1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/fscrypto.h> 26 #include <crypto/hash.h> 27 28 #ifdef CONFIG_F2FS_CHECK_FS 29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 30 #else 31 #define f2fs_bug_on(sbi, condition) \ 32 do { \ 33 if (unlikely(condition)) { \ 34 WARN_ON(1); \ 35 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 36 } \ 37 } while (0) 38 #endif 39 40 #ifdef CONFIG_F2FS_FAULT_INJECTION 41 enum { 42 FAULT_KMALLOC, 43 FAULT_PAGE_ALLOC, 44 FAULT_ALLOC_NID, 45 FAULT_ORPHAN, 46 FAULT_BLOCK, 47 FAULT_DIR_DEPTH, 48 FAULT_EVICT_INODE, 49 FAULT_IO, 50 FAULT_CHECKPOINT, 51 FAULT_MAX, 52 }; 53 54 struct f2fs_fault_info { 55 atomic_t inject_ops; 56 unsigned int inject_rate; 57 unsigned int inject_type; 58 }; 59 60 extern char *fault_name[FAULT_MAX]; 61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type))) 62 #endif 63 64 /* 65 * For mount options 66 */ 67 #define F2FS_MOUNT_BG_GC 0x00000001 68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 69 #define F2FS_MOUNT_DISCARD 0x00000004 70 #define F2FS_MOUNT_NOHEAP 0x00000008 71 #define F2FS_MOUNT_XATTR_USER 0x00000010 72 #define F2FS_MOUNT_POSIX_ACL 0x00000020 73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 74 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 75 #define F2FS_MOUNT_INLINE_DATA 0x00000100 76 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 77 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 78 #define F2FS_MOUNT_NOBARRIER 0x00000800 79 #define F2FS_MOUNT_FASTBOOT 0x00001000 80 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 81 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 82 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 83 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 84 #define F2FS_MOUNT_ADAPTIVE 0x00020000 85 #define F2FS_MOUNT_LFS 0x00040000 86 87 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 88 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 89 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 90 91 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 92 typecheck(unsigned long long, b) && \ 93 ((long long)((a) - (b)) > 0)) 94 95 typedef u32 block_t; /* 96 * should not change u32, since it is the on-disk block 97 * address format, __le32. 98 */ 99 typedef u32 nid_t; 100 101 struct f2fs_mount_info { 102 unsigned int opt; 103 }; 104 105 #define F2FS_FEATURE_ENCRYPT 0x0001 106 #define F2FS_FEATURE_BLKZONED 0x0002 107 108 #define F2FS_HAS_FEATURE(sb, mask) \ 109 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 110 #define F2FS_SET_FEATURE(sb, mask) \ 111 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 112 #define F2FS_CLEAR_FEATURE(sb, mask) \ 113 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 114 115 /* 116 * For checkpoint manager 117 */ 118 enum { 119 NAT_BITMAP, 120 SIT_BITMAP 121 }; 122 123 enum { 124 CP_UMOUNT, 125 CP_FASTBOOT, 126 CP_SYNC, 127 CP_RECOVERY, 128 CP_DISCARD, 129 }; 130 131 #define DEF_BATCHED_TRIM_SECTIONS 2 132 #define BATCHED_TRIM_SEGMENTS(sbi) \ 133 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 134 #define BATCHED_TRIM_BLOCKS(sbi) \ 135 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 136 #define DEF_CP_INTERVAL 60 /* 60 secs */ 137 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 138 139 struct cp_control { 140 int reason; 141 __u64 trim_start; 142 __u64 trim_end; 143 __u64 trim_minlen; 144 __u64 trimmed; 145 }; 146 147 /* 148 * For CP/NAT/SIT/SSA readahead 149 */ 150 enum { 151 META_CP, 152 META_NAT, 153 META_SIT, 154 META_SSA, 155 META_POR, 156 }; 157 158 /* for the list of ino */ 159 enum { 160 ORPHAN_INO, /* for orphan ino list */ 161 APPEND_INO, /* for append ino list */ 162 UPDATE_INO, /* for update ino list */ 163 MAX_INO_ENTRY, /* max. list */ 164 }; 165 166 struct ino_entry { 167 struct list_head list; /* list head */ 168 nid_t ino; /* inode number */ 169 }; 170 171 /* for the list of inodes to be GCed */ 172 struct inode_entry { 173 struct list_head list; /* list head */ 174 struct inode *inode; /* vfs inode pointer */ 175 }; 176 177 /* for the list of blockaddresses to be discarded */ 178 struct discard_entry { 179 struct list_head list; /* list head */ 180 block_t blkaddr; /* block address to be discarded */ 181 int len; /* # of consecutive blocks of the discard */ 182 }; 183 184 struct bio_entry { 185 struct list_head list; 186 struct bio *bio; 187 struct completion event; 188 int error; 189 }; 190 191 /* for the list of fsync inodes, used only during recovery */ 192 struct fsync_inode_entry { 193 struct list_head list; /* list head */ 194 struct inode *inode; /* vfs inode pointer */ 195 block_t blkaddr; /* block address locating the last fsync */ 196 block_t last_dentry; /* block address locating the last dentry */ 197 }; 198 199 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 200 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 201 202 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 203 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 204 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 205 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 206 207 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 208 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 209 210 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 211 { 212 int before = nats_in_cursum(journal); 213 journal->n_nats = cpu_to_le16(before + i); 214 return before; 215 } 216 217 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 218 { 219 int before = sits_in_cursum(journal); 220 journal->n_sits = cpu_to_le16(before + i); 221 return before; 222 } 223 224 static inline bool __has_cursum_space(struct f2fs_journal *journal, 225 int size, int type) 226 { 227 if (type == NAT_JOURNAL) 228 return size <= MAX_NAT_JENTRIES(journal); 229 return size <= MAX_SIT_JENTRIES(journal); 230 } 231 232 /* 233 * ioctl commands 234 */ 235 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 236 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 237 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 238 239 #define F2FS_IOCTL_MAGIC 0xf5 240 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 241 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 242 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 243 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 244 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 245 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 246 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 247 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 248 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 249 struct f2fs_move_range) 250 251 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 252 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 253 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 254 255 /* 256 * should be same as XFS_IOC_GOINGDOWN. 257 * Flags for going down operation used by FS_IOC_GOINGDOWN 258 */ 259 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 260 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 261 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 262 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 263 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 264 265 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 266 /* 267 * ioctl commands in 32 bit emulation 268 */ 269 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 270 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 271 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 272 #endif 273 274 struct f2fs_defragment { 275 u64 start; 276 u64 len; 277 }; 278 279 struct f2fs_move_range { 280 u32 dst_fd; /* destination fd */ 281 u64 pos_in; /* start position in src_fd */ 282 u64 pos_out; /* start position in dst_fd */ 283 u64 len; /* size to move */ 284 }; 285 286 /* 287 * For INODE and NODE manager 288 */ 289 /* for directory operations */ 290 struct f2fs_dentry_ptr { 291 struct inode *inode; 292 const void *bitmap; 293 struct f2fs_dir_entry *dentry; 294 __u8 (*filename)[F2FS_SLOT_LEN]; 295 int max; 296 }; 297 298 static inline void make_dentry_ptr(struct inode *inode, 299 struct f2fs_dentry_ptr *d, void *src, int type) 300 { 301 d->inode = inode; 302 303 if (type == 1) { 304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 305 d->max = NR_DENTRY_IN_BLOCK; 306 d->bitmap = &t->dentry_bitmap; 307 d->dentry = t->dentry; 308 d->filename = t->filename; 309 } else { 310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 311 d->max = NR_INLINE_DENTRY; 312 d->bitmap = &t->dentry_bitmap; 313 d->dentry = t->dentry; 314 d->filename = t->filename; 315 } 316 } 317 318 /* 319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 320 * as its node offset to distinguish from index node blocks. 321 * But some bits are used to mark the node block. 322 */ 323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 324 >> OFFSET_BIT_SHIFT) 325 enum { 326 ALLOC_NODE, /* allocate a new node page if needed */ 327 LOOKUP_NODE, /* look up a node without readahead */ 328 LOOKUP_NODE_RA, /* 329 * look up a node with readahead called 330 * by get_data_block. 331 */ 332 }; 333 334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 335 336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 337 338 /* vector size for gang look-up from extent cache that consists of radix tree */ 339 #define EXT_TREE_VEC_SIZE 64 340 341 /* for in-memory extent cache entry */ 342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 343 344 /* number of extent info in extent cache we try to shrink */ 345 #define EXTENT_CACHE_SHRINK_NUMBER 128 346 347 struct extent_info { 348 unsigned int fofs; /* start offset in a file */ 349 u32 blk; /* start block address of the extent */ 350 unsigned int len; /* length of the extent */ 351 }; 352 353 struct extent_node { 354 struct rb_node rb_node; /* rb node located in rb-tree */ 355 struct list_head list; /* node in global extent list of sbi */ 356 struct extent_info ei; /* extent info */ 357 struct extent_tree *et; /* extent tree pointer */ 358 }; 359 360 struct extent_tree { 361 nid_t ino; /* inode number */ 362 struct rb_root root; /* root of extent info rb-tree */ 363 struct extent_node *cached_en; /* recently accessed extent node */ 364 struct extent_info largest; /* largested extent info */ 365 struct list_head list; /* to be used by sbi->zombie_list */ 366 rwlock_t lock; /* protect extent info rb-tree */ 367 atomic_t node_cnt; /* # of extent node in rb-tree*/ 368 }; 369 370 /* 371 * This structure is taken from ext4_map_blocks. 372 * 373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 374 */ 375 #define F2FS_MAP_NEW (1 << BH_New) 376 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 379 F2FS_MAP_UNWRITTEN) 380 381 struct f2fs_map_blocks { 382 block_t m_pblk; 383 block_t m_lblk; 384 unsigned int m_len; 385 unsigned int m_flags; 386 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 387 }; 388 389 /* for flag in get_data_block */ 390 #define F2FS_GET_BLOCK_READ 0 391 #define F2FS_GET_BLOCK_DIO 1 392 #define F2FS_GET_BLOCK_FIEMAP 2 393 #define F2FS_GET_BLOCK_BMAP 3 394 #define F2FS_GET_BLOCK_PRE_DIO 4 395 #define F2FS_GET_BLOCK_PRE_AIO 5 396 397 /* 398 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 399 */ 400 #define FADVISE_COLD_BIT 0x01 401 #define FADVISE_LOST_PINO_BIT 0x02 402 #define FADVISE_ENCRYPT_BIT 0x04 403 #define FADVISE_ENC_NAME_BIT 0x08 404 #define FADVISE_KEEP_SIZE_BIT 0x10 405 406 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 407 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 408 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 409 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 410 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 411 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 412 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 413 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 414 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 415 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 416 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 417 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 418 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 419 420 #define DEF_DIR_LEVEL 0 421 422 struct f2fs_inode_info { 423 struct inode vfs_inode; /* serve a vfs inode */ 424 unsigned long i_flags; /* keep an inode flags for ioctl */ 425 unsigned char i_advise; /* use to give file attribute hints */ 426 unsigned char i_dir_level; /* use for dentry level for large dir */ 427 unsigned int i_current_depth; /* use only in directory structure */ 428 unsigned int i_pino; /* parent inode number */ 429 umode_t i_acl_mode; /* keep file acl mode temporarily */ 430 431 /* Use below internally in f2fs*/ 432 unsigned long flags; /* use to pass per-file flags */ 433 struct rw_semaphore i_sem; /* protect fi info */ 434 atomic_t dirty_pages; /* # of dirty pages */ 435 f2fs_hash_t chash; /* hash value of given file name */ 436 unsigned int clevel; /* maximum level of given file name */ 437 nid_t i_xattr_nid; /* node id that contains xattrs */ 438 unsigned long long xattr_ver; /* cp version of xattr modification */ 439 loff_t last_disk_size; /* lastly written file size */ 440 441 struct list_head dirty_list; /* dirty list for dirs and files */ 442 struct list_head gdirty_list; /* linked in global dirty list */ 443 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 444 struct mutex inmem_lock; /* lock for inmemory pages */ 445 struct extent_tree *extent_tree; /* cached extent_tree entry */ 446 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 447 }; 448 449 static inline void get_extent_info(struct extent_info *ext, 450 struct f2fs_extent *i_ext) 451 { 452 ext->fofs = le32_to_cpu(i_ext->fofs); 453 ext->blk = le32_to_cpu(i_ext->blk); 454 ext->len = le32_to_cpu(i_ext->len); 455 } 456 457 static inline void set_raw_extent(struct extent_info *ext, 458 struct f2fs_extent *i_ext) 459 { 460 i_ext->fofs = cpu_to_le32(ext->fofs); 461 i_ext->blk = cpu_to_le32(ext->blk); 462 i_ext->len = cpu_to_le32(ext->len); 463 } 464 465 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 466 u32 blk, unsigned int len) 467 { 468 ei->fofs = fofs; 469 ei->blk = blk; 470 ei->len = len; 471 } 472 473 static inline bool __is_extent_same(struct extent_info *ei1, 474 struct extent_info *ei2) 475 { 476 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 477 ei1->len == ei2->len); 478 } 479 480 static inline bool __is_extent_mergeable(struct extent_info *back, 481 struct extent_info *front) 482 { 483 return (back->fofs + back->len == front->fofs && 484 back->blk + back->len == front->blk); 485 } 486 487 static inline bool __is_back_mergeable(struct extent_info *cur, 488 struct extent_info *back) 489 { 490 return __is_extent_mergeable(back, cur); 491 } 492 493 static inline bool __is_front_mergeable(struct extent_info *cur, 494 struct extent_info *front) 495 { 496 return __is_extent_mergeable(cur, front); 497 } 498 499 extern void f2fs_mark_inode_dirty_sync(struct inode *, bool); 500 static inline void __try_update_largest_extent(struct inode *inode, 501 struct extent_tree *et, struct extent_node *en) 502 { 503 if (en->ei.len > et->largest.len) { 504 et->largest = en->ei; 505 f2fs_mark_inode_dirty_sync(inode, true); 506 } 507 } 508 509 enum nid_list { 510 FREE_NID_LIST, 511 ALLOC_NID_LIST, 512 MAX_NID_LIST, 513 }; 514 515 struct f2fs_nm_info { 516 block_t nat_blkaddr; /* base disk address of NAT */ 517 nid_t max_nid; /* maximum possible node ids */ 518 nid_t available_nids; /* # of available node ids */ 519 nid_t next_scan_nid; /* the next nid to be scanned */ 520 unsigned int ram_thresh; /* control the memory footprint */ 521 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 522 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 523 524 /* NAT cache management */ 525 struct radix_tree_root nat_root;/* root of the nat entry cache */ 526 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 527 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 528 struct list_head nat_entries; /* cached nat entry list (clean) */ 529 unsigned int nat_cnt; /* the # of cached nat entries */ 530 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 531 532 /* free node ids management */ 533 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 534 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ 535 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ 536 spinlock_t nid_list_lock; /* protect nid lists ops */ 537 struct mutex build_lock; /* lock for build free nids */ 538 539 /* for checkpoint */ 540 char *nat_bitmap; /* NAT bitmap pointer */ 541 int bitmap_size; /* bitmap size */ 542 }; 543 544 /* 545 * this structure is used as one of function parameters. 546 * all the information are dedicated to a given direct node block determined 547 * by the data offset in a file. 548 */ 549 struct dnode_of_data { 550 struct inode *inode; /* vfs inode pointer */ 551 struct page *inode_page; /* its inode page, NULL is possible */ 552 struct page *node_page; /* cached direct node page */ 553 nid_t nid; /* node id of the direct node block */ 554 unsigned int ofs_in_node; /* data offset in the node page */ 555 bool inode_page_locked; /* inode page is locked or not */ 556 bool node_changed; /* is node block changed */ 557 char cur_level; /* level of hole node page */ 558 char max_level; /* level of current page located */ 559 block_t data_blkaddr; /* block address of the node block */ 560 }; 561 562 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 563 struct page *ipage, struct page *npage, nid_t nid) 564 { 565 memset(dn, 0, sizeof(*dn)); 566 dn->inode = inode; 567 dn->inode_page = ipage; 568 dn->node_page = npage; 569 dn->nid = nid; 570 } 571 572 /* 573 * For SIT manager 574 * 575 * By default, there are 6 active log areas across the whole main area. 576 * When considering hot and cold data separation to reduce cleaning overhead, 577 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 578 * respectively. 579 * In the current design, you should not change the numbers intentionally. 580 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 581 * logs individually according to the underlying devices. (default: 6) 582 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 583 * data and 8 for node logs. 584 */ 585 #define NR_CURSEG_DATA_TYPE (3) 586 #define NR_CURSEG_NODE_TYPE (3) 587 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 588 589 enum { 590 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 591 CURSEG_WARM_DATA, /* data blocks */ 592 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 593 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 594 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 595 CURSEG_COLD_NODE, /* indirect node blocks */ 596 NO_CHECK_TYPE, 597 }; 598 599 struct flush_cmd { 600 struct completion wait; 601 struct llist_node llnode; 602 int ret; 603 }; 604 605 struct flush_cmd_control { 606 struct task_struct *f2fs_issue_flush; /* flush thread */ 607 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 608 atomic_t submit_flush; /* # of issued flushes */ 609 struct llist_head issue_list; /* list for command issue */ 610 struct llist_node *dispatch_list; /* list for command dispatch */ 611 }; 612 613 struct f2fs_sm_info { 614 struct sit_info *sit_info; /* whole segment information */ 615 struct free_segmap_info *free_info; /* free segment information */ 616 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 617 struct curseg_info *curseg_array; /* active segment information */ 618 619 block_t seg0_blkaddr; /* block address of 0'th segment */ 620 block_t main_blkaddr; /* start block address of main area */ 621 block_t ssa_blkaddr; /* start block address of SSA area */ 622 623 unsigned int segment_count; /* total # of segments */ 624 unsigned int main_segments; /* # of segments in main area */ 625 unsigned int reserved_segments; /* # of reserved segments */ 626 unsigned int ovp_segments; /* # of overprovision segments */ 627 628 /* a threshold to reclaim prefree segments */ 629 unsigned int rec_prefree_segments; 630 631 /* for small discard management */ 632 struct list_head discard_list; /* 4KB discard list */ 633 struct list_head wait_list; /* linked with issued discard bio */ 634 int nr_discards; /* # of discards in the list */ 635 int max_discards; /* max. discards to be issued */ 636 637 /* for batched trimming */ 638 unsigned int trim_sections; /* # of sections to trim */ 639 640 struct list_head sit_entry_set; /* sit entry set list */ 641 642 unsigned int ipu_policy; /* in-place-update policy */ 643 unsigned int min_ipu_util; /* in-place-update threshold */ 644 unsigned int min_fsync_blocks; /* threshold for fsync */ 645 646 /* for flush command control */ 647 struct flush_cmd_control *cmd_control_info; 648 649 }; 650 651 /* 652 * For superblock 653 */ 654 /* 655 * COUNT_TYPE for monitoring 656 * 657 * f2fs monitors the number of several block types such as on-writeback, 658 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 659 */ 660 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 661 enum count_type { 662 F2FS_DIRTY_DENTS, 663 F2FS_DIRTY_DATA, 664 F2FS_DIRTY_NODES, 665 F2FS_DIRTY_META, 666 F2FS_INMEM_PAGES, 667 F2FS_DIRTY_IMETA, 668 F2FS_WB_CP_DATA, 669 F2FS_WB_DATA, 670 NR_COUNT_TYPE, 671 }; 672 673 /* 674 * The below are the page types of bios used in submit_bio(). 675 * The available types are: 676 * DATA User data pages. It operates as async mode. 677 * NODE Node pages. It operates as async mode. 678 * META FS metadata pages such as SIT, NAT, CP. 679 * NR_PAGE_TYPE The number of page types. 680 * META_FLUSH Make sure the previous pages are written 681 * with waiting the bio's completion 682 * ... Only can be used with META. 683 */ 684 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 685 enum page_type { 686 DATA, 687 NODE, 688 META, 689 NR_PAGE_TYPE, 690 META_FLUSH, 691 INMEM, /* the below types are used by tracepoints only. */ 692 INMEM_DROP, 693 INMEM_REVOKE, 694 IPU, 695 OPU, 696 }; 697 698 struct f2fs_io_info { 699 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 700 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 701 int op; /* contains REQ_OP_ */ 702 int op_flags; /* req_flag_bits */ 703 block_t new_blkaddr; /* new block address to be written */ 704 block_t old_blkaddr; /* old block address before Cow */ 705 struct page *page; /* page to be written */ 706 struct page *encrypted_page; /* encrypted page */ 707 }; 708 709 #define is_read_io(rw) (rw == READ) 710 struct f2fs_bio_info { 711 struct f2fs_sb_info *sbi; /* f2fs superblock */ 712 struct bio *bio; /* bios to merge */ 713 sector_t last_block_in_bio; /* last block number */ 714 struct f2fs_io_info fio; /* store buffered io info. */ 715 struct rw_semaphore io_rwsem; /* blocking op for bio */ 716 }; 717 718 #define FDEV(i) (sbi->devs[i]) 719 #define RDEV(i) (raw_super->devs[i]) 720 struct f2fs_dev_info { 721 struct block_device *bdev; 722 char path[MAX_PATH_LEN]; 723 unsigned int total_segments; 724 block_t start_blk; 725 block_t end_blk; 726 #ifdef CONFIG_BLK_DEV_ZONED 727 unsigned int nr_blkz; /* Total number of zones */ 728 u8 *blkz_type; /* Array of zones type */ 729 #endif 730 }; 731 732 enum inode_type { 733 DIR_INODE, /* for dirty dir inode */ 734 FILE_INODE, /* for dirty regular/symlink inode */ 735 DIRTY_META, /* for all dirtied inode metadata */ 736 NR_INODE_TYPE, 737 }; 738 739 /* for inner inode cache management */ 740 struct inode_management { 741 struct radix_tree_root ino_root; /* ino entry array */ 742 spinlock_t ino_lock; /* for ino entry lock */ 743 struct list_head ino_list; /* inode list head */ 744 unsigned long ino_num; /* number of entries */ 745 }; 746 747 /* For s_flag in struct f2fs_sb_info */ 748 enum { 749 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 750 SBI_IS_CLOSE, /* specify unmounting */ 751 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 752 SBI_POR_DOING, /* recovery is doing or not */ 753 SBI_NEED_SB_WRITE, /* need to recover superblock */ 754 SBI_NEED_CP, /* need to checkpoint */ 755 }; 756 757 enum { 758 CP_TIME, 759 REQ_TIME, 760 MAX_TIME, 761 }; 762 763 #ifdef CONFIG_F2FS_FS_ENCRYPTION 764 #define F2FS_KEY_DESC_PREFIX "f2fs:" 765 #define F2FS_KEY_DESC_PREFIX_SIZE 5 766 #endif 767 struct f2fs_sb_info { 768 struct super_block *sb; /* pointer to VFS super block */ 769 struct proc_dir_entry *s_proc; /* proc entry */ 770 struct f2fs_super_block *raw_super; /* raw super block pointer */ 771 int valid_super_block; /* valid super block no */ 772 unsigned long s_flag; /* flags for sbi */ 773 774 #ifdef CONFIG_F2FS_FS_ENCRYPTION 775 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE]; 776 u8 key_prefix_size; 777 #endif 778 779 #ifdef CONFIG_BLK_DEV_ZONED 780 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 781 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 782 #endif 783 784 /* for node-related operations */ 785 struct f2fs_nm_info *nm_info; /* node manager */ 786 struct inode *node_inode; /* cache node blocks */ 787 788 /* for segment-related operations */ 789 struct f2fs_sm_info *sm_info; /* segment manager */ 790 791 /* for bio operations */ 792 struct f2fs_bio_info read_io; /* for read bios */ 793 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 794 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ 795 796 /* for checkpoint */ 797 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 798 int cur_cp_pack; /* remain current cp pack */ 799 spinlock_t cp_lock; /* for flag in ckpt */ 800 struct inode *meta_inode; /* cache meta blocks */ 801 struct mutex cp_mutex; /* checkpoint procedure lock */ 802 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 803 struct rw_semaphore node_write; /* locking node writes */ 804 wait_queue_head_t cp_wait; 805 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 806 long interval_time[MAX_TIME]; /* to store thresholds */ 807 808 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 809 810 /* for orphan inode, use 0'th array */ 811 unsigned int max_orphans; /* max orphan inodes */ 812 813 /* for inode management */ 814 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 815 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 816 817 /* for extent tree cache */ 818 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 819 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 820 struct list_head extent_list; /* lru list for shrinker */ 821 spinlock_t extent_lock; /* locking extent lru list */ 822 atomic_t total_ext_tree; /* extent tree count */ 823 struct list_head zombie_list; /* extent zombie tree list */ 824 atomic_t total_zombie_tree; /* extent zombie tree count */ 825 atomic_t total_ext_node; /* extent info count */ 826 827 /* basic filesystem units */ 828 unsigned int log_sectors_per_block; /* log2 sectors per block */ 829 unsigned int log_blocksize; /* log2 block size */ 830 unsigned int blocksize; /* block size */ 831 unsigned int root_ino_num; /* root inode number*/ 832 unsigned int node_ino_num; /* node inode number*/ 833 unsigned int meta_ino_num; /* meta inode number*/ 834 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 835 unsigned int blocks_per_seg; /* blocks per segment */ 836 unsigned int segs_per_sec; /* segments per section */ 837 unsigned int secs_per_zone; /* sections per zone */ 838 unsigned int total_sections; /* total section count */ 839 unsigned int total_node_count; /* total node block count */ 840 unsigned int total_valid_node_count; /* valid node block count */ 841 loff_t max_file_blocks; /* max block index of file */ 842 int active_logs; /* # of active logs */ 843 int dir_level; /* directory level */ 844 845 block_t user_block_count; /* # of user blocks */ 846 block_t total_valid_block_count; /* # of valid blocks */ 847 block_t discard_blks; /* discard command candidats */ 848 block_t last_valid_block_count; /* for recovery */ 849 u32 s_next_generation; /* for NFS support */ 850 851 /* # of pages, see count_type */ 852 atomic_t nr_pages[NR_COUNT_TYPE]; 853 /* # of allocated blocks */ 854 struct percpu_counter alloc_valid_block_count; 855 856 /* valid inode count */ 857 struct percpu_counter total_valid_inode_count; 858 859 struct f2fs_mount_info mount_opt; /* mount options */ 860 861 /* for cleaning operations */ 862 struct mutex gc_mutex; /* mutex for GC */ 863 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 864 unsigned int cur_victim_sec; /* current victim section num */ 865 866 /* maximum # of trials to find a victim segment for SSR and GC */ 867 unsigned int max_victim_search; 868 869 /* 870 * for stat information. 871 * one is for the LFS mode, and the other is for the SSR mode. 872 */ 873 #ifdef CONFIG_F2FS_STAT_FS 874 struct f2fs_stat_info *stat_info; /* FS status information */ 875 unsigned int segment_count[2]; /* # of allocated segments */ 876 unsigned int block_count[2]; /* # of allocated blocks */ 877 atomic_t inplace_count; /* # of inplace update */ 878 atomic64_t total_hit_ext; /* # of lookup extent cache */ 879 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 880 atomic64_t read_hit_largest; /* # of hit largest extent node */ 881 atomic64_t read_hit_cached; /* # of hit cached extent node */ 882 atomic_t inline_xattr; /* # of inline_xattr inodes */ 883 atomic_t inline_inode; /* # of inline_data inodes */ 884 atomic_t inline_dir; /* # of inline_dentry inodes */ 885 int bg_gc; /* background gc calls */ 886 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 887 #endif 888 unsigned int last_victim[2]; /* last victim segment # */ 889 spinlock_t stat_lock; /* lock for stat operations */ 890 891 /* For sysfs suppport */ 892 struct kobject s_kobj; 893 struct completion s_kobj_unregister; 894 895 /* For shrinker support */ 896 struct list_head s_list; 897 int s_ndevs; /* number of devices */ 898 struct f2fs_dev_info *devs; /* for device list */ 899 struct mutex umount_mutex; 900 unsigned int shrinker_run_no; 901 902 /* For write statistics */ 903 u64 sectors_written_start; 904 u64 kbytes_written; 905 906 /* Reference to checksum algorithm driver via cryptoapi */ 907 struct crypto_shash *s_chksum_driver; 908 909 /* For fault injection */ 910 #ifdef CONFIG_F2FS_FAULT_INJECTION 911 struct f2fs_fault_info fault_info; 912 #endif 913 }; 914 915 #ifdef CONFIG_F2FS_FAULT_INJECTION 916 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 917 { 918 struct f2fs_fault_info *ffi = &sbi->fault_info; 919 920 if (!ffi->inject_rate) 921 return false; 922 923 if (!IS_FAULT_SET(ffi, type)) 924 return false; 925 926 atomic_inc(&ffi->inject_ops); 927 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 928 atomic_set(&ffi->inject_ops, 0); 929 printk("%sF2FS-fs : inject %s in %pF\n", 930 KERN_INFO, 931 fault_name[type], 932 __builtin_return_address(0)); 933 return true; 934 } 935 return false; 936 } 937 #endif 938 939 /* For write statistics. Suppose sector size is 512 bytes, 940 * and the return value is in kbytes. s is of struct f2fs_sb_info. 941 */ 942 #define BD_PART_WRITTEN(s) \ 943 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 944 s->sectors_written_start) >> 1) 945 946 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 947 { 948 sbi->last_time[type] = jiffies; 949 } 950 951 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 952 { 953 struct timespec ts = {sbi->interval_time[type], 0}; 954 unsigned long interval = timespec_to_jiffies(&ts); 955 956 return time_after(jiffies, sbi->last_time[type] + interval); 957 } 958 959 static inline bool is_idle(struct f2fs_sb_info *sbi) 960 { 961 struct block_device *bdev = sbi->sb->s_bdev; 962 struct request_queue *q = bdev_get_queue(bdev); 963 struct request_list *rl = &q->root_rl; 964 965 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 966 return 0; 967 968 return f2fs_time_over(sbi, REQ_TIME); 969 } 970 971 /* 972 * Inline functions 973 */ 974 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 975 unsigned int length) 976 { 977 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 978 u32 *ctx = (u32 *)shash_desc_ctx(shash); 979 int err; 980 981 shash->tfm = sbi->s_chksum_driver; 982 shash->flags = 0; 983 *ctx = F2FS_SUPER_MAGIC; 984 985 err = crypto_shash_update(shash, address, length); 986 BUG_ON(err); 987 988 return *ctx; 989 } 990 991 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 992 void *buf, size_t buf_size) 993 { 994 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 995 } 996 997 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 998 { 999 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1000 } 1001 1002 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1003 { 1004 return sb->s_fs_info; 1005 } 1006 1007 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1008 { 1009 return F2FS_SB(inode->i_sb); 1010 } 1011 1012 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1013 { 1014 return F2FS_I_SB(mapping->host); 1015 } 1016 1017 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1018 { 1019 return F2FS_M_SB(page->mapping); 1020 } 1021 1022 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1023 { 1024 return (struct f2fs_super_block *)(sbi->raw_super); 1025 } 1026 1027 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1028 { 1029 return (struct f2fs_checkpoint *)(sbi->ckpt); 1030 } 1031 1032 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1033 { 1034 return (struct f2fs_node *)page_address(page); 1035 } 1036 1037 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1038 { 1039 return &((struct f2fs_node *)page_address(page))->i; 1040 } 1041 1042 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1043 { 1044 return (struct f2fs_nm_info *)(sbi->nm_info); 1045 } 1046 1047 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1048 { 1049 return (struct f2fs_sm_info *)(sbi->sm_info); 1050 } 1051 1052 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1053 { 1054 return (struct sit_info *)(SM_I(sbi)->sit_info); 1055 } 1056 1057 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1058 { 1059 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1060 } 1061 1062 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1063 { 1064 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1065 } 1066 1067 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1068 { 1069 return sbi->meta_inode->i_mapping; 1070 } 1071 1072 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1073 { 1074 return sbi->node_inode->i_mapping; 1075 } 1076 1077 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1078 { 1079 return test_bit(type, &sbi->s_flag); 1080 } 1081 1082 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1083 { 1084 set_bit(type, &sbi->s_flag); 1085 } 1086 1087 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1088 { 1089 clear_bit(type, &sbi->s_flag); 1090 } 1091 1092 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1093 { 1094 return le64_to_cpu(cp->checkpoint_ver); 1095 } 1096 1097 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1098 { 1099 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1100 1101 return ckpt_flags & f; 1102 } 1103 1104 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1105 { 1106 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1107 } 1108 1109 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1110 { 1111 unsigned int ckpt_flags; 1112 1113 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1114 ckpt_flags |= f; 1115 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1116 } 1117 1118 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1119 { 1120 spin_lock(&sbi->cp_lock); 1121 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1122 spin_unlock(&sbi->cp_lock); 1123 } 1124 1125 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1126 { 1127 unsigned int ckpt_flags; 1128 1129 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1130 ckpt_flags &= (~f); 1131 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1132 } 1133 1134 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1135 { 1136 spin_lock(&sbi->cp_lock); 1137 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1138 spin_unlock(&sbi->cp_lock); 1139 } 1140 1141 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1142 { 1143 down_read(&sbi->cp_rwsem); 1144 } 1145 1146 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1147 { 1148 up_read(&sbi->cp_rwsem); 1149 } 1150 1151 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1152 { 1153 down_write(&sbi->cp_rwsem); 1154 } 1155 1156 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1157 { 1158 up_write(&sbi->cp_rwsem); 1159 } 1160 1161 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1162 { 1163 int reason = CP_SYNC; 1164 1165 if (test_opt(sbi, FASTBOOT)) 1166 reason = CP_FASTBOOT; 1167 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1168 reason = CP_UMOUNT; 1169 return reason; 1170 } 1171 1172 static inline bool __remain_node_summaries(int reason) 1173 { 1174 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1175 } 1176 1177 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1178 { 1179 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1180 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1181 } 1182 1183 /* 1184 * Check whether the given nid is within node id range. 1185 */ 1186 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1187 { 1188 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1189 return -EINVAL; 1190 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1191 return -EINVAL; 1192 return 0; 1193 } 1194 1195 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1196 1197 /* 1198 * Check whether the inode has blocks or not 1199 */ 1200 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1201 { 1202 if (F2FS_I(inode)->i_xattr_nid) 1203 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1204 else 1205 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1206 } 1207 1208 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1209 { 1210 return ofs == XATTR_NODE_OFFSET; 1211 } 1212 1213 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); 1214 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1215 struct inode *inode, blkcnt_t *count) 1216 { 1217 blkcnt_t diff; 1218 1219 #ifdef CONFIG_F2FS_FAULT_INJECTION 1220 if (time_to_inject(sbi, FAULT_BLOCK)) 1221 return false; 1222 #endif 1223 /* 1224 * let's increase this in prior to actual block count change in order 1225 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1226 */ 1227 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1228 1229 spin_lock(&sbi->stat_lock); 1230 sbi->total_valid_block_count += (block_t)(*count); 1231 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { 1232 diff = sbi->total_valid_block_count - sbi->user_block_count; 1233 *count -= diff; 1234 sbi->total_valid_block_count = sbi->user_block_count; 1235 if (!*count) { 1236 spin_unlock(&sbi->stat_lock); 1237 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1238 return false; 1239 } 1240 } 1241 spin_unlock(&sbi->stat_lock); 1242 1243 f2fs_i_blocks_write(inode, *count, true); 1244 return true; 1245 } 1246 1247 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1248 struct inode *inode, 1249 blkcnt_t count) 1250 { 1251 spin_lock(&sbi->stat_lock); 1252 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1253 f2fs_bug_on(sbi, inode->i_blocks < count); 1254 sbi->total_valid_block_count -= (block_t)count; 1255 spin_unlock(&sbi->stat_lock); 1256 f2fs_i_blocks_write(inode, count, false); 1257 } 1258 1259 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1260 { 1261 atomic_inc(&sbi->nr_pages[count_type]); 1262 1263 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1264 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1265 return; 1266 1267 set_sbi_flag(sbi, SBI_IS_DIRTY); 1268 } 1269 1270 static inline void inode_inc_dirty_pages(struct inode *inode) 1271 { 1272 atomic_inc(&F2FS_I(inode)->dirty_pages); 1273 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1274 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1275 } 1276 1277 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1278 { 1279 atomic_dec(&sbi->nr_pages[count_type]); 1280 } 1281 1282 static inline void inode_dec_dirty_pages(struct inode *inode) 1283 { 1284 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1285 !S_ISLNK(inode->i_mode)) 1286 return; 1287 1288 atomic_dec(&F2FS_I(inode)->dirty_pages); 1289 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1290 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1291 } 1292 1293 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1294 { 1295 return atomic_read(&sbi->nr_pages[count_type]); 1296 } 1297 1298 static inline int get_dirty_pages(struct inode *inode) 1299 { 1300 return atomic_read(&F2FS_I(inode)->dirty_pages); 1301 } 1302 1303 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1304 { 1305 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1306 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1307 sbi->log_blocks_per_seg; 1308 1309 return segs / sbi->segs_per_sec; 1310 } 1311 1312 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1313 { 1314 return sbi->total_valid_block_count; 1315 } 1316 1317 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1318 { 1319 return sbi->discard_blks; 1320 } 1321 1322 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1323 { 1324 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1325 1326 /* return NAT or SIT bitmap */ 1327 if (flag == NAT_BITMAP) 1328 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1329 else if (flag == SIT_BITMAP) 1330 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1331 1332 return 0; 1333 } 1334 1335 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1336 { 1337 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1338 } 1339 1340 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1341 { 1342 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1343 int offset; 1344 1345 if (__cp_payload(sbi) > 0) { 1346 if (flag == NAT_BITMAP) 1347 return &ckpt->sit_nat_version_bitmap; 1348 else 1349 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1350 } else { 1351 offset = (flag == NAT_BITMAP) ? 1352 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1353 return &ckpt->sit_nat_version_bitmap + offset; 1354 } 1355 } 1356 1357 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1358 { 1359 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1360 1361 if (sbi->cur_cp_pack == 2) 1362 start_addr += sbi->blocks_per_seg; 1363 return start_addr; 1364 } 1365 1366 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1367 { 1368 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1369 1370 if (sbi->cur_cp_pack == 1) 1371 start_addr += sbi->blocks_per_seg; 1372 return start_addr; 1373 } 1374 1375 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1376 { 1377 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1378 } 1379 1380 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1381 { 1382 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1383 } 1384 1385 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1386 struct inode *inode) 1387 { 1388 block_t valid_block_count; 1389 unsigned int valid_node_count; 1390 1391 spin_lock(&sbi->stat_lock); 1392 1393 valid_block_count = sbi->total_valid_block_count + 1; 1394 if (unlikely(valid_block_count > sbi->user_block_count)) { 1395 spin_unlock(&sbi->stat_lock); 1396 return false; 1397 } 1398 1399 valid_node_count = sbi->total_valid_node_count + 1; 1400 if (unlikely(valid_node_count > sbi->total_node_count)) { 1401 spin_unlock(&sbi->stat_lock); 1402 return false; 1403 } 1404 1405 if (inode) 1406 f2fs_i_blocks_write(inode, 1, true); 1407 1408 sbi->total_valid_node_count++; 1409 sbi->total_valid_block_count++; 1410 spin_unlock(&sbi->stat_lock); 1411 1412 percpu_counter_inc(&sbi->alloc_valid_block_count); 1413 return true; 1414 } 1415 1416 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1417 struct inode *inode) 1418 { 1419 spin_lock(&sbi->stat_lock); 1420 1421 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1422 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1423 f2fs_bug_on(sbi, !inode->i_blocks); 1424 1425 f2fs_i_blocks_write(inode, 1, false); 1426 sbi->total_valid_node_count--; 1427 sbi->total_valid_block_count--; 1428 1429 spin_unlock(&sbi->stat_lock); 1430 } 1431 1432 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1433 { 1434 return sbi->total_valid_node_count; 1435 } 1436 1437 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1438 { 1439 percpu_counter_inc(&sbi->total_valid_inode_count); 1440 } 1441 1442 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1443 { 1444 percpu_counter_dec(&sbi->total_valid_inode_count); 1445 } 1446 1447 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1448 { 1449 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1450 } 1451 1452 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1453 pgoff_t index, bool for_write) 1454 { 1455 #ifdef CONFIG_F2FS_FAULT_INJECTION 1456 struct page *page = find_lock_page(mapping, index); 1457 if (page) 1458 return page; 1459 1460 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 1461 return NULL; 1462 #endif 1463 if (!for_write) 1464 return grab_cache_page(mapping, index); 1465 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1466 } 1467 1468 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1469 { 1470 char *src_kaddr = kmap(src); 1471 char *dst_kaddr = kmap(dst); 1472 1473 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1474 kunmap(dst); 1475 kunmap(src); 1476 } 1477 1478 static inline void f2fs_put_page(struct page *page, int unlock) 1479 { 1480 if (!page) 1481 return; 1482 1483 if (unlock) { 1484 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1485 unlock_page(page); 1486 } 1487 put_page(page); 1488 } 1489 1490 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1491 { 1492 if (dn->node_page) 1493 f2fs_put_page(dn->node_page, 1); 1494 if (dn->inode_page && dn->node_page != dn->inode_page) 1495 f2fs_put_page(dn->inode_page, 0); 1496 dn->node_page = NULL; 1497 dn->inode_page = NULL; 1498 } 1499 1500 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1501 size_t size) 1502 { 1503 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1504 } 1505 1506 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1507 gfp_t flags) 1508 { 1509 void *entry; 1510 1511 entry = kmem_cache_alloc(cachep, flags); 1512 if (!entry) 1513 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1514 return entry; 1515 } 1516 1517 static inline struct bio *f2fs_bio_alloc(int npages) 1518 { 1519 struct bio *bio; 1520 1521 /* No failure on bio allocation */ 1522 bio = bio_alloc(GFP_NOIO, npages); 1523 if (!bio) 1524 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1525 return bio; 1526 } 1527 1528 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1529 unsigned long index, void *item) 1530 { 1531 while (radix_tree_insert(root, index, item)) 1532 cond_resched(); 1533 } 1534 1535 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1536 1537 static inline bool IS_INODE(struct page *page) 1538 { 1539 struct f2fs_node *p = F2FS_NODE(page); 1540 return RAW_IS_INODE(p); 1541 } 1542 1543 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1544 { 1545 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1546 } 1547 1548 static inline block_t datablock_addr(struct page *node_page, 1549 unsigned int offset) 1550 { 1551 struct f2fs_node *raw_node; 1552 __le32 *addr_array; 1553 raw_node = F2FS_NODE(node_page); 1554 addr_array = blkaddr_in_node(raw_node); 1555 return le32_to_cpu(addr_array[offset]); 1556 } 1557 1558 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1559 { 1560 int mask; 1561 1562 addr += (nr >> 3); 1563 mask = 1 << (7 - (nr & 0x07)); 1564 return mask & *addr; 1565 } 1566 1567 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1568 { 1569 int mask; 1570 1571 addr += (nr >> 3); 1572 mask = 1 << (7 - (nr & 0x07)); 1573 *addr |= mask; 1574 } 1575 1576 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1577 { 1578 int mask; 1579 1580 addr += (nr >> 3); 1581 mask = 1 << (7 - (nr & 0x07)); 1582 *addr &= ~mask; 1583 } 1584 1585 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1586 { 1587 int mask; 1588 int ret; 1589 1590 addr += (nr >> 3); 1591 mask = 1 << (7 - (nr & 0x07)); 1592 ret = mask & *addr; 1593 *addr |= mask; 1594 return ret; 1595 } 1596 1597 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1598 { 1599 int mask; 1600 int ret; 1601 1602 addr += (nr >> 3); 1603 mask = 1 << (7 - (nr & 0x07)); 1604 ret = mask & *addr; 1605 *addr &= ~mask; 1606 return ret; 1607 } 1608 1609 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1610 { 1611 int mask; 1612 1613 addr += (nr >> 3); 1614 mask = 1 << (7 - (nr & 0x07)); 1615 *addr ^= mask; 1616 } 1617 1618 /* used for f2fs_inode_info->flags */ 1619 enum { 1620 FI_NEW_INODE, /* indicate newly allocated inode */ 1621 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1622 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1623 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1624 FI_INC_LINK, /* need to increment i_nlink */ 1625 FI_ACL_MODE, /* indicate acl mode */ 1626 FI_NO_ALLOC, /* should not allocate any blocks */ 1627 FI_FREE_NID, /* free allocated nide */ 1628 FI_NO_EXTENT, /* not to use the extent cache */ 1629 FI_INLINE_XATTR, /* used for inline xattr */ 1630 FI_INLINE_DATA, /* used for inline data*/ 1631 FI_INLINE_DENTRY, /* used for inline dentry */ 1632 FI_APPEND_WRITE, /* inode has appended data */ 1633 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1634 FI_NEED_IPU, /* used for ipu per file */ 1635 FI_ATOMIC_FILE, /* indicate atomic file */ 1636 FI_VOLATILE_FILE, /* indicate volatile file */ 1637 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1638 FI_DROP_CACHE, /* drop dirty page cache */ 1639 FI_DATA_EXIST, /* indicate data exists */ 1640 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1641 FI_DO_DEFRAG, /* indicate defragment is running */ 1642 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1643 }; 1644 1645 static inline void __mark_inode_dirty_flag(struct inode *inode, 1646 int flag, bool set) 1647 { 1648 switch (flag) { 1649 case FI_INLINE_XATTR: 1650 case FI_INLINE_DATA: 1651 case FI_INLINE_DENTRY: 1652 if (set) 1653 return; 1654 case FI_DATA_EXIST: 1655 case FI_INLINE_DOTS: 1656 f2fs_mark_inode_dirty_sync(inode, true); 1657 } 1658 } 1659 1660 static inline void set_inode_flag(struct inode *inode, int flag) 1661 { 1662 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1663 set_bit(flag, &F2FS_I(inode)->flags); 1664 __mark_inode_dirty_flag(inode, flag, true); 1665 } 1666 1667 static inline int is_inode_flag_set(struct inode *inode, int flag) 1668 { 1669 return test_bit(flag, &F2FS_I(inode)->flags); 1670 } 1671 1672 static inline void clear_inode_flag(struct inode *inode, int flag) 1673 { 1674 if (test_bit(flag, &F2FS_I(inode)->flags)) 1675 clear_bit(flag, &F2FS_I(inode)->flags); 1676 __mark_inode_dirty_flag(inode, flag, false); 1677 } 1678 1679 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1680 { 1681 F2FS_I(inode)->i_acl_mode = mode; 1682 set_inode_flag(inode, FI_ACL_MODE); 1683 f2fs_mark_inode_dirty_sync(inode, false); 1684 } 1685 1686 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1687 { 1688 if (inc) 1689 inc_nlink(inode); 1690 else 1691 drop_nlink(inode); 1692 f2fs_mark_inode_dirty_sync(inode, true); 1693 } 1694 1695 static inline void f2fs_i_blocks_write(struct inode *inode, 1696 blkcnt_t diff, bool add) 1697 { 1698 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1699 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1700 1701 inode->i_blocks = add ? inode->i_blocks + diff : 1702 inode->i_blocks - diff; 1703 f2fs_mark_inode_dirty_sync(inode, true); 1704 if (clean || recover) 1705 set_inode_flag(inode, FI_AUTO_RECOVER); 1706 } 1707 1708 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1709 { 1710 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1711 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1712 1713 if (i_size_read(inode) == i_size) 1714 return; 1715 1716 i_size_write(inode, i_size); 1717 f2fs_mark_inode_dirty_sync(inode, true); 1718 if (clean || recover) 1719 set_inode_flag(inode, FI_AUTO_RECOVER); 1720 } 1721 1722 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1723 { 1724 F2FS_I(inode)->i_current_depth = depth; 1725 f2fs_mark_inode_dirty_sync(inode, true); 1726 } 1727 1728 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1729 { 1730 F2FS_I(inode)->i_xattr_nid = xnid; 1731 f2fs_mark_inode_dirty_sync(inode, true); 1732 } 1733 1734 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1735 { 1736 F2FS_I(inode)->i_pino = pino; 1737 f2fs_mark_inode_dirty_sync(inode, true); 1738 } 1739 1740 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1741 { 1742 struct f2fs_inode_info *fi = F2FS_I(inode); 1743 1744 if (ri->i_inline & F2FS_INLINE_XATTR) 1745 set_bit(FI_INLINE_XATTR, &fi->flags); 1746 if (ri->i_inline & F2FS_INLINE_DATA) 1747 set_bit(FI_INLINE_DATA, &fi->flags); 1748 if (ri->i_inline & F2FS_INLINE_DENTRY) 1749 set_bit(FI_INLINE_DENTRY, &fi->flags); 1750 if (ri->i_inline & F2FS_DATA_EXIST) 1751 set_bit(FI_DATA_EXIST, &fi->flags); 1752 if (ri->i_inline & F2FS_INLINE_DOTS) 1753 set_bit(FI_INLINE_DOTS, &fi->flags); 1754 } 1755 1756 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1757 { 1758 ri->i_inline = 0; 1759 1760 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1761 ri->i_inline |= F2FS_INLINE_XATTR; 1762 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1763 ri->i_inline |= F2FS_INLINE_DATA; 1764 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1765 ri->i_inline |= F2FS_INLINE_DENTRY; 1766 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1767 ri->i_inline |= F2FS_DATA_EXIST; 1768 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 1769 ri->i_inline |= F2FS_INLINE_DOTS; 1770 } 1771 1772 static inline int f2fs_has_inline_xattr(struct inode *inode) 1773 { 1774 return is_inode_flag_set(inode, FI_INLINE_XATTR); 1775 } 1776 1777 static inline unsigned int addrs_per_inode(struct inode *inode) 1778 { 1779 if (f2fs_has_inline_xattr(inode)) 1780 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1781 return DEF_ADDRS_PER_INODE; 1782 } 1783 1784 static inline void *inline_xattr_addr(struct page *page) 1785 { 1786 struct f2fs_inode *ri = F2FS_INODE(page); 1787 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1788 F2FS_INLINE_XATTR_ADDRS]); 1789 } 1790 1791 static inline int inline_xattr_size(struct inode *inode) 1792 { 1793 if (f2fs_has_inline_xattr(inode)) 1794 return F2FS_INLINE_XATTR_ADDRS << 2; 1795 else 1796 return 0; 1797 } 1798 1799 static inline int f2fs_has_inline_data(struct inode *inode) 1800 { 1801 return is_inode_flag_set(inode, FI_INLINE_DATA); 1802 } 1803 1804 static inline void f2fs_clear_inline_inode(struct inode *inode) 1805 { 1806 clear_inode_flag(inode, FI_INLINE_DATA); 1807 clear_inode_flag(inode, FI_DATA_EXIST); 1808 } 1809 1810 static inline int f2fs_exist_data(struct inode *inode) 1811 { 1812 return is_inode_flag_set(inode, FI_DATA_EXIST); 1813 } 1814 1815 static inline int f2fs_has_inline_dots(struct inode *inode) 1816 { 1817 return is_inode_flag_set(inode, FI_INLINE_DOTS); 1818 } 1819 1820 static inline bool f2fs_is_atomic_file(struct inode *inode) 1821 { 1822 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 1823 } 1824 1825 static inline bool f2fs_is_volatile_file(struct inode *inode) 1826 { 1827 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 1828 } 1829 1830 static inline bool f2fs_is_first_block_written(struct inode *inode) 1831 { 1832 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 1833 } 1834 1835 static inline bool f2fs_is_drop_cache(struct inode *inode) 1836 { 1837 return is_inode_flag_set(inode, FI_DROP_CACHE); 1838 } 1839 1840 static inline void *inline_data_addr(struct page *page) 1841 { 1842 struct f2fs_inode *ri = F2FS_INODE(page); 1843 return (void *)&(ri->i_addr[1]); 1844 } 1845 1846 static inline int f2fs_has_inline_dentry(struct inode *inode) 1847 { 1848 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 1849 } 1850 1851 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1852 { 1853 if (!f2fs_has_inline_dentry(dir)) 1854 kunmap(page); 1855 } 1856 1857 static inline int is_file(struct inode *inode, int type) 1858 { 1859 return F2FS_I(inode)->i_advise & type; 1860 } 1861 1862 static inline void set_file(struct inode *inode, int type) 1863 { 1864 F2FS_I(inode)->i_advise |= type; 1865 f2fs_mark_inode_dirty_sync(inode, true); 1866 } 1867 1868 static inline void clear_file(struct inode *inode, int type) 1869 { 1870 F2FS_I(inode)->i_advise &= ~type; 1871 f2fs_mark_inode_dirty_sync(inode, true); 1872 } 1873 1874 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 1875 { 1876 if (dsync) { 1877 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1878 bool ret; 1879 1880 spin_lock(&sbi->inode_lock[DIRTY_META]); 1881 ret = list_empty(&F2FS_I(inode)->gdirty_list); 1882 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1883 return ret; 1884 } 1885 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 1886 file_keep_isize(inode) || 1887 i_size_read(inode) & PAGE_MASK) 1888 return false; 1889 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 1890 } 1891 1892 static inline int f2fs_readonly(struct super_block *sb) 1893 { 1894 return sb->s_flags & MS_RDONLY; 1895 } 1896 1897 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1898 { 1899 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 1900 } 1901 1902 static inline bool is_dot_dotdot(const struct qstr *str) 1903 { 1904 if (str->len == 1 && str->name[0] == '.') 1905 return true; 1906 1907 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1908 return true; 1909 1910 return false; 1911 } 1912 1913 static inline bool f2fs_may_extent_tree(struct inode *inode) 1914 { 1915 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1916 is_inode_flag_set(inode, FI_NO_EXTENT)) 1917 return false; 1918 1919 return S_ISREG(inode->i_mode); 1920 } 1921 1922 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 1923 size_t size, gfp_t flags) 1924 { 1925 #ifdef CONFIG_F2FS_FAULT_INJECTION 1926 if (time_to_inject(sbi, FAULT_KMALLOC)) 1927 return NULL; 1928 #endif 1929 return kmalloc(size, flags); 1930 } 1931 1932 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 1933 { 1934 void *ret; 1935 1936 ret = kmalloc(size, flags | __GFP_NOWARN); 1937 if (!ret) 1938 ret = __vmalloc(size, flags, PAGE_KERNEL); 1939 return ret; 1940 } 1941 1942 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 1943 { 1944 void *ret; 1945 1946 ret = kzalloc(size, flags | __GFP_NOWARN); 1947 if (!ret) 1948 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 1949 return ret; 1950 } 1951 1952 #define get_inode_mode(i) \ 1953 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 1954 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1955 1956 /* get offset of first page in next direct node */ 1957 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 1958 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 1959 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 1960 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 1961 1962 /* 1963 * file.c 1964 */ 1965 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1966 void truncate_data_blocks(struct dnode_of_data *); 1967 int truncate_blocks(struct inode *, u64, bool); 1968 int f2fs_truncate(struct inode *); 1969 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1970 int f2fs_setattr(struct dentry *, struct iattr *); 1971 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1972 int truncate_data_blocks_range(struct dnode_of_data *, int); 1973 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1974 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1975 1976 /* 1977 * inode.c 1978 */ 1979 void f2fs_set_inode_flags(struct inode *); 1980 struct inode *f2fs_iget(struct super_block *, unsigned long); 1981 struct inode *f2fs_iget_retry(struct super_block *, unsigned long); 1982 int try_to_free_nats(struct f2fs_sb_info *, int); 1983 int update_inode(struct inode *, struct page *); 1984 int update_inode_page(struct inode *); 1985 int f2fs_write_inode(struct inode *, struct writeback_control *); 1986 void f2fs_evict_inode(struct inode *); 1987 void handle_failed_inode(struct inode *); 1988 1989 /* 1990 * namei.c 1991 */ 1992 struct dentry *f2fs_get_parent(struct dentry *child); 1993 1994 /* 1995 * dir.c 1996 */ 1997 void set_de_type(struct f2fs_dir_entry *, umode_t); 1998 unsigned char get_de_type(struct f2fs_dir_entry *); 1999 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *, 2000 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 2001 int f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 2002 unsigned int, struct fscrypt_str *); 2003 void do_make_empty_dir(struct inode *, struct inode *, 2004 struct f2fs_dentry_ptr *); 2005 struct page *init_inode_metadata(struct inode *, struct inode *, 2006 const struct qstr *, const struct qstr *, struct page *); 2007 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 2008 int room_for_filename(const void *, int, int); 2009 void f2fs_drop_nlink(struct inode *, struct inode *); 2010 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *, 2011 struct page **); 2012 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *, 2013 struct page **); 2014 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 2015 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **); 2016 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 2017 struct page *, struct inode *); 2018 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 2019 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 2020 const struct qstr *, f2fs_hash_t , unsigned int); 2021 int f2fs_add_regular_entry(struct inode *, const struct qstr *, 2022 const struct qstr *, struct inode *, nid_t, umode_t); 2023 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *, 2024 nid_t, umode_t); 2025 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 2026 umode_t); 2027 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 2028 struct inode *); 2029 int f2fs_do_tmpfile(struct inode *, struct inode *); 2030 bool f2fs_empty_dir(struct inode *); 2031 2032 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2033 { 2034 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2035 inode, inode->i_ino, inode->i_mode); 2036 } 2037 2038 /* 2039 * super.c 2040 */ 2041 int f2fs_inode_dirtied(struct inode *, bool); 2042 void f2fs_inode_synced(struct inode *); 2043 int f2fs_commit_super(struct f2fs_sb_info *, bool); 2044 int f2fs_sync_fs(struct super_block *, int); 2045 extern __printf(3, 4) 2046 void f2fs_msg(struct super_block *, const char *, const char *, ...); 2047 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2048 2049 /* 2050 * hash.c 2051 */ 2052 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 2053 2054 /* 2055 * node.c 2056 */ 2057 struct dnode_of_data; 2058 struct node_info; 2059 2060 bool available_free_memory(struct f2fs_sb_info *, int); 2061 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 2062 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 2063 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 2064 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 2065 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t); 2066 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 2067 int truncate_inode_blocks(struct inode *, pgoff_t); 2068 int truncate_xattr_node(struct inode *, struct page *); 2069 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 2070 int remove_inode_page(struct inode *); 2071 struct page *new_inode_page(struct inode *); 2072 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 2073 void ra_node_page(struct f2fs_sb_info *, nid_t); 2074 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 2075 struct page *get_node_page_ra(struct page *, int); 2076 void move_node_page(struct page *, int); 2077 int fsync_node_pages(struct f2fs_sb_info *, struct inode *, 2078 struct writeback_control *, bool); 2079 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *); 2080 void build_free_nids(struct f2fs_sb_info *, bool); 2081 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 2082 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 2083 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 2084 int try_to_free_nids(struct f2fs_sb_info *, int); 2085 void recover_inline_xattr(struct inode *, struct page *); 2086 void recover_xattr_data(struct inode *, struct page *, block_t); 2087 int recover_inode_page(struct f2fs_sb_info *, struct page *); 2088 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 2089 struct f2fs_summary_block *); 2090 void flush_nat_entries(struct f2fs_sb_info *); 2091 int build_node_manager(struct f2fs_sb_info *); 2092 void destroy_node_manager(struct f2fs_sb_info *); 2093 int __init create_node_manager_caches(void); 2094 void destroy_node_manager_caches(void); 2095 2096 /* 2097 * segment.c 2098 */ 2099 void register_inmem_page(struct inode *, struct page *); 2100 void drop_inmem_pages(struct inode *); 2101 int commit_inmem_pages(struct inode *); 2102 void f2fs_balance_fs(struct f2fs_sb_info *, bool); 2103 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 2104 int f2fs_issue_flush(struct f2fs_sb_info *); 2105 int create_flush_cmd_control(struct f2fs_sb_info *); 2106 void destroy_flush_cmd_control(struct f2fs_sb_info *, bool); 2107 void invalidate_blocks(struct f2fs_sb_info *, block_t); 2108 bool is_checkpointed_data(struct f2fs_sb_info *, block_t); 2109 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 2110 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *); 2111 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 2112 void release_discard_addrs(struct f2fs_sb_info *); 2113 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 2114 void allocate_new_segments(struct f2fs_sb_info *); 2115 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 2116 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 2117 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 2118 void write_meta_page(struct f2fs_sb_info *, struct page *); 2119 void write_node_page(unsigned int, struct f2fs_io_info *); 2120 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 2121 void rewrite_data_page(struct f2fs_io_info *); 2122 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *, 2123 block_t, block_t, bool, bool); 2124 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 2125 block_t, block_t, unsigned char, bool, bool); 2126 void allocate_data_block(struct f2fs_sb_info *, struct page *, 2127 block_t, block_t *, struct f2fs_summary *, int); 2128 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool); 2129 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t); 2130 void write_data_summaries(struct f2fs_sb_info *, block_t); 2131 void write_node_summaries(struct f2fs_sb_info *, block_t); 2132 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int); 2133 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 2134 int build_segment_manager(struct f2fs_sb_info *); 2135 void destroy_segment_manager(struct f2fs_sb_info *); 2136 int __init create_segment_manager_caches(void); 2137 void destroy_segment_manager_caches(void); 2138 2139 /* 2140 * checkpoint.c 2141 */ 2142 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool); 2143 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 2144 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 2145 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t); 2146 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 2147 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool); 2148 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 2149 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 2150 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2151 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2152 void release_ino_entry(struct f2fs_sb_info *, bool); 2153 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 2154 int f2fs_sync_inode_meta(struct f2fs_sb_info *); 2155 int acquire_orphan_inode(struct f2fs_sb_info *); 2156 void release_orphan_inode(struct f2fs_sb_info *); 2157 void add_orphan_inode(struct inode *); 2158 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 2159 int recover_orphan_inodes(struct f2fs_sb_info *); 2160 int get_valid_checkpoint(struct f2fs_sb_info *); 2161 void update_dirty_page(struct inode *, struct page *); 2162 void remove_dirty_inode(struct inode *); 2163 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type); 2164 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 2165 void init_ino_entry_info(struct f2fs_sb_info *); 2166 int __init create_checkpoint_caches(void); 2167 void destroy_checkpoint_caches(void); 2168 2169 /* 2170 * data.c 2171 */ 2172 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 2173 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *, 2174 struct page *, nid_t, enum page_type, int); 2175 void f2fs_flush_merged_bios(struct f2fs_sb_info *); 2176 int f2fs_submit_page_bio(struct f2fs_io_info *); 2177 void f2fs_submit_page_mbio(struct f2fs_io_info *); 2178 struct block_device *f2fs_target_device(struct f2fs_sb_info *, 2179 block_t, struct bio *); 2180 int f2fs_target_device_index(struct f2fs_sb_info *, block_t); 2181 void set_data_blkaddr(struct dnode_of_data *); 2182 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t); 2183 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t); 2184 int reserve_new_block(struct dnode_of_data *); 2185 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 2186 int f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *); 2187 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 2188 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool); 2189 struct page *find_data_page(struct inode *, pgoff_t); 2190 struct page *get_lock_data_page(struct inode *, pgoff_t, bool); 2191 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 2192 int do_write_data_page(struct f2fs_io_info *); 2193 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int); 2194 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 2195 void f2fs_set_page_dirty_nobuffers(struct page *); 2196 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 2197 int f2fs_release_page(struct page *, gfp_t); 2198 #ifdef CONFIG_MIGRATION 2199 int f2fs_migrate_page(struct address_space *, struct page *, struct page *, 2200 enum migrate_mode); 2201 #endif 2202 2203 /* 2204 * gc.c 2205 */ 2206 int start_gc_thread(struct f2fs_sb_info *); 2207 void stop_gc_thread(struct f2fs_sb_info *); 2208 block_t start_bidx_of_node(unsigned int, struct inode *); 2209 int f2fs_gc(struct f2fs_sb_info *, bool, bool); 2210 void build_gc_manager(struct f2fs_sb_info *); 2211 2212 /* 2213 * recovery.c 2214 */ 2215 int recover_fsync_data(struct f2fs_sb_info *, bool); 2216 bool space_for_roll_forward(struct f2fs_sb_info *); 2217 2218 /* 2219 * debug.c 2220 */ 2221 #ifdef CONFIG_F2FS_STAT_FS 2222 struct f2fs_stat_info { 2223 struct list_head stat_list; 2224 struct f2fs_sb_info *sbi; 2225 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2226 int main_area_segs, main_area_sections, main_area_zones; 2227 unsigned long long hit_largest, hit_cached, hit_rbtree; 2228 unsigned long long hit_total, total_ext; 2229 int ext_tree, zombie_tree, ext_node; 2230 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2231 int inmem_pages; 2232 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2233 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids; 2234 int total_count, utilization; 2235 int bg_gc, nr_wb_cp_data, nr_wb_data; 2236 int inline_xattr, inline_inode, inline_dir, orphans; 2237 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2238 unsigned int bimodal, avg_vblocks; 2239 int util_free, util_valid, util_invalid; 2240 int rsvd_segs, overp_segs; 2241 int dirty_count, node_pages, meta_pages; 2242 int prefree_count, call_count, cp_count, bg_cp_count; 2243 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2244 int bg_node_segs, bg_data_segs; 2245 int tot_blks, data_blks, node_blks; 2246 int bg_data_blks, bg_node_blks; 2247 int curseg[NR_CURSEG_TYPE]; 2248 int cursec[NR_CURSEG_TYPE]; 2249 int curzone[NR_CURSEG_TYPE]; 2250 2251 unsigned int segment_count[2]; 2252 unsigned int block_count[2]; 2253 unsigned int inplace_count; 2254 unsigned long long base_mem, cache_mem, page_mem; 2255 }; 2256 2257 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2258 { 2259 return (struct f2fs_stat_info *)sbi->stat_info; 2260 } 2261 2262 #define stat_inc_cp_count(si) ((si)->cp_count++) 2263 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2264 #define stat_inc_call_count(si) ((si)->call_count++) 2265 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2266 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2267 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2268 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2269 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2270 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2271 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2272 #define stat_inc_inline_xattr(inode) \ 2273 do { \ 2274 if (f2fs_has_inline_xattr(inode)) \ 2275 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2276 } while (0) 2277 #define stat_dec_inline_xattr(inode) \ 2278 do { \ 2279 if (f2fs_has_inline_xattr(inode)) \ 2280 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2281 } while (0) 2282 #define stat_inc_inline_inode(inode) \ 2283 do { \ 2284 if (f2fs_has_inline_data(inode)) \ 2285 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2286 } while (0) 2287 #define stat_dec_inline_inode(inode) \ 2288 do { \ 2289 if (f2fs_has_inline_data(inode)) \ 2290 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2291 } while (0) 2292 #define stat_inc_inline_dir(inode) \ 2293 do { \ 2294 if (f2fs_has_inline_dentry(inode)) \ 2295 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2296 } while (0) 2297 #define stat_dec_inline_dir(inode) \ 2298 do { \ 2299 if (f2fs_has_inline_dentry(inode)) \ 2300 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2301 } while (0) 2302 #define stat_inc_seg_type(sbi, curseg) \ 2303 ((sbi)->segment_count[(curseg)->alloc_type]++) 2304 #define stat_inc_block_count(sbi, curseg) \ 2305 ((sbi)->block_count[(curseg)->alloc_type]++) 2306 #define stat_inc_inplace_blocks(sbi) \ 2307 (atomic_inc(&(sbi)->inplace_count)) 2308 #define stat_inc_seg_count(sbi, type, gc_type) \ 2309 do { \ 2310 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2311 (si)->tot_segs++; \ 2312 if (type == SUM_TYPE_DATA) { \ 2313 si->data_segs++; \ 2314 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2315 } else { \ 2316 si->node_segs++; \ 2317 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2318 } \ 2319 } while (0) 2320 2321 #define stat_inc_tot_blk_count(si, blks) \ 2322 (si->tot_blks += (blks)) 2323 2324 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2325 do { \ 2326 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2327 stat_inc_tot_blk_count(si, blks); \ 2328 si->data_blks += (blks); \ 2329 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2330 } while (0) 2331 2332 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2333 do { \ 2334 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2335 stat_inc_tot_blk_count(si, blks); \ 2336 si->node_blks += (blks); \ 2337 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2338 } while (0) 2339 2340 int f2fs_build_stats(struct f2fs_sb_info *); 2341 void f2fs_destroy_stats(struct f2fs_sb_info *); 2342 int __init f2fs_create_root_stats(void); 2343 void f2fs_destroy_root_stats(void); 2344 #else 2345 #define stat_inc_cp_count(si) 2346 #define stat_inc_bg_cp_count(si) 2347 #define stat_inc_call_count(si) 2348 #define stat_inc_bggc_count(si) 2349 #define stat_inc_dirty_inode(sbi, type) 2350 #define stat_dec_dirty_inode(sbi, type) 2351 #define stat_inc_total_hit(sb) 2352 #define stat_inc_rbtree_node_hit(sb) 2353 #define stat_inc_largest_node_hit(sbi) 2354 #define stat_inc_cached_node_hit(sbi) 2355 #define stat_inc_inline_xattr(inode) 2356 #define stat_dec_inline_xattr(inode) 2357 #define stat_inc_inline_inode(inode) 2358 #define stat_dec_inline_inode(inode) 2359 #define stat_inc_inline_dir(inode) 2360 #define stat_dec_inline_dir(inode) 2361 #define stat_inc_seg_type(sbi, curseg) 2362 #define stat_inc_block_count(sbi, curseg) 2363 #define stat_inc_inplace_blocks(sbi) 2364 #define stat_inc_seg_count(sbi, type, gc_type) 2365 #define stat_inc_tot_blk_count(si, blks) 2366 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2367 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2368 2369 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2370 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2371 static inline int __init f2fs_create_root_stats(void) { return 0; } 2372 static inline void f2fs_destroy_root_stats(void) { } 2373 #endif 2374 2375 extern const struct file_operations f2fs_dir_operations; 2376 extern const struct file_operations f2fs_file_operations; 2377 extern const struct inode_operations f2fs_file_inode_operations; 2378 extern const struct address_space_operations f2fs_dblock_aops; 2379 extern const struct address_space_operations f2fs_node_aops; 2380 extern const struct address_space_operations f2fs_meta_aops; 2381 extern const struct inode_operations f2fs_dir_inode_operations; 2382 extern const struct inode_operations f2fs_symlink_inode_operations; 2383 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2384 extern const struct inode_operations f2fs_special_inode_operations; 2385 extern struct kmem_cache *inode_entry_slab; 2386 2387 /* 2388 * inline.c 2389 */ 2390 bool f2fs_may_inline_data(struct inode *); 2391 bool f2fs_may_inline_dentry(struct inode *); 2392 void read_inline_data(struct page *, struct page *); 2393 bool truncate_inline_inode(struct page *, u64); 2394 int f2fs_read_inline_data(struct inode *, struct page *); 2395 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 2396 int f2fs_convert_inline_inode(struct inode *); 2397 int f2fs_write_inline_data(struct inode *, struct page *); 2398 bool recover_inline_data(struct inode *, struct page *); 2399 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 2400 struct fscrypt_name *, struct page **); 2401 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 2402 int f2fs_add_inline_entry(struct inode *, const struct qstr *, 2403 const struct qstr *, struct inode *, nid_t, umode_t); 2404 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 2405 struct inode *, struct inode *); 2406 bool f2fs_empty_inline_dir(struct inode *); 2407 int f2fs_read_inline_dir(struct file *, struct dir_context *, 2408 struct fscrypt_str *); 2409 int f2fs_inline_data_fiemap(struct inode *, 2410 struct fiemap_extent_info *, __u64, __u64); 2411 2412 /* 2413 * shrinker.c 2414 */ 2415 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2416 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2417 void f2fs_join_shrinker(struct f2fs_sb_info *); 2418 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2419 2420 /* 2421 * extent_cache.c 2422 */ 2423 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2424 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2425 void f2fs_drop_extent_tree(struct inode *); 2426 unsigned int f2fs_destroy_extent_node(struct inode *); 2427 void f2fs_destroy_extent_tree(struct inode *); 2428 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2429 void f2fs_update_extent_cache(struct dnode_of_data *); 2430 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2431 pgoff_t, block_t, unsigned int); 2432 void init_extent_cache_info(struct f2fs_sb_info *); 2433 int __init create_extent_cache(void); 2434 void destroy_extent_cache(void); 2435 2436 /* 2437 * crypto support 2438 */ 2439 static inline bool f2fs_encrypted_inode(struct inode *inode) 2440 { 2441 return file_is_encrypt(inode); 2442 } 2443 2444 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2445 { 2446 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2447 file_set_encrypt(inode); 2448 #endif 2449 } 2450 2451 static inline bool f2fs_bio_encrypted(struct bio *bio) 2452 { 2453 return bio->bi_private != NULL; 2454 } 2455 2456 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2457 { 2458 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2459 } 2460 2461 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 2462 { 2463 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 2464 } 2465 2466 #ifdef CONFIG_BLK_DEV_ZONED 2467 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 2468 struct block_device *bdev, block_t blkaddr) 2469 { 2470 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 2471 int i; 2472 2473 for (i = 0; i < sbi->s_ndevs; i++) 2474 if (FDEV(i).bdev == bdev) 2475 return FDEV(i).blkz_type[zno]; 2476 return -EINVAL; 2477 } 2478 #endif 2479 2480 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 2481 { 2482 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 2483 2484 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 2485 } 2486 2487 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2488 { 2489 clear_opt(sbi, ADAPTIVE); 2490 clear_opt(sbi, LFS); 2491 2492 switch (mt) { 2493 case F2FS_MOUNT_ADAPTIVE: 2494 set_opt(sbi, ADAPTIVE); 2495 break; 2496 case F2FS_MOUNT_LFS: 2497 set_opt(sbi, LFS); 2498 break; 2499 } 2500 } 2501 2502 static inline bool f2fs_may_encrypt(struct inode *inode) 2503 { 2504 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2505 umode_t mode = inode->i_mode; 2506 2507 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2508 #else 2509 return 0; 2510 #endif 2511 } 2512 2513 #ifndef CONFIG_F2FS_FS_ENCRYPTION 2514 #define fscrypt_set_d_op(i) 2515 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx 2516 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx 2517 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page 2518 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page 2519 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages 2520 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page 2521 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page 2522 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range 2523 #define fscrypt_ioctl_set_policy fscrypt_notsupp_ioctl_set_policy 2524 #define fscrypt_ioctl_get_policy fscrypt_notsupp_ioctl_get_policy 2525 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context 2526 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context 2527 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info 2528 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info 2529 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename 2530 #define fscrypt_free_filename fscrypt_notsupp_free_filename 2531 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size 2532 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer 2533 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer 2534 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr 2535 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk 2536 #endif 2537 #endif 2538