xref: /openbmc/linux/fs/f2fs/f2fs.h (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28 
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_KVMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_PAGE_GET,
50 	FAULT_ALLOC_BIO,
51 	FAULT_ALLOC_NID,
52 	FAULT_ORPHAN,
53 	FAULT_BLOCK,
54 	FAULT_DIR_DEPTH,
55 	FAULT_EVICT_INODE,
56 	FAULT_TRUNCATE,
57 	FAULT_IO,
58 	FAULT_CHECKPOINT,
59 	FAULT_MAX,
60 };
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_BG_GC		0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_ADAPTIVE		0x00020000
93 #define F2FS_MOUNT_LFS			0x00040000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
100 
101 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
102 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105 
106 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
107 		typecheck(unsigned long long, b) &&			\
108 		((long long)((a) - (b)) > 0))
109 
110 typedef u32 block_t;	/*
111 			 * should not change u32, since it is the on-disk block
112 			 * address format, __le32.
113 			 */
114 typedef u32 nid_t;
115 
116 struct f2fs_mount_info {
117 	unsigned int opt;
118 	int write_io_size_bits;		/* Write IO size bits */
119 	block_t root_reserved_blocks;	/* root reserved blocks */
120 	kuid_t s_resuid;		/* reserved blocks for uid */
121 	kgid_t s_resgid;		/* reserved blocks for gid */
122 	int active_logs;		/* # of active logs */
123 	int inline_xattr_size;		/* inline xattr size */
124 #ifdef CONFIG_F2FS_FAULT_INJECTION
125 	struct f2fs_fault_info fault_info;	/* For fault injection */
126 #endif
127 #ifdef CONFIG_QUOTA
128 	/* Names of quota files with journalled quota */
129 	char *s_qf_names[MAXQUOTAS];
130 	int s_jquota_fmt;			/* Format of quota to use */
131 #endif
132 	/* For which write hints are passed down to block layer */
133 	int whint_mode;
134 	int alloc_mode;			/* segment allocation policy */
135 	int fsync_mode;			/* fsync policy */
136 	bool test_dummy_encryption;	/* test dummy encryption */
137 };
138 
139 #define F2FS_FEATURE_ENCRYPT		0x0001
140 #define F2FS_FEATURE_BLKZONED		0x0002
141 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
142 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
143 #define F2FS_FEATURE_PRJQUOTA		0x0010
144 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
145 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
146 #define F2FS_FEATURE_QUOTA_INO		0x0080
147 #define F2FS_FEATURE_INODE_CRTIME	0x0100
148 #define F2FS_FEATURE_LOST_FOUND		0x0200
149 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
150 
151 #define F2FS_HAS_FEATURE(sb, mask)					\
152 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
153 #define F2FS_SET_FEATURE(sb, mask)					\
154 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
155 #define F2FS_CLEAR_FEATURE(sb, mask)					\
156 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
157 
158 /*
159  * Default values for user and/or group using reserved blocks
160  */
161 #define	F2FS_DEF_RESUID		0
162 #define	F2FS_DEF_RESGID		0
163 
164 /*
165  * For checkpoint manager
166  */
167 enum {
168 	NAT_BITMAP,
169 	SIT_BITMAP
170 };
171 
172 #define	CP_UMOUNT	0x00000001
173 #define	CP_FASTBOOT	0x00000002
174 #define	CP_SYNC		0x00000004
175 #define	CP_RECOVERY	0x00000008
176 #define	CP_DISCARD	0x00000010
177 #define CP_TRIMMED	0x00000020
178 
179 #define DEF_BATCHED_TRIM_SECTIONS	2048
180 #define BATCHED_TRIM_SEGMENTS(sbi)	\
181 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
182 #define BATCHED_TRIM_BLOCKS(sbi)	\
183 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
184 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
185 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
186 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
187 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
188 #define DEF_CP_INTERVAL			60	/* 60 secs */
189 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
190 
191 struct cp_control {
192 	int reason;
193 	__u64 trim_start;
194 	__u64 trim_end;
195 	__u64 trim_minlen;
196 };
197 
198 /*
199  * For CP/NAT/SIT/SSA readahead
200  */
201 enum {
202 	META_CP,
203 	META_NAT,
204 	META_SIT,
205 	META_SSA,
206 	META_POR,
207 };
208 
209 /* for the list of ino */
210 enum {
211 	ORPHAN_INO,		/* for orphan ino list */
212 	APPEND_INO,		/* for append ino list */
213 	UPDATE_INO,		/* for update ino list */
214 	TRANS_DIR_INO,		/* for trasactions dir ino list */
215 	FLUSH_INO,		/* for multiple device flushing */
216 	MAX_INO_ENTRY,		/* max. list */
217 };
218 
219 struct ino_entry {
220 	struct list_head list;		/* list head */
221 	nid_t ino;			/* inode number */
222 	unsigned int dirty_device;	/* dirty device bitmap */
223 };
224 
225 /* for the list of inodes to be GCed */
226 struct inode_entry {
227 	struct list_head list;	/* list head */
228 	struct inode *inode;	/* vfs inode pointer */
229 };
230 
231 /* for the bitmap indicate blocks to be discarded */
232 struct discard_entry {
233 	struct list_head list;	/* list head */
234 	block_t start_blkaddr;	/* start blockaddr of current segment */
235 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
236 };
237 
238 /* default discard granularity of inner discard thread, unit: block count */
239 #define DEFAULT_DISCARD_GRANULARITY		16
240 
241 /* max discard pend list number */
242 #define MAX_PLIST_NUM		512
243 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
244 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
245 
246 enum {
247 	D_PREP,
248 	D_SUBMIT,
249 	D_DONE,
250 };
251 
252 struct discard_info {
253 	block_t lstart;			/* logical start address */
254 	block_t len;			/* length */
255 	block_t start;			/* actual start address in dev */
256 };
257 
258 struct discard_cmd {
259 	struct rb_node rb_node;		/* rb node located in rb-tree */
260 	union {
261 		struct {
262 			block_t lstart;	/* logical start address */
263 			block_t len;	/* length */
264 			block_t start;	/* actual start address in dev */
265 		};
266 		struct discard_info di;	/* discard info */
267 
268 	};
269 	struct list_head list;		/* command list */
270 	struct completion wait;		/* compleation */
271 	struct block_device *bdev;	/* bdev */
272 	unsigned short ref;		/* reference count */
273 	unsigned char state;		/* state */
274 	int error;			/* bio error */
275 };
276 
277 enum {
278 	DPOLICY_BG,
279 	DPOLICY_FORCE,
280 	DPOLICY_FSTRIM,
281 	DPOLICY_UMOUNT,
282 	MAX_DPOLICY,
283 };
284 
285 struct discard_policy {
286 	int type;			/* type of discard */
287 	unsigned int min_interval;	/* used for candidates exist */
288 	unsigned int max_interval;	/* used for candidates not exist */
289 	unsigned int max_requests;	/* # of discards issued per round */
290 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
291 	bool io_aware;			/* issue discard in idle time */
292 	bool sync;			/* submit discard with REQ_SYNC flag */
293 	unsigned int granularity;	/* discard granularity */
294 };
295 
296 struct discard_cmd_control {
297 	struct task_struct *f2fs_issue_discard;	/* discard thread */
298 	struct list_head entry_list;		/* 4KB discard entry list */
299 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
300 	struct list_head wait_list;		/* store on-flushing entries */
301 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
302 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
303 	unsigned int discard_wake;		/* to wake up discard thread */
304 	struct mutex cmd_lock;
305 	unsigned int nr_discards;		/* # of discards in the list */
306 	unsigned int max_discards;		/* max. discards to be issued */
307 	unsigned int discard_granularity;	/* discard granularity */
308 	unsigned int undiscard_blks;		/* # of undiscard blocks */
309 	atomic_t issued_discard;		/* # of issued discard */
310 	atomic_t issing_discard;		/* # of issing discard */
311 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
312 	struct rb_root root;			/* root of discard rb-tree */
313 };
314 
315 /* for the list of fsync inodes, used only during recovery */
316 struct fsync_inode_entry {
317 	struct list_head list;	/* list head */
318 	struct inode *inode;	/* vfs inode pointer */
319 	block_t blkaddr;	/* block address locating the last fsync */
320 	block_t last_dentry;	/* block address locating the last dentry */
321 };
322 
323 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
324 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
325 
326 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
327 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
328 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
329 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
330 
331 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
332 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
333 
334 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
335 {
336 	int before = nats_in_cursum(journal);
337 
338 	journal->n_nats = cpu_to_le16(before + i);
339 	return before;
340 }
341 
342 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
343 {
344 	int before = sits_in_cursum(journal);
345 
346 	journal->n_sits = cpu_to_le16(before + i);
347 	return before;
348 }
349 
350 static inline bool __has_cursum_space(struct f2fs_journal *journal,
351 							int size, int type)
352 {
353 	if (type == NAT_JOURNAL)
354 		return size <= MAX_NAT_JENTRIES(journal);
355 	return size <= MAX_SIT_JENTRIES(journal);
356 }
357 
358 /*
359  * ioctl commands
360  */
361 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
362 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
363 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
364 
365 #define F2FS_IOCTL_MAGIC		0xf5
366 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
367 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
368 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
369 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
370 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
371 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
372 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
373 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
374 						struct f2fs_defragment)
375 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
376 						struct f2fs_move_range)
377 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
378 						struct f2fs_flush_device)
379 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
380 						struct f2fs_gc_range)
381 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
382 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
383 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
384 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
385 
386 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
387 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
388 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
389 
390 /*
391  * should be same as XFS_IOC_GOINGDOWN.
392  * Flags for going down operation used by FS_IOC_GOINGDOWN
393  */
394 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
395 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
396 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
397 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
398 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
399 
400 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
401 /*
402  * ioctl commands in 32 bit emulation
403  */
404 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
405 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
406 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
407 #endif
408 
409 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
410 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
411 
412 struct f2fs_gc_range {
413 	u32 sync;
414 	u64 start;
415 	u64 len;
416 };
417 
418 struct f2fs_defragment {
419 	u64 start;
420 	u64 len;
421 };
422 
423 struct f2fs_move_range {
424 	u32 dst_fd;		/* destination fd */
425 	u64 pos_in;		/* start position in src_fd */
426 	u64 pos_out;		/* start position in dst_fd */
427 	u64 len;		/* size to move */
428 };
429 
430 struct f2fs_flush_device {
431 	u32 dev_num;		/* device number to flush */
432 	u32 segments;		/* # of segments to flush */
433 };
434 
435 /* for inline stuff */
436 #define DEF_INLINE_RESERVED_SIZE	1
437 #define DEF_MIN_INLINE_SIZE		1
438 static inline int get_extra_isize(struct inode *inode);
439 static inline int get_inline_xattr_addrs(struct inode *inode);
440 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
441 				(CUR_ADDRS_PER_INODE(inode) -		\
442 				get_inline_xattr_addrs(inode) -	\
443 				DEF_INLINE_RESERVED_SIZE))
444 
445 /* for inline dir */
446 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
447 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
448 				BITS_PER_BYTE + 1))
449 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
450 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
451 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
452 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
453 				NR_INLINE_DENTRY(inode) + \
454 				INLINE_DENTRY_BITMAP_SIZE(inode)))
455 
456 /*
457  * For INODE and NODE manager
458  */
459 /* for directory operations */
460 struct f2fs_dentry_ptr {
461 	struct inode *inode;
462 	void *bitmap;
463 	struct f2fs_dir_entry *dentry;
464 	__u8 (*filename)[F2FS_SLOT_LEN];
465 	int max;
466 	int nr_bitmap;
467 };
468 
469 static inline void make_dentry_ptr_block(struct inode *inode,
470 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
471 {
472 	d->inode = inode;
473 	d->max = NR_DENTRY_IN_BLOCK;
474 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
475 	d->bitmap = t->dentry_bitmap;
476 	d->dentry = t->dentry;
477 	d->filename = t->filename;
478 }
479 
480 static inline void make_dentry_ptr_inline(struct inode *inode,
481 					struct f2fs_dentry_ptr *d, void *t)
482 {
483 	int entry_cnt = NR_INLINE_DENTRY(inode);
484 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
485 	int reserved_size = INLINE_RESERVED_SIZE(inode);
486 
487 	d->inode = inode;
488 	d->max = entry_cnt;
489 	d->nr_bitmap = bitmap_size;
490 	d->bitmap = t;
491 	d->dentry = t + bitmap_size + reserved_size;
492 	d->filename = t + bitmap_size + reserved_size +
493 					SIZE_OF_DIR_ENTRY * entry_cnt;
494 }
495 
496 /*
497  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
498  * as its node offset to distinguish from index node blocks.
499  * But some bits are used to mark the node block.
500  */
501 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
502 				>> OFFSET_BIT_SHIFT)
503 enum {
504 	ALLOC_NODE,			/* allocate a new node page if needed */
505 	LOOKUP_NODE,			/* look up a node without readahead */
506 	LOOKUP_NODE_RA,			/*
507 					 * look up a node with readahead called
508 					 * by get_data_block.
509 					 */
510 };
511 
512 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
513 
514 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
515 
516 /* vector size for gang look-up from extent cache that consists of radix tree */
517 #define EXT_TREE_VEC_SIZE	64
518 
519 /* for in-memory extent cache entry */
520 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
521 
522 /* number of extent info in extent cache we try to shrink */
523 #define EXTENT_CACHE_SHRINK_NUMBER	128
524 
525 struct rb_entry {
526 	struct rb_node rb_node;		/* rb node located in rb-tree */
527 	unsigned int ofs;		/* start offset of the entry */
528 	unsigned int len;		/* length of the entry */
529 };
530 
531 struct extent_info {
532 	unsigned int fofs;		/* start offset in a file */
533 	unsigned int len;		/* length of the extent */
534 	u32 blk;			/* start block address of the extent */
535 };
536 
537 struct extent_node {
538 	struct rb_node rb_node;
539 	union {
540 		struct {
541 			unsigned int fofs;
542 			unsigned int len;
543 			u32 blk;
544 		};
545 		struct extent_info ei;	/* extent info */
546 
547 	};
548 	struct list_head list;		/* node in global extent list of sbi */
549 	struct extent_tree *et;		/* extent tree pointer */
550 };
551 
552 struct extent_tree {
553 	nid_t ino;			/* inode number */
554 	struct rb_root root;		/* root of extent info rb-tree */
555 	struct extent_node *cached_en;	/* recently accessed extent node */
556 	struct extent_info largest;	/* largested extent info */
557 	struct list_head list;		/* to be used by sbi->zombie_list */
558 	rwlock_t lock;			/* protect extent info rb-tree */
559 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
560 };
561 
562 /*
563  * This structure is taken from ext4_map_blocks.
564  *
565  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
566  */
567 #define F2FS_MAP_NEW		(1 << BH_New)
568 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
569 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
570 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
571 				F2FS_MAP_UNWRITTEN)
572 
573 struct f2fs_map_blocks {
574 	block_t m_pblk;
575 	block_t m_lblk;
576 	unsigned int m_len;
577 	unsigned int m_flags;
578 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
579 	pgoff_t *m_next_extent;		/* point to next possible extent */
580 	int m_seg_type;
581 };
582 
583 /* for flag in get_data_block */
584 enum {
585 	F2FS_GET_BLOCK_DEFAULT,
586 	F2FS_GET_BLOCK_FIEMAP,
587 	F2FS_GET_BLOCK_BMAP,
588 	F2FS_GET_BLOCK_PRE_DIO,
589 	F2FS_GET_BLOCK_PRE_AIO,
590 	F2FS_GET_BLOCK_PRECACHE,
591 };
592 
593 /*
594  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
595  */
596 #define FADVISE_COLD_BIT	0x01
597 #define FADVISE_LOST_PINO_BIT	0x02
598 #define FADVISE_ENCRYPT_BIT	0x04
599 #define FADVISE_ENC_NAME_BIT	0x08
600 #define FADVISE_KEEP_SIZE_BIT	0x10
601 #define FADVISE_HOT_BIT		0x20
602 #define FADVISE_VERITY_BIT	0x40	/* reserved */
603 
604 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
605 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
606 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
607 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
608 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
609 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
610 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
611 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
612 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
613 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
614 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
615 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
616 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
617 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
618 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
619 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
620 
621 #define DEF_DIR_LEVEL		0
622 
623 struct f2fs_inode_info {
624 	struct inode vfs_inode;		/* serve a vfs inode */
625 	unsigned long i_flags;		/* keep an inode flags for ioctl */
626 	unsigned char i_advise;		/* use to give file attribute hints */
627 	unsigned char i_dir_level;	/* use for dentry level for large dir */
628 	union {
629 		unsigned int i_current_depth;	/* only for directory depth */
630 		unsigned short i_gc_failures;	/* only for regular file */
631 	};
632 	unsigned int i_pino;		/* parent inode number */
633 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
634 
635 	/* Use below internally in f2fs*/
636 	unsigned long flags;		/* use to pass per-file flags */
637 	struct rw_semaphore i_sem;	/* protect fi info */
638 	atomic_t dirty_pages;		/* # of dirty pages */
639 	f2fs_hash_t chash;		/* hash value of given file name */
640 	unsigned int clevel;		/* maximum level of given file name */
641 	struct task_struct *task;	/* lookup and create consistency */
642 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
643 	nid_t i_xattr_nid;		/* node id that contains xattrs */
644 	loff_t	last_disk_size;		/* lastly written file size */
645 
646 #ifdef CONFIG_QUOTA
647 	struct dquot *i_dquot[MAXQUOTAS];
648 
649 	/* quota space reservation, managed internally by quota code */
650 	qsize_t i_reserved_quota;
651 #endif
652 	struct list_head dirty_list;	/* dirty list for dirs and files */
653 	struct list_head gdirty_list;	/* linked in global dirty list */
654 	struct list_head inmem_ilist;	/* list for inmem inodes */
655 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
656 	struct task_struct *inmem_task;	/* store inmemory task */
657 	struct mutex inmem_lock;	/* lock for inmemory pages */
658 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
659 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
660 	struct rw_semaphore i_mmap_sem;
661 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
662 
663 	int i_extra_isize;		/* size of extra space located in i_addr */
664 	kprojid_t i_projid;		/* id for project quota */
665 	int i_inline_xattr_size;	/* inline xattr size */
666 	struct timespec i_crtime;	/* inode creation time */
667 	struct timespec i_disk_time[4];	/* inode disk times */
668 };
669 
670 static inline void get_extent_info(struct extent_info *ext,
671 					struct f2fs_extent *i_ext)
672 {
673 	ext->fofs = le32_to_cpu(i_ext->fofs);
674 	ext->blk = le32_to_cpu(i_ext->blk);
675 	ext->len = le32_to_cpu(i_ext->len);
676 }
677 
678 static inline void set_raw_extent(struct extent_info *ext,
679 					struct f2fs_extent *i_ext)
680 {
681 	i_ext->fofs = cpu_to_le32(ext->fofs);
682 	i_ext->blk = cpu_to_le32(ext->blk);
683 	i_ext->len = cpu_to_le32(ext->len);
684 }
685 
686 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
687 						u32 blk, unsigned int len)
688 {
689 	ei->fofs = fofs;
690 	ei->blk = blk;
691 	ei->len = len;
692 }
693 
694 static inline bool __is_discard_mergeable(struct discard_info *back,
695 						struct discard_info *front)
696 {
697 	return back->lstart + back->len == front->lstart;
698 }
699 
700 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
701 						struct discard_info *back)
702 {
703 	return __is_discard_mergeable(back, cur);
704 }
705 
706 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
707 						struct discard_info *front)
708 {
709 	return __is_discard_mergeable(cur, front);
710 }
711 
712 static inline bool __is_extent_mergeable(struct extent_info *back,
713 						struct extent_info *front)
714 {
715 	return (back->fofs + back->len == front->fofs &&
716 			back->blk + back->len == front->blk);
717 }
718 
719 static inline bool __is_back_mergeable(struct extent_info *cur,
720 						struct extent_info *back)
721 {
722 	return __is_extent_mergeable(back, cur);
723 }
724 
725 static inline bool __is_front_mergeable(struct extent_info *cur,
726 						struct extent_info *front)
727 {
728 	return __is_extent_mergeable(cur, front);
729 }
730 
731 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
732 static inline void __try_update_largest_extent(struct inode *inode,
733 			struct extent_tree *et, struct extent_node *en)
734 {
735 	if (en->ei.len > et->largest.len) {
736 		et->largest = en->ei;
737 		f2fs_mark_inode_dirty_sync(inode, true);
738 	}
739 }
740 
741 /*
742  * For free nid management
743  */
744 enum nid_state {
745 	FREE_NID,		/* newly added to free nid list */
746 	PREALLOC_NID,		/* it is preallocated */
747 	MAX_NID_STATE,
748 };
749 
750 struct f2fs_nm_info {
751 	block_t nat_blkaddr;		/* base disk address of NAT */
752 	nid_t max_nid;			/* maximum possible node ids */
753 	nid_t available_nids;		/* # of available node ids */
754 	nid_t next_scan_nid;		/* the next nid to be scanned */
755 	unsigned int ram_thresh;	/* control the memory footprint */
756 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
757 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
758 
759 	/* NAT cache management */
760 	struct radix_tree_root nat_root;/* root of the nat entry cache */
761 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
762 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
763 	struct list_head nat_entries;	/* cached nat entry list (clean) */
764 	unsigned int nat_cnt;		/* the # of cached nat entries */
765 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
766 	unsigned int nat_blocks;	/* # of nat blocks */
767 
768 	/* free node ids management */
769 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
770 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
771 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
772 	spinlock_t nid_list_lock;	/* protect nid lists ops */
773 	struct mutex build_lock;	/* lock for build free nids */
774 	unsigned char **free_nid_bitmap;
775 	unsigned char *nat_block_bitmap;
776 	unsigned short *free_nid_count;	/* free nid count of NAT block */
777 
778 	/* for checkpoint */
779 	char *nat_bitmap;		/* NAT bitmap pointer */
780 
781 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
782 	unsigned char *nat_bits;	/* NAT bits blocks */
783 	unsigned char *full_nat_bits;	/* full NAT pages */
784 	unsigned char *empty_nat_bits;	/* empty NAT pages */
785 #ifdef CONFIG_F2FS_CHECK_FS
786 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
787 #endif
788 	int bitmap_size;		/* bitmap size */
789 };
790 
791 /*
792  * this structure is used as one of function parameters.
793  * all the information are dedicated to a given direct node block determined
794  * by the data offset in a file.
795  */
796 struct dnode_of_data {
797 	struct inode *inode;		/* vfs inode pointer */
798 	struct page *inode_page;	/* its inode page, NULL is possible */
799 	struct page *node_page;		/* cached direct node page */
800 	nid_t nid;			/* node id of the direct node block */
801 	unsigned int ofs_in_node;	/* data offset in the node page */
802 	bool inode_page_locked;		/* inode page is locked or not */
803 	bool node_changed;		/* is node block changed */
804 	char cur_level;			/* level of hole node page */
805 	char max_level;			/* level of current page located */
806 	block_t	data_blkaddr;		/* block address of the node block */
807 };
808 
809 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
810 		struct page *ipage, struct page *npage, nid_t nid)
811 {
812 	memset(dn, 0, sizeof(*dn));
813 	dn->inode = inode;
814 	dn->inode_page = ipage;
815 	dn->node_page = npage;
816 	dn->nid = nid;
817 }
818 
819 /*
820  * For SIT manager
821  *
822  * By default, there are 6 active log areas across the whole main area.
823  * When considering hot and cold data separation to reduce cleaning overhead,
824  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
825  * respectively.
826  * In the current design, you should not change the numbers intentionally.
827  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
828  * logs individually according to the underlying devices. (default: 6)
829  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
830  * data and 8 for node logs.
831  */
832 #define	NR_CURSEG_DATA_TYPE	(3)
833 #define NR_CURSEG_NODE_TYPE	(3)
834 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
835 
836 enum {
837 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
838 	CURSEG_WARM_DATA,	/* data blocks */
839 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
840 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
841 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
842 	CURSEG_COLD_NODE,	/* indirect node blocks */
843 	NO_CHECK_TYPE,
844 };
845 
846 struct flush_cmd {
847 	struct completion wait;
848 	struct llist_node llnode;
849 	nid_t ino;
850 	int ret;
851 };
852 
853 struct flush_cmd_control {
854 	struct task_struct *f2fs_issue_flush;	/* flush thread */
855 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
856 	atomic_t issued_flush;			/* # of issued flushes */
857 	atomic_t issing_flush;			/* # of issing flushes */
858 	struct llist_head issue_list;		/* list for command issue */
859 	struct llist_node *dispatch_list;	/* list for command dispatch */
860 };
861 
862 struct f2fs_sm_info {
863 	struct sit_info *sit_info;		/* whole segment information */
864 	struct free_segmap_info *free_info;	/* free segment information */
865 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
866 	struct curseg_info *curseg_array;	/* active segment information */
867 
868 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
869 
870 	block_t seg0_blkaddr;		/* block address of 0'th segment */
871 	block_t main_blkaddr;		/* start block address of main area */
872 	block_t ssa_blkaddr;		/* start block address of SSA area */
873 
874 	unsigned int segment_count;	/* total # of segments */
875 	unsigned int main_segments;	/* # of segments in main area */
876 	unsigned int reserved_segments;	/* # of reserved segments */
877 	unsigned int ovp_segments;	/* # of overprovision segments */
878 
879 	/* a threshold to reclaim prefree segments */
880 	unsigned int rec_prefree_segments;
881 
882 	/* for batched trimming */
883 	unsigned int trim_sections;		/* # of sections to trim */
884 
885 	struct list_head sit_entry_set;	/* sit entry set list */
886 
887 	unsigned int ipu_policy;	/* in-place-update policy */
888 	unsigned int min_ipu_util;	/* in-place-update threshold */
889 	unsigned int min_fsync_blocks;	/* threshold for fsync */
890 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
891 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
892 
893 	/* for flush command control */
894 	struct flush_cmd_control *fcc_info;
895 
896 	/* for discard command control */
897 	struct discard_cmd_control *dcc_info;
898 };
899 
900 /*
901  * For superblock
902  */
903 /*
904  * COUNT_TYPE for monitoring
905  *
906  * f2fs monitors the number of several block types such as on-writeback,
907  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
908  */
909 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
910 enum count_type {
911 	F2FS_DIRTY_DENTS,
912 	F2FS_DIRTY_DATA,
913 	F2FS_DIRTY_QDATA,
914 	F2FS_DIRTY_NODES,
915 	F2FS_DIRTY_META,
916 	F2FS_INMEM_PAGES,
917 	F2FS_DIRTY_IMETA,
918 	F2FS_WB_CP_DATA,
919 	F2FS_WB_DATA,
920 	NR_COUNT_TYPE,
921 };
922 
923 /*
924  * The below are the page types of bios used in submit_bio().
925  * The available types are:
926  * DATA			User data pages. It operates as async mode.
927  * NODE			Node pages. It operates as async mode.
928  * META			FS metadata pages such as SIT, NAT, CP.
929  * NR_PAGE_TYPE		The number of page types.
930  * META_FLUSH		Make sure the previous pages are written
931  *			with waiting the bio's completion
932  * ...			Only can be used with META.
933  */
934 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
935 enum page_type {
936 	DATA,
937 	NODE,
938 	META,
939 	NR_PAGE_TYPE,
940 	META_FLUSH,
941 	INMEM,		/* the below types are used by tracepoints only. */
942 	INMEM_DROP,
943 	INMEM_INVALIDATE,
944 	INMEM_REVOKE,
945 	IPU,
946 	OPU,
947 };
948 
949 enum temp_type {
950 	HOT = 0,	/* must be zero for meta bio */
951 	WARM,
952 	COLD,
953 	NR_TEMP_TYPE,
954 };
955 
956 enum need_lock_type {
957 	LOCK_REQ = 0,
958 	LOCK_DONE,
959 	LOCK_RETRY,
960 };
961 
962 enum cp_reason_type {
963 	CP_NO_NEEDED,
964 	CP_NON_REGULAR,
965 	CP_HARDLINK,
966 	CP_SB_NEED_CP,
967 	CP_WRONG_PINO,
968 	CP_NO_SPC_ROLL,
969 	CP_NODE_NEED_CP,
970 	CP_FASTBOOT_MODE,
971 	CP_SPEC_LOG_NUM,
972 	CP_RECOVER_DIR,
973 };
974 
975 enum iostat_type {
976 	APP_DIRECT_IO,			/* app direct IOs */
977 	APP_BUFFERED_IO,		/* app buffered IOs */
978 	APP_WRITE_IO,			/* app write IOs */
979 	APP_MAPPED_IO,			/* app mapped IOs */
980 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
981 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
982 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
983 	FS_GC_DATA_IO,			/* data IOs from forground gc */
984 	FS_GC_NODE_IO,			/* node IOs from forground gc */
985 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
986 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
987 	FS_CP_META_IO,			/* meta IOs from checkpoint */
988 	FS_DISCARD,			/* discard */
989 	NR_IO_TYPE,
990 };
991 
992 struct f2fs_io_info {
993 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
994 	nid_t ino;		/* inode number */
995 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
996 	enum temp_type temp;	/* contains HOT/WARM/COLD */
997 	int op;			/* contains REQ_OP_ */
998 	int op_flags;		/* req_flag_bits */
999 	block_t new_blkaddr;	/* new block address to be written */
1000 	block_t old_blkaddr;	/* old block address before Cow */
1001 	struct page *page;	/* page to be written */
1002 	struct page *encrypted_page;	/* encrypted page */
1003 	struct list_head list;		/* serialize IOs */
1004 	bool submitted;		/* indicate IO submission */
1005 	int need_lock;		/* indicate we need to lock cp_rwsem */
1006 	bool in_list;		/* indicate fio is in io_list */
1007 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1008 	enum iostat_type io_type;	/* io type */
1009 	struct writeback_control *io_wbc; /* writeback control */
1010 };
1011 
1012 #define is_read_io(rw) ((rw) == READ)
1013 struct f2fs_bio_info {
1014 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1015 	struct bio *bio;		/* bios to merge */
1016 	sector_t last_block_in_bio;	/* last block number */
1017 	struct f2fs_io_info fio;	/* store buffered io info. */
1018 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1019 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1020 	struct list_head io_list;	/* track fios */
1021 };
1022 
1023 #define FDEV(i)				(sbi->devs[i])
1024 #define RDEV(i)				(raw_super->devs[i])
1025 struct f2fs_dev_info {
1026 	struct block_device *bdev;
1027 	char path[MAX_PATH_LEN];
1028 	unsigned int total_segments;
1029 	block_t start_blk;
1030 	block_t end_blk;
1031 #ifdef CONFIG_BLK_DEV_ZONED
1032 	unsigned int nr_blkz;			/* Total number of zones */
1033 	u8 *blkz_type;				/* Array of zones type */
1034 #endif
1035 };
1036 
1037 enum inode_type {
1038 	DIR_INODE,			/* for dirty dir inode */
1039 	FILE_INODE,			/* for dirty regular/symlink inode */
1040 	DIRTY_META,			/* for all dirtied inode metadata */
1041 	ATOMIC_FILE,			/* for all atomic files */
1042 	NR_INODE_TYPE,
1043 };
1044 
1045 /* for inner inode cache management */
1046 struct inode_management {
1047 	struct radix_tree_root ino_root;	/* ino entry array */
1048 	spinlock_t ino_lock;			/* for ino entry lock */
1049 	struct list_head ino_list;		/* inode list head */
1050 	unsigned long ino_num;			/* number of entries */
1051 };
1052 
1053 /* For s_flag in struct f2fs_sb_info */
1054 enum {
1055 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1056 	SBI_IS_CLOSE,				/* specify unmounting */
1057 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1058 	SBI_POR_DOING,				/* recovery is doing or not */
1059 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1060 	SBI_NEED_CP,				/* need to checkpoint */
1061 };
1062 
1063 enum {
1064 	CP_TIME,
1065 	REQ_TIME,
1066 	MAX_TIME,
1067 };
1068 
1069 enum {
1070 	WHINT_MODE_OFF,		/* not pass down write hints */
1071 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1072 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1073 };
1074 
1075 enum {
1076 	ALLOC_MODE_DEFAULT,	/* stay default */
1077 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1078 };
1079 
1080 enum fsync_mode {
1081 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1082 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1083 };
1084 
1085 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1086 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1087 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1088 #else
1089 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1090 #endif
1091 
1092 struct f2fs_sb_info {
1093 	struct super_block *sb;			/* pointer to VFS super block */
1094 	struct proc_dir_entry *s_proc;		/* proc entry */
1095 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1096 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1097 	int valid_super_block;			/* valid super block no */
1098 	unsigned long s_flag;				/* flags for sbi */
1099 
1100 #ifdef CONFIG_BLK_DEV_ZONED
1101 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1102 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1103 #endif
1104 
1105 	/* for node-related operations */
1106 	struct f2fs_nm_info *nm_info;		/* node manager */
1107 	struct inode *node_inode;		/* cache node blocks */
1108 
1109 	/* for segment-related operations */
1110 	struct f2fs_sm_info *sm_info;		/* segment manager */
1111 
1112 	/* for bio operations */
1113 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1114 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1115 						/* bio ordering for NODE/DATA */
1116 	mempool_t *write_io_dummy;		/* Dummy pages */
1117 
1118 	/* for checkpoint */
1119 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1120 	int cur_cp_pack;			/* remain current cp pack */
1121 	spinlock_t cp_lock;			/* for flag in ckpt */
1122 	struct inode *meta_inode;		/* cache meta blocks */
1123 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1124 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1125 	struct rw_semaphore node_write;		/* locking node writes */
1126 	struct rw_semaphore node_change;	/* locking node change */
1127 	wait_queue_head_t cp_wait;
1128 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1129 	long interval_time[MAX_TIME];		/* to store thresholds */
1130 
1131 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1132 
1133 	/* for orphan inode, use 0'th array */
1134 	unsigned int max_orphans;		/* max orphan inodes */
1135 
1136 	/* for inode management */
1137 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1138 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1139 
1140 	/* for extent tree cache */
1141 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1142 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1143 	struct list_head extent_list;		/* lru list for shrinker */
1144 	spinlock_t extent_lock;			/* locking extent lru list */
1145 	atomic_t total_ext_tree;		/* extent tree count */
1146 	struct list_head zombie_list;		/* extent zombie tree list */
1147 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1148 	atomic_t total_ext_node;		/* extent info count */
1149 
1150 	/* basic filesystem units */
1151 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1152 	unsigned int log_blocksize;		/* log2 block size */
1153 	unsigned int blocksize;			/* block size */
1154 	unsigned int root_ino_num;		/* root inode number*/
1155 	unsigned int node_ino_num;		/* node inode number*/
1156 	unsigned int meta_ino_num;		/* meta inode number*/
1157 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1158 	unsigned int blocks_per_seg;		/* blocks per segment */
1159 	unsigned int segs_per_sec;		/* segments per section */
1160 	unsigned int secs_per_zone;		/* sections per zone */
1161 	unsigned int total_sections;		/* total section count */
1162 	unsigned int total_node_count;		/* total node block count */
1163 	unsigned int total_valid_node_count;	/* valid node block count */
1164 	loff_t max_file_blocks;			/* max block index of file */
1165 	int dir_level;				/* directory level */
1166 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1167 	int readdir_ra;				/* readahead inode in readdir */
1168 
1169 	block_t user_block_count;		/* # of user blocks */
1170 	block_t total_valid_block_count;	/* # of valid blocks */
1171 	block_t discard_blks;			/* discard command candidats */
1172 	block_t last_valid_block_count;		/* for recovery */
1173 	block_t reserved_blocks;		/* configurable reserved blocks */
1174 	block_t current_reserved_blocks;	/* current reserved blocks */
1175 
1176 	unsigned int nquota_files;		/* # of quota sysfile */
1177 
1178 	u32 s_next_generation;			/* for NFS support */
1179 
1180 	/* # of pages, see count_type */
1181 	atomic_t nr_pages[NR_COUNT_TYPE];
1182 	/* # of allocated blocks */
1183 	struct percpu_counter alloc_valid_block_count;
1184 
1185 	/* writeback control */
1186 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1187 
1188 	/* valid inode count */
1189 	struct percpu_counter total_valid_inode_count;
1190 
1191 	struct f2fs_mount_info mount_opt;	/* mount options */
1192 
1193 	/* for cleaning operations */
1194 	struct mutex gc_mutex;			/* mutex for GC */
1195 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1196 	unsigned int cur_victim_sec;		/* current victim section num */
1197 
1198 	/* threshold for converting bg victims for fg */
1199 	u64 fggc_threshold;
1200 
1201 	/* threshold for gc trials on pinned files */
1202 	u64 gc_pin_file_threshold;
1203 
1204 	/* maximum # of trials to find a victim segment for SSR and GC */
1205 	unsigned int max_victim_search;
1206 
1207 	/*
1208 	 * for stat information.
1209 	 * one is for the LFS mode, and the other is for the SSR mode.
1210 	 */
1211 #ifdef CONFIG_F2FS_STAT_FS
1212 	struct f2fs_stat_info *stat_info;	/* FS status information */
1213 	unsigned int segment_count[2];		/* # of allocated segments */
1214 	unsigned int block_count[2];		/* # of allocated blocks */
1215 	atomic_t inplace_count;		/* # of inplace update */
1216 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1217 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1218 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1219 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1220 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1221 	atomic_t inline_inode;			/* # of inline_data inodes */
1222 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1223 	atomic_t aw_cnt;			/* # of atomic writes */
1224 	atomic_t vw_cnt;			/* # of volatile writes */
1225 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1226 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1227 	int bg_gc;				/* background gc calls */
1228 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1229 #endif
1230 	spinlock_t stat_lock;			/* lock for stat operations */
1231 
1232 	/* For app/fs IO statistics */
1233 	spinlock_t iostat_lock;
1234 	unsigned long long write_iostat[NR_IO_TYPE];
1235 	bool iostat_enable;
1236 
1237 	/* For sysfs suppport */
1238 	struct kobject s_kobj;
1239 	struct completion s_kobj_unregister;
1240 
1241 	/* For shrinker support */
1242 	struct list_head s_list;
1243 	int s_ndevs;				/* number of devices */
1244 	struct f2fs_dev_info *devs;		/* for device list */
1245 	unsigned int dirty_device;		/* for checkpoint data flush */
1246 	spinlock_t dev_lock;			/* protect dirty_device */
1247 	struct mutex umount_mutex;
1248 	unsigned int shrinker_run_no;
1249 
1250 	/* For write statistics */
1251 	u64 sectors_written_start;
1252 	u64 kbytes_written;
1253 
1254 	/* Reference to checksum algorithm driver via cryptoapi */
1255 	struct crypto_shash *s_chksum_driver;
1256 
1257 	/* Precomputed FS UUID checksum for seeding other checksums */
1258 	__u32 s_chksum_seed;
1259 };
1260 
1261 #ifdef CONFIG_F2FS_FAULT_INJECTION
1262 #define f2fs_show_injection_info(type)				\
1263 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1264 		KERN_INFO, fault_name[type],			\
1265 		__func__, __builtin_return_address(0))
1266 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1267 {
1268 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1269 
1270 	if (!ffi->inject_rate)
1271 		return false;
1272 
1273 	if (!IS_FAULT_SET(ffi, type))
1274 		return false;
1275 
1276 	atomic_inc(&ffi->inject_ops);
1277 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1278 		atomic_set(&ffi->inject_ops, 0);
1279 		return true;
1280 	}
1281 	return false;
1282 }
1283 #endif
1284 
1285 /* For write statistics. Suppose sector size is 512 bytes,
1286  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1287  */
1288 #define BD_PART_WRITTEN(s)						 \
1289 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1290 		(s)->sectors_written_start) >> 1)
1291 
1292 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1293 {
1294 	sbi->last_time[type] = jiffies;
1295 }
1296 
1297 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1298 {
1299 	unsigned long interval = sbi->interval_time[type] * HZ;
1300 
1301 	return time_after(jiffies, sbi->last_time[type] + interval);
1302 }
1303 
1304 static inline bool is_idle(struct f2fs_sb_info *sbi)
1305 {
1306 	struct block_device *bdev = sbi->sb->s_bdev;
1307 	struct request_queue *q = bdev_get_queue(bdev);
1308 	struct request_list *rl = &q->root_rl;
1309 
1310 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1311 		return 0;
1312 
1313 	return f2fs_time_over(sbi, REQ_TIME);
1314 }
1315 
1316 /*
1317  * Inline functions
1318  */
1319 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1320 			      const void *address, unsigned int length)
1321 {
1322 	struct {
1323 		struct shash_desc shash;
1324 		char ctx[4];
1325 	} desc;
1326 	int err;
1327 
1328 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1329 
1330 	desc.shash.tfm = sbi->s_chksum_driver;
1331 	desc.shash.flags = 0;
1332 	*(u32 *)desc.ctx = crc;
1333 
1334 	err = crypto_shash_update(&desc.shash, address, length);
1335 	BUG_ON(err);
1336 
1337 	return *(u32 *)desc.ctx;
1338 }
1339 
1340 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1341 			   unsigned int length)
1342 {
1343 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1344 }
1345 
1346 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1347 				  void *buf, size_t buf_size)
1348 {
1349 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1350 }
1351 
1352 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1353 			      const void *address, unsigned int length)
1354 {
1355 	return __f2fs_crc32(sbi, crc, address, length);
1356 }
1357 
1358 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1359 {
1360 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1361 }
1362 
1363 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1364 {
1365 	return sb->s_fs_info;
1366 }
1367 
1368 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1369 {
1370 	return F2FS_SB(inode->i_sb);
1371 }
1372 
1373 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1374 {
1375 	return F2FS_I_SB(mapping->host);
1376 }
1377 
1378 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1379 {
1380 	return F2FS_M_SB(page->mapping);
1381 }
1382 
1383 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1384 {
1385 	return (struct f2fs_super_block *)(sbi->raw_super);
1386 }
1387 
1388 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1389 {
1390 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1391 }
1392 
1393 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1394 {
1395 	return (struct f2fs_node *)page_address(page);
1396 }
1397 
1398 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1399 {
1400 	return &((struct f2fs_node *)page_address(page))->i;
1401 }
1402 
1403 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1404 {
1405 	return (struct f2fs_nm_info *)(sbi->nm_info);
1406 }
1407 
1408 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1409 {
1410 	return (struct f2fs_sm_info *)(sbi->sm_info);
1411 }
1412 
1413 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1414 {
1415 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1416 }
1417 
1418 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1419 {
1420 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1421 }
1422 
1423 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1424 {
1425 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1426 }
1427 
1428 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1429 {
1430 	return sbi->meta_inode->i_mapping;
1431 }
1432 
1433 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1434 {
1435 	return sbi->node_inode->i_mapping;
1436 }
1437 
1438 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1439 {
1440 	return test_bit(type, &sbi->s_flag);
1441 }
1442 
1443 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1444 {
1445 	set_bit(type, &sbi->s_flag);
1446 }
1447 
1448 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1449 {
1450 	clear_bit(type, &sbi->s_flag);
1451 }
1452 
1453 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1454 {
1455 	return le64_to_cpu(cp->checkpoint_ver);
1456 }
1457 
1458 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1459 {
1460 	if (type < F2FS_MAX_QUOTAS)
1461 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1462 	return 0;
1463 }
1464 
1465 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1466 {
1467 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1468 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1469 }
1470 
1471 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1472 {
1473 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1474 
1475 	return ckpt_flags & f;
1476 }
1477 
1478 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1479 {
1480 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1481 }
1482 
1483 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1484 {
1485 	unsigned int ckpt_flags;
1486 
1487 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1488 	ckpt_flags |= f;
1489 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1490 }
1491 
1492 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1493 {
1494 	unsigned long flags;
1495 
1496 	spin_lock_irqsave(&sbi->cp_lock, flags);
1497 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1498 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1499 }
1500 
1501 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1502 {
1503 	unsigned int ckpt_flags;
1504 
1505 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1506 	ckpt_flags &= (~f);
1507 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1508 }
1509 
1510 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1511 {
1512 	unsigned long flags;
1513 
1514 	spin_lock_irqsave(&sbi->cp_lock, flags);
1515 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1516 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1517 }
1518 
1519 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1520 {
1521 	unsigned long flags;
1522 
1523 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1524 
1525 	if (lock)
1526 		spin_lock_irqsave(&sbi->cp_lock, flags);
1527 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1528 	kfree(NM_I(sbi)->nat_bits);
1529 	NM_I(sbi)->nat_bits = NULL;
1530 	if (lock)
1531 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1532 }
1533 
1534 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1535 					struct cp_control *cpc)
1536 {
1537 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1538 
1539 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1540 }
1541 
1542 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1543 {
1544 	down_read(&sbi->cp_rwsem);
1545 }
1546 
1547 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1548 {
1549 	return down_read_trylock(&sbi->cp_rwsem);
1550 }
1551 
1552 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1553 {
1554 	up_read(&sbi->cp_rwsem);
1555 }
1556 
1557 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1558 {
1559 	down_write(&sbi->cp_rwsem);
1560 }
1561 
1562 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1563 {
1564 	up_write(&sbi->cp_rwsem);
1565 }
1566 
1567 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1568 {
1569 	int reason = CP_SYNC;
1570 
1571 	if (test_opt(sbi, FASTBOOT))
1572 		reason = CP_FASTBOOT;
1573 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1574 		reason = CP_UMOUNT;
1575 	return reason;
1576 }
1577 
1578 static inline bool __remain_node_summaries(int reason)
1579 {
1580 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1581 }
1582 
1583 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1584 {
1585 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1586 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1587 }
1588 
1589 /*
1590  * Check whether the given nid is within node id range.
1591  */
1592 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1593 {
1594 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1595 		return -EINVAL;
1596 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1597 		return -EINVAL;
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Check whether the inode has blocks or not
1603  */
1604 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1605 {
1606 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1607 
1608 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1609 }
1610 
1611 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1612 {
1613 	return ofs == XATTR_NODE_OFFSET;
1614 }
1615 
1616 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1617 					struct inode *inode)
1618 {
1619 	if (!inode)
1620 		return true;
1621 	if (!test_opt(sbi, RESERVE_ROOT))
1622 		return false;
1623 	if (IS_NOQUOTA(inode))
1624 		return true;
1625 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1626 		return true;
1627 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1628 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1629 		return true;
1630 	if (capable(CAP_SYS_RESOURCE))
1631 		return true;
1632 	return false;
1633 }
1634 
1635 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1636 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1637 				 struct inode *inode, blkcnt_t *count)
1638 {
1639 	blkcnt_t diff = 0, release = 0;
1640 	block_t avail_user_block_count;
1641 	int ret;
1642 
1643 	ret = dquot_reserve_block(inode, *count);
1644 	if (ret)
1645 		return ret;
1646 
1647 #ifdef CONFIG_F2FS_FAULT_INJECTION
1648 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1649 		f2fs_show_injection_info(FAULT_BLOCK);
1650 		release = *count;
1651 		goto enospc;
1652 	}
1653 #endif
1654 	/*
1655 	 * let's increase this in prior to actual block count change in order
1656 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1657 	 */
1658 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1659 
1660 	spin_lock(&sbi->stat_lock);
1661 	sbi->total_valid_block_count += (block_t)(*count);
1662 	avail_user_block_count = sbi->user_block_count -
1663 					sbi->current_reserved_blocks;
1664 
1665 	if (!__allow_reserved_blocks(sbi, inode))
1666 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1667 
1668 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1669 		diff = sbi->total_valid_block_count - avail_user_block_count;
1670 		if (diff > *count)
1671 			diff = *count;
1672 		*count -= diff;
1673 		release = diff;
1674 		sbi->total_valid_block_count -= diff;
1675 		if (!*count) {
1676 			spin_unlock(&sbi->stat_lock);
1677 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1678 			goto enospc;
1679 		}
1680 	}
1681 	spin_unlock(&sbi->stat_lock);
1682 
1683 	if (unlikely(release))
1684 		dquot_release_reservation_block(inode, release);
1685 	f2fs_i_blocks_write(inode, *count, true, true);
1686 	return 0;
1687 
1688 enospc:
1689 	dquot_release_reservation_block(inode, release);
1690 	return -ENOSPC;
1691 }
1692 
1693 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1694 						struct inode *inode,
1695 						block_t count)
1696 {
1697 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1698 
1699 	spin_lock(&sbi->stat_lock);
1700 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1701 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1702 	sbi->total_valid_block_count -= (block_t)count;
1703 	if (sbi->reserved_blocks &&
1704 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1705 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1706 					sbi->current_reserved_blocks + count);
1707 	spin_unlock(&sbi->stat_lock);
1708 	f2fs_i_blocks_write(inode, count, false, true);
1709 }
1710 
1711 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1712 {
1713 	atomic_inc(&sbi->nr_pages[count_type]);
1714 
1715 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1716 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1717 		return;
1718 
1719 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1720 }
1721 
1722 static inline void inode_inc_dirty_pages(struct inode *inode)
1723 {
1724 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1725 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1726 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1727 	if (IS_NOQUOTA(inode))
1728 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1729 }
1730 
1731 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1732 {
1733 	atomic_dec(&sbi->nr_pages[count_type]);
1734 }
1735 
1736 static inline void inode_dec_dirty_pages(struct inode *inode)
1737 {
1738 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1739 			!S_ISLNK(inode->i_mode))
1740 		return;
1741 
1742 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1743 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1744 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1745 	if (IS_NOQUOTA(inode))
1746 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1747 }
1748 
1749 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1750 {
1751 	return atomic_read(&sbi->nr_pages[count_type]);
1752 }
1753 
1754 static inline int get_dirty_pages(struct inode *inode)
1755 {
1756 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1757 }
1758 
1759 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1760 {
1761 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1762 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1763 						sbi->log_blocks_per_seg;
1764 
1765 	return segs / sbi->segs_per_sec;
1766 }
1767 
1768 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1769 {
1770 	return sbi->total_valid_block_count;
1771 }
1772 
1773 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1774 {
1775 	return sbi->discard_blks;
1776 }
1777 
1778 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1779 {
1780 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1781 
1782 	/* return NAT or SIT bitmap */
1783 	if (flag == NAT_BITMAP)
1784 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1785 	else if (flag == SIT_BITMAP)
1786 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1787 
1788 	return 0;
1789 }
1790 
1791 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1792 {
1793 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1794 }
1795 
1796 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1797 {
1798 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1799 	int offset;
1800 
1801 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1802 		offset = (flag == SIT_BITMAP) ?
1803 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1804 		return &ckpt->sit_nat_version_bitmap + offset;
1805 	}
1806 
1807 	if (__cp_payload(sbi) > 0) {
1808 		if (flag == NAT_BITMAP)
1809 			return &ckpt->sit_nat_version_bitmap;
1810 		else
1811 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1812 	} else {
1813 		offset = (flag == NAT_BITMAP) ?
1814 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1815 		return &ckpt->sit_nat_version_bitmap + offset;
1816 	}
1817 }
1818 
1819 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1820 {
1821 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1822 
1823 	if (sbi->cur_cp_pack == 2)
1824 		start_addr += sbi->blocks_per_seg;
1825 	return start_addr;
1826 }
1827 
1828 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1829 {
1830 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1831 
1832 	if (sbi->cur_cp_pack == 1)
1833 		start_addr += sbi->blocks_per_seg;
1834 	return start_addr;
1835 }
1836 
1837 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1838 {
1839 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1840 }
1841 
1842 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1843 {
1844 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1845 }
1846 
1847 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1848 					struct inode *inode, bool is_inode)
1849 {
1850 	block_t	valid_block_count;
1851 	unsigned int valid_node_count;
1852 	bool quota = inode && !is_inode;
1853 
1854 	if (quota) {
1855 		int ret = dquot_reserve_block(inode, 1);
1856 		if (ret)
1857 			return ret;
1858 	}
1859 
1860 #ifdef CONFIG_F2FS_FAULT_INJECTION
1861 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1862 		f2fs_show_injection_info(FAULT_BLOCK);
1863 		goto enospc;
1864 	}
1865 #endif
1866 
1867 	spin_lock(&sbi->stat_lock);
1868 
1869 	valid_block_count = sbi->total_valid_block_count +
1870 					sbi->current_reserved_blocks + 1;
1871 
1872 	if (!__allow_reserved_blocks(sbi, inode))
1873 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1874 
1875 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1876 		spin_unlock(&sbi->stat_lock);
1877 		goto enospc;
1878 	}
1879 
1880 	valid_node_count = sbi->total_valid_node_count + 1;
1881 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1882 		spin_unlock(&sbi->stat_lock);
1883 		goto enospc;
1884 	}
1885 
1886 	sbi->total_valid_node_count++;
1887 	sbi->total_valid_block_count++;
1888 	spin_unlock(&sbi->stat_lock);
1889 
1890 	if (inode) {
1891 		if (is_inode)
1892 			f2fs_mark_inode_dirty_sync(inode, true);
1893 		else
1894 			f2fs_i_blocks_write(inode, 1, true, true);
1895 	}
1896 
1897 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1898 	return 0;
1899 
1900 enospc:
1901 	if (quota)
1902 		dquot_release_reservation_block(inode, 1);
1903 	return -ENOSPC;
1904 }
1905 
1906 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1907 					struct inode *inode, bool is_inode)
1908 {
1909 	spin_lock(&sbi->stat_lock);
1910 
1911 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1912 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1913 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1914 
1915 	sbi->total_valid_node_count--;
1916 	sbi->total_valid_block_count--;
1917 	if (sbi->reserved_blocks &&
1918 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1919 		sbi->current_reserved_blocks++;
1920 
1921 	spin_unlock(&sbi->stat_lock);
1922 
1923 	if (!is_inode)
1924 		f2fs_i_blocks_write(inode, 1, false, true);
1925 }
1926 
1927 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1928 {
1929 	return sbi->total_valid_node_count;
1930 }
1931 
1932 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1933 {
1934 	percpu_counter_inc(&sbi->total_valid_inode_count);
1935 }
1936 
1937 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1938 {
1939 	percpu_counter_dec(&sbi->total_valid_inode_count);
1940 }
1941 
1942 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1943 {
1944 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1945 }
1946 
1947 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1948 						pgoff_t index, bool for_write)
1949 {
1950 #ifdef CONFIG_F2FS_FAULT_INJECTION
1951 	struct page *page = find_lock_page(mapping, index);
1952 
1953 	if (page)
1954 		return page;
1955 
1956 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1957 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1958 		return NULL;
1959 	}
1960 #endif
1961 	if (!for_write)
1962 		return grab_cache_page(mapping, index);
1963 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1964 }
1965 
1966 static inline struct page *f2fs_pagecache_get_page(
1967 				struct address_space *mapping, pgoff_t index,
1968 				int fgp_flags, gfp_t gfp_mask)
1969 {
1970 #ifdef CONFIG_F2FS_FAULT_INJECTION
1971 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1972 		f2fs_show_injection_info(FAULT_PAGE_GET);
1973 		return NULL;
1974 	}
1975 #endif
1976 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1977 }
1978 
1979 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1980 {
1981 	char *src_kaddr = kmap(src);
1982 	char *dst_kaddr = kmap(dst);
1983 
1984 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1985 	kunmap(dst);
1986 	kunmap(src);
1987 }
1988 
1989 static inline void f2fs_put_page(struct page *page, int unlock)
1990 {
1991 	if (!page)
1992 		return;
1993 
1994 	if (unlock) {
1995 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1996 		unlock_page(page);
1997 	}
1998 	put_page(page);
1999 }
2000 
2001 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2002 {
2003 	if (dn->node_page)
2004 		f2fs_put_page(dn->node_page, 1);
2005 	if (dn->inode_page && dn->node_page != dn->inode_page)
2006 		f2fs_put_page(dn->inode_page, 0);
2007 	dn->node_page = NULL;
2008 	dn->inode_page = NULL;
2009 }
2010 
2011 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2012 					size_t size)
2013 {
2014 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2015 }
2016 
2017 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2018 						gfp_t flags)
2019 {
2020 	void *entry;
2021 
2022 	entry = kmem_cache_alloc(cachep, flags);
2023 	if (!entry)
2024 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2025 	return entry;
2026 }
2027 
2028 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2029 						int npages, bool no_fail)
2030 {
2031 	struct bio *bio;
2032 
2033 	if (no_fail) {
2034 		/* No failure on bio allocation */
2035 		bio = bio_alloc(GFP_NOIO, npages);
2036 		if (!bio)
2037 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2038 		return bio;
2039 	}
2040 #ifdef CONFIG_F2FS_FAULT_INJECTION
2041 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2042 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2043 		return NULL;
2044 	}
2045 #endif
2046 	return bio_alloc(GFP_KERNEL, npages);
2047 }
2048 
2049 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2050 				unsigned long index, void *item)
2051 {
2052 	while (radix_tree_insert(root, index, item))
2053 		cond_resched();
2054 }
2055 
2056 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2057 
2058 static inline bool IS_INODE(struct page *page)
2059 {
2060 	struct f2fs_node *p = F2FS_NODE(page);
2061 
2062 	return RAW_IS_INODE(p);
2063 }
2064 
2065 static inline int offset_in_addr(struct f2fs_inode *i)
2066 {
2067 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2068 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2069 }
2070 
2071 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2072 {
2073 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2074 }
2075 
2076 static inline int f2fs_has_extra_attr(struct inode *inode);
2077 static inline block_t datablock_addr(struct inode *inode,
2078 			struct page *node_page, unsigned int offset)
2079 {
2080 	struct f2fs_node *raw_node;
2081 	__le32 *addr_array;
2082 	int base = 0;
2083 	bool is_inode = IS_INODE(node_page);
2084 
2085 	raw_node = F2FS_NODE(node_page);
2086 
2087 	/* from GC path only */
2088 	if (is_inode) {
2089 		if (!inode)
2090 			base = offset_in_addr(&raw_node->i);
2091 		else if (f2fs_has_extra_attr(inode))
2092 			base = get_extra_isize(inode);
2093 	}
2094 
2095 	addr_array = blkaddr_in_node(raw_node);
2096 	return le32_to_cpu(addr_array[base + offset]);
2097 }
2098 
2099 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2100 {
2101 	int mask;
2102 
2103 	addr += (nr >> 3);
2104 	mask = 1 << (7 - (nr & 0x07));
2105 	return mask & *addr;
2106 }
2107 
2108 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2109 {
2110 	int mask;
2111 
2112 	addr += (nr >> 3);
2113 	mask = 1 << (7 - (nr & 0x07));
2114 	*addr |= mask;
2115 }
2116 
2117 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2118 {
2119 	int mask;
2120 
2121 	addr += (nr >> 3);
2122 	mask = 1 << (7 - (nr & 0x07));
2123 	*addr &= ~mask;
2124 }
2125 
2126 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2127 {
2128 	int mask;
2129 	int ret;
2130 
2131 	addr += (nr >> 3);
2132 	mask = 1 << (7 - (nr & 0x07));
2133 	ret = mask & *addr;
2134 	*addr |= mask;
2135 	return ret;
2136 }
2137 
2138 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2139 {
2140 	int mask;
2141 	int ret;
2142 
2143 	addr += (nr >> 3);
2144 	mask = 1 << (7 - (nr & 0x07));
2145 	ret = mask & *addr;
2146 	*addr &= ~mask;
2147 	return ret;
2148 }
2149 
2150 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2151 {
2152 	int mask;
2153 
2154 	addr += (nr >> 3);
2155 	mask = 1 << (7 - (nr & 0x07));
2156 	*addr ^= mask;
2157 }
2158 
2159 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2160 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
2161 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
2162 
2163 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2164 {
2165 	if (S_ISDIR(mode))
2166 		return flags;
2167 	else if (S_ISREG(mode))
2168 		return flags & F2FS_REG_FLMASK;
2169 	else
2170 		return flags & F2FS_OTHER_FLMASK;
2171 }
2172 
2173 /* used for f2fs_inode_info->flags */
2174 enum {
2175 	FI_NEW_INODE,		/* indicate newly allocated inode */
2176 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2177 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2178 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2179 	FI_INC_LINK,		/* need to increment i_nlink */
2180 	FI_ACL_MODE,		/* indicate acl mode */
2181 	FI_NO_ALLOC,		/* should not allocate any blocks */
2182 	FI_FREE_NID,		/* free allocated nide */
2183 	FI_NO_EXTENT,		/* not to use the extent cache */
2184 	FI_INLINE_XATTR,	/* used for inline xattr */
2185 	FI_INLINE_DATA,		/* used for inline data*/
2186 	FI_INLINE_DENTRY,	/* used for inline dentry */
2187 	FI_APPEND_WRITE,	/* inode has appended data */
2188 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2189 	FI_NEED_IPU,		/* used for ipu per file */
2190 	FI_ATOMIC_FILE,		/* indicate atomic file */
2191 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2192 	FI_VOLATILE_FILE,	/* indicate volatile file */
2193 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2194 	FI_DROP_CACHE,		/* drop dirty page cache */
2195 	FI_DATA_EXIST,		/* indicate data exists */
2196 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2197 	FI_DO_DEFRAG,		/* indicate defragment is running */
2198 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2199 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2200 	FI_HOT_DATA,		/* indicate file is hot */
2201 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2202 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2203 	FI_PIN_FILE,		/* indicate file should not be gced */
2204 };
2205 
2206 static inline void __mark_inode_dirty_flag(struct inode *inode,
2207 						int flag, bool set)
2208 {
2209 	switch (flag) {
2210 	case FI_INLINE_XATTR:
2211 	case FI_INLINE_DATA:
2212 	case FI_INLINE_DENTRY:
2213 	case FI_NEW_INODE:
2214 		if (set)
2215 			return;
2216 	case FI_DATA_EXIST:
2217 	case FI_INLINE_DOTS:
2218 	case FI_PIN_FILE:
2219 		f2fs_mark_inode_dirty_sync(inode, true);
2220 	}
2221 }
2222 
2223 static inline void set_inode_flag(struct inode *inode, int flag)
2224 {
2225 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2226 		set_bit(flag, &F2FS_I(inode)->flags);
2227 	__mark_inode_dirty_flag(inode, flag, true);
2228 }
2229 
2230 static inline int is_inode_flag_set(struct inode *inode, int flag)
2231 {
2232 	return test_bit(flag, &F2FS_I(inode)->flags);
2233 }
2234 
2235 static inline void clear_inode_flag(struct inode *inode, int flag)
2236 {
2237 	if (test_bit(flag, &F2FS_I(inode)->flags))
2238 		clear_bit(flag, &F2FS_I(inode)->flags);
2239 	__mark_inode_dirty_flag(inode, flag, false);
2240 }
2241 
2242 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2243 {
2244 	F2FS_I(inode)->i_acl_mode = mode;
2245 	set_inode_flag(inode, FI_ACL_MODE);
2246 	f2fs_mark_inode_dirty_sync(inode, false);
2247 }
2248 
2249 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2250 {
2251 	if (inc)
2252 		inc_nlink(inode);
2253 	else
2254 		drop_nlink(inode);
2255 	f2fs_mark_inode_dirty_sync(inode, true);
2256 }
2257 
2258 static inline void f2fs_i_blocks_write(struct inode *inode,
2259 					block_t diff, bool add, bool claim)
2260 {
2261 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2262 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2263 
2264 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2265 	if (add) {
2266 		if (claim)
2267 			dquot_claim_block(inode, diff);
2268 		else
2269 			dquot_alloc_block_nofail(inode, diff);
2270 	} else {
2271 		dquot_free_block(inode, diff);
2272 	}
2273 
2274 	f2fs_mark_inode_dirty_sync(inode, true);
2275 	if (clean || recover)
2276 		set_inode_flag(inode, FI_AUTO_RECOVER);
2277 }
2278 
2279 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2280 {
2281 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2282 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2283 
2284 	if (i_size_read(inode) == i_size)
2285 		return;
2286 
2287 	i_size_write(inode, i_size);
2288 	f2fs_mark_inode_dirty_sync(inode, true);
2289 	if (clean || recover)
2290 		set_inode_flag(inode, FI_AUTO_RECOVER);
2291 }
2292 
2293 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2294 {
2295 	F2FS_I(inode)->i_current_depth = depth;
2296 	f2fs_mark_inode_dirty_sync(inode, true);
2297 }
2298 
2299 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2300 					unsigned int count)
2301 {
2302 	F2FS_I(inode)->i_gc_failures = count;
2303 	f2fs_mark_inode_dirty_sync(inode, true);
2304 }
2305 
2306 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2307 {
2308 	F2FS_I(inode)->i_xattr_nid = xnid;
2309 	f2fs_mark_inode_dirty_sync(inode, true);
2310 }
2311 
2312 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2313 {
2314 	F2FS_I(inode)->i_pino = pino;
2315 	f2fs_mark_inode_dirty_sync(inode, true);
2316 }
2317 
2318 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2319 {
2320 	struct f2fs_inode_info *fi = F2FS_I(inode);
2321 
2322 	if (ri->i_inline & F2FS_INLINE_XATTR)
2323 		set_bit(FI_INLINE_XATTR, &fi->flags);
2324 	if (ri->i_inline & F2FS_INLINE_DATA)
2325 		set_bit(FI_INLINE_DATA, &fi->flags);
2326 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2327 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2328 	if (ri->i_inline & F2FS_DATA_EXIST)
2329 		set_bit(FI_DATA_EXIST, &fi->flags);
2330 	if (ri->i_inline & F2FS_INLINE_DOTS)
2331 		set_bit(FI_INLINE_DOTS, &fi->flags);
2332 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2333 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2334 	if (ri->i_inline & F2FS_PIN_FILE)
2335 		set_bit(FI_PIN_FILE, &fi->flags);
2336 }
2337 
2338 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2339 {
2340 	ri->i_inline = 0;
2341 
2342 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2343 		ri->i_inline |= F2FS_INLINE_XATTR;
2344 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2345 		ri->i_inline |= F2FS_INLINE_DATA;
2346 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2347 		ri->i_inline |= F2FS_INLINE_DENTRY;
2348 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2349 		ri->i_inline |= F2FS_DATA_EXIST;
2350 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2351 		ri->i_inline |= F2FS_INLINE_DOTS;
2352 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2353 		ri->i_inline |= F2FS_EXTRA_ATTR;
2354 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2355 		ri->i_inline |= F2FS_PIN_FILE;
2356 }
2357 
2358 static inline int f2fs_has_extra_attr(struct inode *inode)
2359 {
2360 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2361 }
2362 
2363 static inline int f2fs_has_inline_xattr(struct inode *inode)
2364 {
2365 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2366 }
2367 
2368 static inline unsigned int addrs_per_inode(struct inode *inode)
2369 {
2370 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2371 }
2372 
2373 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2374 {
2375 	struct f2fs_inode *ri = F2FS_INODE(page);
2376 
2377 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2378 					get_inline_xattr_addrs(inode)]);
2379 }
2380 
2381 static inline int inline_xattr_size(struct inode *inode)
2382 {
2383 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2384 }
2385 
2386 static inline int f2fs_has_inline_data(struct inode *inode)
2387 {
2388 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2389 }
2390 
2391 static inline int f2fs_exist_data(struct inode *inode)
2392 {
2393 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2394 }
2395 
2396 static inline int f2fs_has_inline_dots(struct inode *inode)
2397 {
2398 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2399 }
2400 
2401 static inline bool f2fs_is_pinned_file(struct inode *inode)
2402 {
2403 	return is_inode_flag_set(inode, FI_PIN_FILE);
2404 }
2405 
2406 static inline bool f2fs_is_atomic_file(struct inode *inode)
2407 {
2408 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2409 }
2410 
2411 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2412 {
2413 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2414 }
2415 
2416 static inline bool f2fs_is_volatile_file(struct inode *inode)
2417 {
2418 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2419 }
2420 
2421 static inline bool f2fs_is_first_block_written(struct inode *inode)
2422 {
2423 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2424 }
2425 
2426 static inline bool f2fs_is_drop_cache(struct inode *inode)
2427 {
2428 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2429 }
2430 
2431 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2432 {
2433 	struct f2fs_inode *ri = F2FS_INODE(page);
2434 	int extra_size = get_extra_isize(inode);
2435 
2436 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2437 }
2438 
2439 static inline int f2fs_has_inline_dentry(struct inode *inode)
2440 {
2441 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2442 }
2443 
2444 static inline int is_file(struct inode *inode, int type)
2445 {
2446 	return F2FS_I(inode)->i_advise & type;
2447 }
2448 
2449 static inline void set_file(struct inode *inode, int type)
2450 {
2451 	F2FS_I(inode)->i_advise |= type;
2452 	f2fs_mark_inode_dirty_sync(inode, true);
2453 }
2454 
2455 static inline void clear_file(struct inode *inode, int type)
2456 {
2457 	F2FS_I(inode)->i_advise &= ~type;
2458 	f2fs_mark_inode_dirty_sync(inode, true);
2459 }
2460 
2461 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2462 {
2463 	bool ret;
2464 
2465 	if (dsync) {
2466 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2467 
2468 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2469 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2470 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2471 		return ret;
2472 	}
2473 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2474 			file_keep_isize(inode) ||
2475 			i_size_read(inode) & ~PAGE_MASK)
2476 		return false;
2477 
2478 	if (!timespec_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2479 		return false;
2480 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2481 		return false;
2482 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2483 		return false;
2484 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3,
2485 						&F2FS_I(inode)->i_crtime))
2486 		return false;
2487 
2488 	down_read(&F2FS_I(inode)->i_sem);
2489 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2490 	up_read(&F2FS_I(inode)->i_sem);
2491 
2492 	return ret;
2493 }
2494 
2495 static inline bool f2fs_readonly(struct super_block *sb)
2496 {
2497 	return sb_rdonly(sb);
2498 }
2499 
2500 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2501 {
2502 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2503 }
2504 
2505 static inline bool is_dot_dotdot(const struct qstr *str)
2506 {
2507 	if (str->len == 1 && str->name[0] == '.')
2508 		return true;
2509 
2510 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2511 		return true;
2512 
2513 	return false;
2514 }
2515 
2516 static inline bool f2fs_may_extent_tree(struct inode *inode)
2517 {
2518 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2519 			is_inode_flag_set(inode, FI_NO_EXTENT))
2520 		return false;
2521 
2522 	return S_ISREG(inode->i_mode);
2523 }
2524 
2525 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2526 					size_t size, gfp_t flags)
2527 {
2528 #ifdef CONFIG_F2FS_FAULT_INJECTION
2529 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2530 		f2fs_show_injection_info(FAULT_KMALLOC);
2531 		return NULL;
2532 	}
2533 #endif
2534 	return kmalloc(size, flags);
2535 }
2536 
2537 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2538 					size_t size, gfp_t flags)
2539 {
2540 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2541 }
2542 
2543 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2544 					size_t size, gfp_t flags)
2545 {
2546 #ifdef CONFIG_F2FS_FAULT_INJECTION
2547 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2548 		f2fs_show_injection_info(FAULT_KVMALLOC);
2549 		return NULL;
2550 	}
2551 #endif
2552 	return kvmalloc(size, flags);
2553 }
2554 
2555 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2556 					size_t size, gfp_t flags)
2557 {
2558 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2559 }
2560 
2561 static inline int get_extra_isize(struct inode *inode)
2562 {
2563 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2564 }
2565 
2566 static inline int get_inline_xattr_addrs(struct inode *inode)
2567 {
2568 	return F2FS_I(inode)->i_inline_xattr_size;
2569 }
2570 
2571 #define get_inode_mode(i) \
2572 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2573 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2574 
2575 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2576 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2577 	offsetof(struct f2fs_inode, i_extra_isize))	\
2578 
2579 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2580 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2581 		((offsetof(typeof(*f2fs_inode), field) +	\
2582 		sizeof((f2fs_inode)->field))			\
2583 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2584 
2585 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2586 {
2587 	int i;
2588 
2589 	spin_lock(&sbi->iostat_lock);
2590 	for (i = 0; i < NR_IO_TYPE; i++)
2591 		sbi->write_iostat[i] = 0;
2592 	spin_unlock(&sbi->iostat_lock);
2593 }
2594 
2595 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2596 			enum iostat_type type, unsigned long long io_bytes)
2597 {
2598 	if (!sbi->iostat_enable)
2599 		return;
2600 	spin_lock(&sbi->iostat_lock);
2601 	sbi->write_iostat[type] += io_bytes;
2602 
2603 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2604 		sbi->write_iostat[APP_BUFFERED_IO] =
2605 			sbi->write_iostat[APP_WRITE_IO] -
2606 			sbi->write_iostat[APP_DIRECT_IO];
2607 	spin_unlock(&sbi->iostat_lock);
2608 }
2609 
2610 /*
2611  * file.c
2612  */
2613 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2614 void truncate_data_blocks(struct dnode_of_data *dn);
2615 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2616 int f2fs_truncate(struct inode *inode);
2617 int f2fs_getattr(const struct path *path, struct kstat *stat,
2618 			u32 request_mask, unsigned int flags);
2619 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2620 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2621 void truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2622 int f2fs_precache_extents(struct inode *inode);
2623 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2624 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2625 int f2fs_pin_file_control(struct inode *inode, bool inc);
2626 
2627 /*
2628  * inode.c
2629  */
2630 void f2fs_set_inode_flags(struct inode *inode);
2631 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2632 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2633 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2634 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2635 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2636 void update_inode(struct inode *inode, struct page *node_page);
2637 void update_inode_page(struct inode *inode);
2638 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2639 void f2fs_evict_inode(struct inode *inode);
2640 void handle_failed_inode(struct inode *inode);
2641 
2642 /*
2643  * namei.c
2644  */
2645 int update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2646 							bool hot, bool set);
2647 struct dentry *f2fs_get_parent(struct dentry *child);
2648 
2649 /*
2650  * dir.c
2651  */
2652 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2653 unsigned char get_de_type(struct f2fs_dir_entry *de);
2654 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2655 			f2fs_hash_t namehash, int *max_slots,
2656 			struct f2fs_dentry_ptr *d);
2657 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2658 			unsigned int start_pos, struct fscrypt_str *fstr);
2659 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2660 			struct f2fs_dentry_ptr *d);
2661 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2662 			const struct qstr *new_name,
2663 			const struct qstr *orig_name, struct page *dpage);
2664 void update_parent_metadata(struct inode *dir, struct inode *inode,
2665 			unsigned int current_depth);
2666 int room_for_filename(const void *bitmap, int slots, int max_slots);
2667 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2668 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2669 			struct fscrypt_name *fname, struct page **res_page);
2670 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2671 			const struct qstr *child, struct page **res_page);
2672 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2673 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2674 			struct page **page);
2675 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2676 			struct page *page, struct inode *inode);
2677 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2678 			const struct qstr *name, f2fs_hash_t name_hash,
2679 			unsigned int bit_pos);
2680 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2681 			const struct qstr *orig_name,
2682 			struct inode *inode, nid_t ino, umode_t mode);
2683 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2684 			struct inode *inode, nid_t ino, umode_t mode);
2685 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2686 			struct inode *inode, nid_t ino, umode_t mode);
2687 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2688 			struct inode *dir, struct inode *inode);
2689 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2690 bool f2fs_empty_dir(struct inode *dir);
2691 
2692 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2693 {
2694 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2695 				inode, inode->i_ino, inode->i_mode);
2696 }
2697 
2698 /*
2699  * super.c
2700  */
2701 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2702 void f2fs_inode_synced(struct inode *inode);
2703 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2704 void f2fs_quota_off_umount(struct super_block *sb);
2705 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2706 int f2fs_sync_fs(struct super_block *sb, int sync);
2707 extern __printf(3, 4)
2708 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2709 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2710 
2711 /*
2712  * hash.c
2713  */
2714 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2715 				struct fscrypt_name *fname);
2716 
2717 /*
2718  * node.c
2719  */
2720 struct dnode_of_data;
2721 struct node_info;
2722 
2723 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2724 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2725 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2726 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2727 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2728 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2729 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2730 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2731 int truncate_xattr_node(struct inode *inode);
2732 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2733 int remove_inode_page(struct inode *inode);
2734 struct page *new_inode_page(struct inode *inode);
2735 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2736 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2737 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2738 struct page *get_node_page_ra(struct page *parent, int start);
2739 void move_node_page(struct page *node_page, int gc_type);
2740 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2741 			struct writeback_control *wbc, bool atomic);
2742 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2743 			bool do_balance, enum iostat_type io_type);
2744 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2745 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2746 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2747 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2748 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2749 void recover_inline_xattr(struct inode *inode, struct page *page);
2750 int recover_xattr_data(struct inode *inode, struct page *page);
2751 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2752 void restore_node_summary(struct f2fs_sb_info *sbi,
2753 			unsigned int segno, struct f2fs_summary_block *sum);
2754 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2755 int build_node_manager(struct f2fs_sb_info *sbi);
2756 void destroy_node_manager(struct f2fs_sb_info *sbi);
2757 int __init create_node_manager_caches(void);
2758 void destroy_node_manager_caches(void);
2759 
2760 /*
2761  * segment.c
2762  */
2763 bool need_SSR(struct f2fs_sb_info *sbi);
2764 void register_inmem_page(struct inode *inode, struct page *page);
2765 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2766 void drop_inmem_pages(struct inode *inode);
2767 void drop_inmem_page(struct inode *inode, struct page *page);
2768 int commit_inmem_pages(struct inode *inode);
2769 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2770 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2771 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2772 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2773 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2774 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2775 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2776 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2777 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2778 						unsigned int granularity);
2779 void drop_discard_cmd(struct f2fs_sb_info *sbi);
2780 void stop_discard_thread(struct f2fs_sb_info *sbi);
2781 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2782 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2783 void release_discard_addrs(struct f2fs_sb_info *sbi);
2784 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2785 void allocate_new_segments(struct f2fs_sb_info *sbi);
2786 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2787 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2788 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2789 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2790 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2791 						enum iostat_type io_type);
2792 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2793 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2794 int rewrite_data_page(struct f2fs_io_info *fio);
2795 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2796 			block_t old_blkaddr, block_t new_blkaddr,
2797 			bool recover_curseg, bool recover_newaddr);
2798 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2799 			block_t old_addr, block_t new_addr,
2800 			unsigned char version, bool recover_curseg,
2801 			bool recover_newaddr);
2802 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2803 			block_t old_blkaddr, block_t *new_blkaddr,
2804 			struct f2fs_summary *sum, int type,
2805 			struct f2fs_io_info *fio, bool add_list);
2806 void f2fs_wait_on_page_writeback(struct page *page,
2807 			enum page_type type, bool ordered);
2808 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2809 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2810 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2811 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2812 			unsigned int val, int alloc);
2813 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2814 int build_segment_manager(struct f2fs_sb_info *sbi);
2815 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2816 int __init create_segment_manager_caches(void);
2817 void destroy_segment_manager_caches(void);
2818 int rw_hint_to_seg_type(enum rw_hint hint);
2819 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi, enum page_type type,
2820 				enum temp_type temp);
2821 
2822 /*
2823  * checkpoint.c
2824  */
2825 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2826 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2827 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2828 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2829 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2830 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2831 			int type, bool sync);
2832 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2833 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2834 			long nr_to_write, enum iostat_type io_type);
2835 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2836 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2837 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2838 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2839 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2840 					unsigned int devidx, int type);
2841 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2842 					unsigned int devidx, int type);
2843 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2844 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2845 void release_orphan_inode(struct f2fs_sb_info *sbi);
2846 void add_orphan_inode(struct inode *inode);
2847 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2848 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2849 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2850 void update_dirty_page(struct inode *inode, struct page *page);
2851 void remove_dirty_inode(struct inode *inode);
2852 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2853 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2854 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2855 int __init create_checkpoint_caches(void);
2856 void destroy_checkpoint_caches(void);
2857 
2858 /*
2859  * data.c
2860  */
2861 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2862 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2863 				struct inode *inode, nid_t ino, pgoff_t idx,
2864 				enum page_type type);
2865 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2866 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2867 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2868 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2869 			block_t blk_addr, struct bio *bio);
2870 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2871 void set_data_blkaddr(struct dnode_of_data *dn);
2872 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2873 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2874 int reserve_new_block(struct dnode_of_data *dn);
2875 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2876 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2877 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2878 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2879 			int op_flags, bool for_write);
2880 struct page *find_data_page(struct inode *inode, pgoff_t index);
2881 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2882 			bool for_write);
2883 struct page *get_new_data_page(struct inode *inode,
2884 			struct page *ipage, pgoff_t index, bool new_i_size);
2885 int do_write_data_page(struct f2fs_io_info *fio);
2886 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2887 			int create, int flag);
2888 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2889 			u64 start, u64 len);
2890 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
2891 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
2892 void f2fs_set_page_dirty_nobuffers(struct page *page);
2893 int __f2fs_write_data_pages(struct address_space *mapping,
2894 						struct writeback_control *wbc,
2895 						enum iostat_type io_type);
2896 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2897 			unsigned int length);
2898 int f2fs_release_page(struct page *page, gfp_t wait);
2899 #ifdef CONFIG_MIGRATION
2900 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2901 			struct page *page, enum migrate_mode mode);
2902 #endif
2903 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
2904 
2905 /*
2906  * gc.c
2907  */
2908 int start_gc_thread(struct f2fs_sb_info *sbi);
2909 void stop_gc_thread(struct f2fs_sb_info *sbi);
2910 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2911 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2912 			unsigned int segno);
2913 void build_gc_manager(struct f2fs_sb_info *sbi);
2914 
2915 /*
2916  * recovery.c
2917  */
2918 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2919 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2920 
2921 /*
2922  * debug.c
2923  */
2924 #ifdef CONFIG_F2FS_STAT_FS
2925 struct f2fs_stat_info {
2926 	struct list_head stat_list;
2927 	struct f2fs_sb_info *sbi;
2928 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2929 	int main_area_segs, main_area_sections, main_area_zones;
2930 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2931 	unsigned long long hit_total, total_ext;
2932 	int ext_tree, zombie_tree, ext_node;
2933 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2934 	int ndirty_data, ndirty_qdata;
2935 	int inmem_pages;
2936 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2937 	int nats, dirty_nats, sits, dirty_sits;
2938 	int free_nids, avail_nids, alloc_nids;
2939 	int total_count, utilization;
2940 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2941 	int nr_flushing, nr_flushed, flush_list_empty;
2942 	int nr_discarding, nr_discarded;
2943 	int nr_discard_cmd;
2944 	unsigned int undiscard_blks;
2945 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2946 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2947 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2948 	unsigned int bimodal, avg_vblocks;
2949 	int util_free, util_valid, util_invalid;
2950 	int rsvd_segs, overp_segs;
2951 	int dirty_count, node_pages, meta_pages;
2952 	int prefree_count, call_count, cp_count, bg_cp_count;
2953 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2954 	int bg_node_segs, bg_data_segs;
2955 	int tot_blks, data_blks, node_blks;
2956 	int bg_data_blks, bg_node_blks;
2957 	int curseg[NR_CURSEG_TYPE];
2958 	int cursec[NR_CURSEG_TYPE];
2959 	int curzone[NR_CURSEG_TYPE];
2960 
2961 	unsigned int segment_count[2];
2962 	unsigned int block_count[2];
2963 	unsigned int inplace_count;
2964 	unsigned long long base_mem, cache_mem, page_mem;
2965 };
2966 
2967 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2968 {
2969 	return (struct f2fs_stat_info *)sbi->stat_info;
2970 }
2971 
2972 #define stat_inc_cp_count(si)		((si)->cp_count++)
2973 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2974 #define stat_inc_call_count(si)		((si)->call_count++)
2975 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2976 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2977 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2978 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2979 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2980 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2981 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2982 #define stat_inc_inline_xattr(inode)					\
2983 	do {								\
2984 		if (f2fs_has_inline_xattr(inode))			\
2985 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2986 	} while (0)
2987 #define stat_dec_inline_xattr(inode)					\
2988 	do {								\
2989 		if (f2fs_has_inline_xattr(inode))			\
2990 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2991 	} while (0)
2992 #define stat_inc_inline_inode(inode)					\
2993 	do {								\
2994 		if (f2fs_has_inline_data(inode))			\
2995 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2996 	} while (0)
2997 #define stat_dec_inline_inode(inode)					\
2998 	do {								\
2999 		if (f2fs_has_inline_data(inode))			\
3000 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3001 	} while (0)
3002 #define stat_inc_inline_dir(inode)					\
3003 	do {								\
3004 		if (f2fs_has_inline_dentry(inode))			\
3005 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3006 	} while (0)
3007 #define stat_dec_inline_dir(inode)					\
3008 	do {								\
3009 		if (f2fs_has_inline_dentry(inode))			\
3010 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3011 	} while (0)
3012 #define stat_inc_seg_type(sbi, curseg)					\
3013 		((sbi)->segment_count[(curseg)->alloc_type]++)
3014 #define stat_inc_block_count(sbi, curseg)				\
3015 		((sbi)->block_count[(curseg)->alloc_type]++)
3016 #define stat_inc_inplace_blocks(sbi)					\
3017 		(atomic_inc(&(sbi)->inplace_count))
3018 #define stat_inc_atomic_write(inode)					\
3019 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3020 #define stat_dec_atomic_write(inode)					\
3021 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3022 #define stat_update_max_atomic_write(inode)				\
3023 	do {								\
3024 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3025 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3026 		if (cur > max)						\
3027 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3028 	} while (0)
3029 #define stat_inc_volatile_write(inode)					\
3030 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3031 #define stat_dec_volatile_write(inode)					\
3032 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3033 #define stat_update_max_volatile_write(inode)				\
3034 	do {								\
3035 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3036 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3037 		if (cur > max)						\
3038 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3039 	} while (0)
3040 #define stat_inc_seg_count(sbi, type, gc_type)				\
3041 	do {								\
3042 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3043 		si->tot_segs++;						\
3044 		if ((type) == SUM_TYPE_DATA) {				\
3045 			si->data_segs++;				\
3046 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3047 		} else {						\
3048 			si->node_segs++;				\
3049 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3050 		}							\
3051 	} while (0)
3052 
3053 #define stat_inc_tot_blk_count(si, blks)				\
3054 	((si)->tot_blks += (blks))
3055 
3056 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3057 	do {								\
3058 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3059 		stat_inc_tot_blk_count(si, blks);			\
3060 		si->data_blks += (blks);				\
3061 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3062 	} while (0)
3063 
3064 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3065 	do {								\
3066 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3067 		stat_inc_tot_blk_count(si, blks);			\
3068 		si->node_blks += (blks);				\
3069 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3070 	} while (0)
3071 
3072 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3073 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3074 int __init f2fs_create_root_stats(void);
3075 void f2fs_destroy_root_stats(void);
3076 #else
3077 #define stat_inc_cp_count(si)				do { } while (0)
3078 #define stat_inc_bg_cp_count(si)			do { } while (0)
3079 #define stat_inc_call_count(si)				do { } while (0)
3080 #define stat_inc_bggc_count(si)				do { } while (0)
3081 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3082 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3083 #define stat_inc_total_hit(sb)				do { } while (0)
3084 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3085 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3086 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3087 #define stat_inc_inline_xattr(inode)			do { } while (0)
3088 #define stat_dec_inline_xattr(inode)			do { } while (0)
3089 #define stat_inc_inline_inode(inode)			do { } while (0)
3090 #define stat_dec_inline_inode(inode)			do { } while (0)
3091 #define stat_inc_inline_dir(inode)			do { } while (0)
3092 #define stat_dec_inline_dir(inode)			do { } while (0)
3093 #define stat_inc_atomic_write(inode)			do { } while (0)
3094 #define stat_dec_atomic_write(inode)			do { } while (0)
3095 #define stat_update_max_atomic_write(inode)		do { } while (0)
3096 #define stat_inc_volatile_write(inode)			do { } while (0)
3097 #define stat_dec_volatile_write(inode)			do { } while (0)
3098 #define stat_update_max_volatile_write(inode)		do { } while (0)
3099 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3100 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3101 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3102 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3103 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3104 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3105 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3106 
3107 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3108 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3109 static inline int __init f2fs_create_root_stats(void) { return 0; }
3110 static inline void f2fs_destroy_root_stats(void) { }
3111 #endif
3112 
3113 extern const struct file_operations f2fs_dir_operations;
3114 extern const struct file_operations f2fs_file_operations;
3115 extern const struct inode_operations f2fs_file_inode_operations;
3116 extern const struct address_space_operations f2fs_dblock_aops;
3117 extern const struct address_space_operations f2fs_node_aops;
3118 extern const struct address_space_operations f2fs_meta_aops;
3119 extern const struct inode_operations f2fs_dir_inode_operations;
3120 extern const struct inode_operations f2fs_symlink_inode_operations;
3121 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3122 extern const struct inode_operations f2fs_special_inode_operations;
3123 extern struct kmem_cache *inode_entry_slab;
3124 
3125 /*
3126  * inline.c
3127  */
3128 bool f2fs_may_inline_data(struct inode *inode);
3129 bool f2fs_may_inline_dentry(struct inode *inode);
3130 void read_inline_data(struct page *page, struct page *ipage);
3131 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3132 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3133 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3134 int f2fs_convert_inline_inode(struct inode *inode);
3135 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3136 bool recover_inline_data(struct inode *inode, struct page *npage);
3137 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3138 			struct fscrypt_name *fname, struct page **res_page);
3139 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3140 			struct page *ipage);
3141 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3142 			const struct qstr *orig_name,
3143 			struct inode *inode, nid_t ino, umode_t mode);
3144 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3145 			struct inode *dir, struct inode *inode);
3146 bool f2fs_empty_inline_dir(struct inode *dir);
3147 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3148 			struct fscrypt_str *fstr);
3149 int f2fs_inline_data_fiemap(struct inode *inode,
3150 			struct fiemap_extent_info *fieinfo,
3151 			__u64 start, __u64 len);
3152 
3153 /*
3154  * shrinker.c
3155  */
3156 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3157 			struct shrink_control *sc);
3158 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3159 			struct shrink_control *sc);
3160 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3161 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3162 
3163 /*
3164  * extent_cache.c
3165  */
3166 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3167 				struct rb_entry *cached_re, unsigned int ofs);
3168 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3169 				struct rb_root *root, struct rb_node **parent,
3170 				unsigned int ofs);
3171 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3172 		struct rb_entry *cached_re, unsigned int ofs,
3173 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3174 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3175 		bool force);
3176 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3177 						struct rb_root *root);
3178 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3179 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3180 void f2fs_drop_extent_tree(struct inode *inode);
3181 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3182 void f2fs_destroy_extent_tree(struct inode *inode);
3183 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3184 			struct extent_info *ei);
3185 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3186 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3187 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3188 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3189 int __init create_extent_cache(void);
3190 void destroy_extent_cache(void);
3191 
3192 /*
3193  * sysfs.c
3194  */
3195 int __init f2fs_init_sysfs(void);
3196 void f2fs_exit_sysfs(void);
3197 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3198 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3199 
3200 /*
3201  * crypto support
3202  */
3203 static inline bool f2fs_encrypted_inode(struct inode *inode)
3204 {
3205 	return file_is_encrypt(inode);
3206 }
3207 
3208 static inline bool f2fs_encrypted_file(struct inode *inode)
3209 {
3210 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3211 }
3212 
3213 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3214 {
3215 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3216 	file_set_encrypt(inode);
3217 	inode->i_flags |= S_ENCRYPTED;
3218 #endif
3219 }
3220 
3221 static inline bool f2fs_bio_encrypted(struct bio *bio)
3222 {
3223 	return bio->bi_private != NULL;
3224 }
3225 
3226 #define F2FS_FEATURE_FUNCS(name, flagname) \
3227 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3228 { \
3229 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3230 }
3231 
3232 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3233 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3234 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3235 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3236 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3237 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3238 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3239 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3240 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3241 
3242 #ifdef CONFIG_BLK_DEV_ZONED
3243 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3244 			struct block_device *bdev, block_t blkaddr)
3245 {
3246 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3247 	int i;
3248 
3249 	for (i = 0; i < sbi->s_ndevs; i++)
3250 		if (FDEV(i).bdev == bdev)
3251 			return FDEV(i).blkz_type[zno];
3252 	return -EINVAL;
3253 }
3254 #endif
3255 
3256 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3257 {
3258 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3259 
3260 	return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3261 }
3262 
3263 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3264 {
3265 	clear_opt(sbi, ADAPTIVE);
3266 	clear_opt(sbi, LFS);
3267 
3268 	switch (mt) {
3269 	case F2FS_MOUNT_ADAPTIVE:
3270 		set_opt(sbi, ADAPTIVE);
3271 		break;
3272 	case F2FS_MOUNT_LFS:
3273 		set_opt(sbi, LFS);
3274 		break;
3275 	}
3276 }
3277 
3278 static inline bool f2fs_may_encrypt(struct inode *inode)
3279 {
3280 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3281 	umode_t mode = inode->i_mode;
3282 
3283 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3284 #else
3285 	return 0;
3286 #endif
3287 }
3288 
3289 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3290 {
3291 	return (f2fs_encrypted_file(inode) ||
3292 			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3293 			F2FS_I_SB(inode)->s_ndevs);
3294 }
3295 
3296 #endif
3297