xref: /openbmc/linux/fs/f2fs/f2fs.h (revision a95ba66a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_MAX,
58 };
59 
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
62 
63 struct f2fs_fault_info {
64 	atomic_t inject_ops;
65 	unsigned int inject_rate;
66 	unsigned int inject_type;
67 };
68 
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72 
73 /*
74  * For mount options
75  */
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
90 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
91 #define F2FS_MOUNT_USRQUOTA		0x00080000
92 #define F2FS_MOUNT_GRPQUOTA		0x00100000
93 #define F2FS_MOUNT_PRJQUOTA		0x00200000
94 #define F2FS_MOUNT_QUOTA		0x00400000
95 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
96 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
97 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
98 #define F2FS_MOUNT_NORECOVERY		0x04000000
99 #define F2FS_MOUNT_ATGC			0x08000000
100 
101 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
102 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105 
106 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
107 		typecheck(unsigned long long, b) &&			\
108 		((long long)((a) - (b)) > 0))
109 
110 typedef u32 block_t;	/*
111 			 * should not change u32, since it is the on-disk block
112 			 * address format, __le32.
113 			 */
114 typedef u32 nid_t;
115 
116 #define COMPRESS_EXT_NUM		16
117 
118 struct f2fs_mount_info {
119 	unsigned int opt;
120 	int write_io_size_bits;		/* Write IO size bits */
121 	block_t root_reserved_blocks;	/* root reserved blocks */
122 	kuid_t s_resuid;		/* reserved blocks for uid */
123 	kgid_t s_resgid;		/* reserved blocks for gid */
124 	int active_logs;		/* # of active logs */
125 	int inline_xattr_size;		/* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 	struct f2fs_fault_info fault_info;	/* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 	/* Names of quota files with journalled quota */
131 	char *s_qf_names[MAXQUOTAS];
132 	int s_jquota_fmt;			/* Format of quota to use */
133 #endif
134 	/* For which write hints are passed down to block layer */
135 	int whint_mode;
136 	int alloc_mode;			/* segment allocation policy */
137 	int fsync_mode;			/* fsync policy */
138 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
139 	int bggc_mode;			/* bggc mode: off, on or sync */
140 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
141 	block_t unusable_cap_perc;	/* percentage for cap */
142 	block_t unusable_cap;		/* Amount of space allowed to be
143 					 * unusable when disabling checkpoint
144 					 */
145 
146 	/* For compression */
147 	unsigned char compress_algorithm;	/* algorithm type */
148 	unsigned char compress_log_size;	/* cluster log size */
149 	bool compress_chksum;			/* compressed data chksum */
150 	unsigned char compress_ext_cnt;		/* extension count */
151 	int compress_mode;			/* compression mode */
152 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
153 };
154 
155 #define F2FS_FEATURE_ENCRYPT		0x0001
156 #define F2FS_FEATURE_BLKZONED		0x0002
157 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
158 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
159 #define F2FS_FEATURE_PRJQUOTA		0x0010
160 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
161 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
162 #define F2FS_FEATURE_QUOTA_INO		0x0080
163 #define F2FS_FEATURE_INODE_CRTIME	0x0100
164 #define F2FS_FEATURE_LOST_FOUND		0x0200
165 #define F2FS_FEATURE_VERITY		0x0400
166 #define F2FS_FEATURE_SB_CHKSUM		0x0800
167 #define F2FS_FEATURE_CASEFOLD		0x1000
168 #define F2FS_FEATURE_COMPRESSION	0x2000
169 
170 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
171 	((raw_super->feature & cpu_to_le32(mask)) != 0)
172 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
173 #define F2FS_SET_FEATURE(sbi, mask)					\
174 	(sbi->raw_super->feature |= cpu_to_le32(mask))
175 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
176 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
177 
178 /*
179  * Default values for user and/or group using reserved blocks
180  */
181 #define	F2FS_DEF_RESUID		0
182 #define	F2FS_DEF_RESGID		0
183 
184 /*
185  * For checkpoint manager
186  */
187 enum {
188 	NAT_BITMAP,
189 	SIT_BITMAP
190 };
191 
192 #define	CP_UMOUNT	0x00000001
193 #define	CP_FASTBOOT	0x00000002
194 #define	CP_SYNC		0x00000004
195 #define	CP_RECOVERY	0x00000008
196 #define	CP_DISCARD	0x00000010
197 #define CP_TRIMMED	0x00000020
198 #define CP_PAUSE	0x00000040
199 #define CP_RESIZE 	0x00000080
200 
201 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
202 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
203 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
204 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
205 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
206 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
207 #define DEF_CP_INTERVAL			60	/* 60 secs */
208 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
209 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
210 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
211 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
212 
213 struct cp_control {
214 	int reason;
215 	__u64 trim_start;
216 	__u64 trim_end;
217 	__u64 trim_minlen;
218 };
219 
220 /*
221  * indicate meta/data type
222  */
223 enum {
224 	META_CP,
225 	META_NAT,
226 	META_SIT,
227 	META_SSA,
228 	META_MAX,
229 	META_POR,
230 	DATA_GENERIC,		/* check range only */
231 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
232 	DATA_GENERIC_ENHANCE_READ,	/*
233 					 * strong check on range and segment
234 					 * bitmap but no warning due to race
235 					 * condition of read on truncated area
236 					 * by extent_cache
237 					 */
238 	META_GENERIC,
239 };
240 
241 /* for the list of ino */
242 enum {
243 	ORPHAN_INO,		/* for orphan ino list */
244 	APPEND_INO,		/* for append ino list */
245 	UPDATE_INO,		/* for update ino list */
246 	TRANS_DIR_INO,		/* for trasactions dir ino list */
247 	FLUSH_INO,		/* for multiple device flushing */
248 	MAX_INO_ENTRY,		/* max. list */
249 };
250 
251 struct ino_entry {
252 	struct list_head list;		/* list head */
253 	nid_t ino;			/* inode number */
254 	unsigned int dirty_device;	/* dirty device bitmap */
255 };
256 
257 /* for the list of inodes to be GCed */
258 struct inode_entry {
259 	struct list_head list;	/* list head */
260 	struct inode *inode;	/* vfs inode pointer */
261 };
262 
263 struct fsync_node_entry {
264 	struct list_head list;	/* list head */
265 	struct page *page;	/* warm node page pointer */
266 	unsigned int seq_id;	/* sequence id */
267 };
268 
269 /* for the bitmap indicate blocks to be discarded */
270 struct discard_entry {
271 	struct list_head list;	/* list head */
272 	block_t start_blkaddr;	/* start blockaddr of current segment */
273 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
274 };
275 
276 /* default discard granularity of inner discard thread, unit: block count */
277 #define DEFAULT_DISCARD_GRANULARITY		16
278 
279 /* max discard pend list number */
280 #define MAX_PLIST_NUM		512
281 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
282 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283 
284 enum {
285 	D_PREP,			/* initial */
286 	D_PARTIAL,		/* partially submitted */
287 	D_SUBMIT,		/* all submitted */
288 	D_DONE,			/* finished */
289 };
290 
291 struct discard_info {
292 	block_t lstart;			/* logical start address */
293 	block_t len;			/* length */
294 	block_t start;			/* actual start address in dev */
295 };
296 
297 struct discard_cmd {
298 	struct rb_node rb_node;		/* rb node located in rb-tree */
299 	union {
300 		struct {
301 			block_t lstart;	/* logical start address */
302 			block_t len;	/* length */
303 			block_t start;	/* actual start address in dev */
304 		};
305 		struct discard_info di;	/* discard info */
306 
307 	};
308 	struct list_head list;		/* command list */
309 	struct completion wait;		/* compleation */
310 	struct block_device *bdev;	/* bdev */
311 	unsigned short ref;		/* reference count */
312 	unsigned char state;		/* state */
313 	unsigned char queued;		/* queued discard */
314 	int error;			/* bio error */
315 	spinlock_t lock;		/* for state/bio_ref updating */
316 	unsigned short bio_ref;		/* bio reference count */
317 };
318 
319 enum {
320 	DPOLICY_BG,
321 	DPOLICY_FORCE,
322 	DPOLICY_FSTRIM,
323 	DPOLICY_UMOUNT,
324 	MAX_DPOLICY,
325 };
326 
327 struct discard_policy {
328 	int type;			/* type of discard */
329 	unsigned int min_interval;	/* used for candidates exist */
330 	unsigned int mid_interval;	/* used for device busy */
331 	unsigned int max_interval;	/* used for candidates not exist */
332 	unsigned int max_requests;	/* # of discards issued per round */
333 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
334 	bool io_aware;			/* issue discard in idle time */
335 	bool sync;			/* submit discard with REQ_SYNC flag */
336 	bool ordered;			/* issue discard by lba order */
337 	bool timeout;			/* discard timeout for put_super */
338 	unsigned int granularity;	/* discard granularity */
339 };
340 
341 struct discard_cmd_control {
342 	struct task_struct *f2fs_issue_discard;	/* discard thread */
343 	struct list_head entry_list;		/* 4KB discard entry list */
344 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345 	struct list_head wait_list;		/* store on-flushing entries */
346 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
347 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
348 	unsigned int discard_wake;		/* to wake up discard thread */
349 	struct mutex cmd_lock;
350 	unsigned int nr_discards;		/* # of discards in the list */
351 	unsigned int max_discards;		/* max. discards to be issued */
352 	unsigned int discard_granularity;	/* discard granularity */
353 	unsigned int undiscard_blks;		/* # of undiscard blocks */
354 	unsigned int next_pos;			/* next discard position */
355 	atomic_t issued_discard;		/* # of issued discard */
356 	atomic_t queued_discard;		/* # of queued discard */
357 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
358 	struct rb_root_cached root;		/* root of discard rb-tree */
359 	bool rbtree_check;			/* config for consistence check */
360 };
361 
362 /* for the list of fsync inodes, used only during recovery */
363 struct fsync_inode_entry {
364 	struct list_head list;	/* list head */
365 	struct inode *inode;	/* vfs inode pointer */
366 	block_t blkaddr;	/* block address locating the last fsync */
367 	block_t last_dentry;	/* block address locating the last dentry */
368 };
369 
370 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
371 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
372 
373 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
374 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
375 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
376 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
377 
378 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380 
381 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382 {
383 	int before = nats_in_cursum(journal);
384 
385 	journal->n_nats = cpu_to_le16(before + i);
386 	return before;
387 }
388 
389 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390 {
391 	int before = sits_in_cursum(journal);
392 
393 	journal->n_sits = cpu_to_le16(before + i);
394 	return before;
395 }
396 
397 static inline bool __has_cursum_space(struct f2fs_journal *journal,
398 							int size, int type)
399 {
400 	if (type == NAT_JOURNAL)
401 		return size <= MAX_NAT_JENTRIES(journal);
402 	return size <= MAX_SIT_JENTRIES(journal);
403 }
404 
405 /* for inline stuff */
406 #define DEF_INLINE_RESERVED_SIZE	1
407 static inline int get_extra_isize(struct inode *inode);
408 static inline int get_inline_xattr_addrs(struct inode *inode);
409 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
410 				(CUR_ADDRS_PER_INODE(inode) -		\
411 				get_inline_xattr_addrs(inode) -	\
412 				DEF_INLINE_RESERVED_SIZE))
413 
414 /* for inline dir */
415 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
416 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
417 				BITS_PER_BYTE + 1))
418 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
419 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
420 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
421 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
422 				NR_INLINE_DENTRY(inode) + \
423 				INLINE_DENTRY_BITMAP_SIZE(inode)))
424 
425 /*
426  * For INODE and NODE manager
427  */
428 /* for directory operations */
429 
430 struct f2fs_filename {
431 	/*
432 	 * The filename the user specified.  This is NULL for some
433 	 * filesystem-internal operations, e.g. converting an inline directory
434 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
435 	 */
436 	const struct qstr *usr_fname;
437 
438 	/*
439 	 * The on-disk filename.  For encrypted directories, this is encrypted.
440 	 * This may be NULL for lookups in an encrypted dir without the key.
441 	 */
442 	struct fscrypt_str disk_name;
443 
444 	/* The dirhash of this filename */
445 	f2fs_hash_t hash;
446 
447 #ifdef CONFIG_FS_ENCRYPTION
448 	/*
449 	 * For lookups in encrypted directories: either the buffer backing
450 	 * disk_name, or a buffer that holds the decoded no-key name.
451 	 */
452 	struct fscrypt_str crypto_buf;
453 #endif
454 #ifdef CONFIG_UNICODE
455 	/*
456 	 * For casefolded directories: the casefolded name, but it's left NULL
457 	 * if the original name is not valid Unicode, if the directory is both
458 	 * casefolded and encrypted and its encryption key is unavailable, or if
459 	 * the filesystem is doing an internal operation where usr_fname is also
460 	 * NULL.  In all these cases we fall back to treating the name as an
461 	 * opaque byte sequence.
462 	 */
463 	struct fscrypt_str cf_name;
464 #endif
465 };
466 
467 struct f2fs_dentry_ptr {
468 	struct inode *inode;
469 	void *bitmap;
470 	struct f2fs_dir_entry *dentry;
471 	__u8 (*filename)[F2FS_SLOT_LEN];
472 	int max;
473 	int nr_bitmap;
474 };
475 
476 static inline void make_dentry_ptr_block(struct inode *inode,
477 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
478 {
479 	d->inode = inode;
480 	d->max = NR_DENTRY_IN_BLOCK;
481 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
482 	d->bitmap = t->dentry_bitmap;
483 	d->dentry = t->dentry;
484 	d->filename = t->filename;
485 }
486 
487 static inline void make_dentry_ptr_inline(struct inode *inode,
488 					struct f2fs_dentry_ptr *d, void *t)
489 {
490 	int entry_cnt = NR_INLINE_DENTRY(inode);
491 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
492 	int reserved_size = INLINE_RESERVED_SIZE(inode);
493 
494 	d->inode = inode;
495 	d->max = entry_cnt;
496 	d->nr_bitmap = bitmap_size;
497 	d->bitmap = t;
498 	d->dentry = t + bitmap_size + reserved_size;
499 	d->filename = t + bitmap_size + reserved_size +
500 					SIZE_OF_DIR_ENTRY * entry_cnt;
501 }
502 
503 /*
504  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
505  * as its node offset to distinguish from index node blocks.
506  * But some bits are used to mark the node block.
507  */
508 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
509 				>> OFFSET_BIT_SHIFT)
510 enum {
511 	ALLOC_NODE,			/* allocate a new node page if needed */
512 	LOOKUP_NODE,			/* look up a node without readahead */
513 	LOOKUP_NODE_RA,			/*
514 					 * look up a node with readahead called
515 					 * by get_data_block.
516 					 */
517 };
518 
519 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
520 
521 /* congestion wait timeout value, default: 20ms */
522 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
523 
524 /* maximum retry quota flush count */
525 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
526 
527 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
528 
529 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
530 
531 /* for in-memory extent cache entry */
532 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
533 
534 /* number of extent info in extent cache we try to shrink */
535 #define EXTENT_CACHE_SHRINK_NUMBER	128
536 
537 struct rb_entry {
538 	struct rb_node rb_node;		/* rb node located in rb-tree */
539 	union {
540 		struct {
541 			unsigned int ofs;	/* start offset of the entry */
542 			unsigned int len;	/* length of the entry */
543 		};
544 		unsigned long long key;		/* 64-bits key */
545 	} __packed;
546 };
547 
548 struct extent_info {
549 	unsigned int fofs;		/* start offset in a file */
550 	unsigned int len;		/* length of the extent */
551 	u32 blk;			/* start block address of the extent */
552 };
553 
554 struct extent_node {
555 	struct rb_node rb_node;		/* rb node located in rb-tree */
556 	struct extent_info ei;		/* extent info */
557 	struct list_head list;		/* node in global extent list of sbi */
558 	struct extent_tree *et;		/* extent tree pointer */
559 };
560 
561 struct extent_tree {
562 	nid_t ino;			/* inode number */
563 	struct rb_root_cached root;	/* root of extent info rb-tree */
564 	struct extent_node *cached_en;	/* recently accessed extent node */
565 	struct extent_info largest;	/* largested extent info */
566 	struct list_head list;		/* to be used by sbi->zombie_list */
567 	rwlock_t lock;			/* protect extent info rb-tree */
568 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
569 	bool largest_updated;		/* largest extent updated */
570 };
571 
572 /*
573  * This structure is taken from ext4_map_blocks.
574  *
575  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
576  */
577 #define F2FS_MAP_NEW		(1 << BH_New)
578 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
579 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
580 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
581 				F2FS_MAP_UNWRITTEN)
582 
583 struct f2fs_map_blocks {
584 	block_t m_pblk;
585 	block_t m_lblk;
586 	unsigned int m_len;
587 	unsigned int m_flags;
588 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
589 	pgoff_t *m_next_extent;		/* point to next possible extent */
590 	int m_seg_type;
591 	bool m_may_create;		/* indicate it is from write path */
592 };
593 
594 /* for flag in get_data_block */
595 enum {
596 	F2FS_GET_BLOCK_DEFAULT,
597 	F2FS_GET_BLOCK_FIEMAP,
598 	F2FS_GET_BLOCK_BMAP,
599 	F2FS_GET_BLOCK_DIO,
600 	F2FS_GET_BLOCK_PRE_DIO,
601 	F2FS_GET_BLOCK_PRE_AIO,
602 	F2FS_GET_BLOCK_PRECACHE,
603 };
604 
605 /*
606  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
607  */
608 #define FADVISE_COLD_BIT	0x01
609 #define FADVISE_LOST_PINO_BIT	0x02
610 #define FADVISE_ENCRYPT_BIT	0x04
611 #define FADVISE_ENC_NAME_BIT	0x08
612 #define FADVISE_KEEP_SIZE_BIT	0x10
613 #define FADVISE_HOT_BIT		0x20
614 #define FADVISE_VERITY_BIT	0x40
615 
616 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
617 
618 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
619 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
620 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
621 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
622 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
623 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
624 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
625 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
626 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
627 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
628 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
629 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
630 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
631 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
632 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
633 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
634 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
635 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
636 
637 #define DEF_DIR_LEVEL		0
638 
639 enum {
640 	GC_FAILURE_PIN,
641 	GC_FAILURE_ATOMIC,
642 	MAX_GC_FAILURE
643 };
644 
645 /* used for f2fs_inode_info->flags */
646 enum {
647 	FI_NEW_INODE,		/* indicate newly allocated inode */
648 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
649 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
650 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
651 	FI_INC_LINK,		/* need to increment i_nlink */
652 	FI_ACL_MODE,		/* indicate acl mode */
653 	FI_NO_ALLOC,		/* should not allocate any blocks */
654 	FI_FREE_NID,		/* free allocated nide */
655 	FI_NO_EXTENT,		/* not to use the extent cache */
656 	FI_INLINE_XATTR,	/* used for inline xattr */
657 	FI_INLINE_DATA,		/* used for inline data*/
658 	FI_INLINE_DENTRY,	/* used for inline dentry */
659 	FI_APPEND_WRITE,	/* inode has appended data */
660 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
661 	FI_NEED_IPU,		/* used for ipu per file */
662 	FI_ATOMIC_FILE,		/* indicate atomic file */
663 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
664 	FI_VOLATILE_FILE,	/* indicate volatile file */
665 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
666 	FI_DROP_CACHE,		/* drop dirty page cache */
667 	FI_DATA_EXIST,		/* indicate data exists */
668 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
669 	FI_DO_DEFRAG,		/* indicate defragment is running */
670 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
671 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
672 	FI_HOT_DATA,		/* indicate file is hot */
673 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
674 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
675 	FI_PIN_FILE,		/* indicate file should not be gced */
676 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
677 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
678 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
679 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
680 	FI_MMAP_FILE,		/* indicate file was mmapped */
681 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
682 	FI_MAX,			/* max flag, never be used */
683 };
684 
685 struct f2fs_inode_info {
686 	struct inode vfs_inode;		/* serve a vfs inode */
687 	unsigned long i_flags;		/* keep an inode flags for ioctl */
688 	unsigned char i_advise;		/* use to give file attribute hints */
689 	unsigned char i_dir_level;	/* use for dentry level for large dir */
690 	unsigned int i_current_depth;	/* only for directory depth */
691 	/* for gc failure statistic */
692 	unsigned int i_gc_failures[MAX_GC_FAILURE];
693 	unsigned int i_pino;		/* parent inode number */
694 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
695 
696 	/* Use below internally in f2fs*/
697 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
698 	struct rw_semaphore i_sem;	/* protect fi info */
699 	atomic_t dirty_pages;		/* # of dirty pages */
700 	f2fs_hash_t chash;		/* hash value of given file name */
701 	unsigned int clevel;		/* maximum level of given file name */
702 	struct task_struct *task;	/* lookup and create consistency */
703 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
704 	nid_t i_xattr_nid;		/* node id that contains xattrs */
705 	loff_t	last_disk_size;		/* lastly written file size */
706 	spinlock_t i_size_lock;		/* protect last_disk_size */
707 
708 #ifdef CONFIG_QUOTA
709 	struct dquot *i_dquot[MAXQUOTAS];
710 
711 	/* quota space reservation, managed internally by quota code */
712 	qsize_t i_reserved_quota;
713 #endif
714 	struct list_head dirty_list;	/* dirty list for dirs and files */
715 	struct list_head gdirty_list;	/* linked in global dirty list */
716 	struct list_head inmem_ilist;	/* list for inmem inodes */
717 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
718 	struct task_struct *inmem_task;	/* store inmemory task */
719 	struct mutex inmem_lock;	/* lock for inmemory pages */
720 	pgoff_t ra_offset;		/* ongoing readahead offset */
721 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
722 
723 	/* avoid racing between foreground op and gc */
724 	struct rw_semaphore i_gc_rwsem[2];
725 	struct rw_semaphore i_mmap_sem;
726 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
727 
728 	int i_extra_isize;		/* size of extra space located in i_addr */
729 	kprojid_t i_projid;		/* id for project quota */
730 	int i_inline_xattr_size;	/* inline xattr size */
731 	struct timespec64 i_crtime;	/* inode creation time */
732 	struct timespec64 i_disk_time[4];/* inode disk times */
733 
734 	/* for file compress */
735 	atomic_t i_compr_blocks;		/* # of compressed blocks */
736 	unsigned char i_compress_algorithm;	/* algorithm type */
737 	unsigned char i_log_cluster_size;	/* log of cluster size */
738 	unsigned short i_compress_flag;		/* compress flag */
739 	unsigned int i_cluster_size;		/* cluster size */
740 };
741 
742 static inline void get_extent_info(struct extent_info *ext,
743 					struct f2fs_extent *i_ext)
744 {
745 	ext->fofs = le32_to_cpu(i_ext->fofs);
746 	ext->blk = le32_to_cpu(i_ext->blk);
747 	ext->len = le32_to_cpu(i_ext->len);
748 }
749 
750 static inline void set_raw_extent(struct extent_info *ext,
751 					struct f2fs_extent *i_ext)
752 {
753 	i_ext->fofs = cpu_to_le32(ext->fofs);
754 	i_ext->blk = cpu_to_le32(ext->blk);
755 	i_ext->len = cpu_to_le32(ext->len);
756 }
757 
758 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
759 						u32 blk, unsigned int len)
760 {
761 	ei->fofs = fofs;
762 	ei->blk = blk;
763 	ei->len = len;
764 }
765 
766 static inline bool __is_discard_mergeable(struct discard_info *back,
767 			struct discard_info *front, unsigned int max_len)
768 {
769 	return (back->lstart + back->len == front->lstart) &&
770 		(back->len + front->len <= max_len);
771 }
772 
773 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
774 			struct discard_info *back, unsigned int max_len)
775 {
776 	return __is_discard_mergeable(back, cur, max_len);
777 }
778 
779 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
780 			struct discard_info *front, unsigned int max_len)
781 {
782 	return __is_discard_mergeable(cur, front, max_len);
783 }
784 
785 static inline bool __is_extent_mergeable(struct extent_info *back,
786 						struct extent_info *front)
787 {
788 	return (back->fofs + back->len == front->fofs &&
789 			back->blk + back->len == front->blk);
790 }
791 
792 static inline bool __is_back_mergeable(struct extent_info *cur,
793 						struct extent_info *back)
794 {
795 	return __is_extent_mergeable(back, cur);
796 }
797 
798 static inline bool __is_front_mergeable(struct extent_info *cur,
799 						struct extent_info *front)
800 {
801 	return __is_extent_mergeable(cur, front);
802 }
803 
804 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
805 static inline void __try_update_largest_extent(struct extent_tree *et,
806 						struct extent_node *en)
807 {
808 	if (en->ei.len > et->largest.len) {
809 		et->largest = en->ei;
810 		et->largest_updated = true;
811 	}
812 }
813 
814 /*
815  * For free nid management
816  */
817 enum nid_state {
818 	FREE_NID,		/* newly added to free nid list */
819 	PREALLOC_NID,		/* it is preallocated */
820 	MAX_NID_STATE,
821 };
822 
823 enum nat_state {
824 	TOTAL_NAT,
825 	DIRTY_NAT,
826 	RECLAIMABLE_NAT,
827 	MAX_NAT_STATE,
828 };
829 
830 struct f2fs_nm_info {
831 	block_t nat_blkaddr;		/* base disk address of NAT */
832 	nid_t max_nid;			/* maximum possible node ids */
833 	nid_t available_nids;		/* # of available node ids */
834 	nid_t next_scan_nid;		/* the next nid to be scanned */
835 	unsigned int ram_thresh;	/* control the memory footprint */
836 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
837 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
838 
839 	/* NAT cache management */
840 	struct radix_tree_root nat_root;/* root of the nat entry cache */
841 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
842 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
843 	struct list_head nat_entries;	/* cached nat entry list (clean) */
844 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
845 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
846 	unsigned int nat_blocks;	/* # of nat blocks */
847 
848 	/* free node ids management */
849 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
850 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
851 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
852 	spinlock_t nid_list_lock;	/* protect nid lists ops */
853 	struct mutex build_lock;	/* lock for build free nids */
854 	unsigned char **free_nid_bitmap;
855 	unsigned char *nat_block_bitmap;
856 	unsigned short *free_nid_count;	/* free nid count of NAT block */
857 
858 	/* for checkpoint */
859 	char *nat_bitmap;		/* NAT bitmap pointer */
860 
861 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
862 	unsigned char *nat_bits;	/* NAT bits blocks */
863 	unsigned char *full_nat_bits;	/* full NAT pages */
864 	unsigned char *empty_nat_bits;	/* empty NAT pages */
865 #ifdef CONFIG_F2FS_CHECK_FS
866 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
867 #endif
868 	int bitmap_size;		/* bitmap size */
869 };
870 
871 /*
872  * this structure is used as one of function parameters.
873  * all the information are dedicated to a given direct node block determined
874  * by the data offset in a file.
875  */
876 struct dnode_of_data {
877 	struct inode *inode;		/* vfs inode pointer */
878 	struct page *inode_page;	/* its inode page, NULL is possible */
879 	struct page *node_page;		/* cached direct node page */
880 	nid_t nid;			/* node id of the direct node block */
881 	unsigned int ofs_in_node;	/* data offset in the node page */
882 	bool inode_page_locked;		/* inode page is locked or not */
883 	bool node_changed;		/* is node block changed */
884 	char cur_level;			/* level of hole node page */
885 	char max_level;			/* level of current page located */
886 	block_t	data_blkaddr;		/* block address of the node block */
887 };
888 
889 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
890 		struct page *ipage, struct page *npage, nid_t nid)
891 {
892 	memset(dn, 0, sizeof(*dn));
893 	dn->inode = inode;
894 	dn->inode_page = ipage;
895 	dn->node_page = npage;
896 	dn->nid = nid;
897 }
898 
899 /*
900  * For SIT manager
901  *
902  * By default, there are 6 active log areas across the whole main area.
903  * When considering hot and cold data separation to reduce cleaning overhead,
904  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
905  * respectively.
906  * In the current design, you should not change the numbers intentionally.
907  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
908  * logs individually according to the underlying devices. (default: 6)
909  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
910  * data and 8 for node logs.
911  */
912 #define	NR_CURSEG_DATA_TYPE	(3)
913 #define NR_CURSEG_NODE_TYPE	(3)
914 #define NR_CURSEG_INMEM_TYPE	(2)
915 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
916 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
917 
918 enum {
919 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
920 	CURSEG_WARM_DATA,	/* data blocks */
921 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
922 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
923 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
924 	CURSEG_COLD_NODE,	/* indirect node blocks */
925 	NR_PERSISTENT_LOG,	/* number of persistent log */
926 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
927 				/* pinned file that needs consecutive block address */
928 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
929 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
930 };
931 
932 struct flush_cmd {
933 	struct completion wait;
934 	struct llist_node llnode;
935 	nid_t ino;
936 	int ret;
937 };
938 
939 struct flush_cmd_control {
940 	struct task_struct *f2fs_issue_flush;	/* flush thread */
941 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
942 	atomic_t issued_flush;			/* # of issued flushes */
943 	atomic_t queued_flush;			/* # of queued flushes */
944 	struct llist_head issue_list;		/* list for command issue */
945 	struct llist_node *dispatch_list;	/* list for command dispatch */
946 };
947 
948 struct f2fs_sm_info {
949 	struct sit_info *sit_info;		/* whole segment information */
950 	struct free_segmap_info *free_info;	/* free segment information */
951 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
952 	struct curseg_info *curseg_array;	/* active segment information */
953 
954 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
955 
956 	block_t seg0_blkaddr;		/* block address of 0'th segment */
957 	block_t main_blkaddr;		/* start block address of main area */
958 	block_t ssa_blkaddr;		/* start block address of SSA area */
959 
960 	unsigned int segment_count;	/* total # of segments */
961 	unsigned int main_segments;	/* # of segments in main area */
962 	unsigned int reserved_segments;	/* # of reserved segments */
963 	unsigned int ovp_segments;	/* # of overprovision segments */
964 
965 	/* a threshold to reclaim prefree segments */
966 	unsigned int rec_prefree_segments;
967 
968 	/* for batched trimming */
969 	unsigned int trim_sections;		/* # of sections to trim */
970 
971 	struct list_head sit_entry_set;	/* sit entry set list */
972 
973 	unsigned int ipu_policy;	/* in-place-update policy */
974 	unsigned int min_ipu_util;	/* in-place-update threshold */
975 	unsigned int min_fsync_blocks;	/* threshold for fsync */
976 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
977 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
978 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
979 
980 	/* for flush command control */
981 	struct flush_cmd_control *fcc_info;
982 
983 	/* for discard command control */
984 	struct discard_cmd_control *dcc_info;
985 };
986 
987 /*
988  * For superblock
989  */
990 /*
991  * COUNT_TYPE for monitoring
992  *
993  * f2fs monitors the number of several block types such as on-writeback,
994  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
995  */
996 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
997 enum count_type {
998 	F2FS_DIRTY_DENTS,
999 	F2FS_DIRTY_DATA,
1000 	F2FS_DIRTY_QDATA,
1001 	F2FS_DIRTY_NODES,
1002 	F2FS_DIRTY_META,
1003 	F2FS_INMEM_PAGES,
1004 	F2FS_DIRTY_IMETA,
1005 	F2FS_WB_CP_DATA,
1006 	F2FS_WB_DATA,
1007 	F2FS_RD_DATA,
1008 	F2FS_RD_NODE,
1009 	F2FS_RD_META,
1010 	F2FS_DIO_WRITE,
1011 	F2FS_DIO_READ,
1012 	NR_COUNT_TYPE,
1013 };
1014 
1015 /*
1016  * The below are the page types of bios used in submit_bio().
1017  * The available types are:
1018  * DATA			User data pages. It operates as async mode.
1019  * NODE			Node pages. It operates as async mode.
1020  * META			FS metadata pages such as SIT, NAT, CP.
1021  * NR_PAGE_TYPE		The number of page types.
1022  * META_FLUSH		Make sure the previous pages are written
1023  *			with waiting the bio's completion
1024  * ...			Only can be used with META.
1025  */
1026 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1027 enum page_type {
1028 	DATA,
1029 	NODE,
1030 	META,
1031 	NR_PAGE_TYPE,
1032 	META_FLUSH,
1033 	INMEM,		/* the below types are used by tracepoints only. */
1034 	INMEM_DROP,
1035 	INMEM_INVALIDATE,
1036 	INMEM_REVOKE,
1037 	IPU,
1038 	OPU,
1039 };
1040 
1041 enum temp_type {
1042 	HOT = 0,	/* must be zero for meta bio */
1043 	WARM,
1044 	COLD,
1045 	NR_TEMP_TYPE,
1046 };
1047 
1048 enum need_lock_type {
1049 	LOCK_REQ = 0,
1050 	LOCK_DONE,
1051 	LOCK_RETRY,
1052 };
1053 
1054 enum cp_reason_type {
1055 	CP_NO_NEEDED,
1056 	CP_NON_REGULAR,
1057 	CP_COMPRESSED,
1058 	CP_HARDLINK,
1059 	CP_SB_NEED_CP,
1060 	CP_WRONG_PINO,
1061 	CP_NO_SPC_ROLL,
1062 	CP_NODE_NEED_CP,
1063 	CP_FASTBOOT_MODE,
1064 	CP_SPEC_LOG_NUM,
1065 	CP_RECOVER_DIR,
1066 };
1067 
1068 enum iostat_type {
1069 	/* WRITE IO */
1070 	APP_DIRECT_IO,			/* app direct write IOs */
1071 	APP_BUFFERED_IO,		/* app buffered write IOs */
1072 	APP_WRITE_IO,			/* app write IOs */
1073 	APP_MAPPED_IO,			/* app mapped IOs */
1074 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1075 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1076 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1077 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1078 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1079 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1080 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1081 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1082 
1083 	/* READ IO */
1084 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1085 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1086 	APP_READ_IO,			/* app read IOs */
1087 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1088 	FS_DATA_READ_IO,		/* data read IOs */
1089 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1090 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1091 	FS_NODE_READ_IO,		/* node read IOs */
1092 	FS_META_READ_IO,		/* meta read IOs */
1093 
1094 	/* other */
1095 	FS_DISCARD,			/* discard */
1096 	NR_IO_TYPE,
1097 };
1098 
1099 struct f2fs_io_info {
1100 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1101 	nid_t ino;		/* inode number */
1102 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1103 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1104 	int op;			/* contains REQ_OP_ */
1105 	int op_flags;		/* req_flag_bits */
1106 	block_t new_blkaddr;	/* new block address to be written */
1107 	block_t old_blkaddr;	/* old block address before Cow */
1108 	struct page *page;	/* page to be written */
1109 	struct page *encrypted_page;	/* encrypted page */
1110 	struct page *compressed_page;	/* compressed page */
1111 	struct list_head list;		/* serialize IOs */
1112 	bool submitted;		/* indicate IO submission */
1113 	int need_lock;		/* indicate we need to lock cp_rwsem */
1114 	bool in_list;		/* indicate fio is in io_list */
1115 	bool is_por;		/* indicate IO is from recovery or not */
1116 	bool retry;		/* need to reallocate block address */
1117 	int compr_blocks;	/* # of compressed block addresses */
1118 	bool encrypted;		/* indicate file is encrypted */
1119 	enum iostat_type io_type;	/* io type */
1120 	struct writeback_control *io_wbc; /* writeback control */
1121 	struct bio **bio;		/* bio for ipu */
1122 	sector_t *last_block;		/* last block number in bio */
1123 	unsigned char version;		/* version of the node */
1124 };
1125 
1126 struct bio_entry {
1127 	struct bio *bio;
1128 	struct list_head list;
1129 };
1130 
1131 #define is_read_io(rw) ((rw) == READ)
1132 struct f2fs_bio_info {
1133 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1134 	struct bio *bio;		/* bios to merge */
1135 	sector_t last_block_in_bio;	/* last block number */
1136 	struct f2fs_io_info fio;	/* store buffered io info. */
1137 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1138 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1139 	struct list_head io_list;	/* track fios */
1140 	struct list_head bio_list;	/* bio entry list head */
1141 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1142 };
1143 
1144 #define FDEV(i)				(sbi->devs[i])
1145 #define RDEV(i)				(raw_super->devs[i])
1146 struct f2fs_dev_info {
1147 	struct block_device *bdev;
1148 	char path[MAX_PATH_LEN];
1149 	unsigned int total_segments;
1150 	block_t start_blk;
1151 	block_t end_blk;
1152 #ifdef CONFIG_BLK_DEV_ZONED
1153 	unsigned int nr_blkz;		/* Total number of zones */
1154 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1155 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1156 #endif
1157 };
1158 
1159 enum inode_type {
1160 	DIR_INODE,			/* for dirty dir inode */
1161 	FILE_INODE,			/* for dirty regular/symlink inode */
1162 	DIRTY_META,			/* for all dirtied inode metadata */
1163 	ATOMIC_FILE,			/* for all atomic files */
1164 	NR_INODE_TYPE,
1165 };
1166 
1167 /* for inner inode cache management */
1168 struct inode_management {
1169 	struct radix_tree_root ino_root;	/* ino entry array */
1170 	spinlock_t ino_lock;			/* for ino entry lock */
1171 	struct list_head ino_list;		/* inode list head */
1172 	unsigned long ino_num;			/* number of entries */
1173 };
1174 
1175 /* for GC_AT */
1176 struct atgc_management {
1177 	bool atgc_enabled;			/* ATGC is enabled or not */
1178 	struct rb_root_cached root;		/* root of victim rb-tree */
1179 	struct list_head victim_list;		/* linked with all victim entries */
1180 	unsigned int victim_count;		/* victim count in rb-tree */
1181 	unsigned int candidate_ratio;		/* candidate ratio */
1182 	unsigned int max_candidate_count;	/* max candidate count */
1183 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1184 	unsigned long long age_threshold;	/* age threshold */
1185 };
1186 
1187 /* For s_flag in struct f2fs_sb_info */
1188 enum {
1189 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1190 	SBI_IS_CLOSE,				/* specify unmounting */
1191 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1192 	SBI_POR_DOING,				/* recovery is doing or not */
1193 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1194 	SBI_NEED_CP,				/* need to checkpoint */
1195 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1196 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1197 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1198 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1199 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1200 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1201 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1202 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1203 };
1204 
1205 enum {
1206 	CP_TIME,
1207 	REQ_TIME,
1208 	DISCARD_TIME,
1209 	GC_TIME,
1210 	DISABLE_TIME,
1211 	UMOUNT_DISCARD_TIMEOUT,
1212 	MAX_TIME,
1213 };
1214 
1215 enum {
1216 	GC_NORMAL,
1217 	GC_IDLE_CB,
1218 	GC_IDLE_GREEDY,
1219 	GC_IDLE_AT,
1220 	GC_URGENT_HIGH,
1221 	GC_URGENT_LOW,
1222 };
1223 
1224 enum {
1225 	BGGC_MODE_ON,		/* background gc is on */
1226 	BGGC_MODE_OFF,		/* background gc is off */
1227 	BGGC_MODE_SYNC,		/*
1228 				 * background gc is on, migrating blocks
1229 				 * like foreground gc
1230 				 */
1231 };
1232 
1233 enum {
1234 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1235 	FS_MODE_LFS,		/* use lfs allocation only */
1236 };
1237 
1238 enum {
1239 	WHINT_MODE_OFF,		/* not pass down write hints */
1240 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1241 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1242 };
1243 
1244 enum {
1245 	ALLOC_MODE_DEFAULT,	/* stay default */
1246 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1247 };
1248 
1249 enum fsync_mode {
1250 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1251 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1252 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1253 };
1254 
1255 enum {
1256 	COMPR_MODE_FS,		/*
1257 				 * automatically compress compression
1258 				 * enabled files
1259 				 */
1260 	COMPR_MODE_USER,	/*
1261 				 * automatical compression is disabled.
1262 				 * user can control the file compression
1263 				 * using ioctls
1264 				 */
1265 };
1266 
1267 /*
1268  * this value is set in page as a private data which indicate that
1269  * the page is atomically written, and it is in inmem_pages list.
1270  */
1271 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1272 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1273 
1274 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1275 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1276 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1277 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1278 
1279 #ifdef CONFIG_F2FS_IO_TRACE
1280 #define IS_IO_TRACED_PAGE(page)			\
1281 		(page_private(page) > 0 &&		\
1282 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1283 #else
1284 #define IS_IO_TRACED_PAGE(page) (0)
1285 #endif
1286 
1287 /* For compression */
1288 enum compress_algorithm_type {
1289 	COMPRESS_LZO,
1290 	COMPRESS_LZ4,
1291 	COMPRESS_ZSTD,
1292 	COMPRESS_LZORLE,
1293 	COMPRESS_MAX,
1294 };
1295 
1296 enum compress_flag {
1297 	COMPRESS_CHKSUM,
1298 	COMPRESS_MAX_FLAG,
1299 };
1300 
1301 #define COMPRESS_DATA_RESERVED_SIZE		4
1302 struct compress_data {
1303 	__le32 clen;			/* compressed data size */
1304 	__le32 chksum;			/* compressed data chksum */
1305 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1306 	u8 cdata[];			/* compressed data */
1307 };
1308 
1309 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1310 
1311 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1312 
1313 /* compress context */
1314 struct compress_ctx {
1315 	struct inode *inode;		/* inode the context belong to */
1316 	pgoff_t cluster_idx;		/* cluster index number */
1317 	unsigned int cluster_size;	/* page count in cluster */
1318 	unsigned int log_cluster_size;	/* log of cluster size */
1319 	struct page **rpages;		/* pages store raw data in cluster */
1320 	unsigned int nr_rpages;		/* total page number in rpages */
1321 	struct page **cpages;		/* pages store compressed data in cluster */
1322 	unsigned int nr_cpages;		/* total page number in cpages */
1323 	void *rbuf;			/* virtual mapped address on rpages */
1324 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1325 	size_t rlen;			/* valid data length in rbuf */
1326 	size_t clen;			/* valid data length in cbuf */
1327 	void *private;			/* payload buffer for specified compression algorithm */
1328 	void *private2;			/* extra payload buffer */
1329 };
1330 
1331 /* compress context for write IO path */
1332 struct compress_io_ctx {
1333 	u32 magic;			/* magic number to indicate page is compressed */
1334 	struct inode *inode;		/* inode the context belong to */
1335 	struct page **rpages;		/* pages store raw data in cluster */
1336 	unsigned int nr_rpages;		/* total page number in rpages */
1337 	atomic_t pending_pages;		/* in-flight compressed page count */
1338 };
1339 
1340 /* decompress io context for read IO path */
1341 struct decompress_io_ctx {
1342 	u32 magic;			/* magic number to indicate page is compressed */
1343 	struct inode *inode;		/* inode the context belong to */
1344 	pgoff_t cluster_idx;		/* cluster index number */
1345 	unsigned int cluster_size;	/* page count in cluster */
1346 	unsigned int log_cluster_size;	/* log of cluster size */
1347 	struct page **rpages;		/* pages store raw data in cluster */
1348 	unsigned int nr_rpages;		/* total page number in rpages */
1349 	struct page **cpages;		/* pages store compressed data in cluster */
1350 	unsigned int nr_cpages;		/* total page number in cpages */
1351 	struct page **tpages;		/* temp pages to pad holes in cluster */
1352 	void *rbuf;			/* virtual mapped address on rpages */
1353 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1354 	size_t rlen;			/* valid data length in rbuf */
1355 	size_t clen;			/* valid data length in cbuf */
1356 	atomic_t pending_pages;		/* in-flight compressed page count */
1357 	bool failed;			/* indicate IO error during decompression */
1358 	void *private;			/* payload buffer for specified decompression algorithm */
1359 	void *private2;			/* extra payload buffer */
1360 };
1361 
1362 #define NULL_CLUSTER			((unsigned int)(~0))
1363 #define MIN_COMPRESS_LOG_SIZE		2
1364 #define MAX_COMPRESS_LOG_SIZE		8
1365 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1366 
1367 struct f2fs_sb_info {
1368 	struct super_block *sb;			/* pointer to VFS super block */
1369 	struct proc_dir_entry *s_proc;		/* proc entry */
1370 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1371 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1372 	int valid_super_block;			/* valid super block no */
1373 	unsigned long s_flag;				/* flags for sbi */
1374 	struct mutex writepages;		/* mutex for writepages() */
1375 
1376 #ifdef CONFIG_BLK_DEV_ZONED
1377 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1378 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1379 #endif
1380 
1381 	/* for node-related operations */
1382 	struct f2fs_nm_info *nm_info;		/* node manager */
1383 	struct inode *node_inode;		/* cache node blocks */
1384 
1385 	/* for segment-related operations */
1386 	struct f2fs_sm_info *sm_info;		/* segment manager */
1387 
1388 	/* for bio operations */
1389 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1390 	/* keep migration IO order for LFS mode */
1391 	struct rw_semaphore io_order_lock;
1392 	mempool_t *write_io_dummy;		/* Dummy pages */
1393 
1394 	/* for checkpoint */
1395 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1396 	int cur_cp_pack;			/* remain current cp pack */
1397 	spinlock_t cp_lock;			/* for flag in ckpt */
1398 	struct inode *meta_inode;		/* cache meta blocks */
1399 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1400 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1401 	struct rw_semaphore node_write;		/* locking node writes */
1402 	struct rw_semaphore node_change;	/* locking node change */
1403 	wait_queue_head_t cp_wait;
1404 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1405 	long interval_time[MAX_TIME];		/* to store thresholds */
1406 
1407 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1408 
1409 	spinlock_t fsync_node_lock;		/* for node entry lock */
1410 	struct list_head fsync_node_list;	/* node list head */
1411 	unsigned int fsync_seg_id;		/* sequence id */
1412 	unsigned int fsync_node_num;		/* number of node entries */
1413 
1414 	/* for orphan inode, use 0'th array */
1415 	unsigned int max_orphans;		/* max orphan inodes */
1416 
1417 	/* for inode management */
1418 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1419 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1420 	struct mutex flush_lock;		/* for flush exclusion */
1421 
1422 	/* for extent tree cache */
1423 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1424 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1425 	struct list_head extent_list;		/* lru list for shrinker */
1426 	spinlock_t extent_lock;			/* locking extent lru list */
1427 	atomic_t total_ext_tree;		/* extent tree count */
1428 	struct list_head zombie_list;		/* extent zombie tree list */
1429 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1430 	atomic_t total_ext_node;		/* extent info count */
1431 
1432 	/* basic filesystem units */
1433 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1434 	unsigned int log_blocksize;		/* log2 block size */
1435 	unsigned int blocksize;			/* block size */
1436 	unsigned int root_ino_num;		/* root inode number*/
1437 	unsigned int node_ino_num;		/* node inode number*/
1438 	unsigned int meta_ino_num;		/* meta inode number*/
1439 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1440 	unsigned int blocks_per_seg;		/* blocks per segment */
1441 	unsigned int segs_per_sec;		/* segments per section */
1442 	unsigned int secs_per_zone;		/* sections per zone */
1443 	unsigned int total_sections;		/* total section count */
1444 	unsigned int total_node_count;		/* total node block count */
1445 	unsigned int total_valid_node_count;	/* valid node block count */
1446 	loff_t max_file_blocks;			/* max block index of file */
1447 	int dir_level;				/* directory level */
1448 	int readdir_ra;				/* readahead inode in readdir */
1449 
1450 	block_t user_block_count;		/* # of user blocks */
1451 	block_t total_valid_block_count;	/* # of valid blocks */
1452 	block_t discard_blks;			/* discard command candidats */
1453 	block_t last_valid_block_count;		/* for recovery */
1454 	block_t reserved_blocks;		/* configurable reserved blocks */
1455 	block_t current_reserved_blocks;	/* current reserved blocks */
1456 
1457 	/* Additional tracking for no checkpoint mode */
1458 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1459 
1460 	unsigned int nquota_files;		/* # of quota sysfile */
1461 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1462 
1463 	/* # of pages, see count_type */
1464 	atomic_t nr_pages[NR_COUNT_TYPE];
1465 	/* # of allocated blocks */
1466 	struct percpu_counter alloc_valid_block_count;
1467 
1468 	/* writeback control */
1469 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1470 
1471 	/* valid inode count */
1472 	struct percpu_counter total_valid_inode_count;
1473 
1474 	struct f2fs_mount_info mount_opt;	/* mount options */
1475 
1476 	/* for cleaning operations */
1477 	struct rw_semaphore gc_lock;		/*
1478 						 * semaphore for GC, avoid
1479 						 * race between GC and GC or CP
1480 						 */
1481 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1482 	struct atgc_management am;		/* atgc management */
1483 	unsigned int cur_victim_sec;		/* current victim section num */
1484 	unsigned int gc_mode;			/* current GC state */
1485 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1486 
1487 	/* for skip statistic */
1488 	unsigned int atomic_files;		/* # of opened atomic file */
1489 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1490 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1491 
1492 	/* threshold for gc trials on pinned files */
1493 	u64 gc_pin_file_threshold;
1494 	struct rw_semaphore pin_sem;
1495 
1496 	/* maximum # of trials to find a victim segment for SSR and GC */
1497 	unsigned int max_victim_search;
1498 	/* migration granularity of garbage collection, unit: segment */
1499 	unsigned int migration_granularity;
1500 
1501 	/*
1502 	 * for stat information.
1503 	 * one is for the LFS mode, and the other is for the SSR mode.
1504 	 */
1505 #ifdef CONFIG_F2FS_STAT_FS
1506 	struct f2fs_stat_info *stat_info;	/* FS status information */
1507 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1508 	unsigned int segment_count[2];		/* # of allocated segments */
1509 	unsigned int block_count[2];		/* # of allocated blocks */
1510 	atomic_t inplace_count;		/* # of inplace update */
1511 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1512 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1513 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1514 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1515 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1516 	atomic_t inline_inode;			/* # of inline_data inodes */
1517 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1518 	atomic_t compr_inode;			/* # of compressed inodes */
1519 	atomic64_t compr_blocks;		/* # of compressed blocks */
1520 	atomic_t vw_cnt;			/* # of volatile writes */
1521 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1522 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1523 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1524 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1525 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1526 #endif
1527 	spinlock_t stat_lock;			/* lock for stat operations */
1528 
1529 	/* For app/fs IO statistics */
1530 	spinlock_t iostat_lock;
1531 	unsigned long long rw_iostat[NR_IO_TYPE];
1532 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1533 	bool iostat_enable;
1534 	unsigned long iostat_next_period;
1535 	unsigned int iostat_period_ms;
1536 
1537 	/* to attach REQ_META|REQ_FUA flags */
1538 	unsigned int data_io_flag;
1539 	unsigned int node_io_flag;
1540 
1541 	/* For sysfs suppport */
1542 	struct kobject s_kobj;
1543 	struct completion s_kobj_unregister;
1544 
1545 	/* For shrinker support */
1546 	struct list_head s_list;
1547 	int s_ndevs;				/* number of devices */
1548 	struct f2fs_dev_info *devs;		/* for device list */
1549 	unsigned int dirty_device;		/* for checkpoint data flush */
1550 	spinlock_t dev_lock;			/* protect dirty_device */
1551 	struct mutex umount_mutex;
1552 	unsigned int shrinker_run_no;
1553 
1554 	/* For write statistics */
1555 	u64 sectors_written_start;
1556 	u64 kbytes_written;
1557 
1558 	/* Reference to checksum algorithm driver via cryptoapi */
1559 	struct crypto_shash *s_chksum_driver;
1560 
1561 	/* Precomputed FS UUID checksum for seeding other checksums */
1562 	__u32 s_chksum_seed;
1563 
1564 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1565 
1566 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1567 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1568 
1569 #ifdef CONFIG_F2FS_FS_COMPRESSION
1570 	struct kmem_cache *page_array_slab;	/* page array entry */
1571 	unsigned int page_array_slab_size;	/* default page array slab size */
1572 #endif
1573 };
1574 
1575 struct f2fs_private_dio {
1576 	struct inode *inode;
1577 	void *orig_private;
1578 	bio_end_io_t *orig_end_io;
1579 	bool write;
1580 };
1581 
1582 #ifdef CONFIG_F2FS_FAULT_INJECTION
1583 #define f2fs_show_injection_info(sbi, type)					\
1584 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1585 		KERN_INFO, sbi->sb->s_id,				\
1586 		f2fs_fault_name[type],					\
1587 		__func__, __builtin_return_address(0))
1588 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1589 {
1590 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1591 
1592 	if (!ffi->inject_rate)
1593 		return false;
1594 
1595 	if (!IS_FAULT_SET(ffi, type))
1596 		return false;
1597 
1598 	atomic_inc(&ffi->inject_ops);
1599 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1600 		atomic_set(&ffi->inject_ops, 0);
1601 		return true;
1602 	}
1603 	return false;
1604 }
1605 #else
1606 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1607 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1608 {
1609 	return false;
1610 }
1611 #endif
1612 
1613 /*
1614  * Test if the mounted volume is a multi-device volume.
1615  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1616  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1617  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1618  */
1619 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1620 {
1621 	return sbi->s_ndevs > 1;
1622 }
1623 
1624 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1625 {
1626 	unsigned long now = jiffies;
1627 
1628 	sbi->last_time[type] = now;
1629 
1630 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1631 	if (type == REQ_TIME) {
1632 		sbi->last_time[DISCARD_TIME] = now;
1633 		sbi->last_time[GC_TIME] = now;
1634 	}
1635 }
1636 
1637 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1638 {
1639 	unsigned long interval = sbi->interval_time[type] * HZ;
1640 
1641 	return time_after(jiffies, sbi->last_time[type] + interval);
1642 }
1643 
1644 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1645 						int type)
1646 {
1647 	unsigned long interval = sbi->interval_time[type] * HZ;
1648 	unsigned int wait_ms = 0;
1649 	long delta;
1650 
1651 	delta = (sbi->last_time[type] + interval) - jiffies;
1652 	if (delta > 0)
1653 		wait_ms = jiffies_to_msecs(delta);
1654 
1655 	return wait_ms;
1656 }
1657 
1658 /*
1659  * Inline functions
1660  */
1661 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1662 			      const void *address, unsigned int length)
1663 {
1664 	struct {
1665 		struct shash_desc shash;
1666 		char ctx[4];
1667 	} desc;
1668 	int err;
1669 
1670 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1671 
1672 	desc.shash.tfm = sbi->s_chksum_driver;
1673 	*(u32 *)desc.ctx = crc;
1674 
1675 	err = crypto_shash_update(&desc.shash, address, length);
1676 	BUG_ON(err);
1677 
1678 	return *(u32 *)desc.ctx;
1679 }
1680 
1681 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1682 			   unsigned int length)
1683 {
1684 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1685 }
1686 
1687 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1688 				  void *buf, size_t buf_size)
1689 {
1690 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1691 }
1692 
1693 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1694 			      const void *address, unsigned int length)
1695 {
1696 	return __f2fs_crc32(sbi, crc, address, length);
1697 }
1698 
1699 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1700 {
1701 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1702 }
1703 
1704 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1705 {
1706 	return sb->s_fs_info;
1707 }
1708 
1709 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1710 {
1711 	return F2FS_SB(inode->i_sb);
1712 }
1713 
1714 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1715 {
1716 	return F2FS_I_SB(mapping->host);
1717 }
1718 
1719 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1720 {
1721 	return F2FS_M_SB(page_file_mapping(page));
1722 }
1723 
1724 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1725 {
1726 	return (struct f2fs_super_block *)(sbi->raw_super);
1727 }
1728 
1729 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1730 {
1731 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1732 }
1733 
1734 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1735 {
1736 	return (struct f2fs_node *)page_address(page);
1737 }
1738 
1739 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1740 {
1741 	return &((struct f2fs_node *)page_address(page))->i;
1742 }
1743 
1744 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1745 {
1746 	return (struct f2fs_nm_info *)(sbi->nm_info);
1747 }
1748 
1749 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1750 {
1751 	return (struct f2fs_sm_info *)(sbi->sm_info);
1752 }
1753 
1754 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1755 {
1756 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1757 }
1758 
1759 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1760 {
1761 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1762 }
1763 
1764 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1765 {
1766 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1767 }
1768 
1769 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1770 {
1771 	return sbi->meta_inode->i_mapping;
1772 }
1773 
1774 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1775 {
1776 	return sbi->node_inode->i_mapping;
1777 }
1778 
1779 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1780 {
1781 	return test_bit(type, &sbi->s_flag);
1782 }
1783 
1784 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1785 {
1786 	set_bit(type, &sbi->s_flag);
1787 }
1788 
1789 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1790 {
1791 	clear_bit(type, &sbi->s_flag);
1792 }
1793 
1794 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1795 {
1796 	return le64_to_cpu(cp->checkpoint_ver);
1797 }
1798 
1799 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1800 {
1801 	if (type < F2FS_MAX_QUOTAS)
1802 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1803 	return 0;
1804 }
1805 
1806 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1807 {
1808 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1809 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1810 }
1811 
1812 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1813 {
1814 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1815 
1816 	return ckpt_flags & f;
1817 }
1818 
1819 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1820 {
1821 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1822 }
1823 
1824 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1825 {
1826 	unsigned int ckpt_flags;
1827 
1828 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1829 	ckpt_flags |= f;
1830 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1831 }
1832 
1833 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1834 {
1835 	unsigned long flags;
1836 
1837 	spin_lock_irqsave(&sbi->cp_lock, flags);
1838 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1839 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1840 }
1841 
1842 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1843 {
1844 	unsigned int ckpt_flags;
1845 
1846 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1847 	ckpt_flags &= (~f);
1848 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1849 }
1850 
1851 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1852 {
1853 	unsigned long flags;
1854 
1855 	spin_lock_irqsave(&sbi->cp_lock, flags);
1856 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1857 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1858 }
1859 
1860 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1861 {
1862 	unsigned long flags;
1863 	unsigned char *nat_bits;
1864 
1865 	/*
1866 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1867 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1868 	 * so let's rely on regular fsck or unclean shutdown.
1869 	 */
1870 
1871 	if (lock)
1872 		spin_lock_irqsave(&sbi->cp_lock, flags);
1873 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1874 	nat_bits = NM_I(sbi)->nat_bits;
1875 	NM_I(sbi)->nat_bits = NULL;
1876 	if (lock)
1877 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1878 
1879 	kvfree(nat_bits);
1880 }
1881 
1882 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1883 					struct cp_control *cpc)
1884 {
1885 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1886 
1887 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1888 }
1889 
1890 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1891 {
1892 	down_read(&sbi->cp_rwsem);
1893 }
1894 
1895 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1896 {
1897 	return down_read_trylock(&sbi->cp_rwsem);
1898 }
1899 
1900 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1901 {
1902 	up_read(&sbi->cp_rwsem);
1903 }
1904 
1905 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1906 {
1907 	down_write(&sbi->cp_rwsem);
1908 }
1909 
1910 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1911 {
1912 	up_write(&sbi->cp_rwsem);
1913 }
1914 
1915 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1916 {
1917 	int reason = CP_SYNC;
1918 
1919 	if (test_opt(sbi, FASTBOOT))
1920 		reason = CP_FASTBOOT;
1921 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1922 		reason = CP_UMOUNT;
1923 	return reason;
1924 }
1925 
1926 static inline bool __remain_node_summaries(int reason)
1927 {
1928 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1929 }
1930 
1931 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1932 {
1933 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1934 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1935 }
1936 
1937 /*
1938  * Check whether the inode has blocks or not
1939  */
1940 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1941 {
1942 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1943 
1944 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1945 }
1946 
1947 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1948 {
1949 	return ofs == XATTR_NODE_OFFSET;
1950 }
1951 
1952 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1953 					struct inode *inode, bool cap)
1954 {
1955 	if (!inode)
1956 		return true;
1957 	if (!test_opt(sbi, RESERVE_ROOT))
1958 		return false;
1959 	if (IS_NOQUOTA(inode))
1960 		return true;
1961 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1962 		return true;
1963 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1964 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1965 		return true;
1966 	if (cap && capable(CAP_SYS_RESOURCE))
1967 		return true;
1968 	return false;
1969 }
1970 
1971 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1972 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1973 				 struct inode *inode, blkcnt_t *count)
1974 {
1975 	blkcnt_t diff = 0, release = 0;
1976 	block_t avail_user_block_count;
1977 	int ret;
1978 
1979 	ret = dquot_reserve_block(inode, *count);
1980 	if (ret)
1981 		return ret;
1982 
1983 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1984 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1985 		release = *count;
1986 		goto release_quota;
1987 	}
1988 
1989 	/*
1990 	 * let's increase this in prior to actual block count change in order
1991 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1992 	 */
1993 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1994 
1995 	spin_lock(&sbi->stat_lock);
1996 	sbi->total_valid_block_count += (block_t)(*count);
1997 	avail_user_block_count = sbi->user_block_count -
1998 					sbi->current_reserved_blocks;
1999 
2000 	if (!__allow_reserved_blocks(sbi, inode, true))
2001 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2002 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2003 		if (avail_user_block_count > sbi->unusable_block_count)
2004 			avail_user_block_count -= sbi->unusable_block_count;
2005 		else
2006 			avail_user_block_count = 0;
2007 	}
2008 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2009 		diff = sbi->total_valid_block_count - avail_user_block_count;
2010 		if (diff > *count)
2011 			diff = *count;
2012 		*count -= diff;
2013 		release = diff;
2014 		sbi->total_valid_block_count -= diff;
2015 		if (!*count) {
2016 			spin_unlock(&sbi->stat_lock);
2017 			goto enospc;
2018 		}
2019 	}
2020 	spin_unlock(&sbi->stat_lock);
2021 
2022 	if (unlikely(release)) {
2023 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2024 		dquot_release_reservation_block(inode, release);
2025 	}
2026 	f2fs_i_blocks_write(inode, *count, true, true);
2027 	return 0;
2028 
2029 enospc:
2030 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2031 release_quota:
2032 	dquot_release_reservation_block(inode, release);
2033 	return -ENOSPC;
2034 }
2035 
2036 __printf(2, 3)
2037 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2038 
2039 #define f2fs_err(sbi, fmt, ...)						\
2040 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2041 #define f2fs_warn(sbi, fmt, ...)					\
2042 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2043 #define f2fs_notice(sbi, fmt, ...)					\
2044 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2045 #define f2fs_info(sbi, fmt, ...)					\
2046 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2047 #define f2fs_debug(sbi, fmt, ...)					\
2048 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2049 
2050 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2051 						struct inode *inode,
2052 						block_t count)
2053 {
2054 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2055 
2056 	spin_lock(&sbi->stat_lock);
2057 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2058 	sbi->total_valid_block_count -= (block_t)count;
2059 	if (sbi->reserved_blocks &&
2060 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2061 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2062 					sbi->current_reserved_blocks + count);
2063 	spin_unlock(&sbi->stat_lock);
2064 	if (unlikely(inode->i_blocks < sectors)) {
2065 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2066 			  inode->i_ino,
2067 			  (unsigned long long)inode->i_blocks,
2068 			  (unsigned long long)sectors);
2069 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2070 		return;
2071 	}
2072 	f2fs_i_blocks_write(inode, count, false, true);
2073 }
2074 
2075 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2076 {
2077 	atomic_inc(&sbi->nr_pages[count_type]);
2078 
2079 	if (count_type == F2FS_DIRTY_DENTS ||
2080 			count_type == F2FS_DIRTY_NODES ||
2081 			count_type == F2FS_DIRTY_META ||
2082 			count_type == F2FS_DIRTY_QDATA ||
2083 			count_type == F2FS_DIRTY_IMETA)
2084 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2085 }
2086 
2087 static inline void inode_inc_dirty_pages(struct inode *inode)
2088 {
2089 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2090 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2091 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2092 	if (IS_NOQUOTA(inode))
2093 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2094 }
2095 
2096 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2097 {
2098 	atomic_dec(&sbi->nr_pages[count_type]);
2099 }
2100 
2101 static inline void inode_dec_dirty_pages(struct inode *inode)
2102 {
2103 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2104 			!S_ISLNK(inode->i_mode))
2105 		return;
2106 
2107 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2108 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2109 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2110 	if (IS_NOQUOTA(inode))
2111 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2112 }
2113 
2114 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2115 {
2116 	return atomic_read(&sbi->nr_pages[count_type]);
2117 }
2118 
2119 static inline int get_dirty_pages(struct inode *inode)
2120 {
2121 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2122 }
2123 
2124 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2125 {
2126 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2127 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2128 						sbi->log_blocks_per_seg;
2129 
2130 	return segs / sbi->segs_per_sec;
2131 }
2132 
2133 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2134 {
2135 	return sbi->total_valid_block_count;
2136 }
2137 
2138 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2139 {
2140 	return sbi->discard_blks;
2141 }
2142 
2143 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2144 {
2145 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2146 
2147 	/* return NAT or SIT bitmap */
2148 	if (flag == NAT_BITMAP)
2149 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2150 	else if (flag == SIT_BITMAP)
2151 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2152 
2153 	return 0;
2154 }
2155 
2156 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2157 {
2158 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2159 }
2160 
2161 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2162 {
2163 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2164 	int offset;
2165 
2166 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2167 		offset = (flag == SIT_BITMAP) ?
2168 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2169 		/*
2170 		 * if large_nat_bitmap feature is enabled, leave checksum
2171 		 * protection for all nat/sit bitmaps.
2172 		 */
2173 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2174 	}
2175 
2176 	if (__cp_payload(sbi) > 0) {
2177 		if (flag == NAT_BITMAP)
2178 			return &ckpt->sit_nat_version_bitmap;
2179 		else
2180 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2181 	} else {
2182 		offset = (flag == NAT_BITMAP) ?
2183 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2184 		return &ckpt->sit_nat_version_bitmap + offset;
2185 	}
2186 }
2187 
2188 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2189 {
2190 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2191 
2192 	if (sbi->cur_cp_pack == 2)
2193 		start_addr += sbi->blocks_per_seg;
2194 	return start_addr;
2195 }
2196 
2197 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2198 {
2199 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2200 
2201 	if (sbi->cur_cp_pack == 1)
2202 		start_addr += sbi->blocks_per_seg;
2203 	return start_addr;
2204 }
2205 
2206 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2207 {
2208 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2209 }
2210 
2211 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2212 {
2213 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2214 }
2215 
2216 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2217 					struct inode *inode, bool is_inode)
2218 {
2219 	block_t	valid_block_count;
2220 	unsigned int valid_node_count, user_block_count;
2221 	int err;
2222 
2223 	if (is_inode) {
2224 		if (inode) {
2225 			err = dquot_alloc_inode(inode);
2226 			if (err)
2227 				return err;
2228 		}
2229 	} else {
2230 		err = dquot_reserve_block(inode, 1);
2231 		if (err)
2232 			return err;
2233 	}
2234 
2235 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2236 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2237 		goto enospc;
2238 	}
2239 
2240 	spin_lock(&sbi->stat_lock);
2241 
2242 	valid_block_count = sbi->total_valid_block_count +
2243 					sbi->current_reserved_blocks + 1;
2244 
2245 	if (!__allow_reserved_blocks(sbi, inode, false))
2246 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2247 	user_block_count = sbi->user_block_count;
2248 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2249 		user_block_count -= sbi->unusable_block_count;
2250 
2251 	if (unlikely(valid_block_count > user_block_count)) {
2252 		spin_unlock(&sbi->stat_lock);
2253 		goto enospc;
2254 	}
2255 
2256 	valid_node_count = sbi->total_valid_node_count + 1;
2257 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2258 		spin_unlock(&sbi->stat_lock);
2259 		goto enospc;
2260 	}
2261 
2262 	sbi->total_valid_node_count++;
2263 	sbi->total_valid_block_count++;
2264 	spin_unlock(&sbi->stat_lock);
2265 
2266 	if (inode) {
2267 		if (is_inode)
2268 			f2fs_mark_inode_dirty_sync(inode, true);
2269 		else
2270 			f2fs_i_blocks_write(inode, 1, true, true);
2271 	}
2272 
2273 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2274 	return 0;
2275 
2276 enospc:
2277 	if (is_inode) {
2278 		if (inode)
2279 			dquot_free_inode(inode);
2280 	} else {
2281 		dquot_release_reservation_block(inode, 1);
2282 	}
2283 	return -ENOSPC;
2284 }
2285 
2286 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2287 					struct inode *inode, bool is_inode)
2288 {
2289 	spin_lock(&sbi->stat_lock);
2290 
2291 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2292 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2293 
2294 	sbi->total_valid_node_count--;
2295 	sbi->total_valid_block_count--;
2296 	if (sbi->reserved_blocks &&
2297 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2298 		sbi->current_reserved_blocks++;
2299 
2300 	spin_unlock(&sbi->stat_lock);
2301 
2302 	if (is_inode) {
2303 		dquot_free_inode(inode);
2304 	} else {
2305 		if (unlikely(inode->i_blocks == 0)) {
2306 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2307 				  inode->i_ino,
2308 				  (unsigned long long)inode->i_blocks);
2309 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2310 			return;
2311 		}
2312 		f2fs_i_blocks_write(inode, 1, false, true);
2313 	}
2314 }
2315 
2316 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2317 {
2318 	return sbi->total_valid_node_count;
2319 }
2320 
2321 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2322 {
2323 	percpu_counter_inc(&sbi->total_valid_inode_count);
2324 }
2325 
2326 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2327 {
2328 	percpu_counter_dec(&sbi->total_valid_inode_count);
2329 }
2330 
2331 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2332 {
2333 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2334 }
2335 
2336 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2337 						pgoff_t index, bool for_write)
2338 {
2339 	struct page *page;
2340 
2341 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2342 		if (!for_write)
2343 			page = find_get_page_flags(mapping, index,
2344 							FGP_LOCK | FGP_ACCESSED);
2345 		else
2346 			page = find_lock_page(mapping, index);
2347 		if (page)
2348 			return page;
2349 
2350 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2351 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2352 							FAULT_PAGE_ALLOC);
2353 			return NULL;
2354 		}
2355 	}
2356 
2357 	if (!for_write)
2358 		return grab_cache_page(mapping, index);
2359 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2360 }
2361 
2362 static inline struct page *f2fs_pagecache_get_page(
2363 				struct address_space *mapping, pgoff_t index,
2364 				int fgp_flags, gfp_t gfp_mask)
2365 {
2366 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2367 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2368 		return NULL;
2369 	}
2370 
2371 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2372 }
2373 
2374 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2375 {
2376 	char *src_kaddr = kmap(src);
2377 	char *dst_kaddr = kmap(dst);
2378 
2379 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2380 	kunmap(dst);
2381 	kunmap(src);
2382 }
2383 
2384 static inline void f2fs_put_page(struct page *page, int unlock)
2385 {
2386 	if (!page)
2387 		return;
2388 
2389 	if (unlock) {
2390 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2391 		unlock_page(page);
2392 	}
2393 	put_page(page);
2394 }
2395 
2396 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2397 {
2398 	if (dn->node_page)
2399 		f2fs_put_page(dn->node_page, 1);
2400 	if (dn->inode_page && dn->node_page != dn->inode_page)
2401 		f2fs_put_page(dn->inode_page, 0);
2402 	dn->node_page = NULL;
2403 	dn->inode_page = NULL;
2404 }
2405 
2406 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2407 					size_t size)
2408 {
2409 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2410 }
2411 
2412 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2413 						gfp_t flags)
2414 {
2415 	void *entry;
2416 
2417 	entry = kmem_cache_alloc(cachep, flags);
2418 	if (!entry)
2419 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2420 	return entry;
2421 }
2422 
2423 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2424 {
2425 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2426 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2427 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2428 		get_pages(sbi, F2FS_DIO_READ) ||
2429 		get_pages(sbi, F2FS_DIO_WRITE))
2430 		return true;
2431 
2432 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2433 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2434 		return true;
2435 
2436 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2437 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2438 		return true;
2439 	return false;
2440 }
2441 
2442 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2443 {
2444 	if (sbi->gc_mode == GC_URGENT_HIGH)
2445 		return true;
2446 
2447 	if (is_inflight_io(sbi, type))
2448 		return false;
2449 
2450 	if (sbi->gc_mode == GC_URGENT_LOW &&
2451 			(type == DISCARD_TIME || type == GC_TIME))
2452 		return true;
2453 
2454 	return f2fs_time_over(sbi, type);
2455 }
2456 
2457 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2458 				unsigned long index, void *item)
2459 {
2460 	while (radix_tree_insert(root, index, item))
2461 		cond_resched();
2462 }
2463 
2464 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2465 
2466 static inline bool IS_INODE(struct page *page)
2467 {
2468 	struct f2fs_node *p = F2FS_NODE(page);
2469 
2470 	return RAW_IS_INODE(p);
2471 }
2472 
2473 static inline int offset_in_addr(struct f2fs_inode *i)
2474 {
2475 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2476 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2477 }
2478 
2479 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2480 {
2481 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2482 }
2483 
2484 static inline int f2fs_has_extra_attr(struct inode *inode);
2485 static inline block_t data_blkaddr(struct inode *inode,
2486 			struct page *node_page, unsigned int offset)
2487 {
2488 	struct f2fs_node *raw_node;
2489 	__le32 *addr_array;
2490 	int base = 0;
2491 	bool is_inode = IS_INODE(node_page);
2492 
2493 	raw_node = F2FS_NODE(node_page);
2494 
2495 	if (is_inode) {
2496 		if (!inode)
2497 			/* from GC path only */
2498 			base = offset_in_addr(&raw_node->i);
2499 		else if (f2fs_has_extra_attr(inode))
2500 			base = get_extra_isize(inode);
2501 	}
2502 
2503 	addr_array = blkaddr_in_node(raw_node);
2504 	return le32_to_cpu(addr_array[base + offset]);
2505 }
2506 
2507 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2508 {
2509 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2510 }
2511 
2512 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2513 {
2514 	int mask;
2515 
2516 	addr += (nr >> 3);
2517 	mask = 1 << (7 - (nr & 0x07));
2518 	return mask & *addr;
2519 }
2520 
2521 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2522 {
2523 	int mask;
2524 
2525 	addr += (nr >> 3);
2526 	mask = 1 << (7 - (nr & 0x07));
2527 	*addr |= mask;
2528 }
2529 
2530 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2531 {
2532 	int mask;
2533 
2534 	addr += (nr >> 3);
2535 	mask = 1 << (7 - (nr & 0x07));
2536 	*addr &= ~mask;
2537 }
2538 
2539 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2540 {
2541 	int mask;
2542 	int ret;
2543 
2544 	addr += (nr >> 3);
2545 	mask = 1 << (7 - (nr & 0x07));
2546 	ret = mask & *addr;
2547 	*addr |= mask;
2548 	return ret;
2549 }
2550 
2551 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2552 {
2553 	int mask;
2554 	int ret;
2555 
2556 	addr += (nr >> 3);
2557 	mask = 1 << (7 - (nr & 0x07));
2558 	ret = mask & *addr;
2559 	*addr &= ~mask;
2560 	return ret;
2561 }
2562 
2563 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2564 {
2565 	int mask;
2566 
2567 	addr += (nr >> 3);
2568 	mask = 1 << (7 - (nr & 0x07));
2569 	*addr ^= mask;
2570 }
2571 
2572 /*
2573  * On-disk inode flags (f2fs_inode::i_flags)
2574  */
2575 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2576 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2577 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2578 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2579 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2580 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2581 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2582 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2583 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2584 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2585 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2586 
2587 /* Flags that should be inherited by new inodes from their parent. */
2588 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2589 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2590 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2591 
2592 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2593 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2594 				F2FS_CASEFOLD_FL))
2595 
2596 /* Flags that are appropriate for non-directories/regular files. */
2597 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2598 
2599 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2600 {
2601 	if (S_ISDIR(mode))
2602 		return flags;
2603 	else if (S_ISREG(mode))
2604 		return flags & F2FS_REG_FLMASK;
2605 	else
2606 		return flags & F2FS_OTHER_FLMASK;
2607 }
2608 
2609 static inline void __mark_inode_dirty_flag(struct inode *inode,
2610 						int flag, bool set)
2611 {
2612 	switch (flag) {
2613 	case FI_INLINE_XATTR:
2614 	case FI_INLINE_DATA:
2615 	case FI_INLINE_DENTRY:
2616 	case FI_NEW_INODE:
2617 		if (set)
2618 			return;
2619 		fallthrough;
2620 	case FI_DATA_EXIST:
2621 	case FI_INLINE_DOTS:
2622 	case FI_PIN_FILE:
2623 		f2fs_mark_inode_dirty_sync(inode, true);
2624 	}
2625 }
2626 
2627 static inline void set_inode_flag(struct inode *inode, int flag)
2628 {
2629 	set_bit(flag, F2FS_I(inode)->flags);
2630 	__mark_inode_dirty_flag(inode, flag, true);
2631 }
2632 
2633 static inline int is_inode_flag_set(struct inode *inode, int flag)
2634 {
2635 	return test_bit(flag, F2FS_I(inode)->flags);
2636 }
2637 
2638 static inline void clear_inode_flag(struct inode *inode, int flag)
2639 {
2640 	clear_bit(flag, F2FS_I(inode)->flags);
2641 	__mark_inode_dirty_flag(inode, flag, false);
2642 }
2643 
2644 static inline bool f2fs_verity_in_progress(struct inode *inode)
2645 {
2646 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2647 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2648 }
2649 
2650 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2651 {
2652 	F2FS_I(inode)->i_acl_mode = mode;
2653 	set_inode_flag(inode, FI_ACL_MODE);
2654 	f2fs_mark_inode_dirty_sync(inode, false);
2655 }
2656 
2657 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2658 {
2659 	if (inc)
2660 		inc_nlink(inode);
2661 	else
2662 		drop_nlink(inode);
2663 	f2fs_mark_inode_dirty_sync(inode, true);
2664 }
2665 
2666 static inline void f2fs_i_blocks_write(struct inode *inode,
2667 					block_t diff, bool add, bool claim)
2668 {
2669 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2670 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2671 
2672 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2673 	if (add) {
2674 		if (claim)
2675 			dquot_claim_block(inode, diff);
2676 		else
2677 			dquot_alloc_block_nofail(inode, diff);
2678 	} else {
2679 		dquot_free_block(inode, diff);
2680 	}
2681 
2682 	f2fs_mark_inode_dirty_sync(inode, true);
2683 	if (clean || recover)
2684 		set_inode_flag(inode, FI_AUTO_RECOVER);
2685 }
2686 
2687 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2688 {
2689 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2690 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2691 
2692 	if (i_size_read(inode) == i_size)
2693 		return;
2694 
2695 	i_size_write(inode, i_size);
2696 	f2fs_mark_inode_dirty_sync(inode, true);
2697 	if (clean || recover)
2698 		set_inode_flag(inode, FI_AUTO_RECOVER);
2699 }
2700 
2701 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2702 {
2703 	F2FS_I(inode)->i_current_depth = depth;
2704 	f2fs_mark_inode_dirty_sync(inode, true);
2705 }
2706 
2707 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2708 					unsigned int count)
2709 {
2710 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2711 	f2fs_mark_inode_dirty_sync(inode, true);
2712 }
2713 
2714 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2715 {
2716 	F2FS_I(inode)->i_xattr_nid = xnid;
2717 	f2fs_mark_inode_dirty_sync(inode, true);
2718 }
2719 
2720 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2721 {
2722 	F2FS_I(inode)->i_pino = pino;
2723 	f2fs_mark_inode_dirty_sync(inode, true);
2724 }
2725 
2726 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2727 {
2728 	struct f2fs_inode_info *fi = F2FS_I(inode);
2729 
2730 	if (ri->i_inline & F2FS_INLINE_XATTR)
2731 		set_bit(FI_INLINE_XATTR, fi->flags);
2732 	if (ri->i_inline & F2FS_INLINE_DATA)
2733 		set_bit(FI_INLINE_DATA, fi->flags);
2734 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2735 		set_bit(FI_INLINE_DENTRY, fi->flags);
2736 	if (ri->i_inline & F2FS_DATA_EXIST)
2737 		set_bit(FI_DATA_EXIST, fi->flags);
2738 	if (ri->i_inline & F2FS_INLINE_DOTS)
2739 		set_bit(FI_INLINE_DOTS, fi->flags);
2740 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2741 		set_bit(FI_EXTRA_ATTR, fi->flags);
2742 	if (ri->i_inline & F2FS_PIN_FILE)
2743 		set_bit(FI_PIN_FILE, fi->flags);
2744 }
2745 
2746 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2747 {
2748 	ri->i_inline = 0;
2749 
2750 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2751 		ri->i_inline |= F2FS_INLINE_XATTR;
2752 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2753 		ri->i_inline |= F2FS_INLINE_DATA;
2754 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2755 		ri->i_inline |= F2FS_INLINE_DENTRY;
2756 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2757 		ri->i_inline |= F2FS_DATA_EXIST;
2758 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2759 		ri->i_inline |= F2FS_INLINE_DOTS;
2760 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2761 		ri->i_inline |= F2FS_EXTRA_ATTR;
2762 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2763 		ri->i_inline |= F2FS_PIN_FILE;
2764 }
2765 
2766 static inline int f2fs_has_extra_attr(struct inode *inode)
2767 {
2768 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2769 }
2770 
2771 static inline int f2fs_has_inline_xattr(struct inode *inode)
2772 {
2773 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2774 }
2775 
2776 static inline int f2fs_compressed_file(struct inode *inode)
2777 {
2778 	return S_ISREG(inode->i_mode) &&
2779 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2780 }
2781 
2782 static inline bool f2fs_need_compress_data(struct inode *inode)
2783 {
2784 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2785 
2786 	if (!f2fs_compressed_file(inode))
2787 		return false;
2788 
2789 	if (compress_mode == COMPR_MODE_FS)
2790 		return true;
2791 	else if (compress_mode == COMPR_MODE_USER &&
2792 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2793 		return true;
2794 
2795 	return false;
2796 }
2797 
2798 static inline unsigned int addrs_per_inode(struct inode *inode)
2799 {
2800 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2801 				get_inline_xattr_addrs(inode);
2802 
2803 	if (!f2fs_compressed_file(inode))
2804 		return addrs;
2805 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2806 }
2807 
2808 static inline unsigned int addrs_per_block(struct inode *inode)
2809 {
2810 	if (!f2fs_compressed_file(inode))
2811 		return DEF_ADDRS_PER_BLOCK;
2812 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2813 }
2814 
2815 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2816 {
2817 	struct f2fs_inode *ri = F2FS_INODE(page);
2818 
2819 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2820 					get_inline_xattr_addrs(inode)]);
2821 }
2822 
2823 static inline int inline_xattr_size(struct inode *inode)
2824 {
2825 	if (f2fs_has_inline_xattr(inode))
2826 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2827 	return 0;
2828 }
2829 
2830 static inline int f2fs_has_inline_data(struct inode *inode)
2831 {
2832 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2833 }
2834 
2835 static inline int f2fs_exist_data(struct inode *inode)
2836 {
2837 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2838 }
2839 
2840 static inline int f2fs_has_inline_dots(struct inode *inode)
2841 {
2842 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2843 }
2844 
2845 static inline int f2fs_is_mmap_file(struct inode *inode)
2846 {
2847 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2848 }
2849 
2850 static inline bool f2fs_is_pinned_file(struct inode *inode)
2851 {
2852 	return is_inode_flag_set(inode, FI_PIN_FILE);
2853 }
2854 
2855 static inline bool f2fs_is_atomic_file(struct inode *inode)
2856 {
2857 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2858 }
2859 
2860 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2861 {
2862 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2863 }
2864 
2865 static inline bool f2fs_is_volatile_file(struct inode *inode)
2866 {
2867 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2868 }
2869 
2870 static inline bool f2fs_is_first_block_written(struct inode *inode)
2871 {
2872 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2873 }
2874 
2875 static inline bool f2fs_is_drop_cache(struct inode *inode)
2876 {
2877 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2878 }
2879 
2880 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2881 {
2882 	struct f2fs_inode *ri = F2FS_INODE(page);
2883 	int extra_size = get_extra_isize(inode);
2884 
2885 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2886 }
2887 
2888 static inline int f2fs_has_inline_dentry(struct inode *inode)
2889 {
2890 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2891 }
2892 
2893 static inline int is_file(struct inode *inode, int type)
2894 {
2895 	return F2FS_I(inode)->i_advise & type;
2896 }
2897 
2898 static inline void set_file(struct inode *inode, int type)
2899 {
2900 	F2FS_I(inode)->i_advise |= type;
2901 	f2fs_mark_inode_dirty_sync(inode, true);
2902 }
2903 
2904 static inline void clear_file(struct inode *inode, int type)
2905 {
2906 	F2FS_I(inode)->i_advise &= ~type;
2907 	f2fs_mark_inode_dirty_sync(inode, true);
2908 }
2909 
2910 static inline bool f2fs_is_time_consistent(struct inode *inode)
2911 {
2912 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2913 		return false;
2914 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2915 		return false;
2916 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2917 		return false;
2918 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2919 						&F2FS_I(inode)->i_crtime))
2920 		return false;
2921 	return true;
2922 }
2923 
2924 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2925 {
2926 	bool ret;
2927 
2928 	if (dsync) {
2929 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2930 
2931 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2932 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2933 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2934 		return ret;
2935 	}
2936 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2937 			file_keep_isize(inode) ||
2938 			i_size_read(inode) & ~PAGE_MASK)
2939 		return false;
2940 
2941 	if (!f2fs_is_time_consistent(inode))
2942 		return false;
2943 
2944 	spin_lock(&F2FS_I(inode)->i_size_lock);
2945 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2946 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2947 
2948 	return ret;
2949 }
2950 
2951 static inline bool f2fs_readonly(struct super_block *sb)
2952 {
2953 	return sb_rdonly(sb);
2954 }
2955 
2956 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2957 {
2958 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2959 }
2960 
2961 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2962 {
2963 	if (len == 1 && name[0] == '.')
2964 		return true;
2965 
2966 	if (len == 2 && name[0] == '.' && name[1] == '.')
2967 		return true;
2968 
2969 	return false;
2970 }
2971 
2972 static inline bool f2fs_may_extent_tree(struct inode *inode)
2973 {
2974 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2975 
2976 	if (!test_opt(sbi, EXTENT_CACHE) ||
2977 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2978 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2979 		return false;
2980 
2981 	/*
2982 	 * for recovered files during mount do not create extents
2983 	 * if shrinker is not registered.
2984 	 */
2985 	if (list_empty(&sbi->s_list))
2986 		return false;
2987 
2988 	return S_ISREG(inode->i_mode);
2989 }
2990 
2991 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2992 					size_t size, gfp_t flags)
2993 {
2994 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2995 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2996 		return NULL;
2997 	}
2998 
2999 	return kmalloc(size, flags);
3000 }
3001 
3002 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3003 					size_t size, gfp_t flags)
3004 {
3005 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3006 }
3007 
3008 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3009 					size_t size, gfp_t flags)
3010 {
3011 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3012 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3013 		return NULL;
3014 	}
3015 
3016 	return kvmalloc(size, flags);
3017 }
3018 
3019 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3020 					size_t size, gfp_t flags)
3021 {
3022 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3023 }
3024 
3025 static inline int get_extra_isize(struct inode *inode)
3026 {
3027 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3028 }
3029 
3030 static inline int get_inline_xattr_addrs(struct inode *inode)
3031 {
3032 	return F2FS_I(inode)->i_inline_xattr_size;
3033 }
3034 
3035 #define f2fs_get_inode_mode(i) \
3036 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3037 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3038 
3039 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3040 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3041 	offsetof(struct f2fs_inode, i_extra_isize))	\
3042 
3043 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3044 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3045 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3046 		sizeof((f2fs_inode)->field))			\
3047 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3048 
3049 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3050 #define MIN_IOSTAT_PERIOD_MS		100
3051 /* maximum period of iostat tracing is 1 day */
3052 #define MAX_IOSTAT_PERIOD_MS		8640000
3053 
3054 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3055 {
3056 	int i;
3057 
3058 	spin_lock(&sbi->iostat_lock);
3059 	for (i = 0; i < NR_IO_TYPE; i++) {
3060 		sbi->rw_iostat[i] = 0;
3061 		sbi->prev_rw_iostat[i] = 0;
3062 	}
3063 	spin_unlock(&sbi->iostat_lock);
3064 }
3065 
3066 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3067 
3068 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3069 			enum iostat_type type, unsigned long long io_bytes)
3070 {
3071 	if (!sbi->iostat_enable)
3072 		return;
3073 	spin_lock(&sbi->iostat_lock);
3074 	sbi->rw_iostat[type] += io_bytes;
3075 
3076 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3077 		sbi->rw_iostat[APP_BUFFERED_IO] =
3078 			sbi->rw_iostat[APP_WRITE_IO] -
3079 			sbi->rw_iostat[APP_DIRECT_IO];
3080 
3081 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3082 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3083 			sbi->rw_iostat[APP_READ_IO] -
3084 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3085 	spin_unlock(&sbi->iostat_lock);
3086 
3087 	f2fs_record_iostat(sbi);
3088 }
3089 
3090 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3091 
3092 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3093 
3094 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3095 					block_t blkaddr, int type);
3096 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3097 					block_t blkaddr, int type)
3098 {
3099 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3100 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3101 			 blkaddr, type);
3102 		f2fs_bug_on(sbi, 1);
3103 	}
3104 }
3105 
3106 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3107 {
3108 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3109 			blkaddr == COMPRESS_ADDR)
3110 		return false;
3111 	return true;
3112 }
3113 
3114 static inline void f2fs_set_page_private(struct page *page,
3115 						unsigned long data)
3116 {
3117 	if (PagePrivate(page))
3118 		return;
3119 
3120 	attach_page_private(page, (void *)data);
3121 }
3122 
3123 static inline void f2fs_clear_page_private(struct page *page)
3124 {
3125 	detach_page_private(page);
3126 }
3127 
3128 /*
3129  * file.c
3130  */
3131 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3132 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3133 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3134 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3135 int f2fs_truncate(struct inode *inode);
3136 int f2fs_getattr(const struct path *path, struct kstat *stat,
3137 			u32 request_mask, unsigned int flags);
3138 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3139 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3140 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3141 int f2fs_precache_extents(struct inode *inode);
3142 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3143 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3144 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3145 int f2fs_pin_file_control(struct inode *inode, bool inc);
3146 
3147 /*
3148  * inode.c
3149  */
3150 void f2fs_set_inode_flags(struct inode *inode);
3151 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3152 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3153 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3154 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3155 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3156 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3157 void f2fs_update_inode_page(struct inode *inode);
3158 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3159 void f2fs_evict_inode(struct inode *inode);
3160 void f2fs_handle_failed_inode(struct inode *inode);
3161 
3162 /*
3163  * namei.c
3164  */
3165 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3166 							bool hot, bool set);
3167 struct dentry *f2fs_get_parent(struct dentry *child);
3168 
3169 /*
3170  * dir.c
3171  */
3172 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3173 int f2fs_init_casefolded_name(const struct inode *dir,
3174 			      struct f2fs_filename *fname);
3175 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3176 			int lookup, struct f2fs_filename *fname);
3177 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3178 			struct f2fs_filename *fname);
3179 void f2fs_free_filename(struct f2fs_filename *fname);
3180 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3181 			const struct f2fs_filename *fname, int *max_slots);
3182 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3183 			unsigned int start_pos, struct fscrypt_str *fstr);
3184 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3185 			struct f2fs_dentry_ptr *d);
3186 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3187 			const struct f2fs_filename *fname, struct page *dpage);
3188 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3189 			unsigned int current_depth);
3190 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3191 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3192 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3193 					 const struct f2fs_filename *fname,
3194 					 struct page **res_page);
3195 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3196 			const struct qstr *child, struct page **res_page);
3197 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3198 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3199 			struct page **page);
3200 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3201 			struct page *page, struct inode *inode);
3202 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3203 			  const struct f2fs_filename *fname);
3204 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3205 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3206 			unsigned int bit_pos);
3207 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3208 			struct inode *inode, nid_t ino, umode_t mode);
3209 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3210 			struct inode *inode, nid_t ino, umode_t mode);
3211 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3212 			struct inode *inode, nid_t ino, umode_t mode);
3213 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3214 			struct inode *dir, struct inode *inode);
3215 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3216 bool f2fs_empty_dir(struct inode *dir);
3217 
3218 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3219 {
3220 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3221 				inode, inode->i_ino, inode->i_mode);
3222 }
3223 
3224 /*
3225  * super.c
3226  */
3227 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3228 void f2fs_inode_synced(struct inode *inode);
3229 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3230 int f2fs_quota_sync(struct super_block *sb, int type);
3231 void f2fs_quota_off_umount(struct super_block *sb);
3232 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3233 int f2fs_sync_fs(struct super_block *sb, int sync);
3234 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3235 
3236 /*
3237  * hash.c
3238  */
3239 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3240 
3241 /*
3242  * node.c
3243  */
3244 struct dnode_of_data;
3245 struct node_info;
3246 
3247 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3248 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3249 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3250 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3251 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3252 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3253 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3254 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3255 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3256 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3257 						struct node_info *ni);
3258 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3259 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3260 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3261 int f2fs_truncate_xattr_node(struct inode *inode);
3262 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3263 					unsigned int seq_id);
3264 int f2fs_remove_inode_page(struct inode *inode);
3265 struct page *f2fs_new_inode_page(struct inode *inode);
3266 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3267 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3268 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3269 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3270 int f2fs_move_node_page(struct page *node_page, int gc_type);
3271 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3272 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3273 			struct writeback_control *wbc, bool atomic,
3274 			unsigned int *seq_id);
3275 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3276 			struct writeback_control *wbc,
3277 			bool do_balance, enum iostat_type io_type);
3278 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3279 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3280 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3281 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3282 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3283 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3284 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3285 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3286 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3287 			unsigned int segno, struct f2fs_summary_block *sum);
3288 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3289 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3290 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3291 int __init f2fs_create_node_manager_caches(void);
3292 void f2fs_destroy_node_manager_caches(void);
3293 
3294 /*
3295  * segment.c
3296  */
3297 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3298 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3299 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3300 void f2fs_drop_inmem_pages(struct inode *inode);
3301 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3302 int f2fs_commit_inmem_pages(struct inode *inode);
3303 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3304 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3305 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3306 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3307 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3308 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3309 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3310 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3311 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3312 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3313 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3314 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3315 					struct cp_control *cpc);
3316 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3317 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3318 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3319 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3320 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3321 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3322 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3323 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3324 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3325 			unsigned int *newseg, bool new_sec, int dir);
3326 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3327 					unsigned int start, unsigned int end);
3328 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3329 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3330 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3331 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3332 					struct cp_control *cpc);
3333 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3334 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3335 					block_t blk_addr);
3336 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3337 						enum iostat_type io_type);
3338 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3339 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3340 			struct f2fs_io_info *fio);
3341 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3342 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3343 			block_t old_blkaddr, block_t new_blkaddr,
3344 			bool recover_curseg, bool recover_newaddr,
3345 			bool from_gc);
3346 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3347 			block_t old_addr, block_t new_addr,
3348 			unsigned char version, bool recover_curseg,
3349 			bool recover_newaddr);
3350 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3351 			block_t old_blkaddr, block_t *new_blkaddr,
3352 			struct f2fs_summary *sum, int type,
3353 			struct f2fs_io_info *fio);
3354 void f2fs_wait_on_page_writeback(struct page *page,
3355 			enum page_type type, bool ordered, bool locked);
3356 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3357 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3358 								block_t len);
3359 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3360 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3361 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3362 			unsigned int val, int alloc);
3363 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3364 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3365 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3366 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3367 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3368 int __init f2fs_create_segment_manager_caches(void);
3369 void f2fs_destroy_segment_manager_caches(void);
3370 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3371 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3372 			enum page_type type, enum temp_type temp);
3373 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3374 			unsigned int segno);
3375 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3376 			unsigned int segno);
3377 
3378 /*
3379  * checkpoint.c
3380  */
3381 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3382 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3383 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3384 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3385 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3386 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3387 					block_t blkaddr, int type);
3388 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3389 			int type, bool sync);
3390 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3391 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3392 			long nr_to_write, enum iostat_type io_type);
3393 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3394 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3395 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3396 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3397 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3398 					unsigned int devidx, int type);
3399 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3400 					unsigned int devidx, int type);
3401 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3402 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3403 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3404 void f2fs_add_orphan_inode(struct inode *inode);
3405 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3406 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3407 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3408 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3409 void f2fs_remove_dirty_inode(struct inode *inode);
3410 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3411 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3412 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3413 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3414 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3415 int __init f2fs_create_checkpoint_caches(void);
3416 void f2fs_destroy_checkpoint_caches(void);
3417 
3418 /*
3419  * data.c
3420  */
3421 int __init f2fs_init_bioset(void);
3422 void f2fs_destroy_bioset(void);
3423 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3424 int f2fs_init_bio_entry_cache(void);
3425 void f2fs_destroy_bio_entry_cache(void);
3426 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3427 				struct bio *bio, enum page_type type);
3428 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3429 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3430 				struct inode *inode, struct page *page,
3431 				nid_t ino, enum page_type type);
3432 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3433 					struct bio **bio, struct page *page);
3434 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3435 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3436 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3437 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3438 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3439 			block_t blk_addr, struct bio *bio);
3440 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3441 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3442 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3443 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3444 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3445 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3446 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3447 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3448 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3449 			int op_flags, bool for_write);
3450 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3451 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3452 			bool for_write);
3453 struct page *f2fs_get_new_data_page(struct inode *inode,
3454 			struct page *ipage, pgoff_t index, bool new_i_size);
3455 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3456 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3457 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3458 			int create, int flag);
3459 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3460 			u64 start, u64 len);
3461 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3462 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3463 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3464 int f2fs_write_single_data_page(struct page *page, int *submitted,
3465 				struct bio **bio, sector_t *last_block,
3466 				struct writeback_control *wbc,
3467 				enum iostat_type io_type,
3468 				int compr_blocks);
3469 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3470 			unsigned int length);
3471 int f2fs_release_page(struct page *page, gfp_t wait);
3472 #ifdef CONFIG_MIGRATION
3473 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3474 			struct page *page, enum migrate_mode mode);
3475 #endif
3476 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3477 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3478 int f2fs_init_post_read_processing(void);
3479 void f2fs_destroy_post_read_processing(void);
3480 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3481 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3482 
3483 /*
3484  * gc.c
3485  */
3486 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3487 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3488 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3489 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3490 			unsigned int segno);
3491 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3492 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3493 int __init f2fs_create_garbage_collection_cache(void);
3494 void f2fs_destroy_garbage_collection_cache(void);
3495 
3496 /*
3497  * recovery.c
3498  */
3499 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3500 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3501 
3502 /*
3503  * debug.c
3504  */
3505 #ifdef CONFIG_F2FS_STAT_FS
3506 struct f2fs_stat_info {
3507 	struct list_head stat_list;
3508 	struct f2fs_sb_info *sbi;
3509 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3510 	int main_area_segs, main_area_sections, main_area_zones;
3511 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3512 	unsigned long long hit_total, total_ext;
3513 	int ext_tree, zombie_tree, ext_node;
3514 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3515 	int ndirty_data, ndirty_qdata;
3516 	int inmem_pages;
3517 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3518 	int nats, dirty_nats, sits, dirty_sits;
3519 	int free_nids, avail_nids, alloc_nids;
3520 	int total_count, utilization;
3521 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3522 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3523 	int nr_dio_read, nr_dio_write;
3524 	unsigned int io_skip_bggc, other_skip_bggc;
3525 	int nr_flushing, nr_flushed, flush_list_empty;
3526 	int nr_discarding, nr_discarded;
3527 	int nr_discard_cmd;
3528 	unsigned int undiscard_blks;
3529 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3530 	int compr_inode;
3531 	unsigned long long compr_blocks;
3532 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3533 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3534 	unsigned int bimodal, avg_vblocks;
3535 	int util_free, util_valid, util_invalid;
3536 	int rsvd_segs, overp_segs;
3537 	int dirty_count, node_pages, meta_pages;
3538 	int prefree_count, call_count, cp_count, bg_cp_count;
3539 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3540 	int bg_node_segs, bg_data_segs;
3541 	int tot_blks, data_blks, node_blks;
3542 	int bg_data_blks, bg_node_blks;
3543 	unsigned long long skipped_atomic_files[2];
3544 	int curseg[NR_CURSEG_TYPE];
3545 	int cursec[NR_CURSEG_TYPE];
3546 	int curzone[NR_CURSEG_TYPE];
3547 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3548 	unsigned int full_seg[NR_CURSEG_TYPE];
3549 	unsigned int valid_blks[NR_CURSEG_TYPE];
3550 
3551 	unsigned int meta_count[META_MAX];
3552 	unsigned int segment_count[2];
3553 	unsigned int block_count[2];
3554 	unsigned int inplace_count;
3555 	unsigned long long base_mem, cache_mem, page_mem;
3556 };
3557 
3558 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3559 {
3560 	return (struct f2fs_stat_info *)sbi->stat_info;
3561 }
3562 
3563 #define stat_inc_cp_count(si)		((si)->cp_count++)
3564 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3565 #define stat_inc_call_count(si)		((si)->call_count++)
3566 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3567 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3568 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3569 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3570 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3571 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3572 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3573 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3574 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3575 #define stat_inc_inline_xattr(inode)					\
3576 	do {								\
3577 		if (f2fs_has_inline_xattr(inode))			\
3578 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3579 	} while (0)
3580 #define stat_dec_inline_xattr(inode)					\
3581 	do {								\
3582 		if (f2fs_has_inline_xattr(inode))			\
3583 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3584 	} while (0)
3585 #define stat_inc_inline_inode(inode)					\
3586 	do {								\
3587 		if (f2fs_has_inline_data(inode))			\
3588 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3589 	} while (0)
3590 #define stat_dec_inline_inode(inode)					\
3591 	do {								\
3592 		if (f2fs_has_inline_data(inode))			\
3593 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3594 	} while (0)
3595 #define stat_inc_inline_dir(inode)					\
3596 	do {								\
3597 		if (f2fs_has_inline_dentry(inode))			\
3598 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3599 	} while (0)
3600 #define stat_dec_inline_dir(inode)					\
3601 	do {								\
3602 		if (f2fs_has_inline_dentry(inode))			\
3603 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3604 	} while (0)
3605 #define stat_inc_compr_inode(inode)					\
3606 	do {								\
3607 		if (f2fs_compressed_file(inode))			\
3608 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3609 	} while (0)
3610 #define stat_dec_compr_inode(inode)					\
3611 	do {								\
3612 		if (f2fs_compressed_file(inode))			\
3613 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3614 	} while (0)
3615 #define stat_add_compr_blocks(inode, blocks)				\
3616 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3617 #define stat_sub_compr_blocks(inode, blocks)				\
3618 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3619 #define stat_inc_meta_count(sbi, blkaddr)				\
3620 	do {								\
3621 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3622 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3623 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3624 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3625 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3626 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3627 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3628 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3629 	} while (0)
3630 #define stat_inc_seg_type(sbi, curseg)					\
3631 		((sbi)->segment_count[(curseg)->alloc_type]++)
3632 #define stat_inc_block_count(sbi, curseg)				\
3633 		((sbi)->block_count[(curseg)->alloc_type]++)
3634 #define stat_inc_inplace_blocks(sbi)					\
3635 		(atomic_inc(&(sbi)->inplace_count))
3636 #define stat_update_max_atomic_write(inode)				\
3637 	do {								\
3638 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3639 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3640 		if (cur > max)						\
3641 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3642 	} while (0)
3643 #define stat_inc_volatile_write(inode)					\
3644 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3645 #define stat_dec_volatile_write(inode)					\
3646 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3647 #define stat_update_max_volatile_write(inode)				\
3648 	do {								\
3649 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3650 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3651 		if (cur > max)						\
3652 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3653 	} while (0)
3654 #define stat_inc_seg_count(sbi, type, gc_type)				\
3655 	do {								\
3656 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3657 		si->tot_segs++;						\
3658 		if ((type) == SUM_TYPE_DATA) {				\
3659 			si->data_segs++;				\
3660 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3661 		} else {						\
3662 			si->node_segs++;				\
3663 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3664 		}							\
3665 	} while (0)
3666 
3667 #define stat_inc_tot_blk_count(si, blks)				\
3668 	((si)->tot_blks += (blks))
3669 
3670 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3671 	do {								\
3672 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3673 		stat_inc_tot_blk_count(si, blks);			\
3674 		si->data_blks += (blks);				\
3675 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3676 	} while (0)
3677 
3678 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3679 	do {								\
3680 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3681 		stat_inc_tot_blk_count(si, blks);			\
3682 		si->node_blks += (blks);				\
3683 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3684 	} while (0)
3685 
3686 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3687 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3688 void __init f2fs_create_root_stats(void);
3689 void f2fs_destroy_root_stats(void);
3690 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3691 #else
3692 #define stat_inc_cp_count(si)				do { } while (0)
3693 #define stat_inc_bg_cp_count(si)			do { } while (0)
3694 #define stat_inc_call_count(si)				do { } while (0)
3695 #define stat_inc_bggc_count(si)				do { } while (0)
3696 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3697 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3698 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3699 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3700 #define stat_inc_total_hit(sbi)				do { } while (0)
3701 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3702 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3703 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3704 #define stat_inc_inline_xattr(inode)			do { } while (0)
3705 #define stat_dec_inline_xattr(inode)			do { } while (0)
3706 #define stat_inc_inline_inode(inode)			do { } while (0)
3707 #define stat_dec_inline_inode(inode)			do { } while (0)
3708 #define stat_inc_inline_dir(inode)			do { } while (0)
3709 #define stat_dec_inline_dir(inode)			do { } while (0)
3710 #define stat_inc_compr_inode(inode)			do { } while (0)
3711 #define stat_dec_compr_inode(inode)			do { } while (0)
3712 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3713 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3714 #define stat_inc_atomic_write(inode)			do { } while (0)
3715 #define stat_dec_atomic_write(inode)			do { } while (0)
3716 #define stat_update_max_atomic_write(inode)		do { } while (0)
3717 #define stat_inc_volatile_write(inode)			do { } while (0)
3718 #define stat_dec_volatile_write(inode)			do { } while (0)
3719 #define stat_update_max_volatile_write(inode)		do { } while (0)
3720 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3721 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3722 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3723 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3724 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3725 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3726 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3727 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3728 
3729 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3730 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3731 static inline void __init f2fs_create_root_stats(void) { }
3732 static inline void f2fs_destroy_root_stats(void) { }
3733 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3734 #endif
3735 
3736 extern const struct file_operations f2fs_dir_operations;
3737 extern const struct file_operations f2fs_file_operations;
3738 extern const struct inode_operations f2fs_file_inode_operations;
3739 extern const struct address_space_operations f2fs_dblock_aops;
3740 extern const struct address_space_operations f2fs_node_aops;
3741 extern const struct address_space_operations f2fs_meta_aops;
3742 extern const struct inode_operations f2fs_dir_inode_operations;
3743 extern const struct inode_operations f2fs_symlink_inode_operations;
3744 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3745 extern const struct inode_operations f2fs_special_inode_operations;
3746 extern struct kmem_cache *f2fs_inode_entry_slab;
3747 
3748 /*
3749  * inline.c
3750  */
3751 bool f2fs_may_inline_data(struct inode *inode);
3752 bool f2fs_may_inline_dentry(struct inode *inode);
3753 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3754 void f2fs_truncate_inline_inode(struct inode *inode,
3755 						struct page *ipage, u64 from);
3756 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3757 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3758 int f2fs_convert_inline_inode(struct inode *inode);
3759 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3760 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3761 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3762 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3763 					const struct f2fs_filename *fname,
3764 					struct page **res_page);
3765 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3766 			struct page *ipage);
3767 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3768 			struct inode *inode, nid_t ino, umode_t mode);
3769 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3770 				struct page *page, struct inode *dir,
3771 				struct inode *inode);
3772 bool f2fs_empty_inline_dir(struct inode *dir);
3773 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3774 			struct fscrypt_str *fstr);
3775 int f2fs_inline_data_fiemap(struct inode *inode,
3776 			struct fiemap_extent_info *fieinfo,
3777 			__u64 start, __u64 len);
3778 
3779 /*
3780  * shrinker.c
3781  */
3782 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3783 			struct shrink_control *sc);
3784 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3785 			struct shrink_control *sc);
3786 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3787 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3788 
3789 /*
3790  * extent_cache.c
3791  */
3792 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3793 				struct rb_entry *cached_re, unsigned int ofs);
3794 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3795 				struct rb_root_cached *root,
3796 				struct rb_node **parent,
3797 				unsigned long long key, bool *left_most);
3798 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3799 				struct rb_root_cached *root,
3800 				struct rb_node **parent,
3801 				unsigned int ofs, bool *leftmost);
3802 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3803 		struct rb_entry *cached_re, unsigned int ofs,
3804 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3805 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3806 		bool force, bool *leftmost);
3807 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3808 				struct rb_root_cached *root, bool check_key);
3809 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3810 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3811 void f2fs_drop_extent_tree(struct inode *inode);
3812 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3813 void f2fs_destroy_extent_tree(struct inode *inode);
3814 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3815 			struct extent_info *ei);
3816 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3817 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3818 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3819 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3820 int __init f2fs_create_extent_cache(void);
3821 void f2fs_destroy_extent_cache(void);
3822 
3823 /*
3824  * sysfs.c
3825  */
3826 int __init f2fs_init_sysfs(void);
3827 void f2fs_exit_sysfs(void);
3828 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3829 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3830 
3831 /* verity.c */
3832 extern const struct fsverity_operations f2fs_verityops;
3833 
3834 /*
3835  * crypto support
3836  */
3837 static inline bool f2fs_encrypted_file(struct inode *inode)
3838 {
3839 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3840 }
3841 
3842 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3843 {
3844 #ifdef CONFIG_FS_ENCRYPTION
3845 	file_set_encrypt(inode);
3846 	f2fs_set_inode_flags(inode);
3847 #endif
3848 }
3849 
3850 /*
3851  * Returns true if the reads of the inode's data need to undergo some
3852  * postprocessing step, like decryption or authenticity verification.
3853  */
3854 static inline bool f2fs_post_read_required(struct inode *inode)
3855 {
3856 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3857 		f2fs_compressed_file(inode);
3858 }
3859 
3860 /*
3861  * compress.c
3862  */
3863 #ifdef CONFIG_F2FS_FS_COMPRESSION
3864 bool f2fs_is_compressed_page(struct page *page);
3865 struct page *f2fs_compress_control_page(struct page *page);
3866 int f2fs_prepare_compress_overwrite(struct inode *inode,
3867 			struct page **pagep, pgoff_t index, void **fsdata);
3868 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3869 					pgoff_t index, unsigned copied);
3870 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3871 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3872 bool f2fs_is_compress_backend_ready(struct inode *inode);
3873 int f2fs_init_compress_mempool(void);
3874 void f2fs_destroy_compress_mempool(void);
3875 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3876 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3877 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3878 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3879 int f2fs_write_multi_pages(struct compress_ctx *cc,
3880 						int *submitted,
3881 						struct writeback_control *wbc,
3882 						enum iostat_type io_type);
3883 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3884 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3885 				unsigned nr_pages, sector_t *last_block_in_bio,
3886 				bool is_readahead, bool for_write);
3887 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3888 void f2fs_free_dic(struct decompress_io_ctx *dic);
3889 void f2fs_decompress_end_io(struct page **rpages,
3890 			unsigned int cluster_size, bool err, bool verity);
3891 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3892 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3893 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3894 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3895 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3896 int __init f2fs_init_compress_cache(void);
3897 void f2fs_destroy_compress_cache(void);
3898 #else
3899 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3900 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3901 {
3902 	if (!f2fs_compressed_file(inode))
3903 		return true;
3904 	/* not support compression */
3905 	return false;
3906 }
3907 static inline struct page *f2fs_compress_control_page(struct page *page)
3908 {
3909 	WARN_ON_ONCE(1);
3910 	return ERR_PTR(-EINVAL);
3911 }
3912 static inline int f2fs_init_compress_mempool(void) { return 0; }
3913 static inline void f2fs_destroy_compress_mempool(void) { }
3914 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3915 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3916 static inline int __init f2fs_init_compress_cache(void) { return 0; }
3917 static inline void f2fs_destroy_compress_cache(void) { }
3918 #endif
3919 
3920 static inline void set_compress_context(struct inode *inode)
3921 {
3922 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3923 
3924 	F2FS_I(inode)->i_compress_algorithm =
3925 			F2FS_OPTION(sbi).compress_algorithm;
3926 	F2FS_I(inode)->i_log_cluster_size =
3927 			F2FS_OPTION(sbi).compress_log_size;
3928 	F2FS_I(inode)->i_compress_flag =
3929 			F2FS_OPTION(sbi).compress_chksum ?
3930 				1 << COMPRESS_CHKSUM : 0;
3931 	F2FS_I(inode)->i_cluster_size =
3932 			1 << F2FS_I(inode)->i_log_cluster_size;
3933 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3934 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3935 	stat_inc_compr_inode(inode);
3936 	f2fs_mark_inode_dirty_sync(inode, true);
3937 }
3938 
3939 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3940 {
3941 	struct f2fs_inode_info *fi = F2FS_I(inode);
3942 
3943 	if (!f2fs_compressed_file(inode))
3944 		return true;
3945 	if (S_ISREG(inode->i_mode) &&
3946 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3947 		return false;
3948 
3949 	fi->i_flags &= ~F2FS_COMPR_FL;
3950 	stat_dec_compr_inode(inode);
3951 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3952 	f2fs_mark_inode_dirty_sync(inode, true);
3953 	return true;
3954 }
3955 
3956 #define F2FS_FEATURE_FUNCS(name, flagname) \
3957 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3958 { \
3959 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3960 }
3961 
3962 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3963 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3964 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3965 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3966 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3967 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3968 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3969 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3970 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3971 F2FS_FEATURE_FUNCS(verity, VERITY);
3972 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3973 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3974 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3975 
3976 #ifdef CONFIG_BLK_DEV_ZONED
3977 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3978 				    block_t blkaddr)
3979 {
3980 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3981 
3982 	return test_bit(zno, FDEV(devi).blkz_seq);
3983 }
3984 #endif
3985 
3986 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3987 {
3988 	return f2fs_sb_has_blkzoned(sbi);
3989 }
3990 
3991 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3992 {
3993 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3994 	       bdev_is_zoned(bdev);
3995 }
3996 
3997 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3998 {
3999 	int i;
4000 
4001 	if (!f2fs_is_multi_device(sbi))
4002 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4003 
4004 	for (i = 0; i < sbi->s_ndevs; i++)
4005 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4006 			return true;
4007 	return false;
4008 }
4009 
4010 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4011 {
4012 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4013 					f2fs_hw_should_discard(sbi);
4014 }
4015 
4016 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4017 {
4018 	int i;
4019 
4020 	if (!f2fs_is_multi_device(sbi))
4021 		return bdev_read_only(sbi->sb->s_bdev);
4022 
4023 	for (i = 0; i < sbi->s_ndevs; i++)
4024 		if (bdev_read_only(FDEV(i).bdev))
4025 			return true;
4026 	return false;
4027 }
4028 
4029 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4030 {
4031 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4032 }
4033 
4034 static inline bool f2fs_may_compress(struct inode *inode)
4035 {
4036 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4037 				f2fs_is_atomic_file(inode) ||
4038 				f2fs_is_volatile_file(inode))
4039 		return false;
4040 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4041 }
4042 
4043 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4044 						u64 blocks, bool add)
4045 {
4046 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4047 	struct f2fs_inode_info *fi = F2FS_I(inode);
4048 
4049 	/* don't update i_compr_blocks if saved blocks were released */
4050 	if (!add && !atomic_read(&fi->i_compr_blocks))
4051 		return;
4052 
4053 	if (add) {
4054 		atomic_add(diff, &fi->i_compr_blocks);
4055 		stat_add_compr_blocks(inode, diff);
4056 	} else {
4057 		atomic_sub(diff, &fi->i_compr_blocks);
4058 		stat_sub_compr_blocks(inode, diff);
4059 	}
4060 	f2fs_mark_inode_dirty_sync(inode, true);
4061 }
4062 
4063 static inline int block_unaligned_IO(struct inode *inode,
4064 				struct kiocb *iocb, struct iov_iter *iter)
4065 {
4066 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4067 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4068 	loff_t offset = iocb->ki_pos;
4069 	unsigned long align = offset | iov_iter_alignment(iter);
4070 
4071 	return align & blocksize_mask;
4072 }
4073 
4074 static inline int allow_outplace_dio(struct inode *inode,
4075 				struct kiocb *iocb, struct iov_iter *iter)
4076 {
4077 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4078 	int rw = iov_iter_rw(iter);
4079 
4080 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4081 				!block_unaligned_IO(inode, iocb, iter));
4082 }
4083 
4084 static inline bool f2fs_force_buffered_io(struct inode *inode,
4085 				struct kiocb *iocb, struct iov_iter *iter)
4086 {
4087 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4088 	int rw = iov_iter_rw(iter);
4089 
4090 	if (f2fs_post_read_required(inode))
4091 		return true;
4092 	if (f2fs_is_multi_device(sbi))
4093 		return true;
4094 	/*
4095 	 * for blkzoned device, fallback direct IO to buffered IO, so
4096 	 * all IOs can be serialized by log-structured write.
4097 	 */
4098 	if (f2fs_sb_has_blkzoned(sbi))
4099 		return true;
4100 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4101 		if (block_unaligned_IO(inode, iocb, iter))
4102 			return true;
4103 		if (F2FS_IO_ALIGNED(sbi))
4104 			return true;
4105 	}
4106 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4107 					!IS_SWAPFILE(inode))
4108 		return true;
4109 
4110 	return false;
4111 }
4112 
4113 #ifdef CONFIG_F2FS_FAULT_INJECTION
4114 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4115 							unsigned int type);
4116 #else
4117 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4118 #endif
4119 
4120 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4121 {
4122 #ifdef CONFIG_QUOTA
4123 	if (f2fs_sb_has_quota_ino(sbi))
4124 		return true;
4125 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4126 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4127 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4128 		return true;
4129 #endif
4130 	return false;
4131 }
4132 
4133 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4134 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4135 
4136 #endif /* _LINUX_F2FS_H */
4137