flags for going down operation used by FS_IOC_GOINGDOWN 281 */ 282 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 283 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 284 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 285 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 286 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 287 288 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 289 /* 290 * ioctl commands in 32 bit emulation 291 */ 292 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 293 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 294 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 295 #endif 296 297 struct f2fs_defragment { 298 u64 start; 299 u64 len; 300 }; 301 302 struct f2fs_move_range { 303 u32 dst_fd; /* destination fd */ 304 u64 pos_in; /* start position in src_fd */ 305 u64 pos_out; /* start position in dst_fd */ 306 u64 len; /* size to move */ 307 }; 308 309 /* 310 * For INODE and NODE manager 311 */ 312 /* for directory operations */ 313 struct f2fs_dentry_ptr { 314 struct inode *inode; 315 const void *bitmap; 316 struct f2fs_dir_entry *dentry; 317 __u8 (*filename)[F2FS_SLOT_LEN]; 318 int max; 319 }; 320 321 static inline void make_dentry_ptr(struct inode *inode, 322 struct f2fs_dentry_ptr *d, void *src, int type) 323 { 324 d->inode = inode; 325 326 if (type == 1) { 327 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 328 d->max = NR_DENTRY_IN_BLOCK; 329 d->bitmap = &t->dentry_bitmap; 330 d->dentry = t->dentry; 331 d->filename = t->filename; 332 } else { 333 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 334 d->max = NR_INLINE_DENTRY; 335 d->bitmap = &t->dentry_bitmap; 336 d->dentry = t->dentry; 337 d->filename = t->filename; 338 } 339 } 340 341 /* 342 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 343 * as its node offset to distinguish from index node blocks. 344 * But some bits are used to mark the node block. 345 */ 346 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 347 >> OFFSET_BIT_SHIFT) 348 enum { 349 ALLOC_NODE, /* allocate a new node page if needed */ 350 LOOKUP_NODE, /* look up a node without readahead */ 351 LOOKUP_NODE_RA, /* 352 * look up a node with readahead called 353 * by get_data_block. 354 */ 355 }; 356 357 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 358 359 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 360 361 /* vector size for gang look-up from extent cache that consists of radix tree */ 362 #define EXT_TREE_VEC_SIZE 64 363 364 /* for in-memory extent cache entry */ 365 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 366 367 /* number of extent info in extent cache we try to shrink */ 368 #define EXTENT_CACHE_SHRINK_NUMBER 128 369 370 struct extent_info { 371 unsigned int fofs; /* start offset in a file */ 372 u32 blk; /* start block address of the extent */ 373 unsigned int len; /* length of the extent */ 374 }; 375 376 struct extent_node { 377 struct rb_node rb_node; /* rb node located in rb-tree */ 378 struct list_head list; /* node in global extent list of sbi */ 379 struct extent_info ei; /* extent info */ 380 struct extent_tree *et; /* extent tree pointer */ 381 }; 382 383 struct extent_tree { 384 nid_t ino; /* inode number */ 385 struct rb_root root; /* root of extent info rb-tree */ 386 struct extent_node *cached_en; /* recently accessed extent node */ 387 struct extent_info largest; /* largested extent info */ 388 struct list_head list; /* to be used by sbi->zombie_list */ 389 rwlock_t lock; /* protect extent info rb-tree */ 390 atomic_t node_cnt; /* # of extent node in rb-tree*/ 391 }; 392 393 /* 394 * This structure is taken from ext4_map_blocks. 395 * 396 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 397 */ 398 #define F2FS_MAP_NEW (1 << BH_New) 399 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 400 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 401 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 402 F2FS_MAP_UNWRITTEN) 403 404 struct f2fs_map_blocks { 405 block_t m_pblk; 406 block_t m_lblk; 407 unsigned int m_len; 408 unsigned int m_flags; 409 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 410 }; 411 412 /* for flag in get_data_block */ 413 #define F2FS_GET_BLOCK_READ 0 414 #define F2FS_GET_BLOCK_DIO 1 415 #define F2FS_GET_BLOCK_FIEMAP 2 416 #define F2FS_GET_BLOCK_BMAP 3 417 #define F2FS_GET_BLOCK_PRE_DIO 4 418 #define F2FS_GET_BLOCK_PRE_AIO 5 419 420 /* 421 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 422 */ 423 #define FADVISE_COLD_BIT 0x01 424 #define FADVISE_LOST_PINO_BIT 0x02 425 #define FADVISE_ENCRYPT_BIT 0x04 426 #define FADVISE_ENC_NAME_BIT 0x08 427 428 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 429 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 430 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 431 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 432 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 433 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 434 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 435 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 436 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 437 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 438 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 439 440 #define DEF_DIR_LEVEL 0 441 442 struct f2fs_inode_info { 443 struct inode vfs_inode; /* serve a vfs inode */ 444 unsigned long i_flags; /* keep an inode flags for ioctl */ 445 unsigned char i_advise; /* use to give file attribute hints */ 446 unsigned char i_dir_level; /* use for dentry level for large dir */ 447 unsigned int i_current_depth; /* use only in directory structure */ 448 unsigned int i_pino; /* parent inode number */ 449 umode_t i_acl_mode; /* keep file acl mode temporarily */ 450 451 /* Use below internally in f2fs*/ 452 unsigned long flags; /* use to pass per-file flags */ 453 struct rw_semaphore i_sem; /* protect fi info */ 454 struct percpu_counter dirty_pages; /* # of dirty pages */ 455 f2fs_hash_t chash; /* hash value of given file name */ 456 unsigned int clevel; /* maximum level of given file name */ 457 nid_t i_xattr_nid; /* node id that contains xattrs */ 458 unsigned long long xattr_ver; /* cp version of xattr modification */ 459 loff_t last_disk_size; /* lastly written file size */ 460 461 struct list_head dirty_list; /* dirty list for dirs and files */ 462 struct list_head gdirty_list; /* linked in global dirty list */ 463 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 464 struct mutex inmem_lock; /* lock for inmemory pages */ 465 struct extent_tree *extent_tree; /* cached extent_tree entry */ 466 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 467 }; 468 469 static inline void get_extent_info(struct extent_info *ext, 470 struct f2fs_extent *i_ext) 471 { 472 ext->fofs = le32_to_cpu(i_ext->fofs); 473 ext->blk = le32_to_cpu(i_ext->blk); 474 ext->len = le32_to_cpu(i_ext->len); 475 } 476 477 static inline void set_raw_extent(struct extent_info *ext, 478 struct f2fs_extent *i_ext) 479 { 480 i_ext->fofs = cpu_to_le32(ext->fofs); 481 i_ext->blk = cpu_to_le32(ext->blk); 482 i_ext->len = cpu_to_le32(ext->len); 483 } 484 485 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 486 u32 blk, unsigned int len) 487 { 488 ei->fofs = fofs; 489 ei->blk = blk; 490 ei->len = len; 491 } 492 493 static inline bool __is_extent_same(struct extent_info *ei1, 494 struct extent_info *ei2) 495 { 496 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 497 ei1->len == ei2->len); 498 } 499 500 static inline bool __is_extent_mergeable(struct extent_info *back, 501 struct extent_info *front) 502 { 503 return (back->fofs + back->len == front->fofs && 504 back->blk + back->len == front->blk); 505 } 506 507 static inline bool __is_back_mergeable(struct extent_info *cur, 508 struct extent_info *back) 509 { 510 return __is_extent_mergeable(back, cur); 511 } 512 513 static inline bool __is_front_mergeable(struct extent_info *cur, 514 struct extent_info *front) 515 { 516 return __is_extent_mergeable(cur, front); 517 } 518 519 extern void f2fs_mark_inode_dirty_sync(struct inode *); 520 static inline void __try_update_largest_extent(struct inode *inode, 521 struct extent_tree *et, struct extent_node *en) 522 { 523 if (en->ei.len > et->largest.len) { 524 et->largest = en->ei; 525 f2fs_mark_inode_dirty_sync(inode); 526 } 527 } 528 529 struct f2fs_nm_info { 530 block_t nat_blkaddr; /* base disk address of NAT */ 531 nid_t max_nid; /* maximum possible node ids */ 532 nid_t available_nids; /* maximum available node ids */ 533 nid_t next_scan_nid; /* the next nid to be scanned */ 534 unsigned int ram_thresh; /* control the memory footprint */ 535 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 536 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 537 538 /* NAT cache management */ 539 struct radix_tree_root nat_root;/* root of the nat entry cache */ 540 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 541 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 542 struct list_head nat_entries; /* cached nat entry list (clean) */ 543 unsigned int nat_cnt; /* the # of cached nat entries */ 544 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 545 546 /* free node ids management */ 547 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 548 struct list_head free_nid_list; /* a list for free nids */ 549 spinlock_t free_nid_list_lock; /* protect free nid list */ 550 unsigned int fcnt; /* the number of free node id */ 551 struct mutex build_lock; /* lock for build free nids */ 552 553 /* for checkpoint */ 554 char *nat_bitmap; /* NAT bitmap pointer */ 555 int bitmap_size; /* bitmap size */ 556 }; 557 558 /* 559 * this structure is used as one of function parameters. 560 * all the information are dedicated to a given direct node block determined 561 * by the data offset in a file. 562 */ 563 struct dnode_of_data { 564 struct inode *inode; /* vfs inode pointer */ 565 struct page *inode_page; /* its inode page, NULL is possible */ 566 struct page *node_page; /* cached direct node page */ 567 nid_t nid; /* node id of the direct node block */ 568 unsigned int ofs_in_node; /* data offset in the node page */ 569 bool inode_page_locked; /* inode page is locked or not */ 570 bool node_changed; /* is node block changed */ 571 char cur_level; /* level of hole node page */ 572 char max_level; /* level of current page located */ 573 block_t data_blkaddr; /* block address of the node block */ 574 }; 575 576 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 577 struct page *ipage, struct page *npage, nid_t nid) 578 { 579 memset(dn, 0, sizeof(*dn)); 580 dn->inode = inode; 581 dn->inode_page = ipage; 582 dn->node_page = npage; 583 dn->nid = nid; 584 } 585 586 /* 587 * For SIT manager 588 * 589 * By default, there are 6 active log areas across the whole main area. 590 * When considering hot and cold data separation to reduce cleaning overhead, 591 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 592 * respectively. 593 * In the current design, you should not change the numbers intentionally. 594 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 595 * logs individually according to the underlying devices. (default: 6) 596 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 597 * data and 8 for node logs. 598 */ 599 #define NR_CURSEG_DATA_TYPE (3) 600 #define NR_CURSEG_NODE_TYPE (3) 601 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 602 603 enum { 604 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 605 CURSEG_WARM_DATA, /* data blocks */ 606 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 607 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 608 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 609 CURSEG_COLD_NODE, /* indirect node blocks */ 610 NO_CHECK_TYPE, 611 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 612 }; 613 614 struct flush_cmd { 615 struct completion wait; 616 struct llist_node llnode; 617 int ret; 618 }; 619 620 struct flush_cmd_control { 621 struct task_struct *f2fs_issue_flush; /* flush thread */ 622 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 623 atomic_t submit_flush; /* # of issued flushes */ 624 struct llist_head issue_list; /* list for command issue */ 625 struct llist_node *dispatch_list; /* list for command dispatch */ 626 }; 627 628 struct f2fs_sm_info { 629 struct sit_info *sit_info; /* whole segment information */ 630 struct free_segmap_info *free_info; /* free segment information */ 631 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 632 struct curseg_info *curseg_array; /* active segment information */ 633 634 block_t seg0_blkaddr; /* block address of 0'th segment */ 635 block_t main_blkaddr; /* start block address of main area */ 636 block_t ssa_blkaddr; /* start block address of SSA area */ 637 638 unsigned int segment_count; /* total # of segments */ 639 unsigned int main_segments; /* # of segments in main area */ 640 unsigned int reserved_segments; /* # of reserved segments */ 641 unsigned int ovp_segments; /* # of overprovision segments */ 642 643 /* a threshold to reclaim prefree segments */ 644 unsigned int rec_prefree_segments; 645 646 /* for small discard management */ 647 struct list_head discard_list; /* 4KB discard list */ 648 int nr_discards; /* # of discards in the list */ 649 int max_discards; /* max. discards to be issued */ 650 651 /* for batched trimming */ 652 unsigned int trim_sections; /* # of sections to trim */ 653 654 struct list_head sit_entry_set; /* sit entry set list */ 655 656 unsigned int ipu_policy; /* in-place-update policy */ 657 unsigned int min_ipu_util; /* in-place-update threshold */ 658 unsigned int min_fsync_blocks; /* threshold for fsync */ 659 660 /* for flush command control */ 661 struct flush_cmd_control *cmd_control_info; 662 663 }; 664 665 /* 666 * For superblock 667 */ 668 /* 669 * COUNT_TYPE for monitoring 670 * 671 * f2fs monitors the number of several block types such as on-writeback, 672 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 673 */ 674 enum count_type { 675 F2FS_DIRTY_DENTS, 676 F2FS_DIRTY_DATA, 677 F2FS_DIRTY_NODES, 678 F2FS_DIRTY_META, 679 F2FS_INMEM_PAGES, 680 F2FS_DIRTY_IMETA, 681 NR_COUNT_TYPE, 682 }; 683 684 /* 685 * The below are the page types of bios used in submit_bio(). 686 * The available types are: 687 * DATA User data pages. It operates as async mode. 688 * NODE Node pages. It operates as async mode. 689 * META FS metadata pages such as SIT, NAT, CP. 690 * NR_PAGE_TYPE The number of page types. 691 * META_FLUSH Make sure the previous pages are written 692 * with waiting the bio's completion 693 * ... Only can be used with META. 694 */ 695 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 696 enum page_type { 697 DATA, 698 NODE, 699 META, 700 NR_PAGE_TYPE, 701 META_FLUSH, 702 INMEM, /* the below types are used by tracepoints only. */ 703 INMEM_DROP, 704 INMEM_REVOKE, 705 IPU, 706 OPU, 707 }; 708 709 struct f2fs_io_info { 710 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 711 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 712 int op; /* contains REQ_OP_ */ 713 int op_flags; /* rq_flag_bits */ 714 block_t new_blkaddr; /* new block address to be written */ 715 block_t old_blkaddr; /* old block address before Cow */ 716 struct page *page; /* page to be written */ 717 struct page *encrypted_page; /* encrypted page */ 718 }; 719 720 #define is_read_io(rw) (rw == READ) 721 struct f2fs_bio_info { 722 struct f2fs_sb_info *sbi; /* f2fs superblock */ 723 struct bio *bio; /* bios to merge */ 724 sector_t last_block_in_bio; /* last block number */ 725 struct f2fs_io_info fio; /* store buffered io info. */ 726 struct rw_semaphore io_rwsem; /* blocking op for bio */ 727 }; 728 729 enum inode_type { 730 DIR_INODE, /* for dirty dir inode */ 731 FILE_INODE, /* for dirty regular/symlink inode */ 732 DIRTY_META, /* for all dirtied inode metadata */ 733 NR_INODE_TYPE, 734 }; 735 736 /* for inner inode cache management */ 737 struct inode_management { 738 struct radix_tree_root ino_root; /* ino entry array */ 739 spinlock_t ino_lock; /* for ino entry lock */ 740 struct list_head ino_list; /* inode list head */ 741 unsigned long ino_num; /* number of entries */ 742 }; 743 744 /* For s_flag in struct f2fs_sb_info */ 745 enum { 746 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 747 SBI_IS_CLOSE, /* specify unmounting */ 748 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 749 SBI_POR_DOING, /* recovery is doing or not */ 750 SBI_NEED_SB_WRITE, /* need to recover superblock */ 751 }; 752 753 enum { 754 CP_TIME, 755 REQ_TIME, 756 MAX_TIME, 757 }; 758 759 #ifdef CONFIG_F2FS_FS_ENCRYPTION 760 #define F2FS_KEY_DESC_PREFIX "f2fs:" 761 #define F2FS_KEY_DESC_PREFIX_SIZE 5 762 #endif 763 struct f2fs_sb_info { 764 struct super_block *sb; /* pointer to VFS super block */ 765 struct proc_dir_entry *s_proc; /* proc entry */ 766 struct f2fs_super_block *raw_super; /* raw super block pointer */ 767 int valid_super_block; /* valid super block no */ 768 int s_flag; /* flags for sbi */ 769 770 #ifdef CONFIG_F2FS_FS_ENCRYPTION 771 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE]; 772 u8 key_prefix_size; 773 #endif 774 /* for node-related operations */ 775 struct f2fs_nm_info *nm_info; /* node manager */ 776 struct inode *node_inode; /* cache node blocks */ 777 778 /* for segment-related operations */ 779 struct f2fs_sm_info *sm_info; /* segment manager */ 780 781 /* for bio operations */ 782 struct f2fs_bio_info read_io; /* for read bios */ 783 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 784 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ 785 786 /* for checkpoint */ 787 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 788 struct inode *meta_inode; /* cache meta blocks */ 789 struct mutex cp_mutex; /* checkpoint procedure lock */ 790 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 791 struct rw_semaphore node_write; /* locking node writes */ 792 wait_queue_head_t cp_wait; 793 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 794 long interval_time[MAX_TIME]; /* to store thresholds */ 795 796 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 797 798 /* for orphan inode, use 0'th array */ 799 unsigned int max_orphans; /* max orphan inodes */ 800 801 /* for inode management */ 802 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 803 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 804 805 /* for extent tree cache */ 806 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 807 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 808 struct list_head extent_list; /* lru list for shrinker */ 809 spinlock_t extent_lock; /* locking extent lru list */ 810 atomic_t total_ext_tree; /* extent tree count */ 811 struct list_head zombie_list; /* extent zombie tree list */ 812 atomic_t total_zombie_tree; /* extent zombie tree count */ 813 atomic_t total_ext_node; /* extent info count */ 814 815 /* basic filesystem units */ 816 unsigned int log_sectors_per_block; /* log2 sectors per block */ 817 unsigned int log_blocksize; /* log2 block size */ 818 unsigned int blocksize; /* block size */ 819 unsigned int root_ino_num; /* root inode number*/ 820 unsigned int node_ino_num; /* node inode number*/ 821 unsigned int meta_ino_num; /* meta inode number*/ 822 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 823 unsigned int blocks_per_seg; /* blocks per segment */ 824 unsigned int segs_per_sec; /* segments per section */ 825 unsigned int secs_per_zone; /* sections per zone */ 826 unsigned int total_sections; /* total section count */ 827 unsigned int total_node_count; /* total node block count */ 828 unsigned int total_valid_node_count; /* valid node block count */ 829 loff_t max_file_blocks; /* max block index of file */ 830 int active_logs; /* # of active logs */ 831 int dir_level; /* directory level */ 832 833 block_t user_block_count; /* # of user blocks */ 834 block_t total_valid_block_count; /* # of valid blocks */ 835 block_t discard_blks; /* discard command candidats */ 836 block_t last_valid_block_count; /* for recovery */ 837 u32 s_next_generation; /* for NFS support */ 838 atomic_t nr_wb_bios; /* # of writeback bios */ 839 840 /* # of pages, see count_type */ 841 struct percpu_counter nr_pages[NR_COUNT_TYPE]; 842 /* # of allocated blocks */ 843 struct percpu_counter alloc_valid_block_count; 844 845 /* valid inode count */ 846 struct percpu_counter total_valid_inode_count; 847 848 struct f2fs_mount_info mount_opt; /* mount options */ 849 850 /* for cleaning operations */ 851 struct mutex gc_mutex; /* mutex for GC */ 852 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 853 unsigned int cur_victim_sec; /* current victim section num */ 854 855 /* maximum # of trials to find a victim segment for SSR and GC */ 856 unsigned int max_victim_search; 857 858 /* 859 * for stat information. 860 * one is for the LFS mode, and the other is for the SSR mode. 861 */ 862 #ifdef CONFIG_F2FS_STAT_FS 863 struct f2fs_stat_info *stat_info; /* FS status information */ 864 unsigned int segment_count[2]; /* # of allocated segments */ 865 unsigned int block_count[2]; /* # of allocated blocks */ 866 atomic_t inplace_count; /* # of inplace update */ 867 atomic64_t total_hit_ext; /* # of lookup extent cache */ 868 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 869 atomic64_t read_hit_largest; /* # of hit largest extent node */ 870 atomic64_t read_hit_cached; /* # of hit cached extent node */ 871 atomic_t inline_xattr; /* # of inline_xattr inodes */ 872 atomic_t inline_inode; /* # of inline_data inodes */ 873 atomic_t inline_dir; /* # of inline_dentry inodes */ 874 int bg_gc; /* background gc calls */ 875 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 876 #endif 877 unsigned int last_victim[2]; /* last victim segment # */ 878 spinlock_t stat_lock; /* lock for stat operations */ 879 880 /* For sysfs suppport */ 881 struct kobject s_kobj; 882 struct completion s_kobj_unregister; 883 884 /* For shrinker support */ 885 struct list_head s_list; 886 struct mutex umount_mutex; 887 unsigned int shrinker_run_no; 888 889 /* For write statistics */ 890 u64 sectors_written_start; 891 u64 kbytes_written; 892 893 /* Reference to checksum algorithm driver via cryptoapi */ 894 struct crypto_shash *s_chksum_driver; 895 }; 896 897 /* For write statistics. Suppose sector size is 512 bytes, 898 * and the return value is in kbytes. s is of struct f2fs_sb_info. 899 */ 900 #define BD_PART_WRITTEN(s) \ 901 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 902 s->sectors_written_start) >> 1) 903 904 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 905 { 906 sbi->last_time[type] = jiffies; 907 } 908 909 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 910 { 911 struct timespec ts = {sbi->interval_time[type], 0}; 912 unsigned long interval = timespec_to_jiffies(&ts); 913 914 return time_after(jiffies, sbi->last_time[type] + interval); 915 } 916 917 static inline bool is_idle(struct f2fs_sb_info *sbi) 918 { 919 struct block_device *bdev = sbi->sb->s_bdev; 920 struct request_queue *q = bdev_get_queue(bdev); 921 struct request_list *rl = &q->root_rl; 922 923 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 924 return 0; 925 926 return f2fs_time_over(sbi, REQ_TIME); 927 } 928 929 /* 930 * Inline functions 931 */ 932 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 933 unsigned int length) 934 { 935 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 936 u32 *ctx = (u32 *)shash_desc_ctx(shash); 937 int err; 938 939 shash->tfm = sbi->s_chksum_driver; 940 shash->flags = 0; 941 *ctx = F2FS_SUPER_MAGIC; 942 943 err = crypto_shash_update(shash, address, length); 944 BUG_ON(err); 945 946 return *ctx; 947 } 948 949 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 950 void *buf, size_t buf_size) 951 { 952 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 953 } 954 955 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 956 { 957 return container_of(inode, struct f2fs_inode_info, vfs_inode); 958 } 959 960 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 961 { 962 return sb->s_fs_info; 963 } 964 965 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 966 { 967 return F2FS_SB(inode->i_sb); 968 } 969 970 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 971 { 972 return F2FS_I_SB(mapping->host); 973 } 974 975 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 976 { 977 return F2FS_M_SB(page->mapping); 978 } 979 980 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 981 { 982 return (struct f2fs_super_block *)(sbi->raw_super); 983 } 984 985 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 986 { 987 return (struct f2fs_checkpoint *)(sbi->ckpt); 988 } 989 990 static inline struct f2fs_node *F2FS_NODE(struct page *page) 991 { 992 return (struct f2fs_node *)page_address(page); 993 } 994 995 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 996 { 997 return &((struct f2fs_node *)page_address(page))->i; 998 } 999 1000 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1001 { 1002 return (struct f2fs_nm_info *)(sbi->nm_info); 1003 } 1004 1005 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1006 { 1007 return (struct f2fs_sm_info *)(sbi->sm_info); 1008 } 1009 1010 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1011 { 1012 return (struct sit_info *)(SM_I(sbi)->sit_info); 1013 } 1014 1015 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1016 { 1017 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1018 } 1019 1020 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1021 { 1022 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1023 } 1024 1025 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1026 { 1027 return sbi->meta_inode->i_mapping; 1028 } 1029 1030 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1031 { 1032 return sbi->node_inode->i_mapping; 1033 } 1034 1035 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1036 { 1037 return sbi->s_flag & (0x01 << type); 1038 } 1039 1040 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1041 { 1042 sbi->s_flag |= (0x01 << type); 1043 } 1044 1045 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1046 { 1047 sbi->s_flag &= ~(0x01 << type); 1048 } 1049 1050 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1051 { 1052 return le64_to_cpu(cp->checkpoint_ver); 1053 } 1054 1055 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1056 { 1057 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1058 return ckpt_flags & f; 1059 } 1060 1061 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1062 { 1063 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1064 ckpt_flags |= f; 1065 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1066 } 1067 1068 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1069 { 1070 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1071 ckpt_flags &= (~f); 1072 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1073 } 1074 1075 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1076 { 1077 down_read(&sbi->cp_rwsem); 1078 } 1079 1080 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1081 { 1082 up_read(&sbi->cp_rwsem); 1083 } 1084 1085 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1086 { 1087 down_write(&sbi->cp_rwsem); 1088 } 1089 1090 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1091 { 1092 up_write(&sbi->cp_rwsem); 1093 } 1094 1095 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1096 { 1097 int reason = CP_SYNC; 1098 1099 if (test_opt(sbi, FASTBOOT)) 1100 reason = CP_FASTBOOT; 1101 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1102 reason = CP_UMOUNT; 1103 return reason; 1104 } 1105 1106 static inline bool __remain_node_summaries(int reason) 1107 { 1108 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1109 } 1110 1111 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1112 { 1113 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 1114 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 1115 } 1116 1117 /* 1118 * Check whether the given nid is within node id range. 1119 */ 1120 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1121 { 1122 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1123 return -EINVAL; 1124 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1125 return -EINVAL; 1126 return 0; 1127 } 1128 1129 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1130 1131 /* 1132 * Check whether the inode has blocks or not 1133 */ 1134 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1135 { 1136 if (F2FS_I(inode)->i_xattr_nid) 1137 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1138 else 1139 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1140 } 1141 1142 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1143 { 1144 return ofs == XATTR_NODE_OFFSET; 1145 } 1146 1147 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); 1148 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1149 struct inode *inode, blkcnt_t *count) 1150 { 1151 blkcnt_t diff; 1152 1153 #ifdef CONFIG_F2FS_FAULT_INJECTION 1154 if (time_to_inject(FAULT_BLOCK)) 1155 return false; 1156 #endif 1157 /* 1158 * let's increase this in prior to actual block count change in order 1159 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1160 */ 1161 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1162 1163 spin_lock(&sbi->stat_lock); 1164 sbi->total_valid_block_count += (block_t)(*count); 1165 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { 1166 diff = sbi->total_valid_block_count - sbi->user_block_count; 1167 *count -= diff; 1168 sbi->total_valid_block_count = sbi->user_block_count; 1169 if (!*count) { 1170 spin_unlock(&sbi->stat_lock); 1171 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1172 return false; 1173 } 1174 } 1175 spin_unlock(&sbi->stat_lock); 1176 1177 f2fs_i_blocks_write(inode, *count, true); 1178 return true; 1179 } 1180 1181 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1182 struct inode *inode, 1183 blkcnt_t count) 1184 { 1185 spin_lock(&sbi->stat_lock); 1186 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1187 f2fs_bug_on(sbi, inode->i_blocks < count); 1188 sbi->total_valid_block_count -= (block_t)count; 1189 spin_unlock(&sbi->stat_lock); 1190 f2fs_i_blocks_write(inode, count, false); 1191 } 1192 1193 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1194 { 1195 percpu_counter_inc(&sbi->nr_pages[count_type]); 1196 set_sbi_flag(sbi, SBI_IS_DIRTY); 1197 } 1198 1199 static inline void inode_inc_dirty_pages(struct inode *inode) 1200 { 1201 percpu_counter_inc(&F2FS_I(inode)->dirty_pages); 1202 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1203 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1204 } 1205 1206 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1207 { 1208 percpu_counter_dec(&sbi->nr_pages[count_type]); 1209 } 1210 1211 static inline void inode_dec_dirty_pages(struct inode *inode) 1212 { 1213 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1214 !S_ISLNK(inode->i_mode)) 1215 return; 1216 1217 percpu_counter_dec(&F2FS_I(inode)->dirty_pages); 1218 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1219 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1220 } 1221 1222 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1223 { 1224 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]); 1225 } 1226 1227 static inline s64 get_dirty_pages(struct inode *inode) 1228 { 1229 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages); 1230 } 1231 1232 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1233 { 1234 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1235 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1236 sbi->log_blocks_per_seg; 1237 1238 return segs / sbi->segs_per_sec; 1239 } 1240 1241 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1242 { 1243 return sbi->total_valid_block_count; 1244 } 1245 1246 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1247 { 1248 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1249 1250 /* return NAT or SIT bitmap */ 1251 if (flag == NAT_BITMAP) 1252 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1253 else if (flag == SIT_BITMAP) 1254 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1255 1256 return 0; 1257 } 1258 1259 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1260 { 1261 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1262 } 1263 1264 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1265 { 1266 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1267 int offset; 1268 1269 if (__cp_payload(sbi) > 0) { 1270 if (flag == NAT_BITMAP) 1271 return &ckpt->sit_nat_version_bitmap; 1272 else 1273 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1274 } else { 1275 offset = (flag == NAT_BITMAP) ? 1276 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1277 return &ckpt->sit_nat_version_bitmap + offset; 1278 } 1279 } 1280 1281 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1282 { 1283 block_t start_addr; 1284 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1285 unsigned long long ckpt_version = cur_cp_version(ckpt); 1286 1287 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1288 1289 /* 1290 * odd numbered checkpoint should at cp segment 0 1291 * and even segment must be at cp segment 1 1292 */ 1293 if (!(ckpt_version & 1)) 1294 start_addr += sbi->blocks_per_seg; 1295 1296 return start_addr; 1297 } 1298 1299 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1300 { 1301 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1302 } 1303 1304 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1305 struct inode *inode) 1306 { 1307 block_t valid_block_count; 1308 unsigned int valid_node_count; 1309 1310 spin_lock(&sbi->stat_lock); 1311 1312 valid_block_count = sbi->total_valid_block_count + 1; 1313 if (unlikely(valid_block_count > sbi->user_block_count)) { 1314 spin_unlock(&sbi->stat_lock); 1315 return false; 1316 } 1317 1318 valid_node_count = sbi->total_valid_node_count + 1; 1319 if (unlikely(valid_node_count > sbi->total_node_count)) { 1320 spin_unlock(&sbi->stat_lock); 1321 return false; 1322 } 1323 1324 if (inode) 1325 f2fs_i_blocks_write(inode, 1, true); 1326 1327 sbi->total_valid_node_count++; 1328 sbi->total_valid_block_count++; 1329 spin_unlock(&sbi->stat_lock); 1330 1331 percpu_counter_inc(&sbi->alloc_valid_block_count); 1332 return true; 1333 } 1334 1335 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1336 struct inode *inode) 1337 { 1338 spin_lock(&sbi->stat_lock); 1339 1340 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1341 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1342 f2fs_bug_on(sbi, !inode->i_blocks); 1343 1344 f2fs_i_blocks_write(inode, 1, false); 1345 sbi->total_valid_node_count--; 1346 sbi->total_valid_block_count--; 1347 1348 spin_unlock(&sbi->stat_lock); 1349 } 1350 1351 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1352 { 1353 return sbi->total_valid_node_count; 1354 } 1355 1356 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1357 { 1358 percpu_counter_inc(&sbi->total_valid_inode_count); 1359 } 1360 1361 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1362 { 1363 percpu_counter_dec(&sbi->total_valid_inode_count); 1364 } 1365 1366 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1367 { 1368 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1369 } 1370 1371 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1372 pgoff_t index, bool for_write) 1373 { 1374 #ifdef CONFIG_F2FS_FAULT_INJECTION 1375 struct page *page = find_lock_page(mapping, index); 1376 if (page) 1377 return page; 1378 1379 if (time_to_inject(FAULT_PAGE_ALLOC)) 1380 return NULL; 1381 #endif 1382 if (!for_write) 1383 return grab_cache_page(mapping, index); 1384 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1385 } 1386 1387 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1388 { 1389 char *src_kaddr = kmap(src); 1390 char *dst_kaddr = kmap(dst); 1391 1392 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1393 kunmap(dst); 1394 kunmap(src); 1395 } 1396 1397 static inline void f2fs_put_page(struct page *page, int unlock) 1398 { 1399 if (!page) 1400 return; 1401 1402 if (unlock) { 1403 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1404 unlock_page(page); 1405 } 1406 put_page(page); 1407 } 1408 1409 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1410 { 1411 if (dn->node_page) 1412 f2fs_put_page(dn->node_page, 1); 1413 if (dn->inode_page && dn->node_page != dn->inode_page) 1414 f2fs_put_page(dn->inode_page, 0); 1415 dn->node_page = NULL; 1416 dn->inode_page = NULL; 1417 } 1418 1419 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1420 size_t size) 1421 { 1422 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1423 } 1424 1425 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1426 gfp_t flags) 1427 { 1428 void *entry; 1429 1430 entry = kmem_cache_alloc(cachep, flags); 1431 if (!entry) 1432 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1433 return entry; 1434 } 1435 1436 static inline struct bio *f2fs_bio_alloc(int npages) 1437 { 1438 struct bio *bio; 1439 1440 /* No failure on bio allocation */ 1441 bio = bio_alloc(GFP_NOIO, npages); 1442 if (!bio) 1443 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1444 return bio; 1445 } 1446 1447 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1448 unsigned long index, void *item) 1449 { 1450 while (radix_tree_insert(root, index, item)) 1451 cond_resched(); 1452 } 1453 1454 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1455 1456 static inline bool IS_INODE(struct page *page) 1457 { 1458 struct f2fs_node *p = F2FS_NODE(page); 1459 return RAW_IS_INODE(p); 1460 } 1461 1462 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1463 { 1464 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1465 } 1466 1467 static inline block_t datablock_addr(struct page *node_page, 1468 unsigned int offset) 1469 { 1470 struct f2fs_node *raw_node; 1471 __le32 *addr_array; 1472 raw_node = F2FS_NODE(node_page); 1473 addr_array = blkaddr_in_node(raw_node); 1474 return le32_to_cpu(addr_array[offset]); 1475 } 1476 1477 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1478 { 1479 int mask; 1480 1481 addr += (nr >> 3); 1482 mask = 1 << (7 - (nr & 0x07)); 1483 return mask & *addr; 1484 } 1485 1486 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1487 { 1488 int mask; 1489 1490 addr += (nr >> 3); 1491 mask = 1 << (7 - (nr & 0x07)); 1492 *addr |= mask; 1493 } 1494 1495 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1496 { 1497 int mask; 1498 1499 addr += (nr >> 3); 1500 mask = 1 << (7 - (nr & 0x07)); 1501 *addr &= ~mask; 1502 } 1503 1504 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1505 { 1506 int mask; 1507 int ret; 1508 1509 addr += (nr >> 3); 1510 mask = 1 << (7 - (nr & 0x07)); 1511 ret = mask & *addr; 1512 *addr |= mask; 1513 return ret; 1514 } 1515 1516 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1517 { 1518 int mask; 1519 int ret; 1520 1521 addr += (nr >> 3); 1522 mask = 1 << (7 - (nr & 0x07)); 1523 ret = mask & *addr; 1524 *addr &= ~mask; 1525 return ret; 1526 } 1527 1528 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1529 { 1530 int mask; 1531 1532 addr += (nr >> 3); 1533 mask = 1 << (7 - (nr & 0x07)); 1534 *addr ^= mask; 1535 } 1536 1537 /* used for f2fs_inode_info->flags */ 1538 enum { 1539 FI_NEW_INODE, /* indicate newly allocated inode */ 1540 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1541 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1542 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1543 FI_INC_LINK, /* need to increment i_nlink */ 1544 FI_ACL_MODE, /* indicate acl mode */ 1545 FI_NO_ALLOC, /* should not allocate any blocks */ 1546 FI_FREE_NID, /* free allocated nide */ 1547 FI_NO_EXTENT, /* not to use the extent cache */ 1548 FI_INLINE_XATTR, /* used for inline xattr */ 1549 FI_INLINE_DATA, /* used for inline data*/ 1550 FI_INLINE_DENTRY, /* used for inline dentry */ 1551 FI_APPEND_WRITE, /* inode has appended data */ 1552 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1553 FI_NEED_IPU, /* used for ipu per file */ 1554 FI_ATOMIC_FILE, /* indicate atomic file */ 1555 FI_VOLATILE_FILE, /* indicate volatile file */ 1556 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1557 FI_DROP_CACHE, /* drop dirty page cache */ 1558 FI_DATA_EXIST, /* indicate data exists */ 1559 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1560 FI_DO_DEFRAG, /* indicate defragment is running */ 1561 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1562 }; 1563 1564 static inline void __mark_inode_dirty_flag(struct inode *inode, 1565 int flag, bool set) 1566 { 1567 switch (flag) { 1568 case FI_INLINE_XATTR: 1569 case FI_INLINE_DATA: 1570 case FI_INLINE_DENTRY: 1571 if (set) 1572 return; 1573 case FI_DATA_EXIST: 1574 case FI_INLINE_DOTS: 1575 f2fs_mark_inode_dirty_sync(inode); 1576 } 1577 } 1578 1579 static inline void set_inode_flag(struct inode *inode, int flag) 1580 { 1581 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1582 set_bit(flag, &F2FS_I(inode)->flags); 1583 __mark_inode_dirty_flag(inode, flag, true); 1584 } 1585 1586 static inline int is_inode_flag_set(struct inode *inode, int flag) 1587 { 1588 return test_bit(flag, &F2FS_I(inode)->flags); 1589 } 1590 1591 static inline void clear_inode_flag(struct inode *inode, int flag) 1592 { 1593 if (test_bit(flag, &F2FS_I(inode)->flags)) 1594 clear_bit(flag, &F2FS_I(inode)->flags); 1595 __mark_inode_dirty_flag(inode, flag, false); 1596 } 1597 1598 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1599 { 1600 F2FS_I(inode)->i_acl_mode = mode; 1601 set_inode_flag(inode, FI_ACL_MODE); 1602 f2fs_mark_inode_dirty_sync(inode); 1603 } 1604 1605 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1606 { 1607 if (inc) 1608 inc_nlink(inode); 1609 else 1610 drop_nlink(inode); 1611 f2fs_mark_inode_dirty_sync(inode); 1612 } 1613 1614 static inline void f2fs_i_blocks_write(struct inode *inode, 1615 blkcnt_t diff, bool add) 1616 { 1617 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1618 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1619 1620 inode->i_blocks = add ? inode->i_blocks + diff : 1621 inode->i_blocks - diff; 1622 f2fs_mark_inode_dirty_sync(inode); 1623 if (clean || recover) 1624 set_inode_flag(inode, FI_AUTO_RECOVER); 1625 } 1626 1627 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1628 { 1629 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1630 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1631 1632 if (i_size_read(inode) == i_size) 1633 return; 1634 1635 i_size_write(inode, i_size); 1636 f2fs_mark_inode_dirty_sync(inode); 1637 if (clean || recover) 1638 set_inode_flag(inode, FI_AUTO_RECOVER); 1639 } 1640 1641 static inline bool f2fs_skip_inode_update(struct inode *inode) 1642 { 1643 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1644 return false; 1645 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 1646 } 1647 1648 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1649 { 1650 F2FS_I(inode)->i_current_depth = depth; 1651 f2fs_mark_inode_dirty_sync(inode); 1652 } 1653 1654 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1655 { 1656 F2FS_I(inode)->i_xattr_nid = xnid; 1657 f2fs_mark_inode_dirty_sync(inode); 1658 } 1659 1660 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1661 { 1662 F2FS_I(inode)->i_pino = pino; 1663 f2fs_mark_inode_dirty_sync(inode); 1664 } 1665 1666 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1667 { 1668 struct f2fs_inode_info *fi = F2FS_I(inode); 1669 1670 if (ri->i_inline & F2FS_INLINE_XATTR) 1671 set_bit(FI_INLINE_XATTR, &fi->flags); 1672 if (ri->i_inline & F2FS_INLINE_DATA) 1673 set_bit(FI_INLINE_DATA, &fi->flags); 1674 if (ri->i_inline & F2FS_INLINE_DENTRY) 1675 set_bit(FI_INLINE_DENTRY, &fi->flags); 1676 if (ri->i_inline & F2FS_DATA_EXIST) 1677 set_bit(FI_DATA_EXIST, &fi->flags); 1678 if (ri->i_inline & F2FS_INLINE_DOTS) 1679 set_bit(FI_INLINE_DOTS, &fi->flags); 1680 } 1681 1682 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1683 { 1684 ri->i_inline = 0; 1685 1686 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1687 ri->i_inline |= F2FS_INLINE_XATTR; 1688 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1689 ri->i_inline |= F2FS_INLINE_DATA; 1690 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1691 ri->i_inline |= F2FS_INLINE_DENTRY; 1692 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1693 ri->i_inline |= F2FS_DATA_EXIST; 1694 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 1695 ri->i_inline |= F2FS_INLINE_DOTS; 1696 } 1697 1698 static inline int f2fs_has_inline_xattr(struct inode *inode) 1699 { 1700 return is_inode_flag_set(inode, FI_INLINE_XATTR); 1701 } 1702 1703 static inline unsigned int addrs_per_inode(struct inode *inode) 1704 { 1705 if (f2fs_has_inline_xattr(inode)) 1706 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1707 return DEF_ADDRS_PER_INODE; 1708 } 1709 1710 static inline void *inline_xattr_addr(struct page *page) 1711 { 1712 struct f2fs_inode *ri = F2FS_INODE(page); 1713 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1714 F2FS_INLINE_XATTR_ADDRS]); 1715 } 1716 1717 static inline int inline_xattr_size(struct inode *inode) 1718 { 1719 if (f2fs_has_inline_xattr(inode)) 1720 return F2FS_INLINE_XATTR_ADDRS << 2; 1721 else 1722 return 0; 1723 } 1724 1725 static inline int f2fs_has_inline_data(struct inode *inode) 1726 { 1727 return is_inode_flag_set(inode, FI_INLINE_DATA); 1728 } 1729 1730 static inline void f2fs_clear_inline_inode(struct inode *inode) 1731 { 1732 clear_inode_flag(inode, FI_INLINE_DATA); 1733 clear_inode_flag(inode, FI_DATA_EXIST); 1734 } 1735 1736 static inline int f2fs_exist_data(struct inode *inode) 1737 { 1738 return is_inode_flag_set(inode, FI_DATA_EXIST); 1739 } 1740 1741 static inline int f2fs_has_inline_dots(struct inode *inode) 1742 { 1743 return is_inode_flag_set(inode, FI_INLINE_DOTS); 1744 } 1745 1746 static inline bool f2fs_is_atomic_file(struct inode *inode) 1747 { 1748 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 1749 } 1750 1751 static inline bool f2fs_is_volatile_file(struct inode *inode) 1752 { 1753 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 1754 } 1755 1756 static inline bool f2fs_is_first_block_written(struct inode *inode) 1757 { 1758 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 1759 } 1760 1761 static inline bool f2fs_is_drop_cache(struct inode *inode) 1762 { 1763 return is_inode_flag_set(inode, FI_DROP_CACHE); 1764 } 1765 1766 static inline void *inline_data_addr(struct page *page) 1767 { 1768 struct f2fs_inode *ri = F2FS_INODE(page); 1769 return (void *)&(ri->i_addr[1]); 1770 } 1771 1772 static inline int f2fs_has_inline_dentry(struct inode *inode) 1773 { 1774 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 1775 } 1776 1777 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1778 { 1779 if (!f2fs_has_inline_dentry(dir)) 1780 kunmap(page); 1781 } 1782 1783 static inline int is_file(struct inode *inode, int type) 1784 { 1785 return F2FS_I(inode)->i_advise & type; 1786 } 1787 1788 static inline void set_file(struct inode *inode, int type) 1789 { 1790 F2FS_I(inode)->i_advise |= type; 1791 f2fs_mark_inode_dirty_sync(inode); 1792 } 1793 1794 static inline void clear_file(struct inode *inode, int type) 1795 { 1796 F2FS_I(inode)->i_advise &= ~type; 1797 f2fs_mark_inode_dirty_sync(inode); 1798 } 1799 1800 static inline int f2fs_readonly(struct super_block *sb) 1801 { 1802 return sb->s_flags & MS_RDONLY; 1803 } 1804 1805 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1806 { 1807 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1808 } 1809 1810 static inline bool is_dot_dotdot(const struct qstr *str) 1811 { 1812 if (str->len == 1 && str->name[0] == '.') 1813 return true; 1814 1815 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1816 return true; 1817 1818 return false; 1819 } 1820 1821 static inline bool f2fs_may_extent_tree(struct inode *inode) 1822 { 1823 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1824 is_inode_flag_set(inode, FI_NO_EXTENT)) 1825 return false; 1826 1827 return S_ISREG(inode->i_mode); 1828 } 1829 1830 static inline void *f2fs_kmalloc(size_t size, gfp_t flags) 1831 { 1832 #ifdef CONFIG_F2FS_FAULT_INJECTION 1833 if (time_to_inject(FAULT_KMALLOC)) 1834 return NULL; 1835 #endif 1836 return kmalloc(size, flags); 1837 } 1838 1839 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 1840 { 1841 void *ret; 1842 1843 ret = kmalloc(size, flags | __GFP_NOWARN); 1844 if (!ret) 1845 ret = __vmalloc(size, flags, PAGE_KERNEL); 1846 return ret; 1847 } 1848 1849 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 1850 { 1851 void *ret; 1852 1853 ret = kzalloc(size, flags | __GFP_NOWARN); 1854 if (!ret) 1855 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 1856 return ret; 1857 } 1858 1859 #define get_inode_mode(i) \ 1860 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 1861 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1862 1863 /* get offset of first page in next direct node */ 1864 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 1865 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 1866 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 1867 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 1868 1869 /* 1870 * file.c 1871 */ 1872 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1873 void truncate_data_blocks(struct dnode_of_data *); 1874 int truncate_blocks(struct inode *, u64, bool); 1875 int f2fs_truncate(struct inode *); 1876 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1877 int f2fs_setattr(struct dentry *, struct iattr *); 1878 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1879 int truncate_data_blocks_range(struct dnode_of_data *, int); 1880 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1881 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1882 1883 /* 1884 * inode.c 1885 */ 1886 void f2fs_set_inode_flags(struct inode *); 1887 struct inode *f2fs_iget(struct super_block *, unsigned long); 1888 int try_to_free_nats(struct f2fs_sb_info *, int); 1889 int update_inode(struct inode *, struct page *); 1890 int update_inode_page(struct inode *); 1891 int f2fs_write_inode(struct inode *, struct writeback_control *); 1892 void f2fs_evict_inode(struct inode *); 1893 void handle_failed_inode(struct inode *); 1894 1895 /* 1896 * namei.c 1897 */ 1898 struct dentry *f2fs_get_parent(struct dentry *child); 1899 1900 /* 1901 * dir.c 1902 */ 1903 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX]; 1904 void set_de_type(struct f2fs_dir_entry *, umode_t); 1905 unsigned char get_de_type(struct f2fs_dir_entry *); 1906 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *, 1907 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1908 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1909 unsigned int, struct fscrypt_str *); 1910 void do_make_empty_dir(struct inode *, struct inode *, 1911 struct f2fs_dentry_ptr *); 1912 struct page *init_inode_metadata(struct inode *, struct inode *, 1913 const struct qstr *, struct page *); 1914 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1915 int room_for_filename(const void *, int, int); 1916 void f2fs_drop_nlink(struct inode *, struct inode *); 1917 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *, 1918 struct page **); 1919 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1920 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **); 1921 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1922 struct page *, struct inode *); 1923 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1924 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1925 const struct qstr *, f2fs_hash_t , unsigned int); 1926 int f2fs_add_regular_entry(struct inode *, const struct qstr *, 1927 struct inode *, nid_t, umode_t); 1928 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1929 umode_t); 1930 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1931 struct inode *); 1932 int f2fs_do_tmpfile(struct inode *, struct inode *); 1933 bool f2fs_empty_dir(struct inode *); 1934 1935 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1936 { 1937 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1938 inode, inode->i_ino, inode->i_mode); 1939 } 1940 1941 /* 1942 * super.c 1943 */ 1944 int f2fs_inode_dirtied(struct inode *); 1945 void f2fs_inode_synced(struct inode *); 1946 int f2fs_commit_super(struct f2fs_sb_info *, bool); 1947 int f2fs_sync_fs(struct super_block *, int); 1948 extern __printf(3, 4) 1949 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1950 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 1951 1952 /* 1953 * hash.c 1954 */ 1955 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1956 1957 /* 1958 * node.c 1959 */ 1960 struct dnode_of_data; 1961 struct node_info; 1962 1963 bool available_free_memory(struct f2fs_sb_info *, int); 1964 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 1965 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1966 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1967 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1968 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t); 1969 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1970 int truncate_inode_blocks(struct inode *, pgoff_t); 1971 int truncate_xattr_node(struct inode *, struct page *); 1972 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1973 int remove_inode_page(struct inode *); 1974 struct page *new_inode_page(struct inode *); 1975 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1976 void ra_node_page(struct f2fs_sb_info *, nid_t); 1977 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1978 struct page *get_node_page_ra(struct page *, int); 1979 void move_node_page(struct page *, int); 1980 int fsync_node_pages(struct f2fs_sb_info *, struct inode *, 1981 struct writeback_control *, bool); 1982 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *); 1983 void build_free_nids(struct f2fs_sb_info *); 1984 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1985 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1986 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1987 int try_to_free_nids(struct f2fs_sb_info *, int); 1988 void recover_inline_xattr(struct inode *, struct page *); 1989 void recover_xattr_data(struct inode *, struct page *, block_t); 1990 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1991 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1992 struct f2fs_summary_block *); 1993 void flush_nat_entries(struct f2fs_sb_info *); 1994 int build_node_manager(struct f2fs_sb_info *); 1995 void destroy_node_manager(struct f2fs_sb_info *); 1996 int __init create_node_manager_caches(void); 1997 void destroy_node_manager_caches(void); 1998 1999 /* 2000 * segment.c 2001 */ 2002 void register_inmem_page(struct inode *, struct page *); 2003 void drop_inmem_pages(struct inode *); 2004 int commit_inmem_pages(struct inode *); 2005 void f2fs_balance_fs(struct f2fs_sb_info *, bool); 2006 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 2007 int f2fs_issue_flush(struct f2fs_sb_info *); 2008 int create_flush_cmd_control(struct f2fs_sb_info *); 2009 void destroy_flush_cmd_control(struct f2fs_sb_info *); 2010 void invalidate_blocks(struct f2fs_sb_info *, block_t); 2011 bool is_checkpointed_data(struct f2fs_sb_info *, block_t); 2012 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 2013 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 2014 void release_discard_addrs(struct f2fs_sb_info *); 2015 bool discard_next_dnode(struct f2fs_sb_info *, block_t); 2016 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 2017 void allocate_new_segments(struct f2fs_sb_info *); 2018 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 2019 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 2020 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 2021 void write_meta_page(struct f2fs_sb_info *, struct page *); 2022 void write_node_page(unsigned int, struct f2fs_io_info *); 2023 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 2024 void rewrite_data_page(struct f2fs_io_info *); 2025 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *, 2026 block_t, block_t, bool, bool); 2027 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 2028 block_t, block_t, unsigned char, bool, bool); 2029 void allocate_data_block(struct f2fs_sb_info *, struct page *, 2030 block_t, block_t *, struct f2fs_summary *, int); 2031 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool); 2032 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t); 2033 void write_data_summaries(struct f2fs_sb_info *, block_t); 2034 void write_node_summaries(struct f2fs_sb_info *, block_t); 2035 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int); 2036 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 2037 int build_segment_manager(struct f2fs_sb_info *); 2038 void destroy_segment_manager(struct f2fs_sb_info *); 2039 int __init create_segment_manager_caches(void); 2040 void destroy_segment_manager_caches(void); 2041 2042 /* 2043 * checkpoint.c 2044 */ 2045 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool); 2046 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 2047 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 2048 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t); 2049 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 2050 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool); 2051 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 2052 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 2053 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2054 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2055 void release_ino_entry(struct f2fs_sb_info *, bool); 2056 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 2057 int f2fs_sync_inode_meta(struct f2fs_sb_info *); 2058 int acquire_orphan_inode(struct f2fs_sb_info *); 2059 void release_orphan_inode(struct f2fs_sb_info *); 2060 void add_orphan_inode(struct inode *); 2061 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 2062 int recover_orphan_inodes(struct f2fs_sb_info *); 2063 int get_valid_checkpoint(struct f2fs_sb_info *); 2064 void update_dirty_page(struct inode *, struct page *); 2065 void remove_dirty_inode(struct inode *); 2066 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type); 2067 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 2068 void init_ino_entry_info(struct f2fs_sb_info *); 2069 int __init create_checkpoint_caches(void); 2070 void destroy_checkpoint_caches(void); 2071 2072 /* 2073 * data.c 2074 */ 2075 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 2076 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *, 2077 struct page *, nid_t, enum page_type, int); 2078 void f2fs_flush_merged_bios(struct f2fs_sb_info *); 2079 int f2fs_submit_page_bio(struct f2fs_io_info *); 2080 void f2fs_submit_page_mbio(struct f2fs_io_info *); 2081 void set_data_blkaddr(struct dnode_of_data *); 2082 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t); 2083 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t); 2084 int reserve_new_block(struct dnode_of_data *); 2085 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 2086 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *); 2087 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 2088 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool); 2089 struct page *find_data_page(struct inode *, pgoff_t); 2090 struct page *get_lock_data_page(struct inode *, pgoff_t, bool); 2091 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 2092 int do_write_data_page(struct f2fs_io_info *); 2093 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int); 2094 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 2095 void f2fs_set_page_dirty_nobuffers(struct page *); 2096 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 2097 int f2fs_release_page(struct page *, gfp_t); 2098 2099 /* 2100 * gc.c 2101 */ 2102 int start_gc_thread(struct f2fs_sb_info *); 2103 void stop_gc_thread(struct f2fs_sb_info *); 2104 block_t start_bidx_of_node(unsigned int, struct inode *); 2105 int f2fs_gc(struct f2fs_sb_info *, bool); 2106 void build_gc_manager(struct f2fs_sb_info *); 2107 2108 /* 2109 * recovery.c 2110 */ 2111 int recover_fsync_data(struct f2fs_sb_info *, bool); 2112 bool space_for_roll_forward(struct f2fs_sb_info *); 2113 2114 /* 2115 * debug.c 2116 */ 2117 #ifdef CONFIG_F2FS_STAT_FS 2118 struct f2fs_stat_info { 2119 struct list_head stat_list; 2120 struct f2fs_sb_info *sbi; 2121 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2122 int main_area_segs, main_area_sections, main_area_zones; 2123 unsigned long long hit_largest, hit_cached, hit_rbtree; 2124 unsigned long long hit_total, total_ext; 2125 int ext_tree, zombie_tree, ext_node; 2126 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages; 2127 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2128 int nats, dirty_nats, sits, dirty_sits, fnids; 2129 int total_count, utilization; 2130 int bg_gc, wb_bios; 2131 int inline_xattr, inline_inode, inline_dir, orphans; 2132 unsigned int valid_count, valid_node_count, valid_inode_count; 2133 unsigned int bimodal, avg_vblocks; 2134 int util_free, util_valid, util_invalid; 2135 int rsvd_segs, overp_segs; 2136 int dirty_count, node_pages, meta_pages; 2137 int prefree_count, call_count, cp_count, bg_cp_count; 2138 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2139 int bg_node_segs, bg_data_segs; 2140 int tot_blks, data_blks, node_blks; 2141 int bg_data_blks, bg_node_blks; 2142 int curseg[NR_CURSEG_TYPE]; 2143 int cursec[NR_CURSEG_TYPE]; 2144 int curzone[NR_CURSEG_TYPE]; 2145 2146 unsigned int segment_count[2]; 2147 unsigned int block_count[2]; 2148 unsigned int inplace_count; 2149 unsigned long long base_mem, cache_mem, page_mem; 2150 }; 2151 2152 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2153 { 2154 return (struct f2fs_stat_info *)sbi->stat_info; 2155 } 2156 2157 #define stat_inc_cp_count(si) ((si)->cp_count++) 2158 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2159 #define stat_inc_call_count(si) ((si)->call_count++) 2160 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2161 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2162 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2163 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2164 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2165 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2166 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2167 #define stat_inc_inline_xattr(inode) \ 2168 do { \ 2169 if (f2fs_has_inline_xattr(inode)) \ 2170 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2171 } while (0) 2172 #define stat_dec_inline_xattr(inode) \ 2173 do { \ 2174 if (f2fs_has_inline_xattr(inode)) \ 2175 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2176 } while (0) 2177 #define stat_inc_inline_inode(inode) \ 2178 do { \ 2179 if (f2fs_has_inline_data(inode)) \ 2180 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2181 } while (0) 2182 #define stat_dec_inline_inode(inode) \ 2183 do { \ 2184 if (f2fs_has_inline_data(inode)) \ 2185 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2186 } while (0) 2187 #define stat_inc_inline_dir(inode) \ 2188 do { \ 2189 if (f2fs_has_inline_dentry(inode)) \ 2190 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2191 } while (0) 2192 #define stat_dec_inline_dir(inode) \ 2193 do { \ 2194 if (f2fs_has_inline_dentry(inode)) \ 2195 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2196 } while (0) 2197 #define stat_inc_seg_type(sbi, curseg) \ 2198 ((sbi)->segment_count[(curseg)->alloc_type]++) 2199 #define stat_inc_block_count(sbi, curseg) \ 2200 ((sbi)->block_count[(curseg)->alloc_type]++) 2201 #define stat_inc_inplace_blocks(sbi) \ 2202 (atomic_inc(&(sbi)->inplace_count)) 2203 #define stat_inc_seg_count(sbi, type, gc_type) \ 2204 do { \ 2205 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2206 (si)->tot_segs++; \ 2207 if (type == SUM_TYPE_DATA) { \ 2208 si->data_segs++; \ 2209 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2210 } else { \ 2211 si->node_segs++; \ 2212 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2213 } \ 2214 } while (0) 2215 2216 #define stat_inc_tot_blk_count(si, blks) \ 2217 (si->tot_blks += (blks)) 2218 2219 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2220 do { \ 2221 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2222 stat_inc_tot_blk_count(si, blks); \ 2223 si->data_blks += (blks); \ 2224 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2225 } while (0) 2226 2227 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2228 do { \ 2229 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2230 stat_inc_tot_blk_count(si, blks); \ 2231 si->node_blks += (blks); \ 2232 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2233 } while (0) 2234 2235 int f2fs_build_stats(struct f2fs_sb_info *); 2236 void f2fs_destroy_stats(struct f2fs_sb_info *); 2237 int __init f2fs_create_root_stats(void); 2238 void f2fs_destroy_root_stats(void); 2239 #else 2240 #define stat_inc_cp_count(si) 2241 #define stat_inc_bg_cp_count(si) 2242 #define stat_inc_call_count(si) 2243 #define stat_inc_bggc_count(si) 2244 #define stat_inc_dirty_inode(sbi, type) 2245 #define stat_dec_dirty_inode(sbi, type) 2246 #define stat_inc_total_hit(sb) 2247 #define stat_inc_rbtree_node_hit(sb) 2248 #define stat_inc_largest_node_hit(sbi) 2249 #define stat_inc_cached_node_hit(sbi) 2250 #define stat_inc_inline_xattr(inode) 2251 #define stat_dec_inline_xattr(inode) 2252 #define stat_inc_inline_inode(inode) 2253 #define stat_dec_inline_inode(inode) 2254 #define stat_inc_inline_dir(inode) 2255 #define stat_dec_inline_dir(inode) 2256 #define stat_inc_seg_type(sbi, curseg) 2257 #define stat_inc_block_count(sbi, curseg) 2258 #define stat_inc_inplace_blocks(sbi) 2259 #define stat_inc_seg_count(sbi, type, gc_type) 2260 #define stat_inc_tot_blk_count(si, blks) 2261 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2262 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2263 2264 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2265 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2266 static inline int __init f2fs_create_root_stats(void) { return 0; } 2267 static inline void f2fs_destroy_root_stats(void) { } 2268 #endif 2269 2270 extern const struct file_operations f2fs_dir_operations; 2271 extern const struct file_operations f2fs_file_operations; 2272 extern const struct inode_operations f2fs_file_inode_operations; 2273 extern const struct address_space_operations f2fs_dblock_aops; 2274 extern const struct address_space_operations f2fs_node_aops; 2275 extern const struct address_space_operations f2fs_meta_aops; 2276 extern const struct inode_operations f2fs_dir_inode_operations; 2277 extern const struct inode_operations f2fs_symlink_inode_operations; 2278 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2279 extern const struct inode_operations f2fs_special_inode_operations; 2280 extern struct kmem_cache *inode_entry_slab; 2281 2282 /* 2283 * inline.c 2284 */ 2285 bool f2fs_may_inline_data(struct inode *); 2286 bool f2fs_may_inline_dentry(struct inode *); 2287 void read_inline_data(struct page *, struct page *); 2288 bool truncate_inline_inode(struct page *, u64); 2289 int f2fs_read_inline_data(struct inode *, struct page *); 2290 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 2291 int f2fs_convert_inline_inode(struct inode *); 2292 int f2fs_write_inline_data(struct inode *, struct page *); 2293 bool recover_inline_data(struct inode *, struct page *); 2294 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 2295 struct fscrypt_name *, struct page **); 2296 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 2297 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *, 2298 nid_t, umode_t); 2299 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 2300 struct inode *, struct inode *); 2301 bool f2fs_empty_inline_dir(struct inode *); 2302 int f2fs_read_inline_dir(struct file *, struct dir_context *, 2303 struct fscrypt_str *); 2304 int f2fs_inline_data_fiemap(struct inode *, 2305 struct fiemap_extent_info *, __u64, __u64); 2306 2307 /* 2308 * shrinker.c 2309 */ 2310 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2311 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2312 void f2fs_join_shrinker(struct f2fs_sb_info *); 2313 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2314 2315 /* 2316 * extent_cache.c 2317 */ 2318 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2319 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2320 void f2fs_drop_extent_tree(struct inode *); 2321 unsigned int f2fs_destroy_extent_node(struct inode *); 2322 void f2fs_destroy_extent_tree(struct inode *); 2323 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2324 void f2fs_update_extent_cache(struct dnode_of_data *); 2325 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2326 pgoff_t, block_t, unsigned int); 2327 void init_extent_cache_info(struct f2fs_sb_info *); 2328 int __init create_extent_cache(void); 2329 void destroy_extent_cache(void); 2330 2331 /* 2332 * crypto support 2333 */ 2334 static inline bool f2fs_encrypted_inode(struct inode *inode) 2335 { 2336 return file_is_encrypt(inode); 2337 } 2338 2339 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2340 { 2341 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2342 file_set_encrypt(inode); 2343 #endif 2344 } 2345 2346 static inline bool f2fs_bio_encrypted(struct bio *bio) 2347 { 2348 return bio->bi_private != NULL; 2349 } 2350 2351 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2352 { 2353 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2354 } 2355 2356 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb) 2357 { 2358 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR); 2359 } 2360 2361 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2362 { 2363 clear_opt(sbi, ADAPTIVE); 2364 clear_opt(sbi, LFS); 2365 2366 switch (mt) { 2367 case F2FS_MOUNT_ADAPTIVE: 2368 set_opt(sbi, ADAPTIVE); 2369 break; 2370 case F2FS_MOUNT_LFS: 2371 set_opt(sbi, LFS); 2372 break; 2373 } 2374 } 2375 2376 static inline bool f2fs_may_encrypt(struct inode *inode) 2377 { 2378 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2379 umode_t mode = inode->i_mode; 2380 2381 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2382 #else 2383 return 0; 2384 #endif 2385 } 2386 2387 #ifndef CONFIG_F2FS_FS_ENCRYPTION 2388 #define fscrypt_set_d_op(i) 2389 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx 2390 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx 2391 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page 2392 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page 2393 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages 2394 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page 2395 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page 2396 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range 2397 #define fscrypt_process_policy fscrypt_notsupp_process_policy 2398 #define fscrypt_get_policy fscrypt_notsupp_get_policy 2399 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context 2400 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context 2401 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info 2402 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info 2403 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename 2404 #define fscrypt_free_filename fscrypt_notsupp_free_filename 2405 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size 2406 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer 2407 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer 2408 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr 2409 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk 2410 #endif 2411 #endif 2412