xref: /openbmc/linux/fs/f2fs/f2fs.h (revision a7d9fe3c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_NID,
47 	FAULT_ORPHAN,
48 	FAULT_BLOCK,
49 	FAULT_DIR_DEPTH,
50 	FAULT_EVICT_INODE,
51 	FAULT_TRUNCATE,
52 	FAULT_READ_IO,
53 	FAULT_CHECKPOINT,
54 	FAULT_DISCARD,
55 	FAULT_WRITE_IO,
56 	FAULT_MAX,
57 };
58 
59 #ifdef CONFIG_F2FS_FAULT_INJECTION
60 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern const char *f2fs_fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
76 #define F2FS_MOUNT_DISCARD		0x00000004
77 #define F2FS_MOUNT_NOHEAP		0x00000008
78 #define F2FS_MOUNT_XATTR_USER		0x00000010
79 #define F2FS_MOUNT_POSIX_ACL		0x00000020
80 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
81 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
82 #define F2FS_MOUNT_INLINE_DATA		0x00000100
83 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
84 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
85 #define F2FS_MOUNT_NOBARRIER		0x00000800
86 #define F2FS_MOUNT_FASTBOOT		0x00001000
87 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_USRQUOTA		0x00080000
91 #define F2FS_MOUNT_GRPQUOTA		0x00100000
92 #define F2FS_MOUNT_PRJQUOTA		0x00200000
93 #define F2FS_MOUNT_QUOTA		0x00400000
94 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
95 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
96 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
97 #define F2FS_MOUNT_NORECOVERY		0x04000000
98 #define F2FS_MOUNT_ATGC			0x08000000
99 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
100 #define	F2FS_MOUNT_GC_MERGE		0x20000000
101 
102 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
103 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
104 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
105 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
106 
107 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
108 		typecheck(unsigned long long, b) &&			\
109 		((long long)((a) - (b)) > 0))
110 
111 typedef u32 block_t;	/*
112 			 * should not change u32, since it is the on-disk block
113 			 * address format, __le32.
114 			 */
115 typedef u32 nid_t;
116 
117 #define COMPRESS_EXT_NUM		16
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
140 	int bggc_mode;			/* bggc mode: off, on or sync */
141 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
142 	block_t unusable_cap_perc;	/* percentage for cap */
143 	block_t unusable_cap;		/* Amount of space allowed to be
144 					 * unusable when disabling checkpoint
145 					 */
146 
147 	/* For compression */
148 	unsigned char compress_algorithm;	/* algorithm type */
149 	unsigned char compress_log_size;	/* cluster log size */
150 	unsigned char compress_level;		/* compress level */
151 	bool compress_chksum;			/* compressed data chksum */
152 	unsigned char compress_ext_cnt;		/* extension count */
153 	int compress_mode;			/* compression mode */
154 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
155 };
156 
157 #define F2FS_FEATURE_ENCRYPT		0x0001
158 #define F2FS_FEATURE_BLKZONED		0x0002
159 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
160 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
161 #define F2FS_FEATURE_PRJQUOTA		0x0010
162 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
163 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
164 #define F2FS_FEATURE_QUOTA_INO		0x0080
165 #define F2FS_FEATURE_INODE_CRTIME	0x0100
166 #define F2FS_FEATURE_LOST_FOUND		0x0200
167 #define F2FS_FEATURE_VERITY		0x0400
168 #define F2FS_FEATURE_SB_CHKSUM		0x0800
169 #define F2FS_FEATURE_CASEFOLD		0x1000
170 #define F2FS_FEATURE_COMPRESSION	0x2000
171 #define F2FS_FEATURE_RO			0x4000
172 
173 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
174 	((raw_super->feature & cpu_to_le32(mask)) != 0)
175 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
176 #define F2FS_SET_FEATURE(sbi, mask)					\
177 	(sbi->raw_super->feature |= cpu_to_le32(mask))
178 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
179 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
180 
181 /*
182  * Default values for user and/or group using reserved blocks
183  */
184 #define	F2FS_DEF_RESUID		0
185 #define	F2FS_DEF_RESGID		0
186 
187 /*
188  * For checkpoint manager
189  */
190 enum {
191 	NAT_BITMAP,
192 	SIT_BITMAP
193 };
194 
195 #define	CP_UMOUNT	0x00000001
196 #define	CP_FASTBOOT	0x00000002
197 #define	CP_SYNC		0x00000004
198 #define	CP_RECOVERY	0x00000008
199 #define	CP_DISCARD	0x00000010
200 #define CP_TRIMMED	0x00000020
201 #define CP_PAUSE	0x00000040
202 #define CP_RESIZE 	0x00000080
203 
204 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
205 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
206 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
207 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
208 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
209 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
210 #define DEF_CP_INTERVAL			60	/* 60 secs */
211 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
212 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
213 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
214 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
215 
216 struct cp_control {
217 	int reason;
218 	__u64 trim_start;
219 	__u64 trim_end;
220 	__u64 trim_minlen;
221 };
222 
223 /*
224  * indicate meta/data type
225  */
226 enum {
227 	META_CP,
228 	META_NAT,
229 	META_SIT,
230 	META_SSA,
231 	META_MAX,
232 	META_POR,
233 	DATA_GENERIC,		/* check range only */
234 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
235 	DATA_GENERIC_ENHANCE_READ,	/*
236 					 * strong check on range and segment
237 					 * bitmap but no warning due to race
238 					 * condition of read on truncated area
239 					 * by extent_cache
240 					 */
241 	META_GENERIC,
242 };
243 
244 /* for the list of ino */
245 enum {
246 	ORPHAN_INO,		/* for orphan ino list */
247 	APPEND_INO,		/* for append ino list */
248 	UPDATE_INO,		/* for update ino list */
249 	TRANS_DIR_INO,		/* for trasactions dir ino list */
250 	FLUSH_INO,		/* for multiple device flushing */
251 	MAX_INO_ENTRY,		/* max. list */
252 };
253 
254 struct ino_entry {
255 	struct list_head list;		/* list head */
256 	nid_t ino;			/* inode number */
257 	unsigned int dirty_device;	/* dirty device bitmap */
258 };
259 
260 /* for the list of inodes to be GCed */
261 struct inode_entry {
262 	struct list_head list;	/* list head */
263 	struct inode *inode;	/* vfs inode pointer */
264 };
265 
266 struct fsync_node_entry {
267 	struct list_head list;	/* list head */
268 	struct page *page;	/* warm node page pointer */
269 	unsigned int seq_id;	/* sequence id */
270 };
271 
272 struct ckpt_req {
273 	struct completion wait;		/* completion for checkpoint done */
274 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
275 	int ret;			/* return code of checkpoint */
276 	ktime_t queue_time;		/* request queued time */
277 };
278 
279 struct ckpt_req_control {
280 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
281 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
282 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
283 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
284 	atomic_t total_ckpt;		/* # of total ckpts */
285 	atomic_t queued_ckpt;		/* # of queued ckpts */
286 	struct llist_head issue_list;	/* list for command issue */
287 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
288 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
289 	unsigned int peak_time;		/* peak wait time in msec until now */
290 };
291 
292 /* for the bitmap indicate blocks to be discarded */
293 struct discard_entry {
294 	struct list_head list;	/* list head */
295 	block_t start_blkaddr;	/* start blockaddr of current segment */
296 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
297 };
298 
299 /* default discard granularity of inner discard thread, unit: block count */
300 #define DEFAULT_DISCARD_GRANULARITY		16
301 
302 /* max discard pend list number */
303 #define MAX_PLIST_NUM		512
304 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
305 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
306 
307 enum {
308 	D_PREP,			/* initial */
309 	D_PARTIAL,		/* partially submitted */
310 	D_SUBMIT,		/* all submitted */
311 	D_DONE,			/* finished */
312 };
313 
314 struct discard_info {
315 	block_t lstart;			/* logical start address */
316 	block_t len;			/* length */
317 	block_t start;			/* actual start address in dev */
318 };
319 
320 struct discard_cmd {
321 	struct rb_node rb_node;		/* rb node located in rb-tree */
322 	union {
323 		struct {
324 			block_t lstart;	/* logical start address */
325 			block_t len;	/* length */
326 			block_t start;	/* actual start address in dev */
327 		};
328 		struct discard_info di;	/* discard info */
329 
330 	};
331 	struct list_head list;		/* command list */
332 	struct completion wait;		/* compleation */
333 	struct block_device *bdev;	/* bdev */
334 	unsigned short ref;		/* reference count */
335 	unsigned char state;		/* state */
336 	unsigned char queued;		/* queued discard */
337 	int error;			/* bio error */
338 	spinlock_t lock;		/* for state/bio_ref updating */
339 	unsigned short bio_ref;		/* bio reference count */
340 };
341 
342 enum {
343 	DPOLICY_BG,
344 	DPOLICY_FORCE,
345 	DPOLICY_FSTRIM,
346 	DPOLICY_UMOUNT,
347 	MAX_DPOLICY,
348 };
349 
350 struct discard_policy {
351 	int type;			/* type of discard */
352 	unsigned int min_interval;	/* used for candidates exist */
353 	unsigned int mid_interval;	/* used for device busy */
354 	unsigned int max_interval;	/* used for candidates not exist */
355 	unsigned int max_requests;	/* # of discards issued per round */
356 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
357 	bool io_aware;			/* issue discard in idle time */
358 	bool sync;			/* submit discard with REQ_SYNC flag */
359 	bool ordered;			/* issue discard by lba order */
360 	bool timeout;			/* discard timeout for put_super */
361 	unsigned int granularity;	/* discard granularity */
362 };
363 
364 struct discard_cmd_control {
365 	struct task_struct *f2fs_issue_discard;	/* discard thread */
366 	struct list_head entry_list;		/* 4KB discard entry list */
367 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
368 	struct list_head wait_list;		/* store on-flushing entries */
369 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
370 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
371 	unsigned int discard_wake;		/* to wake up discard thread */
372 	struct mutex cmd_lock;
373 	unsigned int nr_discards;		/* # of discards in the list */
374 	unsigned int max_discards;		/* max. discards to be issued */
375 	unsigned int discard_granularity;	/* discard granularity */
376 	unsigned int undiscard_blks;		/* # of undiscard blocks */
377 	unsigned int next_pos;			/* next discard position */
378 	atomic_t issued_discard;		/* # of issued discard */
379 	atomic_t queued_discard;		/* # of queued discard */
380 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
381 	struct rb_root_cached root;		/* root of discard rb-tree */
382 	bool rbtree_check;			/* config for consistence check */
383 };
384 
385 /* for the list of fsync inodes, used only during recovery */
386 struct fsync_inode_entry {
387 	struct list_head list;	/* list head */
388 	struct inode *inode;	/* vfs inode pointer */
389 	block_t blkaddr;	/* block address locating the last fsync */
390 	block_t last_dentry;	/* block address locating the last dentry */
391 };
392 
393 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
394 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
395 
396 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
397 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
398 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
399 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
400 
401 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
402 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
403 
404 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
405 {
406 	int before = nats_in_cursum(journal);
407 
408 	journal->n_nats = cpu_to_le16(before + i);
409 	return before;
410 }
411 
412 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
413 {
414 	int before = sits_in_cursum(journal);
415 
416 	journal->n_sits = cpu_to_le16(before + i);
417 	return before;
418 }
419 
420 static inline bool __has_cursum_space(struct f2fs_journal *journal,
421 							int size, int type)
422 {
423 	if (type == NAT_JOURNAL)
424 		return size <= MAX_NAT_JENTRIES(journal);
425 	return size <= MAX_SIT_JENTRIES(journal);
426 }
427 
428 /* for inline stuff */
429 #define DEF_INLINE_RESERVED_SIZE	1
430 static inline int get_extra_isize(struct inode *inode);
431 static inline int get_inline_xattr_addrs(struct inode *inode);
432 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
433 				(CUR_ADDRS_PER_INODE(inode) -		\
434 				get_inline_xattr_addrs(inode) -	\
435 				DEF_INLINE_RESERVED_SIZE))
436 
437 /* for inline dir */
438 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
439 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
440 				BITS_PER_BYTE + 1))
441 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
442 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
443 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
444 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
445 				NR_INLINE_DENTRY(inode) + \
446 				INLINE_DENTRY_BITMAP_SIZE(inode)))
447 
448 /*
449  * For INODE and NODE manager
450  */
451 /* for directory operations */
452 
453 struct f2fs_filename {
454 	/*
455 	 * The filename the user specified.  This is NULL for some
456 	 * filesystem-internal operations, e.g. converting an inline directory
457 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
458 	 */
459 	const struct qstr *usr_fname;
460 
461 	/*
462 	 * The on-disk filename.  For encrypted directories, this is encrypted.
463 	 * This may be NULL for lookups in an encrypted dir without the key.
464 	 */
465 	struct fscrypt_str disk_name;
466 
467 	/* The dirhash of this filename */
468 	f2fs_hash_t hash;
469 
470 #ifdef CONFIG_FS_ENCRYPTION
471 	/*
472 	 * For lookups in encrypted directories: either the buffer backing
473 	 * disk_name, or a buffer that holds the decoded no-key name.
474 	 */
475 	struct fscrypt_str crypto_buf;
476 #endif
477 #ifdef CONFIG_UNICODE
478 	/*
479 	 * For casefolded directories: the casefolded name, but it's left NULL
480 	 * if the original name is not valid Unicode, if the directory is both
481 	 * casefolded and encrypted and its encryption key is unavailable, or if
482 	 * the filesystem is doing an internal operation where usr_fname is also
483 	 * NULL.  In all these cases we fall back to treating the name as an
484 	 * opaque byte sequence.
485 	 */
486 	struct fscrypt_str cf_name;
487 #endif
488 };
489 
490 struct f2fs_dentry_ptr {
491 	struct inode *inode;
492 	void *bitmap;
493 	struct f2fs_dir_entry *dentry;
494 	__u8 (*filename)[F2FS_SLOT_LEN];
495 	int max;
496 	int nr_bitmap;
497 };
498 
499 static inline void make_dentry_ptr_block(struct inode *inode,
500 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
501 {
502 	d->inode = inode;
503 	d->max = NR_DENTRY_IN_BLOCK;
504 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
505 	d->bitmap = t->dentry_bitmap;
506 	d->dentry = t->dentry;
507 	d->filename = t->filename;
508 }
509 
510 static inline void make_dentry_ptr_inline(struct inode *inode,
511 					struct f2fs_dentry_ptr *d, void *t)
512 {
513 	int entry_cnt = NR_INLINE_DENTRY(inode);
514 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
515 	int reserved_size = INLINE_RESERVED_SIZE(inode);
516 
517 	d->inode = inode;
518 	d->max = entry_cnt;
519 	d->nr_bitmap = bitmap_size;
520 	d->bitmap = t;
521 	d->dentry = t + bitmap_size + reserved_size;
522 	d->filename = t + bitmap_size + reserved_size +
523 					SIZE_OF_DIR_ENTRY * entry_cnt;
524 }
525 
526 /*
527  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
528  * as its node offset to distinguish from index node blocks.
529  * But some bits are used to mark the node block.
530  */
531 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
532 				>> OFFSET_BIT_SHIFT)
533 enum {
534 	ALLOC_NODE,			/* allocate a new node page if needed */
535 	LOOKUP_NODE,			/* look up a node without readahead */
536 	LOOKUP_NODE_RA,			/*
537 					 * look up a node with readahead called
538 					 * by get_data_block.
539 					 */
540 };
541 
542 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
543 
544 /* congestion wait timeout value, default: 20ms */
545 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
546 
547 /* maximum retry quota flush count */
548 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
549 
550 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
551 
552 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
553 
554 /* for in-memory extent cache entry */
555 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
556 
557 /* number of extent info in extent cache we try to shrink */
558 #define EXTENT_CACHE_SHRINK_NUMBER	128
559 
560 struct rb_entry {
561 	struct rb_node rb_node;		/* rb node located in rb-tree */
562 	union {
563 		struct {
564 			unsigned int ofs;	/* start offset of the entry */
565 			unsigned int len;	/* length of the entry */
566 		};
567 		unsigned long long key;		/* 64-bits key */
568 	} __packed;
569 };
570 
571 struct extent_info {
572 	unsigned int fofs;		/* start offset in a file */
573 	unsigned int len;		/* length of the extent */
574 	u32 blk;			/* start block address of the extent */
575 };
576 
577 struct extent_node {
578 	struct rb_node rb_node;		/* rb node located in rb-tree */
579 	struct extent_info ei;		/* extent info */
580 	struct list_head list;		/* node in global extent list of sbi */
581 	struct extent_tree *et;		/* extent tree pointer */
582 };
583 
584 struct extent_tree {
585 	nid_t ino;			/* inode number */
586 	struct rb_root_cached root;	/* root of extent info rb-tree */
587 	struct extent_node *cached_en;	/* recently accessed extent node */
588 	struct extent_info largest;	/* largested extent info */
589 	struct list_head list;		/* to be used by sbi->zombie_list */
590 	rwlock_t lock;			/* protect extent info rb-tree */
591 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
592 	bool largest_updated;		/* largest extent updated */
593 };
594 
595 /*
596  * This structure is taken from ext4_map_blocks.
597  *
598  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
599  */
600 #define F2FS_MAP_NEW		(1 << BH_New)
601 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
602 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
603 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
604 				F2FS_MAP_UNWRITTEN)
605 
606 struct f2fs_map_blocks {
607 	block_t m_pblk;
608 	block_t m_lblk;
609 	unsigned int m_len;
610 	unsigned int m_flags;
611 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
612 	pgoff_t *m_next_extent;		/* point to next possible extent */
613 	int m_seg_type;
614 	bool m_may_create;		/* indicate it is from write path */
615 };
616 
617 /* for flag in get_data_block */
618 enum {
619 	F2FS_GET_BLOCK_DEFAULT,
620 	F2FS_GET_BLOCK_FIEMAP,
621 	F2FS_GET_BLOCK_BMAP,
622 	F2FS_GET_BLOCK_DIO,
623 	F2FS_GET_BLOCK_PRE_DIO,
624 	F2FS_GET_BLOCK_PRE_AIO,
625 	F2FS_GET_BLOCK_PRECACHE,
626 };
627 
628 /*
629  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
630  */
631 #define FADVISE_COLD_BIT	0x01
632 #define FADVISE_LOST_PINO_BIT	0x02
633 #define FADVISE_ENCRYPT_BIT	0x04
634 #define FADVISE_ENC_NAME_BIT	0x08
635 #define FADVISE_KEEP_SIZE_BIT	0x10
636 #define FADVISE_HOT_BIT		0x20
637 #define FADVISE_VERITY_BIT	0x40
638 
639 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
640 
641 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
642 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
643 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
644 
645 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
646 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
647 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
648 
649 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
650 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
651 
652 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
653 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
654 
655 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
656 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
657 
658 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
659 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
660 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
661 
662 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
663 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
664 
665 #define DEF_DIR_LEVEL		0
666 
667 enum {
668 	GC_FAILURE_PIN,
669 	GC_FAILURE_ATOMIC,
670 	MAX_GC_FAILURE
671 };
672 
673 /* used for f2fs_inode_info->flags */
674 enum {
675 	FI_NEW_INODE,		/* indicate newly allocated inode */
676 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
677 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
678 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
679 	FI_INC_LINK,		/* need to increment i_nlink */
680 	FI_ACL_MODE,		/* indicate acl mode */
681 	FI_NO_ALLOC,		/* should not allocate any blocks */
682 	FI_FREE_NID,		/* free allocated nide */
683 	FI_NO_EXTENT,		/* not to use the extent cache */
684 	FI_INLINE_XATTR,	/* used for inline xattr */
685 	FI_INLINE_DATA,		/* used for inline data*/
686 	FI_INLINE_DENTRY,	/* used for inline dentry */
687 	FI_APPEND_WRITE,	/* inode has appended data */
688 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
689 	FI_NEED_IPU,		/* used for ipu per file */
690 	FI_ATOMIC_FILE,		/* indicate atomic file */
691 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
692 	FI_VOLATILE_FILE,	/* indicate volatile file */
693 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
694 	FI_DROP_CACHE,		/* drop dirty page cache */
695 	FI_DATA_EXIST,		/* indicate data exists */
696 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
697 	FI_DO_DEFRAG,		/* indicate defragment is running */
698 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
699 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
700 	FI_HOT_DATA,		/* indicate file is hot */
701 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
702 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
703 	FI_PIN_FILE,		/* indicate file should not be gced */
704 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
705 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
706 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
707 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
708 	FI_MMAP_FILE,		/* indicate file was mmapped */
709 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
710 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
711 	FI_MAX,			/* max flag, never be used */
712 };
713 
714 struct f2fs_inode_info {
715 	struct inode vfs_inode;		/* serve a vfs inode */
716 	unsigned long i_flags;		/* keep an inode flags for ioctl */
717 	unsigned char i_advise;		/* use to give file attribute hints */
718 	unsigned char i_dir_level;	/* use for dentry level for large dir */
719 	unsigned int i_current_depth;	/* only for directory depth */
720 	/* for gc failure statistic */
721 	unsigned int i_gc_failures[MAX_GC_FAILURE];
722 	unsigned int i_pino;		/* parent inode number */
723 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
724 
725 	/* Use below internally in f2fs*/
726 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
727 	struct rw_semaphore i_sem;	/* protect fi info */
728 	atomic_t dirty_pages;		/* # of dirty pages */
729 	f2fs_hash_t chash;		/* hash value of given file name */
730 	unsigned int clevel;		/* maximum level of given file name */
731 	struct task_struct *task;	/* lookup and create consistency */
732 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
733 	nid_t i_xattr_nid;		/* node id that contains xattrs */
734 	loff_t	last_disk_size;		/* lastly written file size */
735 	spinlock_t i_size_lock;		/* protect last_disk_size */
736 
737 #ifdef CONFIG_QUOTA
738 	struct dquot *i_dquot[MAXQUOTAS];
739 
740 	/* quota space reservation, managed internally by quota code */
741 	qsize_t i_reserved_quota;
742 #endif
743 	struct list_head dirty_list;	/* dirty list for dirs and files */
744 	struct list_head gdirty_list;	/* linked in global dirty list */
745 	struct list_head inmem_ilist;	/* list for inmem inodes */
746 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
747 	struct task_struct *inmem_task;	/* store inmemory task */
748 	struct mutex inmem_lock;	/* lock for inmemory pages */
749 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
750 
751 	/* avoid racing between foreground op and gc */
752 	struct rw_semaphore i_gc_rwsem[2];
753 	struct rw_semaphore i_mmap_sem;
754 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
755 
756 	int i_extra_isize;		/* size of extra space located in i_addr */
757 	kprojid_t i_projid;		/* id for project quota */
758 	int i_inline_xattr_size;	/* inline xattr size */
759 	struct timespec64 i_crtime;	/* inode creation time */
760 	struct timespec64 i_disk_time[4];/* inode disk times */
761 
762 	/* for file compress */
763 	atomic_t i_compr_blocks;		/* # of compressed blocks */
764 	unsigned char i_compress_algorithm;	/* algorithm type */
765 	unsigned char i_log_cluster_size;	/* log of cluster size */
766 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
767 	unsigned short i_compress_flag;		/* compress flag */
768 	unsigned int i_cluster_size;		/* cluster size */
769 };
770 
771 static inline void get_extent_info(struct extent_info *ext,
772 					struct f2fs_extent *i_ext)
773 {
774 	ext->fofs = le32_to_cpu(i_ext->fofs);
775 	ext->blk = le32_to_cpu(i_ext->blk);
776 	ext->len = le32_to_cpu(i_ext->len);
777 }
778 
779 static inline void set_raw_extent(struct extent_info *ext,
780 					struct f2fs_extent *i_ext)
781 {
782 	i_ext->fofs = cpu_to_le32(ext->fofs);
783 	i_ext->blk = cpu_to_le32(ext->blk);
784 	i_ext->len = cpu_to_le32(ext->len);
785 }
786 
787 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
788 						u32 blk, unsigned int len)
789 {
790 	ei->fofs = fofs;
791 	ei->blk = blk;
792 	ei->len = len;
793 }
794 
795 static inline bool __is_discard_mergeable(struct discard_info *back,
796 			struct discard_info *front, unsigned int max_len)
797 {
798 	return (back->lstart + back->len == front->lstart) &&
799 		(back->len + front->len <= max_len);
800 }
801 
802 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
803 			struct discard_info *back, unsigned int max_len)
804 {
805 	return __is_discard_mergeable(back, cur, max_len);
806 }
807 
808 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
809 			struct discard_info *front, unsigned int max_len)
810 {
811 	return __is_discard_mergeable(cur, front, max_len);
812 }
813 
814 static inline bool __is_extent_mergeable(struct extent_info *back,
815 						struct extent_info *front)
816 {
817 	return (back->fofs + back->len == front->fofs &&
818 			back->blk + back->len == front->blk);
819 }
820 
821 static inline bool __is_back_mergeable(struct extent_info *cur,
822 						struct extent_info *back)
823 {
824 	return __is_extent_mergeable(back, cur);
825 }
826 
827 static inline bool __is_front_mergeable(struct extent_info *cur,
828 						struct extent_info *front)
829 {
830 	return __is_extent_mergeable(cur, front);
831 }
832 
833 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
834 static inline void __try_update_largest_extent(struct extent_tree *et,
835 						struct extent_node *en)
836 {
837 	if (en->ei.len > et->largest.len) {
838 		et->largest = en->ei;
839 		et->largest_updated = true;
840 	}
841 }
842 
843 /*
844  * For free nid management
845  */
846 enum nid_state {
847 	FREE_NID,		/* newly added to free nid list */
848 	PREALLOC_NID,		/* it is preallocated */
849 	MAX_NID_STATE,
850 };
851 
852 enum nat_state {
853 	TOTAL_NAT,
854 	DIRTY_NAT,
855 	RECLAIMABLE_NAT,
856 	MAX_NAT_STATE,
857 };
858 
859 struct f2fs_nm_info {
860 	block_t nat_blkaddr;		/* base disk address of NAT */
861 	nid_t max_nid;			/* maximum possible node ids */
862 	nid_t available_nids;		/* # of available node ids */
863 	nid_t next_scan_nid;		/* the next nid to be scanned */
864 	unsigned int ram_thresh;	/* control the memory footprint */
865 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
866 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
867 
868 	/* NAT cache management */
869 	struct radix_tree_root nat_root;/* root of the nat entry cache */
870 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
871 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
872 	struct list_head nat_entries;	/* cached nat entry list (clean) */
873 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
874 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
875 	unsigned int nat_blocks;	/* # of nat blocks */
876 
877 	/* free node ids management */
878 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
879 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
880 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
881 	spinlock_t nid_list_lock;	/* protect nid lists ops */
882 	struct mutex build_lock;	/* lock for build free nids */
883 	unsigned char **free_nid_bitmap;
884 	unsigned char *nat_block_bitmap;
885 	unsigned short *free_nid_count;	/* free nid count of NAT block */
886 
887 	/* for checkpoint */
888 	char *nat_bitmap;		/* NAT bitmap pointer */
889 
890 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
891 	unsigned char *nat_bits;	/* NAT bits blocks */
892 	unsigned char *full_nat_bits;	/* full NAT pages */
893 	unsigned char *empty_nat_bits;	/* empty NAT pages */
894 #ifdef CONFIG_F2FS_CHECK_FS
895 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
896 #endif
897 	int bitmap_size;		/* bitmap size */
898 };
899 
900 /*
901  * this structure is used as one of function parameters.
902  * all the information are dedicated to a given direct node block determined
903  * by the data offset in a file.
904  */
905 struct dnode_of_data {
906 	struct inode *inode;		/* vfs inode pointer */
907 	struct page *inode_page;	/* its inode page, NULL is possible */
908 	struct page *node_page;		/* cached direct node page */
909 	nid_t nid;			/* node id of the direct node block */
910 	unsigned int ofs_in_node;	/* data offset in the node page */
911 	bool inode_page_locked;		/* inode page is locked or not */
912 	bool node_changed;		/* is node block changed */
913 	char cur_level;			/* level of hole node page */
914 	char max_level;			/* level of current page located */
915 	block_t	data_blkaddr;		/* block address of the node block */
916 };
917 
918 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
919 		struct page *ipage, struct page *npage, nid_t nid)
920 {
921 	memset(dn, 0, sizeof(*dn));
922 	dn->inode = inode;
923 	dn->inode_page = ipage;
924 	dn->node_page = npage;
925 	dn->nid = nid;
926 }
927 
928 /*
929  * For SIT manager
930  *
931  * By default, there are 6 active log areas across the whole main area.
932  * When considering hot and cold data separation to reduce cleaning overhead,
933  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
934  * respectively.
935  * In the current design, you should not change the numbers intentionally.
936  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
937  * logs individually according to the underlying devices. (default: 6)
938  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
939  * data and 8 for node logs.
940  */
941 #define	NR_CURSEG_DATA_TYPE	(3)
942 #define NR_CURSEG_NODE_TYPE	(3)
943 #define NR_CURSEG_INMEM_TYPE	(2)
944 #define NR_CURSEG_RO_TYPE	(2)
945 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
946 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
947 
948 enum {
949 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
950 	CURSEG_WARM_DATA,	/* data blocks */
951 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
952 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
953 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
954 	CURSEG_COLD_NODE,	/* indirect node blocks */
955 	NR_PERSISTENT_LOG,	/* number of persistent log */
956 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
957 				/* pinned file that needs consecutive block address */
958 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
959 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
960 };
961 
962 struct flush_cmd {
963 	struct completion wait;
964 	struct llist_node llnode;
965 	nid_t ino;
966 	int ret;
967 };
968 
969 struct flush_cmd_control {
970 	struct task_struct *f2fs_issue_flush;	/* flush thread */
971 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
972 	atomic_t issued_flush;			/* # of issued flushes */
973 	atomic_t queued_flush;			/* # of queued flushes */
974 	struct llist_head issue_list;		/* list for command issue */
975 	struct llist_node *dispatch_list;	/* list for command dispatch */
976 };
977 
978 struct f2fs_sm_info {
979 	struct sit_info *sit_info;		/* whole segment information */
980 	struct free_segmap_info *free_info;	/* free segment information */
981 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
982 	struct curseg_info *curseg_array;	/* active segment information */
983 
984 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
985 
986 	block_t seg0_blkaddr;		/* block address of 0'th segment */
987 	block_t main_blkaddr;		/* start block address of main area */
988 	block_t ssa_blkaddr;		/* start block address of SSA area */
989 
990 	unsigned int segment_count;	/* total # of segments */
991 	unsigned int main_segments;	/* # of segments in main area */
992 	unsigned int reserved_segments;	/* # of reserved segments */
993 	unsigned int ovp_segments;	/* # of overprovision segments */
994 
995 	/* a threshold to reclaim prefree segments */
996 	unsigned int rec_prefree_segments;
997 
998 	/* for batched trimming */
999 	unsigned int trim_sections;		/* # of sections to trim */
1000 
1001 	struct list_head sit_entry_set;	/* sit entry set list */
1002 
1003 	unsigned int ipu_policy;	/* in-place-update policy */
1004 	unsigned int min_ipu_util;	/* in-place-update threshold */
1005 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1006 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1007 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1008 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1009 
1010 	/* for flush command control */
1011 	struct flush_cmd_control *fcc_info;
1012 
1013 	/* for discard command control */
1014 	struct discard_cmd_control *dcc_info;
1015 };
1016 
1017 /*
1018  * For superblock
1019  */
1020 /*
1021  * COUNT_TYPE for monitoring
1022  *
1023  * f2fs monitors the number of several block types such as on-writeback,
1024  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1025  */
1026 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1027 enum count_type {
1028 	F2FS_DIRTY_DENTS,
1029 	F2FS_DIRTY_DATA,
1030 	F2FS_DIRTY_QDATA,
1031 	F2FS_DIRTY_NODES,
1032 	F2FS_DIRTY_META,
1033 	F2FS_INMEM_PAGES,
1034 	F2FS_DIRTY_IMETA,
1035 	F2FS_WB_CP_DATA,
1036 	F2FS_WB_DATA,
1037 	F2FS_RD_DATA,
1038 	F2FS_RD_NODE,
1039 	F2FS_RD_META,
1040 	F2FS_DIO_WRITE,
1041 	F2FS_DIO_READ,
1042 	NR_COUNT_TYPE,
1043 };
1044 
1045 /*
1046  * The below are the page types of bios used in submit_bio().
1047  * The available types are:
1048  * DATA			User data pages. It operates as async mode.
1049  * NODE			Node pages. It operates as async mode.
1050  * META			FS metadata pages such as SIT, NAT, CP.
1051  * NR_PAGE_TYPE		The number of page types.
1052  * META_FLUSH		Make sure the previous pages are written
1053  *			with waiting the bio's completion
1054  * ...			Only can be used with META.
1055  */
1056 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1057 enum page_type {
1058 	DATA,
1059 	NODE,
1060 	META,
1061 	NR_PAGE_TYPE,
1062 	META_FLUSH,
1063 	INMEM,		/* the below types are used by tracepoints only. */
1064 	INMEM_DROP,
1065 	INMEM_INVALIDATE,
1066 	INMEM_REVOKE,
1067 	IPU,
1068 	OPU,
1069 };
1070 
1071 enum temp_type {
1072 	HOT = 0,	/* must be zero for meta bio */
1073 	WARM,
1074 	COLD,
1075 	NR_TEMP_TYPE,
1076 };
1077 
1078 enum need_lock_type {
1079 	LOCK_REQ = 0,
1080 	LOCK_DONE,
1081 	LOCK_RETRY,
1082 };
1083 
1084 enum cp_reason_type {
1085 	CP_NO_NEEDED,
1086 	CP_NON_REGULAR,
1087 	CP_COMPRESSED,
1088 	CP_HARDLINK,
1089 	CP_SB_NEED_CP,
1090 	CP_WRONG_PINO,
1091 	CP_NO_SPC_ROLL,
1092 	CP_NODE_NEED_CP,
1093 	CP_FASTBOOT_MODE,
1094 	CP_SPEC_LOG_NUM,
1095 	CP_RECOVER_DIR,
1096 };
1097 
1098 enum iostat_type {
1099 	/* WRITE IO */
1100 	APP_DIRECT_IO,			/* app direct write IOs */
1101 	APP_BUFFERED_IO,		/* app buffered write IOs */
1102 	APP_WRITE_IO,			/* app write IOs */
1103 	APP_MAPPED_IO,			/* app mapped IOs */
1104 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1105 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1106 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1107 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1108 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1109 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1110 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1111 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1112 
1113 	/* READ IO */
1114 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1115 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1116 	APP_READ_IO,			/* app read IOs */
1117 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1118 	FS_DATA_READ_IO,		/* data read IOs */
1119 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1120 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1121 	FS_NODE_READ_IO,		/* node read IOs */
1122 	FS_META_READ_IO,		/* meta read IOs */
1123 
1124 	/* other */
1125 	FS_DISCARD,			/* discard */
1126 	NR_IO_TYPE,
1127 };
1128 
1129 struct f2fs_io_info {
1130 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1131 	nid_t ino;		/* inode number */
1132 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1133 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1134 	int op;			/* contains REQ_OP_ */
1135 	int op_flags;		/* req_flag_bits */
1136 	block_t new_blkaddr;	/* new block address to be written */
1137 	block_t old_blkaddr;	/* old block address before Cow */
1138 	struct page *page;	/* page to be written */
1139 	struct page *encrypted_page;	/* encrypted page */
1140 	struct page *compressed_page;	/* compressed page */
1141 	struct list_head list;		/* serialize IOs */
1142 	bool submitted;		/* indicate IO submission */
1143 	int need_lock;		/* indicate we need to lock cp_rwsem */
1144 	bool in_list;		/* indicate fio is in io_list */
1145 	bool is_por;		/* indicate IO is from recovery or not */
1146 	bool retry;		/* need to reallocate block address */
1147 	int compr_blocks;	/* # of compressed block addresses */
1148 	bool encrypted;		/* indicate file is encrypted */
1149 	enum iostat_type io_type;	/* io type */
1150 	struct writeback_control *io_wbc; /* writeback control */
1151 	struct bio **bio;		/* bio for ipu */
1152 	sector_t *last_block;		/* last block number in bio */
1153 	unsigned char version;		/* version of the node */
1154 };
1155 
1156 struct bio_entry {
1157 	struct bio *bio;
1158 	struct list_head list;
1159 };
1160 
1161 #define is_read_io(rw) ((rw) == READ)
1162 struct f2fs_bio_info {
1163 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1164 	struct bio *bio;		/* bios to merge */
1165 	sector_t last_block_in_bio;	/* last block number */
1166 	struct f2fs_io_info fio;	/* store buffered io info. */
1167 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1168 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1169 	struct list_head io_list;	/* track fios */
1170 	struct list_head bio_list;	/* bio entry list head */
1171 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1172 };
1173 
1174 #define FDEV(i)				(sbi->devs[i])
1175 #define RDEV(i)				(raw_super->devs[i])
1176 struct f2fs_dev_info {
1177 	struct block_device *bdev;
1178 	char path[MAX_PATH_LEN];
1179 	unsigned int total_segments;
1180 	block_t start_blk;
1181 	block_t end_blk;
1182 #ifdef CONFIG_BLK_DEV_ZONED
1183 	unsigned int nr_blkz;		/* Total number of zones */
1184 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1185 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1186 #endif
1187 };
1188 
1189 enum inode_type {
1190 	DIR_INODE,			/* for dirty dir inode */
1191 	FILE_INODE,			/* for dirty regular/symlink inode */
1192 	DIRTY_META,			/* for all dirtied inode metadata */
1193 	ATOMIC_FILE,			/* for all atomic files */
1194 	NR_INODE_TYPE,
1195 };
1196 
1197 /* for inner inode cache management */
1198 struct inode_management {
1199 	struct radix_tree_root ino_root;	/* ino entry array */
1200 	spinlock_t ino_lock;			/* for ino entry lock */
1201 	struct list_head ino_list;		/* inode list head */
1202 	unsigned long ino_num;			/* number of entries */
1203 };
1204 
1205 /* for GC_AT */
1206 struct atgc_management {
1207 	bool atgc_enabled;			/* ATGC is enabled or not */
1208 	struct rb_root_cached root;		/* root of victim rb-tree */
1209 	struct list_head victim_list;		/* linked with all victim entries */
1210 	unsigned int victim_count;		/* victim count in rb-tree */
1211 	unsigned int candidate_ratio;		/* candidate ratio */
1212 	unsigned int max_candidate_count;	/* max candidate count */
1213 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1214 	unsigned long long age_threshold;	/* age threshold */
1215 };
1216 
1217 /* For s_flag in struct f2fs_sb_info */
1218 enum {
1219 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1220 	SBI_IS_CLOSE,				/* specify unmounting */
1221 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1222 	SBI_POR_DOING,				/* recovery is doing or not */
1223 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1224 	SBI_NEED_CP,				/* need to checkpoint */
1225 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1226 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1227 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1228 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1229 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1230 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1231 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1232 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1233 };
1234 
1235 enum {
1236 	CP_TIME,
1237 	REQ_TIME,
1238 	DISCARD_TIME,
1239 	GC_TIME,
1240 	DISABLE_TIME,
1241 	UMOUNT_DISCARD_TIMEOUT,
1242 	MAX_TIME,
1243 };
1244 
1245 enum {
1246 	GC_NORMAL,
1247 	GC_IDLE_CB,
1248 	GC_IDLE_GREEDY,
1249 	GC_IDLE_AT,
1250 	GC_URGENT_HIGH,
1251 	GC_URGENT_LOW,
1252 };
1253 
1254 enum {
1255 	BGGC_MODE_ON,		/* background gc is on */
1256 	BGGC_MODE_OFF,		/* background gc is off */
1257 	BGGC_MODE_SYNC,		/*
1258 				 * background gc is on, migrating blocks
1259 				 * like foreground gc
1260 				 */
1261 };
1262 
1263 enum {
1264 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1265 	FS_MODE_LFS,		/* use lfs allocation only */
1266 };
1267 
1268 enum {
1269 	WHINT_MODE_OFF,		/* not pass down write hints */
1270 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1271 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1272 };
1273 
1274 enum {
1275 	ALLOC_MODE_DEFAULT,	/* stay default */
1276 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1277 };
1278 
1279 enum fsync_mode {
1280 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1281 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1282 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1283 };
1284 
1285 enum {
1286 	COMPR_MODE_FS,		/*
1287 				 * automatically compress compression
1288 				 * enabled files
1289 				 */
1290 	COMPR_MODE_USER,	/*
1291 				 * automatical compression is disabled.
1292 				 * user can control the file compression
1293 				 * using ioctls
1294 				 */
1295 };
1296 
1297 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1298 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1299 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1300 
1301 /*
1302  * Layout of f2fs page.private:
1303  *
1304  * Layout A: lowest bit should be 1
1305  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1306  * bit 0	PAGE_PRIVATE_NOT_POINTER
1307  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1308  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1309  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1310  * bit 4	PAGE_PRIVATE_INLINE_INODE
1311  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1312  * bit 6-	f2fs private data
1313  *
1314  * Layout B: lowest bit should be 0
1315  * page.private is a wrapped pointer.
1316  */
1317 enum {
1318 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1319 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1320 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1321 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1322 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1323 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1324 	PAGE_PRIVATE_MAX
1325 };
1326 
1327 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1328 static inline bool page_private_##name(struct page *page) \
1329 { \
1330 	return test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1331 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1332 }
1333 
1334 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1335 static inline void set_page_private_##name(struct page *page) \
1336 { \
1337 	if (!PagePrivate(page)) { \
1338 		get_page(page); \
1339 		SetPagePrivate(page); \
1340 	} \
1341 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1342 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1343 }
1344 
1345 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1346 static inline void clear_page_private_##name(struct page *page) \
1347 { \
1348 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1349 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1350 		set_page_private(page, 0); \
1351 		if (PagePrivate(page)) { \
1352 			ClearPagePrivate(page); \
1353 			put_page(page); \
1354 		}\
1355 	} \
1356 }
1357 
1358 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1359 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1360 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1361 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1362 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1363 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1364 
1365 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1366 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1367 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1368 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1369 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1370 
1371 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1372 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1373 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1374 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1375 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1376 
1377 /* For compression */
1378 enum compress_algorithm_type {
1379 	COMPRESS_LZO,
1380 	COMPRESS_LZ4,
1381 	COMPRESS_ZSTD,
1382 	COMPRESS_LZORLE,
1383 	COMPRESS_MAX,
1384 };
1385 
1386 enum compress_flag {
1387 	COMPRESS_CHKSUM,
1388 	COMPRESS_MAX_FLAG,
1389 };
1390 
1391 #define COMPRESS_DATA_RESERVED_SIZE		4
1392 struct compress_data {
1393 	__le32 clen;			/* compressed data size */
1394 	__le32 chksum;			/* compressed data chksum */
1395 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1396 	u8 cdata[];			/* compressed data */
1397 };
1398 
1399 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1400 
1401 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1402 
1403 #define	COMPRESS_LEVEL_OFFSET	8
1404 
1405 /* compress context */
1406 struct compress_ctx {
1407 	struct inode *inode;		/* inode the context belong to */
1408 	pgoff_t cluster_idx;		/* cluster index number */
1409 	unsigned int cluster_size;	/* page count in cluster */
1410 	unsigned int log_cluster_size;	/* log of cluster size */
1411 	struct page **rpages;		/* pages store raw data in cluster */
1412 	unsigned int nr_rpages;		/* total page number in rpages */
1413 	struct page **cpages;		/* pages store compressed data in cluster */
1414 	unsigned int nr_cpages;		/* total page number in cpages */
1415 	void *rbuf;			/* virtual mapped address on rpages */
1416 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1417 	size_t rlen;			/* valid data length in rbuf */
1418 	size_t clen;			/* valid data length in cbuf */
1419 	void *private;			/* payload buffer for specified compression algorithm */
1420 	void *private2;			/* extra payload buffer */
1421 };
1422 
1423 /* compress context for write IO path */
1424 struct compress_io_ctx {
1425 	u32 magic;			/* magic number to indicate page is compressed */
1426 	struct inode *inode;		/* inode the context belong to */
1427 	struct page **rpages;		/* pages store raw data in cluster */
1428 	unsigned int nr_rpages;		/* total page number in rpages */
1429 	atomic_t pending_pages;		/* in-flight compressed page count */
1430 };
1431 
1432 /* Context for decompressing one cluster on the read IO path */
1433 struct decompress_io_ctx {
1434 	u32 magic;			/* magic number to indicate page is compressed */
1435 	struct inode *inode;		/* inode the context belong to */
1436 	pgoff_t cluster_idx;		/* cluster index number */
1437 	unsigned int cluster_size;	/* page count in cluster */
1438 	unsigned int log_cluster_size;	/* log of cluster size */
1439 	struct page **rpages;		/* pages store raw data in cluster */
1440 	unsigned int nr_rpages;		/* total page number in rpages */
1441 	struct page **cpages;		/* pages store compressed data in cluster */
1442 	unsigned int nr_cpages;		/* total page number in cpages */
1443 	struct page **tpages;		/* temp pages to pad holes in cluster */
1444 	void *rbuf;			/* virtual mapped address on rpages */
1445 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1446 	size_t rlen;			/* valid data length in rbuf */
1447 	size_t clen;			/* valid data length in cbuf */
1448 
1449 	/*
1450 	 * The number of compressed pages remaining to be read in this cluster.
1451 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1452 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1453 	 * is decompressed (or an error is reported).
1454 	 *
1455 	 * If an error occurs before all the pages have been submitted for I/O,
1456 	 * then this will never reach 0.  In this case the I/O submitter is
1457 	 * responsible for calling f2fs_decompress_end_io() instead.
1458 	 */
1459 	atomic_t remaining_pages;
1460 
1461 	/*
1462 	 * Number of references to this decompress_io_ctx.
1463 	 *
1464 	 * One reference is held for I/O completion.  This reference is dropped
1465 	 * after the pagecache pages are updated and unlocked -- either after
1466 	 * decompression (and verity if enabled), or after an error.
1467 	 *
1468 	 * In addition, each compressed page holds a reference while it is in a
1469 	 * bio.  These references are necessary prevent compressed pages from
1470 	 * being freed while they are still in a bio.
1471 	 */
1472 	refcount_t refcnt;
1473 
1474 	bool failed;			/* IO error occurred before decompression? */
1475 	bool need_verity;		/* need fs-verity verification after decompression? */
1476 	void *private;			/* payload buffer for specified decompression algorithm */
1477 	void *private2;			/* extra payload buffer */
1478 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1479 };
1480 
1481 #define NULL_CLUSTER			((unsigned int)(~0))
1482 #define MIN_COMPRESS_LOG_SIZE		2
1483 #define MAX_COMPRESS_LOG_SIZE		8
1484 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1485 
1486 struct f2fs_sb_info {
1487 	struct super_block *sb;			/* pointer to VFS super block */
1488 	struct proc_dir_entry *s_proc;		/* proc entry */
1489 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1490 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1491 	int valid_super_block;			/* valid super block no */
1492 	unsigned long s_flag;				/* flags for sbi */
1493 	struct mutex writepages;		/* mutex for writepages() */
1494 
1495 #ifdef CONFIG_BLK_DEV_ZONED
1496 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1497 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1498 #endif
1499 
1500 	/* for node-related operations */
1501 	struct f2fs_nm_info *nm_info;		/* node manager */
1502 	struct inode *node_inode;		/* cache node blocks */
1503 
1504 	/* for segment-related operations */
1505 	struct f2fs_sm_info *sm_info;		/* segment manager */
1506 
1507 	/* for bio operations */
1508 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1509 	/* keep migration IO order for LFS mode */
1510 	struct rw_semaphore io_order_lock;
1511 	mempool_t *write_io_dummy;		/* Dummy pages */
1512 
1513 	/* for checkpoint */
1514 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1515 	int cur_cp_pack;			/* remain current cp pack */
1516 	spinlock_t cp_lock;			/* for flag in ckpt */
1517 	struct inode *meta_inode;		/* cache meta blocks */
1518 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1519 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1520 	struct rw_semaphore node_write;		/* locking node writes */
1521 	struct rw_semaphore node_change;	/* locking node change */
1522 	wait_queue_head_t cp_wait;
1523 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1524 	long interval_time[MAX_TIME];		/* to store thresholds */
1525 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1526 
1527 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1528 
1529 	spinlock_t fsync_node_lock;		/* for node entry lock */
1530 	struct list_head fsync_node_list;	/* node list head */
1531 	unsigned int fsync_seg_id;		/* sequence id */
1532 	unsigned int fsync_node_num;		/* number of node entries */
1533 
1534 	/* for orphan inode, use 0'th array */
1535 	unsigned int max_orphans;		/* max orphan inodes */
1536 
1537 	/* for inode management */
1538 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1539 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1540 	struct mutex flush_lock;		/* for flush exclusion */
1541 
1542 	/* for extent tree cache */
1543 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1544 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1545 	struct list_head extent_list;		/* lru list for shrinker */
1546 	spinlock_t extent_lock;			/* locking extent lru list */
1547 	atomic_t total_ext_tree;		/* extent tree count */
1548 	struct list_head zombie_list;		/* extent zombie tree list */
1549 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1550 	atomic_t total_ext_node;		/* extent info count */
1551 
1552 	/* basic filesystem units */
1553 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1554 	unsigned int log_blocksize;		/* log2 block size */
1555 	unsigned int blocksize;			/* block size */
1556 	unsigned int root_ino_num;		/* root inode number*/
1557 	unsigned int node_ino_num;		/* node inode number*/
1558 	unsigned int meta_ino_num;		/* meta inode number*/
1559 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1560 	unsigned int blocks_per_seg;		/* blocks per segment */
1561 	unsigned int segs_per_sec;		/* segments per section */
1562 	unsigned int secs_per_zone;		/* sections per zone */
1563 	unsigned int total_sections;		/* total section count */
1564 	unsigned int total_node_count;		/* total node block count */
1565 	unsigned int total_valid_node_count;	/* valid node block count */
1566 	int dir_level;				/* directory level */
1567 	int readdir_ra;				/* readahead inode in readdir */
1568 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1569 
1570 	block_t user_block_count;		/* # of user blocks */
1571 	block_t total_valid_block_count;	/* # of valid blocks */
1572 	block_t discard_blks;			/* discard command candidats */
1573 	block_t last_valid_block_count;		/* for recovery */
1574 	block_t reserved_blocks;		/* configurable reserved blocks */
1575 	block_t current_reserved_blocks;	/* current reserved blocks */
1576 
1577 	/* Additional tracking for no checkpoint mode */
1578 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1579 
1580 	unsigned int nquota_files;		/* # of quota sysfile */
1581 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1582 
1583 	/* # of pages, see count_type */
1584 	atomic_t nr_pages[NR_COUNT_TYPE];
1585 	/* # of allocated blocks */
1586 	struct percpu_counter alloc_valid_block_count;
1587 
1588 	/* writeback control */
1589 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1590 
1591 	/* valid inode count */
1592 	struct percpu_counter total_valid_inode_count;
1593 
1594 	struct f2fs_mount_info mount_opt;	/* mount options */
1595 
1596 	/* for cleaning operations */
1597 	struct rw_semaphore gc_lock;		/*
1598 						 * semaphore for GC, avoid
1599 						 * race between GC and GC or CP
1600 						 */
1601 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1602 	struct atgc_management am;		/* atgc management */
1603 	unsigned int cur_victim_sec;		/* current victim section num */
1604 	unsigned int gc_mode;			/* current GC state */
1605 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1606 
1607 	/* for skip statistic */
1608 	unsigned int atomic_files;		/* # of opened atomic file */
1609 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1610 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1611 
1612 	/* threshold for gc trials on pinned files */
1613 	u64 gc_pin_file_threshold;
1614 	struct rw_semaphore pin_sem;
1615 
1616 	/* maximum # of trials to find a victim segment for SSR and GC */
1617 	unsigned int max_victim_search;
1618 	/* migration granularity of garbage collection, unit: segment */
1619 	unsigned int migration_granularity;
1620 
1621 	/*
1622 	 * for stat information.
1623 	 * one is for the LFS mode, and the other is for the SSR mode.
1624 	 */
1625 #ifdef CONFIG_F2FS_STAT_FS
1626 	struct f2fs_stat_info *stat_info;	/* FS status information */
1627 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1628 	unsigned int segment_count[2];		/* # of allocated segments */
1629 	unsigned int block_count[2];		/* # of allocated blocks */
1630 	atomic_t inplace_count;		/* # of inplace update */
1631 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1632 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1633 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1634 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1635 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1636 	atomic_t inline_inode;			/* # of inline_data inodes */
1637 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1638 	atomic_t compr_inode;			/* # of compressed inodes */
1639 	atomic64_t compr_blocks;		/* # of compressed blocks */
1640 	atomic_t vw_cnt;			/* # of volatile writes */
1641 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1642 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1643 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1644 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1645 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1646 #endif
1647 	spinlock_t stat_lock;			/* lock for stat operations */
1648 
1649 	/* For app/fs IO statistics */
1650 	spinlock_t iostat_lock;
1651 	unsigned long long rw_iostat[NR_IO_TYPE];
1652 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1653 	bool iostat_enable;
1654 	unsigned long iostat_next_period;
1655 	unsigned int iostat_period_ms;
1656 
1657 	/* to attach REQ_META|REQ_FUA flags */
1658 	unsigned int data_io_flag;
1659 	unsigned int node_io_flag;
1660 
1661 	/* For sysfs suppport */
1662 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1663 	struct completion s_kobj_unregister;
1664 
1665 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1666 	struct completion s_stat_kobj_unregister;
1667 
1668 	/* For shrinker support */
1669 	struct list_head s_list;
1670 	int s_ndevs;				/* number of devices */
1671 	struct f2fs_dev_info *devs;		/* for device list */
1672 	unsigned int dirty_device;		/* for checkpoint data flush */
1673 	spinlock_t dev_lock;			/* protect dirty_device */
1674 	struct mutex umount_mutex;
1675 	unsigned int shrinker_run_no;
1676 
1677 	/* For write statistics */
1678 	u64 sectors_written_start;
1679 	u64 kbytes_written;
1680 
1681 	/* Reference to checksum algorithm driver via cryptoapi */
1682 	struct crypto_shash *s_chksum_driver;
1683 
1684 	/* Precomputed FS UUID checksum for seeding other checksums */
1685 	__u32 s_chksum_seed;
1686 
1687 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1688 
1689 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1690 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1691 
1692 #ifdef CONFIG_F2FS_FS_COMPRESSION
1693 	struct kmem_cache *page_array_slab;	/* page array entry */
1694 	unsigned int page_array_slab_size;	/* default page array slab size */
1695 
1696 	/* For runtime compression statistics */
1697 	u64 compr_written_block;
1698 	u64 compr_saved_block;
1699 	u32 compr_new_inode;
1700 #endif
1701 };
1702 
1703 struct f2fs_private_dio {
1704 	struct inode *inode;
1705 	void *orig_private;
1706 	bio_end_io_t *orig_end_io;
1707 	bool write;
1708 };
1709 
1710 #ifdef CONFIG_F2FS_FAULT_INJECTION
1711 #define f2fs_show_injection_info(sbi, type)					\
1712 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1713 		KERN_INFO, sbi->sb->s_id,				\
1714 		f2fs_fault_name[type],					\
1715 		__func__, __builtin_return_address(0))
1716 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1717 {
1718 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1719 
1720 	if (!ffi->inject_rate)
1721 		return false;
1722 
1723 	if (!IS_FAULT_SET(ffi, type))
1724 		return false;
1725 
1726 	atomic_inc(&ffi->inject_ops);
1727 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1728 		atomic_set(&ffi->inject_ops, 0);
1729 		return true;
1730 	}
1731 	return false;
1732 }
1733 #else
1734 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1735 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1736 {
1737 	return false;
1738 }
1739 #endif
1740 
1741 /*
1742  * Test if the mounted volume is a multi-device volume.
1743  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1744  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1745  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1746  */
1747 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1748 {
1749 	return sbi->s_ndevs > 1;
1750 }
1751 
1752 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1753 {
1754 	unsigned long now = jiffies;
1755 
1756 	sbi->last_time[type] = now;
1757 
1758 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1759 	if (type == REQ_TIME) {
1760 		sbi->last_time[DISCARD_TIME] = now;
1761 		sbi->last_time[GC_TIME] = now;
1762 	}
1763 }
1764 
1765 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1766 {
1767 	unsigned long interval = sbi->interval_time[type] * HZ;
1768 
1769 	return time_after(jiffies, sbi->last_time[type] + interval);
1770 }
1771 
1772 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1773 						int type)
1774 {
1775 	unsigned long interval = sbi->interval_time[type] * HZ;
1776 	unsigned int wait_ms = 0;
1777 	long delta;
1778 
1779 	delta = (sbi->last_time[type] + interval) - jiffies;
1780 	if (delta > 0)
1781 		wait_ms = jiffies_to_msecs(delta);
1782 
1783 	return wait_ms;
1784 }
1785 
1786 /*
1787  * Inline functions
1788  */
1789 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1790 			      const void *address, unsigned int length)
1791 {
1792 	struct {
1793 		struct shash_desc shash;
1794 		char ctx[4];
1795 	} desc;
1796 	int err;
1797 
1798 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1799 
1800 	desc.shash.tfm = sbi->s_chksum_driver;
1801 	*(u32 *)desc.ctx = crc;
1802 
1803 	err = crypto_shash_update(&desc.shash, address, length);
1804 	BUG_ON(err);
1805 
1806 	return *(u32 *)desc.ctx;
1807 }
1808 
1809 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1810 			   unsigned int length)
1811 {
1812 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1813 }
1814 
1815 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1816 				  void *buf, size_t buf_size)
1817 {
1818 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1819 }
1820 
1821 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1822 			      const void *address, unsigned int length)
1823 {
1824 	return __f2fs_crc32(sbi, crc, address, length);
1825 }
1826 
1827 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1828 {
1829 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1830 }
1831 
1832 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1833 {
1834 	return sb->s_fs_info;
1835 }
1836 
1837 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1838 {
1839 	return F2FS_SB(inode->i_sb);
1840 }
1841 
1842 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1843 {
1844 	return F2FS_I_SB(mapping->host);
1845 }
1846 
1847 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1848 {
1849 	return F2FS_M_SB(page_file_mapping(page));
1850 }
1851 
1852 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1853 {
1854 	return (struct f2fs_super_block *)(sbi->raw_super);
1855 }
1856 
1857 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1858 {
1859 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1860 }
1861 
1862 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1863 {
1864 	return (struct f2fs_node *)page_address(page);
1865 }
1866 
1867 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1868 {
1869 	return &((struct f2fs_node *)page_address(page))->i;
1870 }
1871 
1872 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1873 {
1874 	return (struct f2fs_nm_info *)(sbi->nm_info);
1875 }
1876 
1877 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1878 {
1879 	return (struct f2fs_sm_info *)(sbi->sm_info);
1880 }
1881 
1882 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1883 {
1884 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1885 }
1886 
1887 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1888 {
1889 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1890 }
1891 
1892 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1893 {
1894 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1895 }
1896 
1897 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1898 {
1899 	return sbi->meta_inode->i_mapping;
1900 }
1901 
1902 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1903 {
1904 	return sbi->node_inode->i_mapping;
1905 }
1906 
1907 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1908 {
1909 	return test_bit(type, &sbi->s_flag);
1910 }
1911 
1912 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1913 {
1914 	set_bit(type, &sbi->s_flag);
1915 }
1916 
1917 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1918 {
1919 	clear_bit(type, &sbi->s_flag);
1920 }
1921 
1922 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1923 {
1924 	return le64_to_cpu(cp->checkpoint_ver);
1925 }
1926 
1927 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1928 {
1929 	if (type < F2FS_MAX_QUOTAS)
1930 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1931 	return 0;
1932 }
1933 
1934 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1935 {
1936 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1937 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1938 }
1939 
1940 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1941 {
1942 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1943 
1944 	return ckpt_flags & f;
1945 }
1946 
1947 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1948 {
1949 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1950 }
1951 
1952 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1953 {
1954 	unsigned int ckpt_flags;
1955 
1956 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1957 	ckpt_flags |= f;
1958 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1959 }
1960 
1961 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1962 {
1963 	unsigned long flags;
1964 
1965 	spin_lock_irqsave(&sbi->cp_lock, flags);
1966 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1967 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1968 }
1969 
1970 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1971 {
1972 	unsigned int ckpt_flags;
1973 
1974 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1975 	ckpt_flags &= (~f);
1976 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1977 }
1978 
1979 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1980 {
1981 	unsigned long flags;
1982 
1983 	spin_lock_irqsave(&sbi->cp_lock, flags);
1984 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1985 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1986 }
1987 
1988 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1989 {
1990 	unsigned long flags;
1991 	unsigned char *nat_bits;
1992 
1993 	/*
1994 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1995 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1996 	 * so let's rely on regular fsck or unclean shutdown.
1997 	 */
1998 
1999 	if (lock)
2000 		spin_lock_irqsave(&sbi->cp_lock, flags);
2001 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2002 	nat_bits = NM_I(sbi)->nat_bits;
2003 	NM_I(sbi)->nat_bits = NULL;
2004 	if (lock)
2005 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
2006 
2007 	kvfree(nat_bits);
2008 }
2009 
2010 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2011 					struct cp_control *cpc)
2012 {
2013 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2014 
2015 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2016 }
2017 
2018 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2019 {
2020 	down_read(&sbi->cp_rwsem);
2021 }
2022 
2023 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2024 {
2025 	return down_read_trylock(&sbi->cp_rwsem);
2026 }
2027 
2028 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2029 {
2030 	up_read(&sbi->cp_rwsem);
2031 }
2032 
2033 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2034 {
2035 	down_write(&sbi->cp_rwsem);
2036 }
2037 
2038 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2039 {
2040 	up_write(&sbi->cp_rwsem);
2041 }
2042 
2043 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2044 {
2045 	int reason = CP_SYNC;
2046 
2047 	if (test_opt(sbi, FASTBOOT))
2048 		reason = CP_FASTBOOT;
2049 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2050 		reason = CP_UMOUNT;
2051 	return reason;
2052 }
2053 
2054 static inline bool __remain_node_summaries(int reason)
2055 {
2056 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2057 }
2058 
2059 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2060 {
2061 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2062 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2063 }
2064 
2065 /*
2066  * Check whether the inode has blocks or not
2067  */
2068 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2069 {
2070 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2071 
2072 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2073 }
2074 
2075 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2076 {
2077 	return ofs == XATTR_NODE_OFFSET;
2078 }
2079 
2080 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2081 					struct inode *inode, bool cap)
2082 {
2083 	if (!inode)
2084 		return true;
2085 	if (!test_opt(sbi, RESERVE_ROOT))
2086 		return false;
2087 	if (IS_NOQUOTA(inode))
2088 		return true;
2089 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2090 		return true;
2091 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2092 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2093 		return true;
2094 	if (cap && capable(CAP_SYS_RESOURCE))
2095 		return true;
2096 	return false;
2097 }
2098 
2099 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2100 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2101 				 struct inode *inode, blkcnt_t *count)
2102 {
2103 	blkcnt_t diff = 0, release = 0;
2104 	block_t avail_user_block_count;
2105 	int ret;
2106 
2107 	ret = dquot_reserve_block(inode, *count);
2108 	if (ret)
2109 		return ret;
2110 
2111 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2112 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2113 		release = *count;
2114 		goto release_quota;
2115 	}
2116 
2117 	/*
2118 	 * let's increase this in prior to actual block count change in order
2119 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2120 	 */
2121 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2122 
2123 	spin_lock(&sbi->stat_lock);
2124 	sbi->total_valid_block_count += (block_t)(*count);
2125 	avail_user_block_count = sbi->user_block_count -
2126 					sbi->current_reserved_blocks;
2127 
2128 	if (!__allow_reserved_blocks(sbi, inode, true))
2129 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2130 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2131 		if (avail_user_block_count > sbi->unusable_block_count)
2132 			avail_user_block_count -= sbi->unusable_block_count;
2133 		else
2134 			avail_user_block_count = 0;
2135 	}
2136 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2137 		diff = sbi->total_valid_block_count - avail_user_block_count;
2138 		if (diff > *count)
2139 			diff = *count;
2140 		*count -= diff;
2141 		release = diff;
2142 		sbi->total_valid_block_count -= diff;
2143 		if (!*count) {
2144 			spin_unlock(&sbi->stat_lock);
2145 			goto enospc;
2146 		}
2147 	}
2148 	spin_unlock(&sbi->stat_lock);
2149 
2150 	if (unlikely(release)) {
2151 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2152 		dquot_release_reservation_block(inode, release);
2153 	}
2154 	f2fs_i_blocks_write(inode, *count, true, true);
2155 	return 0;
2156 
2157 enospc:
2158 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2159 release_quota:
2160 	dquot_release_reservation_block(inode, release);
2161 	return -ENOSPC;
2162 }
2163 
2164 __printf(2, 3)
2165 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2166 
2167 #define f2fs_err(sbi, fmt, ...)						\
2168 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2169 #define f2fs_warn(sbi, fmt, ...)					\
2170 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2171 #define f2fs_notice(sbi, fmt, ...)					\
2172 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2173 #define f2fs_info(sbi, fmt, ...)					\
2174 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2175 #define f2fs_debug(sbi, fmt, ...)					\
2176 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2177 
2178 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2179 						struct inode *inode,
2180 						block_t count)
2181 {
2182 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2183 
2184 	spin_lock(&sbi->stat_lock);
2185 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2186 	sbi->total_valid_block_count -= (block_t)count;
2187 	if (sbi->reserved_blocks &&
2188 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2189 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2190 					sbi->current_reserved_blocks + count);
2191 	spin_unlock(&sbi->stat_lock);
2192 	if (unlikely(inode->i_blocks < sectors)) {
2193 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2194 			  inode->i_ino,
2195 			  (unsigned long long)inode->i_blocks,
2196 			  (unsigned long long)sectors);
2197 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2198 		return;
2199 	}
2200 	f2fs_i_blocks_write(inode, count, false, true);
2201 }
2202 
2203 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2204 {
2205 	atomic_inc(&sbi->nr_pages[count_type]);
2206 
2207 	if (count_type == F2FS_DIRTY_DENTS ||
2208 			count_type == F2FS_DIRTY_NODES ||
2209 			count_type == F2FS_DIRTY_META ||
2210 			count_type == F2FS_DIRTY_QDATA ||
2211 			count_type == F2FS_DIRTY_IMETA)
2212 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2213 }
2214 
2215 static inline void inode_inc_dirty_pages(struct inode *inode)
2216 {
2217 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2218 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2219 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2220 	if (IS_NOQUOTA(inode))
2221 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2222 }
2223 
2224 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2225 {
2226 	atomic_dec(&sbi->nr_pages[count_type]);
2227 }
2228 
2229 static inline void inode_dec_dirty_pages(struct inode *inode)
2230 {
2231 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2232 			!S_ISLNK(inode->i_mode))
2233 		return;
2234 
2235 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2236 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2237 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2238 	if (IS_NOQUOTA(inode))
2239 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2240 }
2241 
2242 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2243 {
2244 	return atomic_read(&sbi->nr_pages[count_type]);
2245 }
2246 
2247 static inline int get_dirty_pages(struct inode *inode)
2248 {
2249 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2250 }
2251 
2252 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2253 {
2254 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2255 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2256 						sbi->log_blocks_per_seg;
2257 
2258 	return segs / sbi->segs_per_sec;
2259 }
2260 
2261 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2262 {
2263 	return sbi->total_valid_block_count;
2264 }
2265 
2266 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2267 {
2268 	return sbi->discard_blks;
2269 }
2270 
2271 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2272 {
2273 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2274 
2275 	/* return NAT or SIT bitmap */
2276 	if (flag == NAT_BITMAP)
2277 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2278 	else if (flag == SIT_BITMAP)
2279 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2280 
2281 	return 0;
2282 }
2283 
2284 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2285 {
2286 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2287 }
2288 
2289 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2290 {
2291 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2292 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2293 	int offset;
2294 
2295 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2296 		offset = (flag == SIT_BITMAP) ?
2297 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2298 		/*
2299 		 * if large_nat_bitmap feature is enabled, leave checksum
2300 		 * protection for all nat/sit bitmaps.
2301 		 */
2302 		return tmp_ptr + offset + sizeof(__le32);
2303 	}
2304 
2305 	if (__cp_payload(sbi) > 0) {
2306 		if (flag == NAT_BITMAP)
2307 			return &ckpt->sit_nat_version_bitmap;
2308 		else
2309 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2310 	} else {
2311 		offset = (flag == NAT_BITMAP) ?
2312 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2313 		return tmp_ptr + offset;
2314 	}
2315 }
2316 
2317 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2318 {
2319 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2320 
2321 	if (sbi->cur_cp_pack == 2)
2322 		start_addr += sbi->blocks_per_seg;
2323 	return start_addr;
2324 }
2325 
2326 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2327 {
2328 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2329 
2330 	if (sbi->cur_cp_pack == 1)
2331 		start_addr += sbi->blocks_per_seg;
2332 	return start_addr;
2333 }
2334 
2335 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2336 {
2337 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2338 }
2339 
2340 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2341 {
2342 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2343 }
2344 
2345 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2346 					struct inode *inode, bool is_inode)
2347 {
2348 	block_t	valid_block_count;
2349 	unsigned int valid_node_count, user_block_count;
2350 	int err;
2351 
2352 	if (is_inode) {
2353 		if (inode) {
2354 			err = dquot_alloc_inode(inode);
2355 			if (err)
2356 				return err;
2357 		}
2358 	} else {
2359 		err = dquot_reserve_block(inode, 1);
2360 		if (err)
2361 			return err;
2362 	}
2363 
2364 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2365 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2366 		goto enospc;
2367 	}
2368 
2369 	spin_lock(&sbi->stat_lock);
2370 
2371 	valid_block_count = sbi->total_valid_block_count +
2372 					sbi->current_reserved_blocks + 1;
2373 
2374 	if (!__allow_reserved_blocks(sbi, inode, false))
2375 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2376 	user_block_count = sbi->user_block_count;
2377 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2378 		user_block_count -= sbi->unusable_block_count;
2379 
2380 	if (unlikely(valid_block_count > user_block_count)) {
2381 		spin_unlock(&sbi->stat_lock);
2382 		goto enospc;
2383 	}
2384 
2385 	valid_node_count = sbi->total_valid_node_count + 1;
2386 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2387 		spin_unlock(&sbi->stat_lock);
2388 		goto enospc;
2389 	}
2390 
2391 	sbi->total_valid_node_count++;
2392 	sbi->total_valid_block_count++;
2393 	spin_unlock(&sbi->stat_lock);
2394 
2395 	if (inode) {
2396 		if (is_inode)
2397 			f2fs_mark_inode_dirty_sync(inode, true);
2398 		else
2399 			f2fs_i_blocks_write(inode, 1, true, true);
2400 	}
2401 
2402 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2403 	return 0;
2404 
2405 enospc:
2406 	if (is_inode) {
2407 		if (inode)
2408 			dquot_free_inode(inode);
2409 	} else {
2410 		dquot_release_reservation_block(inode, 1);
2411 	}
2412 	return -ENOSPC;
2413 }
2414 
2415 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2416 					struct inode *inode, bool is_inode)
2417 {
2418 	spin_lock(&sbi->stat_lock);
2419 
2420 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2421 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2422 
2423 	sbi->total_valid_node_count--;
2424 	sbi->total_valid_block_count--;
2425 	if (sbi->reserved_blocks &&
2426 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2427 		sbi->current_reserved_blocks++;
2428 
2429 	spin_unlock(&sbi->stat_lock);
2430 
2431 	if (is_inode) {
2432 		dquot_free_inode(inode);
2433 	} else {
2434 		if (unlikely(inode->i_blocks == 0)) {
2435 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2436 				  inode->i_ino,
2437 				  (unsigned long long)inode->i_blocks);
2438 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2439 			return;
2440 		}
2441 		f2fs_i_blocks_write(inode, 1, false, true);
2442 	}
2443 }
2444 
2445 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2446 {
2447 	return sbi->total_valid_node_count;
2448 }
2449 
2450 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2451 {
2452 	percpu_counter_inc(&sbi->total_valid_inode_count);
2453 }
2454 
2455 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2456 {
2457 	percpu_counter_dec(&sbi->total_valid_inode_count);
2458 }
2459 
2460 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2461 {
2462 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2463 }
2464 
2465 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2466 						pgoff_t index, bool for_write)
2467 {
2468 	struct page *page;
2469 
2470 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2471 		if (!for_write)
2472 			page = find_get_page_flags(mapping, index,
2473 							FGP_LOCK | FGP_ACCESSED);
2474 		else
2475 			page = find_lock_page(mapping, index);
2476 		if (page)
2477 			return page;
2478 
2479 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2480 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2481 							FAULT_PAGE_ALLOC);
2482 			return NULL;
2483 		}
2484 	}
2485 
2486 	if (!for_write)
2487 		return grab_cache_page(mapping, index);
2488 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2489 }
2490 
2491 static inline struct page *f2fs_pagecache_get_page(
2492 				struct address_space *mapping, pgoff_t index,
2493 				int fgp_flags, gfp_t gfp_mask)
2494 {
2495 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2496 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2497 		return NULL;
2498 	}
2499 
2500 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2501 }
2502 
2503 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2504 {
2505 	char *src_kaddr = kmap(src);
2506 	char *dst_kaddr = kmap(dst);
2507 
2508 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2509 	kunmap(dst);
2510 	kunmap(src);
2511 }
2512 
2513 static inline void f2fs_put_page(struct page *page, int unlock)
2514 {
2515 	if (!page)
2516 		return;
2517 
2518 	if (unlock) {
2519 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2520 		unlock_page(page);
2521 	}
2522 	put_page(page);
2523 }
2524 
2525 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2526 {
2527 	if (dn->node_page)
2528 		f2fs_put_page(dn->node_page, 1);
2529 	if (dn->inode_page && dn->node_page != dn->inode_page)
2530 		f2fs_put_page(dn->inode_page, 0);
2531 	dn->node_page = NULL;
2532 	dn->inode_page = NULL;
2533 }
2534 
2535 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2536 					size_t size)
2537 {
2538 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2539 }
2540 
2541 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2542 						gfp_t flags)
2543 {
2544 	void *entry;
2545 
2546 	entry = kmem_cache_alloc(cachep, flags);
2547 	if (!entry)
2548 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2549 	return entry;
2550 }
2551 
2552 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2553 {
2554 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2555 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2556 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2557 		get_pages(sbi, F2FS_DIO_READ) ||
2558 		get_pages(sbi, F2FS_DIO_WRITE))
2559 		return true;
2560 
2561 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2562 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2563 		return true;
2564 
2565 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2566 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2567 		return true;
2568 	return false;
2569 }
2570 
2571 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2572 {
2573 	if (sbi->gc_mode == GC_URGENT_HIGH)
2574 		return true;
2575 
2576 	if (is_inflight_io(sbi, type))
2577 		return false;
2578 
2579 	if (sbi->gc_mode == GC_URGENT_LOW &&
2580 			(type == DISCARD_TIME || type == GC_TIME))
2581 		return true;
2582 
2583 	return f2fs_time_over(sbi, type);
2584 }
2585 
2586 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2587 				unsigned long index, void *item)
2588 {
2589 	while (radix_tree_insert(root, index, item))
2590 		cond_resched();
2591 }
2592 
2593 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2594 
2595 static inline bool IS_INODE(struct page *page)
2596 {
2597 	struct f2fs_node *p = F2FS_NODE(page);
2598 
2599 	return RAW_IS_INODE(p);
2600 }
2601 
2602 static inline int offset_in_addr(struct f2fs_inode *i)
2603 {
2604 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2605 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2606 }
2607 
2608 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2609 {
2610 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2611 }
2612 
2613 static inline int f2fs_has_extra_attr(struct inode *inode);
2614 static inline block_t data_blkaddr(struct inode *inode,
2615 			struct page *node_page, unsigned int offset)
2616 {
2617 	struct f2fs_node *raw_node;
2618 	__le32 *addr_array;
2619 	int base = 0;
2620 	bool is_inode = IS_INODE(node_page);
2621 
2622 	raw_node = F2FS_NODE(node_page);
2623 
2624 	if (is_inode) {
2625 		if (!inode)
2626 			/* from GC path only */
2627 			base = offset_in_addr(&raw_node->i);
2628 		else if (f2fs_has_extra_attr(inode))
2629 			base = get_extra_isize(inode);
2630 	}
2631 
2632 	addr_array = blkaddr_in_node(raw_node);
2633 	return le32_to_cpu(addr_array[base + offset]);
2634 }
2635 
2636 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2637 {
2638 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2639 }
2640 
2641 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2642 {
2643 	int mask;
2644 
2645 	addr += (nr >> 3);
2646 	mask = 1 << (7 - (nr & 0x07));
2647 	return mask & *addr;
2648 }
2649 
2650 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2651 {
2652 	int mask;
2653 
2654 	addr += (nr >> 3);
2655 	mask = 1 << (7 - (nr & 0x07));
2656 	*addr |= mask;
2657 }
2658 
2659 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2660 {
2661 	int mask;
2662 
2663 	addr += (nr >> 3);
2664 	mask = 1 << (7 - (nr & 0x07));
2665 	*addr &= ~mask;
2666 }
2667 
2668 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2669 {
2670 	int mask;
2671 	int ret;
2672 
2673 	addr += (nr >> 3);
2674 	mask = 1 << (7 - (nr & 0x07));
2675 	ret = mask & *addr;
2676 	*addr |= mask;
2677 	return ret;
2678 }
2679 
2680 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2681 {
2682 	int mask;
2683 	int ret;
2684 
2685 	addr += (nr >> 3);
2686 	mask = 1 << (7 - (nr & 0x07));
2687 	ret = mask & *addr;
2688 	*addr &= ~mask;
2689 	return ret;
2690 }
2691 
2692 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2693 {
2694 	int mask;
2695 
2696 	addr += (nr >> 3);
2697 	mask = 1 << (7 - (nr & 0x07));
2698 	*addr ^= mask;
2699 }
2700 
2701 /*
2702  * On-disk inode flags (f2fs_inode::i_flags)
2703  */
2704 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2705 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2706 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2707 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2708 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2709 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2710 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2711 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2712 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2713 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2714 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2715 
2716 /* Flags that should be inherited by new inodes from their parent. */
2717 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2718 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2719 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2720 
2721 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2722 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2723 				F2FS_CASEFOLD_FL))
2724 
2725 /* Flags that are appropriate for non-directories/regular files. */
2726 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2727 
2728 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2729 {
2730 	if (S_ISDIR(mode))
2731 		return flags;
2732 	else if (S_ISREG(mode))
2733 		return flags & F2FS_REG_FLMASK;
2734 	else
2735 		return flags & F2FS_OTHER_FLMASK;
2736 }
2737 
2738 static inline void __mark_inode_dirty_flag(struct inode *inode,
2739 						int flag, bool set)
2740 {
2741 	switch (flag) {
2742 	case FI_INLINE_XATTR:
2743 	case FI_INLINE_DATA:
2744 	case FI_INLINE_DENTRY:
2745 	case FI_NEW_INODE:
2746 		if (set)
2747 			return;
2748 		fallthrough;
2749 	case FI_DATA_EXIST:
2750 	case FI_INLINE_DOTS:
2751 	case FI_PIN_FILE:
2752 	case FI_COMPRESS_RELEASED:
2753 		f2fs_mark_inode_dirty_sync(inode, true);
2754 	}
2755 }
2756 
2757 static inline void set_inode_flag(struct inode *inode, int flag)
2758 {
2759 	set_bit(flag, F2FS_I(inode)->flags);
2760 	__mark_inode_dirty_flag(inode, flag, true);
2761 }
2762 
2763 static inline int is_inode_flag_set(struct inode *inode, int flag)
2764 {
2765 	return test_bit(flag, F2FS_I(inode)->flags);
2766 }
2767 
2768 static inline void clear_inode_flag(struct inode *inode, int flag)
2769 {
2770 	clear_bit(flag, F2FS_I(inode)->flags);
2771 	__mark_inode_dirty_flag(inode, flag, false);
2772 }
2773 
2774 static inline bool f2fs_verity_in_progress(struct inode *inode)
2775 {
2776 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2777 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2778 }
2779 
2780 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2781 {
2782 	F2FS_I(inode)->i_acl_mode = mode;
2783 	set_inode_flag(inode, FI_ACL_MODE);
2784 	f2fs_mark_inode_dirty_sync(inode, false);
2785 }
2786 
2787 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2788 {
2789 	if (inc)
2790 		inc_nlink(inode);
2791 	else
2792 		drop_nlink(inode);
2793 	f2fs_mark_inode_dirty_sync(inode, true);
2794 }
2795 
2796 static inline void f2fs_i_blocks_write(struct inode *inode,
2797 					block_t diff, bool add, bool claim)
2798 {
2799 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2800 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2801 
2802 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2803 	if (add) {
2804 		if (claim)
2805 			dquot_claim_block(inode, diff);
2806 		else
2807 			dquot_alloc_block_nofail(inode, diff);
2808 	} else {
2809 		dquot_free_block(inode, diff);
2810 	}
2811 
2812 	f2fs_mark_inode_dirty_sync(inode, true);
2813 	if (clean || recover)
2814 		set_inode_flag(inode, FI_AUTO_RECOVER);
2815 }
2816 
2817 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2818 {
2819 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2820 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2821 
2822 	if (i_size_read(inode) == i_size)
2823 		return;
2824 
2825 	i_size_write(inode, i_size);
2826 	f2fs_mark_inode_dirty_sync(inode, true);
2827 	if (clean || recover)
2828 		set_inode_flag(inode, FI_AUTO_RECOVER);
2829 }
2830 
2831 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2832 {
2833 	F2FS_I(inode)->i_current_depth = depth;
2834 	f2fs_mark_inode_dirty_sync(inode, true);
2835 }
2836 
2837 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2838 					unsigned int count)
2839 {
2840 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2841 	f2fs_mark_inode_dirty_sync(inode, true);
2842 }
2843 
2844 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2845 {
2846 	F2FS_I(inode)->i_xattr_nid = xnid;
2847 	f2fs_mark_inode_dirty_sync(inode, true);
2848 }
2849 
2850 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2851 {
2852 	F2FS_I(inode)->i_pino = pino;
2853 	f2fs_mark_inode_dirty_sync(inode, true);
2854 }
2855 
2856 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2857 {
2858 	struct f2fs_inode_info *fi = F2FS_I(inode);
2859 
2860 	if (ri->i_inline & F2FS_INLINE_XATTR)
2861 		set_bit(FI_INLINE_XATTR, fi->flags);
2862 	if (ri->i_inline & F2FS_INLINE_DATA)
2863 		set_bit(FI_INLINE_DATA, fi->flags);
2864 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2865 		set_bit(FI_INLINE_DENTRY, fi->flags);
2866 	if (ri->i_inline & F2FS_DATA_EXIST)
2867 		set_bit(FI_DATA_EXIST, fi->flags);
2868 	if (ri->i_inline & F2FS_INLINE_DOTS)
2869 		set_bit(FI_INLINE_DOTS, fi->flags);
2870 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2871 		set_bit(FI_EXTRA_ATTR, fi->flags);
2872 	if (ri->i_inline & F2FS_PIN_FILE)
2873 		set_bit(FI_PIN_FILE, fi->flags);
2874 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2875 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
2876 }
2877 
2878 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2879 {
2880 	ri->i_inline = 0;
2881 
2882 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2883 		ri->i_inline |= F2FS_INLINE_XATTR;
2884 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2885 		ri->i_inline |= F2FS_INLINE_DATA;
2886 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2887 		ri->i_inline |= F2FS_INLINE_DENTRY;
2888 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2889 		ri->i_inline |= F2FS_DATA_EXIST;
2890 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2891 		ri->i_inline |= F2FS_INLINE_DOTS;
2892 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2893 		ri->i_inline |= F2FS_EXTRA_ATTR;
2894 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2895 		ri->i_inline |= F2FS_PIN_FILE;
2896 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
2897 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
2898 }
2899 
2900 static inline int f2fs_has_extra_attr(struct inode *inode)
2901 {
2902 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2903 }
2904 
2905 static inline int f2fs_has_inline_xattr(struct inode *inode)
2906 {
2907 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2908 }
2909 
2910 static inline int f2fs_compressed_file(struct inode *inode)
2911 {
2912 	return S_ISREG(inode->i_mode) &&
2913 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2914 }
2915 
2916 static inline bool f2fs_need_compress_data(struct inode *inode)
2917 {
2918 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2919 
2920 	if (!f2fs_compressed_file(inode))
2921 		return false;
2922 
2923 	if (compress_mode == COMPR_MODE_FS)
2924 		return true;
2925 	else if (compress_mode == COMPR_MODE_USER &&
2926 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2927 		return true;
2928 
2929 	return false;
2930 }
2931 
2932 static inline unsigned int addrs_per_inode(struct inode *inode)
2933 {
2934 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2935 				get_inline_xattr_addrs(inode);
2936 
2937 	if (!f2fs_compressed_file(inode))
2938 		return addrs;
2939 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2940 }
2941 
2942 static inline unsigned int addrs_per_block(struct inode *inode)
2943 {
2944 	if (!f2fs_compressed_file(inode))
2945 		return DEF_ADDRS_PER_BLOCK;
2946 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2947 }
2948 
2949 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2950 {
2951 	struct f2fs_inode *ri = F2FS_INODE(page);
2952 
2953 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2954 					get_inline_xattr_addrs(inode)]);
2955 }
2956 
2957 static inline int inline_xattr_size(struct inode *inode)
2958 {
2959 	if (f2fs_has_inline_xattr(inode))
2960 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2961 	return 0;
2962 }
2963 
2964 static inline int f2fs_has_inline_data(struct inode *inode)
2965 {
2966 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2967 }
2968 
2969 static inline int f2fs_exist_data(struct inode *inode)
2970 {
2971 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2972 }
2973 
2974 static inline int f2fs_has_inline_dots(struct inode *inode)
2975 {
2976 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2977 }
2978 
2979 static inline int f2fs_is_mmap_file(struct inode *inode)
2980 {
2981 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2982 }
2983 
2984 static inline bool f2fs_is_pinned_file(struct inode *inode)
2985 {
2986 	return is_inode_flag_set(inode, FI_PIN_FILE);
2987 }
2988 
2989 static inline bool f2fs_is_atomic_file(struct inode *inode)
2990 {
2991 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2992 }
2993 
2994 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2995 {
2996 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2997 }
2998 
2999 static inline bool f2fs_is_volatile_file(struct inode *inode)
3000 {
3001 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3002 }
3003 
3004 static inline bool f2fs_is_first_block_written(struct inode *inode)
3005 {
3006 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3007 }
3008 
3009 static inline bool f2fs_is_drop_cache(struct inode *inode)
3010 {
3011 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3012 }
3013 
3014 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3015 {
3016 	struct f2fs_inode *ri = F2FS_INODE(page);
3017 	int extra_size = get_extra_isize(inode);
3018 
3019 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3020 }
3021 
3022 static inline int f2fs_has_inline_dentry(struct inode *inode)
3023 {
3024 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3025 }
3026 
3027 static inline int is_file(struct inode *inode, int type)
3028 {
3029 	return F2FS_I(inode)->i_advise & type;
3030 }
3031 
3032 static inline void set_file(struct inode *inode, int type)
3033 {
3034 	F2FS_I(inode)->i_advise |= type;
3035 	f2fs_mark_inode_dirty_sync(inode, true);
3036 }
3037 
3038 static inline void clear_file(struct inode *inode, int type)
3039 {
3040 	F2FS_I(inode)->i_advise &= ~type;
3041 	f2fs_mark_inode_dirty_sync(inode, true);
3042 }
3043 
3044 static inline bool f2fs_is_time_consistent(struct inode *inode)
3045 {
3046 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3047 		return false;
3048 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3049 		return false;
3050 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3051 		return false;
3052 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3053 						&F2FS_I(inode)->i_crtime))
3054 		return false;
3055 	return true;
3056 }
3057 
3058 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3059 {
3060 	bool ret;
3061 
3062 	if (dsync) {
3063 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3064 
3065 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3066 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3067 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3068 		return ret;
3069 	}
3070 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3071 			file_keep_isize(inode) ||
3072 			i_size_read(inode) & ~PAGE_MASK)
3073 		return false;
3074 
3075 	if (!f2fs_is_time_consistent(inode))
3076 		return false;
3077 
3078 	spin_lock(&F2FS_I(inode)->i_size_lock);
3079 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3080 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3081 
3082 	return ret;
3083 }
3084 
3085 static inline bool f2fs_readonly(struct super_block *sb)
3086 {
3087 	return sb_rdonly(sb);
3088 }
3089 
3090 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3091 {
3092 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3093 }
3094 
3095 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3096 {
3097 	if (len == 1 && name[0] == '.')
3098 		return true;
3099 
3100 	if (len == 2 && name[0] == '.' && name[1] == '.')
3101 		return true;
3102 
3103 	return false;
3104 }
3105 
3106 static inline bool f2fs_may_extent_tree(struct inode *inode)
3107 {
3108 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3109 
3110 	if (!test_opt(sbi, EXTENT_CACHE) ||
3111 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
3112 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3113 		return false;
3114 
3115 	/*
3116 	 * for recovered files during mount do not create extents
3117 	 * if shrinker is not registered.
3118 	 */
3119 	if (list_empty(&sbi->s_list))
3120 		return false;
3121 
3122 	return S_ISREG(inode->i_mode);
3123 }
3124 
3125 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3126 					size_t size, gfp_t flags)
3127 {
3128 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3129 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3130 		return NULL;
3131 	}
3132 
3133 	return kmalloc(size, flags);
3134 }
3135 
3136 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3137 					size_t size, gfp_t flags)
3138 {
3139 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3140 }
3141 
3142 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3143 					size_t size, gfp_t flags)
3144 {
3145 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3146 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3147 		return NULL;
3148 	}
3149 
3150 	return kvmalloc(size, flags);
3151 }
3152 
3153 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3154 					size_t size, gfp_t flags)
3155 {
3156 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3157 }
3158 
3159 static inline int get_extra_isize(struct inode *inode)
3160 {
3161 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3162 }
3163 
3164 static inline int get_inline_xattr_addrs(struct inode *inode)
3165 {
3166 	return F2FS_I(inode)->i_inline_xattr_size;
3167 }
3168 
3169 #define f2fs_get_inode_mode(i) \
3170 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3171 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3172 
3173 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3174 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3175 	offsetof(struct f2fs_inode, i_extra_isize))	\
3176 
3177 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3178 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3179 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3180 		sizeof((f2fs_inode)->field))			\
3181 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3182 
3183 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3184 #define MIN_IOSTAT_PERIOD_MS		100
3185 /* maximum period of iostat tracing is 1 day */
3186 #define MAX_IOSTAT_PERIOD_MS		8640000
3187 
3188 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3189 {
3190 	int i;
3191 
3192 	spin_lock(&sbi->iostat_lock);
3193 	for (i = 0; i < NR_IO_TYPE; i++) {
3194 		sbi->rw_iostat[i] = 0;
3195 		sbi->prev_rw_iostat[i] = 0;
3196 	}
3197 	spin_unlock(&sbi->iostat_lock);
3198 }
3199 
3200 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3201 
3202 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3203 			enum iostat_type type, unsigned long long io_bytes)
3204 {
3205 	if (!sbi->iostat_enable)
3206 		return;
3207 	spin_lock(&sbi->iostat_lock);
3208 	sbi->rw_iostat[type] += io_bytes;
3209 
3210 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3211 		sbi->rw_iostat[APP_BUFFERED_IO] =
3212 			sbi->rw_iostat[APP_WRITE_IO] -
3213 			sbi->rw_iostat[APP_DIRECT_IO];
3214 
3215 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3216 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3217 			sbi->rw_iostat[APP_READ_IO] -
3218 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3219 	spin_unlock(&sbi->iostat_lock);
3220 
3221 	f2fs_record_iostat(sbi);
3222 }
3223 
3224 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3225 
3226 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3227 
3228 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3229 					block_t blkaddr, int type);
3230 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3231 					block_t blkaddr, int type)
3232 {
3233 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3234 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3235 			 blkaddr, type);
3236 		f2fs_bug_on(sbi, 1);
3237 	}
3238 }
3239 
3240 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3241 {
3242 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3243 			blkaddr == COMPRESS_ADDR)
3244 		return false;
3245 	return true;
3246 }
3247 
3248 /*
3249  * file.c
3250  */
3251 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3252 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3253 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3254 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3255 int f2fs_truncate(struct inode *inode);
3256 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3257 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3258 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3259 		 struct iattr *attr);
3260 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3261 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3262 int f2fs_precache_extents(struct inode *inode);
3263 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3264 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3265 		      struct dentry *dentry, struct fileattr *fa);
3266 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3267 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3268 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3269 int f2fs_pin_file_control(struct inode *inode, bool inc);
3270 
3271 /*
3272  * inode.c
3273  */
3274 void f2fs_set_inode_flags(struct inode *inode);
3275 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3276 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3277 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3278 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3279 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3280 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3281 void f2fs_update_inode_page(struct inode *inode);
3282 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3283 void f2fs_evict_inode(struct inode *inode);
3284 void f2fs_handle_failed_inode(struct inode *inode);
3285 
3286 /*
3287  * namei.c
3288  */
3289 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3290 							bool hot, bool set);
3291 struct dentry *f2fs_get_parent(struct dentry *child);
3292 
3293 /*
3294  * dir.c
3295  */
3296 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3297 int f2fs_init_casefolded_name(const struct inode *dir,
3298 			      struct f2fs_filename *fname);
3299 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3300 			int lookup, struct f2fs_filename *fname);
3301 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3302 			struct f2fs_filename *fname);
3303 void f2fs_free_filename(struct f2fs_filename *fname);
3304 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3305 			const struct f2fs_filename *fname, int *max_slots);
3306 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3307 			unsigned int start_pos, struct fscrypt_str *fstr);
3308 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3309 			struct f2fs_dentry_ptr *d);
3310 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3311 			const struct f2fs_filename *fname, struct page *dpage);
3312 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3313 			unsigned int current_depth);
3314 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3315 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3316 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3317 					 const struct f2fs_filename *fname,
3318 					 struct page **res_page);
3319 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3320 			const struct qstr *child, struct page **res_page);
3321 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3322 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3323 			struct page **page);
3324 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3325 			struct page *page, struct inode *inode);
3326 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3327 			  const struct f2fs_filename *fname);
3328 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3329 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3330 			unsigned int bit_pos);
3331 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3332 			struct inode *inode, nid_t ino, umode_t mode);
3333 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3334 			struct inode *inode, nid_t ino, umode_t mode);
3335 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3336 			struct inode *inode, nid_t ino, umode_t mode);
3337 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3338 			struct inode *dir, struct inode *inode);
3339 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3340 bool f2fs_empty_dir(struct inode *dir);
3341 
3342 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3343 {
3344 	if (fscrypt_is_nokey_name(dentry))
3345 		return -ENOKEY;
3346 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3347 				inode, inode->i_ino, inode->i_mode);
3348 }
3349 
3350 /*
3351  * super.c
3352  */
3353 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3354 void f2fs_inode_synced(struct inode *inode);
3355 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3356 int f2fs_quota_sync(struct super_block *sb, int type);
3357 loff_t max_file_blocks(struct inode *inode);
3358 void f2fs_quota_off_umount(struct super_block *sb);
3359 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3360 int f2fs_sync_fs(struct super_block *sb, int sync);
3361 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3362 
3363 /*
3364  * hash.c
3365  */
3366 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3367 
3368 /*
3369  * node.c
3370  */
3371 struct node_info;
3372 
3373 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3374 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3375 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3376 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3377 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3378 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3379 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3380 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3381 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3382 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3383 						struct node_info *ni);
3384 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3385 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3386 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3387 int f2fs_truncate_xattr_node(struct inode *inode);
3388 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3389 					unsigned int seq_id);
3390 int f2fs_remove_inode_page(struct inode *inode);
3391 struct page *f2fs_new_inode_page(struct inode *inode);
3392 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3393 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3394 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3395 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3396 int f2fs_move_node_page(struct page *node_page, int gc_type);
3397 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3398 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3399 			struct writeback_control *wbc, bool atomic,
3400 			unsigned int *seq_id);
3401 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3402 			struct writeback_control *wbc,
3403 			bool do_balance, enum iostat_type io_type);
3404 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3405 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3406 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3407 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3408 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3409 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3410 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3411 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3412 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3413 			unsigned int segno, struct f2fs_summary_block *sum);
3414 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3415 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3416 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3417 int __init f2fs_create_node_manager_caches(void);
3418 void f2fs_destroy_node_manager_caches(void);
3419 
3420 /*
3421  * segment.c
3422  */
3423 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3424 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3425 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3426 void f2fs_drop_inmem_pages(struct inode *inode);
3427 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3428 int f2fs_commit_inmem_pages(struct inode *inode);
3429 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3430 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3431 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3432 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3433 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3434 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3435 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3436 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3437 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3438 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3439 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3440 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3441 					struct cp_control *cpc);
3442 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3443 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3444 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3445 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3446 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3447 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3448 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3449 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3450 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3451 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3452 			unsigned int *newseg, bool new_sec, int dir);
3453 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3454 					unsigned int start, unsigned int end);
3455 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3456 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3457 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3458 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3459 					struct cp_control *cpc);
3460 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3461 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3462 					block_t blk_addr);
3463 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3464 						enum iostat_type io_type);
3465 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3466 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3467 			struct f2fs_io_info *fio);
3468 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3469 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3470 			block_t old_blkaddr, block_t new_blkaddr,
3471 			bool recover_curseg, bool recover_newaddr,
3472 			bool from_gc);
3473 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3474 			block_t old_addr, block_t new_addr,
3475 			unsigned char version, bool recover_curseg,
3476 			bool recover_newaddr);
3477 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3478 			block_t old_blkaddr, block_t *new_blkaddr,
3479 			struct f2fs_summary *sum, int type,
3480 			struct f2fs_io_info *fio);
3481 void f2fs_wait_on_page_writeback(struct page *page,
3482 			enum page_type type, bool ordered, bool locked);
3483 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3484 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3485 								block_t len);
3486 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3487 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3488 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3489 			unsigned int val, int alloc);
3490 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3491 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3492 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3493 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3494 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3495 int __init f2fs_create_segment_manager_caches(void);
3496 void f2fs_destroy_segment_manager_caches(void);
3497 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3498 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3499 			enum page_type type, enum temp_type temp);
3500 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3501 			unsigned int segno);
3502 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3503 			unsigned int segno);
3504 
3505 /*
3506  * checkpoint.c
3507  */
3508 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3509 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3510 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3511 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3512 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3513 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3514 					block_t blkaddr, int type);
3515 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3516 			int type, bool sync);
3517 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3518 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3519 			long nr_to_write, enum iostat_type io_type);
3520 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3521 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3522 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3523 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3524 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3525 					unsigned int devidx, int type);
3526 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3527 					unsigned int devidx, int type);
3528 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3529 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3530 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3531 void f2fs_add_orphan_inode(struct inode *inode);
3532 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3533 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3534 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3535 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3536 void f2fs_remove_dirty_inode(struct inode *inode);
3537 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3538 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3539 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3540 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3541 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3542 int __init f2fs_create_checkpoint_caches(void);
3543 void f2fs_destroy_checkpoint_caches(void);
3544 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3545 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3546 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3547 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3548 
3549 /*
3550  * data.c
3551  */
3552 int __init f2fs_init_bioset(void);
3553 void f2fs_destroy_bioset(void);
3554 int f2fs_init_bio_entry_cache(void);
3555 void f2fs_destroy_bio_entry_cache(void);
3556 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3557 				struct bio *bio, enum page_type type);
3558 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3559 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3560 				struct inode *inode, struct page *page,
3561 				nid_t ino, enum page_type type);
3562 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3563 					struct bio **bio, struct page *page);
3564 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3565 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3566 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3567 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3568 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3569 			block_t blk_addr, struct bio *bio);
3570 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3571 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3572 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3573 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3574 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3575 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3576 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3577 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3578 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3579 			int op_flags, bool for_write);
3580 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3581 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3582 			bool for_write);
3583 struct page *f2fs_get_new_data_page(struct inode *inode,
3584 			struct page *ipage, pgoff_t index, bool new_i_size);
3585 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3586 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3587 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3588 			int create, int flag);
3589 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3590 			u64 start, u64 len);
3591 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3592 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3593 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3594 int f2fs_write_single_data_page(struct page *page, int *submitted,
3595 				struct bio **bio, sector_t *last_block,
3596 				struct writeback_control *wbc,
3597 				enum iostat_type io_type,
3598 				int compr_blocks, bool allow_balance);
3599 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3600 			unsigned int length);
3601 int f2fs_release_page(struct page *page, gfp_t wait);
3602 #ifdef CONFIG_MIGRATION
3603 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3604 			struct page *page, enum migrate_mode mode);
3605 #endif
3606 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3607 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3608 int f2fs_init_post_read_processing(void);
3609 void f2fs_destroy_post_read_processing(void);
3610 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3611 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3612 
3613 /*
3614  * gc.c
3615  */
3616 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3617 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3618 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3619 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3620 			unsigned int segno);
3621 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3622 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3623 int __init f2fs_create_garbage_collection_cache(void);
3624 void f2fs_destroy_garbage_collection_cache(void);
3625 
3626 /*
3627  * recovery.c
3628  */
3629 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3630 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3631 int __init f2fs_create_recovery_cache(void);
3632 void f2fs_destroy_recovery_cache(void);
3633 
3634 /*
3635  * debug.c
3636  */
3637 #ifdef CONFIG_F2FS_STAT_FS
3638 struct f2fs_stat_info {
3639 	struct list_head stat_list;
3640 	struct f2fs_sb_info *sbi;
3641 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3642 	int main_area_segs, main_area_sections, main_area_zones;
3643 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3644 	unsigned long long hit_total, total_ext;
3645 	int ext_tree, zombie_tree, ext_node;
3646 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3647 	int ndirty_data, ndirty_qdata;
3648 	int inmem_pages;
3649 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3650 	int nats, dirty_nats, sits, dirty_sits;
3651 	int free_nids, avail_nids, alloc_nids;
3652 	int total_count, utilization;
3653 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3654 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3655 	int nr_dio_read, nr_dio_write;
3656 	unsigned int io_skip_bggc, other_skip_bggc;
3657 	int nr_flushing, nr_flushed, flush_list_empty;
3658 	int nr_discarding, nr_discarded;
3659 	int nr_discard_cmd;
3660 	unsigned int undiscard_blks;
3661 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3662 	unsigned int cur_ckpt_time, peak_ckpt_time;
3663 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3664 	int compr_inode;
3665 	unsigned long long compr_blocks;
3666 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3667 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3668 	unsigned int bimodal, avg_vblocks;
3669 	int util_free, util_valid, util_invalid;
3670 	int rsvd_segs, overp_segs;
3671 	int dirty_count, node_pages, meta_pages;
3672 	int prefree_count, call_count, cp_count, bg_cp_count;
3673 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3674 	int bg_node_segs, bg_data_segs;
3675 	int tot_blks, data_blks, node_blks;
3676 	int bg_data_blks, bg_node_blks;
3677 	unsigned long long skipped_atomic_files[2];
3678 	int curseg[NR_CURSEG_TYPE];
3679 	int cursec[NR_CURSEG_TYPE];
3680 	int curzone[NR_CURSEG_TYPE];
3681 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3682 	unsigned int full_seg[NR_CURSEG_TYPE];
3683 	unsigned int valid_blks[NR_CURSEG_TYPE];
3684 
3685 	unsigned int meta_count[META_MAX];
3686 	unsigned int segment_count[2];
3687 	unsigned int block_count[2];
3688 	unsigned int inplace_count;
3689 	unsigned long long base_mem, cache_mem, page_mem;
3690 };
3691 
3692 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3693 {
3694 	return (struct f2fs_stat_info *)sbi->stat_info;
3695 }
3696 
3697 #define stat_inc_cp_count(si)		((si)->cp_count++)
3698 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3699 #define stat_inc_call_count(si)		((si)->call_count++)
3700 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3701 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3702 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3703 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3704 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3705 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3706 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3707 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3708 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3709 #define stat_inc_inline_xattr(inode)					\
3710 	do {								\
3711 		if (f2fs_has_inline_xattr(inode))			\
3712 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3713 	} while (0)
3714 #define stat_dec_inline_xattr(inode)					\
3715 	do {								\
3716 		if (f2fs_has_inline_xattr(inode))			\
3717 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3718 	} while (0)
3719 #define stat_inc_inline_inode(inode)					\
3720 	do {								\
3721 		if (f2fs_has_inline_data(inode))			\
3722 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3723 	} while (0)
3724 #define stat_dec_inline_inode(inode)					\
3725 	do {								\
3726 		if (f2fs_has_inline_data(inode))			\
3727 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3728 	} while (0)
3729 #define stat_inc_inline_dir(inode)					\
3730 	do {								\
3731 		if (f2fs_has_inline_dentry(inode))			\
3732 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3733 	} while (0)
3734 #define stat_dec_inline_dir(inode)					\
3735 	do {								\
3736 		if (f2fs_has_inline_dentry(inode))			\
3737 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3738 	} while (0)
3739 #define stat_inc_compr_inode(inode)					\
3740 	do {								\
3741 		if (f2fs_compressed_file(inode))			\
3742 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3743 	} while (0)
3744 #define stat_dec_compr_inode(inode)					\
3745 	do {								\
3746 		if (f2fs_compressed_file(inode))			\
3747 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3748 	} while (0)
3749 #define stat_add_compr_blocks(inode, blocks)				\
3750 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3751 #define stat_sub_compr_blocks(inode, blocks)				\
3752 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3753 #define stat_inc_meta_count(sbi, blkaddr)				\
3754 	do {								\
3755 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3756 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3757 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3758 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3759 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3760 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3761 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3762 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3763 	} while (0)
3764 #define stat_inc_seg_type(sbi, curseg)					\
3765 		((sbi)->segment_count[(curseg)->alloc_type]++)
3766 #define stat_inc_block_count(sbi, curseg)				\
3767 		((sbi)->block_count[(curseg)->alloc_type]++)
3768 #define stat_inc_inplace_blocks(sbi)					\
3769 		(atomic_inc(&(sbi)->inplace_count))
3770 #define stat_update_max_atomic_write(inode)				\
3771 	do {								\
3772 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3773 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3774 		if (cur > max)						\
3775 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3776 	} while (0)
3777 #define stat_inc_volatile_write(inode)					\
3778 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3779 #define stat_dec_volatile_write(inode)					\
3780 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3781 #define stat_update_max_volatile_write(inode)				\
3782 	do {								\
3783 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3784 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3785 		if (cur > max)						\
3786 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3787 	} while (0)
3788 #define stat_inc_seg_count(sbi, type, gc_type)				\
3789 	do {								\
3790 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3791 		si->tot_segs++;						\
3792 		if ((type) == SUM_TYPE_DATA) {				\
3793 			si->data_segs++;				\
3794 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3795 		} else {						\
3796 			si->node_segs++;				\
3797 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3798 		}							\
3799 	} while (0)
3800 
3801 #define stat_inc_tot_blk_count(si, blks)				\
3802 	((si)->tot_blks += (blks))
3803 
3804 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3805 	do {								\
3806 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3807 		stat_inc_tot_blk_count(si, blks);			\
3808 		si->data_blks += (blks);				\
3809 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3810 	} while (0)
3811 
3812 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3813 	do {								\
3814 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3815 		stat_inc_tot_blk_count(si, blks);			\
3816 		si->node_blks += (blks);				\
3817 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3818 	} while (0)
3819 
3820 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3821 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3822 void __init f2fs_create_root_stats(void);
3823 void f2fs_destroy_root_stats(void);
3824 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3825 #else
3826 #define stat_inc_cp_count(si)				do { } while (0)
3827 #define stat_inc_bg_cp_count(si)			do { } while (0)
3828 #define stat_inc_call_count(si)				do { } while (0)
3829 #define stat_inc_bggc_count(si)				do { } while (0)
3830 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3831 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3832 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3833 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3834 #define stat_inc_total_hit(sbi)				do { } while (0)
3835 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3836 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3837 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3838 #define stat_inc_inline_xattr(inode)			do { } while (0)
3839 #define stat_dec_inline_xattr(inode)			do { } while (0)
3840 #define stat_inc_inline_inode(inode)			do { } while (0)
3841 #define stat_dec_inline_inode(inode)			do { } while (0)
3842 #define stat_inc_inline_dir(inode)			do { } while (0)
3843 #define stat_dec_inline_dir(inode)			do { } while (0)
3844 #define stat_inc_compr_inode(inode)			do { } while (0)
3845 #define stat_dec_compr_inode(inode)			do { } while (0)
3846 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3847 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3848 #define stat_update_max_atomic_write(inode)		do { } while (0)
3849 #define stat_inc_volatile_write(inode)			do { } while (0)
3850 #define stat_dec_volatile_write(inode)			do { } while (0)
3851 #define stat_update_max_volatile_write(inode)		do { } while (0)
3852 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3853 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3854 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3855 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3856 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3857 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3858 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3859 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3860 
3861 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3862 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3863 static inline void __init f2fs_create_root_stats(void) { }
3864 static inline void f2fs_destroy_root_stats(void) { }
3865 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3866 #endif
3867 
3868 extern const struct file_operations f2fs_dir_operations;
3869 extern const struct file_operations f2fs_file_operations;
3870 extern const struct inode_operations f2fs_file_inode_operations;
3871 extern const struct address_space_operations f2fs_dblock_aops;
3872 extern const struct address_space_operations f2fs_node_aops;
3873 extern const struct address_space_operations f2fs_meta_aops;
3874 extern const struct inode_operations f2fs_dir_inode_operations;
3875 extern const struct inode_operations f2fs_symlink_inode_operations;
3876 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3877 extern const struct inode_operations f2fs_special_inode_operations;
3878 extern struct kmem_cache *f2fs_inode_entry_slab;
3879 
3880 /*
3881  * inline.c
3882  */
3883 bool f2fs_may_inline_data(struct inode *inode);
3884 bool f2fs_may_inline_dentry(struct inode *inode);
3885 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3886 void f2fs_truncate_inline_inode(struct inode *inode,
3887 						struct page *ipage, u64 from);
3888 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3889 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3890 int f2fs_convert_inline_inode(struct inode *inode);
3891 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3892 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3893 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3894 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3895 					const struct f2fs_filename *fname,
3896 					struct page **res_page);
3897 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3898 			struct page *ipage);
3899 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3900 			struct inode *inode, nid_t ino, umode_t mode);
3901 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3902 				struct page *page, struct inode *dir,
3903 				struct inode *inode);
3904 bool f2fs_empty_inline_dir(struct inode *dir);
3905 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3906 			struct fscrypt_str *fstr);
3907 int f2fs_inline_data_fiemap(struct inode *inode,
3908 			struct fiemap_extent_info *fieinfo,
3909 			__u64 start, __u64 len);
3910 
3911 /*
3912  * shrinker.c
3913  */
3914 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3915 			struct shrink_control *sc);
3916 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3917 			struct shrink_control *sc);
3918 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3919 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3920 
3921 /*
3922  * extent_cache.c
3923  */
3924 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3925 				struct rb_entry *cached_re, unsigned int ofs);
3926 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3927 				struct rb_root_cached *root,
3928 				struct rb_node **parent,
3929 				unsigned long long key, bool *left_most);
3930 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3931 				struct rb_root_cached *root,
3932 				struct rb_node **parent,
3933 				unsigned int ofs, bool *leftmost);
3934 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3935 		struct rb_entry *cached_re, unsigned int ofs,
3936 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3937 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3938 		bool force, bool *leftmost);
3939 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3940 				struct rb_root_cached *root, bool check_key);
3941 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3942 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3943 void f2fs_drop_extent_tree(struct inode *inode);
3944 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3945 void f2fs_destroy_extent_tree(struct inode *inode);
3946 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3947 			struct extent_info *ei);
3948 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3949 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3950 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3951 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3952 int __init f2fs_create_extent_cache(void);
3953 void f2fs_destroy_extent_cache(void);
3954 
3955 /*
3956  * sysfs.c
3957  */
3958 int __init f2fs_init_sysfs(void);
3959 void f2fs_exit_sysfs(void);
3960 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3961 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3962 
3963 /* verity.c */
3964 extern const struct fsverity_operations f2fs_verityops;
3965 
3966 /*
3967  * crypto support
3968  */
3969 static inline bool f2fs_encrypted_file(struct inode *inode)
3970 {
3971 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3972 }
3973 
3974 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3975 {
3976 #ifdef CONFIG_FS_ENCRYPTION
3977 	file_set_encrypt(inode);
3978 	f2fs_set_inode_flags(inode);
3979 #endif
3980 }
3981 
3982 /*
3983  * Returns true if the reads of the inode's data need to undergo some
3984  * postprocessing step, like decryption or authenticity verification.
3985  */
3986 static inline bool f2fs_post_read_required(struct inode *inode)
3987 {
3988 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3989 		f2fs_compressed_file(inode);
3990 }
3991 
3992 /*
3993  * compress.c
3994  */
3995 #ifdef CONFIG_F2FS_FS_COMPRESSION
3996 bool f2fs_is_compressed_page(struct page *page);
3997 struct page *f2fs_compress_control_page(struct page *page);
3998 int f2fs_prepare_compress_overwrite(struct inode *inode,
3999 			struct page **pagep, pgoff_t index, void **fsdata);
4000 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4001 					pgoff_t index, unsigned copied);
4002 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4003 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4004 bool f2fs_is_compress_backend_ready(struct inode *inode);
4005 int f2fs_init_compress_mempool(void);
4006 void f2fs_destroy_compress_mempool(void);
4007 void f2fs_end_read_compressed_page(struct page *page, bool failed);
4008 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4009 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4010 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4011 int f2fs_write_multi_pages(struct compress_ctx *cc,
4012 						int *submitted,
4013 						struct writeback_control *wbc,
4014 						enum iostat_type io_type);
4015 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4016 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4017 				unsigned nr_pages, sector_t *last_block_in_bio,
4018 				bool is_readahead, bool for_write);
4019 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4020 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4021 void f2fs_put_page_dic(struct page *page);
4022 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4023 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4024 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4025 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4026 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4027 int __init f2fs_init_compress_cache(void);
4028 void f2fs_destroy_compress_cache(void);
4029 #define inc_compr_inode_stat(inode)					\
4030 	do {								\
4031 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4032 		sbi->compr_new_inode++;					\
4033 	} while (0)
4034 #define add_compr_block_stat(inode, blocks)				\
4035 	do {								\
4036 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4037 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4038 		sbi->compr_written_block += blocks;			\
4039 		sbi->compr_saved_block += diff;				\
4040 	} while (0)
4041 #else
4042 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4043 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4044 {
4045 	if (!f2fs_compressed_file(inode))
4046 		return true;
4047 	/* not support compression */
4048 	return false;
4049 }
4050 static inline struct page *f2fs_compress_control_page(struct page *page)
4051 {
4052 	WARN_ON_ONCE(1);
4053 	return ERR_PTR(-EINVAL);
4054 }
4055 static inline int f2fs_init_compress_mempool(void) { return 0; }
4056 static inline void f2fs_destroy_compress_mempool(void) { }
4057 static inline void f2fs_end_read_compressed_page(struct page *page, bool failed)
4058 {
4059 	WARN_ON_ONCE(1);
4060 }
4061 static inline void f2fs_put_page_dic(struct page *page)
4062 {
4063 	WARN_ON_ONCE(1);
4064 }
4065 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4066 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4067 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4068 static inline void f2fs_destroy_compress_cache(void) { }
4069 #define inc_compr_inode_stat(inode)		do { } while (0)
4070 #endif
4071 
4072 static inline void set_compress_context(struct inode *inode)
4073 {
4074 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4075 
4076 	F2FS_I(inode)->i_compress_algorithm =
4077 			F2FS_OPTION(sbi).compress_algorithm;
4078 	F2FS_I(inode)->i_log_cluster_size =
4079 			F2FS_OPTION(sbi).compress_log_size;
4080 	F2FS_I(inode)->i_compress_flag =
4081 			F2FS_OPTION(sbi).compress_chksum ?
4082 				1 << COMPRESS_CHKSUM : 0;
4083 	F2FS_I(inode)->i_cluster_size =
4084 			1 << F2FS_I(inode)->i_log_cluster_size;
4085 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 &&
4086 			F2FS_OPTION(sbi).compress_level)
4087 		F2FS_I(inode)->i_compress_flag |=
4088 				F2FS_OPTION(sbi).compress_level <<
4089 				COMPRESS_LEVEL_OFFSET;
4090 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4091 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4092 	stat_inc_compr_inode(inode);
4093 	inc_compr_inode_stat(inode);
4094 	f2fs_mark_inode_dirty_sync(inode, true);
4095 }
4096 
4097 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4098 {
4099 	struct f2fs_inode_info *fi = F2FS_I(inode);
4100 
4101 	if (!f2fs_compressed_file(inode))
4102 		return true;
4103 	if (S_ISREG(inode->i_mode) &&
4104 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
4105 		return false;
4106 
4107 	fi->i_flags &= ~F2FS_COMPR_FL;
4108 	stat_dec_compr_inode(inode);
4109 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4110 	f2fs_mark_inode_dirty_sync(inode, true);
4111 	return true;
4112 }
4113 
4114 #define F2FS_FEATURE_FUNCS(name, flagname) \
4115 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4116 { \
4117 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4118 }
4119 
4120 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4121 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4122 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4123 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4124 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4125 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4126 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4127 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4128 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4129 F2FS_FEATURE_FUNCS(verity, VERITY);
4130 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4131 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4132 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4133 F2FS_FEATURE_FUNCS(readonly, RO);
4134 
4135 #ifdef CONFIG_BLK_DEV_ZONED
4136 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4137 				    block_t blkaddr)
4138 {
4139 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4140 
4141 	return test_bit(zno, FDEV(devi).blkz_seq);
4142 }
4143 #endif
4144 
4145 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4146 {
4147 	return f2fs_sb_has_blkzoned(sbi);
4148 }
4149 
4150 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4151 {
4152 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4153 	       bdev_is_zoned(bdev);
4154 }
4155 
4156 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4157 {
4158 	int i;
4159 
4160 	if (!f2fs_is_multi_device(sbi))
4161 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4162 
4163 	for (i = 0; i < sbi->s_ndevs; i++)
4164 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4165 			return true;
4166 	return false;
4167 }
4168 
4169 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4170 {
4171 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4172 					f2fs_hw_should_discard(sbi);
4173 }
4174 
4175 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4176 {
4177 	int i;
4178 
4179 	if (!f2fs_is_multi_device(sbi))
4180 		return bdev_read_only(sbi->sb->s_bdev);
4181 
4182 	for (i = 0; i < sbi->s_ndevs; i++)
4183 		if (bdev_read_only(FDEV(i).bdev))
4184 			return true;
4185 	return false;
4186 }
4187 
4188 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4189 {
4190 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4191 }
4192 
4193 static inline bool f2fs_may_compress(struct inode *inode)
4194 {
4195 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4196 				f2fs_is_atomic_file(inode) ||
4197 				f2fs_is_volatile_file(inode))
4198 		return false;
4199 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4200 }
4201 
4202 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4203 						u64 blocks, bool add)
4204 {
4205 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4206 	struct f2fs_inode_info *fi = F2FS_I(inode);
4207 
4208 	/* don't update i_compr_blocks if saved blocks were released */
4209 	if (!add && !atomic_read(&fi->i_compr_blocks))
4210 		return;
4211 
4212 	if (add) {
4213 		atomic_add(diff, &fi->i_compr_blocks);
4214 		stat_add_compr_blocks(inode, diff);
4215 	} else {
4216 		atomic_sub(diff, &fi->i_compr_blocks);
4217 		stat_sub_compr_blocks(inode, diff);
4218 	}
4219 	f2fs_mark_inode_dirty_sync(inode, true);
4220 }
4221 
4222 static inline int block_unaligned_IO(struct inode *inode,
4223 				struct kiocb *iocb, struct iov_iter *iter)
4224 {
4225 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4226 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4227 	loff_t offset = iocb->ki_pos;
4228 	unsigned long align = offset | iov_iter_alignment(iter);
4229 
4230 	return align & blocksize_mask;
4231 }
4232 
4233 static inline int allow_outplace_dio(struct inode *inode,
4234 				struct kiocb *iocb, struct iov_iter *iter)
4235 {
4236 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4237 	int rw = iov_iter_rw(iter);
4238 
4239 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4240 				!block_unaligned_IO(inode, iocb, iter));
4241 }
4242 
4243 static inline bool f2fs_force_buffered_io(struct inode *inode,
4244 				struct kiocb *iocb, struct iov_iter *iter)
4245 {
4246 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4247 	int rw = iov_iter_rw(iter);
4248 
4249 	if (f2fs_post_read_required(inode))
4250 		return true;
4251 	if (f2fs_is_multi_device(sbi))
4252 		return true;
4253 	/*
4254 	 * for blkzoned device, fallback direct IO to buffered IO, so
4255 	 * all IOs can be serialized by log-structured write.
4256 	 */
4257 	if (f2fs_sb_has_blkzoned(sbi))
4258 		return true;
4259 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4260 		if (block_unaligned_IO(inode, iocb, iter))
4261 			return true;
4262 		if (F2FS_IO_ALIGNED(sbi))
4263 			return true;
4264 	}
4265 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4266 		return true;
4267 
4268 	return false;
4269 }
4270 
4271 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4272 {
4273 	return fsverity_active(inode) &&
4274 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4275 }
4276 
4277 #ifdef CONFIG_F2FS_FAULT_INJECTION
4278 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4279 							unsigned int type);
4280 #else
4281 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4282 #endif
4283 
4284 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4285 {
4286 #ifdef CONFIG_QUOTA
4287 	if (f2fs_sb_has_quota_ino(sbi))
4288 		return true;
4289 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4290 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4291 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4292 		return true;
4293 #endif
4294 	return false;
4295 }
4296 
4297 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4298 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4299 
4300 #endif /* _LINUX_F2FS_H */
4301