xref: /openbmc/linux/fs/f2fs/f2fs.h (revision b85d4594)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/bio.h>
23 
24 #ifdef CONFIG_F2FS_CHECK_FS
25 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
26 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
27 #else
28 #define f2fs_bug_on(sbi, condition)					\
29 	do {								\
30 		if (unlikely(condition)) {				\
31 			WARN_ON(1);					\
32 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
33 		}							\
34 	} while (0)
35 #define f2fs_down_write(x, y)	down_write(x)
36 #endif
37 
38 /*
39  * For mount options
40  */
41 #define F2FS_MOUNT_BG_GC		0x00000001
42 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
43 #define F2FS_MOUNT_DISCARD		0x00000004
44 #define F2FS_MOUNT_NOHEAP		0x00000008
45 #define F2FS_MOUNT_XATTR_USER		0x00000010
46 #define F2FS_MOUNT_POSIX_ACL		0x00000020
47 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
48 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
49 #define F2FS_MOUNT_INLINE_DATA		0x00000100
50 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
51 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
52 #define F2FS_MOUNT_NOBARRIER		0x00000800
53 #define F2FS_MOUNT_FASTBOOT		0x00001000
54 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
55 
56 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
57 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
58 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
59 
60 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
61 		typecheck(unsigned long long, b) &&			\
62 		((long long)((a) - (b)) > 0))
63 
64 typedef u32 block_t;	/*
65 			 * should not change u32, since it is the on-disk block
66 			 * address format, __le32.
67 			 */
68 typedef u32 nid_t;
69 
70 struct f2fs_mount_info {
71 	unsigned int	opt;
72 };
73 
74 #define F2FS_FEATURE_ENCRYPT	0x0001
75 
76 #define F2FS_HAS_FEATURE(sb, mask)					\
77 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
78 #define F2FS_SET_FEATURE(sb, mask)					\
79 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
80 #define F2FS_CLEAR_FEATURE(sb, mask)					\
81 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
82 
83 #define CRCPOLY_LE 0xedb88320
84 
85 static inline __u32 f2fs_crc32(void *buf, size_t len)
86 {
87 	unsigned char *p = (unsigned char *)buf;
88 	__u32 crc = F2FS_SUPER_MAGIC;
89 	int i;
90 
91 	while (len--) {
92 		crc ^= *p++;
93 		for (i = 0; i < 8; i++)
94 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
95 	}
96 	return crc;
97 }
98 
99 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
100 {
101 	return f2fs_crc32(buf, buf_size) == blk_crc;
102 }
103 
104 /*
105  * For checkpoint manager
106  */
107 enum {
108 	NAT_BITMAP,
109 	SIT_BITMAP
110 };
111 
112 enum {
113 	CP_UMOUNT,
114 	CP_FASTBOOT,
115 	CP_SYNC,
116 	CP_RECOVERY,
117 	CP_DISCARD,
118 };
119 
120 #define DEF_BATCHED_TRIM_SECTIONS	32
121 #define BATCHED_TRIM_SEGMENTS(sbi)	\
122 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
123 #define BATCHED_TRIM_BLOCKS(sbi)	\
124 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
125 
126 struct cp_control {
127 	int reason;
128 	__u64 trim_start;
129 	__u64 trim_end;
130 	__u64 trim_minlen;
131 	__u64 trimmed;
132 };
133 
134 /*
135  * For CP/NAT/SIT/SSA readahead
136  */
137 enum {
138 	META_CP,
139 	META_NAT,
140 	META_SIT,
141 	META_SSA,
142 	META_POR,
143 };
144 
145 /* for the list of ino */
146 enum {
147 	ORPHAN_INO,		/* for orphan ino list */
148 	APPEND_INO,		/* for append ino list */
149 	UPDATE_INO,		/* for update ino list */
150 	MAX_INO_ENTRY,		/* max. list */
151 };
152 
153 struct ino_entry {
154 	struct list_head list;	/* list head */
155 	nid_t ino;		/* inode number */
156 };
157 
158 /*
159  * for the list of directory inodes or gc inodes.
160  * NOTE: there are two slab users for this structure, if we add/modify/delete
161  * fields in structure for one of slab users, it may affect fields or size of
162  * other one, in this condition, it's better to split both of slab and related
163  * data structure.
164  */
165 struct inode_entry {
166 	struct list_head list;	/* list head */
167 	struct inode *inode;	/* vfs inode pointer */
168 };
169 
170 /* for the list of blockaddresses to be discarded */
171 struct discard_entry {
172 	struct list_head list;	/* list head */
173 	block_t blkaddr;	/* block address to be discarded */
174 	int len;		/* # of consecutive blocks of the discard */
175 };
176 
177 /* for the list of fsync inodes, used only during recovery */
178 struct fsync_inode_entry {
179 	struct list_head list;	/* list head */
180 	struct inode *inode;	/* vfs inode pointer */
181 	block_t blkaddr;	/* block address locating the last fsync */
182 	block_t last_dentry;	/* block address locating the last dentry */
183 	block_t last_inode;	/* block address locating the last inode */
184 };
185 
186 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
187 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
188 
189 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
190 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
191 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
192 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
193 
194 #define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
195 #define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
196 
197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
198 {
199 	int before = nats_in_cursum(rs);
200 	rs->n_nats = cpu_to_le16(before + i);
201 	return before;
202 }
203 
204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
205 {
206 	int before = sits_in_cursum(rs);
207 	rs->n_sits = cpu_to_le16(before + i);
208 	return before;
209 }
210 
211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
212 								int type)
213 {
214 	if (type == NAT_JOURNAL)
215 		return size <= MAX_NAT_JENTRIES(sum);
216 	return size <= MAX_SIT_JENTRIES(sum);
217 }
218 
219 /*
220  * ioctl commands
221  */
222 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
223 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
224 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
225 
226 #define F2FS_IOCTL_MAGIC		0xf5
227 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
229 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
231 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
232 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
233 
234 #define F2FS_IOC_SET_ENCRYPTION_POLICY					\
235 		_IOR('f', 19, struct f2fs_encryption_policy)
236 #define F2FS_IOC_GET_ENCRYPTION_PWSALT					\
237 		_IOW('f', 20, __u8[16])
238 #define F2FS_IOC_GET_ENCRYPTION_POLICY					\
239 		_IOW('f', 21, struct f2fs_encryption_policy)
240 
241 /*
242  * should be same as XFS_IOC_GOINGDOWN.
243  * Flags for going down operation used by FS_IOC_GOINGDOWN
244  */
245 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
246 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
247 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
248 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
249 
250 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
251 /*
252  * ioctl commands in 32 bit emulation
253  */
254 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
255 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
256 #endif
257 
258 /*
259  * For INODE and NODE manager
260  */
261 /* for directory operations */
262 struct f2fs_str {
263 	unsigned char *name;
264 	u32 len;
265 };
266 
267 struct f2fs_filename {
268 	const struct qstr *usr_fname;
269 	struct f2fs_str disk_name;
270 	f2fs_hash_t hash;
271 #ifdef CONFIG_F2FS_FS_ENCRYPTION
272 	struct f2fs_str crypto_buf;
273 #endif
274 };
275 
276 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
277 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
278 #define fname_name(p)		((p)->disk_name.name)
279 #define fname_len(p)		((p)->disk_name.len)
280 
281 struct f2fs_dentry_ptr {
282 	struct inode *inode;
283 	const void *bitmap;
284 	struct f2fs_dir_entry *dentry;
285 	__u8 (*filename)[F2FS_SLOT_LEN];
286 	int max;
287 };
288 
289 static inline void make_dentry_ptr(struct inode *inode,
290 		struct f2fs_dentry_ptr *d, void *src, int type)
291 {
292 	d->inode = inode;
293 
294 	if (type == 1) {
295 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
296 		d->max = NR_DENTRY_IN_BLOCK;
297 		d->bitmap = &t->dentry_bitmap;
298 		d->dentry = t->dentry;
299 		d->filename = t->filename;
300 	} else {
301 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
302 		d->max = NR_INLINE_DENTRY;
303 		d->bitmap = &t->dentry_bitmap;
304 		d->dentry = t->dentry;
305 		d->filename = t->filename;
306 	}
307 }
308 
309 /*
310  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
311  * as its node offset to distinguish from index node blocks.
312  * But some bits are used to mark the node block.
313  */
314 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
315 				>> OFFSET_BIT_SHIFT)
316 enum {
317 	ALLOC_NODE,			/* allocate a new node page if needed */
318 	LOOKUP_NODE,			/* look up a node without readahead */
319 	LOOKUP_NODE_RA,			/*
320 					 * look up a node with readahead called
321 					 * by get_data_block.
322 					 */
323 };
324 
325 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
326 
327 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
328 
329 /* vector size for gang look-up from extent cache that consists of radix tree */
330 #define EXT_TREE_VEC_SIZE	64
331 
332 /* for in-memory extent cache entry */
333 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
334 
335 /* number of extent info in extent cache we try to shrink */
336 #define EXTENT_CACHE_SHRINK_NUMBER	128
337 
338 struct extent_info {
339 	unsigned int fofs;		/* start offset in a file */
340 	u32 blk;			/* start block address of the extent */
341 	unsigned int len;		/* length of the extent */
342 };
343 
344 struct extent_node {
345 	struct rb_node rb_node;		/* rb node located in rb-tree */
346 	struct list_head list;		/* node in global extent list of sbi */
347 	struct extent_info ei;		/* extent info */
348 };
349 
350 struct extent_tree {
351 	nid_t ino;			/* inode number */
352 	struct rb_root root;		/* root of extent info rb-tree */
353 	struct extent_node *cached_en;	/* recently accessed extent node */
354 	struct extent_info largest;	/* largested extent info */
355 	rwlock_t lock;			/* protect extent info rb-tree */
356 	atomic_t refcount;		/* reference count of rb-tree */
357 	unsigned int count;		/* # of extent node in rb-tree*/
358 };
359 
360 /*
361  * This structure is taken from ext4_map_blocks.
362  *
363  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
364  */
365 #define F2FS_MAP_NEW		(1 << BH_New)
366 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
367 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
368 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
369 				F2FS_MAP_UNWRITTEN)
370 
371 struct f2fs_map_blocks {
372 	block_t m_pblk;
373 	block_t m_lblk;
374 	unsigned int m_len;
375 	unsigned int m_flags;
376 };
377 
378 /* for flag in get_data_block */
379 #define F2FS_GET_BLOCK_READ		0
380 #define F2FS_GET_BLOCK_DIO		1
381 #define F2FS_GET_BLOCK_FIEMAP		2
382 #define F2FS_GET_BLOCK_BMAP		3
383 
384 /*
385  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
386  */
387 #define FADVISE_COLD_BIT	0x01
388 #define FADVISE_LOST_PINO_BIT	0x02
389 #define FADVISE_ENCRYPT_BIT	0x04
390 #define FADVISE_ENC_NAME_BIT	0x08
391 
392 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
393 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
394 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
395 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
396 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
397 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
398 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
399 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
400 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
401 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
402 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
403 
404 /* Encryption algorithms */
405 #define F2FS_ENCRYPTION_MODE_INVALID		0
406 #define F2FS_ENCRYPTION_MODE_AES_256_XTS	1
407 #define F2FS_ENCRYPTION_MODE_AES_256_GCM	2
408 #define F2FS_ENCRYPTION_MODE_AES_256_CBC	3
409 #define F2FS_ENCRYPTION_MODE_AES_256_CTS	4
410 
411 #include "f2fs_crypto.h"
412 
413 #define DEF_DIR_LEVEL		0
414 
415 struct f2fs_inode_info {
416 	struct inode vfs_inode;		/* serve a vfs inode */
417 	unsigned long i_flags;		/* keep an inode flags for ioctl */
418 	unsigned char i_advise;		/* use to give file attribute hints */
419 	unsigned char i_dir_level;	/* use for dentry level for large dir */
420 	unsigned int i_current_depth;	/* use only in directory structure */
421 	unsigned int i_pino;		/* parent inode number */
422 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
423 
424 	/* Use below internally in f2fs*/
425 	unsigned long flags;		/* use to pass per-file flags */
426 	struct rw_semaphore i_sem;	/* protect fi info */
427 	atomic_t dirty_pages;		/* # of dirty pages */
428 	f2fs_hash_t chash;		/* hash value of given file name */
429 	unsigned int clevel;		/* maximum level of given file name */
430 	nid_t i_xattr_nid;		/* node id that contains xattrs */
431 	unsigned long long xattr_ver;	/* cp version of xattr modification */
432 	struct inode_entry *dirty_dir;	/* the pointer of dirty dir */
433 
434 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
435 	struct mutex inmem_lock;	/* lock for inmemory pages */
436 
437 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
438 
439 #ifdef CONFIG_F2FS_FS_ENCRYPTION
440 	/* Encryption params */
441 	struct f2fs_crypt_info *i_crypt_info;
442 #endif
443 };
444 
445 static inline void get_extent_info(struct extent_info *ext,
446 					struct f2fs_extent i_ext)
447 {
448 	ext->fofs = le32_to_cpu(i_ext.fofs);
449 	ext->blk = le32_to_cpu(i_ext.blk);
450 	ext->len = le32_to_cpu(i_ext.len);
451 }
452 
453 static inline void set_raw_extent(struct extent_info *ext,
454 					struct f2fs_extent *i_ext)
455 {
456 	i_ext->fofs = cpu_to_le32(ext->fofs);
457 	i_ext->blk = cpu_to_le32(ext->blk);
458 	i_ext->len = cpu_to_le32(ext->len);
459 }
460 
461 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
462 						u32 blk, unsigned int len)
463 {
464 	ei->fofs = fofs;
465 	ei->blk = blk;
466 	ei->len = len;
467 }
468 
469 static inline bool __is_extent_same(struct extent_info *ei1,
470 						struct extent_info *ei2)
471 {
472 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
473 						ei1->len == ei2->len);
474 }
475 
476 static inline bool __is_extent_mergeable(struct extent_info *back,
477 						struct extent_info *front)
478 {
479 	return (back->fofs + back->len == front->fofs &&
480 			back->blk + back->len == front->blk);
481 }
482 
483 static inline bool __is_back_mergeable(struct extent_info *cur,
484 						struct extent_info *back)
485 {
486 	return __is_extent_mergeable(back, cur);
487 }
488 
489 static inline bool __is_front_mergeable(struct extent_info *cur,
490 						struct extent_info *front)
491 {
492 	return __is_extent_mergeable(cur, front);
493 }
494 
495 struct f2fs_nm_info {
496 	block_t nat_blkaddr;		/* base disk address of NAT */
497 	nid_t max_nid;			/* maximum possible node ids */
498 	nid_t available_nids;		/* maximum available node ids */
499 	nid_t next_scan_nid;		/* the next nid to be scanned */
500 	unsigned int ram_thresh;	/* control the memory footprint */
501 
502 	/* NAT cache management */
503 	struct radix_tree_root nat_root;/* root of the nat entry cache */
504 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
505 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
506 	struct list_head nat_entries;	/* cached nat entry list (clean) */
507 	unsigned int nat_cnt;		/* the # of cached nat entries */
508 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
509 
510 	/* free node ids management */
511 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
512 	struct list_head free_nid_list;	/* a list for free nids */
513 	spinlock_t free_nid_list_lock;	/* protect free nid list */
514 	unsigned int fcnt;		/* the number of free node id */
515 	struct mutex build_lock;	/* lock for build free nids */
516 
517 	/* for checkpoint */
518 	char *nat_bitmap;		/* NAT bitmap pointer */
519 	int bitmap_size;		/* bitmap size */
520 };
521 
522 /*
523  * this structure is used as one of function parameters.
524  * all the information are dedicated to a given direct node block determined
525  * by the data offset in a file.
526  */
527 struct dnode_of_data {
528 	struct inode *inode;		/* vfs inode pointer */
529 	struct page *inode_page;	/* its inode page, NULL is possible */
530 	struct page *node_page;		/* cached direct node page */
531 	nid_t nid;			/* node id of the direct node block */
532 	unsigned int ofs_in_node;	/* data offset in the node page */
533 	bool inode_page_locked;		/* inode page is locked or not */
534 	block_t	data_blkaddr;		/* block address of the node block */
535 };
536 
537 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
538 		struct page *ipage, struct page *npage, nid_t nid)
539 {
540 	memset(dn, 0, sizeof(*dn));
541 	dn->inode = inode;
542 	dn->inode_page = ipage;
543 	dn->node_page = npage;
544 	dn->nid = nid;
545 }
546 
547 /*
548  * For SIT manager
549  *
550  * By default, there are 6 active log areas across the whole main area.
551  * When considering hot and cold data separation to reduce cleaning overhead,
552  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
553  * respectively.
554  * In the current design, you should not change the numbers intentionally.
555  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
556  * logs individually according to the underlying devices. (default: 6)
557  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
558  * data and 8 for node logs.
559  */
560 #define	NR_CURSEG_DATA_TYPE	(3)
561 #define NR_CURSEG_NODE_TYPE	(3)
562 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
563 
564 enum {
565 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
566 	CURSEG_WARM_DATA,	/* data blocks */
567 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
568 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
569 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
570 	CURSEG_COLD_NODE,	/* indirect node blocks */
571 	NO_CHECK_TYPE,
572 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
573 };
574 
575 struct flush_cmd {
576 	struct completion wait;
577 	struct llist_node llnode;
578 	int ret;
579 };
580 
581 struct flush_cmd_control {
582 	struct task_struct *f2fs_issue_flush;	/* flush thread */
583 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
584 	struct llist_head issue_list;		/* list for command issue */
585 	struct llist_node *dispatch_list;	/* list for command dispatch */
586 };
587 
588 struct f2fs_sm_info {
589 	struct sit_info *sit_info;		/* whole segment information */
590 	struct free_segmap_info *free_info;	/* free segment information */
591 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
592 	struct curseg_info *curseg_array;	/* active segment information */
593 
594 	block_t seg0_blkaddr;		/* block address of 0'th segment */
595 	block_t main_blkaddr;		/* start block address of main area */
596 	block_t ssa_blkaddr;		/* start block address of SSA area */
597 
598 	unsigned int segment_count;	/* total # of segments */
599 	unsigned int main_segments;	/* # of segments in main area */
600 	unsigned int reserved_segments;	/* # of reserved segments */
601 	unsigned int ovp_segments;	/* # of overprovision segments */
602 
603 	/* a threshold to reclaim prefree segments */
604 	unsigned int rec_prefree_segments;
605 
606 	/* for small discard management */
607 	struct list_head discard_list;		/* 4KB discard list */
608 	int nr_discards;			/* # of discards in the list */
609 	int max_discards;			/* max. discards to be issued */
610 
611 	/* for batched trimming */
612 	unsigned int trim_sections;		/* # of sections to trim */
613 
614 	struct list_head sit_entry_set;	/* sit entry set list */
615 
616 	unsigned int ipu_policy;	/* in-place-update policy */
617 	unsigned int min_ipu_util;	/* in-place-update threshold */
618 	unsigned int min_fsync_blocks;	/* threshold for fsync */
619 
620 	/* for flush command control */
621 	struct flush_cmd_control *cmd_control_info;
622 
623 };
624 
625 /*
626  * For superblock
627  */
628 /*
629  * COUNT_TYPE for monitoring
630  *
631  * f2fs monitors the number of several block types such as on-writeback,
632  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
633  */
634 enum count_type {
635 	F2FS_WRITEBACK,
636 	F2FS_DIRTY_DENTS,
637 	F2FS_DIRTY_NODES,
638 	F2FS_DIRTY_META,
639 	F2FS_INMEM_PAGES,
640 	NR_COUNT_TYPE,
641 };
642 
643 /*
644  * The below are the page types of bios used in submit_bio().
645  * The available types are:
646  * DATA			User data pages. It operates as async mode.
647  * NODE			Node pages. It operates as async mode.
648  * META			FS metadata pages such as SIT, NAT, CP.
649  * NR_PAGE_TYPE		The number of page types.
650  * META_FLUSH		Make sure the previous pages are written
651  *			with waiting the bio's completion
652  * ...			Only can be used with META.
653  */
654 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
655 enum page_type {
656 	DATA,
657 	NODE,
658 	META,
659 	NR_PAGE_TYPE,
660 	META_FLUSH,
661 	INMEM,		/* the below types are used by tracepoints only. */
662 	INMEM_DROP,
663 	IPU,
664 	OPU,
665 };
666 
667 struct f2fs_io_info {
668 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
669 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
670 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
671 	block_t blk_addr;	/* block address to be written */
672 	struct page *page;	/* page to be written */
673 	struct page *encrypted_page;	/* encrypted page */
674 };
675 
676 #define is_read_io(rw)	(((rw) & 1) == READ)
677 struct f2fs_bio_info {
678 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
679 	struct bio *bio;		/* bios to merge */
680 	sector_t last_block_in_bio;	/* last block number */
681 	struct f2fs_io_info fio;	/* store buffered io info. */
682 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
683 };
684 
685 /* for inner inode cache management */
686 struct inode_management {
687 	struct radix_tree_root ino_root;	/* ino entry array */
688 	spinlock_t ino_lock;			/* for ino entry lock */
689 	struct list_head ino_list;		/* inode list head */
690 	unsigned long ino_num;			/* number of entries */
691 };
692 
693 /* For s_flag in struct f2fs_sb_info */
694 enum {
695 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
696 	SBI_IS_CLOSE,				/* specify unmounting */
697 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
698 	SBI_POR_DOING,				/* recovery is doing or not */
699 };
700 
701 struct f2fs_sb_info {
702 	struct super_block *sb;			/* pointer to VFS super block */
703 	struct proc_dir_entry *s_proc;		/* proc entry */
704 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
705 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
706 	int s_flag;				/* flags for sbi */
707 
708 	/* for node-related operations */
709 	struct f2fs_nm_info *nm_info;		/* node manager */
710 	struct inode *node_inode;		/* cache node blocks */
711 
712 	/* for segment-related operations */
713 	struct f2fs_sm_info *sm_info;		/* segment manager */
714 
715 	/* for bio operations */
716 	struct f2fs_bio_info read_io;			/* for read bios */
717 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
718 
719 	/* for checkpoint */
720 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
721 	struct inode *meta_inode;		/* cache meta blocks */
722 	struct mutex cp_mutex;			/* checkpoint procedure lock */
723 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
724 	struct rw_semaphore node_write;		/* locking node writes */
725 	struct mutex writepages;		/* mutex for writepages() */
726 	wait_queue_head_t cp_wait;
727 
728 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
729 
730 	/* for orphan inode, use 0'th array */
731 	unsigned int max_orphans;		/* max orphan inodes */
732 
733 	/* for directory inode management */
734 	struct list_head dir_inode_list;	/* dir inode list */
735 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
736 
737 	/* for extent tree cache */
738 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
739 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
740 	struct list_head extent_list;		/* lru list for shrinker */
741 	spinlock_t extent_lock;			/* locking extent lru list */
742 	int total_ext_tree;			/* extent tree count */
743 	atomic_t total_ext_node;		/* extent info count */
744 
745 	/* basic filesystem units */
746 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
747 	unsigned int log_blocksize;		/* log2 block size */
748 	unsigned int blocksize;			/* block size */
749 	unsigned int root_ino_num;		/* root inode number*/
750 	unsigned int node_ino_num;		/* node inode number*/
751 	unsigned int meta_ino_num;		/* meta inode number*/
752 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
753 	unsigned int blocks_per_seg;		/* blocks per segment */
754 	unsigned int segs_per_sec;		/* segments per section */
755 	unsigned int secs_per_zone;		/* sections per zone */
756 	unsigned int total_sections;		/* total section count */
757 	unsigned int total_node_count;		/* total node block count */
758 	unsigned int total_valid_node_count;	/* valid node block count */
759 	unsigned int total_valid_inode_count;	/* valid inode count */
760 	int active_logs;			/* # of active logs */
761 	int dir_level;				/* directory level */
762 
763 	block_t user_block_count;		/* # of user blocks */
764 	block_t total_valid_block_count;	/* # of valid blocks */
765 	block_t alloc_valid_block_count;	/* # of allocated blocks */
766 	block_t discard_blks;			/* discard command candidats */
767 	block_t last_valid_block_count;		/* for recovery */
768 	u32 s_next_generation;			/* for NFS support */
769 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
770 
771 	struct f2fs_mount_info mount_opt;	/* mount options */
772 
773 	/* for cleaning operations */
774 	struct mutex gc_mutex;			/* mutex for GC */
775 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
776 	unsigned int cur_victim_sec;		/* current victim section num */
777 
778 	/* maximum # of trials to find a victim segment for SSR and GC */
779 	unsigned int max_victim_search;
780 
781 	/*
782 	 * for stat information.
783 	 * one is for the LFS mode, and the other is for the SSR mode.
784 	 */
785 #ifdef CONFIG_F2FS_STAT_FS
786 	struct f2fs_stat_info *stat_info;	/* FS status information */
787 	unsigned int segment_count[2];		/* # of allocated segments */
788 	unsigned int block_count[2];		/* # of allocated blocks */
789 	atomic_t inplace_count;		/* # of inplace update */
790 	atomic_t total_hit_ext;			/* # of lookup extent cache */
791 	atomic_t read_hit_rbtree;		/* # of hit rbtree extent node */
792 	atomic_t read_hit_largest;		/* # of hit largest extent node */
793 	atomic_t read_hit_cached;		/* # of hit cached extent node */
794 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
795 	atomic_t inline_inode;			/* # of inline_data inodes */
796 	atomic_t inline_dir;			/* # of inline_dentry inodes */
797 	int bg_gc;				/* background gc calls */
798 	unsigned int n_dirty_dirs;		/* # of dir inodes */
799 #endif
800 	unsigned int last_victim[2];		/* last victim segment # */
801 	spinlock_t stat_lock;			/* lock for stat operations */
802 
803 	/* For sysfs suppport */
804 	struct kobject s_kobj;
805 	struct completion s_kobj_unregister;
806 
807 	/* For shrinker support */
808 	struct list_head s_list;
809 	struct mutex umount_mutex;
810 	unsigned int shrinker_run_no;
811 };
812 
813 /*
814  * Inline functions
815  */
816 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
817 {
818 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
819 }
820 
821 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
822 {
823 	return sb->s_fs_info;
824 }
825 
826 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
827 {
828 	return F2FS_SB(inode->i_sb);
829 }
830 
831 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
832 {
833 	return F2FS_I_SB(mapping->host);
834 }
835 
836 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
837 {
838 	return F2FS_M_SB(page->mapping);
839 }
840 
841 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
842 {
843 	return (struct f2fs_super_block *)(sbi->raw_super);
844 }
845 
846 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
847 {
848 	return (struct f2fs_checkpoint *)(sbi->ckpt);
849 }
850 
851 static inline struct f2fs_node *F2FS_NODE(struct page *page)
852 {
853 	return (struct f2fs_node *)page_address(page);
854 }
855 
856 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
857 {
858 	return &((struct f2fs_node *)page_address(page))->i;
859 }
860 
861 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
862 {
863 	return (struct f2fs_nm_info *)(sbi->nm_info);
864 }
865 
866 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
867 {
868 	return (struct f2fs_sm_info *)(sbi->sm_info);
869 }
870 
871 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
872 {
873 	return (struct sit_info *)(SM_I(sbi)->sit_info);
874 }
875 
876 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
877 {
878 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
879 }
880 
881 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
882 {
883 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
884 }
885 
886 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
887 {
888 	return sbi->meta_inode->i_mapping;
889 }
890 
891 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
892 {
893 	return sbi->node_inode->i_mapping;
894 }
895 
896 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
897 {
898 	return sbi->s_flag & (0x01 << type);
899 }
900 
901 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
902 {
903 	sbi->s_flag |= (0x01 << type);
904 }
905 
906 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
907 {
908 	sbi->s_flag &= ~(0x01 << type);
909 }
910 
911 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
912 {
913 	return le64_to_cpu(cp->checkpoint_ver);
914 }
915 
916 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
917 {
918 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
919 	return ckpt_flags & f;
920 }
921 
922 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
923 {
924 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
925 	ckpt_flags |= f;
926 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
927 }
928 
929 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
930 {
931 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
932 	ckpt_flags &= (~f);
933 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
934 }
935 
936 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
937 {
938 	down_read(&sbi->cp_rwsem);
939 }
940 
941 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
942 {
943 	up_read(&sbi->cp_rwsem);
944 }
945 
946 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
947 {
948 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
949 }
950 
951 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
952 {
953 	up_write(&sbi->cp_rwsem);
954 }
955 
956 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
957 {
958 	int reason = CP_SYNC;
959 
960 	if (test_opt(sbi, FASTBOOT))
961 		reason = CP_FASTBOOT;
962 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
963 		reason = CP_UMOUNT;
964 	return reason;
965 }
966 
967 static inline bool __remain_node_summaries(int reason)
968 {
969 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
970 }
971 
972 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
973 {
974 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
975 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
976 }
977 
978 /*
979  * Check whether the given nid is within node id range.
980  */
981 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
982 {
983 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
984 		return -EINVAL;
985 	if (unlikely(nid >= NM_I(sbi)->max_nid))
986 		return -EINVAL;
987 	return 0;
988 }
989 
990 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
991 
992 /*
993  * Check whether the inode has blocks or not
994  */
995 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
996 {
997 	if (F2FS_I(inode)->i_xattr_nid)
998 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
999 	else
1000 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1001 }
1002 
1003 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1004 {
1005 	return ofs == XATTR_NODE_OFFSET;
1006 }
1007 
1008 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1009 				 struct inode *inode, blkcnt_t count)
1010 {
1011 	block_t	valid_block_count;
1012 
1013 	spin_lock(&sbi->stat_lock);
1014 	valid_block_count =
1015 		sbi->total_valid_block_count + (block_t)count;
1016 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1017 		spin_unlock(&sbi->stat_lock);
1018 		return false;
1019 	}
1020 	inode->i_blocks += count;
1021 	sbi->total_valid_block_count = valid_block_count;
1022 	sbi->alloc_valid_block_count += (block_t)count;
1023 	spin_unlock(&sbi->stat_lock);
1024 	return true;
1025 }
1026 
1027 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1028 						struct inode *inode,
1029 						blkcnt_t count)
1030 {
1031 	spin_lock(&sbi->stat_lock);
1032 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1033 	f2fs_bug_on(sbi, inode->i_blocks < count);
1034 	inode->i_blocks -= count;
1035 	sbi->total_valid_block_count -= (block_t)count;
1036 	spin_unlock(&sbi->stat_lock);
1037 }
1038 
1039 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1040 {
1041 	atomic_inc(&sbi->nr_pages[count_type]);
1042 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1043 }
1044 
1045 static inline void inode_inc_dirty_pages(struct inode *inode)
1046 {
1047 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1048 	if (S_ISDIR(inode->i_mode))
1049 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1050 }
1051 
1052 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1053 {
1054 	atomic_dec(&sbi->nr_pages[count_type]);
1055 }
1056 
1057 static inline void inode_dec_dirty_pages(struct inode *inode)
1058 {
1059 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1060 			!S_ISLNK(inode->i_mode))
1061 		return;
1062 
1063 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1064 
1065 	if (S_ISDIR(inode->i_mode))
1066 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1067 }
1068 
1069 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1070 {
1071 	return atomic_read(&sbi->nr_pages[count_type]);
1072 }
1073 
1074 static inline int get_dirty_pages(struct inode *inode)
1075 {
1076 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1077 }
1078 
1079 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1080 {
1081 	unsigned int pages_per_sec = sbi->segs_per_sec *
1082 					(1 << sbi->log_blocks_per_seg);
1083 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1084 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1085 }
1086 
1087 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1088 {
1089 	return sbi->total_valid_block_count;
1090 }
1091 
1092 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1093 {
1094 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1095 
1096 	/* return NAT or SIT bitmap */
1097 	if (flag == NAT_BITMAP)
1098 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1099 	else if (flag == SIT_BITMAP)
1100 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1101 
1102 	return 0;
1103 }
1104 
1105 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1106 {
1107 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1108 }
1109 
1110 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1111 {
1112 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1113 	int offset;
1114 
1115 	if (__cp_payload(sbi) > 0) {
1116 		if (flag == NAT_BITMAP)
1117 			return &ckpt->sit_nat_version_bitmap;
1118 		else
1119 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1120 	} else {
1121 		offset = (flag == NAT_BITMAP) ?
1122 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1123 		return &ckpt->sit_nat_version_bitmap + offset;
1124 	}
1125 }
1126 
1127 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1128 {
1129 	block_t start_addr;
1130 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1131 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1132 
1133 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1134 
1135 	/*
1136 	 * odd numbered checkpoint should at cp segment 0
1137 	 * and even segment must be at cp segment 1
1138 	 */
1139 	if (!(ckpt_version & 1))
1140 		start_addr += sbi->blocks_per_seg;
1141 
1142 	return start_addr;
1143 }
1144 
1145 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1146 {
1147 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1148 }
1149 
1150 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1151 						struct inode *inode)
1152 {
1153 	block_t	valid_block_count;
1154 	unsigned int valid_node_count;
1155 
1156 	spin_lock(&sbi->stat_lock);
1157 
1158 	valid_block_count = sbi->total_valid_block_count + 1;
1159 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1160 		spin_unlock(&sbi->stat_lock);
1161 		return false;
1162 	}
1163 
1164 	valid_node_count = sbi->total_valid_node_count + 1;
1165 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1166 		spin_unlock(&sbi->stat_lock);
1167 		return false;
1168 	}
1169 
1170 	if (inode)
1171 		inode->i_blocks++;
1172 
1173 	sbi->alloc_valid_block_count++;
1174 	sbi->total_valid_node_count++;
1175 	sbi->total_valid_block_count++;
1176 	spin_unlock(&sbi->stat_lock);
1177 
1178 	return true;
1179 }
1180 
1181 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1182 						struct inode *inode)
1183 {
1184 	spin_lock(&sbi->stat_lock);
1185 
1186 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1187 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1188 	f2fs_bug_on(sbi, !inode->i_blocks);
1189 
1190 	inode->i_blocks--;
1191 	sbi->total_valid_node_count--;
1192 	sbi->total_valid_block_count--;
1193 
1194 	spin_unlock(&sbi->stat_lock);
1195 }
1196 
1197 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1198 {
1199 	return sbi->total_valid_node_count;
1200 }
1201 
1202 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1203 {
1204 	spin_lock(&sbi->stat_lock);
1205 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1206 	sbi->total_valid_inode_count++;
1207 	spin_unlock(&sbi->stat_lock);
1208 }
1209 
1210 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1211 {
1212 	spin_lock(&sbi->stat_lock);
1213 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1214 	sbi->total_valid_inode_count--;
1215 	spin_unlock(&sbi->stat_lock);
1216 }
1217 
1218 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1219 {
1220 	return sbi->total_valid_inode_count;
1221 }
1222 
1223 static inline void f2fs_put_page(struct page *page, int unlock)
1224 {
1225 	if (!page)
1226 		return;
1227 
1228 	if (unlock) {
1229 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1230 		unlock_page(page);
1231 	}
1232 	page_cache_release(page);
1233 }
1234 
1235 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1236 {
1237 	if (dn->node_page)
1238 		f2fs_put_page(dn->node_page, 1);
1239 	if (dn->inode_page && dn->node_page != dn->inode_page)
1240 		f2fs_put_page(dn->inode_page, 0);
1241 	dn->node_page = NULL;
1242 	dn->inode_page = NULL;
1243 }
1244 
1245 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1246 					size_t size)
1247 {
1248 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1249 }
1250 
1251 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1252 						gfp_t flags)
1253 {
1254 	void *entry;
1255 
1256 	entry = kmem_cache_alloc(cachep, flags);
1257 	if (!entry)
1258 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1259 	return entry;
1260 }
1261 
1262 static inline struct bio *f2fs_bio_alloc(int npages)
1263 {
1264 	struct bio *bio;
1265 
1266 	/* No failure on bio allocation */
1267 	bio = bio_alloc(GFP_NOIO, npages);
1268 	if (!bio)
1269 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1270 	return bio;
1271 }
1272 
1273 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1274 				unsigned long index, void *item)
1275 {
1276 	while (radix_tree_insert(root, index, item))
1277 		cond_resched();
1278 }
1279 
1280 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1281 
1282 static inline bool IS_INODE(struct page *page)
1283 {
1284 	struct f2fs_node *p = F2FS_NODE(page);
1285 	return RAW_IS_INODE(p);
1286 }
1287 
1288 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1289 {
1290 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1291 }
1292 
1293 static inline block_t datablock_addr(struct page *node_page,
1294 		unsigned int offset)
1295 {
1296 	struct f2fs_node *raw_node;
1297 	__le32 *addr_array;
1298 	raw_node = F2FS_NODE(node_page);
1299 	addr_array = blkaddr_in_node(raw_node);
1300 	return le32_to_cpu(addr_array[offset]);
1301 }
1302 
1303 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1304 {
1305 	int mask;
1306 
1307 	addr += (nr >> 3);
1308 	mask = 1 << (7 - (nr & 0x07));
1309 	return mask & *addr;
1310 }
1311 
1312 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1313 {
1314 	int mask;
1315 
1316 	addr += (nr >> 3);
1317 	mask = 1 << (7 - (nr & 0x07));
1318 	*addr |= mask;
1319 }
1320 
1321 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1322 {
1323 	int mask;
1324 
1325 	addr += (nr >> 3);
1326 	mask = 1 << (7 - (nr & 0x07));
1327 	*addr &= ~mask;
1328 }
1329 
1330 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1331 {
1332 	int mask;
1333 	int ret;
1334 
1335 	addr += (nr >> 3);
1336 	mask = 1 << (7 - (nr & 0x07));
1337 	ret = mask & *addr;
1338 	*addr |= mask;
1339 	return ret;
1340 }
1341 
1342 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1343 {
1344 	int mask;
1345 	int ret;
1346 
1347 	addr += (nr >> 3);
1348 	mask = 1 << (7 - (nr & 0x07));
1349 	ret = mask & *addr;
1350 	*addr &= ~mask;
1351 	return ret;
1352 }
1353 
1354 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1355 {
1356 	int mask;
1357 
1358 	addr += (nr >> 3);
1359 	mask = 1 << (7 - (nr & 0x07));
1360 	*addr ^= mask;
1361 }
1362 
1363 /* used for f2fs_inode_info->flags */
1364 enum {
1365 	FI_NEW_INODE,		/* indicate newly allocated inode */
1366 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1367 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1368 	FI_INC_LINK,		/* need to increment i_nlink */
1369 	FI_ACL_MODE,		/* indicate acl mode */
1370 	FI_NO_ALLOC,		/* should not allocate any blocks */
1371 	FI_FREE_NID,		/* free allocated nide */
1372 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1373 	FI_DELAY_IPUT,		/* used for the recovery */
1374 	FI_NO_EXTENT,		/* not to use the extent cache */
1375 	FI_INLINE_XATTR,	/* used for inline xattr */
1376 	FI_INLINE_DATA,		/* used for inline data*/
1377 	FI_INLINE_DENTRY,	/* used for inline dentry */
1378 	FI_APPEND_WRITE,	/* inode has appended data */
1379 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1380 	FI_NEED_IPU,		/* used for ipu per file */
1381 	FI_ATOMIC_FILE,		/* indicate atomic file */
1382 	FI_VOLATILE_FILE,	/* indicate volatile file */
1383 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1384 	FI_DROP_CACHE,		/* drop dirty page cache */
1385 	FI_DATA_EXIST,		/* indicate data exists */
1386 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1387 };
1388 
1389 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1390 {
1391 	if (!test_bit(flag, &fi->flags))
1392 		set_bit(flag, &fi->flags);
1393 }
1394 
1395 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1396 {
1397 	return test_bit(flag, &fi->flags);
1398 }
1399 
1400 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1401 {
1402 	if (test_bit(flag, &fi->flags))
1403 		clear_bit(flag, &fi->flags);
1404 }
1405 
1406 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1407 {
1408 	fi->i_acl_mode = mode;
1409 	set_inode_flag(fi, FI_ACL_MODE);
1410 }
1411 
1412 static inline void get_inline_info(struct f2fs_inode_info *fi,
1413 					struct f2fs_inode *ri)
1414 {
1415 	if (ri->i_inline & F2FS_INLINE_XATTR)
1416 		set_inode_flag(fi, FI_INLINE_XATTR);
1417 	if (ri->i_inline & F2FS_INLINE_DATA)
1418 		set_inode_flag(fi, FI_INLINE_DATA);
1419 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1420 		set_inode_flag(fi, FI_INLINE_DENTRY);
1421 	if (ri->i_inline & F2FS_DATA_EXIST)
1422 		set_inode_flag(fi, FI_DATA_EXIST);
1423 	if (ri->i_inline & F2FS_INLINE_DOTS)
1424 		set_inode_flag(fi, FI_INLINE_DOTS);
1425 }
1426 
1427 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1428 					struct f2fs_inode *ri)
1429 {
1430 	ri->i_inline = 0;
1431 
1432 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1433 		ri->i_inline |= F2FS_INLINE_XATTR;
1434 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1435 		ri->i_inline |= F2FS_INLINE_DATA;
1436 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1437 		ri->i_inline |= F2FS_INLINE_DENTRY;
1438 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1439 		ri->i_inline |= F2FS_DATA_EXIST;
1440 	if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1441 		ri->i_inline |= F2FS_INLINE_DOTS;
1442 }
1443 
1444 static inline int f2fs_has_inline_xattr(struct inode *inode)
1445 {
1446 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1447 }
1448 
1449 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1450 {
1451 	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1452 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1453 	return DEF_ADDRS_PER_INODE;
1454 }
1455 
1456 static inline void *inline_xattr_addr(struct page *page)
1457 {
1458 	struct f2fs_inode *ri = F2FS_INODE(page);
1459 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1460 					F2FS_INLINE_XATTR_ADDRS]);
1461 }
1462 
1463 static inline int inline_xattr_size(struct inode *inode)
1464 {
1465 	if (f2fs_has_inline_xattr(inode))
1466 		return F2FS_INLINE_XATTR_ADDRS << 2;
1467 	else
1468 		return 0;
1469 }
1470 
1471 static inline int f2fs_has_inline_data(struct inode *inode)
1472 {
1473 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1474 }
1475 
1476 static inline void f2fs_clear_inline_inode(struct inode *inode)
1477 {
1478 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1479 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1480 }
1481 
1482 static inline int f2fs_exist_data(struct inode *inode)
1483 {
1484 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1485 }
1486 
1487 static inline int f2fs_has_inline_dots(struct inode *inode)
1488 {
1489 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1490 }
1491 
1492 static inline bool f2fs_is_atomic_file(struct inode *inode)
1493 {
1494 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1495 }
1496 
1497 static inline bool f2fs_is_volatile_file(struct inode *inode)
1498 {
1499 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1500 }
1501 
1502 static inline bool f2fs_is_first_block_written(struct inode *inode)
1503 {
1504 	return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1505 }
1506 
1507 static inline bool f2fs_is_drop_cache(struct inode *inode)
1508 {
1509 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1510 }
1511 
1512 static inline void *inline_data_addr(struct page *page)
1513 {
1514 	struct f2fs_inode *ri = F2FS_INODE(page);
1515 	return (void *)&(ri->i_addr[1]);
1516 }
1517 
1518 static inline int f2fs_has_inline_dentry(struct inode *inode)
1519 {
1520 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1521 }
1522 
1523 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1524 {
1525 	if (!f2fs_has_inline_dentry(dir))
1526 		kunmap(page);
1527 }
1528 
1529 static inline int is_file(struct inode *inode, int type)
1530 {
1531 	return F2FS_I(inode)->i_advise & type;
1532 }
1533 
1534 static inline void set_file(struct inode *inode, int type)
1535 {
1536 	F2FS_I(inode)->i_advise |= type;
1537 }
1538 
1539 static inline void clear_file(struct inode *inode, int type)
1540 {
1541 	F2FS_I(inode)->i_advise &= ~type;
1542 }
1543 
1544 static inline int f2fs_readonly(struct super_block *sb)
1545 {
1546 	return sb->s_flags & MS_RDONLY;
1547 }
1548 
1549 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1550 {
1551 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1552 }
1553 
1554 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1555 {
1556 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1557 	sbi->sb->s_flags |= MS_RDONLY;
1558 }
1559 
1560 static inline bool is_dot_dotdot(const struct qstr *str)
1561 {
1562 	if (str->len == 1 && str->name[0] == '.')
1563 		return true;
1564 
1565 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1566 		return true;
1567 
1568 	return false;
1569 }
1570 
1571 static inline bool f2fs_may_extent_tree(struct inode *inode)
1572 {
1573 	mode_t mode = inode->i_mode;
1574 
1575 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1576 			is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1577 		return false;
1578 
1579 	return S_ISREG(mode);
1580 }
1581 
1582 #define get_inode_mode(i) \
1583 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1584 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1585 
1586 /* get offset of first page in next direct node */
1587 #define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1588 	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1589 	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1590 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1591 
1592 /*
1593  * file.c
1594  */
1595 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1596 void truncate_data_blocks(struct dnode_of_data *);
1597 int truncate_blocks(struct inode *, u64, bool);
1598 int f2fs_truncate(struct inode *, bool);
1599 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1600 int f2fs_setattr(struct dentry *, struct iattr *);
1601 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1602 int truncate_data_blocks_range(struct dnode_of_data *, int);
1603 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1604 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1605 
1606 /*
1607  * inode.c
1608  */
1609 void f2fs_set_inode_flags(struct inode *);
1610 struct inode *f2fs_iget(struct super_block *, unsigned long);
1611 int try_to_free_nats(struct f2fs_sb_info *, int);
1612 void update_inode(struct inode *, struct page *);
1613 void update_inode_page(struct inode *);
1614 int f2fs_write_inode(struct inode *, struct writeback_control *);
1615 void f2fs_evict_inode(struct inode *);
1616 void handle_failed_inode(struct inode *);
1617 
1618 /*
1619  * namei.c
1620  */
1621 struct dentry *f2fs_get_parent(struct dentry *child);
1622 
1623 /*
1624  * dir.c
1625  */
1626 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1627 void set_de_type(struct f2fs_dir_entry *, umode_t);
1628 
1629 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1630 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1631 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1632 			unsigned int, struct f2fs_str *);
1633 void do_make_empty_dir(struct inode *, struct inode *,
1634 			struct f2fs_dentry_ptr *);
1635 struct page *init_inode_metadata(struct inode *, struct inode *,
1636 			const struct qstr *, struct page *);
1637 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1638 int room_for_filename(const void *, int, int);
1639 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1640 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1641 							struct page **);
1642 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1643 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1644 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1645 				struct page *, struct inode *);
1646 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1647 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1648 			const struct qstr *, f2fs_hash_t , unsigned int);
1649 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1650 			umode_t);
1651 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1652 							struct inode *);
1653 int f2fs_do_tmpfile(struct inode *, struct inode *);
1654 bool f2fs_empty_dir(struct inode *);
1655 
1656 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1657 {
1658 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1659 				inode, inode->i_ino, inode->i_mode);
1660 }
1661 
1662 /*
1663  * super.c
1664  */
1665 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1666 int f2fs_sync_fs(struct super_block *, int);
1667 extern __printf(3, 4)
1668 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1669 
1670 /*
1671  * hash.c
1672  */
1673 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1674 
1675 /*
1676  * node.c
1677  */
1678 struct dnode_of_data;
1679 struct node_info;
1680 
1681 bool available_free_memory(struct f2fs_sb_info *, int);
1682 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1683 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1684 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1685 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1686 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1687 int truncate_inode_blocks(struct inode *, pgoff_t);
1688 int truncate_xattr_node(struct inode *, struct page *);
1689 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1690 int remove_inode_page(struct inode *);
1691 struct page *new_inode_page(struct inode *);
1692 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1693 void ra_node_page(struct f2fs_sb_info *, nid_t);
1694 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1695 struct page *get_node_page_ra(struct page *, int);
1696 void sync_inode_page(struct dnode_of_data *);
1697 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1698 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1699 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1700 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1701 int try_to_free_nids(struct f2fs_sb_info *, int);
1702 void recover_inline_xattr(struct inode *, struct page *);
1703 void recover_xattr_data(struct inode *, struct page *, block_t);
1704 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1705 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1706 				struct f2fs_summary_block *);
1707 void flush_nat_entries(struct f2fs_sb_info *);
1708 int build_node_manager(struct f2fs_sb_info *);
1709 void destroy_node_manager(struct f2fs_sb_info *);
1710 int __init create_node_manager_caches(void);
1711 void destroy_node_manager_caches(void);
1712 
1713 /*
1714  * segment.c
1715  */
1716 void register_inmem_page(struct inode *, struct page *);
1717 int commit_inmem_pages(struct inode *, bool);
1718 void f2fs_balance_fs(struct f2fs_sb_info *);
1719 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1720 int f2fs_issue_flush(struct f2fs_sb_info *);
1721 int create_flush_cmd_control(struct f2fs_sb_info *);
1722 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1723 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1724 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1725 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1726 void release_discard_addrs(struct f2fs_sb_info *);
1727 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1728 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1729 void allocate_new_segments(struct f2fs_sb_info *);
1730 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1731 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1732 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1733 void write_meta_page(struct f2fs_sb_info *, struct page *);
1734 void write_node_page(unsigned int, struct f2fs_io_info *);
1735 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1736 void rewrite_data_page(struct f2fs_io_info *);
1737 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1738 				block_t, block_t, unsigned char, bool);
1739 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1740 		block_t, block_t *, struct f2fs_summary *, int);
1741 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1742 void write_data_summaries(struct f2fs_sb_info *, block_t);
1743 void write_node_summaries(struct f2fs_sb_info *, block_t);
1744 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1745 					int, unsigned int, int);
1746 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1747 int build_segment_manager(struct f2fs_sb_info *);
1748 void destroy_segment_manager(struct f2fs_sb_info *);
1749 int __init create_segment_manager_caches(void);
1750 void destroy_segment_manager_caches(void);
1751 
1752 /*
1753  * checkpoint.c
1754  */
1755 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1756 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1757 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1758 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1759 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1760 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1761 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1762 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1763 void release_dirty_inode(struct f2fs_sb_info *);
1764 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1765 int acquire_orphan_inode(struct f2fs_sb_info *);
1766 void release_orphan_inode(struct f2fs_sb_info *);
1767 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1768 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1769 int recover_orphan_inodes(struct f2fs_sb_info *);
1770 int get_valid_checkpoint(struct f2fs_sb_info *);
1771 void update_dirty_page(struct inode *, struct page *);
1772 void add_dirty_dir_inode(struct inode *);
1773 void remove_dirty_dir_inode(struct inode *);
1774 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1775 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1776 void init_ino_entry_info(struct f2fs_sb_info *);
1777 int __init create_checkpoint_caches(void);
1778 void destroy_checkpoint_caches(void);
1779 
1780 /*
1781  * data.c
1782  */
1783 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1784 int f2fs_submit_page_bio(struct f2fs_io_info *);
1785 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1786 void set_data_blkaddr(struct dnode_of_data *);
1787 int reserve_new_block(struct dnode_of_data *);
1788 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1789 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1790 struct page *get_read_data_page(struct inode *, pgoff_t, int);
1791 struct page *find_data_page(struct inode *, pgoff_t);
1792 struct page *get_lock_data_page(struct inode *, pgoff_t);
1793 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1794 int do_write_data_page(struct f2fs_io_info *);
1795 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1796 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1797 int f2fs_release_page(struct page *, gfp_t);
1798 
1799 /*
1800  * gc.c
1801  */
1802 int start_gc_thread(struct f2fs_sb_info *);
1803 void stop_gc_thread(struct f2fs_sb_info *);
1804 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1805 int f2fs_gc(struct f2fs_sb_info *);
1806 void build_gc_manager(struct f2fs_sb_info *);
1807 
1808 /*
1809  * recovery.c
1810  */
1811 int recover_fsync_data(struct f2fs_sb_info *);
1812 bool space_for_roll_forward(struct f2fs_sb_info *);
1813 
1814 /*
1815  * debug.c
1816  */
1817 #ifdef CONFIG_F2FS_STAT_FS
1818 struct f2fs_stat_info {
1819 	struct list_head stat_list;
1820 	struct f2fs_sb_info *sbi;
1821 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1822 	int main_area_segs, main_area_sections, main_area_zones;
1823 	int hit_largest, hit_cached, hit_rbtree, hit_total, total_ext;
1824 	int ext_tree, ext_node;
1825 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1826 	int nats, dirty_nats, sits, dirty_sits, fnids;
1827 	int total_count, utilization;
1828 	int bg_gc, inmem_pages, wb_pages;
1829 	int inline_xattr, inline_inode, inline_dir;
1830 	unsigned int valid_count, valid_node_count, valid_inode_count;
1831 	unsigned int bimodal, avg_vblocks;
1832 	int util_free, util_valid, util_invalid;
1833 	int rsvd_segs, overp_segs;
1834 	int dirty_count, node_pages, meta_pages;
1835 	int prefree_count, call_count, cp_count;
1836 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1837 	int bg_node_segs, bg_data_segs;
1838 	int tot_blks, data_blks, node_blks;
1839 	int bg_data_blks, bg_node_blks;
1840 	int curseg[NR_CURSEG_TYPE];
1841 	int cursec[NR_CURSEG_TYPE];
1842 	int curzone[NR_CURSEG_TYPE];
1843 
1844 	unsigned int segment_count[2];
1845 	unsigned int block_count[2];
1846 	unsigned int inplace_count;
1847 	unsigned base_mem, cache_mem, page_mem;
1848 };
1849 
1850 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1851 {
1852 	return (struct f2fs_stat_info *)sbi->stat_info;
1853 }
1854 
1855 #define stat_inc_cp_count(si)		((si)->cp_count++)
1856 #define stat_inc_call_count(si)		((si)->call_count++)
1857 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1858 #define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1859 #define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1860 #define stat_inc_total_hit(sbi)		(atomic_inc(&(sbi)->total_hit_ext))
1861 #define stat_inc_rbtree_node_hit(sbi)	(atomic_inc(&(sbi)->read_hit_rbtree))
1862 #define stat_inc_largest_node_hit(sbi)	(atomic_inc(&(sbi)->read_hit_largest))
1863 #define stat_inc_cached_node_hit(sbi)	(atomic_inc(&(sbi)->read_hit_cached))
1864 #define stat_inc_inline_xattr(inode)					\
1865 	do {								\
1866 		if (f2fs_has_inline_xattr(inode))			\
1867 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
1868 	} while (0)
1869 #define stat_dec_inline_xattr(inode)					\
1870 	do {								\
1871 		if (f2fs_has_inline_xattr(inode))			\
1872 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
1873 	} while (0)
1874 #define stat_inc_inline_inode(inode)					\
1875 	do {								\
1876 		if (f2fs_has_inline_data(inode))			\
1877 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
1878 	} while (0)
1879 #define stat_dec_inline_inode(inode)					\
1880 	do {								\
1881 		if (f2fs_has_inline_data(inode))			\
1882 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
1883 	} while (0)
1884 #define stat_inc_inline_dir(inode)					\
1885 	do {								\
1886 		if (f2fs_has_inline_dentry(inode))			\
1887 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
1888 	} while (0)
1889 #define stat_dec_inline_dir(inode)					\
1890 	do {								\
1891 		if (f2fs_has_inline_dentry(inode))			\
1892 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
1893 	} while (0)
1894 #define stat_inc_seg_type(sbi, curseg)					\
1895 		((sbi)->segment_count[(curseg)->alloc_type]++)
1896 #define stat_inc_block_count(sbi, curseg)				\
1897 		((sbi)->block_count[(curseg)->alloc_type]++)
1898 #define stat_inc_inplace_blocks(sbi)					\
1899 		(atomic_inc(&(sbi)->inplace_count))
1900 #define stat_inc_seg_count(sbi, type, gc_type)				\
1901 	do {								\
1902 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1903 		(si)->tot_segs++;					\
1904 		if (type == SUM_TYPE_DATA) {				\
1905 			si->data_segs++;				\
1906 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
1907 		} else {						\
1908 			si->node_segs++;				\
1909 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
1910 		}							\
1911 	} while (0)
1912 
1913 #define stat_inc_tot_blk_count(si, blks)				\
1914 	(si->tot_blks += (blks))
1915 
1916 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
1917 	do {								\
1918 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1919 		stat_inc_tot_blk_count(si, blks);			\
1920 		si->data_blks += (blks);				\
1921 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1922 	} while (0)
1923 
1924 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
1925 	do {								\
1926 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1927 		stat_inc_tot_blk_count(si, blks);			\
1928 		si->node_blks += (blks);				\
1929 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1930 	} while (0)
1931 
1932 int f2fs_build_stats(struct f2fs_sb_info *);
1933 void f2fs_destroy_stats(struct f2fs_sb_info *);
1934 void __init f2fs_create_root_stats(void);
1935 void f2fs_destroy_root_stats(void);
1936 #else
1937 #define stat_inc_cp_count(si)
1938 #define stat_inc_call_count(si)
1939 #define stat_inc_bggc_count(si)
1940 #define stat_inc_dirty_dir(sbi)
1941 #define stat_dec_dirty_dir(sbi)
1942 #define stat_inc_total_hit(sb)
1943 #define stat_inc_rbtree_node_hit(sb)
1944 #define stat_inc_largest_node_hit(sbi)
1945 #define stat_inc_cached_node_hit(sbi)
1946 #define stat_inc_inline_xattr(inode)
1947 #define stat_dec_inline_xattr(inode)
1948 #define stat_inc_inline_inode(inode)
1949 #define stat_dec_inline_inode(inode)
1950 #define stat_inc_inline_dir(inode)
1951 #define stat_dec_inline_dir(inode)
1952 #define stat_inc_seg_type(sbi, curseg)
1953 #define stat_inc_block_count(sbi, curseg)
1954 #define stat_inc_inplace_blocks(sbi)
1955 #define stat_inc_seg_count(sbi, type, gc_type)
1956 #define stat_inc_tot_blk_count(si, blks)
1957 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1958 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1959 
1960 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1961 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1962 static inline void __init f2fs_create_root_stats(void) { }
1963 static inline void f2fs_destroy_root_stats(void) { }
1964 #endif
1965 
1966 extern const struct file_operations f2fs_dir_operations;
1967 extern const struct file_operations f2fs_file_operations;
1968 extern const struct inode_operations f2fs_file_inode_operations;
1969 extern const struct address_space_operations f2fs_dblock_aops;
1970 extern const struct address_space_operations f2fs_node_aops;
1971 extern const struct address_space_operations f2fs_meta_aops;
1972 extern const struct inode_operations f2fs_dir_inode_operations;
1973 extern const struct inode_operations f2fs_symlink_inode_operations;
1974 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
1975 extern const struct inode_operations f2fs_special_inode_operations;
1976 extern struct kmem_cache *inode_entry_slab;
1977 
1978 /*
1979  * inline.c
1980  */
1981 bool f2fs_may_inline_data(struct inode *);
1982 bool f2fs_may_inline_dentry(struct inode *);
1983 void read_inline_data(struct page *, struct page *);
1984 bool truncate_inline_inode(struct page *, u64);
1985 int f2fs_read_inline_data(struct inode *, struct page *);
1986 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1987 int f2fs_convert_inline_inode(struct inode *);
1988 int f2fs_write_inline_data(struct inode *, struct page *);
1989 bool recover_inline_data(struct inode *, struct page *);
1990 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
1991 				struct f2fs_filename *, struct page **);
1992 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1993 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1994 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1995 						nid_t, umode_t);
1996 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1997 						struct inode *, struct inode *);
1998 bool f2fs_empty_inline_dir(struct inode *);
1999 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2000 						struct f2fs_str *);
2001 
2002 /*
2003  * shrinker.c
2004  */
2005 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2006 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2007 void f2fs_join_shrinker(struct f2fs_sb_info *);
2008 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2009 
2010 /*
2011  * extent_cache.c
2012  */
2013 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2014 void f2fs_drop_largest_extent(struct inode *, pgoff_t);
2015 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2016 unsigned int f2fs_destroy_extent_node(struct inode *);
2017 void f2fs_destroy_extent_tree(struct inode *);
2018 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2019 void f2fs_update_extent_cache(struct dnode_of_data *);
2020 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2021 						pgoff_t, block_t, unsigned int);
2022 void init_extent_cache_info(struct f2fs_sb_info *);
2023 int __init create_extent_cache(void);
2024 void destroy_extent_cache(void);
2025 
2026 /*
2027  * crypto support
2028  */
2029 static inline int f2fs_encrypted_inode(struct inode *inode)
2030 {
2031 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2032 	return file_is_encrypt(inode);
2033 #else
2034 	return 0;
2035 #endif
2036 }
2037 
2038 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2039 {
2040 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2041 	file_set_encrypt(inode);
2042 #endif
2043 }
2044 
2045 static inline bool f2fs_bio_encrypted(struct bio *bio)
2046 {
2047 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2048 	return unlikely(bio->bi_private != NULL);
2049 #else
2050 	return false;
2051 #endif
2052 }
2053 
2054 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2055 {
2056 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2057 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2058 #else
2059 	return 0;
2060 #endif
2061 }
2062 
2063 static inline bool f2fs_may_encrypt(struct inode *inode)
2064 {
2065 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2066 	mode_t mode = inode->i_mode;
2067 
2068 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2069 #else
2070 	return 0;
2071 #endif
2072 }
2073 
2074 /* crypto_policy.c */
2075 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2076 							struct inode *);
2077 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2078 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2079 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2080 
2081 /* crypt.c */
2082 extern struct kmem_cache *f2fs_crypt_info_cachep;
2083 bool f2fs_valid_contents_enc_mode(uint32_t);
2084 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2085 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2086 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2087 struct page *f2fs_encrypt(struct inode *, struct page *);
2088 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2089 int f2fs_decrypt_one(struct inode *, struct page *);
2090 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2091 
2092 /* crypto_key.c */
2093 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2094 int _f2fs_get_encryption_info(struct inode *inode);
2095 
2096 /* crypto_fname.c */
2097 bool f2fs_valid_filenames_enc_mode(uint32_t);
2098 u32 f2fs_fname_crypto_round_up(u32, u32);
2099 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2100 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2101 			const struct f2fs_str *, struct f2fs_str *);
2102 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2103 			struct f2fs_str *);
2104 
2105 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2106 void f2fs_restore_and_release_control_page(struct page **);
2107 void f2fs_restore_control_page(struct page *);
2108 
2109 int __init f2fs_init_crypto(void);
2110 int f2fs_crypto_initialize(void);
2111 void f2fs_exit_crypto(void);
2112 
2113 int f2fs_has_encryption_key(struct inode *);
2114 
2115 static inline int f2fs_get_encryption_info(struct inode *inode)
2116 {
2117 	struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2118 
2119 	if (!ci ||
2120 		(ci->ci_keyring_key &&
2121 		 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2122 					       (1 << KEY_FLAG_REVOKED) |
2123 					       (1 << KEY_FLAG_DEAD)))))
2124 		return _f2fs_get_encryption_info(inode);
2125 	return 0;
2126 }
2127 
2128 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2129 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2130 				int lookup, struct f2fs_filename *);
2131 void f2fs_fname_free_filename(struct f2fs_filename *);
2132 #else
2133 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2134 static inline void f2fs_restore_control_page(struct page *p) { }
2135 
2136 static inline int __init f2fs_init_crypto(void) { return 0; }
2137 static inline void f2fs_exit_crypto(void) { }
2138 
2139 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2140 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2141 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2142 
2143 static inline int f2fs_fname_setup_filename(struct inode *dir,
2144 					const struct qstr *iname,
2145 					int lookup, struct f2fs_filename *fname)
2146 {
2147 	memset(fname, 0, sizeof(struct f2fs_filename));
2148 	fname->usr_fname = iname;
2149 	fname->disk_name.name = (unsigned char *)iname->name;
2150 	fname->disk_name.len = iname->len;
2151 	return 0;
2152 }
2153 
2154 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2155 #endif
2156 #endif
2157