1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <crypto/hash.h> 26 27 #include <linux/fscrypt.h> 28 #include <linux/fsverity.h> 29 30 #ifdef CONFIG_F2FS_CHECK_FS 31 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 32 #else 33 #define f2fs_bug_on(sbi, condition) \ 34 do { \ 35 if (unlikely(condition)) { \ 36 WARN_ON(1); \ 37 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 38 } \ 39 } while (0) 40 #endif 41 42 enum { 43 FAULT_KMALLOC, 44 FAULT_KVMALLOC, 45 FAULT_PAGE_ALLOC, 46 FAULT_PAGE_GET, 47 FAULT_ALLOC_BIO, 48 FAULT_ALLOC_NID, 49 FAULT_ORPHAN, 50 FAULT_BLOCK, 51 FAULT_DIR_DEPTH, 52 FAULT_EVICT_INODE, 53 FAULT_TRUNCATE, 54 FAULT_READ_IO, 55 FAULT_CHECKPOINT, 56 FAULT_DISCARD, 57 FAULT_WRITE_IO, 58 FAULT_MAX, 59 }; 60 61 #ifdef CONFIG_F2FS_FAULT_INJECTION 62 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 63 64 struct f2fs_fault_info { 65 atomic_t inject_ops; 66 unsigned int inject_rate; 67 unsigned int inject_type; 68 }; 69 70 extern const char *f2fs_fault_name[FAULT_MAX]; 71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 72 #endif 73 74 /* 75 * For mount options 76 */ 77 #define F2FS_MOUNT_BG_GC 0x00000001 78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 79 #define F2FS_MOUNT_DISCARD 0x00000004 80 #define F2FS_MOUNT_NOHEAP 0x00000008 81 #define F2FS_MOUNT_XATTR_USER 0x00000010 82 #define F2FS_MOUNT_POSIX_ACL 0x00000020 83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 85 #define F2FS_MOUNT_INLINE_DATA 0x00000100 86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 88 #define F2FS_MOUNT_NOBARRIER 0x00000800 89 #define F2FS_MOUNT_FASTBOOT 0x00001000 90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 91 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 92 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 93 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 94 #define F2FS_MOUNT_ADAPTIVE 0x00020000 95 #define F2FS_MOUNT_LFS 0x00040000 96 #define F2FS_MOUNT_USRQUOTA 0x00080000 97 #define F2FS_MOUNT_GRPQUOTA 0x00100000 98 #define F2FS_MOUNT_PRJQUOTA 0x00200000 99 #define F2FS_MOUNT_QUOTA 0x00400000 100 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 101 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 102 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 103 104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 108 109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 110 typecheck(unsigned long long, b) && \ 111 ((long long)((a) - (b)) > 0)) 112 113 typedef u32 block_t; /* 114 * should not change u32, since it is the on-disk block 115 * address format, __le32. 116 */ 117 typedef u32 nid_t; 118 119 struct f2fs_mount_info { 120 unsigned int opt; 121 int write_io_size_bits; /* Write IO size bits */ 122 block_t root_reserved_blocks; /* root reserved blocks */ 123 kuid_t s_resuid; /* reserved blocks for uid */ 124 kgid_t s_resgid; /* reserved blocks for gid */ 125 int active_logs; /* # of active logs */ 126 int inline_xattr_size; /* inline xattr size */ 127 #ifdef CONFIG_F2FS_FAULT_INJECTION 128 struct f2fs_fault_info fault_info; /* For fault injection */ 129 #endif 130 #ifdef CONFIG_QUOTA 131 /* Names of quota files with journalled quota */ 132 char *s_qf_names[MAXQUOTAS]; 133 int s_jquota_fmt; /* Format of quota to use */ 134 #endif 135 /* For which write hints are passed down to block layer */ 136 int whint_mode; 137 int alloc_mode; /* segment allocation policy */ 138 int fsync_mode; /* fsync policy */ 139 bool test_dummy_encryption; /* test dummy encryption */ 140 block_t unusable_cap; /* Amount of space allowed to be 141 * unusable when disabling checkpoint 142 */ 143 }; 144 145 #define F2FS_FEATURE_ENCRYPT 0x0001 146 #define F2FS_FEATURE_BLKZONED 0x0002 147 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 148 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 149 #define F2FS_FEATURE_PRJQUOTA 0x0010 150 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 151 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 152 #define F2FS_FEATURE_QUOTA_INO 0x0080 153 #define F2FS_FEATURE_INODE_CRTIME 0x0100 154 #define F2FS_FEATURE_LOST_FOUND 0x0200 155 #define F2FS_FEATURE_VERITY 0x0400 156 #define F2FS_FEATURE_SB_CHKSUM 0x0800 157 158 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 159 ((raw_super->feature & cpu_to_le32(mask)) != 0) 160 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 161 #define F2FS_SET_FEATURE(sbi, mask) \ 162 (sbi->raw_super->feature |= cpu_to_le32(mask)) 163 #define F2FS_CLEAR_FEATURE(sbi, mask) \ 164 (sbi->raw_super->feature &= ~cpu_to_le32(mask)) 165 166 /* 167 * Default values for user and/or group using reserved blocks 168 */ 169 #define F2FS_DEF_RESUID 0 170 #define F2FS_DEF_RESGID 0 171 172 /* 173 * For checkpoint manager 174 */ 175 enum { 176 NAT_BITMAP, 177 SIT_BITMAP 178 }; 179 180 #define CP_UMOUNT 0x00000001 181 #define CP_FASTBOOT 0x00000002 182 #define CP_SYNC 0x00000004 183 #define CP_RECOVERY 0x00000008 184 #define CP_DISCARD 0x00000010 185 #define CP_TRIMMED 0x00000020 186 #define CP_PAUSE 0x00000040 187 188 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 189 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 190 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 191 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 192 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 193 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 194 #define DEF_CP_INTERVAL 60 /* 60 secs */ 195 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 196 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 197 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 198 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 199 200 struct cp_control { 201 int reason; 202 __u64 trim_start; 203 __u64 trim_end; 204 __u64 trim_minlen; 205 }; 206 207 /* 208 * indicate meta/data type 209 */ 210 enum { 211 META_CP, 212 META_NAT, 213 META_SIT, 214 META_SSA, 215 META_MAX, 216 META_POR, 217 DATA_GENERIC, /* check range only */ 218 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 219 DATA_GENERIC_ENHANCE_READ, /* 220 * strong check on range and segment 221 * bitmap but no warning due to race 222 * condition of read on truncated area 223 * by extent_cache 224 */ 225 META_GENERIC, 226 }; 227 228 /* for the list of ino */ 229 enum { 230 ORPHAN_INO, /* for orphan ino list */ 231 APPEND_INO, /* for append ino list */ 232 UPDATE_INO, /* for update ino list */ 233 TRANS_DIR_INO, /* for trasactions dir ino list */ 234 FLUSH_INO, /* for multiple device flushing */ 235 MAX_INO_ENTRY, /* max. list */ 236 }; 237 238 struct ino_entry { 239 struct list_head list; /* list head */ 240 nid_t ino; /* inode number */ 241 unsigned int dirty_device; /* dirty device bitmap */ 242 }; 243 244 /* for the list of inodes to be GCed */ 245 struct inode_entry { 246 struct list_head list; /* list head */ 247 struct inode *inode; /* vfs inode pointer */ 248 }; 249 250 struct fsync_node_entry { 251 struct list_head list; /* list head */ 252 struct page *page; /* warm node page pointer */ 253 unsigned int seq_id; /* sequence id */ 254 }; 255 256 /* for the bitmap indicate blocks to be discarded */ 257 struct discard_entry { 258 struct list_head list; /* list head */ 259 block_t start_blkaddr; /* start blockaddr of current segment */ 260 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 261 }; 262 263 /* default discard granularity of inner discard thread, unit: block count */ 264 #define DEFAULT_DISCARD_GRANULARITY 16 265 266 /* max discard pend list number */ 267 #define MAX_PLIST_NUM 512 268 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 269 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 270 271 enum { 272 D_PREP, /* initial */ 273 D_PARTIAL, /* partially submitted */ 274 D_SUBMIT, /* all submitted */ 275 D_DONE, /* finished */ 276 }; 277 278 struct discard_info { 279 block_t lstart; /* logical start address */ 280 block_t len; /* length */ 281 block_t start; /* actual start address in dev */ 282 }; 283 284 struct discard_cmd { 285 struct rb_node rb_node; /* rb node located in rb-tree */ 286 union { 287 struct { 288 block_t lstart; /* logical start address */ 289 block_t len; /* length */ 290 block_t start; /* actual start address in dev */ 291 }; 292 struct discard_info di; /* discard info */ 293 294 }; 295 struct list_head list; /* command list */ 296 struct completion wait; /* compleation */ 297 struct block_device *bdev; /* bdev */ 298 unsigned short ref; /* reference count */ 299 unsigned char state; /* state */ 300 unsigned char queued; /* queued discard */ 301 int error; /* bio error */ 302 spinlock_t lock; /* for state/bio_ref updating */ 303 unsigned short bio_ref; /* bio reference count */ 304 }; 305 306 enum { 307 DPOLICY_BG, 308 DPOLICY_FORCE, 309 DPOLICY_FSTRIM, 310 DPOLICY_UMOUNT, 311 MAX_DPOLICY, 312 }; 313 314 struct discard_policy { 315 int type; /* type of discard */ 316 unsigned int min_interval; /* used for candidates exist */ 317 unsigned int mid_interval; /* used for device busy */ 318 unsigned int max_interval; /* used for candidates not exist */ 319 unsigned int max_requests; /* # of discards issued per round */ 320 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 321 bool io_aware; /* issue discard in idle time */ 322 bool sync; /* submit discard with REQ_SYNC flag */ 323 bool ordered; /* issue discard by lba order */ 324 unsigned int granularity; /* discard granularity */ 325 int timeout; /* discard timeout for put_super */ 326 }; 327 328 struct discard_cmd_control { 329 struct task_struct *f2fs_issue_discard; /* discard thread */ 330 struct list_head entry_list; /* 4KB discard entry list */ 331 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 332 struct list_head wait_list; /* store on-flushing entries */ 333 struct list_head fstrim_list; /* in-flight discard from fstrim */ 334 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 335 unsigned int discard_wake; /* to wake up discard thread */ 336 struct mutex cmd_lock; 337 unsigned int nr_discards; /* # of discards in the list */ 338 unsigned int max_discards; /* max. discards to be issued */ 339 unsigned int discard_granularity; /* discard granularity */ 340 unsigned int undiscard_blks; /* # of undiscard blocks */ 341 unsigned int next_pos; /* next discard position */ 342 atomic_t issued_discard; /* # of issued discard */ 343 atomic_t queued_discard; /* # of queued discard */ 344 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 345 struct rb_root_cached root; /* root of discard rb-tree */ 346 bool rbtree_check; /* config for consistence check */ 347 }; 348 349 /* for the list of fsync inodes, used only during recovery */ 350 struct fsync_inode_entry { 351 struct list_head list; /* list head */ 352 struct inode *inode; /* vfs inode pointer */ 353 block_t blkaddr; /* block address locating the last fsync */ 354 block_t last_dentry; /* block address locating the last dentry */ 355 }; 356 357 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 358 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 359 360 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 361 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 362 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 363 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 364 365 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 366 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 367 368 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 369 { 370 int before = nats_in_cursum(journal); 371 372 journal->n_nats = cpu_to_le16(before + i); 373 return before; 374 } 375 376 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 377 { 378 int before = sits_in_cursum(journal); 379 380 journal->n_sits = cpu_to_le16(before + i); 381 return before; 382 } 383 384 static inline bool __has_cursum_space(struct f2fs_journal *journal, 385 int size, int type) 386 { 387 if (type == NAT_JOURNAL) 388 return size <= MAX_NAT_JENTRIES(journal); 389 return size <= MAX_SIT_JENTRIES(journal); 390 } 391 392 /* 393 * ioctl commands 394 */ 395 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 396 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 397 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 398 399 #define F2FS_IOCTL_MAGIC 0xf5 400 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 401 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 402 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 403 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 404 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 405 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 406 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 407 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 408 struct f2fs_defragment) 409 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 410 struct f2fs_move_range) 411 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 412 struct f2fs_flush_device) 413 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 414 struct f2fs_gc_range) 415 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 416 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 417 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 418 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 419 #define F2FS_IOC_RESIZE_FS _IOW(F2FS_IOCTL_MAGIC, 16, __u64) 420 421 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 422 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 423 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 424 425 /* 426 * should be same as XFS_IOC_GOINGDOWN. 427 * Flags for going down operation used by FS_IOC_GOINGDOWN 428 */ 429 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 430 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 431 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 432 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 433 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 434 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */ 435 436 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 437 /* 438 * ioctl commands in 32 bit emulation 439 */ 440 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 441 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 442 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 443 #endif 444 445 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 446 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 447 448 struct f2fs_gc_range { 449 u32 sync; 450 u64 start; 451 u64 len; 452 }; 453 454 struct f2fs_defragment { 455 u64 start; 456 u64 len; 457 }; 458 459 struct f2fs_move_range { 460 u32 dst_fd; /* destination fd */ 461 u64 pos_in; /* start position in src_fd */ 462 u64 pos_out; /* start position in dst_fd */ 463 u64 len; /* size to move */ 464 }; 465 466 struct f2fs_flush_device { 467 u32 dev_num; /* device number to flush */ 468 u32 segments; /* # of segments to flush */ 469 }; 470 471 /* for inline stuff */ 472 #define DEF_INLINE_RESERVED_SIZE 1 473 static inline int get_extra_isize(struct inode *inode); 474 static inline int get_inline_xattr_addrs(struct inode *inode); 475 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 476 (CUR_ADDRS_PER_INODE(inode) - \ 477 get_inline_xattr_addrs(inode) - \ 478 DEF_INLINE_RESERVED_SIZE)) 479 480 /* for inline dir */ 481 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 482 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 483 BITS_PER_BYTE + 1)) 484 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 485 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 486 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 487 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 488 NR_INLINE_DENTRY(inode) + \ 489 INLINE_DENTRY_BITMAP_SIZE(inode))) 490 491 /* 492 * For INODE and NODE manager 493 */ 494 /* for directory operations */ 495 struct f2fs_dentry_ptr { 496 struct inode *inode; 497 void *bitmap; 498 struct f2fs_dir_entry *dentry; 499 __u8 (*filename)[F2FS_SLOT_LEN]; 500 int max; 501 int nr_bitmap; 502 }; 503 504 static inline void make_dentry_ptr_block(struct inode *inode, 505 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 506 { 507 d->inode = inode; 508 d->max = NR_DENTRY_IN_BLOCK; 509 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 510 d->bitmap = t->dentry_bitmap; 511 d->dentry = t->dentry; 512 d->filename = t->filename; 513 } 514 515 static inline void make_dentry_ptr_inline(struct inode *inode, 516 struct f2fs_dentry_ptr *d, void *t) 517 { 518 int entry_cnt = NR_INLINE_DENTRY(inode); 519 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 520 int reserved_size = INLINE_RESERVED_SIZE(inode); 521 522 d->inode = inode; 523 d->max = entry_cnt; 524 d->nr_bitmap = bitmap_size; 525 d->bitmap = t; 526 d->dentry = t + bitmap_size + reserved_size; 527 d->filename = t + bitmap_size + reserved_size + 528 SIZE_OF_DIR_ENTRY * entry_cnt; 529 } 530 531 /* 532 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 533 * as its node offset to distinguish from index node blocks. 534 * But some bits are used to mark the node block. 535 */ 536 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 537 >> OFFSET_BIT_SHIFT) 538 enum { 539 ALLOC_NODE, /* allocate a new node page if needed */ 540 LOOKUP_NODE, /* look up a node without readahead */ 541 LOOKUP_NODE_RA, /* 542 * look up a node with readahead called 543 * by get_data_block. 544 */ 545 }; 546 547 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */ 548 549 /* maximum retry quota flush count */ 550 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 551 552 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 553 554 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 555 556 /* for in-memory extent cache entry */ 557 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 558 559 /* number of extent info in extent cache we try to shrink */ 560 #define EXTENT_CACHE_SHRINK_NUMBER 128 561 562 struct rb_entry { 563 struct rb_node rb_node; /* rb node located in rb-tree */ 564 unsigned int ofs; /* start offset of the entry */ 565 unsigned int len; /* length of the entry */ 566 }; 567 568 struct extent_info { 569 unsigned int fofs; /* start offset in a file */ 570 unsigned int len; /* length of the extent */ 571 u32 blk; /* start block address of the extent */ 572 }; 573 574 struct extent_node { 575 struct rb_node rb_node; /* rb node located in rb-tree */ 576 struct extent_info ei; /* extent info */ 577 struct list_head list; /* node in global extent list of sbi */ 578 struct extent_tree *et; /* extent tree pointer */ 579 }; 580 581 struct extent_tree { 582 nid_t ino; /* inode number */ 583 struct rb_root_cached root; /* root of extent info rb-tree */ 584 struct extent_node *cached_en; /* recently accessed extent node */ 585 struct extent_info largest; /* largested extent info */ 586 struct list_head list; /* to be used by sbi->zombie_list */ 587 rwlock_t lock; /* protect extent info rb-tree */ 588 atomic_t node_cnt; /* # of extent node in rb-tree*/ 589 bool largest_updated; /* largest extent updated */ 590 }; 591 592 /* 593 * This structure is taken from ext4_map_blocks. 594 * 595 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 596 */ 597 #define F2FS_MAP_NEW (1 << BH_New) 598 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 599 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 600 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 601 F2FS_MAP_UNWRITTEN) 602 603 struct f2fs_map_blocks { 604 block_t m_pblk; 605 block_t m_lblk; 606 unsigned int m_len; 607 unsigned int m_flags; 608 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 609 pgoff_t *m_next_extent; /* point to next possible extent */ 610 int m_seg_type; 611 bool m_may_create; /* indicate it is from write path */ 612 }; 613 614 /* for flag in get_data_block */ 615 enum { 616 F2FS_GET_BLOCK_DEFAULT, 617 F2FS_GET_BLOCK_FIEMAP, 618 F2FS_GET_BLOCK_BMAP, 619 F2FS_GET_BLOCK_DIO, 620 F2FS_GET_BLOCK_PRE_DIO, 621 F2FS_GET_BLOCK_PRE_AIO, 622 F2FS_GET_BLOCK_PRECACHE, 623 }; 624 625 /* 626 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 627 */ 628 #define FADVISE_COLD_BIT 0x01 629 #define FADVISE_LOST_PINO_BIT 0x02 630 #define FADVISE_ENCRYPT_BIT 0x04 631 #define FADVISE_ENC_NAME_BIT 0x08 632 #define FADVISE_KEEP_SIZE_BIT 0x10 633 #define FADVISE_HOT_BIT 0x20 634 #define FADVISE_VERITY_BIT 0x40 635 636 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 637 638 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 639 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 640 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 641 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 642 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 643 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 644 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 645 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 646 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 647 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 648 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 649 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 650 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 651 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 652 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 653 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 654 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 655 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 656 657 #define DEF_DIR_LEVEL 0 658 659 enum { 660 GC_FAILURE_PIN, 661 GC_FAILURE_ATOMIC, 662 MAX_GC_FAILURE 663 }; 664 665 struct f2fs_inode_info { 666 struct inode vfs_inode; /* serve a vfs inode */ 667 unsigned long i_flags; /* keep an inode flags for ioctl */ 668 unsigned char i_advise; /* use to give file attribute hints */ 669 unsigned char i_dir_level; /* use for dentry level for large dir */ 670 unsigned int i_current_depth; /* only for directory depth */ 671 /* for gc failure statistic */ 672 unsigned int i_gc_failures[MAX_GC_FAILURE]; 673 unsigned int i_pino; /* parent inode number */ 674 umode_t i_acl_mode; /* keep file acl mode temporarily */ 675 676 /* Use below internally in f2fs*/ 677 unsigned long flags; /* use to pass per-file flags */ 678 struct rw_semaphore i_sem; /* protect fi info */ 679 atomic_t dirty_pages; /* # of dirty pages */ 680 f2fs_hash_t chash; /* hash value of given file name */ 681 unsigned int clevel; /* maximum level of given file name */ 682 struct task_struct *task; /* lookup and create consistency */ 683 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 684 nid_t i_xattr_nid; /* node id that contains xattrs */ 685 loff_t last_disk_size; /* lastly written file size */ 686 687 #ifdef CONFIG_QUOTA 688 struct dquot *i_dquot[MAXQUOTAS]; 689 690 /* quota space reservation, managed internally by quota code */ 691 qsize_t i_reserved_quota; 692 #endif 693 struct list_head dirty_list; /* dirty list for dirs and files */ 694 struct list_head gdirty_list; /* linked in global dirty list */ 695 struct list_head inmem_ilist; /* list for inmem inodes */ 696 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 697 struct task_struct *inmem_task; /* store inmemory task */ 698 struct mutex inmem_lock; /* lock for inmemory pages */ 699 struct extent_tree *extent_tree; /* cached extent_tree entry */ 700 701 /* avoid racing between foreground op and gc */ 702 struct rw_semaphore i_gc_rwsem[2]; 703 struct rw_semaphore i_mmap_sem; 704 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 705 706 int i_extra_isize; /* size of extra space located in i_addr */ 707 kprojid_t i_projid; /* id for project quota */ 708 int i_inline_xattr_size; /* inline xattr size */ 709 struct timespec64 i_crtime; /* inode creation time */ 710 struct timespec64 i_disk_time[4];/* inode disk times */ 711 }; 712 713 static inline void get_extent_info(struct extent_info *ext, 714 struct f2fs_extent *i_ext) 715 { 716 ext->fofs = le32_to_cpu(i_ext->fofs); 717 ext->blk = le32_to_cpu(i_ext->blk); 718 ext->len = le32_to_cpu(i_ext->len); 719 } 720 721 static inline void set_raw_extent(struct extent_info *ext, 722 struct f2fs_extent *i_ext) 723 { 724 i_ext->fofs = cpu_to_le32(ext->fofs); 725 i_ext->blk = cpu_to_le32(ext->blk); 726 i_ext->len = cpu_to_le32(ext->len); 727 } 728 729 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 730 u32 blk, unsigned int len) 731 { 732 ei->fofs = fofs; 733 ei->blk = blk; 734 ei->len = len; 735 } 736 737 static inline bool __is_discard_mergeable(struct discard_info *back, 738 struct discard_info *front, unsigned int max_len) 739 { 740 return (back->lstart + back->len == front->lstart) && 741 (back->len + front->len <= max_len); 742 } 743 744 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 745 struct discard_info *back, unsigned int max_len) 746 { 747 return __is_discard_mergeable(back, cur, max_len); 748 } 749 750 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 751 struct discard_info *front, unsigned int max_len) 752 { 753 return __is_discard_mergeable(cur, front, max_len); 754 } 755 756 static inline bool __is_extent_mergeable(struct extent_info *back, 757 struct extent_info *front) 758 { 759 return (back->fofs + back->len == front->fofs && 760 back->blk + back->len == front->blk); 761 } 762 763 static inline bool __is_back_mergeable(struct extent_info *cur, 764 struct extent_info *back) 765 { 766 return __is_extent_mergeable(back, cur); 767 } 768 769 static inline bool __is_front_mergeable(struct extent_info *cur, 770 struct extent_info *front) 771 { 772 return __is_extent_mergeable(cur, front); 773 } 774 775 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 776 static inline void __try_update_largest_extent(struct extent_tree *et, 777 struct extent_node *en) 778 { 779 if (en->ei.len > et->largest.len) { 780 et->largest = en->ei; 781 et->largest_updated = true; 782 } 783 } 784 785 /* 786 * For free nid management 787 */ 788 enum nid_state { 789 FREE_NID, /* newly added to free nid list */ 790 PREALLOC_NID, /* it is preallocated */ 791 MAX_NID_STATE, 792 }; 793 794 struct f2fs_nm_info { 795 block_t nat_blkaddr; /* base disk address of NAT */ 796 nid_t max_nid; /* maximum possible node ids */ 797 nid_t available_nids; /* # of available node ids */ 798 nid_t next_scan_nid; /* the next nid to be scanned */ 799 unsigned int ram_thresh; /* control the memory footprint */ 800 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 801 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 802 803 /* NAT cache management */ 804 struct radix_tree_root nat_root;/* root of the nat entry cache */ 805 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 806 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 807 struct list_head nat_entries; /* cached nat entry list (clean) */ 808 spinlock_t nat_list_lock; /* protect clean nat entry list */ 809 unsigned int nat_cnt; /* the # of cached nat entries */ 810 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 811 unsigned int nat_blocks; /* # of nat blocks */ 812 813 /* free node ids management */ 814 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 815 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 816 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 817 spinlock_t nid_list_lock; /* protect nid lists ops */ 818 struct mutex build_lock; /* lock for build free nids */ 819 unsigned char **free_nid_bitmap; 820 unsigned char *nat_block_bitmap; 821 unsigned short *free_nid_count; /* free nid count of NAT block */ 822 823 /* for checkpoint */ 824 char *nat_bitmap; /* NAT bitmap pointer */ 825 826 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 827 unsigned char *nat_bits; /* NAT bits blocks */ 828 unsigned char *full_nat_bits; /* full NAT pages */ 829 unsigned char *empty_nat_bits; /* empty NAT pages */ 830 #ifdef CONFIG_F2FS_CHECK_FS 831 char *nat_bitmap_mir; /* NAT bitmap mirror */ 832 #endif 833 int bitmap_size; /* bitmap size */ 834 }; 835 836 /* 837 * this structure is used as one of function parameters. 838 * all the information are dedicated to a given direct node block determined 839 * by the data offset in a file. 840 */ 841 struct dnode_of_data { 842 struct inode *inode; /* vfs inode pointer */ 843 struct page *inode_page; /* its inode page, NULL is possible */ 844 struct page *node_page; /* cached direct node page */ 845 nid_t nid; /* node id of the direct node block */ 846 unsigned int ofs_in_node; /* data offset in the node page */ 847 bool inode_page_locked; /* inode page is locked or not */ 848 bool node_changed; /* is node block changed */ 849 char cur_level; /* level of hole node page */ 850 char max_level; /* level of current page located */ 851 block_t data_blkaddr; /* block address of the node block */ 852 }; 853 854 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 855 struct page *ipage, struct page *npage, nid_t nid) 856 { 857 memset(dn, 0, sizeof(*dn)); 858 dn->inode = inode; 859 dn->inode_page = ipage; 860 dn->node_page = npage; 861 dn->nid = nid; 862 } 863 864 /* 865 * For SIT manager 866 * 867 * By default, there are 6 active log areas across the whole main area. 868 * When considering hot and cold data separation to reduce cleaning overhead, 869 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 870 * respectively. 871 * In the current design, you should not change the numbers intentionally. 872 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 873 * logs individually according to the underlying devices. (default: 6) 874 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 875 * data and 8 for node logs. 876 */ 877 #define NR_CURSEG_DATA_TYPE (3) 878 #define NR_CURSEG_NODE_TYPE (3) 879 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 880 881 enum { 882 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 883 CURSEG_WARM_DATA, /* data blocks */ 884 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 885 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 886 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 887 CURSEG_COLD_NODE, /* indirect node blocks */ 888 NO_CHECK_TYPE, 889 }; 890 891 struct flush_cmd { 892 struct completion wait; 893 struct llist_node llnode; 894 nid_t ino; 895 int ret; 896 }; 897 898 struct flush_cmd_control { 899 struct task_struct *f2fs_issue_flush; /* flush thread */ 900 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 901 atomic_t issued_flush; /* # of issued flushes */ 902 atomic_t queued_flush; /* # of queued flushes */ 903 struct llist_head issue_list; /* list for command issue */ 904 struct llist_node *dispatch_list; /* list for command dispatch */ 905 }; 906 907 struct f2fs_sm_info { 908 struct sit_info *sit_info; /* whole segment information */ 909 struct free_segmap_info *free_info; /* free segment information */ 910 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 911 struct curseg_info *curseg_array; /* active segment information */ 912 913 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 914 915 block_t seg0_blkaddr; /* block address of 0'th segment */ 916 block_t main_blkaddr; /* start block address of main area */ 917 block_t ssa_blkaddr; /* start block address of SSA area */ 918 919 unsigned int segment_count; /* total # of segments */ 920 unsigned int main_segments; /* # of segments in main area */ 921 unsigned int reserved_segments; /* # of reserved segments */ 922 unsigned int ovp_segments; /* # of overprovision segments */ 923 924 /* a threshold to reclaim prefree segments */ 925 unsigned int rec_prefree_segments; 926 927 /* for batched trimming */ 928 unsigned int trim_sections; /* # of sections to trim */ 929 930 struct list_head sit_entry_set; /* sit entry set list */ 931 932 unsigned int ipu_policy; /* in-place-update policy */ 933 unsigned int min_ipu_util; /* in-place-update threshold */ 934 unsigned int min_fsync_blocks; /* threshold for fsync */ 935 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 936 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 937 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 938 939 /* for flush command control */ 940 struct flush_cmd_control *fcc_info; 941 942 /* for discard command control */ 943 struct discard_cmd_control *dcc_info; 944 }; 945 946 /* 947 * For superblock 948 */ 949 /* 950 * COUNT_TYPE for monitoring 951 * 952 * f2fs monitors the number of several block types such as on-writeback, 953 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 954 */ 955 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 956 enum count_type { 957 F2FS_DIRTY_DENTS, 958 F2FS_DIRTY_DATA, 959 F2FS_DIRTY_QDATA, 960 F2FS_DIRTY_NODES, 961 F2FS_DIRTY_META, 962 F2FS_INMEM_PAGES, 963 F2FS_DIRTY_IMETA, 964 F2FS_WB_CP_DATA, 965 F2FS_WB_DATA, 966 F2FS_RD_DATA, 967 F2FS_RD_NODE, 968 F2FS_RD_META, 969 F2FS_DIO_WRITE, 970 F2FS_DIO_READ, 971 NR_COUNT_TYPE, 972 }; 973 974 /* 975 * The below are the page types of bios used in submit_bio(). 976 * The available types are: 977 * DATA User data pages. It operates as async mode. 978 * NODE Node pages. It operates as async mode. 979 * META FS metadata pages such as SIT, NAT, CP. 980 * NR_PAGE_TYPE The number of page types. 981 * META_FLUSH Make sure the previous pages are written 982 * with waiting the bio's completion 983 * ... Only can be used with META. 984 */ 985 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 986 enum page_type { 987 DATA, 988 NODE, 989 META, 990 NR_PAGE_TYPE, 991 META_FLUSH, 992 INMEM, /* the below types are used by tracepoints only. */ 993 INMEM_DROP, 994 INMEM_INVALIDATE, 995 INMEM_REVOKE, 996 IPU, 997 OPU, 998 }; 999 1000 enum temp_type { 1001 HOT = 0, /* must be zero for meta bio */ 1002 WARM, 1003 COLD, 1004 NR_TEMP_TYPE, 1005 }; 1006 1007 enum need_lock_type { 1008 LOCK_REQ = 0, 1009 LOCK_DONE, 1010 LOCK_RETRY, 1011 }; 1012 1013 enum cp_reason_type { 1014 CP_NO_NEEDED, 1015 CP_NON_REGULAR, 1016 CP_HARDLINK, 1017 CP_SB_NEED_CP, 1018 CP_WRONG_PINO, 1019 CP_NO_SPC_ROLL, 1020 CP_NODE_NEED_CP, 1021 CP_FASTBOOT_MODE, 1022 CP_SPEC_LOG_NUM, 1023 CP_RECOVER_DIR, 1024 }; 1025 1026 enum iostat_type { 1027 APP_DIRECT_IO, /* app direct IOs */ 1028 APP_BUFFERED_IO, /* app buffered IOs */ 1029 APP_WRITE_IO, /* app write IOs */ 1030 APP_MAPPED_IO, /* app mapped IOs */ 1031 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1032 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1033 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1034 FS_GC_DATA_IO, /* data IOs from forground gc */ 1035 FS_GC_NODE_IO, /* node IOs from forground gc */ 1036 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1037 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1038 FS_CP_META_IO, /* meta IOs from checkpoint */ 1039 FS_DISCARD, /* discard */ 1040 NR_IO_TYPE, 1041 }; 1042 1043 struct f2fs_io_info { 1044 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1045 nid_t ino; /* inode number */ 1046 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1047 enum temp_type temp; /* contains HOT/WARM/COLD */ 1048 int op; /* contains REQ_OP_ */ 1049 int op_flags; /* req_flag_bits */ 1050 block_t new_blkaddr; /* new block address to be written */ 1051 block_t old_blkaddr; /* old block address before Cow */ 1052 struct page *page; /* page to be written */ 1053 struct page *encrypted_page; /* encrypted page */ 1054 struct list_head list; /* serialize IOs */ 1055 bool submitted; /* indicate IO submission */ 1056 int need_lock; /* indicate we need to lock cp_rwsem */ 1057 bool in_list; /* indicate fio is in io_list */ 1058 bool is_por; /* indicate IO is from recovery or not */ 1059 bool retry; /* need to reallocate block address */ 1060 enum iostat_type io_type; /* io type */ 1061 struct writeback_control *io_wbc; /* writeback control */ 1062 struct bio **bio; /* bio for ipu */ 1063 sector_t *last_block; /* last block number in bio */ 1064 unsigned char version; /* version of the node */ 1065 }; 1066 1067 #define is_read_io(rw) ((rw) == READ) 1068 struct f2fs_bio_info { 1069 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1070 struct bio *bio; /* bios to merge */ 1071 sector_t last_block_in_bio; /* last block number */ 1072 struct f2fs_io_info fio; /* store buffered io info. */ 1073 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1074 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1075 struct list_head io_list; /* track fios */ 1076 }; 1077 1078 #define FDEV(i) (sbi->devs[i]) 1079 #define RDEV(i) (raw_super->devs[i]) 1080 struct f2fs_dev_info { 1081 struct block_device *bdev; 1082 char path[MAX_PATH_LEN]; 1083 unsigned int total_segments; 1084 block_t start_blk; 1085 block_t end_blk; 1086 #ifdef CONFIG_BLK_DEV_ZONED 1087 unsigned int nr_blkz; /* Total number of zones */ 1088 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1089 #endif 1090 }; 1091 1092 enum inode_type { 1093 DIR_INODE, /* for dirty dir inode */ 1094 FILE_INODE, /* for dirty regular/symlink inode */ 1095 DIRTY_META, /* for all dirtied inode metadata */ 1096 ATOMIC_FILE, /* for all atomic files */ 1097 NR_INODE_TYPE, 1098 }; 1099 1100 /* for inner inode cache management */ 1101 struct inode_management { 1102 struct radix_tree_root ino_root; /* ino entry array */ 1103 spinlock_t ino_lock; /* for ino entry lock */ 1104 struct list_head ino_list; /* inode list head */ 1105 unsigned long ino_num; /* number of entries */ 1106 }; 1107 1108 /* For s_flag in struct f2fs_sb_info */ 1109 enum { 1110 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1111 SBI_IS_CLOSE, /* specify unmounting */ 1112 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1113 SBI_POR_DOING, /* recovery is doing or not */ 1114 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1115 SBI_NEED_CP, /* need to checkpoint */ 1116 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1117 SBI_IS_RECOVERED, /* recovered orphan/data */ 1118 SBI_CP_DISABLED, /* CP was disabled last mount */ 1119 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1120 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1121 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1122 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1123 SBI_IS_RESIZEFS, /* resizefs is in process */ 1124 }; 1125 1126 enum { 1127 CP_TIME, 1128 REQ_TIME, 1129 DISCARD_TIME, 1130 GC_TIME, 1131 DISABLE_TIME, 1132 UMOUNT_DISCARD_TIMEOUT, 1133 MAX_TIME, 1134 }; 1135 1136 enum { 1137 GC_NORMAL, 1138 GC_IDLE_CB, 1139 GC_IDLE_GREEDY, 1140 GC_URGENT, 1141 }; 1142 1143 enum { 1144 WHINT_MODE_OFF, /* not pass down write hints */ 1145 WHINT_MODE_USER, /* try to pass down hints given by users */ 1146 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1147 }; 1148 1149 enum { 1150 ALLOC_MODE_DEFAULT, /* stay default */ 1151 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1152 }; 1153 1154 enum fsync_mode { 1155 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1156 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1157 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1158 }; 1159 1160 #ifdef CONFIG_FS_ENCRYPTION 1161 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1162 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1163 #else 1164 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1165 #endif 1166 1167 struct f2fs_sb_info { 1168 struct super_block *sb; /* pointer to VFS super block */ 1169 struct proc_dir_entry *s_proc; /* proc entry */ 1170 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1171 struct rw_semaphore sb_lock; /* lock for raw super block */ 1172 int valid_super_block; /* valid super block no */ 1173 unsigned long s_flag; /* flags for sbi */ 1174 struct mutex writepages; /* mutex for writepages() */ 1175 1176 #ifdef CONFIG_BLK_DEV_ZONED 1177 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1178 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1179 #endif 1180 1181 /* for node-related operations */ 1182 struct f2fs_nm_info *nm_info; /* node manager */ 1183 struct inode *node_inode; /* cache node blocks */ 1184 1185 /* for segment-related operations */ 1186 struct f2fs_sm_info *sm_info; /* segment manager */ 1187 1188 /* for bio operations */ 1189 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1190 /* keep migration IO order for LFS mode */ 1191 struct rw_semaphore io_order_lock; 1192 mempool_t *write_io_dummy; /* Dummy pages */ 1193 1194 /* for checkpoint */ 1195 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1196 int cur_cp_pack; /* remain current cp pack */ 1197 spinlock_t cp_lock; /* for flag in ckpt */ 1198 struct inode *meta_inode; /* cache meta blocks */ 1199 struct mutex cp_mutex; /* checkpoint procedure lock */ 1200 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1201 struct rw_semaphore node_write; /* locking node writes */ 1202 struct rw_semaphore node_change; /* locking node change */ 1203 wait_queue_head_t cp_wait; 1204 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1205 long interval_time[MAX_TIME]; /* to store thresholds */ 1206 1207 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1208 1209 spinlock_t fsync_node_lock; /* for node entry lock */ 1210 struct list_head fsync_node_list; /* node list head */ 1211 unsigned int fsync_seg_id; /* sequence id */ 1212 unsigned int fsync_node_num; /* number of node entries */ 1213 1214 /* for orphan inode, use 0'th array */ 1215 unsigned int max_orphans; /* max orphan inodes */ 1216 1217 /* for inode management */ 1218 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1219 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1220 struct mutex flush_lock; /* for flush exclusion */ 1221 1222 /* for extent tree cache */ 1223 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1224 struct mutex extent_tree_lock; /* locking extent radix tree */ 1225 struct list_head extent_list; /* lru list for shrinker */ 1226 spinlock_t extent_lock; /* locking extent lru list */ 1227 atomic_t total_ext_tree; /* extent tree count */ 1228 struct list_head zombie_list; /* extent zombie tree list */ 1229 atomic_t total_zombie_tree; /* extent zombie tree count */ 1230 atomic_t total_ext_node; /* extent info count */ 1231 1232 /* basic filesystem units */ 1233 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1234 unsigned int log_blocksize; /* log2 block size */ 1235 unsigned int blocksize; /* block size */ 1236 unsigned int root_ino_num; /* root inode number*/ 1237 unsigned int node_ino_num; /* node inode number*/ 1238 unsigned int meta_ino_num; /* meta inode number*/ 1239 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1240 unsigned int blocks_per_seg; /* blocks per segment */ 1241 unsigned int segs_per_sec; /* segments per section */ 1242 unsigned int secs_per_zone; /* sections per zone */ 1243 unsigned int total_sections; /* total section count */ 1244 struct mutex resize_mutex; /* for resize exclusion */ 1245 unsigned int total_node_count; /* total node block count */ 1246 unsigned int total_valid_node_count; /* valid node block count */ 1247 loff_t max_file_blocks; /* max block index of file */ 1248 int dir_level; /* directory level */ 1249 int readdir_ra; /* readahead inode in readdir */ 1250 1251 block_t user_block_count; /* # of user blocks */ 1252 block_t total_valid_block_count; /* # of valid blocks */ 1253 block_t discard_blks; /* discard command candidats */ 1254 block_t last_valid_block_count; /* for recovery */ 1255 block_t reserved_blocks; /* configurable reserved blocks */ 1256 block_t current_reserved_blocks; /* current reserved blocks */ 1257 1258 /* Additional tracking for no checkpoint mode */ 1259 block_t unusable_block_count; /* # of blocks saved by last cp */ 1260 1261 unsigned int nquota_files; /* # of quota sysfile */ 1262 struct rw_semaphore quota_sem; /* blocking cp for flags */ 1263 1264 /* # of pages, see count_type */ 1265 atomic_t nr_pages[NR_COUNT_TYPE]; 1266 /* # of allocated blocks */ 1267 struct percpu_counter alloc_valid_block_count; 1268 1269 /* writeback control */ 1270 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1271 1272 /* valid inode count */ 1273 struct percpu_counter total_valid_inode_count; 1274 1275 struct f2fs_mount_info mount_opt; /* mount options */ 1276 1277 /* for cleaning operations */ 1278 struct mutex gc_mutex; /* mutex for GC */ 1279 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1280 unsigned int cur_victim_sec; /* current victim section num */ 1281 unsigned int gc_mode; /* current GC state */ 1282 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1283 /* for skip statistic */ 1284 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1285 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1286 1287 /* threshold for gc trials on pinned files */ 1288 u64 gc_pin_file_threshold; 1289 1290 /* maximum # of trials to find a victim segment for SSR and GC */ 1291 unsigned int max_victim_search; 1292 /* migration granularity of garbage collection, unit: segment */ 1293 unsigned int migration_granularity; 1294 1295 /* 1296 * for stat information. 1297 * one is for the LFS mode, and the other is for the SSR mode. 1298 */ 1299 #ifdef CONFIG_F2FS_STAT_FS 1300 struct f2fs_stat_info *stat_info; /* FS status information */ 1301 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1302 unsigned int segment_count[2]; /* # of allocated segments */ 1303 unsigned int block_count[2]; /* # of allocated blocks */ 1304 atomic_t inplace_count; /* # of inplace update */ 1305 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1306 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1307 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1308 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1309 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1310 atomic_t inline_inode; /* # of inline_data inodes */ 1311 atomic_t inline_dir; /* # of inline_dentry inodes */ 1312 atomic_t aw_cnt; /* # of atomic writes */ 1313 atomic_t vw_cnt; /* # of volatile writes */ 1314 atomic_t max_aw_cnt; /* max # of atomic writes */ 1315 atomic_t max_vw_cnt; /* max # of volatile writes */ 1316 int bg_gc; /* background gc calls */ 1317 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1318 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1319 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1320 #endif 1321 spinlock_t stat_lock; /* lock for stat operations */ 1322 1323 /* For app/fs IO statistics */ 1324 spinlock_t iostat_lock; 1325 unsigned long long write_iostat[NR_IO_TYPE]; 1326 bool iostat_enable; 1327 1328 /* For sysfs suppport */ 1329 struct kobject s_kobj; 1330 struct completion s_kobj_unregister; 1331 1332 /* For shrinker support */ 1333 struct list_head s_list; 1334 int s_ndevs; /* number of devices */ 1335 struct f2fs_dev_info *devs; /* for device list */ 1336 unsigned int dirty_device; /* for checkpoint data flush */ 1337 spinlock_t dev_lock; /* protect dirty_device */ 1338 struct mutex umount_mutex; 1339 unsigned int shrinker_run_no; 1340 1341 /* For write statistics */ 1342 u64 sectors_written_start; 1343 u64 kbytes_written; 1344 1345 /* Reference to checksum algorithm driver via cryptoapi */ 1346 struct crypto_shash *s_chksum_driver; 1347 1348 /* Precomputed FS UUID checksum for seeding other checksums */ 1349 __u32 s_chksum_seed; 1350 }; 1351 1352 struct f2fs_private_dio { 1353 struct inode *inode; 1354 void *orig_private; 1355 bio_end_io_t *orig_end_io; 1356 bool write; 1357 }; 1358 1359 #ifdef CONFIG_F2FS_FAULT_INJECTION 1360 #define f2fs_show_injection_info(type) \ 1361 printk_ratelimited("%sF2FS-fs : inject %s in %s of %pS\n", \ 1362 KERN_INFO, f2fs_fault_name[type], \ 1363 __func__, __builtin_return_address(0)) 1364 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1365 { 1366 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1367 1368 if (!ffi->inject_rate) 1369 return false; 1370 1371 if (!IS_FAULT_SET(ffi, type)) 1372 return false; 1373 1374 atomic_inc(&ffi->inject_ops); 1375 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1376 atomic_set(&ffi->inject_ops, 0); 1377 return true; 1378 } 1379 return false; 1380 } 1381 #else 1382 #define f2fs_show_injection_info(type) do { } while (0) 1383 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1384 { 1385 return false; 1386 } 1387 #endif 1388 1389 /* 1390 * Test if the mounted volume is a multi-device volume. 1391 * - For a single regular disk volume, sbi->s_ndevs is 0. 1392 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1393 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1394 */ 1395 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1396 { 1397 return sbi->s_ndevs > 1; 1398 } 1399 1400 /* For write statistics. Suppose sector size is 512 bytes, 1401 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1402 */ 1403 #define BD_PART_WRITTEN(s) \ 1404 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \ 1405 (s)->sectors_written_start) >> 1) 1406 1407 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1408 { 1409 unsigned long now = jiffies; 1410 1411 sbi->last_time[type] = now; 1412 1413 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1414 if (type == REQ_TIME) { 1415 sbi->last_time[DISCARD_TIME] = now; 1416 sbi->last_time[GC_TIME] = now; 1417 } 1418 } 1419 1420 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1421 { 1422 unsigned long interval = sbi->interval_time[type] * HZ; 1423 1424 return time_after(jiffies, sbi->last_time[type] + interval); 1425 } 1426 1427 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1428 int type) 1429 { 1430 unsigned long interval = sbi->interval_time[type] * HZ; 1431 unsigned int wait_ms = 0; 1432 long delta; 1433 1434 delta = (sbi->last_time[type] + interval) - jiffies; 1435 if (delta > 0) 1436 wait_ms = jiffies_to_msecs(delta); 1437 1438 return wait_ms; 1439 } 1440 1441 /* 1442 * Inline functions 1443 */ 1444 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1445 const void *address, unsigned int length) 1446 { 1447 struct { 1448 struct shash_desc shash; 1449 char ctx[4]; 1450 } desc; 1451 int err; 1452 1453 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1454 1455 desc.shash.tfm = sbi->s_chksum_driver; 1456 *(u32 *)desc.ctx = crc; 1457 1458 err = crypto_shash_update(&desc.shash, address, length); 1459 BUG_ON(err); 1460 1461 return *(u32 *)desc.ctx; 1462 } 1463 1464 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1465 unsigned int length) 1466 { 1467 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1468 } 1469 1470 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1471 void *buf, size_t buf_size) 1472 { 1473 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1474 } 1475 1476 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1477 const void *address, unsigned int length) 1478 { 1479 return __f2fs_crc32(sbi, crc, address, length); 1480 } 1481 1482 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1483 { 1484 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1485 } 1486 1487 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1488 { 1489 return sb->s_fs_info; 1490 } 1491 1492 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1493 { 1494 return F2FS_SB(inode->i_sb); 1495 } 1496 1497 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1498 { 1499 return F2FS_I_SB(mapping->host); 1500 } 1501 1502 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1503 { 1504 return F2FS_M_SB(page_file_mapping(page)); 1505 } 1506 1507 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1508 { 1509 return (struct f2fs_super_block *)(sbi->raw_super); 1510 } 1511 1512 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1513 { 1514 return (struct f2fs_checkpoint *)(sbi->ckpt); 1515 } 1516 1517 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1518 { 1519 return (struct f2fs_node *)page_address(page); 1520 } 1521 1522 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1523 { 1524 return &((struct f2fs_node *)page_address(page))->i; 1525 } 1526 1527 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1528 { 1529 return (struct f2fs_nm_info *)(sbi->nm_info); 1530 } 1531 1532 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1533 { 1534 return (struct f2fs_sm_info *)(sbi->sm_info); 1535 } 1536 1537 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1538 { 1539 return (struct sit_info *)(SM_I(sbi)->sit_info); 1540 } 1541 1542 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1543 { 1544 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1545 } 1546 1547 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1548 { 1549 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1550 } 1551 1552 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1553 { 1554 return sbi->meta_inode->i_mapping; 1555 } 1556 1557 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1558 { 1559 return sbi->node_inode->i_mapping; 1560 } 1561 1562 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1563 { 1564 return test_bit(type, &sbi->s_flag); 1565 } 1566 1567 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1568 { 1569 set_bit(type, &sbi->s_flag); 1570 } 1571 1572 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1573 { 1574 clear_bit(type, &sbi->s_flag); 1575 } 1576 1577 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1578 { 1579 return le64_to_cpu(cp->checkpoint_ver); 1580 } 1581 1582 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1583 { 1584 if (type < F2FS_MAX_QUOTAS) 1585 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1586 return 0; 1587 } 1588 1589 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1590 { 1591 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1592 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1593 } 1594 1595 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1596 { 1597 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1598 1599 return ckpt_flags & f; 1600 } 1601 1602 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1603 { 1604 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1605 } 1606 1607 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1608 { 1609 unsigned int ckpt_flags; 1610 1611 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1612 ckpt_flags |= f; 1613 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1614 } 1615 1616 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1617 { 1618 unsigned long flags; 1619 1620 spin_lock_irqsave(&sbi->cp_lock, flags); 1621 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1622 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1623 } 1624 1625 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1626 { 1627 unsigned int ckpt_flags; 1628 1629 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1630 ckpt_flags &= (~f); 1631 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1632 } 1633 1634 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1635 { 1636 unsigned long flags; 1637 1638 spin_lock_irqsave(&sbi->cp_lock, flags); 1639 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1640 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1641 } 1642 1643 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1644 { 1645 unsigned long flags; 1646 1647 /* 1648 * In order to re-enable nat_bits we need to call fsck.f2fs by 1649 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost, 1650 * so let's rely on regular fsck or unclean shutdown. 1651 */ 1652 1653 if (lock) 1654 spin_lock_irqsave(&sbi->cp_lock, flags); 1655 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1656 kvfree(NM_I(sbi)->nat_bits); 1657 NM_I(sbi)->nat_bits = NULL; 1658 if (lock) 1659 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1660 } 1661 1662 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1663 struct cp_control *cpc) 1664 { 1665 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1666 1667 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1668 } 1669 1670 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1671 { 1672 down_read(&sbi->cp_rwsem); 1673 } 1674 1675 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1676 { 1677 return down_read_trylock(&sbi->cp_rwsem); 1678 } 1679 1680 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1681 { 1682 up_read(&sbi->cp_rwsem); 1683 } 1684 1685 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1686 { 1687 down_write(&sbi->cp_rwsem); 1688 } 1689 1690 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1691 { 1692 up_write(&sbi->cp_rwsem); 1693 } 1694 1695 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1696 { 1697 int reason = CP_SYNC; 1698 1699 if (test_opt(sbi, FASTBOOT)) 1700 reason = CP_FASTBOOT; 1701 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1702 reason = CP_UMOUNT; 1703 return reason; 1704 } 1705 1706 static inline bool __remain_node_summaries(int reason) 1707 { 1708 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1709 } 1710 1711 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1712 { 1713 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1714 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1715 } 1716 1717 /* 1718 * Check whether the inode has blocks or not 1719 */ 1720 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1721 { 1722 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1723 1724 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1725 } 1726 1727 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1728 { 1729 return ofs == XATTR_NODE_OFFSET; 1730 } 1731 1732 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1733 struct inode *inode, bool cap) 1734 { 1735 if (!inode) 1736 return true; 1737 if (!test_opt(sbi, RESERVE_ROOT)) 1738 return false; 1739 if (IS_NOQUOTA(inode)) 1740 return true; 1741 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1742 return true; 1743 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1744 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1745 return true; 1746 if (cap && capable(CAP_SYS_RESOURCE)) 1747 return true; 1748 return false; 1749 } 1750 1751 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1752 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1753 struct inode *inode, blkcnt_t *count) 1754 { 1755 blkcnt_t diff = 0, release = 0; 1756 block_t avail_user_block_count; 1757 int ret; 1758 1759 ret = dquot_reserve_block(inode, *count); 1760 if (ret) 1761 return ret; 1762 1763 if (time_to_inject(sbi, FAULT_BLOCK)) { 1764 f2fs_show_injection_info(FAULT_BLOCK); 1765 release = *count; 1766 goto enospc; 1767 } 1768 1769 /* 1770 * let's increase this in prior to actual block count change in order 1771 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1772 */ 1773 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1774 1775 spin_lock(&sbi->stat_lock); 1776 sbi->total_valid_block_count += (block_t)(*count); 1777 avail_user_block_count = sbi->user_block_count - 1778 sbi->current_reserved_blocks; 1779 1780 if (!__allow_reserved_blocks(sbi, inode, true)) 1781 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1782 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1783 if (avail_user_block_count > sbi->unusable_block_count) 1784 avail_user_block_count -= sbi->unusable_block_count; 1785 else 1786 avail_user_block_count = 0; 1787 } 1788 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1789 diff = sbi->total_valid_block_count - avail_user_block_count; 1790 if (diff > *count) 1791 diff = *count; 1792 *count -= diff; 1793 release = diff; 1794 sbi->total_valid_block_count -= diff; 1795 if (!*count) { 1796 spin_unlock(&sbi->stat_lock); 1797 goto enospc; 1798 } 1799 } 1800 spin_unlock(&sbi->stat_lock); 1801 1802 if (unlikely(release)) { 1803 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1804 dquot_release_reservation_block(inode, release); 1805 } 1806 f2fs_i_blocks_write(inode, *count, true, true); 1807 return 0; 1808 1809 enospc: 1810 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1811 dquot_release_reservation_block(inode, release); 1812 return -ENOSPC; 1813 } 1814 1815 __printf(2, 3) 1816 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 1817 1818 #define f2fs_err(sbi, fmt, ...) \ 1819 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 1820 #define f2fs_warn(sbi, fmt, ...) \ 1821 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 1822 #define f2fs_notice(sbi, fmt, ...) \ 1823 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 1824 #define f2fs_info(sbi, fmt, ...) \ 1825 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 1826 #define f2fs_debug(sbi, fmt, ...) \ 1827 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 1828 1829 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1830 struct inode *inode, 1831 block_t count) 1832 { 1833 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1834 1835 spin_lock(&sbi->stat_lock); 1836 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1837 sbi->total_valid_block_count -= (block_t)count; 1838 if (sbi->reserved_blocks && 1839 sbi->current_reserved_blocks < sbi->reserved_blocks) 1840 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1841 sbi->current_reserved_blocks + count); 1842 spin_unlock(&sbi->stat_lock); 1843 if (unlikely(inode->i_blocks < sectors)) { 1844 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 1845 inode->i_ino, 1846 (unsigned long long)inode->i_blocks, 1847 (unsigned long long)sectors); 1848 set_sbi_flag(sbi, SBI_NEED_FSCK); 1849 return; 1850 } 1851 f2fs_i_blocks_write(inode, count, false, true); 1852 } 1853 1854 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1855 { 1856 atomic_inc(&sbi->nr_pages[count_type]); 1857 1858 if (count_type == F2FS_DIRTY_DENTS || 1859 count_type == F2FS_DIRTY_NODES || 1860 count_type == F2FS_DIRTY_META || 1861 count_type == F2FS_DIRTY_QDATA || 1862 count_type == F2FS_DIRTY_IMETA) 1863 set_sbi_flag(sbi, SBI_IS_DIRTY); 1864 } 1865 1866 static inline void inode_inc_dirty_pages(struct inode *inode) 1867 { 1868 atomic_inc(&F2FS_I(inode)->dirty_pages); 1869 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1870 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1871 if (IS_NOQUOTA(inode)) 1872 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1873 } 1874 1875 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1876 { 1877 atomic_dec(&sbi->nr_pages[count_type]); 1878 } 1879 1880 static inline void inode_dec_dirty_pages(struct inode *inode) 1881 { 1882 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1883 !S_ISLNK(inode->i_mode)) 1884 return; 1885 1886 atomic_dec(&F2FS_I(inode)->dirty_pages); 1887 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1888 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1889 if (IS_NOQUOTA(inode)) 1890 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1891 } 1892 1893 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1894 { 1895 return atomic_read(&sbi->nr_pages[count_type]); 1896 } 1897 1898 static inline int get_dirty_pages(struct inode *inode) 1899 { 1900 return atomic_read(&F2FS_I(inode)->dirty_pages); 1901 } 1902 1903 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1904 { 1905 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1906 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1907 sbi->log_blocks_per_seg; 1908 1909 return segs / sbi->segs_per_sec; 1910 } 1911 1912 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1913 { 1914 return sbi->total_valid_block_count; 1915 } 1916 1917 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1918 { 1919 return sbi->discard_blks; 1920 } 1921 1922 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1923 { 1924 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1925 1926 /* return NAT or SIT bitmap */ 1927 if (flag == NAT_BITMAP) 1928 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1929 else if (flag == SIT_BITMAP) 1930 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1931 1932 return 0; 1933 } 1934 1935 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1936 { 1937 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1938 } 1939 1940 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1941 { 1942 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1943 int offset; 1944 1945 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1946 offset = (flag == SIT_BITMAP) ? 1947 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1948 /* 1949 * if large_nat_bitmap feature is enabled, leave checksum 1950 * protection for all nat/sit bitmaps. 1951 */ 1952 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32); 1953 } 1954 1955 if (__cp_payload(sbi) > 0) { 1956 if (flag == NAT_BITMAP) 1957 return &ckpt->sit_nat_version_bitmap; 1958 else 1959 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1960 } else { 1961 offset = (flag == NAT_BITMAP) ? 1962 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1963 return &ckpt->sit_nat_version_bitmap + offset; 1964 } 1965 } 1966 1967 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1968 { 1969 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1970 1971 if (sbi->cur_cp_pack == 2) 1972 start_addr += sbi->blocks_per_seg; 1973 return start_addr; 1974 } 1975 1976 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1977 { 1978 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1979 1980 if (sbi->cur_cp_pack == 1) 1981 start_addr += sbi->blocks_per_seg; 1982 return start_addr; 1983 } 1984 1985 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1986 { 1987 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1988 } 1989 1990 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1991 { 1992 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1993 } 1994 1995 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1996 struct inode *inode, bool is_inode) 1997 { 1998 block_t valid_block_count; 1999 unsigned int valid_node_count, user_block_count; 2000 int err; 2001 2002 if (is_inode) { 2003 if (inode) { 2004 err = dquot_alloc_inode(inode); 2005 if (err) 2006 return err; 2007 } 2008 } else { 2009 err = dquot_reserve_block(inode, 1); 2010 if (err) 2011 return err; 2012 } 2013 2014 if (time_to_inject(sbi, FAULT_BLOCK)) { 2015 f2fs_show_injection_info(FAULT_BLOCK); 2016 goto enospc; 2017 } 2018 2019 spin_lock(&sbi->stat_lock); 2020 2021 valid_block_count = sbi->total_valid_block_count + 2022 sbi->current_reserved_blocks + 1; 2023 2024 if (!__allow_reserved_blocks(sbi, inode, false)) 2025 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2026 user_block_count = sbi->user_block_count; 2027 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2028 user_block_count -= sbi->unusable_block_count; 2029 2030 if (unlikely(valid_block_count > user_block_count)) { 2031 spin_unlock(&sbi->stat_lock); 2032 goto enospc; 2033 } 2034 2035 valid_node_count = sbi->total_valid_node_count + 1; 2036 if (unlikely(valid_node_count > sbi->total_node_count)) { 2037 spin_unlock(&sbi->stat_lock); 2038 goto enospc; 2039 } 2040 2041 sbi->total_valid_node_count++; 2042 sbi->total_valid_block_count++; 2043 spin_unlock(&sbi->stat_lock); 2044 2045 if (inode) { 2046 if (is_inode) 2047 f2fs_mark_inode_dirty_sync(inode, true); 2048 else 2049 f2fs_i_blocks_write(inode, 1, true, true); 2050 } 2051 2052 percpu_counter_inc(&sbi->alloc_valid_block_count); 2053 return 0; 2054 2055 enospc: 2056 if (is_inode) { 2057 if (inode) 2058 dquot_free_inode(inode); 2059 } else { 2060 dquot_release_reservation_block(inode, 1); 2061 } 2062 return -ENOSPC; 2063 } 2064 2065 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2066 struct inode *inode, bool is_inode) 2067 { 2068 spin_lock(&sbi->stat_lock); 2069 2070 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 2071 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 2072 2073 sbi->total_valid_node_count--; 2074 sbi->total_valid_block_count--; 2075 if (sbi->reserved_blocks && 2076 sbi->current_reserved_blocks < sbi->reserved_blocks) 2077 sbi->current_reserved_blocks++; 2078 2079 spin_unlock(&sbi->stat_lock); 2080 2081 if (is_inode) { 2082 dquot_free_inode(inode); 2083 } else { 2084 if (unlikely(inode->i_blocks == 0)) { 2085 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu", 2086 inode->i_ino, 2087 (unsigned long long)inode->i_blocks); 2088 set_sbi_flag(sbi, SBI_NEED_FSCK); 2089 return; 2090 } 2091 f2fs_i_blocks_write(inode, 1, false, true); 2092 } 2093 } 2094 2095 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2096 { 2097 return sbi->total_valid_node_count; 2098 } 2099 2100 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2101 { 2102 percpu_counter_inc(&sbi->total_valid_inode_count); 2103 } 2104 2105 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2106 { 2107 percpu_counter_dec(&sbi->total_valid_inode_count); 2108 } 2109 2110 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2111 { 2112 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2113 } 2114 2115 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2116 pgoff_t index, bool for_write) 2117 { 2118 struct page *page; 2119 2120 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2121 if (!for_write) 2122 page = find_get_page_flags(mapping, index, 2123 FGP_LOCK | FGP_ACCESSED); 2124 else 2125 page = find_lock_page(mapping, index); 2126 if (page) 2127 return page; 2128 2129 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2130 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 2131 return NULL; 2132 } 2133 } 2134 2135 if (!for_write) 2136 return grab_cache_page(mapping, index); 2137 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2138 } 2139 2140 static inline struct page *f2fs_pagecache_get_page( 2141 struct address_space *mapping, pgoff_t index, 2142 int fgp_flags, gfp_t gfp_mask) 2143 { 2144 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2145 f2fs_show_injection_info(FAULT_PAGE_GET); 2146 return NULL; 2147 } 2148 2149 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2150 } 2151 2152 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2153 { 2154 char *src_kaddr = kmap(src); 2155 char *dst_kaddr = kmap(dst); 2156 2157 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2158 kunmap(dst); 2159 kunmap(src); 2160 } 2161 2162 static inline void f2fs_put_page(struct page *page, int unlock) 2163 { 2164 if (!page) 2165 return; 2166 2167 if (unlock) { 2168 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2169 unlock_page(page); 2170 } 2171 put_page(page); 2172 } 2173 2174 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2175 { 2176 if (dn->node_page) 2177 f2fs_put_page(dn->node_page, 1); 2178 if (dn->inode_page && dn->node_page != dn->inode_page) 2179 f2fs_put_page(dn->inode_page, 0); 2180 dn->node_page = NULL; 2181 dn->inode_page = NULL; 2182 } 2183 2184 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2185 size_t size) 2186 { 2187 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2188 } 2189 2190 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2191 gfp_t flags) 2192 { 2193 void *entry; 2194 2195 entry = kmem_cache_alloc(cachep, flags); 2196 if (!entry) 2197 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2198 return entry; 2199 } 2200 2201 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2202 int npages, bool no_fail) 2203 { 2204 struct bio *bio; 2205 2206 if (no_fail) { 2207 /* No failure on bio allocation */ 2208 bio = bio_alloc(GFP_NOIO, npages); 2209 if (!bio) 2210 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2211 return bio; 2212 } 2213 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2214 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2215 return NULL; 2216 } 2217 2218 return bio_alloc(GFP_KERNEL, npages); 2219 } 2220 2221 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2222 { 2223 if (sbi->gc_mode == GC_URGENT) 2224 return true; 2225 2226 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2227 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2228 get_pages(sbi, F2FS_WB_CP_DATA) || 2229 get_pages(sbi, F2FS_DIO_READ) || 2230 get_pages(sbi, F2FS_DIO_WRITE)) 2231 return false; 2232 2233 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2234 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2235 return false; 2236 2237 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2238 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2239 return false; 2240 2241 return f2fs_time_over(sbi, type); 2242 } 2243 2244 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2245 unsigned long index, void *item) 2246 { 2247 while (radix_tree_insert(root, index, item)) 2248 cond_resched(); 2249 } 2250 2251 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2252 2253 static inline bool IS_INODE(struct page *page) 2254 { 2255 struct f2fs_node *p = F2FS_NODE(page); 2256 2257 return RAW_IS_INODE(p); 2258 } 2259 2260 static inline int offset_in_addr(struct f2fs_inode *i) 2261 { 2262 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2263 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2264 } 2265 2266 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2267 { 2268 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2269 } 2270 2271 static inline int f2fs_has_extra_attr(struct inode *inode); 2272 static inline block_t datablock_addr(struct inode *inode, 2273 struct page *node_page, unsigned int offset) 2274 { 2275 struct f2fs_node *raw_node; 2276 __le32 *addr_array; 2277 int base = 0; 2278 bool is_inode = IS_INODE(node_page); 2279 2280 raw_node = F2FS_NODE(node_page); 2281 2282 /* from GC path only */ 2283 if (is_inode) { 2284 if (!inode) 2285 base = offset_in_addr(&raw_node->i); 2286 else if (f2fs_has_extra_attr(inode)) 2287 base = get_extra_isize(inode); 2288 } 2289 2290 addr_array = blkaddr_in_node(raw_node); 2291 return le32_to_cpu(addr_array[base + offset]); 2292 } 2293 2294 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2295 { 2296 int mask; 2297 2298 addr += (nr >> 3); 2299 mask = 1 << (7 - (nr & 0x07)); 2300 return mask & *addr; 2301 } 2302 2303 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2304 { 2305 int mask; 2306 2307 addr += (nr >> 3); 2308 mask = 1 << (7 - (nr & 0x07)); 2309 *addr |= mask; 2310 } 2311 2312 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2313 { 2314 int mask; 2315 2316 addr += (nr >> 3); 2317 mask = 1 << (7 - (nr & 0x07)); 2318 *addr &= ~mask; 2319 } 2320 2321 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2322 { 2323 int mask; 2324 int ret; 2325 2326 addr += (nr >> 3); 2327 mask = 1 << (7 - (nr & 0x07)); 2328 ret = mask & *addr; 2329 *addr |= mask; 2330 return ret; 2331 } 2332 2333 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2334 { 2335 int mask; 2336 int ret; 2337 2338 addr += (nr >> 3); 2339 mask = 1 << (7 - (nr & 0x07)); 2340 ret = mask & *addr; 2341 *addr &= ~mask; 2342 return ret; 2343 } 2344 2345 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2346 { 2347 int mask; 2348 2349 addr += (nr >> 3); 2350 mask = 1 << (7 - (nr & 0x07)); 2351 *addr ^= mask; 2352 } 2353 2354 /* 2355 * On-disk inode flags (f2fs_inode::i_flags) 2356 */ 2357 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2358 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2359 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2360 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2361 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2362 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2363 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2364 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2365 2366 /* Flags that should be inherited by new inodes from their parent. */ 2367 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2368 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL) 2369 2370 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2371 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL)) 2372 2373 /* Flags that are appropriate for non-directories/regular files. */ 2374 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2375 2376 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2377 { 2378 if (S_ISDIR(mode)) 2379 return flags; 2380 else if (S_ISREG(mode)) 2381 return flags & F2FS_REG_FLMASK; 2382 else 2383 return flags & F2FS_OTHER_FLMASK; 2384 } 2385 2386 /* used for f2fs_inode_info->flags */ 2387 enum { 2388 FI_NEW_INODE, /* indicate newly allocated inode */ 2389 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2390 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2391 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2392 FI_INC_LINK, /* need to increment i_nlink */ 2393 FI_ACL_MODE, /* indicate acl mode */ 2394 FI_NO_ALLOC, /* should not allocate any blocks */ 2395 FI_FREE_NID, /* free allocated nide */ 2396 FI_NO_EXTENT, /* not to use the extent cache */ 2397 FI_INLINE_XATTR, /* used for inline xattr */ 2398 FI_INLINE_DATA, /* used for inline data*/ 2399 FI_INLINE_DENTRY, /* used for inline dentry */ 2400 FI_APPEND_WRITE, /* inode has appended data */ 2401 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2402 FI_NEED_IPU, /* used for ipu per file */ 2403 FI_ATOMIC_FILE, /* indicate atomic file */ 2404 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2405 FI_VOLATILE_FILE, /* indicate volatile file */ 2406 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2407 FI_DROP_CACHE, /* drop dirty page cache */ 2408 FI_DATA_EXIST, /* indicate data exists */ 2409 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2410 FI_DO_DEFRAG, /* indicate defragment is running */ 2411 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2412 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2413 FI_HOT_DATA, /* indicate file is hot */ 2414 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2415 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2416 FI_PIN_FILE, /* indicate file should not be gced */ 2417 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 2418 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 2419 }; 2420 2421 static inline void __mark_inode_dirty_flag(struct inode *inode, 2422 int flag, bool set) 2423 { 2424 switch (flag) { 2425 case FI_INLINE_XATTR: 2426 case FI_INLINE_DATA: 2427 case FI_INLINE_DENTRY: 2428 case FI_NEW_INODE: 2429 if (set) 2430 return; 2431 /* fall through */ 2432 case FI_DATA_EXIST: 2433 case FI_INLINE_DOTS: 2434 case FI_PIN_FILE: 2435 f2fs_mark_inode_dirty_sync(inode, true); 2436 } 2437 } 2438 2439 static inline void set_inode_flag(struct inode *inode, int flag) 2440 { 2441 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2442 set_bit(flag, &F2FS_I(inode)->flags); 2443 __mark_inode_dirty_flag(inode, flag, true); 2444 } 2445 2446 static inline int is_inode_flag_set(struct inode *inode, int flag) 2447 { 2448 return test_bit(flag, &F2FS_I(inode)->flags); 2449 } 2450 2451 static inline void clear_inode_flag(struct inode *inode, int flag) 2452 { 2453 if (test_bit(flag, &F2FS_I(inode)->flags)) 2454 clear_bit(flag, &F2FS_I(inode)->flags); 2455 __mark_inode_dirty_flag(inode, flag, false); 2456 } 2457 2458 static inline bool f2fs_verity_in_progress(struct inode *inode) 2459 { 2460 return IS_ENABLED(CONFIG_FS_VERITY) && 2461 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 2462 } 2463 2464 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2465 { 2466 F2FS_I(inode)->i_acl_mode = mode; 2467 set_inode_flag(inode, FI_ACL_MODE); 2468 f2fs_mark_inode_dirty_sync(inode, false); 2469 } 2470 2471 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2472 { 2473 if (inc) 2474 inc_nlink(inode); 2475 else 2476 drop_nlink(inode); 2477 f2fs_mark_inode_dirty_sync(inode, true); 2478 } 2479 2480 static inline void f2fs_i_blocks_write(struct inode *inode, 2481 block_t diff, bool add, bool claim) 2482 { 2483 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2484 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2485 2486 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2487 if (add) { 2488 if (claim) 2489 dquot_claim_block(inode, diff); 2490 else 2491 dquot_alloc_block_nofail(inode, diff); 2492 } else { 2493 dquot_free_block(inode, diff); 2494 } 2495 2496 f2fs_mark_inode_dirty_sync(inode, true); 2497 if (clean || recover) 2498 set_inode_flag(inode, FI_AUTO_RECOVER); 2499 } 2500 2501 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2502 { 2503 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2504 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2505 2506 if (i_size_read(inode) == i_size) 2507 return; 2508 2509 i_size_write(inode, i_size); 2510 f2fs_mark_inode_dirty_sync(inode, true); 2511 if (clean || recover) 2512 set_inode_flag(inode, FI_AUTO_RECOVER); 2513 } 2514 2515 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2516 { 2517 F2FS_I(inode)->i_current_depth = depth; 2518 f2fs_mark_inode_dirty_sync(inode, true); 2519 } 2520 2521 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2522 unsigned int count) 2523 { 2524 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2525 f2fs_mark_inode_dirty_sync(inode, true); 2526 } 2527 2528 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2529 { 2530 F2FS_I(inode)->i_xattr_nid = xnid; 2531 f2fs_mark_inode_dirty_sync(inode, true); 2532 } 2533 2534 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2535 { 2536 F2FS_I(inode)->i_pino = pino; 2537 f2fs_mark_inode_dirty_sync(inode, true); 2538 } 2539 2540 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2541 { 2542 struct f2fs_inode_info *fi = F2FS_I(inode); 2543 2544 if (ri->i_inline & F2FS_INLINE_XATTR) 2545 set_bit(FI_INLINE_XATTR, &fi->flags); 2546 if (ri->i_inline & F2FS_INLINE_DATA) 2547 set_bit(FI_INLINE_DATA, &fi->flags); 2548 if (ri->i_inline & F2FS_INLINE_DENTRY) 2549 set_bit(FI_INLINE_DENTRY, &fi->flags); 2550 if (ri->i_inline & F2FS_DATA_EXIST) 2551 set_bit(FI_DATA_EXIST, &fi->flags); 2552 if (ri->i_inline & F2FS_INLINE_DOTS) 2553 set_bit(FI_INLINE_DOTS, &fi->flags); 2554 if (ri->i_inline & F2FS_EXTRA_ATTR) 2555 set_bit(FI_EXTRA_ATTR, &fi->flags); 2556 if (ri->i_inline & F2FS_PIN_FILE) 2557 set_bit(FI_PIN_FILE, &fi->flags); 2558 } 2559 2560 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2561 { 2562 ri->i_inline = 0; 2563 2564 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2565 ri->i_inline |= F2FS_INLINE_XATTR; 2566 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2567 ri->i_inline |= F2FS_INLINE_DATA; 2568 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2569 ri->i_inline |= F2FS_INLINE_DENTRY; 2570 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2571 ri->i_inline |= F2FS_DATA_EXIST; 2572 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2573 ri->i_inline |= F2FS_INLINE_DOTS; 2574 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2575 ri->i_inline |= F2FS_EXTRA_ATTR; 2576 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2577 ri->i_inline |= F2FS_PIN_FILE; 2578 } 2579 2580 static inline int f2fs_has_extra_attr(struct inode *inode) 2581 { 2582 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2583 } 2584 2585 static inline int f2fs_has_inline_xattr(struct inode *inode) 2586 { 2587 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2588 } 2589 2590 static inline unsigned int addrs_per_inode(struct inode *inode) 2591 { 2592 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 2593 get_inline_xattr_addrs(inode); 2594 return ALIGN_DOWN(addrs, 1); 2595 } 2596 2597 static inline unsigned int addrs_per_block(struct inode *inode) 2598 { 2599 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1); 2600 } 2601 2602 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2603 { 2604 struct f2fs_inode *ri = F2FS_INODE(page); 2605 2606 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2607 get_inline_xattr_addrs(inode)]); 2608 } 2609 2610 static inline int inline_xattr_size(struct inode *inode) 2611 { 2612 if (f2fs_has_inline_xattr(inode)) 2613 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2614 return 0; 2615 } 2616 2617 static inline int f2fs_has_inline_data(struct inode *inode) 2618 { 2619 return is_inode_flag_set(inode, FI_INLINE_DATA); 2620 } 2621 2622 static inline int f2fs_exist_data(struct inode *inode) 2623 { 2624 return is_inode_flag_set(inode, FI_DATA_EXIST); 2625 } 2626 2627 static inline int f2fs_has_inline_dots(struct inode *inode) 2628 { 2629 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2630 } 2631 2632 static inline bool f2fs_is_pinned_file(struct inode *inode) 2633 { 2634 return is_inode_flag_set(inode, FI_PIN_FILE); 2635 } 2636 2637 static inline bool f2fs_is_atomic_file(struct inode *inode) 2638 { 2639 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2640 } 2641 2642 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2643 { 2644 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2645 } 2646 2647 static inline bool f2fs_is_volatile_file(struct inode *inode) 2648 { 2649 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2650 } 2651 2652 static inline bool f2fs_is_first_block_written(struct inode *inode) 2653 { 2654 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2655 } 2656 2657 static inline bool f2fs_is_drop_cache(struct inode *inode) 2658 { 2659 return is_inode_flag_set(inode, FI_DROP_CACHE); 2660 } 2661 2662 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2663 { 2664 struct f2fs_inode *ri = F2FS_INODE(page); 2665 int extra_size = get_extra_isize(inode); 2666 2667 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2668 } 2669 2670 static inline int f2fs_has_inline_dentry(struct inode *inode) 2671 { 2672 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2673 } 2674 2675 static inline int is_file(struct inode *inode, int type) 2676 { 2677 return F2FS_I(inode)->i_advise & type; 2678 } 2679 2680 static inline void set_file(struct inode *inode, int type) 2681 { 2682 F2FS_I(inode)->i_advise |= type; 2683 f2fs_mark_inode_dirty_sync(inode, true); 2684 } 2685 2686 static inline void clear_file(struct inode *inode, int type) 2687 { 2688 F2FS_I(inode)->i_advise &= ~type; 2689 f2fs_mark_inode_dirty_sync(inode, true); 2690 } 2691 2692 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2693 { 2694 bool ret; 2695 2696 if (dsync) { 2697 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2698 2699 spin_lock(&sbi->inode_lock[DIRTY_META]); 2700 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2701 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2702 return ret; 2703 } 2704 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2705 file_keep_isize(inode) || 2706 i_size_read(inode) & ~PAGE_MASK) 2707 return false; 2708 2709 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 2710 return false; 2711 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 2712 return false; 2713 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 2714 return false; 2715 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 2716 &F2FS_I(inode)->i_crtime)) 2717 return false; 2718 2719 down_read(&F2FS_I(inode)->i_sem); 2720 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2721 up_read(&F2FS_I(inode)->i_sem); 2722 2723 return ret; 2724 } 2725 2726 static inline bool f2fs_readonly(struct super_block *sb) 2727 { 2728 return sb_rdonly(sb); 2729 } 2730 2731 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2732 { 2733 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2734 } 2735 2736 static inline bool is_dot_dotdot(const struct qstr *str) 2737 { 2738 if (str->len == 1 && str->name[0] == '.') 2739 return true; 2740 2741 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2742 return true; 2743 2744 return false; 2745 } 2746 2747 static inline bool f2fs_may_extent_tree(struct inode *inode) 2748 { 2749 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2750 2751 if (!test_opt(sbi, EXTENT_CACHE) || 2752 is_inode_flag_set(inode, FI_NO_EXTENT)) 2753 return false; 2754 2755 /* 2756 * for recovered files during mount do not create extents 2757 * if shrinker is not registered. 2758 */ 2759 if (list_empty(&sbi->s_list)) 2760 return false; 2761 2762 return S_ISREG(inode->i_mode); 2763 } 2764 2765 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2766 size_t size, gfp_t flags) 2767 { 2768 void *ret; 2769 2770 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2771 f2fs_show_injection_info(FAULT_KMALLOC); 2772 return NULL; 2773 } 2774 2775 ret = kmalloc(size, flags); 2776 if (ret) 2777 return ret; 2778 2779 return kvmalloc(size, flags); 2780 } 2781 2782 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2783 size_t size, gfp_t flags) 2784 { 2785 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2786 } 2787 2788 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2789 size_t size, gfp_t flags) 2790 { 2791 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2792 f2fs_show_injection_info(FAULT_KVMALLOC); 2793 return NULL; 2794 } 2795 2796 return kvmalloc(size, flags); 2797 } 2798 2799 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2800 size_t size, gfp_t flags) 2801 { 2802 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2803 } 2804 2805 static inline int get_extra_isize(struct inode *inode) 2806 { 2807 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2808 } 2809 2810 static inline int get_inline_xattr_addrs(struct inode *inode) 2811 { 2812 return F2FS_I(inode)->i_inline_xattr_size; 2813 } 2814 2815 #define f2fs_get_inode_mode(i) \ 2816 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2817 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2818 2819 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2820 (offsetof(struct f2fs_inode, i_extra_end) - \ 2821 offsetof(struct f2fs_inode, i_extra_isize)) \ 2822 2823 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2824 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2825 ((offsetof(typeof(*(f2fs_inode)), field) + \ 2826 sizeof((f2fs_inode)->field)) \ 2827 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 2828 2829 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2830 { 2831 int i; 2832 2833 spin_lock(&sbi->iostat_lock); 2834 for (i = 0; i < NR_IO_TYPE; i++) 2835 sbi->write_iostat[i] = 0; 2836 spin_unlock(&sbi->iostat_lock); 2837 } 2838 2839 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2840 enum iostat_type type, unsigned long long io_bytes) 2841 { 2842 if (!sbi->iostat_enable) 2843 return; 2844 spin_lock(&sbi->iostat_lock); 2845 sbi->write_iostat[type] += io_bytes; 2846 2847 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2848 sbi->write_iostat[APP_BUFFERED_IO] = 2849 sbi->write_iostat[APP_WRITE_IO] - 2850 sbi->write_iostat[APP_DIRECT_IO]; 2851 spin_unlock(&sbi->iostat_lock); 2852 } 2853 2854 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 2855 2856 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 2857 2858 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 2859 block_t blkaddr, int type); 2860 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 2861 block_t blkaddr, int type) 2862 { 2863 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 2864 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 2865 blkaddr, type); 2866 f2fs_bug_on(sbi, 1); 2867 } 2868 } 2869 2870 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 2871 { 2872 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2873 return false; 2874 return true; 2875 } 2876 2877 static inline void f2fs_set_page_private(struct page *page, 2878 unsigned long data) 2879 { 2880 if (PagePrivate(page)) 2881 return; 2882 2883 get_page(page); 2884 SetPagePrivate(page); 2885 set_page_private(page, data); 2886 } 2887 2888 static inline void f2fs_clear_page_private(struct page *page) 2889 { 2890 if (!PagePrivate(page)) 2891 return; 2892 2893 set_page_private(page, 0); 2894 ClearPagePrivate(page); 2895 f2fs_put_page(page, 0); 2896 } 2897 2898 /* 2899 * file.c 2900 */ 2901 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2902 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 2903 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 2904 int f2fs_truncate(struct inode *inode); 2905 int f2fs_getattr(const struct path *path, struct kstat *stat, 2906 u32 request_mask, unsigned int flags); 2907 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2908 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2909 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2910 int f2fs_precache_extents(struct inode *inode); 2911 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2912 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2913 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 2914 int f2fs_pin_file_control(struct inode *inode, bool inc); 2915 2916 /* 2917 * inode.c 2918 */ 2919 void f2fs_set_inode_flags(struct inode *inode); 2920 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2921 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2922 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2923 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2924 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2925 void f2fs_update_inode(struct inode *inode, struct page *node_page); 2926 void f2fs_update_inode_page(struct inode *inode); 2927 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2928 void f2fs_evict_inode(struct inode *inode); 2929 void f2fs_handle_failed_inode(struct inode *inode); 2930 2931 /* 2932 * namei.c 2933 */ 2934 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2935 bool hot, bool set); 2936 struct dentry *f2fs_get_parent(struct dentry *child); 2937 2938 /* 2939 * dir.c 2940 */ 2941 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 2942 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname, 2943 f2fs_hash_t namehash, int *max_slots, 2944 struct f2fs_dentry_ptr *d); 2945 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2946 unsigned int start_pos, struct fscrypt_str *fstr); 2947 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 2948 struct f2fs_dentry_ptr *d); 2949 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 2950 const struct qstr *new_name, 2951 const struct qstr *orig_name, struct page *dpage); 2952 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 2953 unsigned int current_depth); 2954 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 2955 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2956 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2957 struct fscrypt_name *fname, struct page **res_page); 2958 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2959 const struct qstr *child, struct page **res_page); 2960 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2961 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2962 struct page **page); 2963 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2964 struct page *page, struct inode *inode); 2965 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2966 const struct qstr *name, f2fs_hash_t name_hash, 2967 unsigned int bit_pos); 2968 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2969 const struct qstr *orig_name, 2970 struct inode *inode, nid_t ino, umode_t mode); 2971 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname, 2972 struct inode *inode, nid_t ino, umode_t mode); 2973 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 2974 struct inode *inode, nid_t ino, umode_t mode); 2975 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2976 struct inode *dir, struct inode *inode); 2977 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2978 bool f2fs_empty_dir(struct inode *dir); 2979 2980 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2981 { 2982 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2983 inode, inode->i_ino, inode->i_mode); 2984 } 2985 2986 /* 2987 * super.c 2988 */ 2989 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2990 void f2fs_inode_synced(struct inode *inode); 2991 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2992 int f2fs_quota_sync(struct super_block *sb, int type); 2993 void f2fs_quota_off_umount(struct super_block *sb); 2994 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2995 int f2fs_sync_fs(struct super_block *sb, int sync); 2996 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 2997 2998 /* 2999 * hash.c 3000 */ 3001 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 3002 struct fscrypt_name *fname); 3003 3004 /* 3005 * node.c 3006 */ 3007 struct dnode_of_data; 3008 struct node_info; 3009 3010 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3011 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3012 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3013 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3014 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3015 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3016 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3017 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3018 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3019 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3020 struct node_info *ni); 3021 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3022 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3023 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3024 int f2fs_truncate_xattr_node(struct inode *inode); 3025 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3026 unsigned int seq_id); 3027 int f2fs_remove_inode_page(struct inode *inode); 3028 struct page *f2fs_new_inode_page(struct inode *inode); 3029 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3030 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3031 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3032 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3033 int f2fs_move_node_page(struct page *node_page, int gc_type); 3034 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3035 struct writeback_control *wbc, bool atomic, 3036 unsigned int *seq_id); 3037 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3038 struct writeback_control *wbc, 3039 bool do_balance, enum iostat_type io_type); 3040 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3041 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3042 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3043 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3044 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3045 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3046 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3047 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3048 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3049 unsigned int segno, struct f2fs_summary_block *sum); 3050 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3051 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3052 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3053 int __init f2fs_create_node_manager_caches(void); 3054 void f2fs_destroy_node_manager_caches(void); 3055 3056 /* 3057 * segment.c 3058 */ 3059 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3060 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 3061 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 3062 void f2fs_drop_inmem_pages(struct inode *inode); 3063 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 3064 int f2fs_commit_inmem_pages(struct inode *inode); 3065 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3066 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 3067 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3068 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3069 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3070 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3071 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3072 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3073 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3074 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3075 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3076 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3077 struct cp_control *cpc); 3078 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3079 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3080 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3081 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3082 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3083 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3084 unsigned int start, unsigned int end); 3085 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3086 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3087 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3088 struct cp_control *cpc); 3089 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3090 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3091 block_t blk_addr); 3092 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3093 enum iostat_type io_type); 3094 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3095 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3096 struct f2fs_io_info *fio); 3097 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3098 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3099 block_t old_blkaddr, block_t new_blkaddr, 3100 bool recover_curseg, bool recover_newaddr); 3101 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3102 block_t old_addr, block_t new_addr, 3103 unsigned char version, bool recover_curseg, 3104 bool recover_newaddr); 3105 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3106 block_t old_blkaddr, block_t *new_blkaddr, 3107 struct f2fs_summary *sum, int type, 3108 struct f2fs_io_info *fio, bool add_list); 3109 void f2fs_wait_on_page_writeback(struct page *page, 3110 enum page_type type, bool ordered, bool locked); 3111 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3112 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3113 block_t len); 3114 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3115 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3116 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3117 unsigned int val, int alloc); 3118 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3119 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3120 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3121 int __init f2fs_create_segment_manager_caches(void); 3122 void f2fs_destroy_segment_manager_caches(void); 3123 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3124 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3125 enum page_type type, enum temp_type temp); 3126 3127 /* 3128 * checkpoint.c 3129 */ 3130 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 3131 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3132 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3133 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index); 3134 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3135 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3136 block_t blkaddr, int type); 3137 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3138 int type, bool sync); 3139 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 3140 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3141 long nr_to_write, enum iostat_type io_type); 3142 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3143 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3144 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3145 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3146 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3147 unsigned int devidx, int type); 3148 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3149 unsigned int devidx, int type); 3150 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3151 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3152 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3153 void f2fs_add_orphan_inode(struct inode *inode); 3154 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3155 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3156 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3157 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 3158 void f2fs_remove_dirty_inode(struct inode *inode); 3159 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 3160 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi); 3161 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3162 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3163 int __init f2fs_create_checkpoint_caches(void); 3164 void f2fs_destroy_checkpoint_caches(void); 3165 3166 /* 3167 * data.c 3168 */ 3169 int f2fs_init_post_read_processing(void); 3170 void f2fs_destroy_post_read_processing(void); 3171 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3172 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3173 struct inode *inode, struct page *page, 3174 nid_t ino, enum page_type type); 3175 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3176 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3177 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3178 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3179 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3180 block_t blk_addr, struct bio *bio); 3181 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3182 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3183 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3184 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3185 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3186 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3187 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3188 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3189 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3190 int op_flags, bool for_write); 3191 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3192 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3193 bool for_write); 3194 struct page *f2fs_get_new_data_page(struct inode *inode, 3195 struct page *ipage, pgoff_t index, bool new_i_size); 3196 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3197 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3198 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3199 int create, int flag); 3200 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3201 u64 start, u64 len); 3202 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3203 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3204 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3205 unsigned int length); 3206 int f2fs_release_page(struct page *page, gfp_t wait); 3207 #ifdef CONFIG_MIGRATION 3208 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3209 struct page *page, enum migrate_mode mode); 3210 #endif 3211 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3212 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3213 3214 /* 3215 * gc.c 3216 */ 3217 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3218 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3219 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3220 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 3221 unsigned int segno); 3222 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3223 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3224 3225 /* 3226 * recovery.c 3227 */ 3228 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3229 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3230 3231 /* 3232 * debug.c 3233 */ 3234 #ifdef CONFIG_F2FS_STAT_FS 3235 struct f2fs_stat_info { 3236 struct list_head stat_list; 3237 struct f2fs_sb_info *sbi; 3238 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3239 int main_area_segs, main_area_sections, main_area_zones; 3240 unsigned long long hit_largest, hit_cached, hit_rbtree; 3241 unsigned long long hit_total, total_ext; 3242 int ext_tree, zombie_tree, ext_node; 3243 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3244 int ndirty_data, ndirty_qdata; 3245 int inmem_pages; 3246 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3247 int nats, dirty_nats, sits, dirty_sits; 3248 int free_nids, avail_nids, alloc_nids; 3249 int total_count, utilization; 3250 int bg_gc, nr_wb_cp_data, nr_wb_data; 3251 int nr_rd_data, nr_rd_node, nr_rd_meta; 3252 int nr_dio_read, nr_dio_write; 3253 unsigned int io_skip_bggc, other_skip_bggc; 3254 int nr_flushing, nr_flushed, flush_list_empty; 3255 int nr_discarding, nr_discarded; 3256 int nr_discard_cmd; 3257 unsigned int undiscard_blks; 3258 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3259 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3260 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3261 unsigned int bimodal, avg_vblocks; 3262 int util_free, util_valid, util_invalid; 3263 int rsvd_segs, overp_segs; 3264 int dirty_count, node_pages, meta_pages; 3265 int prefree_count, call_count, cp_count, bg_cp_count; 3266 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3267 int bg_node_segs, bg_data_segs; 3268 int tot_blks, data_blks, node_blks; 3269 int bg_data_blks, bg_node_blks; 3270 unsigned long long skipped_atomic_files[2]; 3271 int curseg[NR_CURSEG_TYPE]; 3272 int cursec[NR_CURSEG_TYPE]; 3273 int curzone[NR_CURSEG_TYPE]; 3274 3275 unsigned int meta_count[META_MAX]; 3276 unsigned int segment_count[2]; 3277 unsigned int block_count[2]; 3278 unsigned int inplace_count; 3279 unsigned long long base_mem, cache_mem, page_mem; 3280 }; 3281 3282 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3283 { 3284 return (struct f2fs_stat_info *)sbi->stat_info; 3285 } 3286 3287 #define stat_inc_cp_count(si) ((si)->cp_count++) 3288 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3289 #define stat_inc_call_count(si) ((si)->call_count++) 3290 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 3291 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3292 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3293 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3294 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3295 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3296 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3297 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3298 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3299 #define stat_inc_inline_xattr(inode) \ 3300 do { \ 3301 if (f2fs_has_inline_xattr(inode)) \ 3302 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3303 } while (0) 3304 #define stat_dec_inline_xattr(inode) \ 3305 do { \ 3306 if (f2fs_has_inline_xattr(inode)) \ 3307 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3308 } while (0) 3309 #define stat_inc_inline_inode(inode) \ 3310 do { \ 3311 if (f2fs_has_inline_data(inode)) \ 3312 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3313 } while (0) 3314 #define stat_dec_inline_inode(inode) \ 3315 do { \ 3316 if (f2fs_has_inline_data(inode)) \ 3317 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3318 } while (0) 3319 #define stat_inc_inline_dir(inode) \ 3320 do { \ 3321 if (f2fs_has_inline_dentry(inode)) \ 3322 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3323 } while (0) 3324 #define stat_dec_inline_dir(inode) \ 3325 do { \ 3326 if (f2fs_has_inline_dentry(inode)) \ 3327 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3328 } while (0) 3329 #define stat_inc_meta_count(sbi, blkaddr) \ 3330 do { \ 3331 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3332 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3333 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3334 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3335 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3336 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3337 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3338 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3339 } while (0) 3340 #define stat_inc_seg_type(sbi, curseg) \ 3341 ((sbi)->segment_count[(curseg)->alloc_type]++) 3342 #define stat_inc_block_count(sbi, curseg) \ 3343 ((sbi)->block_count[(curseg)->alloc_type]++) 3344 #define stat_inc_inplace_blocks(sbi) \ 3345 (atomic_inc(&(sbi)->inplace_count)) 3346 #define stat_inc_atomic_write(inode) \ 3347 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 3348 #define stat_dec_atomic_write(inode) \ 3349 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 3350 #define stat_update_max_atomic_write(inode) \ 3351 do { \ 3352 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3353 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3354 if (cur > max) \ 3355 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3356 } while (0) 3357 #define stat_inc_volatile_write(inode) \ 3358 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3359 #define stat_dec_volatile_write(inode) \ 3360 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3361 #define stat_update_max_volatile_write(inode) \ 3362 do { \ 3363 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3364 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3365 if (cur > max) \ 3366 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3367 } while (0) 3368 #define stat_inc_seg_count(sbi, type, gc_type) \ 3369 do { \ 3370 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3371 si->tot_segs++; \ 3372 if ((type) == SUM_TYPE_DATA) { \ 3373 si->data_segs++; \ 3374 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3375 } else { \ 3376 si->node_segs++; \ 3377 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3378 } \ 3379 } while (0) 3380 3381 #define stat_inc_tot_blk_count(si, blks) \ 3382 ((si)->tot_blks += (blks)) 3383 3384 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3385 do { \ 3386 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3387 stat_inc_tot_blk_count(si, blks); \ 3388 si->data_blks += (blks); \ 3389 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3390 } while (0) 3391 3392 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3393 do { \ 3394 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3395 stat_inc_tot_blk_count(si, blks); \ 3396 si->node_blks += (blks); \ 3397 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3398 } while (0) 3399 3400 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3401 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3402 void __init f2fs_create_root_stats(void); 3403 void f2fs_destroy_root_stats(void); 3404 #else 3405 #define stat_inc_cp_count(si) do { } while (0) 3406 #define stat_inc_bg_cp_count(si) do { } while (0) 3407 #define stat_inc_call_count(si) do { } while (0) 3408 #define stat_inc_bggc_count(si) do { } while (0) 3409 #define stat_io_skip_bggc_count(sbi) do { } while (0) 3410 #define stat_other_skip_bggc_count(sbi) do { } while (0) 3411 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3412 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3413 #define stat_inc_total_hit(sb) do { } while (0) 3414 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3415 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3416 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3417 #define stat_inc_inline_xattr(inode) do { } while (0) 3418 #define stat_dec_inline_xattr(inode) do { } while (0) 3419 #define stat_inc_inline_inode(inode) do { } while (0) 3420 #define stat_dec_inline_inode(inode) do { } while (0) 3421 #define stat_inc_inline_dir(inode) do { } while (0) 3422 #define stat_dec_inline_dir(inode) do { } while (0) 3423 #define stat_inc_atomic_write(inode) do { } while (0) 3424 #define stat_dec_atomic_write(inode) do { } while (0) 3425 #define stat_update_max_atomic_write(inode) do { } while (0) 3426 #define stat_inc_volatile_write(inode) do { } while (0) 3427 #define stat_dec_volatile_write(inode) do { } while (0) 3428 #define stat_update_max_volatile_write(inode) do { } while (0) 3429 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 3430 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3431 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3432 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3433 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3434 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3435 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3436 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3437 3438 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3439 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3440 static inline void __init f2fs_create_root_stats(void) { } 3441 static inline void f2fs_destroy_root_stats(void) { } 3442 #endif 3443 3444 extern const struct file_operations f2fs_dir_operations; 3445 extern const struct file_operations f2fs_file_operations; 3446 extern const struct inode_operations f2fs_file_inode_operations; 3447 extern const struct address_space_operations f2fs_dblock_aops; 3448 extern const struct address_space_operations f2fs_node_aops; 3449 extern const struct address_space_operations f2fs_meta_aops; 3450 extern const struct inode_operations f2fs_dir_inode_operations; 3451 extern const struct inode_operations f2fs_symlink_inode_operations; 3452 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3453 extern const struct inode_operations f2fs_special_inode_operations; 3454 extern struct kmem_cache *f2fs_inode_entry_slab; 3455 3456 /* 3457 * inline.c 3458 */ 3459 bool f2fs_may_inline_data(struct inode *inode); 3460 bool f2fs_may_inline_dentry(struct inode *inode); 3461 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3462 void f2fs_truncate_inline_inode(struct inode *inode, 3463 struct page *ipage, u64 from); 3464 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3465 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3466 int f2fs_convert_inline_inode(struct inode *inode); 3467 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3468 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3469 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3470 struct fscrypt_name *fname, struct page **res_page); 3471 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3472 struct page *ipage); 3473 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3474 const struct qstr *orig_name, 3475 struct inode *inode, nid_t ino, umode_t mode); 3476 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3477 struct page *page, struct inode *dir, 3478 struct inode *inode); 3479 bool f2fs_empty_inline_dir(struct inode *dir); 3480 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3481 struct fscrypt_str *fstr); 3482 int f2fs_inline_data_fiemap(struct inode *inode, 3483 struct fiemap_extent_info *fieinfo, 3484 __u64 start, __u64 len); 3485 3486 /* 3487 * shrinker.c 3488 */ 3489 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3490 struct shrink_control *sc); 3491 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3492 struct shrink_control *sc); 3493 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3494 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3495 3496 /* 3497 * extent_cache.c 3498 */ 3499 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 3500 struct rb_entry *cached_re, unsigned int ofs); 3501 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3502 struct rb_root_cached *root, 3503 struct rb_node **parent, 3504 unsigned int ofs, bool *leftmost); 3505 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 3506 struct rb_entry *cached_re, unsigned int ofs, 3507 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3508 struct rb_node ***insert_p, struct rb_node **insert_parent, 3509 bool force, bool *leftmost); 3510 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3511 struct rb_root_cached *root); 3512 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3513 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3514 void f2fs_drop_extent_tree(struct inode *inode); 3515 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3516 void f2fs_destroy_extent_tree(struct inode *inode); 3517 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3518 struct extent_info *ei); 3519 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3520 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3521 pgoff_t fofs, block_t blkaddr, unsigned int len); 3522 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3523 int __init f2fs_create_extent_cache(void); 3524 void f2fs_destroy_extent_cache(void); 3525 3526 /* 3527 * sysfs.c 3528 */ 3529 int __init f2fs_init_sysfs(void); 3530 void f2fs_exit_sysfs(void); 3531 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3532 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3533 3534 /* verity.c */ 3535 extern const struct fsverity_operations f2fs_verityops; 3536 3537 /* 3538 * crypto support 3539 */ 3540 static inline bool f2fs_encrypted_file(struct inode *inode) 3541 { 3542 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 3543 } 3544 3545 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3546 { 3547 #ifdef CONFIG_FS_ENCRYPTION 3548 file_set_encrypt(inode); 3549 f2fs_set_inode_flags(inode); 3550 #endif 3551 } 3552 3553 /* 3554 * Returns true if the reads of the inode's data need to undergo some 3555 * postprocessing step, like decryption or authenticity verification. 3556 */ 3557 static inline bool f2fs_post_read_required(struct inode *inode) 3558 { 3559 return f2fs_encrypted_file(inode) || fsverity_active(inode); 3560 } 3561 3562 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3563 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 3564 { \ 3565 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 3566 } 3567 3568 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3569 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3570 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3571 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3572 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3573 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3574 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3575 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3576 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3577 F2FS_FEATURE_FUNCS(verity, VERITY); 3578 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 3579 3580 #ifdef CONFIG_BLK_DEV_ZONED 3581 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 3582 block_t blkaddr) 3583 { 3584 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3585 3586 return test_bit(zno, FDEV(devi).blkz_seq); 3587 } 3588 #endif 3589 3590 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 3591 { 3592 return f2fs_sb_has_blkzoned(sbi); 3593 } 3594 3595 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 3596 { 3597 return blk_queue_discard(bdev_get_queue(bdev)) || 3598 bdev_is_zoned(bdev); 3599 } 3600 3601 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 3602 { 3603 int i; 3604 3605 if (!f2fs_is_multi_device(sbi)) 3606 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 3607 3608 for (i = 0; i < sbi->s_ndevs; i++) 3609 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 3610 return true; 3611 return false; 3612 } 3613 3614 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 3615 { 3616 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 3617 f2fs_hw_should_discard(sbi); 3618 } 3619 3620 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 3621 { 3622 int i; 3623 3624 if (!f2fs_is_multi_device(sbi)) 3625 return bdev_read_only(sbi->sb->s_bdev); 3626 3627 for (i = 0; i < sbi->s_ndevs; i++) 3628 if (bdev_read_only(FDEV(i).bdev)) 3629 return true; 3630 return false; 3631 } 3632 3633 3634 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3635 { 3636 clear_opt(sbi, ADAPTIVE); 3637 clear_opt(sbi, LFS); 3638 3639 switch (mt) { 3640 case F2FS_MOUNT_ADAPTIVE: 3641 set_opt(sbi, ADAPTIVE); 3642 break; 3643 case F2FS_MOUNT_LFS: 3644 set_opt(sbi, LFS); 3645 break; 3646 } 3647 } 3648 3649 static inline bool f2fs_may_encrypt(struct inode *inode) 3650 { 3651 #ifdef CONFIG_FS_ENCRYPTION 3652 umode_t mode = inode->i_mode; 3653 3654 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3655 #else 3656 return false; 3657 #endif 3658 } 3659 3660 static inline int block_unaligned_IO(struct inode *inode, 3661 struct kiocb *iocb, struct iov_iter *iter) 3662 { 3663 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits); 3664 unsigned int blocksize_mask = (1 << i_blkbits) - 1; 3665 loff_t offset = iocb->ki_pos; 3666 unsigned long align = offset | iov_iter_alignment(iter); 3667 3668 return align & blocksize_mask; 3669 } 3670 3671 static inline int allow_outplace_dio(struct inode *inode, 3672 struct kiocb *iocb, struct iov_iter *iter) 3673 { 3674 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3675 int rw = iov_iter_rw(iter); 3676 3677 return (test_opt(sbi, LFS) && (rw == WRITE) && 3678 !block_unaligned_IO(inode, iocb, iter)); 3679 } 3680 3681 static inline bool f2fs_force_buffered_io(struct inode *inode, 3682 struct kiocb *iocb, struct iov_iter *iter) 3683 { 3684 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3685 int rw = iov_iter_rw(iter); 3686 3687 if (f2fs_post_read_required(inode)) 3688 return true; 3689 if (f2fs_is_multi_device(sbi)) 3690 return true; 3691 /* 3692 * for blkzoned device, fallback direct IO to buffered IO, so 3693 * all IOs can be serialized by log-structured write. 3694 */ 3695 if (f2fs_sb_has_blkzoned(sbi)) 3696 return true; 3697 if (test_opt(sbi, LFS) && (rw == WRITE) && 3698 block_unaligned_IO(inode, iocb, iter)) 3699 return true; 3700 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) && 3701 !(inode->i_flags & S_SWAPFILE)) 3702 return true; 3703 3704 return false; 3705 } 3706 3707 #ifdef CONFIG_F2FS_FAULT_INJECTION 3708 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 3709 unsigned int type); 3710 #else 3711 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 3712 #endif 3713 3714 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 3715 { 3716 #ifdef CONFIG_QUOTA 3717 if (f2fs_sb_has_quota_ino(sbi)) 3718 return true; 3719 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 3720 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 3721 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 3722 return true; 3723 #endif 3724 return false; 3725 } 3726 3727 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 3728 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 3729 3730 #endif /* _LINUX_F2FS_H */ 3731