xref: /openbmc/linux/fs/f2fs/f2fs.h (revision b4bd2aaf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 struct pagevec;
32 
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition)					\
37 	do {								\
38 		if (WARN_ON(condition))					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_SLAB_ALLOC,
60 	FAULT_DQUOT_INIT,
61 	FAULT_LOCK_OP,
62 	FAULT_MAX,
63 };
64 
65 #ifdef CONFIG_F2FS_FAULT_INJECTION
66 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
67 
68 struct f2fs_fault_info {
69 	atomic_t inject_ops;
70 	unsigned int inject_rate;
71 	unsigned int inject_type;
72 };
73 
74 extern const char *f2fs_fault_name[FAULT_MAX];
75 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
76 #endif
77 
78 /*
79  * For mount options
80  */
81 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
82 #define F2FS_MOUNT_DISCARD		0x00000004
83 #define F2FS_MOUNT_NOHEAP		0x00000008
84 #define F2FS_MOUNT_XATTR_USER		0x00000010
85 #define F2FS_MOUNT_POSIX_ACL		0x00000020
86 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
87 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
88 #define F2FS_MOUNT_INLINE_DATA		0x00000100
89 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
90 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
91 #define F2FS_MOUNT_NOBARRIER		0x00000800
92 #define F2FS_MOUNT_FASTBOOT		0x00001000
93 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
94 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
95 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 #define F2FS_MOUNT_NORECOVERY		0x04000000
104 #define F2FS_MOUNT_ATGC			0x08000000
105 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
106 #define	F2FS_MOUNT_GC_MERGE		0x20000000
107 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
108 
109 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
110 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
111 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
112 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
113 
114 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
115 		typecheck(unsigned long long, b) &&			\
116 		((long long)((a) - (b)) > 0))
117 
118 typedef u32 block_t;	/*
119 			 * should not change u32, since it is the on-disk block
120 			 * address format, __le32.
121 			 */
122 typedef u32 nid_t;
123 
124 #define COMPRESS_EXT_NUM		16
125 
126 /*
127  * An implementation of an rwsem that is explicitly unfair to readers. This
128  * prevents priority inversion when a low-priority reader acquires the read lock
129  * while sleeping on the write lock but the write lock is needed by
130  * higher-priority clients.
131  */
132 
133 struct f2fs_rwsem {
134         struct rw_semaphore internal_rwsem;
135 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
136         wait_queue_head_t read_waiters;
137 #endif
138 };
139 
140 struct f2fs_mount_info {
141 	unsigned int opt;
142 	int write_io_size_bits;		/* Write IO size bits */
143 	block_t root_reserved_blocks;	/* root reserved blocks */
144 	kuid_t s_resuid;		/* reserved blocks for uid */
145 	kgid_t s_resgid;		/* reserved blocks for gid */
146 	int active_logs;		/* # of active logs */
147 	int inline_xattr_size;		/* inline xattr size */
148 #ifdef CONFIG_F2FS_FAULT_INJECTION
149 	struct f2fs_fault_info fault_info;	/* For fault injection */
150 #endif
151 #ifdef CONFIG_QUOTA
152 	/* Names of quota files with journalled quota */
153 	char *s_qf_names[MAXQUOTAS];
154 	int s_jquota_fmt;			/* Format of quota to use */
155 #endif
156 	/* For which write hints are passed down to block layer */
157 	int whint_mode;
158 	int alloc_mode;			/* segment allocation policy */
159 	int fsync_mode;			/* fsync policy */
160 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
161 	int bggc_mode;			/* bggc mode: off, on or sync */
162 	int discard_unit;		/*
163 					 * discard command's offset/size should
164 					 * be aligned to this unit: block,
165 					 * segment or section
166 					 */
167 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
168 	block_t unusable_cap_perc;	/* percentage for cap */
169 	block_t unusable_cap;		/* Amount of space allowed to be
170 					 * unusable when disabling checkpoint
171 					 */
172 
173 	/* For compression */
174 	unsigned char compress_algorithm;	/* algorithm type */
175 	unsigned char compress_log_size;	/* cluster log size */
176 	unsigned char compress_level;		/* compress level */
177 	bool compress_chksum;			/* compressed data chksum */
178 	unsigned char compress_ext_cnt;		/* extension count */
179 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
180 	int compress_mode;			/* compression mode */
181 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
182 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
183 };
184 
185 #define F2FS_FEATURE_ENCRYPT		0x0001
186 #define F2FS_FEATURE_BLKZONED		0x0002
187 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
188 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
189 #define F2FS_FEATURE_PRJQUOTA		0x0010
190 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
191 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
192 #define F2FS_FEATURE_QUOTA_INO		0x0080
193 #define F2FS_FEATURE_INODE_CRTIME	0x0100
194 #define F2FS_FEATURE_LOST_FOUND		0x0200
195 #define F2FS_FEATURE_VERITY		0x0400
196 #define F2FS_FEATURE_SB_CHKSUM		0x0800
197 #define F2FS_FEATURE_CASEFOLD		0x1000
198 #define F2FS_FEATURE_COMPRESSION	0x2000
199 #define F2FS_FEATURE_RO			0x4000
200 
201 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
202 	((raw_super->feature & cpu_to_le32(mask)) != 0)
203 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
204 #define F2FS_SET_FEATURE(sbi, mask)					\
205 	(sbi->raw_super->feature |= cpu_to_le32(mask))
206 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
207 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
208 
209 /*
210  * Default values for user and/or group using reserved blocks
211  */
212 #define	F2FS_DEF_RESUID		0
213 #define	F2FS_DEF_RESGID		0
214 
215 /*
216  * For checkpoint manager
217  */
218 enum {
219 	NAT_BITMAP,
220 	SIT_BITMAP
221 };
222 
223 #define	CP_UMOUNT	0x00000001
224 #define	CP_FASTBOOT	0x00000002
225 #define	CP_SYNC		0x00000004
226 #define	CP_RECOVERY	0x00000008
227 #define	CP_DISCARD	0x00000010
228 #define CP_TRIMMED	0x00000020
229 #define CP_PAUSE	0x00000040
230 #define CP_RESIZE 	0x00000080
231 
232 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
233 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
234 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
235 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
236 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
237 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
238 #define DEF_CP_INTERVAL			60	/* 60 secs */
239 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
240 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
241 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
242 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
243 
244 struct cp_control {
245 	int reason;
246 	__u64 trim_start;
247 	__u64 trim_end;
248 	__u64 trim_minlen;
249 };
250 
251 /*
252  * indicate meta/data type
253  */
254 enum {
255 	META_CP,
256 	META_NAT,
257 	META_SIT,
258 	META_SSA,
259 	META_MAX,
260 	META_POR,
261 	DATA_GENERIC,		/* check range only */
262 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
263 	DATA_GENERIC_ENHANCE_READ,	/*
264 					 * strong check on range and segment
265 					 * bitmap but no warning due to race
266 					 * condition of read on truncated area
267 					 * by extent_cache
268 					 */
269 	META_GENERIC,
270 };
271 
272 /* for the list of ino */
273 enum {
274 	ORPHAN_INO,		/* for orphan ino list */
275 	APPEND_INO,		/* for append ino list */
276 	UPDATE_INO,		/* for update ino list */
277 	TRANS_DIR_INO,		/* for trasactions dir ino list */
278 	FLUSH_INO,		/* for multiple device flushing */
279 	MAX_INO_ENTRY,		/* max. list */
280 };
281 
282 struct ino_entry {
283 	struct list_head list;		/* list head */
284 	nid_t ino;			/* inode number */
285 	unsigned int dirty_device;	/* dirty device bitmap */
286 };
287 
288 /* for the list of inodes to be GCed */
289 struct inode_entry {
290 	struct list_head list;	/* list head */
291 	struct inode *inode;	/* vfs inode pointer */
292 };
293 
294 struct fsync_node_entry {
295 	struct list_head list;	/* list head */
296 	struct page *page;	/* warm node page pointer */
297 	unsigned int seq_id;	/* sequence id */
298 };
299 
300 struct ckpt_req {
301 	struct completion wait;		/* completion for checkpoint done */
302 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
303 	int ret;			/* return code of checkpoint */
304 	ktime_t queue_time;		/* request queued time */
305 };
306 
307 struct ckpt_req_control {
308 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
309 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
310 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
311 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
312 	atomic_t total_ckpt;		/* # of total ckpts */
313 	atomic_t queued_ckpt;		/* # of queued ckpts */
314 	struct llist_head issue_list;	/* list for command issue */
315 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
316 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
317 	unsigned int peak_time;		/* peak wait time in msec until now */
318 };
319 
320 /* for the bitmap indicate blocks to be discarded */
321 struct discard_entry {
322 	struct list_head list;	/* list head */
323 	block_t start_blkaddr;	/* start blockaddr of current segment */
324 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
325 };
326 
327 /* default discard granularity of inner discard thread, unit: block count */
328 #define DEFAULT_DISCARD_GRANULARITY		16
329 
330 /* max discard pend list number */
331 #define MAX_PLIST_NUM		512
332 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
333 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
334 
335 enum {
336 	D_PREP,			/* initial */
337 	D_PARTIAL,		/* partially submitted */
338 	D_SUBMIT,		/* all submitted */
339 	D_DONE,			/* finished */
340 };
341 
342 struct discard_info {
343 	block_t lstart;			/* logical start address */
344 	block_t len;			/* length */
345 	block_t start;			/* actual start address in dev */
346 };
347 
348 struct discard_cmd {
349 	struct rb_node rb_node;		/* rb node located in rb-tree */
350 	union {
351 		struct {
352 			block_t lstart;	/* logical start address */
353 			block_t len;	/* length */
354 			block_t start;	/* actual start address in dev */
355 		};
356 		struct discard_info di;	/* discard info */
357 
358 	};
359 	struct list_head list;		/* command list */
360 	struct completion wait;		/* compleation */
361 	struct block_device *bdev;	/* bdev */
362 	unsigned short ref;		/* reference count */
363 	unsigned char state;		/* state */
364 	unsigned char queued;		/* queued discard */
365 	int error;			/* bio error */
366 	spinlock_t lock;		/* for state/bio_ref updating */
367 	unsigned short bio_ref;		/* bio reference count */
368 };
369 
370 enum {
371 	DPOLICY_BG,
372 	DPOLICY_FORCE,
373 	DPOLICY_FSTRIM,
374 	DPOLICY_UMOUNT,
375 	MAX_DPOLICY,
376 };
377 
378 struct discard_policy {
379 	int type;			/* type of discard */
380 	unsigned int min_interval;	/* used for candidates exist */
381 	unsigned int mid_interval;	/* used for device busy */
382 	unsigned int max_interval;	/* used for candidates not exist */
383 	unsigned int max_requests;	/* # of discards issued per round */
384 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
385 	bool io_aware;			/* issue discard in idle time */
386 	bool sync;			/* submit discard with REQ_SYNC flag */
387 	bool ordered;			/* issue discard by lba order */
388 	bool timeout;			/* discard timeout for put_super */
389 	unsigned int granularity;	/* discard granularity */
390 };
391 
392 struct discard_cmd_control {
393 	struct task_struct *f2fs_issue_discard;	/* discard thread */
394 	struct list_head entry_list;		/* 4KB discard entry list */
395 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
396 	struct list_head wait_list;		/* store on-flushing entries */
397 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
398 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
399 	unsigned int discard_wake;		/* to wake up discard thread */
400 	struct mutex cmd_lock;
401 	unsigned int nr_discards;		/* # of discards in the list */
402 	unsigned int max_discards;		/* max. discards to be issued */
403 	unsigned int max_discard_request;	/* max. discard request per round */
404 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
405 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
406 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
407 	unsigned int discard_granularity;	/* discard granularity */
408 	unsigned int undiscard_blks;		/* # of undiscard blocks */
409 	unsigned int next_pos;			/* next discard position */
410 	atomic_t issued_discard;		/* # of issued discard */
411 	atomic_t queued_discard;		/* # of queued discard */
412 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
413 	struct rb_root_cached root;		/* root of discard rb-tree */
414 	bool rbtree_check;			/* config for consistence check */
415 };
416 
417 /* for the list of fsync inodes, used only during recovery */
418 struct fsync_inode_entry {
419 	struct list_head list;	/* list head */
420 	struct inode *inode;	/* vfs inode pointer */
421 	block_t blkaddr;	/* block address locating the last fsync */
422 	block_t last_dentry;	/* block address locating the last dentry */
423 };
424 
425 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
426 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
427 
428 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
429 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
430 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
431 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
432 
433 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
434 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
435 
436 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
437 {
438 	int before = nats_in_cursum(journal);
439 
440 	journal->n_nats = cpu_to_le16(before + i);
441 	return before;
442 }
443 
444 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
445 {
446 	int before = sits_in_cursum(journal);
447 
448 	journal->n_sits = cpu_to_le16(before + i);
449 	return before;
450 }
451 
452 static inline bool __has_cursum_space(struct f2fs_journal *journal,
453 							int size, int type)
454 {
455 	if (type == NAT_JOURNAL)
456 		return size <= MAX_NAT_JENTRIES(journal);
457 	return size <= MAX_SIT_JENTRIES(journal);
458 }
459 
460 /* for inline stuff */
461 #define DEF_INLINE_RESERVED_SIZE	1
462 static inline int get_extra_isize(struct inode *inode);
463 static inline int get_inline_xattr_addrs(struct inode *inode);
464 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
465 				(CUR_ADDRS_PER_INODE(inode) -		\
466 				get_inline_xattr_addrs(inode) -	\
467 				DEF_INLINE_RESERVED_SIZE))
468 
469 /* for inline dir */
470 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
471 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
472 				BITS_PER_BYTE + 1))
473 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
474 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
475 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
476 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
477 				NR_INLINE_DENTRY(inode) + \
478 				INLINE_DENTRY_BITMAP_SIZE(inode)))
479 
480 /*
481  * For INODE and NODE manager
482  */
483 /* for directory operations */
484 
485 struct f2fs_filename {
486 	/*
487 	 * The filename the user specified.  This is NULL for some
488 	 * filesystem-internal operations, e.g. converting an inline directory
489 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
490 	 */
491 	const struct qstr *usr_fname;
492 
493 	/*
494 	 * The on-disk filename.  For encrypted directories, this is encrypted.
495 	 * This may be NULL for lookups in an encrypted dir without the key.
496 	 */
497 	struct fscrypt_str disk_name;
498 
499 	/* The dirhash of this filename */
500 	f2fs_hash_t hash;
501 
502 #ifdef CONFIG_FS_ENCRYPTION
503 	/*
504 	 * For lookups in encrypted directories: either the buffer backing
505 	 * disk_name, or a buffer that holds the decoded no-key name.
506 	 */
507 	struct fscrypt_str crypto_buf;
508 #endif
509 #if IS_ENABLED(CONFIG_UNICODE)
510 	/*
511 	 * For casefolded directories: the casefolded name, but it's left NULL
512 	 * if the original name is not valid Unicode, if the directory is both
513 	 * casefolded and encrypted and its encryption key is unavailable, or if
514 	 * the filesystem is doing an internal operation where usr_fname is also
515 	 * NULL.  In all these cases we fall back to treating the name as an
516 	 * opaque byte sequence.
517 	 */
518 	struct fscrypt_str cf_name;
519 #endif
520 };
521 
522 struct f2fs_dentry_ptr {
523 	struct inode *inode;
524 	void *bitmap;
525 	struct f2fs_dir_entry *dentry;
526 	__u8 (*filename)[F2FS_SLOT_LEN];
527 	int max;
528 	int nr_bitmap;
529 };
530 
531 static inline void make_dentry_ptr_block(struct inode *inode,
532 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
533 {
534 	d->inode = inode;
535 	d->max = NR_DENTRY_IN_BLOCK;
536 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
537 	d->bitmap = t->dentry_bitmap;
538 	d->dentry = t->dentry;
539 	d->filename = t->filename;
540 }
541 
542 static inline void make_dentry_ptr_inline(struct inode *inode,
543 					struct f2fs_dentry_ptr *d, void *t)
544 {
545 	int entry_cnt = NR_INLINE_DENTRY(inode);
546 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
547 	int reserved_size = INLINE_RESERVED_SIZE(inode);
548 
549 	d->inode = inode;
550 	d->max = entry_cnt;
551 	d->nr_bitmap = bitmap_size;
552 	d->bitmap = t;
553 	d->dentry = t + bitmap_size + reserved_size;
554 	d->filename = t + bitmap_size + reserved_size +
555 					SIZE_OF_DIR_ENTRY * entry_cnt;
556 }
557 
558 /*
559  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
560  * as its node offset to distinguish from index node blocks.
561  * But some bits are used to mark the node block.
562  */
563 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
564 				>> OFFSET_BIT_SHIFT)
565 enum {
566 	ALLOC_NODE,			/* allocate a new node page if needed */
567 	LOOKUP_NODE,			/* look up a node without readahead */
568 	LOOKUP_NODE_RA,			/*
569 					 * look up a node with readahead called
570 					 * by get_data_block.
571 					 */
572 };
573 
574 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
575 
576 /* congestion wait timeout value, default: 20ms */
577 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
578 
579 /* maximum retry quota flush count */
580 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
581 
582 /* maximum retry of EIO'ed meta page */
583 #define MAX_RETRY_META_PAGE_EIO			100
584 
585 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
586 
587 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
588 
589 /* dirty segments threshold for triggering CP */
590 #define DEFAULT_DIRTY_THRESHOLD		4
591 
592 /* for in-memory extent cache entry */
593 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
594 
595 /* number of extent info in extent cache we try to shrink */
596 #define EXTENT_CACHE_SHRINK_NUMBER	128
597 
598 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
599 #define RECOVERY_MIN_RA_BLOCKS		1
600 
601 struct rb_entry {
602 	struct rb_node rb_node;		/* rb node located in rb-tree */
603 	union {
604 		struct {
605 			unsigned int ofs;	/* start offset of the entry */
606 			unsigned int len;	/* length of the entry */
607 		};
608 		unsigned long long key;		/* 64-bits key */
609 	} __packed;
610 };
611 
612 struct extent_info {
613 	unsigned int fofs;		/* start offset in a file */
614 	unsigned int len;		/* length of the extent */
615 	u32 blk;			/* start block address of the extent */
616 #ifdef CONFIG_F2FS_FS_COMPRESSION
617 	unsigned int c_len;		/* physical extent length of compressed blocks */
618 #endif
619 };
620 
621 struct extent_node {
622 	struct rb_node rb_node;		/* rb node located in rb-tree */
623 	struct extent_info ei;		/* extent info */
624 	struct list_head list;		/* node in global extent list of sbi */
625 	struct extent_tree *et;		/* extent tree pointer */
626 };
627 
628 struct extent_tree {
629 	nid_t ino;			/* inode number */
630 	struct rb_root_cached root;	/* root of extent info rb-tree */
631 	struct extent_node *cached_en;	/* recently accessed extent node */
632 	struct extent_info largest;	/* largested extent info */
633 	struct list_head list;		/* to be used by sbi->zombie_list */
634 	rwlock_t lock;			/* protect extent info rb-tree */
635 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
636 	bool largest_updated;		/* largest extent updated */
637 };
638 
639 /*
640  * This structure is taken from ext4_map_blocks.
641  *
642  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
643  */
644 #define F2FS_MAP_NEW		(1 << BH_New)
645 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
646 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
647 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
648 				F2FS_MAP_UNWRITTEN)
649 
650 struct f2fs_map_blocks {
651 	struct block_device *m_bdev;	/* for multi-device dio */
652 	block_t m_pblk;
653 	block_t m_lblk;
654 	unsigned int m_len;
655 	unsigned int m_flags;
656 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
657 	pgoff_t *m_next_extent;		/* point to next possible extent */
658 	int m_seg_type;
659 	bool m_may_create;		/* indicate it is from write path */
660 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
661 };
662 
663 /* for flag in get_data_block */
664 enum {
665 	F2FS_GET_BLOCK_DEFAULT,
666 	F2FS_GET_BLOCK_FIEMAP,
667 	F2FS_GET_BLOCK_BMAP,
668 	F2FS_GET_BLOCK_DIO,
669 	F2FS_GET_BLOCK_PRE_DIO,
670 	F2FS_GET_BLOCK_PRE_AIO,
671 	F2FS_GET_BLOCK_PRECACHE,
672 };
673 
674 /*
675  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
676  */
677 #define FADVISE_COLD_BIT	0x01
678 #define FADVISE_LOST_PINO_BIT	0x02
679 #define FADVISE_ENCRYPT_BIT	0x04
680 #define FADVISE_ENC_NAME_BIT	0x08
681 #define FADVISE_KEEP_SIZE_BIT	0x10
682 #define FADVISE_HOT_BIT		0x20
683 #define FADVISE_VERITY_BIT	0x40
684 #define FADVISE_TRUNC_BIT	0x80
685 
686 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
687 
688 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
689 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
690 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
691 
692 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
693 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
694 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
695 
696 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
697 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
698 
699 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
700 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
701 
702 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
703 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
704 
705 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
706 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
707 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
708 
709 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
710 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
711 
712 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
713 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
714 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
715 
716 #define DEF_DIR_LEVEL		0
717 
718 enum {
719 	GC_FAILURE_PIN,
720 	GC_FAILURE_ATOMIC,
721 	MAX_GC_FAILURE
722 };
723 
724 /* used for f2fs_inode_info->flags */
725 enum {
726 	FI_NEW_INODE,		/* indicate newly allocated inode */
727 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
728 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
729 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
730 	FI_INC_LINK,		/* need to increment i_nlink */
731 	FI_ACL_MODE,		/* indicate acl mode */
732 	FI_NO_ALLOC,		/* should not allocate any blocks */
733 	FI_FREE_NID,		/* free allocated nide */
734 	FI_NO_EXTENT,		/* not to use the extent cache */
735 	FI_INLINE_XATTR,	/* used for inline xattr */
736 	FI_INLINE_DATA,		/* used for inline data*/
737 	FI_INLINE_DENTRY,	/* used for inline dentry */
738 	FI_APPEND_WRITE,	/* inode has appended data */
739 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
740 	FI_NEED_IPU,		/* used for ipu per file */
741 	FI_ATOMIC_FILE,		/* indicate atomic file */
742 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
743 	FI_VOLATILE_FILE,	/* indicate volatile file */
744 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
745 	FI_DROP_CACHE,		/* drop dirty page cache */
746 	FI_DATA_EXIST,		/* indicate data exists */
747 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
748 	FI_SKIP_WRITES,		/* should skip data page writeback */
749 	FI_OPU_WRITE,		/* used for opu per file */
750 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
751 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
752 	FI_HOT_DATA,		/* indicate file is hot */
753 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
754 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
755 	FI_PIN_FILE,		/* indicate file should not be gced */
756 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
757 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
758 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
759 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
760 	FI_MMAP_FILE,		/* indicate file was mmapped */
761 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
762 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
763 	FI_ALIGNED_WRITE,	/* enable aligned write */
764 	FI_MAX,			/* max flag, never be used */
765 };
766 
767 struct f2fs_inode_info {
768 	struct inode vfs_inode;		/* serve a vfs inode */
769 	unsigned long i_flags;		/* keep an inode flags for ioctl */
770 	unsigned char i_advise;		/* use to give file attribute hints */
771 	unsigned char i_dir_level;	/* use for dentry level for large dir */
772 	unsigned int i_current_depth;	/* only for directory depth */
773 	/* for gc failure statistic */
774 	unsigned int i_gc_failures[MAX_GC_FAILURE];
775 	unsigned int i_pino;		/* parent inode number */
776 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
777 
778 	/* Use below internally in f2fs*/
779 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
780 	struct f2fs_rwsem i_sem;	/* protect fi info */
781 	atomic_t dirty_pages;		/* # of dirty pages */
782 	f2fs_hash_t chash;		/* hash value of given file name */
783 	unsigned int clevel;		/* maximum level of given file name */
784 	struct task_struct *task;	/* lookup and create consistency */
785 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
786 	nid_t i_xattr_nid;		/* node id that contains xattrs */
787 	loff_t	last_disk_size;		/* lastly written file size */
788 	spinlock_t i_size_lock;		/* protect last_disk_size */
789 
790 #ifdef CONFIG_QUOTA
791 	struct dquot *i_dquot[MAXQUOTAS];
792 
793 	/* quota space reservation, managed internally by quota code */
794 	qsize_t i_reserved_quota;
795 #endif
796 	struct list_head dirty_list;	/* dirty list for dirs and files */
797 	struct list_head gdirty_list;	/* linked in global dirty list */
798 	struct list_head inmem_ilist;	/* list for inmem inodes */
799 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
800 	struct task_struct *inmem_task;	/* store inmemory task */
801 	struct mutex inmem_lock;	/* lock for inmemory pages */
802 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
803 
804 	/* avoid racing between foreground op and gc */
805 	struct f2fs_rwsem i_gc_rwsem[2];
806 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
807 
808 	int i_extra_isize;		/* size of extra space located in i_addr */
809 	kprojid_t i_projid;		/* id for project quota */
810 	int i_inline_xattr_size;	/* inline xattr size */
811 	struct timespec64 i_crtime;	/* inode creation time */
812 	struct timespec64 i_disk_time[4];/* inode disk times */
813 
814 	/* for file compress */
815 	atomic_t i_compr_blocks;		/* # of compressed blocks */
816 	unsigned char i_compress_algorithm;	/* algorithm type */
817 	unsigned char i_log_cluster_size;	/* log of cluster size */
818 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
819 	unsigned short i_compress_flag;		/* compress flag */
820 	unsigned int i_cluster_size;		/* cluster size */
821 };
822 
823 static inline void get_extent_info(struct extent_info *ext,
824 					struct f2fs_extent *i_ext)
825 {
826 	ext->fofs = le32_to_cpu(i_ext->fofs);
827 	ext->blk = le32_to_cpu(i_ext->blk);
828 	ext->len = le32_to_cpu(i_ext->len);
829 }
830 
831 static inline void set_raw_extent(struct extent_info *ext,
832 					struct f2fs_extent *i_ext)
833 {
834 	i_ext->fofs = cpu_to_le32(ext->fofs);
835 	i_ext->blk = cpu_to_le32(ext->blk);
836 	i_ext->len = cpu_to_le32(ext->len);
837 }
838 
839 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
840 						u32 blk, unsigned int len)
841 {
842 	ei->fofs = fofs;
843 	ei->blk = blk;
844 	ei->len = len;
845 #ifdef CONFIG_F2FS_FS_COMPRESSION
846 	ei->c_len = 0;
847 #endif
848 }
849 
850 static inline bool __is_discard_mergeable(struct discard_info *back,
851 			struct discard_info *front, unsigned int max_len)
852 {
853 	return (back->lstart + back->len == front->lstart) &&
854 		(back->len + front->len <= max_len);
855 }
856 
857 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
858 			struct discard_info *back, unsigned int max_len)
859 {
860 	return __is_discard_mergeable(back, cur, max_len);
861 }
862 
863 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
864 			struct discard_info *front, unsigned int max_len)
865 {
866 	return __is_discard_mergeable(cur, front, max_len);
867 }
868 
869 static inline bool __is_extent_mergeable(struct extent_info *back,
870 						struct extent_info *front)
871 {
872 #ifdef CONFIG_F2FS_FS_COMPRESSION
873 	if (back->c_len && back->len != back->c_len)
874 		return false;
875 	if (front->c_len && front->len != front->c_len)
876 		return false;
877 #endif
878 	return (back->fofs + back->len == front->fofs &&
879 			back->blk + back->len == front->blk);
880 }
881 
882 static inline bool __is_back_mergeable(struct extent_info *cur,
883 						struct extent_info *back)
884 {
885 	return __is_extent_mergeable(back, cur);
886 }
887 
888 static inline bool __is_front_mergeable(struct extent_info *cur,
889 						struct extent_info *front)
890 {
891 	return __is_extent_mergeable(cur, front);
892 }
893 
894 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
895 static inline void __try_update_largest_extent(struct extent_tree *et,
896 						struct extent_node *en)
897 {
898 	if (en->ei.len > et->largest.len) {
899 		et->largest = en->ei;
900 		et->largest_updated = true;
901 	}
902 }
903 
904 /*
905  * For free nid management
906  */
907 enum nid_state {
908 	FREE_NID,		/* newly added to free nid list */
909 	PREALLOC_NID,		/* it is preallocated */
910 	MAX_NID_STATE,
911 };
912 
913 enum nat_state {
914 	TOTAL_NAT,
915 	DIRTY_NAT,
916 	RECLAIMABLE_NAT,
917 	MAX_NAT_STATE,
918 };
919 
920 struct f2fs_nm_info {
921 	block_t nat_blkaddr;		/* base disk address of NAT */
922 	nid_t max_nid;			/* maximum possible node ids */
923 	nid_t available_nids;		/* # of available node ids */
924 	nid_t next_scan_nid;		/* the next nid to be scanned */
925 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
926 	unsigned int ram_thresh;	/* control the memory footprint */
927 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
928 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
929 
930 	/* NAT cache management */
931 	struct radix_tree_root nat_root;/* root of the nat entry cache */
932 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
933 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
934 	struct list_head nat_entries;	/* cached nat entry list (clean) */
935 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
936 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
937 	unsigned int nat_blocks;	/* # of nat blocks */
938 
939 	/* free node ids management */
940 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
941 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
942 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
943 	spinlock_t nid_list_lock;	/* protect nid lists ops */
944 	struct mutex build_lock;	/* lock for build free nids */
945 	unsigned char **free_nid_bitmap;
946 	unsigned char *nat_block_bitmap;
947 	unsigned short *free_nid_count;	/* free nid count of NAT block */
948 
949 	/* for checkpoint */
950 	char *nat_bitmap;		/* NAT bitmap pointer */
951 
952 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
953 	unsigned char *nat_bits;	/* NAT bits blocks */
954 	unsigned char *full_nat_bits;	/* full NAT pages */
955 	unsigned char *empty_nat_bits;	/* empty NAT pages */
956 #ifdef CONFIG_F2FS_CHECK_FS
957 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
958 #endif
959 	int bitmap_size;		/* bitmap size */
960 };
961 
962 /*
963  * this structure is used as one of function parameters.
964  * all the information are dedicated to a given direct node block determined
965  * by the data offset in a file.
966  */
967 struct dnode_of_data {
968 	struct inode *inode;		/* vfs inode pointer */
969 	struct page *inode_page;	/* its inode page, NULL is possible */
970 	struct page *node_page;		/* cached direct node page */
971 	nid_t nid;			/* node id of the direct node block */
972 	unsigned int ofs_in_node;	/* data offset in the node page */
973 	bool inode_page_locked;		/* inode page is locked or not */
974 	bool node_changed;		/* is node block changed */
975 	char cur_level;			/* level of hole node page */
976 	char max_level;			/* level of current page located */
977 	block_t	data_blkaddr;		/* block address of the node block */
978 };
979 
980 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
981 		struct page *ipage, struct page *npage, nid_t nid)
982 {
983 	memset(dn, 0, sizeof(*dn));
984 	dn->inode = inode;
985 	dn->inode_page = ipage;
986 	dn->node_page = npage;
987 	dn->nid = nid;
988 }
989 
990 /*
991  * For SIT manager
992  *
993  * By default, there are 6 active log areas across the whole main area.
994  * When considering hot and cold data separation to reduce cleaning overhead,
995  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
996  * respectively.
997  * In the current design, you should not change the numbers intentionally.
998  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
999  * logs individually according to the underlying devices. (default: 6)
1000  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1001  * data and 8 for node logs.
1002  */
1003 #define	NR_CURSEG_DATA_TYPE	(3)
1004 #define NR_CURSEG_NODE_TYPE	(3)
1005 #define NR_CURSEG_INMEM_TYPE	(2)
1006 #define NR_CURSEG_RO_TYPE	(2)
1007 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1008 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1009 
1010 enum {
1011 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1012 	CURSEG_WARM_DATA,	/* data blocks */
1013 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1014 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1015 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1016 	CURSEG_COLD_NODE,	/* indirect node blocks */
1017 	NR_PERSISTENT_LOG,	/* number of persistent log */
1018 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1019 				/* pinned file that needs consecutive block address */
1020 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1021 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1022 };
1023 
1024 struct flush_cmd {
1025 	struct completion wait;
1026 	struct llist_node llnode;
1027 	nid_t ino;
1028 	int ret;
1029 };
1030 
1031 struct flush_cmd_control {
1032 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1033 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1034 	atomic_t issued_flush;			/* # of issued flushes */
1035 	atomic_t queued_flush;			/* # of queued flushes */
1036 	struct llist_head issue_list;		/* list for command issue */
1037 	struct llist_node *dispatch_list;	/* list for command dispatch */
1038 };
1039 
1040 struct f2fs_sm_info {
1041 	struct sit_info *sit_info;		/* whole segment information */
1042 	struct free_segmap_info *free_info;	/* free segment information */
1043 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1044 	struct curseg_info *curseg_array;	/* active segment information */
1045 
1046 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1047 
1048 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1049 	block_t main_blkaddr;		/* start block address of main area */
1050 	block_t ssa_blkaddr;		/* start block address of SSA area */
1051 
1052 	unsigned int segment_count;	/* total # of segments */
1053 	unsigned int main_segments;	/* # of segments in main area */
1054 	unsigned int reserved_segments;	/* # of reserved segments */
1055 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1056 	unsigned int ovp_segments;	/* # of overprovision segments */
1057 
1058 	/* a threshold to reclaim prefree segments */
1059 	unsigned int rec_prefree_segments;
1060 
1061 	/* for batched trimming */
1062 	unsigned int trim_sections;		/* # of sections to trim */
1063 
1064 	struct list_head sit_entry_set;	/* sit entry set list */
1065 
1066 	unsigned int ipu_policy;	/* in-place-update policy */
1067 	unsigned int min_ipu_util;	/* in-place-update threshold */
1068 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1069 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1070 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1071 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1072 
1073 	/* for flush command control */
1074 	struct flush_cmd_control *fcc_info;
1075 
1076 	/* for discard command control */
1077 	struct discard_cmd_control *dcc_info;
1078 };
1079 
1080 /*
1081  * For superblock
1082  */
1083 /*
1084  * COUNT_TYPE for monitoring
1085  *
1086  * f2fs monitors the number of several block types such as on-writeback,
1087  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1088  */
1089 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1090 enum count_type {
1091 	F2FS_DIRTY_DENTS,
1092 	F2FS_DIRTY_DATA,
1093 	F2FS_DIRTY_QDATA,
1094 	F2FS_DIRTY_NODES,
1095 	F2FS_DIRTY_META,
1096 	F2FS_INMEM_PAGES,
1097 	F2FS_DIRTY_IMETA,
1098 	F2FS_WB_CP_DATA,
1099 	F2FS_WB_DATA,
1100 	F2FS_RD_DATA,
1101 	F2FS_RD_NODE,
1102 	F2FS_RD_META,
1103 	F2FS_DIO_WRITE,
1104 	F2FS_DIO_READ,
1105 	NR_COUNT_TYPE,
1106 };
1107 
1108 /*
1109  * The below are the page types of bios used in submit_bio().
1110  * The available types are:
1111  * DATA			User data pages. It operates as async mode.
1112  * NODE			Node pages. It operates as async mode.
1113  * META			FS metadata pages such as SIT, NAT, CP.
1114  * NR_PAGE_TYPE		The number of page types.
1115  * META_FLUSH		Make sure the previous pages are written
1116  *			with waiting the bio's completion
1117  * ...			Only can be used with META.
1118  */
1119 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1120 enum page_type {
1121 	DATA,
1122 	NODE,
1123 	META,
1124 	NR_PAGE_TYPE,
1125 	META_FLUSH,
1126 	INMEM,		/* the below types are used by tracepoints only. */
1127 	INMEM_DROP,
1128 	INMEM_INVALIDATE,
1129 	INMEM_REVOKE,
1130 	IPU,
1131 	OPU,
1132 };
1133 
1134 enum temp_type {
1135 	HOT = 0,	/* must be zero for meta bio */
1136 	WARM,
1137 	COLD,
1138 	NR_TEMP_TYPE,
1139 };
1140 
1141 enum need_lock_type {
1142 	LOCK_REQ = 0,
1143 	LOCK_DONE,
1144 	LOCK_RETRY,
1145 };
1146 
1147 enum cp_reason_type {
1148 	CP_NO_NEEDED,
1149 	CP_NON_REGULAR,
1150 	CP_COMPRESSED,
1151 	CP_HARDLINK,
1152 	CP_SB_NEED_CP,
1153 	CP_WRONG_PINO,
1154 	CP_NO_SPC_ROLL,
1155 	CP_NODE_NEED_CP,
1156 	CP_FASTBOOT_MODE,
1157 	CP_SPEC_LOG_NUM,
1158 	CP_RECOVER_DIR,
1159 };
1160 
1161 enum iostat_type {
1162 	/* WRITE IO */
1163 	APP_DIRECT_IO,			/* app direct write IOs */
1164 	APP_BUFFERED_IO,		/* app buffered write IOs */
1165 	APP_WRITE_IO,			/* app write IOs */
1166 	APP_MAPPED_IO,			/* app mapped IOs */
1167 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1168 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1169 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1170 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1171 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1172 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1173 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1174 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1175 
1176 	/* READ IO */
1177 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1178 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1179 	APP_READ_IO,			/* app read IOs */
1180 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1181 	FS_DATA_READ_IO,		/* data read IOs */
1182 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1183 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1184 	FS_NODE_READ_IO,		/* node read IOs */
1185 	FS_META_READ_IO,		/* meta read IOs */
1186 
1187 	/* other */
1188 	FS_DISCARD,			/* discard */
1189 	NR_IO_TYPE,
1190 };
1191 
1192 struct f2fs_io_info {
1193 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1194 	nid_t ino;		/* inode number */
1195 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1196 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1197 	int op;			/* contains REQ_OP_ */
1198 	int op_flags;		/* req_flag_bits */
1199 	block_t new_blkaddr;	/* new block address to be written */
1200 	block_t old_blkaddr;	/* old block address before Cow */
1201 	struct page *page;	/* page to be written */
1202 	struct page *encrypted_page;	/* encrypted page */
1203 	struct page *compressed_page;	/* compressed page */
1204 	struct list_head list;		/* serialize IOs */
1205 	bool submitted;		/* indicate IO submission */
1206 	int need_lock;		/* indicate we need to lock cp_rwsem */
1207 	bool in_list;		/* indicate fio is in io_list */
1208 	bool is_por;		/* indicate IO is from recovery or not */
1209 	bool retry;		/* need to reallocate block address */
1210 	int compr_blocks;	/* # of compressed block addresses */
1211 	bool encrypted;		/* indicate file is encrypted */
1212 	enum iostat_type io_type;	/* io type */
1213 	struct writeback_control *io_wbc; /* writeback control */
1214 	struct bio **bio;		/* bio for ipu */
1215 	sector_t *last_block;		/* last block number in bio */
1216 	unsigned char version;		/* version of the node */
1217 };
1218 
1219 struct bio_entry {
1220 	struct bio *bio;
1221 	struct list_head list;
1222 };
1223 
1224 #define is_read_io(rw) ((rw) == READ)
1225 struct f2fs_bio_info {
1226 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1227 	struct bio *bio;		/* bios to merge */
1228 	sector_t last_block_in_bio;	/* last block number */
1229 	struct f2fs_io_info fio;	/* store buffered io info. */
1230 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1231 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1232 	struct list_head io_list;	/* track fios */
1233 	struct list_head bio_list;	/* bio entry list head */
1234 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1235 };
1236 
1237 #define FDEV(i)				(sbi->devs[i])
1238 #define RDEV(i)				(raw_super->devs[i])
1239 struct f2fs_dev_info {
1240 	struct block_device *bdev;
1241 	char path[MAX_PATH_LEN];
1242 	unsigned int total_segments;
1243 	block_t start_blk;
1244 	block_t end_blk;
1245 #ifdef CONFIG_BLK_DEV_ZONED
1246 	unsigned int nr_blkz;		/* Total number of zones */
1247 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1248 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1249 #endif
1250 };
1251 
1252 enum inode_type {
1253 	DIR_INODE,			/* for dirty dir inode */
1254 	FILE_INODE,			/* for dirty regular/symlink inode */
1255 	DIRTY_META,			/* for all dirtied inode metadata */
1256 	ATOMIC_FILE,			/* for all atomic files */
1257 	NR_INODE_TYPE,
1258 };
1259 
1260 /* for inner inode cache management */
1261 struct inode_management {
1262 	struct radix_tree_root ino_root;	/* ino entry array */
1263 	spinlock_t ino_lock;			/* for ino entry lock */
1264 	struct list_head ino_list;		/* inode list head */
1265 	unsigned long ino_num;			/* number of entries */
1266 };
1267 
1268 /* for GC_AT */
1269 struct atgc_management {
1270 	bool atgc_enabled;			/* ATGC is enabled or not */
1271 	struct rb_root_cached root;		/* root of victim rb-tree */
1272 	struct list_head victim_list;		/* linked with all victim entries */
1273 	unsigned int victim_count;		/* victim count in rb-tree */
1274 	unsigned int candidate_ratio;		/* candidate ratio */
1275 	unsigned int max_candidate_count;	/* max candidate count */
1276 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1277 	unsigned long long age_threshold;	/* age threshold */
1278 };
1279 
1280 /* For s_flag in struct f2fs_sb_info */
1281 enum {
1282 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1283 	SBI_IS_CLOSE,				/* specify unmounting */
1284 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1285 	SBI_POR_DOING,				/* recovery is doing or not */
1286 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1287 	SBI_NEED_CP,				/* need to checkpoint */
1288 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1289 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1290 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1291 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1292 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1293 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1294 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1295 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1296 	SBI_IS_FREEZING,			/* freezefs is in process */
1297 };
1298 
1299 enum {
1300 	CP_TIME,
1301 	REQ_TIME,
1302 	DISCARD_TIME,
1303 	GC_TIME,
1304 	DISABLE_TIME,
1305 	UMOUNT_DISCARD_TIMEOUT,
1306 	MAX_TIME,
1307 };
1308 
1309 enum {
1310 	GC_NORMAL,
1311 	GC_IDLE_CB,
1312 	GC_IDLE_GREEDY,
1313 	GC_IDLE_AT,
1314 	GC_URGENT_HIGH,
1315 	GC_URGENT_LOW,
1316 	GC_URGENT_MID,
1317 	MAX_GC_MODE,
1318 };
1319 
1320 enum {
1321 	BGGC_MODE_ON,		/* background gc is on */
1322 	BGGC_MODE_OFF,		/* background gc is off */
1323 	BGGC_MODE_SYNC,		/*
1324 				 * background gc is on, migrating blocks
1325 				 * like foreground gc
1326 				 */
1327 };
1328 
1329 enum {
1330 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1331 	FS_MODE_LFS,			/* use lfs allocation only */
1332 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1333 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1334 };
1335 
1336 enum {
1337 	WHINT_MODE_OFF,		/* not pass down write hints */
1338 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1339 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1340 };
1341 
1342 enum {
1343 	ALLOC_MODE_DEFAULT,	/* stay default */
1344 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1345 };
1346 
1347 enum fsync_mode {
1348 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1349 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1350 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1351 };
1352 
1353 enum {
1354 	COMPR_MODE_FS,		/*
1355 				 * automatically compress compression
1356 				 * enabled files
1357 				 */
1358 	COMPR_MODE_USER,	/*
1359 				 * automatical compression is disabled.
1360 				 * user can control the file compression
1361 				 * using ioctls
1362 				 */
1363 };
1364 
1365 enum {
1366 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1367 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1368 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1369 };
1370 
1371 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1372 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1373 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1374 
1375 /*
1376  * Layout of f2fs page.private:
1377  *
1378  * Layout A: lowest bit should be 1
1379  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1380  * bit 0	PAGE_PRIVATE_NOT_POINTER
1381  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1382  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1383  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1384  * bit 4	PAGE_PRIVATE_INLINE_INODE
1385  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1386  * bit 6-	f2fs private data
1387  *
1388  * Layout B: lowest bit should be 0
1389  * page.private is a wrapped pointer.
1390  */
1391 enum {
1392 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1393 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1394 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1395 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1396 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1397 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1398 	PAGE_PRIVATE_MAX
1399 };
1400 
1401 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1402 static inline bool page_private_##name(struct page *page) \
1403 { \
1404 	return PagePrivate(page) && \
1405 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1406 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1407 }
1408 
1409 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1410 static inline void set_page_private_##name(struct page *page) \
1411 { \
1412 	if (!PagePrivate(page)) { \
1413 		get_page(page); \
1414 		SetPagePrivate(page); \
1415 		set_page_private(page, 0); \
1416 	} \
1417 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1418 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1419 }
1420 
1421 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1422 static inline void clear_page_private_##name(struct page *page) \
1423 { \
1424 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1425 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1426 		set_page_private(page, 0); \
1427 		if (PagePrivate(page)) { \
1428 			ClearPagePrivate(page); \
1429 			put_page(page); \
1430 		}\
1431 	} \
1432 }
1433 
1434 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1435 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1436 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1437 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1438 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1439 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1440 
1441 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1442 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1443 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1444 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1445 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1446 
1447 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1448 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1449 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1450 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1451 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1452 
1453 static inline unsigned long get_page_private_data(struct page *page)
1454 {
1455 	unsigned long data = page_private(page);
1456 
1457 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1458 		return 0;
1459 	return data >> PAGE_PRIVATE_MAX;
1460 }
1461 
1462 static inline void set_page_private_data(struct page *page, unsigned long data)
1463 {
1464 	if (!PagePrivate(page)) {
1465 		get_page(page);
1466 		SetPagePrivate(page);
1467 		set_page_private(page, 0);
1468 	}
1469 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1470 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1471 }
1472 
1473 static inline void clear_page_private_data(struct page *page)
1474 {
1475 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1476 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1477 		set_page_private(page, 0);
1478 		if (PagePrivate(page)) {
1479 			ClearPagePrivate(page);
1480 			put_page(page);
1481 		}
1482 	}
1483 }
1484 
1485 /* For compression */
1486 enum compress_algorithm_type {
1487 	COMPRESS_LZO,
1488 	COMPRESS_LZ4,
1489 	COMPRESS_ZSTD,
1490 	COMPRESS_LZORLE,
1491 	COMPRESS_MAX,
1492 };
1493 
1494 enum compress_flag {
1495 	COMPRESS_CHKSUM,
1496 	COMPRESS_MAX_FLAG,
1497 };
1498 
1499 #define	COMPRESS_WATERMARK			20
1500 #define	COMPRESS_PERCENT			20
1501 
1502 #define COMPRESS_DATA_RESERVED_SIZE		4
1503 struct compress_data {
1504 	__le32 clen;			/* compressed data size */
1505 	__le32 chksum;			/* compressed data chksum */
1506 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1507 	u8 cdata[];			/* compressed data */
1508 };
1509 
1510 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1511 
1512 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1513 
1514 #define	COMPRESS_LEVEL_OFFSET	8
1515 
1516 /* compress context */
1517 struct compress_ctx {
1518 	struct inode *inode;		/* inode the context belong to */
1519 	pgoff_t cluster_idx;		/* cluster index number */
1520 	unsigned int cluster_size;	/* page count in cluster */
1521 	unsigned int log_cluster_size;	/* log of cluster size */
1522 	struct page **rpages;		/* pages store raw data in cluster */
1523 	unsigned int nr_rpages;		/* total page number in rpages */
1524 	struct page **cpages;		/* pages store compressed data in cluster */
1525 	unsigned int nr_cpages;		/* total page number in cpages */
1526 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1527 	void *rbuf;			/* virtual mapped address on rpages */
1528 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1529 	size_t rlen;			/* valid data length in rbuf */
1530 	size_t clen;			/* valid data length in cbuf */
1531 	void *private;			/* payload buffer for specified compression algorithm */
1532 	void *private2;			/* extra payload buffer */
1533 };
1534 
1535 /* compress context for write IO path */
1536 struct compress_io_ctx {
1537 	u32 magic;			/* magic number to indicate page is compressed */
1538 	struct inode *inode;		/* inode the context belong to */
1539 	struct page **rpages;		/* pages store raw data in cluster */
1540 	unsigned int nr_rpages;		/* total page number in rpages */
1541 	atomic_t pending_pages;		/* in-flight compressed page count */
1542 };
1543 
1544 /* Context for decompressing one cluster on the read IO path */
1545 struct decompress_io_ctx {
1546 	u32 magic;			/* magic number to indicate page is compressed */
1547 	struct inode *inode;		/* inode the context belong to */
1548 	pgoff_t cluster_idx;		/* cluster index number */
1549 	unsigned int cluster_size;	/* page count in cluster */
1550 	unsigned int log_cluster_size;	/* log of cluster size */
1551 	struct page **rpages;		/* pages store raw data in cluster */
1552 	unsigned int nr_rpages;		/* total page number in rpages */
1553 	struct page **cpages;		/* pages store compressed data in cluster */
1554 	unsigned int nr_cpages;		/* total page number in cpages */
1555 	struct page **tpages;		/* temp pages to pad holes in cluster */
1556 	void *rbuf;			/* virtual mapped address on rpages */
1557 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1558 	size_t rlen;			/* valid data length in rbuf */
1559 	size_t clen;			/* valid data length in cbuf */
1560 
1561 	/*
1562 	 * The number of compressed pages remaining to be read in this cluster.
1563 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1564 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1565 	 * is decompressed (or an error is reported).
1566 	 *
1567 	 * If an error occurs before all the pages have been submitted for I/O,
1568 	 * then this will never reach 0.  In this case the I/O submitter is
1569 	 * responsible for calling f2fs_decompress_end_io() instead.
1570 	 */
1571 	atomic_t remaining_pages;
1572 
1573 	/*
1574 	 * Number of references to this decompress_io_ctx.
1575 	 *
1576 	 * One reference is held for I/O completion.  This reference is dropped
1577 	 * after the pagecache pages are updated and unlocked -- either after
1578 	 * decompression (and verity if enabled), or after an error.
1579 	 *
1580 	 * In addition, each compressed page holds a reference while it is in a
1581 	 * bio.  These references are necessary prevent compressed pages from
1582 	 * being freed while they are still in a bio.
1583 	 */
1584 	refcount_t refcnt;
1585 
1586 	bool failed;			/* IO error occurred before decompression? */
1587 	bool need_verity;		/* need fs-verity verification after decompression? */
1588 	void *private;			/* payload buffer for specified decompression algorithm */
1589 	void *private2;			/* extra payload buffer */
1590 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1591 };
1592 
1593 #define NULL_CLUSTER			((unsigned int)(~0))
1594 #define MIN_COMPRESS_LOG_SIZE		2
1595 #define MAX_COMPRESS_LOG_SIZE		8
1596 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1597 
1598 struct f2fs_sb_info {
1599 	struct super_block *sb;			/* pointer to VFS super block */
1600 	struct proc_dir_entry *s_proc;		/* proc entry */
1601 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1602 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1603 	int valid_super_block;			/* valid super block no */
1604 	unsigned long s_flag;				/* flags for sbi */
1605 	struct mutex writepages;		/* mutex for writepages() */
1606 
1607 #ifdef CONFIG_BLK_DEV_ZONED
1608 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1609 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1610 #endif
1611 
1612 	/* for node-related operations */
1613 	struct f2fs_nm_info *nm_info;		/* node manager */
1614 	struct inode *node_inode;		/* cache node blocks */
1615 
1616 	/* for segment-related operations */
1617 	struct f2fs_sm_info *sm_info;		/* segment manager */
1618 
1619 	/* for bio operations */
1620 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1621 	/* keep migration IO order for LFS mode */
1622 	struct f2fs_rwsem io_order_lock;
1623 	mempool_t *write_io_dummy;		/* Dummy pages */
1624 	pgoff_t metapage_eio_ofs;		/* EIO page offset */
1625 	int metapage_eio_cnt;			/* EIO count */
1626 
1627 	/* for checkpoint */
1628 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1629 	int cur_cp_pack;			/* remain current cp pack */
1630 	spinlock_t cp_lock;			/* for flag in ckpt */
1631 	struct inode *meta_inode;		/* cache meta blocks */
1632 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1633 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1634 	struct f2fs_rwsem node_write;		/* locking node writes */
1635 	struct f2fs_rwsem node_change;	/* locking node change */
1636 	wait_queue_head_t cp_wait;
1637 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1638 	long interval_time[MAX_TIME];		/* to store thresholds */
1639 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1640 
1641 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1642 
1643 	spinlock_t fsync_node_lock;		/* for node entry lock */
1644 	struct list_head fsync_node_list;	/* node list head */
1645 	unsigned int fsync_seg_id;		/* sequence id */
1646 	unsigned int fsync_node_num;		/* number of node entries */
1647 
1648 	/* for orphan inode, use 0'th array */
1649 	unsigned int max_orphans;		/* max orphan inodes */
1650 
1651 	/* for inode management */
1652 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1653 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1654 	struct mutex flush_lock;		/* for flush exclusion */
1655 
1656 	/* for extent tree cache */
1657 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1658 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1659 	struct list_head extent_list;		/* lru list for shrinker */
1660 	spinlock_t extent_lock;			/* locking extent lru list */
1661 	atomic_t total_ext_tree;		/* extent tree count */
1662 	struct list_head zombie_list;		/* extent zombie tree list */
1663 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1664 	atomic_t total_ext_node;		/* extent info count */
1665 
1666 	/* basic filesystem units */
1667 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1668 	unsigned int log_blocksize;		/* log2 block size */
1669 	unsigned int blocksize;			/* block size */
1670 	unsigned int root_ino_num;		/* root inode number*/
1671 	unsigned int node_ino_num;		/* node inode number*/
1672 	unsigned int meta_ino_num;		/* meta inode number*/
1673 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1674 	unsigned int blocks_per_seg;		/* blocks per segment */
1675 	unsigned int segs_per_sec;		/* segments per section */
1676 	unsigned int secs_per_zone;		/* sections per zone */
1677 	unsigned int total_sections;		/* total section count */
1678 	unsigned int total_node_count;		/* total node block count */
1679 	unsigned int total_valid_node_count;	/* valid node block count */
1680 	int dir_level;				/* directory level */
1681 	int readdir_ra;				/* readahead inode in readdir */
1682 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1683 
1684 	block_t user_block_count;		/* # of user blocks */
1685 	block_t total_valid_block_count;	/* # of valid blocks */
1686 	block_t discard_blks;			/* discard command candidats */
1687 	block_t last_valid_block_count;		/* for recovery */
1688 	block_t reserved_blocks;		/* configurable reserved blocks */
1689 	block_t current_reserved_blocks;	/* current reserved blocks */
1690 
1691 	/* Additional tracking for no checkpoint mode */
1692 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1693 
1694 	unsigned int nquota_files;		/* # of quota sysfile */
1695 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1696 
1697 	/* # of pages, see count_type */
1698 	atomic_t nr_pages[NR_COUNT_TYPE];
1699 	/* # of allocated blocks */
1700 	struct percpu_counter alloc_valid_block_count;
1701 	/* # of node block writes as roll forward recovery */
1702 	struct percpu_counter rf_node_block_count;
1703 
1704 	/* writeback control */
1705 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1706 
1707 	/* valid inode count */
1708 	struct percpu_counter total_valid_inode_count;
1709 
1710 	struct f2fs_mount_info mount_opt;	/* mount options */
1711 
1712 	/* for cleaning operations */
1713 	struct f2fs_rwsem gc_lock;		/*
1714 						 * semaphore for GC, avoid
1715 						 * race between GC and GC or CP
1716 						 */
1717 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1718 	struct atgc_management am;		/* atgc management */
1719 	unsigned int cur_victim_sec;		/* current victim section num */
1720 	unsigned int gc_mode;			/* current GC state */
1721 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1722 	spinlock_t gc_urgent_high_lock;
1723 	bool gc_urgent_high_limited;		/* indicates having limited trial count */
1724 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1725 
1726 	/* for skip statistic */
1727 	unsigned int atomic_files;		/* # of opened atomic file */
1728 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1729 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1730 
1731 	/* threshold for gc trials on pinned files */
1732 	u64 gc_pin_file_threshold;
1733 	struct f2fs_rwsem pin_sem;
1734 
1735 	/* maximum # of trials to find a victim segment for SSR and GC */
1736 	unsigned int max_victim_search;
1737 	/* migration granularity of garbage collection, unit: segment */
1738 	unsigned int migration_granularity;
1739 
1740 	/*
1741 	 * for stat information.
1742 	 * one is for the LFS mode, and the other is for the SSR mode.
1743 	 */
1744 #ifdef CONFIG_F2FS_STAT_FS
1745 	struct f2fs_stat_info *stat_info;	/* FS status information */
1746 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1747 	unsigned int segment_count[2];		/* # of allocated segments */
1748 	unsigned int block_count[2];		/* # of allocated blocks */
1749 	atomic_t inplace_count;		/* # of inplace update */
1750 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1751 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1752 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1753 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1754 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1755 	atomic_t inline_inode;			/* # of inline_data inodes */
1756 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1757 	atomic_t compr_inode;			/* # of compressed inodes */
1758 	atomic64_t compr_blocks;		/* # of compressed blocks */
1759 	atomic_t vw_cnt;			/* # of volatile writes */
1760 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1761 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1762 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1763 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1764 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1765 #endif
1766 	spinlock_t stat_lock;			/* lock for stat operations */
1767 
1768 	/* to attach REQ_META|REQ_FUA flags */
1769 	unsigned int data_io_flag;
1770 	unsigned int node_io_flag;
1771 
1772 	/* For sysfs suppport */
1773 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1774 	struct completion s_kobj_unregister;
1775 
1776 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1777 	struct completion s_stat_kobj_unregister;
1778 
1779 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1780 	struct completion s_feature_list_kobj_unregister;
1781 
1782 	/* For shrinker support */
1783 	struct list_head s_list;
1784 	struct mutex umount_mutex;
1785 	unsigned int shrinker_run_no;
1786 
1787 	/* For multi devices */
1788 	int s_ndevs;				/* number of devices */
1789 	struct f2fs_dev_info *devs;		/* for device list */
1790 	unsigned int dirty_device;		/* for checkpoint data flush */
1791 	spinlock_t dev_lock;			/* protect dirty_device */
1792 	bool aligned_blksize;			/* all devices has the same logical blksize */
1793 
1794 	/* For write statistics */
1795 	u64 sectors_written_start;
1796 	u64 kbytes_written;
1797 
1798 	/* Reference to checksum algorithm driver via cryptoapi */
1799 	struct crypto_shash *s_chksum_driver;
1800 
1801 	/* Precomputed FS UUID checksum for seeding other checksums */
1802 	__u32 s_chksum_seed;
1803 
1804 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1805 
1806 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1807 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1808 
1809 	/* For reclaimed segs statistics per each GC mode */
1810 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1811 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1812 
1813 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1814 
1815 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1816 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1817 
1818 #ifdef CONFIG_F2FS_FS_COMPRESSION
1819 	struct kmem_cache *page_array_slab;	/* page array entry */
1820 	unsigned int page_array_slab_size;	/* default page array slab size */
1821 
1822 	/* For runtime compression statistics */
1823 	u64 compr_written_block;
1824 	u64 compr_saved_block;
1825 	u32 compr_new_inode;
1826 
1827 	/* For compressed block cache */
1828 	struct inode *compress_inode;		/* cache compressed blocks */
1829 	unsigned int compress_percent;		/* cache page percentage */
1830 	unsigned int compress_watermark;	/* cache page watermark */
1831 	atomic_t compress_page_hit;		/* cache hit count */
1832 #endif
1833 
1834 #ifdef CONFIG_F2FS_IOSTAT
1835 	/* For app/fs IO statistics */
1836 	spinlock_t iostat_lock;
1837 	unsigned long long rw_iostat[NR_IO_TYPE];
1838 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1839 	bool iostat_enable;
1840 	unsigned long iostat_next_period;
1841 	unsigned int iostat_period_ms;
1842 
1843 	/* For io latency related statistics info in one iostat period */
1844 	spinlock_t iostat_lat_lock;
1845 	struct iostat_lat_info *iostat_io_lat;
1846 #endif
1847 };
1848 
1849 #ifdef CONFIG_F2FS_FAULT_INJECTION
1850 #define f2fs_show_injection_info(sbi, type)					\
1851 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1852 		KERN_INFO, sbi->sb->s_id,				\
1853 		f2fs_fault_name[type],					\
1854 		__func__, __builtin_return_address(0))
1855 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1856 {
1857 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1858 
1859 	if (!ffi->inject_rate)
1860 		return false;
1861 
1862 	if (!IS_FAULT_SET(ffi, type))
1863 		return false;
1864 
1865 	atomic_inc(&ffi->inject_ops);
1866 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1867 		atomic_set(&ffi->inject_ops, 0);
1868 		return true;
1869 	}
1870 	return false;
1871 }
1872 #else
1873 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1874 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1875 {
1876 	return false;
1877 }
1878 #endif
1879 
1880 /*
1881  * Test if the mounted volume is a multi-device volume.
1882  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1883  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1884  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1885  */
1886 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1887 {
1888 	return sbi->s_ndevs > 1;
1889 }
1890 
1891 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1892 {
1893 	unsigned long now = jiffies;
1894 
1895 	sbi->last_time[type] = now;
1896 
1897 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1898 	if (type == REQ_TIME) {
1899 		sbi->last_time[DISCARD_TIME] = now;
1900 		sbi->last_time[GC_TIME] = now;
1901 	}
1902 }
1903 
1904 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1905 {
1906 	unsigned long interval = sbi->interval_time[type] * HZ;
1907 
1908 	return time_after(jiffies, sbi->last_time[type] + interval);
1909 }
1910 
1911 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1912 						int type)
1913 {
1914 	unsigned long interval = sbi->interval_time[type] * HZ;
1915 	unsigned int wait_ms = 0;
1916 	long delta;
1917 
1918 	delta = (sbi->last_time[type] + interval) - jiffies;
1919 	if (delta > 0)
1920 		wait_ms = jiffies_to_msecs(delta);
1921 
1922 	return wait_ms;
1923 }
1924 
1925 /*
1926  * Inline functions
1927  */
1928 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1929 			      const void *address, unsigned int length)
1930 {
1931 	struct {
1932 		struct shash_desc shash;
1933 		char ctx[4];
1934 	} desc;
1935 	int err;
1936 
1937 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1938 
1939 	desc.shash.tfm = sbi->s_chksum_driver;
1940 	*(u32 *)desc.ctx = crc;
1941 
1942 	err = crypto_shash_update(&desc.shash, address, length);
1943 	BUG_ON(err);
1944 
1945 	return *(u32 *)desc.ctx;
1946 }
1947 
1948 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1949 			   unsigned int length)
1950 {
1951 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1952 }
1953 
1954 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1955 				  void *buf, size_t buf_size)
1956 {
1957 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1958 }
1959 
1960 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1961 			      const void *address, unsigned int length)
1962 {
1963 	return __f2fs_crc32(sbi, crc, address, length);
1964 }
1965 
1966 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1967 {
1968 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1969 }
1970 
1971 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1972 {
1973 	return sb->s_fs_info;
1974 }
1975 
1976 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1977 {
1978 	return F2FS_SB(inode->i_sb);
1979 }
1980 
1981 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1982 {
1983 	return F2FS_I_SB(mapping->host);
1984 }
1985 
1986 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1987 {
1988 	return F2FS_M_SB(page_file_mapping(page));
1989 }
1990 
1991 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1992 {
1993 	return (struct f2fs_super_block *)(sbi->raw_super);
1994 }
1995 
1996 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1997 {
1998 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1999 }
2000 
2001 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2002 {
2003 	return (struct f2fs_node *)page_address(page);
2004 }
2005 
2006 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2007 {
2008 	return &((struct f2fs_node *)page_address(page))->i;
2009 }
2010 
2011 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2012 {
2013 	return (struct f2fs_nm_info *)(sbi->nm_info);
2014 }
2015 
2016 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2017 {
2018 	return (struct f2fs_sm_info *)(sbi->sm_info);
2019 }
2020 
2021 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2022 {
2023 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2024 }
2025 
2026 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2027 {
2028 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2029 }
2030 
2031 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2032 {
2033 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2034 }
2035 
2036 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2037 {
2038 	return sbi->meta_inode->i_mapping;
2039 }
2040 
2041 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2042 {
2043 	return sbi->node_inode->i_mapping;
2044 }
2045 
2046 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2047 {
2048 	return test_bit(type, &sbi->s_flag);
2049 }
2050 
2051 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2052 {
2053 	set_bit(type, &sbi->s_flag);
2054 }
2055 
2056 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2057 {
2058 	clear_bit(type, &sbi->s_flag);
2059 }
2060 
2061 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2062 {
2063 	return le64_to_cpu(cp->checkpoint_ver);
2064 }
2065 
2066 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2067 {
2068 	if (type < F2FS_MAX_QUOTAS)
2069 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2070 	return 0;
2071 }
2072 
2073 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2074 {
2075 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2076 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2077 }
2078 
2079 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2080 {
2081 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2082 
2083 	return ckpt_flags & f;
2084 }
2085 
2086 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2087 {
2088 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2089 }
2090 
2091 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2092 {
2093 	unsigned int ckpt_flags;
2094 
2095 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2096 	ckpt_flags |= f;
2097 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2098 }
2099 
2100 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2101 {
2102 	unsigned long flags;
2103 
2104 	spin_lock_irqsave(&sbi->cp_lock, flags);
2105 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2106 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2107 }
2108 
2109 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2110 {
2111 	unsigned int ckpt_flags;
2112 
2113 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2114 	ckpt_flags &= (~f);
2115 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2116 }
2117 
2118 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2119 {
2120 	unsigned long flags;
2121 
2122 	spin_lock_irqsave(&sbi->cp_lock, flags);
2123 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2124 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2125 }
2126 
2127 #define init_f2fs_rwsem(sem)					\
2128 do {								\
2129 	static struct lock_class_key __key;			\
2130 								\
2131 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2132 } while (0)
2133 
2134 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2135 		const char *sem_name, struct lock_class_key *key)
2136 {
2137 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2139 	init_waitqueue_head(&sem->read_waiters);
2140 #endif
2141 }
2142 
2143 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2144 {
2145 	return rwsem_is_locked(&sem->internal_rwsem);
2146 }
2147 
2148 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2149 {
2150 	return rwsem_is_contended(&sem->internal_rwsem);
2151 }
2152 
2153 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2154 {
2155 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2156 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2157 #else
2158 	down_read(&sem->internal_rwsem);
2159 #endif
2160 }
2161 
2162 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2163 {
2164 	return down_read_trylock(&sem->internal_rwsem);
2165 }
2166 
2167 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2168 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2169 {
2170 	down_read_nested(&sem->internal_rwsem, subclass);
2171 }
2172 #else
2173 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2174 #endif
2175 
2176 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2177 {
2178 	up_read(&sem->internal_rwsem);
2179 }
2180 
2181 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2182 {
2183 	down_write(&sem->internal_rwsem);
2184 }
2185 
2186 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2187 {
2188 	return down_write_trylock(&sem->internal_rwsem);
2189 }
2190 
2191 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2192 {
2193 	up_write(&sem->internal_rwsem);
2194 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2195 	wake_up_all(&sem->read_waiters);
2196 #endif
2197 }
2198 
2199 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2200 {
2201 	f2fs_down_read(&sbi->cp_rwsem);
2202 }
2203 
2204 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2205 {
2206 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2207 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2208 		return 0;
2209 	}
2210 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2211 }
2212 
2213 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2214 {
2215 	f2fs_up_read(&sbi->cp_rwsem);
2216 }
2217 
2218 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2219 {
2220 	f2fs_down_write(&sbi->cp_rwsem);
2221 }
2222 
2223 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2224 {
2225 	f2fs_up_write(&sbi->cp_rwsem);
2226 }
2227 
2228 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2229 {
2230 	int reason = CP_SYNC;
2231 
2232 	if (test_opt(sbi, FASTBOOT))
2233 		reason = CP_FASTBOOT;
2234 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2235 		reason = CP_UMOUNT;
2236 	return reason;
2237 }
2238 
2239 static inline bool __remain_node_summaries(int reason)
2240 {
2241 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2242 }
2243 
2244 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2245 {
2246 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2247 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2248 }
2249 
2250 /*
2251  * Check whether the inode has blocks or not
2252  */
2253 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2254 {
2255 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2256 
2257 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2258 }
2259 
2260 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2261 {
2262 	return ofs == XATTR_NODE_OFFSET;
2263 }
2264 
2265 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2266 					struct inode *inode, bool cap)
2267 {
2268 	if (!inode)
2269 		return true;
2270 	if (!test_opt(sbi, RESERVE_ROOT))
2271 		return false;
2272 	if (IS_NOQUOTA(inode))
2273 		return true;
2274 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2275 		return true;
2276 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2277 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2278 		return true;
2279 	if (cap && capable(CAP_SYS_RESOURCE))
2280 		return true;
2281 	return false;
2282 }
2283 
2284 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2285 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2286 				 struct inode *inode, blkcnt_t *count)
2287 {
2288 	blkcnt_t diff = 0, release = 0;
2289 	block_t avail_user_block_count;
2290 	int ret;
2291 
2292 	ret = dquot_reserve_block(inode, *count);
2293 	if (ret)
2294 		return ret;
2295 
2296 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2297 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2298 		release = *count;
2299 		goto release_quota;
2300 	}
2301 
2302 	/*
2303 	 * let's increase this in prior to actual block count change in order
2304 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2305 	 */
2306 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2307 
2308 	spin_lock(&sbi->stat_lock);
2309 	sbi->total_valid_block_count += (block_t)(*count);
2310 	avail_user_block_count = sbi->user_block_count -
2311 					sbi->current_reserved_blocks;
2312 
2313 	if (!__allow_reserved_blocks(sbi, inode, true))
2314 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2315 
2316 	if (F2FS_IO_ALIGNED(sbi))
2317 		avail_user_block_count -= sbi->blocks_per_seg *
2318 				SM_I(sbi)->additional_reserved_segments;
2319 
2320 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2321 		if (avail_user_block_count > sbi->unusable_block_count)
2322 			avail_user_block_count -= sbi->unusable_block_count;
2323 		else
2324 			avail_user_block_count = 0;
2325 	}
2326 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2327 		diff = sbi->total_valid_block_count - avail_user_block_count;
2328 		if (diff > *count)
2329 			diff = *count;
2330 		*count -= diff;
2331 		release = diff;
2332 		sbi->total_valid_block_count -= diff;
2333 		if (!*count) {
2334 			spin_unlock(&sbi->stat_lock);
2335 			goto enospc;
2336 		}
2337 	}
2338 	spin_unlock(&sbi->stat_lock);
2339 
2340 	if (unlikely(release)) {
2341 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2342 		dquot_release_reservation_block(inode, release);
2343 	}
2344 	f2fs_i_blocks_write(inode, *count, true, true);
2345 	return 0;
2346 
2347 enospc:
2348 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2349 release_quota:
2350 	dquot_release_reservation_block(inode, release);
2351 	return -ENOSPC;
2352 }
2353 
2354 __printf(2, 3)
2355 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2356 
2357 #define f2fs_err(sbi, fmt, ...)						\
2358 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2359 #define f2fs_warn(sbi, fmt, ...)					\
2360 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2361 #define f2fs_notice(sbi, fmt, ...)					\
2362 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2363 #define f2fs_info(sbi, fmt, ...)					\
2364 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2365 #define f2fs_debug(sbi, fmt, ...)					\
2366 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2367 
2368 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2369 						struct inode *inode,
2370 						block_t count)
2371 {
2372 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2373 
2374 	spin_lock(&sbi->stat_lock);
2375 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2376 	sbi->total_valid_block_count -= (block_t)count;
2377 	if (sbi->reserved_blocks &&
2378 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2379 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2380 					sbi->current_reserved_blocks + count);
2381 	spin_unlock(&sbi->stat_lock);
2382 	if (unlikely(inode->i_blocks < sectors)) {
2383 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2384 			  inode->i_ino,
2385 			  (unsigned long long)inode->i_blocks,
2386 			  (unsigned long long)sectors);
2387 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2388 		return;
2389 	}
2390 	f2fs_i_blocks_write(inode, count, false, true);
2391 }
2392 
2393 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2394 {
2395 	atomic_inc(&sbi->nr_pages[count_type]);
2396 
2397 	if (count_type == F2FS_DIRTY_DENTS ||
2398 			count_type == F2FS_DIRTY_NODES ||
2399 			count_type == F2FS_DIRTY_META ||
2400 			count_type == F2FS_DIRTY_QDATA ||
2401 			count_type == F2FS_DIRTY_IMETA)
2402 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2403 }
2404 
2405 static inline void inode_inc_dirty_pages(struct inode *inode)
2406 {
2407 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2408 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2409 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2410 	if (IS_NOQUOTA(inode))
2411 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2412 }
2413 
2414 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2415 {
2416 	atomic_dec(&sbi->nr_pages[count_type]);
2417 }
2418 
2419 static inline void inode_dec_dirty_pages(struct inode *inode)
2420 {
2421 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2422 			!S_ISLNK(inode->i_mode))
2423 		return;
2424 
2425 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2426 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2427 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2428 	if (IS_NOQUOTA(inode))
2429 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2430 }
2431 
2432 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2433 {
2434 	return atomic_read(&sbi->nr_pages[count_type]);
2435 }
2436 
2437 static inline int get_dirty_pages(struct inode *inode)
2438 {
2439 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2440 }
2441 
2442 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2443 {
2444 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2445 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2446 						sbi->log_blocks_per_seg;
2447 
2448 	return segs / sbi->segs_per_sec;
2449 }
2450 
2451 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2452 {
2453 	return sbi->total_valid_block_count;
2454 }
2455 
2456 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2457 {
2458 	return sbi->discard_blks;
2459 }
2460 
2461 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2462 {
2463 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2464 
2465 	/* return NAT or SIT bitmap */
2466 	if (flag == NAT_BITMAP)
2467 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2468 	else if (flag == SIT_BITMAP)
2469 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2470 
2471 	return 0;
2472 }
2473 
2474 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2475 {
2476 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2477 }
2478 
2479 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2480 {
2481 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2482 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2483 	int offset;
2484 
2485 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2486 		offset = (flag == SIT_BITMAP) ?
2487 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2488 		/*
2489 		 * if large_nat_bitmap feature is enabled, leave checksum
2490 		 * protection for all nat/sit bitmaps.
2491 		 */
2492 		return tmp_ptr + offset + sizeof(__le32);
2493 	}
2494 
2495 	if (__cp_payload(sbi) > 0) {
2496 		if (flag == NAT_BITMAP)
2497 			return &ckpt->sit_nat_version_bitmap;
2498 		else
2499 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2500 	} else {
2501 		offset = (flag == NAT_BITMAP) ?
2502 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2503 		return tmp_ptr + offset;
2504 	}
2505 }
2506 
2507 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2508 {
2509 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2510 
2511 	if (sbi->cur_cp_pack == 2)
2512 		start_addr += sbi->blocks_per_seg;
2513 	return start_addr;
2514 }
2515 
2516 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2517 {
2518 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2519 
2520 	if (sbi->cur_cp_pack == 1)
2521 		start_addr += sbi->blocks_per_seg;
2522 	return start_addr;
2523 }
2524 
2525 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2526 {
2527 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2528 }
2529 
2530 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2531 {
2532 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2533 }
2534 
2535 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2536 					struct inode *inode, bool is_inode)
2537 {
2538 	block_t	valid_block_count;
2539 	unsigned int valid_node_count, user_block_count;
2540 	int err;
2541 
2542 	if (is_inode) {
2543 		if (inode) {
2544 			err = dquot_alloc_inode(inode);
2545 			if (err)
2546 				return err;
2547 		}
2548 	} else {
2549 		err = dquot_reserve_block(inode, 1);
2550 		if (err)
2551 			return err;
2552 	}
2553 
2554 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2555 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2556 		goto enospc;
2557 	}
2558 
2559 	spin_lock(&sbi->stat_lock);
2560 
2561 	valid_block_count = sbi->total_valid_block_count +
2562 					sbi->current_reserved_blocks + 1;
2563 
2564 	if (!__allow_reserved_blocks(sbi, inode, false))
2565 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2566 
2567 	if (F2FS_IO_ALIGNED(sbi))
2568 		valid_block_count += sbi->blocks_per_seg *
2569 				SM_I(sbi)->additional_reserved_segments;
2570 
2571 	user_block_count = sbi->user_block_count;
2572 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2573 		user_block_count -= sbi->unusable_block_count;
2574 
2575 	if (unlikely(valid_block_count > user_block_count)) {
2576 		spin_unlock(&sbi->stat_lock);
2577 		goto enospc;
2578 	}
2579 
2580 	valid_node_count = sbi->total_valid_node_count + 1;
2581 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2582 		spin_unlock(&sbi->stat_lock);
2583 		goto enospc;
2584 	}
2585 
2586 	sbi->total_valid_node_count++;
2587 	sbi->total_valid_block_count++;
2588 	spin_unlock(&sbi->stat_lock);
2589 
2590 	if (inode) {
2591 		if (is_inode)
2592 			f2fs_mark_inode_dirty_sync(inode, true);
2593 		else
2594 			f2fs_i_blocks_write(inode, 1, true, true);
2595 	}
2596 
2597 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2598 	return 0;
2599 
2600 enospc:
2601 	if (is_inode) {
2602 		if (inode)
2603 			dquot_free_inode(inode);
2604 	} else {
2605 		dquot_release_reservation_block(inode, 1);
2606 	}
2607 	return -ENOSPC;
2608 }
2609 
2610 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2611 					struct inode *inode, bool is_inode)
2612 {
2613 	spin_lock(&sbi->stat_lock);
2614 
2615 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2616 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2617 
2618 	sbi->total_valid_node_count--;
2619 	sbi->total_valid_block_count--;
2620 	if (sbi->reserved_blocks &&
2621 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2622 		sbi->current_reserved_blocks++;
2623 
2624 	spin_unlock(&sbi->stat_lock);
2625 
2626 	if (is_inode) {
2627 		dquot_free_inode(inode);
2628 	} else {
2629 		if (unlikely(inode->i_blocks == 0)) {
2630 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2631 				  inode->i_ino,
2632 				  (unsigned long long)inode->i_blocks);
2633 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2634 			return;
2635 		}
2636 		f2fs_i_blocks_write(inode, 1, false, true);
2637 	}
2638 }
2639 
2640 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2641 {
2642 	return sbi->total_valid_node_count;
2643 }
2644 
2645 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2646 {
2647 	percpu_counter_inc(&sbi->total_valid_inode_count);
2648 }
2649 
2650 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2651 {
2652 	percpu_counter_dec(&sbi->total_valid_inode_count);
2653 }
2654 
2655 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2656 {
2657 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2658 }
2659 
2660 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2661 						pgoff_t index, bool for_write)
2662 {
2663 	struct page *page;
2664 
2665 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2666 		if (!for_write)
2667 			page = find_get_page_flags(mapping, index,
2668 							FGP_LOCK | FGP_ACCESSED);
2669 		else
2670 			page = find_lock_page(mapping, index);
2671 		if (page)
2672 			return page;
2673 
2674 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2675 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2676 							FAULT_PAGE_ALLOC);
2677 			return NULL;
2678 		}
2679 	}
2680 
2681 	if (!for_write)
2682 		return grab_cache_page(mapping, index);
2683 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2684 }
2685 
2686 static inline struct page *f2fs_pagecache_get_page(
2687 				struct address_space *mapping, pgoff_t index,
2688 				int fgp_flags, gfp_t gfp_mask)
2689 {
2690 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2691 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2692 		return NULL;
2693 	}
2694 
2695 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2696 }
2697 
2698 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2699 {
2700 	char *src_kaddr = kmap(src);
2701 	char *dst_kaddr = kmap(dst);
2702 
2703 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2704 	kunmap(dst);
2705 	kunmap(src);
2706 }
2707 
2708 static inline void f2fs_put_page(struct page *page, int unlock)
2709 {
2710 	if (!page)
2711 		return;
2712 
2713 	if (unlock) {
2714 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2715 		unlock_page(page);
2716 	}
2717 	put_page(page);
2718 }
2719 
2720 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2721 {
2722 	if (dn->node_page)
2723 		f2fs_put_page(dn->node_page, 1);
2724 	if (dn->inode_page && dn->node_page != dn->inode_page)
2725 		f2fs_put_page(dn->inode_page, 0);
2726 	dn->node_page = NULL;
2727 	dn->inode_page = NULL;
2728 }
2729 
2730 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2731 					size_t size)
2732 {
2733 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2734 }
2735 
2736 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2737 						gfp_t flags)
2738 {
2739 	void *entry;
2740 
2741 	entry = kmem_cache_alloc(cachep, flags);
2742 	if (!entry)
2743 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2744 	return entry;
2745 }
2746 
2747 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2748 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2749 {
2750 	if (nofail)
2751 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2752 
2753 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2754 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2755 		return NULL;
2756 	}
2757 
2758 	return kmem_cache_alloc(cachep, flags);
2759 }
2760 
2761 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2762 {
2763 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2764 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2765 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2766 		get_pages(sbi, F2FS_DIO_READ) ||
2767 		get_pages(sbi, F2FS_DIO_WRITE))
2768 		return true;
2769 
2770 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2771 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2772 		return true;
2773 
2774 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2775 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2776 		return true;
2777 	return false;
2778 }
2779 
2780 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2781 {
2782 	if (sbi->gc_mode == GC_URGENT_HIGH)
2783 		return true;
2784 
2785 	if (is_inflight_io(sbi, type))
2786 		return false;
2787 
2788 	if (sbi->gc_mode == GC_URGENT_MID)
2789 		return true;
2790 
2791 	if (sbi->gc_mode == GC_URGENT_LOW &&
2792 			(type == DISCARD_TIME || type == GC_TIME))
2793 		return true;
2794 
2795 	return f2fs_time_over(sbi, type);
2796 }
2797 
2798 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2799 				unsigned long index, void *item)
2800 {
2801 	while (radix_tree_insert(root, index, item))
2802 		cond_resched();
2803 }
2804 
2805 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2806 
2807 static inline bool IS_INODE(struct page *page)
2808 {
2809 	struct f2fs_node *p = F2FS_NODE(page);
2810 
2811 	return RAW_IS_INODE(p);
2812 }
2813 
2814 static inline int offset_in_addr(struct f2fs_inode *i)
2815 {
2816 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2817 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2818 }
2819 
2820 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2821 {
2822 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2823 }
2824 
2825 static inline int f2fs_has_extra_attr(struct inode *inode);
2826 static inline block_t data_blkaddr(struct inode *inode,
2827 			struct page *node_page, unsigned int offset)
2828 {
2829 	struct f2fs_node *raw_node;
2830 	__le32 *addr_array;
2831 	int base = 0;
2832 	bool is_inode = IS_INODE(node_page);
2833 
2834 	raw_node = F2FS_NODE(node_page);
2835 
2836 	if (is_inode) {
2837 		if (!inode)
2838 			/* from GC path only */
2839 			base = offset_in_addr(&raw_node->i);
2840 		else if (f2fs_has_extra_attr(inode))
2841 			base = get_extra_isize(inode);
2842 	}
2843 
2844 	addr_array = blkaddr_in_node(raw_node);
2845 	return le32_to_cpu(addr_array[base + offset]);
2846 }
2847 
2848 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2849 {
2850 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2851 }
2852 
2853 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2854 {
2855 	int mask;
2856 
2857 	addr += (nr >> 3);
2858 	mask = 1 << (7 - (nr & 0x07));
2859 	return mask & *addr;
2860 }
2861 
2862 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2863 {
2864 	int mask;
2865 
2866 	addr += (nr >> 3);
2867 	mask = 1 << (7 - (nr & 0x07));
2868 	*addr |= mask;
2869 }
2870 
2871 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2872 {
2873 	int mask;
2874 
2875 	addr += (nr >> 3);
2876 	mask = 1 << (7 - (nr & 0x07));
2877 	*addr &= ~mask;
2878 }
2879 
2880 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2881 {
2882 	int mask;
2883 	int ret;
2884 
2885 	addr += (nr >> 3);
2886 	mask = 1 << (7 - (nr & 0x07));
2887 	ret = mask & *addr;
2888 	*addr |= mask;
2889 	return ret;
2890 }
2891 
2892 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2893 {
2894 	int mask;
2895 	int ret;
2896 
2897 	addr += (nr >> 3);
2898 	mask = 1 << (7 - (nr & 0x07));
2899 	ret = mask & *addr;
2900 	*addr &= ~mask;
2901 	return ret;
2902 }
2903 
2904 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2905 {
2906 	int mask;
2907 
2908 	addr += (nr >> 3);
2909 	mask = 1 << (7 - (nr & 0x07));
2910 	*addr ^= mask;
2911 }
2912 
2913 /*
2914  * On-disk inode flags (f2fs_inode::i_flags)
2915  */
2916 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2917 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2918 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2919 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2920 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2921 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2922 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2923 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2924 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2925 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2926 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2927 
2928 /* Flags that should be inherited by new inodes from their parent. */
2929 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2930 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2931 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2932 
2933 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2934 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2935 				F2FS_CASEFOLD_FL))
2936 
2937 /* Flags that are appropriate for non-directories/regular files. */
2938 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2939 
2940 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2941 {
2942 	if (S_ISDIR(mode))
2943 		return flags;
2944 	else if (S_ISREG(mode))
2945 		return flags & F2FS_REG_FLMASK;
2946 	else
2947 		return flags & F2FS_OTHER_FLMASK;
2948 }
2949 
2950 static inline void __mark_inode_dirty_flag(struct inode *inode,
2951 						int flag, bool set)
2952 {
2953 	switch (flag) {
2954 	case FI_INLINE_XATTR:
2955 	case FI_INLINE_DATA:
2956 	case FI_INLINE_DENTRY:
2957 	case FI_NEW_INODE:
2958 		if (set)
2959 			return;
2960 		fallthrough;
2961 	case FI_DATA_EXIST:
2962 	case FI_INLINE_DOTS:
2963 	case FI_PIN_FILE:
2964 	case FI_COMPRESS_RELEASED:
2965 		f2fs_mark_inode_dirty_sync(inode, true);
2966 	}
2967 }
2968 
2969 static inline void set_inode_flag(struct inode *inode, int flag)
2970 {
2971 	set_bit(flag, F2FS_I(inode)->flags);
2972 	__mark_inode_dirty_flag(inode, flag, true);
2973 }
2974 
2975 static inline int is_inode_flag_set(struct inode *inode, int flag)
2976 {
2977 	return test_bit(flag, F2FS_I(inode)->flags);
2978 }
2979 
2980 static inline void clear_inode_flag(struct inode *inode, int flag)
2981 {
2982 	clear_bit(flag, F2FS_I(inode)->flags);
2983 	__mark_inode_dirty_flag(inode, flag, false);
2984 }
2985 
2986 static inline bool f2fs_verity_in_progress(struct inode *inode)
2987 {
2988 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2989 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2990 }
2991 
2992 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2993 {
2994 	F2FS_I(inode)->i_acl_mode = mode;
2995 	set_inode_flag(inode, FI_ACL_MODE);
2996 	f2fs_mark_inode_dirty_sync(inode, false);
2997 }
2998 
2999 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3000 {
3001 	if (inc)
3002 		inc_nlink(inode);
3003 	else
3004 		drop_nlink(inode);
3005 	f2fs_mark_inode_dirty_sync(inode, true);
3006 }
3007 
3008 static inline void f2fs_i_blocks_write(struct inode *inode,
3009 					block_t diff, bool add, bool claim)
3010 {
3011 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3012 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3013 
3014 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3015 	if (add) {
3016 		if (claim)
3017 			dquot_claim_block(inode, diff);
3018 		else
3019 			dquot_alloc_block_nofail(inode, diff);
3020 	} else {
3021 		dquot_free_block(inode, diff);
3022 	}
3023 
3024 	f2fs_mark_inode_dirty_sync(inode, true);
3025 	if (clean || recover)
3026 		set_inode_flag(inode, FI_AUTO_RECOVER);
3027 }
3028 
3029 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3030 {
3031 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3032 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3033 
3034 	if (i_size_read(inode) == i_size)
3035 		return;
3036 
3037 	i_size_write(inode, i_size);
3038 	f2fs_mark_inode_dirty_sync(inode, true);
3039 	if (clean || recover)
3040 		set_inode_flag(inode, FI_AUTO_RECOVER);
3041 }
3042 
3043 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3044 {
3045 	F2FS_I(inode)->i_current_depth = depth;
3046 	f2fs_mark_inode_dirty_sync(inode, true);
3047 }
3048 
3049 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3050 					unsigned int count)
3051 {
3052 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3053 	f2fs_mark_inode_dirty_sync(inode, true);
3054 }
3055 
3056 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3057 {
3058 	F2FS_I(inode)->i_xattr_nid = xnid;
3059 	f2fs_mark_inode_dirty_sync(inode, true);
3060 }
3061 
3062 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3063 {
3064 	F2FS_I(inode)->i_pino = pino;
3065 	f2fs_mark_inode_dirty_sync(inode, true);
3066 }
3067 
3068 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3069 {
3070 	struct f2fs_inode_info *fi = F2FS_I(inode);
3071 
3072 	if (ri->i_inline & F2FS_INLINE_XATTR)
3073 		set_bit(FI_INLINE_XATTR, fi->flags);
3074 	if (ri->i_inline & F2FS_INLINE_DATA)
3075 		set_bit(FI_INLINE_DATA, fi->flags);
3076 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3077 		set_bit(FI_INLINE_DENTRY, fi->flags);
3078 	if (ri->i_inline & F2FS_DATA_EXIST)
3079 		set_bit(FI_DATA_EXIST, fi->flags);
3080 	if (ri->i_inline & F2FS_INLINE_DOTS)
3081 		set_bit(FI_INLINE_DOTS, fi->flags);
3082 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3083 		set_bit(FI_EXTRA_ATTR, fi->flags);
3084 	if (ri->i_inline & F2FS_PIN_FILE)
3085 		set_bit(FI_PIN_FILE, fi->flags);
3086 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3087 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3088 }
3089 
3090 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3091 {
3092 	ri->i_inline = 0;
3093 
3094 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3095 		ri->i_inline |= F2FS_INLINE_XATTR;
3096 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3097 		ri->i_inline |= F2FS_INLINE_DATA;
3098 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3099 		ri->i_inline |= F2FS_INLINE_DENTRY;
3100 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3101 		ri->i_inline |= F2FS_DATA_EXIST;
3102 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3103 		ri->i_inline |= F2FS_INLINE_DOTS;
3104 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3105 		ri->i_inline |= F2FS_EXTRA_ATTR;
3106 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3107 		ri->i_inline |= F2FS_PIN_FILE;
3108 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3109 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3110 }
3111 
3112 static inline int f2fs_has_extra_attr(struct inode *inode)
3113 {
3114 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3115 }
3116 
3117 static inline int f2fs_has_inline_xattr(struct inode *inode)
3118 {
3119 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3120 }
3121 
3122 static inline int f2fs_compressed_file(struct inode *inode)
3123 {
3124 	return S_ISREG(inode->i_mode) &&
3125 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3126 }
3127 
3128 static inline bool f2fs_need_compress_data(struct inode *inode)
3129 {
3130 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3131 
3132 	if (!f2fs_compressed_file(inode))
3133 		return false;
3134 
3135 	if (compress_mode == COMPR_MODE_FS)
3136 		return true;
3137 	else if (compress_mode == COMPR_MODE_USER &&
3138 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3139 		return true;
3140 
3141 	return false;
3142 }
3143 
3144 static inline unsigned int addrs_per_inode(struct inode *inode)
3145 {
3146 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3147 				get_inline_xattr_addrs(inode);
3148 
3149 	if (!f2fs_compressed_file(inode))
3150 		return addrs;
3151 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3152 }
3153 
3154 static inline unsigned int addrs_per_block(struct inode *inode)
3155 {
3156 	if (!f2fs_compressed_file(inode))
3157 		return DEF_ADDRS_PER_BLOCK;
3158 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3159 }
3160 
3161 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3162 {
3163 	struct f2fs_inode *ri = F2FS_INODE(page);
3164 
3165 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3166 					get_inline_xattr_addrs(inode)]);
3167 }
3168 
3169 static inline int inline_xattr_size(struct inode *inode)
3170 {
3171 	if (f2fs_has_inline_xattr(inode))
3172 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3173 	return 0;
3174 }
3175 
3176 static inline int f2fs_has_inline_data(struct inode *inode)
3177 {
3178 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3179 }
3180 
3181 static inline int f2fs_exist_data(struct inode *inode)
3182 {
3183 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3184 }
3185 
3186 static inline int f2fs_has_inline_dots(struct inode *inode)
3187 {
3188 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3189 }
3190 
3191 static inline int f2fs_is_mmap_file(struct inode *inode)
3192 {
3193 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3194 }
3195 
3196 static inline bool f2fs_is_pinned_file(struct inode *inode)
3197 {
3198 	return is_inode_flag_set(inode, FI_PIN_FILE);
3199 }
3200 
3201 static inline bool f2fs_is_atomic_file(struct inode *inode)
3202 {
3203 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3204 }
3205 
3206 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3207 {
3208 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3209 }
3210 
3211 static inline bool f2fs_is_volatile_file(struct inode *inode)
3212 {
3213 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3214 }
3215 
3216 static inline bool f2fs_is_first_block_written(struct inode *inode)
3217 {
3218 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3219 }
3220 
3221 static inline bool f2fs_is_drop_cache(struct inode *inode)
3222 {
3223 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3224 }
3225 
3226 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3227 {
3228 	struct f2fs_inode *ri = F2FS_INODE(page);
3229 	int extra_size = get_extra_isize(inode);
3230 
3231 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3232 }
3233 
3234 static inline int f2fs_has_inline_dentry(struct inode *inode)
3235 {
3236 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3237 }
3238 
3239 static inline int is_file(struct inode *inode, int type)
3240 {
3241 	return F2FS_I(inode)->i_advise & type;
3242 }
3243 
3244 static inline void set_file(struct inode *inode, int type)
3245 {
3246 	if (is_file(inode, type))
3247 		return;
3248 	F2FS_I(inode)->i_advise |= type;
3249 	f2fs_mark_inode_dirty_sync(inode, true);
3250 }
3251 
3252 static inline void clear_file(struct inode *inode, int type)
3253 {
3254 	if (!is_file(inode, type))
3255 		return;
3256 	F2FS_I(inode)->i_advise &= ~type;
3257 	f2fs_mark_inode_dirty_sync(inode, true);
3258 }
3259 
3260 static inline bool f2fs_is_time_consistent(struct inode *inode)
3261 {
3262 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3263 		return false;
3264 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3265 		return false;
3266 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3267 		return false;
3268 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3269 						&F2FS_I(inode)->i_crtime))
3270 		return false;
3271 	return true;
3272 }
3273 
3274 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3275 {
3276 	bool ret;
3277 
3278 	if (dsync) {
3279 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3280 
3281 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3282 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3283 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3284 		return ret;
3285 	}
3286 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3287 			file_keep_isize(inode) ||
3288 			i_size_read(inode) & ~PAGE_MASK)
3289 		return false;
3290 
3291 	if (!f2fs_is_time_consistent(inode))
3292 		return false;
3293 
3294 	spin_lock(&F2FS_I(inode)->i_size_lock);
3295 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3296 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3297 
3298 	return ret;
3299 }
3300 
3301 static inline bool f2fs_readonly(struct super_block *sb)
3302 {
3303 	return sb_rdonly(sb);
3304 }
3305 
3306 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3307 {
3308 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3309 }
3310 
3311 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3312 {
3313 	if (len == 1 && name[0] == '.')
3314 		return true;
3315 
3316 	if (len == 2 && name[0] == '.' && name[1] == '.')
3317 		return true;
3318 
3319 	return false;
3320 }
3321 
3322 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3323 					size_t size, gfp_t flags)
3324 {
3325 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3326 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3327 		return NULL;
3328 	}
3329 
3330 	return kmalloc(size, flags);
3331 }
3332 
3333 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3334 					size_t size, gfp_t flags)
3335 {
3336 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3337 }
3338 
3339 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3340 					size_t size, gfp_t flags)
3341 {
3342 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3343 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3344 		return NULL;
3345 	}
3346 
3347 	return kvmalloc(size, flags);
3348 }
3349 
3350 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3351 					size_t size, gfp_t flags)
3352 {
3353 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3354 }
3355 
3356 static inline int get_extra_isize(struct inode *inode)
3357 {
3358 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3359 }
3360 
3361 static inline int get_inline_xattr_addrs(struct inode *inode)
3362 {
3363 	return F2FS_I(inode)->i_inline_xattr_size;
3364 }
3365 
3366 #define f2fs_get_inode_mode(i) \
3367 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3368 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3369 
3370 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3371 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3372 	offsetof(struct f2fs_inode, i_extra_isize))	\
3373 
3374 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3375 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3376 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3377 		sizeof((f2fs_inode)->field))			\
3378 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3379 
3380 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3381 
3382 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3383 
3384 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3385 					block_t blkaddr, int type);
3386 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3387 					block_t blkaddr, int type)
3388 {
3389 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3390 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3391 			 blkaddr, type);
3392 		f2fs_bug_on(sbi, 1);
3393 	}
3394 }
3395 
3396 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3397 {
3398 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3399 			blkaddr == COMPRESS_ADDR)
3400 		return false;
3401 	return true;
3402 }
3403 
3404 /*
3405  * file.c
3406  */
3407 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3408 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3409 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3410 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3411 int f2fs_truncate(struct inode *inode);
3412 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3413 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3414 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3415 		 struct iattr *attr);
3416 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3417 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3418 int f2fs_precache_extents(struct inode *inode);
3419 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3420 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3421 		      struct dentry *dentry, struct fileattr *fa);
3422 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3423 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3424 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3425 int f2fs_pin_file_control(struct inode *inode, bool inc);
3426 
3427 /*
3428  * inode.c
3429  */
3430 void f2fs_set_inode_flags(struct inode *inode);
3431 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3432 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3433 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3434 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3435 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3436 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3437 void f2fs_update_inode_page(struct inode *inode);
3438 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3439 void f2fs_evict_inode(struct inode *inode);
3440 void f2fs_handle_failed_inode(struct inode *inode);
3441 
3442 /*
3443  * namei.c
3444  */
3445 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3446 							bool hot, bool set);
3447 struct dentry *f2fs_get_parent(struct dentry *child);
3448 
3449 /*
3450  * dir.c
3451  */
3452 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3453 int f2fs_init_casefolded_name(const struct inode *dir,
3454 			      struct f2fs_filename *fname);
3455 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3456 			int lookup, struct f2fs_filename *fname);
3457 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3458 			struct f2fs_filename *fname);
3459 void f2fs_free_filename(struct f2fs_filename *fname);
3460 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3461 			const struct f2fs_filename *fname, int *max_slots);
3462 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3463 			unsigned int start_pos, struct fscrypt_str *fstr);
3464 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3465 			struct f2fs_dentry_ptr *d);
3466 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3467 			const struct f2fs_filename *fname, struct page *dpage);
3468 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3469 			unsigned int current_depth);
3470 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3471 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3472 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3473 					 const struct f2fs_filename *fname,
3474 					 struct page **res_page);
3475 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3476 			const struct qstr *child, struct page **res_page);
3477 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3478 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3479 			struct page **page);
3480 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3481 			struct page *page, struct inode *inode);
3482 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3483 			  const struct f2fs_filename *fname);
3484 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3485 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3486 			unsigned int bit_pos);
3487 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3488 			struct inode *inode, nid_t ino, umode_t mode);
3489 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3490 			struct inode *inode, nid_t ino, umode_t mode);
3491 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3492 			struct inode *inode, nid_t ino, umode_t mode);
3493 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3494 			struct inode *dir, struct inode *inode);
3495 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3496 bool f2fs_empty_dir(struct inode *dir);
3497 
3498 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3499 {
3500 	if (fscrypt_is_nokey_name(dentry))
3501 		return -ENOKEY;
3502 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3503 				inode, inode->i_ino, inode->i_mode);
3504 }
3505 
3506 /*
3507  * super.c
3508  */
3509 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3510 void f2fs_inode_synced(struct inode *inode);
3511 int f2fs_dquot_initialize(struct inode *inode);
3512 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3513 int f2fs_quota_sync(struct super_block *sb, int type);
3514 loff_t max_file_blocks(struct inode *inode);
3515 void f2fs_quota_off_umount(struct super_block *sb);
3516 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3517 int f2fs_sync_fs(struct super_block *sb, int sync);
3518 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3519 
3520 /*
3521  * hash.c
3522  */
3523 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3524 
3525 /*
3526  * node.c
3527  */
3528 struct node_info;
3529 
3530 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3531 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3532 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3533 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3534 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3535 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3536 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3537 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3538 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3539 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3540 				struct node_info *ni, bool checkpoint_context);
3541 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3542 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3543 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3544 int f2fs_truncate_xattr_node(struct inode *inode);
3545 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3546 					unsigned int seq_id);
3547 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3548 int f2fs_remove_inode_page(struct inode *inode);
3549 struct page *f2fs_new_inode_page(struct inode *inode);
3550 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3551 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3552 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3553 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3554 int f2fs_move_node_page(struct page *node_page, int gc_type);
3555 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3556 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3557 			struct writeback_control *wbc, bool atomic,
3558 			unsigned int *seq_id);
3559 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3560 			struct writeback_control *wbc,
3561 			bool do_balance, enum iostat_type io_type);
3562 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3563 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3564 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3565 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3566 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3567 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3568 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3569 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3570 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3571 			unsigned int segno, struct f2fs_summary_block *sum);
3572 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3573 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3574 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3575 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3576 int __init f2fs_create_node_manager_caches(void);
3577 void f2fs_destroy_node_manager_caches(void);
3578 
3579 /*
3580  * segment.c
3581  */
3582 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3583 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3584 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3585 void f2fs_drop_inmem_pages(struct inode *inode);
3586 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3587 int f2fs_commit_inmem_pages(struct inode *inode);
3588 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3589 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3590 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3591 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3592 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3593 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3594 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3595 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3596 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3597 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3598 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3599 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3600 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3601 					struct cp_control *cpc);
3602 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3603 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3604 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3605 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3606 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3607 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3608 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3609 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3610 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3611 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3612 			unsigned int *newseg, bool new_sec, int dir);
3613 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3614 					unsigned int start, unsigned int end);
3615 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3616 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3617 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3618 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3619 					struct cp_control *cpc);
3620 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3621 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3622 					block_t blk_addr);
3623 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3624 						enum iostat_type io_type);
3625 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3626 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3627 			struct f2fs_io_info *fio);
3628 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3629 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3630 			block_t old_blkaddr, block_t new_blkaddr,
3631 			bool recover_curseg, bool recover_newaddr,
3632 			bool from_gc);
3633 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3634 			block_t old_addr, block_t new_addr,
3635 			unsigned char version, bool recover_curseg,
3636 			bool recover_newaddr);
3637 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3638 			block_t old_blkaddr, block_t *new_blkaddr,
3639 			struct f2fs_summary *sum, int type,
3640 			struct f2fs_io_info *fio);
3641 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3642 					block_t blkaddr, unsigned int blkcnt);
3643 void f2fs_wait_on_page_writeback(struct page *page,
3644 			enum page_type type, bool ordered, bool locked);
3645 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3646 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3647 								block_t len);
3648 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3649 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3650 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3651 			unsigned int val, int alloc);
3652 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3653 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3654 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3655 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3656 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3657 int __init f2fs_create_segment_manager_caches(void);
3658 void f2fs_destroy_segment_manager_caches(void);
3659 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3660 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3661 			enum page_type type, enum temp_type temp);
3662 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3663 			unsigned int segno);
3664 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3665 			unsigned int segno);
3666 
3667 #define DEF_FRAGMENT_SIZE	4
3668 #define MIN_FRAGMENT_SIZE	1
3669 #define MAX_FRAGMENT_SIZE	512
3670 
3671 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3672 {
3673 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3674 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3675 }
3676 
3677 /*
3678  * checkpoint.c
3679  */
3680 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3681 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3682 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3683 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3684 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3685 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3686 					block_t blkaddr, int type);
3687 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3688 			int type, bool sync);
3689 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3690 							unsigned int ra_blocks);
3691 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3692 			long nr_to_write, enum iostat_type io_type);
3693 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3694 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3695 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3696 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3697 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3698 					unsigned int devidx, int type);
3699 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3700 					unsigned int devidx, int type);
3701 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3702 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3703 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3704 void f2fs_add_orphan_inode(struct inode *inode);
3705 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3706 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3707 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3708 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3709 void f2fs_remove_dirty_inode(struct inode *inode);
3710 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3711 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3712 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3713 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3714 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3715 int __init f2fs_create_checkpoint_caches(void);
3716 void f2fs_destroy_checkpoint_caches(void);
3717 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3718 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3719 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3720 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3721 
3722 /*
3723  * data.c
3724  */
3725 int __init f2fs_init_bioset(void);
3726 void f2fs_destroy_bioset(void);
3727 int f2fs_init_bio_entry_cache(void);
3728 void f2fs_destroy_bio_entry_cache(void);
3729 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3730 				struct bio *bio, enum page_type type);
3731 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3732 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3733 				struct inode *inode, struct page *page,
3734 				nid_t ino, enum page_type type);
3735 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3736 					struct bio **bio, struct page *page);
3737 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3738 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3739 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3740 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3741 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3742 		block_t blk_addr, sector_t *sector);
3743 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3744 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3745 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3746 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3747 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3748 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3749 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3750 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3751 			int op_flags, bool for_write);
3752 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3753 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3754 			bool for_write);
3755 struct page *f2fs_get_new_data_page(struct inode *inode,
3756 			struct page *ipage, pgoff_t index, bool new_i_size);
3757 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3758 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3759 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3760 			int create, int flag);
3761 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3762 			u64 start, u64 len);
3763 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3764 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3765 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3766 int f2fs_write_single_data_page(struct page *page, int *submitted,
3767 				struct bio **bio, sector_t *last_block,
3768 				struct writeback_control *wbc,
3769 				enum iostat_type io_type,
3770 				int compr_blocks, bool allow_balance);
3771 void f2fs_write_failed(struct inode *inode, loff_t to);
3772 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3773 int f2fs_release_page(struct page *page, gfp_t wait);
3774 #ifdef CONFIG_MIGRATION
3775 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3776 			struct page *page, enum migrate_mode mode);
3777 #endif
3778 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3779 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3780 int f2fs_init_post_read_processing(void);
3781 void f2fs_destroy_post_read_processing(void);
3782 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3783 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3784 extern const struct iomap_ops f2fs_iomap_ops;
3785 
3786 /*
3787  * gc.c
3788  */
3789 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3790 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3791 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3792 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3793 			unsigned int segno);
3794 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3795 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3796 int __init f2fs_create_garbage_collection_cache(void);
3797 void f2fs_destroy_garbage_collection_cache(void);
3798 
3799 /*
3800  * recovery.c
3801  */
3802 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3803 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3804 int __init f2fs_create_recovery_cache(void);
3805 void f2fs_destroy_recovery_cache(void);
3806 
3807 /*
3808  * debug.c
3809  */
3810 #ifdef CONFIG_F2FS_STAT_FS
3811 struct f2fs_stat_info {
3812 	struct list_head stat_list;
3813 	struct f2fs_sb_info *sbi;
3814 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3815 	int main_area_segs, main_area_sections, main_area_zones;
3816 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3817 	unsigned long long hit_total, total_ext;
3818 	int ext_tree, zombie_tree, ext_node;
3819 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3820 	int ndirty_data, ndirty_qdata;
3821 	int inmem_pages;
3822 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3823 	int nats, dirty_nats, sits, dirty_sits;
3824 	int free_nids, avail_nids, alloc_nids;
3825 	int total_count, utilization;
3826 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3827 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3828 	int nr_dio_read, nr_dio_write;
3829 	unsigned int io_skip_bggc, other_skip_bggc;
3830 	int nr_flushing, nr_flushed, flush_list_empty;
3831 	int nr_discarding, nr_discarded;
3832 	int nr_discard_cmd;
3833 	unsigned int undiscard_blks;
3834 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3835 	unsigned int cur_ckpt_time, peak_ckpt_time;
3836 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3837 	int compr_inode;
3838 	unsigned long long compr_blocks;
3839 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3840 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3841 	unsigned int bimodal, avg_vblocks;
3842 	int util_free, util_valid, util_invalid;
3843 	int rsvd_segs, overp_segs;
3844 	int dirty_count, node_pages, meta_pages, compress_pages;
3845 	int compress_page_hit;
3846 	int prefree_count, call_count, cp_count, bg_cp_count;
3847 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3848 	int bg_node_segs, bg_data_segs;
3849 	int tot_blks, data_blks, node_blks;
3850 	int bg_data_blks, bg_node_blks;
3851 	unsigned long long skipped_atomic_files[2];
3852 	int curseg[NR_CURSEG_TYPE];
3853 	int cursec[NR_CURSEG_TYPE];
3854 	int curzone[NR_CURSEG_TYPE];
3855 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3856 	unsigned int full_seg[NR_CURSEG_TYPE];
3857 	unsigned int valid_blks[NR_CURSEG_TYPE];
3858 
3859 	unsigned int meta_count[META_MAX];
3860 	unsigned int segment_count[2];
3861 	unsigned int block_count[2];
3862 	unsigned int inplace_count;
3863 	unsigned long long base_mem, cache_mem, page_mem;
3864 };
3865 
3866 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3867 {
3868 	return (struct f2fs_stat_info *)sbi->stat_info;
3869 }
3870 
3871 #define stat_inc_cp_count(si)		((si)->cp_count++)
3872 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3873 #define stat_inc_call_count(si)		((si)->call_count++)
3874 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3875 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3876 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3877 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3878 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3879 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3880 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3881 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3882 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3883 #define stat_inc_inline_xattr(inode)					\
3884 	do {								\
3885 		if (f2fs_has_inline_xattr(inode))			\
3886 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3887 	} while (0)
3888 #define stat_dec_inline_xattr(inode)					\
3889 	do {								\
3890 		if (f2fs_has_inline_xattr(inode))			\
3891 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3892 	} while (0)
3893 #define stat_inc_inline_inode(inode)					\
3894 	do {								\
3895 		if (f2fs_has_inline_data(inode))			\
3896 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3897 	} while (0)
3898 #define stat_dec_inline_inode(inode)					\
3899 	do {								\
3900 		if (f2fs_has_inline_data(inode))			\
3901 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3902 	} while (0)
3903 #define stat_inc_inline_dir(inode)					\
3904 	do {								\
3905 		if (f2fs_has_inline_dentry(inode))			\
3906 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3907 	} while (0)
3908 #define stat_dec_inline_dir(inode)					\
3909 	do {								\
3910 		if (f2fs_has_inline_dentry(inode))			\
3911 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3912 	} while (0)
3913 #define stat_inc_compr_inode(inode)					\
3914 	do {								\
3915 		if (f2fs_compressed_file(inode))			\
3916 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3917 	} while (0)
3918 #define stat_dec_compr_inode(inode)					\
3919 	do {								\
3920 		if (f2fs_compressed_file(inode))			\
3921 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3922 	} while (0)
3923 #define stat_add_compr_blocks(inode, blocks)				\
3924 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3925 #define stat_sub_compr_blocks(inode, blocks)				\
3926 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3927 #define stat_inc_meta_count(sbi, blkaddr)				\
3928 	do {								\
3929 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3930 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3931 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3932 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3933 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3934 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3935 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3936 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3937 	} while (0)
3938 #define stat_inc_seg_type(sbi, curseg)					\
3939 		((sbi)->segment_count[(curseg)->alloc_type]++)
3940 #define stat_inc_block_count(sbi, curseg)				\
3941 		((sbi)->block_count[(curseg)->alloc_type]++)
3942 #define stat_inc_inplace_blocks(sbi)					\
3943 		(atomic_inc(&(sbi)->inplace_count))
3944 #define stat_update_max_atomic_write(inode)				\
3945 	do {								\
3946 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3947 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3948 		if (cur > max)						\
3949 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3950 	} while (0)
3951 #define stat_inc_volatile_write(inode)					\
3952 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3953 #define stat_dec_volatile_write(inode)					\
3954 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3955 #define stat_update_max_volatile_write(inode)				\
3956 	do {								\
3957 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3958 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3959 		if (cur > max)						\
3960 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3961 	} while (0)
3962 #define stat_inc_seg_count(sbi, type, gc_type)				\
3963 	do {								\
3964 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3965 		si->tot_segs++;						\
3966 		if ((type) == SUM_TYPE_DATA) {				\
3967 			si->data_segs++;				\
3968 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3969 		} else {						\
3970 			si->node_segs++;				\
3971 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3972 		}							\
3973 	} while (0)
3974 
3975 #define stat_inc_tot_blk_count(si, blks)				\
3976 	((si)->tot_blks += (blks))
3977 
3978 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3979 	do {								\
3980 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3981 		stat_inc_tot_blk_count(si, blks);			\
3982 		si->data_blks += (blks);				\
3983 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3984 	} while (0)
3985 
3986 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3987 	do {								\
3988 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3989 		stat_inc_tot_blk_count(si, blks);			\
3990 		si->node_blks += (blks);				\
3991 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3992 	} while (0)
3993 
3994 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3995 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3996 void __init f2fs_create_root_stats(void);
3997 void f2fs_destroy_root_stats(void);
3998 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3999 #else
4000 #define stat_inc_cp_count(si)				do { } while (0)
4001 #define stat_inc_bg_cp_count(si)			do { } while (0)
4002 #define stat_inc_call_count(si)				do { } while (0)
4003 #define stat_inc_bggc_count(si)				do { } while (0)
4004 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4005 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4006 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4007 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4008 #define stat_inc_total_hit(sbi)				do { } while (0)
4009 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
4010 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4011 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
4012 #define stat_inc_inline_xattr(inode)			do { } while (0)
4013 #define stat_dec_inline_xattr(inode)			do { } while (0)
4014 #define stat_inc_inline_inode(inode)			do { } while (0)
4015 #define stat_dec_inline_inode(inode)			do { } while (0)
4016 #define stat_inc_inline_dir(inode)			do { } while (0)
4017 #define stat_dec_inline_dir(inode)			do { } while (0)
4018 #define stat_inc_compr_inode(inode)			do { } while (0)
4019 #define stat_dec_compr_inode(inode)			do { } while (0)
4020 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4021 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4022 #define stat_update_max_atomic_write(inode)		do { } while (0)
4023 #define stat_inc_volatile_write(inode)			do { } while (0)
4024 #define stat_dec_volatile_write(inode)			do { } while (0)
4025 #define stat_update_max_volatile_write(inode)		do { } while (0)
4026 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4027 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4028 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4029 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4030 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4031 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4032 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4033 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4034 
4035 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4036 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4037 static inline void __init f2fs_create_root_stats(void) { }
4038 static inline void f2fs_destroy_root_stats(void) { }
4039 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4040 #endif
4041 
4042 extern const struct file_operations f2fs_dir_operations;
4043 extern const struct file_operations f2fs_file_operations;
4044 extern const struct inode_operations f2fs_file_inode_operations;
4045 extern const struct address_space_operations f2fs_dblock_aops;
4046 extern const struct address_space_operations f2fs_node_aops;
4047 extern const struct address_space_operations f2fs_meta_aops;
4048 extern const struct inode_operations f2fs_dir_inode_operations;
4049 extern const struct inode_operations f2fs_symlink_inode_operations;
4050 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4051 extern const struct inode_operations f2fs_special_inode_operations;
4052 extern struct kmem_cache *f2fs_inode_entry_slab;
4053 
4054 /*
4055  * inline.c
4056  */
4057 bool f2fs_may_inline_data(struct inode *inode);
4058 bool f2fs_may_inline_dentry(struct inode *inode);
4059 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4060 void f2fs_truncate_inline_inode(struct inode *inode,
4061 						struct page *ipage, u64 from);
4062 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4063 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4064 int f2fs_convert_inline_inode(struct inode *inode);
4065 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4066 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4067 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4068 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4069 					const struct f2fs_filename *fname,
4070 					struct page **res_page);
4071 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4072 			struct page *ipage);
4073 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4074 			struct inode *inode, nid_t ino, umode_t mode);
4075 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4076 				struct page *page, struct inode *dir,
4077 				struct inode *inode);
4078 bool f2fs_empty_inline_dir(struct inode *dir);
4079 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4080 			struct fscrypt_str *fstr);
4081 int f2fs_inline_data_fiemap(struct inode *inode,
4082 			struct fiemap_extent_info *fieinfo,
4083 			__u64 start, __u64 len);
4084 
4085 /*
4086  * shrinker.c
4087  */
4088 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4089 			struct shrink_control *sc);
4090 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4091 			struct shrink_control *sc);
4092 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4093 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4094 
4095 /*
4096  * extent_cache.c
4097  */
4098 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4099 				struct rb_entry *cached_re, unsigned int ofs);
4100 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4101 				struct rb_root_cached *root,
4102 				struct rb_node **parent,
4103 				unsigned long long key, bool *left_most);
4104 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4105 				struct rb_root_cached *root,
4106 				struct rb_node **parent,
4107 				unsigned int ofs, bool *leftmost);
4108 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4109 		struct rb_entry *cached_re, unsigned int ofs,
4110 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4111 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4112 		bool force, bool *leftmost);
4113 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4114 				struct rb_root_cached *root, bool check_key);
4115 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4116 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4117 void f2fs_drop_extent_tree(struct inode *inode);
4118 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4119 void f2fs_destroy_extent_tree(struct inode *inode);
4120 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4121 			struct extent_info *ei);
4122 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4123 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4124 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4125 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4126 int __init f2fs_create_extent_cache(void);
4127 void f2fs_destroy_extent_cache(void);
4128 
4129 /*
4130  * sysfs.c
4131  */
4132 #define MIN_RA_MUL	2
4133 #define MAX_RA_MUL	256
4134 
4135 int __init f2fs_init_sysfs(void);
4136 void f2fs_exit_sysfs(void);
4137 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4138 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4139 
4140 /* verity.c */
4141 extern const struct fsverity_operations f2fs_verityops;
4142 
4143 /*
4144  * crypto support
4145  */
4146 static inline bool f2fs_encrypted_file(struct inode *inode)
4147 {
4148 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4149 }
4150 
4151 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4152 {
4153 #ifdef CONFIG_FS_ENCRYPTION
4154 	file_set_encrypt(inode);
4155 	f2fs_set_inode_flags(inode);
4156 #endif
4157 }
4158 
4159 /*
4160  * Returns true if the reads of the inode's data need to undergo some
4161  * postprocessing step, like decryption or authenticity verification.
4162  */
4163 static inline bool f2fs_post_read_required(struct inode *inode)
4164 {
4165 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4166 		f2fs_compressed_file(inode);
4167 }
4168 
4169 /*
4170  * compress.c
4171  */
4172 #ifdef CONFIG_F2FS_FS_COMPRESSION
4173 bool f2fs_is_compressed_page(struct page *page);
4174 struct page *f2fs_compress_control_page(struct page *page);
4175 int f2fs_prepare_compress_overwrite(struct inode *inode,
4176 			struct page **pagep, pgoff_t index, void **fsdata);
4177 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4178 					pgoff_t index, unsigned copied);
4179 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4180 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4181 bool f2fs_is_compress_backend_ready(struct inode *inode);
4182 int f2fs_init_compress_mempool(void);
4183 void f2fs_destroy_compress_mempool(void);
4184 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4185 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4186 							block_t blkaddr);
4187 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4188 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4189 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4190 				int index, int nr_pages);
4191 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4192 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4193 int f2fs_write_multi_pages(struct compress_ctx *cc,
4194 						int *submitted,
4195 						struct writeback_control *wbc,
4196 						enum iostat_type io_type);
4197 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4198 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4199 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4200 				unsigned int c_len);
4201 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4202 				unsigned nr_pages, sector_t *last_block_in_bio,
4203 				bool is_readahead, bool for_write);
4204 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4205 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4206 void f2fs_put_page_dic(struct page *page);
4207 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4208 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4209 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4210 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4211 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4212 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4213 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4214 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4215 int __init f2fs_init_compress_cache(void);
4216 void f2fs_destroy_compress_cache(void);
4217 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4218 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4219 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4220 						nid_t ino, block_t blkaddr);
4221 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4222 								block_t blkaddr);
4223 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4224 #define inc_compr_inode_stat(inode)					\
4225 	do {								\
4226 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4227 		sbi->compr_new_inode++;					\
4228 	} while (0)
4229 #define add_compr_block_stat(inode, blocks)				\
4230 	do {								\
4231 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4232 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4233 		sbi->compr_written_block += blocks;			\
4234 		sbi->compr_saved_block += diff;				\
4235 	} while (0)
4236 #else
4237 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4238 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4239 {
4240 	if (!f2fs_compressed_file(inode))
4241 		return true;
4242 	/* not support compression */
4243 	return false;
4244 }
4245 static inline struct page *f2fs_compress_control_page(struct page *page)
4246 {
4247 	WARN_ON_ONCE(1);
4248 	return ERR_PTR(-EINVAL);
4249 }
4250 static inline int f2fs_init_compress_mempool(void) { return 0; }
4251 static inline void f2fs_destroy_compress_mempool(void) { }
4252 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4253 static inline void f2fs_end_read_compressed_page(struct page *page,
4254 						bool failed, block_t blkaddr)
4255 {
4256 	WARN_ON_ONCE(1);
4257 }
4258 static inline void f2fs_put_page_dic(struct page *page)
4259 {
4260 	WARN_ON_ONCE(1);
4261 }
4262 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4263 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4264 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4265 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4266 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4267 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4268 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4269 static inline void f2fs_destroy_compress_cache(void) { }
4270 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4271 				block_t blkaddr) { }
4272 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4273 				struct page *page, nid_t ino, block_t blkaddr) { }
4274 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4275 				struct page *page, block_t blkaddr) { return false; }
4276 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4277 							nid_t ino) { }
4278 #define inc_compr_inode_stat(inode)		do { } while (0)
4279 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4280 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4281 				unsigned int c_len) { }
4282 #endif
4283 
4284 static inline void set_compress_context(struct inode *inode)
4285 {
4286 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4287 
4288 	F2FS_I(inode)->i_compress_algorithm =
4289 			F2FS_OPTION(sbi).compress_algorithm;
4290 	F2FS_I(inode)->i_log_cluster_size =
4291 			F2FS_OPTION(sbi).compress_log_size;
4292 	F2FS_I(inode)->i_compress_flag =
4293 			F2FS_OPTION(sbi).compress_chksum ?
4294 				1 << COMPRESS_CHKSUM : 0;
4295 	F2FS_I(inode)->i_cluster_size =
4296 			1 << F2FS_I(inode)->i_log_cluster_size;
4297 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4298 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4299 			F2FS_OPTION(sbi).compress_level)
4300 		F2FS_I(inode)->i_compress_flag |=
4301 				F2FS_OPTION(sbi).compress_level <<
4302 				COMPRESS_LEVEL_OFFSET;
4303 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4304 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4305 	stat_inc_compr_inode(inode);
4306 	inc_compr_inode_stat(inode);
4307 	f2fs_mark_inode_dirty_sync(inode, true);
4308 }
4309 
4310 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4311 {
4312 	struct f2fs_inode_info *fi = F2FS_I(inode);
4313 
4314 	if (!f2fs_compressed_file(inode))
4315 		return true;
4316 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4317 		return false;
4318 
4319 	fi->i_flags &= ~F2FS_COMPR_FL;
4320 	stat_dec_compr_inode(inode);
4321 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4322 	f2fs_mark_inode_dirty_sync(inode, true);
4323 	return true;
4324 }
4325 
4326 #define F2FS_FEATURE_FUNCS(name, flagname) \
4327 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4328 { \
4329 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4330 }
4331 
4332 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4333 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4334 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4335 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4336 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4337 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4338 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4339 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4340 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4341 F2FS_FEATURE_FUNCS(verity, VERITY);
4342 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4343 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4344 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4345 F2FS_FEATURE_FUNCS(readonly, RO);
4346 
4347 static inline bool f2fs_may_extent_tree(struct inode *inode)
4348 {
4349 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4350 
4351 	if (!test_opt(sbi, EXTENT_CACHE) ||
4352 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4353 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4354 			 !f2fs_sb_has_readonly(sbi)))
4355 		return false;
4356 
4357 	/*
4358 	 * for recovered files during mount do not create extents
4359 	 * if shrinker is not registered.
4360 	 */
4361 	if (list_empty(&sbi->s_list))
4362 		return false;
4363 
4364 	return S_ISREG(inode->i_mode);
4365 }
4366 
4367 #ifdef CONFIG_BLK_DEV_ZONED
4368 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4369 				    block_t blkaddr)
4370 {
4371 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4372 
4373 	return test_bit(zno, FDEV(devi).blkz_seq);
4374 }
4375 #endif
4376 
4377 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4378 {
4379 	return f2fs_sb_has_blkzoned(sbi);
4380 }
4381 
4382 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4383 {
4384 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4385 	       bdev_is_zoned(bdev);
4386 }
4387 
4388 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4389 {
4390 	int i;
4391 
4392 	if (!f2fs_is_multi_device(sbi))
4393 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4394 
4395 	for (i = 0; i < sbi->s_ndevs; i++)
4396 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4397 			return true;
4398 	return false;
4399 }
4400 
4401 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4402 {
4403 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4404 					f2fs_hw_should_discard(sbi);
4405 }
4406 
4407 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4408 {
4409 	int i;
4410 
4411 	if (!f2fs_is_multi_device(sbi))
4412 		return bdev_read_only(sbi->sb->s_bdev);
4413 
4414 	for (i = 0; i < sbi->s_ndevs; i++)
4415 		if (bdev_read_only(FDEV(i).bdev))
4416 			return true;
4417 	return false;
4418 }
4419 
4420 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4421 {
4422 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4423 }
4424 
4425 static inline bool f2fs_may_compress(struct inode *inode)
4426 {
4427 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4428 				f2fs_is_atomic_file(inode) ||
4429 				f2fs_is_volatile_file(inode))
4430 		return false;
4431 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4432 }
4433 
4434 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4435 						u64 blocks, bool add)
4436 {
4437 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4438 	struct f2fs_inode_info *fi = F2FS_I(inode);
4439 
4440 	/* don't update i_compr_blocks if saved blocks were released */
4441 	if (!add && !atomic_read(&fi->i_compr_blocks))
4442 		return;
4443 
4444 	if (add) {
4445 		atomic_add(diff, &fi->i_compr_blocks);
4446 		stat_add_compr_blocks(inode, diff);
4447 	} else {
4448 		atomic_sub(diff, &fi->i_compr_blocks);
4449 		stat_sub_compr_blocks(inode, diff);
4450 	}
4451 	f2fs_mark_inode_dirty_sync(inode, true);
4452 }
4453 
4454 static inline int block_unaligned_IO(struct inode *inode,
4455 				struct kiocb *iocb, struct iov_iter *iter)
4456 {
4457 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4458 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4459 	loff_t offset = iocb->ki_pos;
4460 	unsigned long align = offset | iov_iter_alignment(iter);
4461 
4462 	return align & blocksize_mask;
4463 }
4464 
4465 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4466 								int flag)
4467 {
4468 	if (!f2fs_is_multi_device(sbi))
4469 		return false;
4470 	if (flag != F2FS_GET_BLOCK_DIO)
4471 		return false;
4472 	return sbi->aligned_blksize;
4473 }
4474 
4475 static inline bool f2fs_force_buffered_io(struct inode *inode,
4476 				struct kiocb *iocb, struct iov_iter *iter)
4477 {
4478 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4479 	int rw = iov_iter_rw(iter);
4480 
4481 	if (!fscrypt_dio_supported(iocb, iter))
4482 		return true;
4483 	if (fsverity_active(inode))
4484 		return true;
4485 	if (f2fs_compressed_file(inode))
4486 		return true;
4487 
4488 	/* disallow direct IO if any of devices has unaligned blksize */
4489 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4490 		return true;
4491 	/*
4492 	 * for blkzoned device, fallback direct IO to buffered IO, so
4493 	 * all IOs can be serialized by log-structured write.
4494 	 */
4495 	if (f2fs_sb_has_blkzoned(sbi))
4496 		return true;
4497 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4498 		if (block_unaligned_IO(inode, iocb, iter))
4499 			return true;
4500 		if (F2FS_IO_ALIGNED(sbi))
4501 			return true;
4502 	}
4503 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4504 		return true;
4505 
4506 	return false;
4507 }
4508 
4509 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4510 {
4511 	return fsverity_active(inode) &&
4512 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4513 }
4514 
4515 #ifdef CONFIG_F2FS_FAULT_INJECTION
4516 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4517 							unsigned int type);
4518 #else
4519 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4520 #endif
4521 
4522 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4523 {
4524 #ifdef CONFIG_QUOTA
4525 	if (f2fs_sb_has_quota_ino(sbi))
4526 		return true;
4527 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4528 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4529 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4530 		return true;
4531 #endif
4532 	return false;
4533 }
4534 
4535 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4536 {
4537 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4538 }
4539 
4540 static inline void f2fs_io_schedule_timeout(long timeout)
4541 {
4542 	set_current_state(TASK_UNINTERRUPTIBLE);
4543 	io_schedule_timeout(timeout);
4544 }
4545 
4546 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4547 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4548 
4549 #endif /* _LINUX_F2FS_H */
4550