xref: /openbmc/linux/fs/f2fs/f2fs.h (revision a36954f5)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #ifdef CONFIG_F2FS_FS_ENCRYPTION
26 #include <linux/fscrypt_supp.h>
27 #else
28 #include <linux/fscrypt_notsupp.h>
29 #endif
30 #include <crypto/hash.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_MAX,
57 };
58 
59 struct f2fs_fault_info {
60 	atomic_t inject_ops;
61 	unsigned int inject_rate;
62 	unsigned int inject_type;
63 };
64 
65 extern char *fault_name[FAULT_MAX];
66 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
67 #endif
68 
69 /*
70  * For mount options
71  */
72 #define F2FS_MOUNT_BG_GC		0x00000001
73 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
74 #define F2FS_MOUNT_DISCARD		0x00000004
75 #define F2FS_MOUNT_NOHEAP		0x00000008
76 #define F2FS_MOUNT_XATTR_USER		0x00000010
77 #define F2FS_MOUNT_POSIX_ACL		0x00000020
78 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
79 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
80 #define F2FS_MOUNT_INLINE_DATA		0x00000100
81 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
82 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
83 #define F2FS_MOUNT_NOBARRIER		0x00000800
84 #define F2FS_MOUNT_FASTBOOT		0x00001000
85 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
86 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
87 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
88 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
89 #define F2FS_MOUNT_ADAPTIVE		0x00020000
90 #define F2FS_MOUNT_LFS			0x00040000
91 
92 #define clear_opt(sbi, option)	((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
93 #define set_opt(sbi, option)	((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
94 #define test_opt(sbi, option)	((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
95 
96 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
97 		typecheck(unsigned long long, b) &&			\
98 		((long long)((a) - (b)) > 0))
99 
100 typedef u32 block_t;	/*
101 			 * should not change u32, since it is the on-disk block
102 			 * address format, __le32.
103 			 */
104 typedef u32 nid_t;
105 
106 struct f2fs_mount_info {
107 	unsigned int	opt;
108 };
109 
110 #define F2FS_FEATURE_ENCRYPT	0x0001
111 #define F2FS_FEATURE_BLKZONED	0x0002
112 
113 #define F2FS_HAS_FEATURE(sb, mask)					\
114 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
115 #define F2FS_SET_FEATURE(sb, mask)					\
116 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
117 #define F2FS_CLEAR_FEATURE(sb, mask)					\
118 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
119 
120 /*
121  * For checkpoint manager
122  */
123 enum {
124 	NAT_BITMAP,
125 	SIT_BITMAP
126 };
127 
128 #define	CP_UMOUNT	0x00000001
129 #define	CP_FASTBOOT	0x00000002
130 #define	CP_SYNC		0x00000004
131 #define	CP_RECOVERY	0x00000008
132 #define	CP_DISCARD	0x00000010
133 #define CP_TRIMMED	0x00000020
134 
135 #define DEF_BATCHED_TRIM_SECTIONS	2048
136 #define BATCHED_TRIM_SEGMENTS(sbi)	\
137 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
138 #define BATCHED_TRIM_BLOCKS(sbi)	\
139 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
140 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
141 #define DISCARD_ISSUE_RATE		8
142 #define DEF_CP_INTERVAL			60	/* 60 secs */
143 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
144 
145 struct cp_control {
146 	int reason;
147 	__u64 trim_start;
148 	__u64 trim_end;
149 	__u64 trim_minlen;
150 	__u64 trimmed;
151 };
152 
153 /*
154  * For CP/NAT/SIT/SSA readahead
155  */
156 enum {
157 	META_CP,
158 	META_NAT,
159 	META_SIT,
160 	META_SSA,
161 	META_POR,
162 };
163 
164 /* for the list of ino */
165 enum {
166 	ORPHAN_INO,		/* for orphan ino list */
167 	APPEND_INO,		/* for append ino list */
168 	UPDATE_INO,		/* for update ino list */
169 	MAX_INO_ENTRY,		/* max. list */
170 };
171 
172 struct ino_entry {
173 	struct list_head list;	/* list head */
174 	nid_t ino;		/* inode number */
175 };
176 
177 /* for the list of inodes to be GCed */
178 struct inode_entry {
179 	struct list_head list;	/* list head */
180 	struct inode *inode;	/* vfs inode pointer */
181 };
182 
183 /* for the bitmap indicate blocks to be discarded */
184 struct discard_entry {
185 	struct list_head list;	/* list head */
186 	block_t start_blkaddr;	/* start blockaddr of current segment */
187 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
188 };
189 
190 /* max discard pend list number */
191 #define MAX_PLIST_NUM		512
192 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
193 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
194 
195 enum {
196 	D_PREP,
197 	D_SUBMIT,
198 	D_DONE,
199 };
200 
201 struct discard_info {
202 	block_t lstart;			/* logical start address */
203 	block_t len;			/* length */
204 	block_t start;			/* actual start address in dev */
205 };
206 
207 struct discard_cmd {
208 	struct rb_node rb_node;		/* rb node located in rb-tree */
209 	union {
210 		struct {
211 			block_t lstart;	/* logical start address */
212 			block_t len;	/* length */
213 			block_t start;	/* actual start address in dev */
214 		};
215 		struct discard_info di;	/* discard info */
216 
217 	};
218 	struct list_head list;		/* command list */
219 	struct completion wait;		/* compleation */
220 	struct block_device *bdev;	/* bdev */
221 	unsigned short ref;		/* reference count */
222 	unsigned char state;		/* state */
223 	int error;			/* bio error */
224 };
225 
226 struct discard_cmd_control {
227 	struct task_struct *f2fs_issue_discard;	/* discard thread */
228 	struct list_head entry_list;		/* 4KB discard entry list */
229 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
230 	struct list_head wait_list;		/* store on-flushing entries */
231 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
232 	struct mutex cmd_lock;
233 	unsigned int nr_discards;		/* # of discards in the list */
234 	unsigned int max_discards;		/* max. discards to be issued */
235 	unsigned int undiscard_blks;		/* # of undiscard blocks */
236 	atomic_t issued_discard;		/* # of issued discard */
237 	atomic_t issing_discard;		/* # of issing discard */
238 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
239 	struct rb_root root;			/* root of discard rb-tree */
240 };
241 
242 /* for the list of fsync inodes, used only during recovery */
243 struct fsync_inode_entry {
244 	struct list_head list;	/* list head */
245 	struct inode *inode;	/* vfs inode pointer */
246 	block_t blkaddr;	/* block address locating the last fsync */
247 	block_t last_dentry;	/* block address locating the last dentry */
248 };
249 
250 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
251 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
252 
253 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
254 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
255 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
256 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
257 
258 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
259 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
260 
261 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
262 {
263 	int before = nats_in_cursum(journal);
264 
265 	journal->n_nats = cpu_to_le16(before + i);
266 	return before;
267 }
268 
269 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
270 {
271 	int before = sits_in_cursum(journal);
272 
273 	journal->n_sits = cpu_to_le16(before + i);
274 	return before;
275 }
276 
277 static inline bool __has_cursum_space(struct f2fs_journal *journal,
278 							int size, int type)
279 {
280 	if (type == NAT_JOURNAL)
281 		return size <= MAX_NAT_JENTRIES(journal);
282 	return size <= MAX_SIT_JENTRIES(journal);
283 }
284 
285 /*
286  * ioctl commands
287  */
288 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
289 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
290 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
291 
292 #define F2FS_IOCTL_MAGIC		0xf5
293 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
294 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
295 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
296 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
297 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
298 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
299 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
300 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
301 						struct f2fs_defragment)
302 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
303 						struct f2fs_move_range)
304 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
305 						struct f2fs_flush_device)
306 
307 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
308 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
309 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
310 
311 /*
312  * should be same as XFS_IOC_GOINGDOWN.
313  * Flags for going down operation used by FS_IOC_GOINGDOWN
314  */
315 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
316 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
317 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
318 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
319 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
320 
321 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
322 /*
323  * ioctl commands in 32 bit emulation
324  */
325 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
326 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
327 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
328 #endif
329 
330 struct f2fs_defragment {
331 	u64 start;
332 	u64 len;
333 };
334 
335 struct f2fs_move_range {
336 	u32 dst_fd;		/* destination fd */
337 	u64 pos_in;		/* start position in src_fd */
338 	u64 pos_out;		/* start position in dst_fd */
339 	u64 len;		/* size to move */
340 };
341 
342 struct f2fs_flush_device {
343 	u32 dev_num;		/* device number to flush */
344 	u32 segments;		/* # of segments to flush */
345 };
346 
347 /*
348  * For INODE and NODE manager
349  */
350 /* for directory operations */
351 struct f2fs_dentry_ptr {
352 	struct inode *inode;
353 	const void *bitmap;
354 	struct f2fs_dir_entry *dentry;
355 	__u8 (*filename)[F2FS_SLOT_LEN];
356 	int max;
357 };
358 
359 static inline void make_dentry_ptr_block(struct inode *inode,
360 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
361 {
362 	d->inode = inode;
363 	d->max = NR_DENTRY_IN_BLOCK;
364 	d->bitmap = &t->dentry_bitmap;
365 	d->dentry = t->dentry;
366 	d->filename = t->filename;
367 }
368 
369 static inline void make_dentry_ptr_inline(struct inode *inode,
370 		struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t)
371 {
372 	d->inode = inode;
373 	d->max = NR_INLINE_DENTRY;
374 	d->bitmap = &t->dentry_bitmap;
375 	d->dentry = t->dentry;
376 	d->filename = t->filename;
377 }
378 
379 /*
380  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
381  * as its node offset to distinguish from index node blocks.
382  * But some bits are used to mark the node block.
383  */
384 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
385 				>> OFFSET_BIT_SHIFT)
386 enum {
387 	ALLOC_NODE,			/* allocate a new node page if needed */
388 	LOOKUP_NODE,			/* look up a node without readahead */
389 	LOOKUP_NODE_RA,			/*
390 					 * look up a node with readahead called
391 					 * by get_data_block.
392 					 */
393 };
394 
395 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
396 
397 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
398 
399 /* vector size for gang look-up from extent cache that consists of radix tree */
400 #define EXT_TREE_VEC_SIZE	64
401 
402 /* for in-memory extent cache entry */
403 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
404 
405 /* number of extent info in extent cache we try to shrink */
406 #define EXTENT_CACHE_SHRINK_NUMBER	128
407 
408 struct rb_entry {
409 	struct rb_node rb_node;		/* rb node located in rb-tree */
410 	unsigned int ofs;		/* start offset of the entry */
411 	unsigned int len;		/* length of the entry */
412 };
413 
414 struct extent_info {
415 	unsigned int fofs;		/* start offset in a file */
416 	unsigned int len;		/* length of the extent */
417 	u32 blk;			/* start block address of the extent */
418 };
419 
420 struct extent_node {
421 	struct rb_node rb_node;
422 	union {
423 		struct {
424 			unsigned int fofs;
425 			unsigned int len;
426 			u32 blk;
427 		};
428 		struct extent_info ei;	/* extent info */
429 
430 	};
431 	struct list_head list;		/* node in global extent list of sbi */
432 	struct extent_tree *et;		/* extent tree pointer */
433 };
434 
435 struct extent_tree {
436 	nid_t ino;			/* inode number */
437 	struct rb_root root;		/* root of extent info rb-tree */
438 	struct extent_node *cached_en;	/* recently accessed extent node */
439 	struct extent_info largest;	/* largested extent info */
440 	struct list_head list;		/* to be used by sbi->zombie_list */
441 	rwlock_t lock;			/* protect extent info rb-tree */
442 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
443 };
444 
445 /*
446  * This structure is taken from ext4_map_blocks.
447  *
448  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
449  */
450 #define F2FS_MAP_NEW		(1 << BH_New)
451 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
452 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
453 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
454 				F2FS_MAP_UNWRITTEN)
455 
456 struct f2fs_map_blocks {
457 	block_t m_pblk;
458 	block_t m_lblk;
459 	unsigned int m_len;
460 	unsigned int m_flags;
461 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
462 };
463 
464 /* for flag in get_data_block */
465 #define F2FS_GET_BLOCK_READ		0
466 #define F2FS_GET_BLOCK_DIO		1
467 #define F2FS_GET_BLOCK_FIEMAP		2
468 #define F2FS_GET_BLOCK_BMAP		3
469 #define F2FS_GET_BLOCK_PRE_DIO		4
470 #define F2FS_GET_BLOCK_PRE_AIO		5
471 
472 /*
473  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
474  */
475 #define FADVISE_COLD_BIT	0x01
476 #define FADVISE_LOST_PINO_BIT	0x02
477 #define FADVISE_ENCRYPT_BIT	0x04
478 #define FADVISE_ENC_NAME_BIT	0x08
479 #define FADVISE_KEEP_SIZE_BIT	0x10
480 
481 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
482 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
483 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
484 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
485 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
486 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
487 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
488 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
489 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
490 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
491 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
492 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
493 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
494 
495 #define DEF_DIR_LEVEL		0
496 
497 struct f2fs_inode_info {
498 	struct inode vfs_inode;		/* serve a vfs inode */
499 	unsigned long i_flags;		/* keep an inode flags for ioctl */
500 	unsigned char i_advise;		/* use to give file attribute hints */
501 	unsigned char i_dir_level;	/* use for dentry level for large dir */
502 	unsigned int i_current_depth;	/* use only in directory structure */
503 	unsigned int i_pino;		/* parent inode number */
504 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
505 
506 	/* Use below internally in f2fs*/
507 	unsigned long flags;		/* use to pass per-file flags */
508 	struct rw_semaphore i_sem;	/* protect fi info */
509 	atomic_t dirty_pages;		/* # of dirty pages */
510 	f2fs_hash_t chash;		/* hash value of given file name */
511 	unsigned int clevel;		/* maximum level of given file name */
512 	struct task_struct *task;	/* lookup and create consistency */
513 	nid_t i_xattr_nid;		/* node id that contains xattrs */
514 	loff_t	last_disk_size;		/* lastly written file size */
515 
516 	struct list_head dirty_list;	/* dirty list for dirs and files */
517 	struct list_head gdirty_list;	/* linked in global dirty list */
518 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
519 	struct mutex inmem_lock;	/* lock for inmemory pages */
520 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
521 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
522 };
523 
524 static inline void get_extent_info(struct extent_info *ext,
525 					struct f2fs_extent *i_ext)
526 {
527 	ext->fofs = le32_to_cpu(i_ext->fofs);
528 	ext->blk = le32_to_cpu(i_ext->blk);
529 	ext->len = le32_to_cpu(i_ext->len);
530 }
531 
532 static inline void set_raw_extent(struct extent_info *ext,
533 					struct f2fs_extent *i_ext)
534 {
535 	i_ext->fofs = cpu_to_le32(ext->fofs);
536 	i_ext->blk = cpu_to_le32(ext->blk);
537 	i_ext->len = cpu_to_le32(ext->len);
538 }
539 
540 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
541 						u32 blk, unsigned int len)
542 {
543 	ei->fofs = fofs;
544 	ei->blk = blk;
545 	ei->len = len;
546 }
547 
548 static inline bool __is_discard_mergeable(struct discard_info *back,
549 						struct discard_info *front)
550 {
551 	return back->lstart + back->len == front->lstart;
552 }
553 
554 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
555 						struct discard_info *back)
556 {
557 	return __is_discard_mergeable(back, cur);
558 }
559 
560 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
561 						struct discard_info *front)
562 {
563 	return __is_discard_mergeable(cur, front);
564 }
565 
566 static inline bool __is_extent_mergeable(struct extent_info *back,
567 						struct extent_info *front)
568 {
569 	return (back->fofs + back->len == front->fofs &&
570 			back->blk + back->len == front->blk);
571 }
572 
573 static inline bool __is_back_mergeable(struct extent_info *cur,
574 						struct extent_info *back)
575 {
576 	return __is_extent_mergeable(back, cur);
577 }
578 
579 static inline bool __is_front_mergeable(struct extent_info *cur,
580 						struct extent_info *front)
581 {
582 	return __is_extent_mergeable(cur, front);
583 }
584 
585 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
586 static inline void __try_update_largest_extent(struct inode *inode,
587 			struct extent_tree *et, struct extent_node *en)
588 {
589 	if (en->ei.len > et->largest.len) {
590 		et->largest = en->ei;
591 		f2fs_mark_inode_dirty_sync(inode, true);
592 	}
593 }
594 
595 enum nid_list {
596 	FREE_NID_LIST,
597 	ALLOC_NID_LIST,
598 	MAX_NID_LIST,
599 };
600 
601 struct f2fs_nm_info {
602 	block_t nat_blkaddr;		/* base disk address of NAT */
603 	nid_t max_nid;			/* maximum possible node ids */
604 	nid_t available_nids;		/* # of available node ids */
605 	nid_t next_scan_nid;		/* the next nid to be scanned */
606 	unsigned int ram_thresh;	/* control the memory footprint */
607 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
608 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
609 
610 	/* NAT cache management */
611 	struct radix_tree_root nat_root;/* root of the nat entry cache */
612 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
613 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
614 	struct list_head nat_entries;	/* cached nat entry list (clean) */
615 	unsigned int nat_cnt;		/* the # of cached nat entries */
616 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
617 	unsigned int nat_blocks;	/* # of nat blocks */
618 
619 	/* free node ids management */
620 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
621 	struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
622 	unsigned int nid_cnt[MAX_NID_LIST];	/* the number of free node id */
623 	spinlock_t nid_list_lock;	/* protect nid lists ops */
624 	struct mutex build_lock;	/* lock for build free nids */
625 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
626 	unsigned char *nat_block_bitmap;
627 	unsigned short *free_nid_count;	/* free nid count of NAT block */
628 
629 	/* for checkpoint */
630 	char *nat_bitmap;		/* NAT bitmap pointer */
631 
632 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
633 	unsigned char *nat_bits;	/* NAT bits blocks */
634 	unsigned char *full_nat_bits;	/* full NAT pages */
635 	unsigned char *empty_nat_bits;	/* empty NAT pages */
636 #ifdef CONFIG_F2FS_CHECK_FS
637 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
638 #endif
639 	int bitmap_size;		/* bitmap size */
640 };
641 
642 /*
643  * this structure is used as one of function parameters.
644  * all the information are dedicated to a given direct node block determined
645  * by the data offset in a file.
646  */
647 struct dnode_of_data {
648 	struct inode *inode;		/* vfs inode pointer */
649 	struct page *inode_page;	/* its inode page, NULL is possible */
650 	struct page *node_page;		/* cached direct node page */
651 	nid_t nid;			/* node id of the direct node block */
652 	unsigned int ofs_in_node;	/* data offset in the node page */
653 	bool inode_page_locked;		/* inode page is locked or not */
654 	bool node_changed;		/* is node block changed */
655 	char cur_level;			/* level of hole node page */
656 	char max_level;			/* level of current page located */
657 	block_t	data_blkaddr;		/* block address of the node block */
658 };
659 
660 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
661 		struct page *ipage, struct page *npage, nid_t nid)
662 {
663 	memset(dn, 0, sizeof(*dn));
664 	dn->inode = inode;
665 	dn->inode_page = ipage;
666 	dn->node_page = npage;
667 	dn->nid = nid;
668 }
669 
670 /*
671  * For SIT manager
672  *
673  * By default, there are 6 active log areas across the whole main area.
674  * When considering hot and cold data separation to reduce cleaning overhead,
675  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
676  * respectively.
677  * In the current design, you should not change the numbers intentionally.
678  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
679  * logs individually according to the underlying devices. (default: 6)
680  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
681  * data and 8 for node logs.
682  */
683 #define	NR_CURSEG_DATA_TYPE	(3)
684 #define NR_CURSEG_NODE_TYPE	(3)
685 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
686 
687 enum {
688 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
689 	CURSEG_WARM_DATA,	/* data blocks */
690 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
691 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
692 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
693 	CURSEG_COLD_NODE,	/* indirect node blocks */
694 	NO_CHECK_TYPE,
695 };
696 
697 struct flush_cmd {
698 	struct completion wait;
699 	struct llist_node llnode;
700 	int ret;
701 };
702 
703 struct flush_cmd_control {
704 	struct task_struct *f2fs_issue_flush;	/* flush thread */
705 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
706 	atomic_t issued_flush;			/* # of issued flushes */
707 	atomic_t issing_flush;			/* # of issing flushes */
708 	struct llist_head issue_list;		/* list for command issue */
709 	struct llist_node *dispatch_list;	/* list for command dispatch */
710 };
711 
712 struct f2fs_sm_info {
713 	struct sit_info *sit_info;		/* whole segment information */
714 	struct free_segmap_info *free_info;	/* free segment information */
715 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
716 	struct curseg_info *curseg_array;	/* active segment information */
717 
718 	block_t seg0_blkaddr;		/* block address of 0'th segment */
719 	block_t main_blkaddr;		/* start block address of main area */
720 	block_t ssa_blkaddr;		/* start block address of SSA area */
721 
722 	unsigned int segment_count;	/* total # of segments */
723 	unsigned int main_segments;	/* # of segments in main area */
724 	unsigned int reserved_segments;	/* # of reserved segments */
725 	unsigned int ovp_segments;	/* # of overprovision segments */
726 
727 	/* a threshold to reclaim prefree segments */
728 	unsigned int rec_prefree_segments;
729 
730 	/* for batched trimming */
731 	unsigned int trim_sections;		/* # of sections to trim */
732 
733 	struct list_head sit_entry_set;	/* sit entry set list */
734 
735 	unsigned int ipu_policy;	/* in-place-update policy */
736 	unsigned int min_ipu_util;	/* in-place-update threshold */
737 	unsigned int min_fsync_blocks;	/* threshold for fsync */
738 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
739 
740 	/* for flush command control */
741 	struct flush_cmd_control *fcc_info;
742 
743 	/* for discard command control */
744 	struct discard_cmd_control *dcc_info;
745 };
746 
747 /*
748  * For superblock
749  */
750 /*
751  * COUNT_TYPE for monitoring
752  *
753  * f2fs monitors the number of several block types such as on-writeback,
754  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
755  */
756 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
757 enum count_type {
758 	F2FS_DIRTY_DENTS,
759 	F2FS_DIRTY_DATA,
760 	F2FS_DIRTY_NODES,
761 	F2FS_DIRTY_META,
762 	F2FS_INMEM_PAGES,
763 	F2FS_DIRTY_IMETA,
764 	F2FS_WB_CP_DATA,
765 	F2FS_WB_DATA,
766 	NR_COUNT_TYPE,
767 };
768 
769 /*
770  * The below are the page types of bios used in submit_bio().
771  * The available types are:
772  * DATA			User data pages. It operates as async mode.
773  * NODE			Node pages. It operates as async mode.
774  * META			FS metadata pages such as SIT, NAT, CP.
775  * NR_PAGE_TYPE		The number of page types.
776  * META_FLUSH		Make sure the previous pages are written
777  *			with waiting the bio's completion
778  * ...			Only can be used with META.
779  */
780 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
781 enum page_type {
782 	DATA,
783 	NODE,
784 	META,
785 	NR_PAGE_TYPE,
786 	META_FLUSH,
787 	INMEM,		/* the below types are used by tracepoints only. */
788 	INMEM_DROP,
789 	INMEM_INVALIDATE,
790 	INMEM_REVOKE,
791 	IPU,
792 	OPU,
793 };
794 
795 struct f2fs_io_info {
796 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
797 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
798 	int op;			/* contains REQ_OP_ */
799 	int op_flags;		/* req_flag_bits */
800 	block_t new_blkaddr;	/* new block address to be written */
801 	block_t old_blkaddr;	/* old block address before Cow */
802 	struct page *page;	/* page to be written */
803 	struct page *encrypted_page;	/* encrypted page */
804 	bool submitted;		/* indicate IO submission */
805 	bool need_lock;		/* indicate we need to lock cp_rwsem */
806 };
807 
808 #define is_read_io(rw) ((rw) == READ)
809 struct f2fs_bio_info {
810 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
811 	struct bio *bio;		/* bios to merge */
812 	sector_t last_block_in_bio;	/* last block number */
813 	struct f2fs_io_info fio;	/* store buffered io info. */
814 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
815 };
816 
817 #define FDEV(i)				(sbi->devs[i])
818 #define RDEV(i)				(raw_super->devs[i])
819 struct f2fs_dev_info {
820 	struct block_device *bdev;
821 	char path[MAX_PATH_LEN];
822 	unsigned int total_segments;
823 	block_t start_blk;
824 	block_t end_blk;
825 #ifdef CONFIG_BLK_DEV_ZONED
826 	unsigned int nr_blkz;			/* Total number of zones */
827 	u8 *blkz_type;				/* Array of zones type */
828 #endif
829 };
830 
831 enum inode_type {
832 	DIR_INODE,			/* for dirty dir inode */
833 	FILE_INODE,			/* for dirty regular/symlink inode */
834 	DIRTY_META,			/* for all dirtied inode metadata */
835 	NR_INODE_TYPE,
836 };
837 
838 /* for inner inode cache management */
839 struct inode_management {
840 	struct radix_tree_root ino_root;	/* ino entry array */
841 	spinlock_t ino_lock;			/* for ino entry lock */
842 	struct list_head ino_list;		/* inode list head */
843 	unsigned long ino_num;			/* number of entries */
844 };
845 
846 /* For s_flag in struct f2fs_sb_info */
847 enum {
848 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
849 	SBI_IS_CLOSE,				/* specify unmounting */
850 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
851 	SBI_POR_DOING,				/* recovery is doing or not */
852 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
853 	SBI_NEED_CP,				/* need to checkpoint */
854 };
855 
856 enum {
857 	CP_TIME,
858 	REQ_TIME,
859 	MAX_TIME,
860 };
861 
862 struct f2fs_sb_info {
863 	struct super_block *sb;			/* pointer to VFS super block */
864 	struct proc_dir_entry *s_proc;		/* proc entry */
865 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
866 	int valid_super_block;			/* valid super block no */
867 	unsigned long s_flag;				/* flags for sbi */
868 
869 #ifdef CONFIG_BLK_DEV_ZONED
870 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
871 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
872 #endif
873 
874 	/* for node-related operations */
875 	struct f2fs_nm_info *nm_info;		/* node manager */
876 	struct inode *node_inode;		/* cache node blocks */
877 
878 	/* for segment-related operations */
879 	struct f2fs_sm_info *sm_info;		/* segment manager */
880 
881 	/* for bio operations */
882 	struct f2fs_bio_info read_io;			/* for read bios */
883 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
884 	struct mutex wio_mutex[NODE + 1];	/* bio ordering for NODE/DATA */
885 	int write_io_size_bits;			/* Write IO size bits */
886 	mempool_t *write_io_dummy;		/* Dummy pages */
887 
888 	/* for checkpoint */
889 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
890 	int cur_cp_pack;			/* remain current cp pack */
891 	spinlock_t cp_lock;			/* for flag in ckpt */
892 	struct inode *meta_inode;		/* cache meta blocks */
893 	struct mutex cp_mutex;			/* checkpoint procedure lock */
894 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
895 	struct rw_semaphore node_write;		/* locking node writes */
896 	struct rw_semaphore node_change;	/* locking node change */
897 	wait_queue_head_t cp_wait;
898 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
899 	long interval_time[MAX_TIME];		/* to store thresholds */
900 
901 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
902 
903 	/* for orphan inode, use 0'th array */
904 	unsigned int max_orphans;		/* max orphan inodes */
905 
906 	/* for inode management */
907 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
908 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
909 
910 	/* for extent tree cache */
911 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
912 	struct mutex extent_tree_lock;	/* locking extent radix tree */
913 	struct list_head extent_list;		/* lru list for shrinker */
914 	spinlock_t extent_lock;			/* locking extent lru list */
915 	atomic_t total_ext_tree;		/* extent tree count */
916 	struct list_head zombie_list;		/* extent zombie tree list */
917 	atomic_t total_zombie_tree;		/* extent zombie tree count */
918 	atomic_t total_ext_node;		/* extent info count */
919 
920 	/* basic filesystem units */
921 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
922 	unsigned int log_blocksize;		/* log2 block size */
923 	unsigned int blocksize;			/* block size */
924 	unsigned int root_ino_num;		/* root inode number*/
925 	unsigned int node_ino_num;		/* node inode number*/
926 	unsigned int meta_ino_num;		/* meta inode number*/
927 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
928 	unsigned int blocks_per_seg;		/* blocks per segment */
929 	unsigned int segs_per_sec;		/* segments per section */
930 	unsigned int secs_per_zone;		/* sections per zone */
931 	unsigned int total_sections;		/* total section count */
932 	unsigned int total_node_count;		/* total node block count */
933 	unsigned int total_valid_node_count;	/* valid node block count */
934 	loff_t max_file_blocks;			/* max block index of file */
935 	int active_logs;			/* # of active logs */
936 	int dir_level;				/* directory level */
937 
938 	block_t user_block_count;		/* # of user blocks */
939 	block_t total_valid_block_count;	/* # of valid blocks */
940 	block_t discard_blks;			/* discard command candidats */
941 	block_t last_valid_block_count;		/* for recovery */
942 	u32 s_next_generation;			/* for NFS support */
943 
944 	/* # of pages, see count_type */
945 	atomic_t nr_pages[NR_COUNT_TYPE];
946 	/* # of allocated blocks */
947 	struct percpu_counter alloc_valid_block_count;
948 
949 	/* writeback control */
950 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
951 
952 	/* valid inode count */
953 	struct percpu_counter total_valid_inode_count;
954 
955 	struct f2fs_mount_info mount_opt;	/* mount options */
956 
957 	/* for cleaning operations */
958 	struct mutex gc_mutex;			/* mutex for GC */
959 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
960 	unsigned int cur_victim_sec;		/* current victim section num */
961 
962 	/* threshold for converting bg victims for fg */
963 	u64 fggc_threshold;
964 
965 	/* maximum # of trials to find a victim segment for SSR and GC */
966 	unsigned int max_victim_search;
967 
968 	/*
969 	 * for stat information.
970 	 * one is for the LFS mode, and the other is for the SSR mode.
971 	 */
972 #ifdef CONFIG_F2FS_STAT_FS
973 	struct f2fs_stat_info *stat_info;	/* FS status information */
974 	unsigned int segment_count[2];		/* # of allocated segments */
975 	unsigned int block_count[2];		/* # of allocated blocks */
976 	atomic_t inplace_count;		/* # of inplace update */
977 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
978 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
979 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
980 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
981 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
982 	atomic_t inline_inode;			/* # of inline_data inodes */
983 	atomic_t inline_dir;			/* # of inline_dentry inodes */
984 	atomic_t aw_cnt;			/* # of atomic writes */
985 	atomic_t vw_cnt;			/* # of volatile writes */
986 	atomic_t max_aw_cnt;			/* max # of atomic writes */
987 	atomic_t max_vw_cnt;			/* max # of volatile writes */
988 	int bg_gc;				/* background gc calls */
989 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
990 #endif
991 	spinlock_t stat_lock;			/* lock for stat operations */
992 
993 	/* For sysfs suppport */
994 	struct kobject s_kobj;
995 	struct completion s_kobj_unregister;
996 
997 	/* For shrinker support */
998 	struct list_head s_list;
999 	int s_ndevs;				/* number of devices */
1000 	struct f2fs_dev_info *devs;		/* for device list */
1001 	struct mutex umount_mutex;
1002 	unsigned int shrinker_run_no;
1003 
1004 	/* For write statistics */
1005 	u64 sectors_written_start;
1006 	u64 kbytes_written;
1007 
1008 	/* Reference to checksum algorithm driver via cryptoapi */
1009 	struct crypto_shash *s_chksum_driver;
1010 
1011 	/* For fault injection */
1012 #ifdef CONFIG_F2FS_FAULT_INJECTION
1013 	struct f2fs_fault_info fault_info;
1014 #endif
1015 };
1016 
1017 #ifdef CONFIG_F2FS_FAULT_INJECTION
1018 #define f2fs_show_injection_info(type)				\
1019 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1020 		KERN_INFO, fault_name[type],			\
1021 		__func__, __builtin_return_address(0))
1022 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1023 {
1024 	struct f2fs_fault_info *ffi = &sbi->fault_info;
1025 
1026 	if (!ffi->inject_rate)
1027 		return false;
1028 
1029 	if (!IS_FAULT_SET(ffi, type))
1030 		return false;
1031 
1032 	atomic_inc(&ffi->inject_ops);
1033 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1034 		atomic_set(&ffi->inject_ops, 0);
1035 		return true;
1036 	}
1037 	return false;
1038 }
1039 #endif
1040 
1041 /* For write statistics. Suppose sector size is 512 bytes,
1042  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1043  */
1044 #define BD_PART_WRITTEN(s)						 \
1045 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1046 		(s)->sectors_written_start) >> 1)
1047 
1048 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1049 {
1050 	sbi->last_time[type] = jiffies;
1051 }
1052 
1053 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1054 {
1055 	struct timespec ts = {sbi->interval_time[type], 0};
1056 	unsigned long interval = timespec_to_jiffies(&ts);
1057 
1058 	return time_after(jiffies, sbi->last_time[type] + interval);
1059 }
1060 
1061 static inline bool is_idle(struct f2fs_sb_info *sbi)
1062 {
1063 	struct block_device *bdev = sbi->sb->s_bdev;
1064 	struct request_queue *q = bdev_get_queue(bdev);
1065 	struct request_list *rl = &q->root_rl;
1066 
1067 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1068 		return 0;
1069 
1070 	return f2fs_time_over(sbi, REQ_TIME);
1071 }
1072 
1073 /*
1074  * Inline functions
1075  */
1076 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1077 			   unsigned int length)
1078 {
1079 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1080 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
1081 	int err;
1082 
1083 	shash->tfm = sbi->s_chksum_driver;
1084 	shash->flags = 0;
1085 	*ctx = F2FS_SUPER_MAGIC;
1086 
1087 	err = crypto_shash_update(shash, address, length);
1088 	BUG_ON(err);
1089 
1090 	return *ctx;
1091 }
1092 
1093 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1094 				  void *buf, size_t buf_size)
1095 {
1096 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1097 }
1098 
1099 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1100 {
1101 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1102 }
1103 
1104 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1105 {
1106 	return sb->s_fs_info;
1107 }
1108 
1109 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1110 {
1111 	return F2FS_SB(inode->i_sb);
1112 }
1113 
1114 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1115 {
1116 	return F2FS_I_SB(mapping->host);
1117 }
1118 
1119 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1120 {
1121 	return F2FS_M_SB(page->mapping);
1122 }
1123 
1124 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1125 {
1126 	return (struct f2fs_super_block *)(sbi->raw_super);
1127 }
1128 
1129 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1130 {
1131 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1132 }
1133 
1134 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1135 {
1136 	return (struct f2fs_node *)page_address(page);
1137 }
1138 
1139 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1140 {
1141 	return &((struct f2fs_node *)page_address(page))->i;
1142 }
1143 
1144 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1145 {
1146 	return (struct f2fs_nm_info *)(sbi->nm_info);
1147 }
1148 
1149 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1150 {
1151 	return (struct f2fs_sm_info *)(sbi->sm_info);
1152 }
1153 
1154 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1155 {
1156 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1157 }
1158 
1159 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1160 {
1161 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1162 }
1163 
1164 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1165 {
1166 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1167 }
1168 
1169 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1170 {
1171 	return sbi->meta_inode->i_mapping;
1172 }
1173 
1174 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1175 {
1176 	return sbi->node_inode->i_mapping;
1177 }
1178 
1179 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1180 {
1181 	return test_bit(type, &sbi->s_flag);
1182 }
1183 
1184 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1185 {
1186 	set_bit(type, &sbi->s_flag);
1187 }
1188 
1189 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1190 {
1191 	clear_bit(type, &sbi->s_flag);
1192 }
1193 
1194 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1195 {
1196 	return le64_to_cpu(cp->checkpoint_ver);
1197 }
1198 
1199 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1200 {
1201 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1202 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1203 }
1204 
1205 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1206 {
1207 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1208 
1209 	return ckpt_flags & f;
1210 }
1211 
1212 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1213 {
1214 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1215 }
1216 
1217 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1218 {
1219 	unsigned int ckpt_flags;
1220 
1221 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1222 	ckpt_flags |= f;
1223 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1224 }
1225 
1226 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1227 {
1228 	spin_lock(&sbi->cp_lock);
1229 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1230 	spin_unlock(&sbi->cp_lock);
1231 }
1232 
1233 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1234 {
1235 	unsigned int ckpt_flags;
1236 
1237 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1238 	ckpt_flags &= (~f);
1239 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1240 }
1241 
1242 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1243 {
1244 	spin_lock(&sbi->cp_lock);
1245 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1246 	spin_unlock(&sbi->cp_lock);
1247 }
1248 
1249 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1250 {
1251 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1252 
1253 	if (lock)
1254 		spin_lock(&sbi->cp_lock);
1255 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1256 	kfree(NM_I(sbi)->nat_bits);
1257 	NM_I(sbi)->nat_bits = NULL;
1258 	if (lock)
1259 		spin_unlock(&sbi->cp_lock);
1260 }
1261 
1262 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1263 					struct cp_control *cpc)
1264 {
1265 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1266 
1267 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1268 }
1269 
1270 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1271 {
1272 	down_read(&sbi->cp_rwsem);
1273 }
1274 
1275 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1276 {
1277 	up_read(&sbi->cp_rwsem);
1278 }
1279 
1280 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1281 {
1282 	down_write(&sbi->cp_rwsem);
1283 }
1284 
1285 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1286 {
1287 	up_write(&sbi->cp_rwsem);
1288 }
1289 
1290 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1291 {
1292 	int reason = CP_SYNC;
1293 
1294 	if (test_opt(sbi, FASTBOOT))
1295 		reason = CP_FASTBOOT;
1296 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1297 		reason = CP_UMOUNT;
1298 	return reason;
1299 }
1300 
1301 static inline bool __remain_node_summaries(int reason)
1302 {
1303 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1304 }
1305 
1306 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1307 {
1308 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1309 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1310 }
1311 
1312 /*
1313  * Check whether the given nid is within node id range.
1314  */
1315 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1316 {
1317 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1318 		return -EINVAL;
1319 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1320 		return -EINVAL;
1321 	return 0;
1322 }
1323 
1324 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1325 
1326 /*
1327  * Check whether the inode has blocks or not
1328  */
1329 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1330 {
1331 	if (F2FS_I(inode)->i_xattr_nid)
1332 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1333 	else
1334 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1335 }
1336 
1337 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1338 {
1339 	return ofs == XATTR_NODE_OFFSET;
1340 }
1341 
1342 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1343 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1344 				 struct inode *inode, blkcnt_t *count)
1345 {
1346 	blkcnt_t diff;
1347 
1348 #ifdef CONFIG_F2FS_FAULT_INJECTION
1349 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1350 		f2fs_show_injection_info(FAULT_BLOCK);
1351 		return false;
1352 	}
1353 #endif
1354 	/*
1355 	 * let's increase this in prior to actual block count change in order
1356 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1357 	 */
1358 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1359 
1360 	spin_lock(&sbi->stat_lock);
1361 	sbi->total_valid_block_count += (block_t)(*count);
1362 	if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1363 		diff = sbi->total_valid_block_count - sbi->user_block_count;
1364 		*count -= diff;
1365 		sbi->total_valid_block_count = sbi->user_block_count;
1366 		if (!*count) {
1367 			spin_unlock(&sbi->stat_lock);
1368 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1369 			return false;
1370 		}
1371 	}
1372 	spin_unlock(&sbi->stat_lock);
1373 
1374 	f2fs_i_blocks_write(inode, *count, true);
1375 	return true;
1376 }
1377 
1378 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1379 						struct inode *inode,
1380 						blkcnt_t count)
1381 {
1382 	spin_lock(&sbi->stat_lock);
1383 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1384 	f2fs_bug_on(sbi, inode->i_blocks < count);
1385 	sbi->total_valid_block_count -= (block_t)count;
1386 	spin_unlock(&sbi->stat_lock);
1387 	f2fs_i_blocks_write(inode, count, false);
1388 }
1389 
1390 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1391 {
1392 	atomic_inc(&sbi->nr_pages[count_type]);
1393 
1394 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1395 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1396 		return;
1397 
1398 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1399 }
1400 
1401 static inline void inode_inc_dirty_pages(struct inode *inode)
1402 {
1403 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1404 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1405 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1406 }
1407 
1408 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1409 {
1410 	atomic_dec(&sbi->nr_pages[count_type]);
1411 }
1412 
1413 static inline void inode_dec_dirty_pages(struct inode *inode)
1414 {
1415 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1416 			!S_ISLNK(inode->i_mode))
1417 		return;
1418 
1419 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1420 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1421 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1422 }
1423 
1424 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1425 {
1426 	return atomic_read(&sbi->nr_pages[count_type]);
1427 }
1428 
1429 static inline int get_dirty_pages(struct inode *inode)
1430 {
1431 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1432 }
1433 
1434 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1435 {
1436 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1437 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1438 						sbi->log_blocks_per_seg;
1439 
1440 	return segs / sbi->segs_per_sec;
1441 }
1442 
1443 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1444 {
1445 	return sbi->total_valid_block_count;
1446 }
1447 
1448 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1449 {
1450 	return sbi->discard_blks;
1451 }
1452 
1453 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1454 {
1455 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1456 
1457 	/* return NAT or SIT bitmap */
1458 	if (flag == NAT_BITMAP)
1459 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1460 	else if (flag == SIT_BITMAP)
1461 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1462 
1463 	return 0;
1464 }
1465 
1466 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1467 {
1468 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1469 }
1470 
1471 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1472 {
1473 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1474 	int offset;
1475 
1476 	if (__cp_payload(sbi) > 0) {
1477 		if (flag == NAT_BITMAP)
1478 			return &ckpt->sit_nat_version_bitmap;
1479 		else
1480 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1481 	} else {
1482 		offset = (flag == NAT_BITMAP) ?
1483 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1484 		return &ckpt->sit_nat_version_bitmap + offset;
1485 	}
1486 }
1487 
1488 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1489 {
1490 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1491 
1492 	if (sbi->cur_cp_pack == 2)
1493 		start_addr += sbi->blocks_per_seg;
1494 	return start_addr;
1495 }
1496 
1497 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1498 {
1499 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1500 
1501 	if (sbi->cur_cp_pack == 1)
1502 		start_addr += sbi->blocks_per_seg;
1503 	return start_addr;
1504 }
1505 
1506 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1507 {
1508 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1509 }
1510 
1511 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1512 {
1513 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1514 }
1515 
1516 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1517 						struct inode *inode)
1518 {
1519 	block_t	valid_block_count;
1520 	unsigned int valid_node_count;
1521 
1522 	spin_lock(&sbi->stat_lock);
1523 
1524 	valid_block_count = sbi->total_valid_block_count + 1;
1525 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1526 		spin_unlock(&sbi->stat_lock);
1527 		return false;
1528 	}
1529 
1530 	valid_node_count = sbi->total_valid_node_count + 1;
1531 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1532 		spin_unlock(&sbi->stat_lock);
1533 		return false;
1534 	}
1535 
1536 	if (inode)
1537 		f2fs_i_blocks_write(inode, 1, true);
1538 
1539 	sbi->total_valid_node_count++;
1540 	sbi->total_valid_block_count++;
1541 	spin_unlock(&sbi->stat_lock);
1542 
1543 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1544 	return true;
1545 }
1546 
1547 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1548 						struct inode *inode)
1549 {
1550 	spin_lock(&sbi->stat_lock);
1551 
1552 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1553 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1554 	f2fs_bug_on(sbi, !inode->i_blocks);
1555 
1556 	f2fs_i_blocks_write(inode, 1, false);
1557 	sbi->total_valid_node_count--;
1558 	sbi->total_valid_block_count--;
1559 
1560 	spin_unlock(&sbi->stat_lock);
1561 }
1562 
1563 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1564 {
1565 	return sbi->total_valid_node_count;
1566 }
1567 
1568 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1569 {
1570 	percpu_counter_inc(&sbi->total_valid_inode_count);
1571 }
1572 
1573 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1574 {
1575 	percpu_counter_dec(&sbi->total_valid_inode_count);
1576 }
1577 
1578 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1579 {
1580 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1581 }
1582 
1583 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1584 						pgoff_t index, bool for_write)
1585 {
1586 #ifdef CONFIG_F2FS_FAULT_INJECTION
1587 	struct page *page = find_lock_page(mapping, index);
1588 
1589 	if (page)
1590 		return page;
1591 
1592 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1593 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1594 		return NULL;
1595 	}
1596 #endif
1597 	if (!for_write)
1598 		return grab_cache_page(mapping, index);
1599 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1600 }
1601 
1602 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1603 {
1604 	char *src_kaddr = kmap(src);
1605 	char *dst_kaddr = kmap(dst);
1606 
1607 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1608 	kunmap(dst);
1609 	kunmap(src);
1610 }
1611 
1612 static inline void f2fs_put_page(struct page *page, int unlock)
1613 {
1614 	if (!page)
1615 		return;
1616 
1617 	if (unlock) {
1618 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1619 		unlock_page(page);
1620 	}
1621 	put_page(page);
1622 }
1623 
1624 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1625 {
1626 	if (dn->node_page)
1627 		f2fs_put_page(dn->node_page, 1);
1628 	if (dn->inode_page && dn->node_page != dn->inode_page)
1629 		f2fs_put_page(dn->inode_page, 0);
1630 	dn->node_page = NULL;
1631 	dn->inode_page = NULL;
1632 }
1633 
1634 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1635 					size_t size)
1636 {
1637 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1638 }
1639 
1640 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1641 						gfp_t flags)
1642 {
1643 	void *entry;
1644 
1645 	entry = kmem_cache_alloc(cachep, flags);
1646 	if (!entry)
1647 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1648 	return entry;
1649 }
1650 
1651 static inline struct bio *f2fs_bio_alloc(int npages)
1652 {
1653 	struct bio *bio;
1654 
1655 	/* No failure on bio allocation */
1656 	bio = bio_alloc(GFP_NOIO, npages);
1657 	if (!bio)
1658 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1659 	return bio;
1660 }
1661 
1662 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1663 				unsigned long index, void *item)
1664 {
1665 	while (radix_tree_insert(root, index, item))
1666 		cond_resched();
1667 }
1668 
1669 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1670 
1671 static inline bool IS_INODE(struct page *page)
1672 {
1673 	struct f2fs_node *p = F2FS_NODE(page);
1674 
1675 	return RAW_IS_INODE(p);
1676 }
1677 
1678 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1679 {
1680 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1681 }
1682 
1683 static inline block_t datablock_addr(struct page *node_page,
1684 		unsigned int offset)
1685 {
1686 	struct f2fs_node *raw_node;
1687 	__le32 *addr_array;
1688 
1689 	raw_node = F2FS_NODE(node_page);
1690 	addr_array = blkaddr_in_node(raw_node);
1691 	return le32_to_cpu(addr_array[offset]);
1692 }
1693 
1694 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1695 {
1696 	int mask;
1697 
1698 	addr += (nr >> 3);
1699 	mask = 1 << (7 - (nr & 0x07));
1700 	return mask & *addr;
1701 }
1702 
1703 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1704 {
1705 	int mask;
1706 
1707 	addr += (nr >> 3);
1708 	mask = 1 << (7 - (nr & 0x07));
1709 	*addr |= mask;
1710 }
1711 
1712 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1713 {
1714 	int mask;
1715 
1716 	addr += (nr >> 3);
1717 	mask = 1 << (7 - (nr & 0x07));
1718 	*addr &= ~mask;
1719 }
1720 
1721 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1722 {
1723 	int mask;
1724 	int ret;
1725 
1726 	addr += (nr >> 3);
1727 	mask = 1 << (7 - (nr & 0x07));
1728 	ret = mask & *addr;
1729 	*addr |= mask;
1730 	return ret;
1731 }
1732 
1733 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1734 {
1735 	int mask;
1736 	int ret;
1737 
1738 	addr += (nr >> 3);
1739 	mask = 1 << (7 - (nr & 0x07));
1740 	ret = mask & *addr;
1741 	*addr &= ~mask;
1742 	return ret;
1743 }
1744 
1745 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1746 {
1747 	int mask;
1748 
1749 	addr += (nr >> 3);
1750 	mask = 1 << (7 - (nr & 0x07));
1751 	*addr ^= mask;
1752 }
1753 
1754 /* used for f2fs_inode_info->flags */
1755 enum {
1756 	FI_NEW_INODE,		/* indicate newly allocated inode */
1757 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1758 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1759 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1760 	FI_INC_LINK,		/* need to increment i_nlink */
1761 	FI_ACL_MODE,		/* indicate acl mode */
1762 	FI_NO_ALLOC,		/* should not allocate any blocks */
1763 	FI_FREE_NID,		/* free allocated nide */
1764 	FI_NO_EXTENT,		/* not to use the extent cache */
1765 	FI_INLINE_XATTR,	/* used for inline xattr */
1766 	FI_INLINE_DATA,		/* used for inline data*/
1767 	FI_INLINE_DENTRY,	/* used for inline dentry */
1768 	FI_APPEND_WRITE,	/* inode has appended data */
1769 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1770 	FI_NEED_IPU,		/* used for ipu per file */
1771 	FI_ATOMIC_FILE,		/* indicate atomic file */
1772 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
1773 	FI_VOLATILE_FILE,	/* indicate volatile file */
1774 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1775 	FI_DROP_CACHE,		/* drop dirty page cache */
1776 	FI_DATA_EXIST,		/* indicate data exists */
1777 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1778 	FI_DO_DEFRAG,		/* indicate defragment is running */
1779 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1780 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
1781 	FI_HOT_DATA,		/* indicate file is hot */
1782 };
1783 
1784 static inline void __mark_inode_dirty_flag(struct inode *inode,
1785 						int flag, bool set)
1786 {
1787 	switch (flag) {
1788 	case FI_INLINE_XATTR:
1789 	case FI_INLINE_DATA:
1790 	case FI_INLINE_DENTRY:
1791 		if (set)
1792 			return;
1793 	case FI_DATA_EXIST:
1794 	case FI_INLINE_DOTS:
1795 		f2fs_mark_inode_dirty_sync(inode, true);
1796 	}
1797 }
1798 
1799 static inline void set_inode_flag(struct inode *inode, int flag)
1800 {
1801 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1802 		set_bit(flag, &F2FS_I(inode)->flags);
1803 	__mark_inode_dirty_flag(inode, flag, true);
1804 }
1805 
1806 static inline int is_inode_flag_set(struct inode *inode, int flag)
1807 {
1808 	return test_bit(flag, &F2FS_I(inode)->flags);
1809 }
1810 
1811 static inline void clear_inode_flag(struct inode *inode, int flag)
1812 {
1813 	if (test_bit(flag, &F2FS_I(inode)->flags))
1814 		clear_bit(flag, &F2FS_I(inode)->flags);
1815 	__mark_inode_dirty_flag(inode, flag, false);
1816 }
1817 
1818 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1819 {
1820 	F2FS_I(inode)->i_acl_mode = mode;
1821 	set_inode_flag(inode, FI_ACL_MODE);
1822 	f2fs_mark_inode_dirty_sync(inode, false);
1823 }
1824 
1825 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1826 {
1827 	if (inc)
1828 		inc_nlink(inode);
1829 	else
1830 		drop_nlink(inode);
1831 	f2fs_mark_inode_dirty_sync(inode, true);
1832 }
1833 
1834 static inline void f2fs_i_blocks_write(struct inode *inode,
1835 					blkcnt_t diff, bool add)
1836 {
1837 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1838 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1839 
1840 	inode->i_blocks = add ? inode->i_blocks + diff :
1841 				inode->i_blocks - diff;
1842 	f2fs_mark_inode_dirty_sync(inode, true);
1843 	if (clean || recover)
1844 		set_inode_flag(inode, FI_AUTO_RECOVER);
1845 }
1846 
1847 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1848 {
1849 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1850 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1851 
1852 	if (i_size_read(inode) == i_size)
1853 		return;
1854 
1855 	i_size_write(inode, i_size);
1856 	f2fs_mark_inode_dirty_sync(inode, true);
1857 	if (clean || recover)
1858 		set_inode_flag(inode, FI_AUTO_RECOVER);
1859 }
1860 
1861 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1862 {
1863 	F2FS_I(inode)->i_current_depth = depth;
1864 	f2fs_mark_inode_dirty_sync(inode, true);
1865 }
1866 
1867 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1868 {
1869 	F2FS_I(inode)->i_xattr_nid = xnid;
1870 	f2fs_mark_inode_dirty_sync(inode, true);
1871 }
1872 
1873 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1874 {
1875 	F2FS_I(inode)->i_pino = pino;
1876 	f2fs_mark_inode_dirty_sync(inode, true);
1877 }
1878 
1879 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1880 {
1881 	struct f2fs_inode_info *fi = F2FS_I(inode);
1882 
1883 	if (ri->i_inline & F2FS_INLINE_XATTR)
1884 		set_bit(FI_INLINE_XATTR, &fi->flags);
1885 	if (ri->i_inline & F2FS_INLINE_DATA)
1886 		set_bit(FI_INLINE_DATA, &fi->flags);
1887 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1888 		set_bit(FI_INLINE_DENTRY, &fi->flags);
1889 	if (ri->i_inline & F2FS_DATA_EXIST)
1890 		set_bit(FI_DATA_EXIST, &fi->flags);
1891 	if (ri->i_inline & F2FS_INLINE_DOTS)
1892 		set_bit(FI_INLINE_DOTS, &fi->flags);
1893 }
1894 
1895 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1896 {
1897 	ri->i_inline = 0;
1898 
1899 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1900 		ri->i_inline |= F2FS_INLINE_XATTR;
1901 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
1902 		ri->i_inline |= F2FS_INLINE_DATA;
1903 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1904 		ri->i_inline |= F2FS_INLINE_DENTRY;
1905 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
1906 		ri->i_inline |= F2FS_DATA_EXIST;
1907 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1908 		ri->i_inline |= F2FS_INLINE_DOTS;
1909 }
1910 
1911 static inline int f2fs_has_inline_xattr(struct inode *inode)
1912 {
1913 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
1914 }
1915 
1916 static inline unsigned int addrs_per_inode(struct inode *inode)
1917 {
1918 	if (f2fs_has_inline_xattr(inode))
1919 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1920 	return DEF_ADDRS_PER_INODE;
1921 }
1922 
1923 static inline void *inline_xattr_addr(struct page *page)
1924 {
1925 	struct f2fs_inode *ri = F2FS_INODE(page);
1926 
1927 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1928 					F2FS_INLINE_XATTR_ADDRS]);
1929 }
1930 
1931 static inline int inline_xattr_size(struct inode *inode)
1932 {
1933 	if (f2fs_has_inline_xattr(inode))
1934 		return F2FS_INLINE_XATTR_ADDRS << 2;
1935 	else
1936 		return 0;
1937 }
1938 
1939 static inline int f2fs_has_inline_data(struct inode *inode)
1940 {
1941 	return is_inode_flag_set(inode, FI_INLINE_DATA);
1942 }
1943 
1944 static inline int f2fs_exist_data(struct inode *inode)
1945 {
1946 	return is_inode_flag_set(inode, FI_DATA_EXIST);
1947 }
1948 
1949 static inline int f2fs_has_inline_dots(struct inode *inode)
1950 {
1951 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
1952 }
1953 
1954 static inline bool f2fs_is_atomic_file(struct inode *inode)
1955 {
1956 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1957 }
1958 
1959 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
1960 {
1961 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
1962 }
1963 
1964 static inline bool f2fs_is_volatile_file(struct inode *inode)
1965 {
1966 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1967 }
1968 
1969 static inline bool f2fs_is_first_block_written(struct inode *inode)
1970 {
1971 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1972 }
1973 
1974 static inline bool f2fs_is_drop_cache(struct inode *inode)
1975 {
1976 	return is_inode_flag_set(inode, FI_DROP_CACHE);
1977 }
1978 
1979 static inline void *inline_data_addr(struct page *page)
1980 {
1981 	struct f2fs_inode *ri = F2FS_INODE(page);
1982 
1983 	return (void *)&(ri->i_addr[1]);
1984 }
1985 
1986 static inline int f2fs_has_inline_dentry(struct inode *inode)
1987 {
1988 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1989 }
1990 
1991 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1992 {
1993 	if (!f2fs_has_inline_dentry(dir))
1994 		kunmap(page);
1995 }
1996 
1997 static inline int is_file(struct inode *inode, int type)
1998 {
1999 	return F2FS_I(inode)->i_advise & type;
2000 }
2001 
2002 static inline void set_file(struct inode *inode, int type)
2003 {
2004 	F2FS_I(inode)->i_advise |= type;
2005 	f2fs_mark_inode_dirty_sync(inode, true);
2006 }
2007 
2008 static inline void clear_file(struct inode *inode, int type)
2009 {
2010 	F2FS_I(inode)->i_advise &= ~type;
2011 	f2fs_mark_inode_dirty_sync(inode, true);
2012 }
2013 
2014 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2015 {
2016 	if (dsync) {
2017 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2018 		bool ret;
2019 
2020 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2021 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2022 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2023 		return ret;
2024 	}
2025 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2026 			file_keep_isize(inode) ||
2027 			i_size_read(inode) & PAGE_MASK)
2028 		return false;
2029 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2030 }
2031 
2032 static inline int f2fs_readonly(struct super_block *sb)
2033 {
2034 	return sb->s_flags & MS_RDONLY;
2035 }
2036 
2037 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2038 {
2039 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2040 }
2041 
2042 static inline bool is_dot_dotdot(const struct qstr *str)
2043 {
2044 	if (str->len == 1 && str->name[0] == '.')
2045 		return true;
2046 
2047 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2048 		return true;
2049 
2050 	return false;
2051 }
2052 
2053 static inline bool f2fs_may_extent_tree(struct inode *inode)
2054 {
2055 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2056 			is_inode_flag_set(inode, FI_NO_EXTENT))
2057 		return false;
2058 
2059 	return S_ISREG(inode->i_mode);
2060 }
2061 
2062 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2063 					size_t size, gfp_t flags)
2064 {
2065 #ifdef CONFIG_F2FS_FAULT_INJECTION
2066 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2067 		f2fs_show_injection_info(FAULT_KMALLOC);
2068 		return NULL;
2069 	}
2070 #endif
2071 	return kmalloc(size, flags);
2072 }
2073 
2074 #define get_inode_mode(i) \
2075 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2076 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2077 
2078 /*
2079  * file.c
2080  */
2081 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2082 void truncate_data_blocks(struct dnode_of_data *dn);
2083 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2084 int f2fs_truncate(struct inode *inode);
2085 int f2fs_getattr(const struct path *path, struct kstat *stat,
2086 			u32 request_mask, unsigned int flags);
2087 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2088 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2089 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2090 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2091 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2092 
2093 /*
2094  * inode.c
2095  */
2096 void f2fs_set_inode_flags(struct inode *inode);
2097 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2098 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2099 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2100 int update_inode(struct inode *inode, struct page *node_page);
2101 int update_inode_page(struct inode *inode);
2102 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2103 void f2fs_evict_inode(struct inode *inode);
2104 void handle_failed_inode(struct inode *inode);
2105 
2106 /*
2107  * namei.c
2108  */
2109 struct dentry *f2fs_get_parent(struct dentry *child);
2110 
2111 /*
2112  * dir.c
2113  */
2114 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2115 unsigned char get_de_type(struct f2fs_dir_entry *de);
2116 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2117 			f2fs_hash_t namehash, int *max_slots,
2118 			struct f2fs_dentry_ptr *d);
2119 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2120 			unsigned int start_pos, struct fscrypt_str *fstr);
2121 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2122 			struct f2fs_dentry_ptr *d);
2123 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2124 			const struct qstr *new_name,
2125 			const struct qstr *orig_name, struct page *dpage);
2126 void update_parent_metadata(struct inode *dir, struct inode *inode,
2127 			unsigned int current_depth);
2128 int room_for_filename(const void *bitmap, int slots, int max_slots);
2129 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2130 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2131 			struct fscrypt_name *fname, struct page **res_page);
2132 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2133 			const struct qstr *child, struct page **res_page);
2134 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2135 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2136 			struct page **page);
2137 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2138 			struct page *page, struct inode *inode);
2139 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2140 			const struct qstr *name, f2fs_hash_t name_hash,
2141 			unsigned int bit_pos);
2142 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2143 			const struct qstr *orig_name,
2144 			struct inode *inode, nid_t ino, umode_t mode);
2145 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2146 			struct inode *inode, nid_t ino, umode_t mode);
2147 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2148 			struct inode *inode, nid_t ino, umode_t mode);
2149 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2150 			struct inode *dir, struct inode *inode);
2151 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2152 bool f2fs_empty_dir(struct inode *dir);
2153 
2154 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2155 {
2156 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2157 				inode, inode->i_ino, inode->i_mode);
2158 }
2159 
2160 /*
2161  * super.c
2162  */
2163 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2164 void f2fs_inode_synced(struct inode *inode);
2165 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2166 int f2fs_sync_fs(struct super_block *sb, int sync);
2167 extern __printf(3, 4)
2168 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2169 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2170 
2171 /*
2172  * hash.c
2173  */
2174 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2175 				struct fscrypt_name *fname);
2176 
2177 /*
2178  * node.c
2179  */
2180 struct dnode_of_data;
2181 struct node_info;
2182 
2183 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2184 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2185 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2186 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2187 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2188 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2189 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2190 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2191 int truncate_xattr_node(struct inode *inode, struct page *page);
2192 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2193 int remove_inode_page(struct inode *inode);
2194 struct page *new_inode_page(struct inode *inode);
2195 struct page *new_node_page(struct dnode_of_data *dn,
2196 			unsigned int ofs, struct page *ipage);
2197 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2198 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2199 struct page *get_node_page_ra(struct page *parent, int start);
2200 void move_node_page(struct page *node_page, int gc_type);
2201 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2202 			struct writeback_control *wbc, bool atomic);
2203 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2204 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2205 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2206 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2207 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2208 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2209 void recover_inline_xattr(struct inode *inode, struct page *page);
2210 int recover_xattr_data(struct inode *inode, struct page *page,
2211 			block_t blkaddr);
2212 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2213 int restore_node_summary(struct f2fs_sb_info *sbi,
2214 			unsigned int segno, struct f2fs_summary_block *sum);
2215 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2216 int build_node_manager(struct f2fs_sb_info *sbi);
2217 void destroy_node_manager(struct f2fs_sb_info *sbi);
2218 int __init create_node_manager_caches(void);
2219 void destroy_node_manager_caches(void);
2220 
2221 /*
2222  * segment.c
2223  */
2224 void register_inmem_page(struct inode *inode, struct page *page);
2225 void drop_inmem_pages(struct inode *inode);
2226 void drop_inmem_page(struct inode *inode, struct page *page);
2227 int commit_inmem_pages(struct inode *inode);
2228 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2229 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2230 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2231 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2232 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2233 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2234 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2235 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2236 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2237 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2238 void release_discard_addrs(struct f2fs_sb_info *sbi);
2239 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2240 void allocate_new_segments(struct f2fs_sb_info *sbi);
2241 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2242 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2243 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2244 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2245 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2246 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2247 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2248 int rewrite_data_page(struct f2fs_io_info *fio);
2249 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2250 			block_t old_blkaddr, block_t new_blkaddr,
2251 			bool recover_curseg, bool recover_newaddr);
2252 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2253 			block_t old_addr, block_t new_addr,
2254 			unsigned char version, bool recover_curseg,
2255 			bool recover_newaddr);
2256 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2257 			block_t old_blkaddr, block_t *new_blkaddr,
2258 			struct f2fs_summary *sum, int type);
2259 void f2fs_wait_on_page_writeback(struct page *page,
2260 			enum page_type type, bool ordered);
2261 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2262 			block_t blkaddr);
2263 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2264 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2265 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2266 			unsigned int val, int alloc);
2267 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2268 int build_segment_manager(struct f2fs_sb_info *sbi);
2269 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2270 int __init create_segment_manager_caches(void);
2271 void destroy_segment_manager_caches(void);
2272 
2273 /*
2274  * checkpoint.c
2275  */
2276 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2277 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2278 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2279 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2280 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2281 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2282 			int type, bool sync);
2283 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2284 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2285 			long nr_to_write);
2286 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2287 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2288 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2289 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2290 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2291 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2292 void release_orphan_inode(struct f2fs_sb_info *sbi);
2293 void add_orphan_inode(struct inode *inode);
2294 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2295 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2296 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2297 void update_dirty_page(struct inode *inode, struct page *page);
2298 void remove_dirty_inode(struct inode *inode);
2299 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2300 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2301 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2302 int __init create_checkpoint_caches(void);
2303 void destroy_checkpoint_caches(void);
2304 
2305 /*
2306  * data.c
2307  */
2308 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
2309 			int rw);
2310 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
2311 				struct inode *inode, nid_t ino, pgoff_t idx,
2312 				enum page_type type, int rw);
2313 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi);
2314 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2315 int f2fs_submit_page_mbio(struct f2fs_io_info *fio);
2316 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2317 			block_t blk_addr, struct bio *bio);
2318 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2319 void set_data_blkaddr(struct dnode_of_data *dn);
2320 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2321 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2322 int reserve_new_block(struct dnode_of_data *dn);
2323 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2324 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2325 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2326 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2327 			int op_flags, bool for_write);
2328 struct page *find_data_page(struct inode *inode, pgoff_t index);
2329 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2330 			bool for_write);
2331 struct page *get_new_data_page(struct inode *inode,
2332 			struct page *ipage, pgoff_t index, bool new_i_size);
2333 int do_write_data_page(struct f2fs_io_info *fio);
2334 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2335 			int create, int flag);
2336 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2337 			u64 start, u64 len);
2338 void f2fs_set_page_dirty_nobuffers(struct page *page);
2339 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2340 			unsigned int length);
2341 int f2fs_release_page(struct page *page, gfp_t wait);
2342 #ifdef CONFIG_MIGRATION
2343 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2344 			struct page *page, enum migrate_mode mode);
2345 #endif
2346 
2347 /*
2348  * gc.c
2349  */
2350 int start_gc_thread(struct f2fs_sb_info *sbi);
2351 void stop_gc_thread(struct f2fs_sb_info *sbi);
2352 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2353 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2354 			unsigned int segno);
2355 void build_gc_manager(struct f2fs_sb_info *sbi);
2356 
2357 /*
2358  * recovery.c
2359  */
2360 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2361 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2362 
2363 /*
2364  * debug.c
2365  */
2366 #ifdef CONFIG_F2FS_STAT_FS
2367 struct f2fs_stat_info {
2368 	struct list_head stat_list;
2369 	struct f2fs_sb_info *sbi;
2370 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2371 	int main_area_segs, main_area_sections, main_area_zones;
2372 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2373 	unsigned long long hit_total, total_ext;
2374 	int ext_tree, zombie_tree, ext_node;
2375 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2376 	int inmem_pages;
2377 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2378 	int nats, dirty_nats, sits, dirty_sits;
2379 	int free_nids, avail_nids, alloc_nids;
2380 	int total_count, utilization;
2381 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2382 	int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2383 	int nr_discard_cmd;
2384 	unsigned int undiscard_blks;
2385 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2386 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2387 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2388 	unsigned int bimodal, avg_vblocks;
2389 	int util_free, util_valid, util_invalid;
2390 	int rsvd_segs, overp_segs;
2391 	int dirty_count, node_pages, meta_pages;
2392 	int prefree_count, call_count, cp_count, bg_cp_count;
2393 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2394 	int bg_node_segs, bg_data_segs;
2395 	int tot_blks, data_blks, node_blks;
2396 	int bg_data_blks, bg_node_blks;
2397 	int curseg[NR_CURSEG_TYPE];
2398 	int cursec[NR_CURSEG_TYPE];
2399 	int curzone[NR_CURSEG_TYPE];
2400 
2401 	unsigned int segment_count[2];
2402 	unsigned int block_count[2];
2403 	unsigned int inplace_count;
2404 	unsigned long long base_mem, cache_mem, page_mem;
2405 };
2406 
2407 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2408 {
2409 	return (struct f2fs_stat_info *)sbi->stat_info;
2410 }
2411 
2412 #define stat_inc_cp_count(si)		((si)->cp_count++)
2413 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2414 #define stat_inc_call_count(si)		((si)->call_count++)
2415 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2416 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2417 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2418 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2419 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2420 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2421 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2422 #define stat_inc_inline_xattr(inode)					\
2423 	do {								\
2424 		if (f2fs_has_inline_xattr(inode))			\
2425 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2426 	} while (0)
2427 #define stat_dec_inline_xattr(inode)					\
2428 	do {								\
2429 		if (f2fs_has_inline_xattr(inode))			\
2430 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2431 	} while (0)
2432 #define stat_inc_inline_inode(inode)					\
2433 	do {								\
2434 		if (f2fs_has_inline_data(inode))			\
2435 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2436 	} while (0)
2437 #define stat_dec_inline_inode(inode)					\
2438 	do {								\
2439 		if (f2fs_has_inline_data(inode))			\
2440 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2441 	} while (0)
2442 #define stat_inc_inline_dir(inode)					\
2443 	do {								\
2444 		if (f2fs_has_inline_dentry(inode))			\
2445 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2446 	} while (0)
2447 #define stat_dec_inline_dir(inode)					\
2448 	do {								\
2449 		if (f2fs_has_inline_dentry(inode))			\
2450 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2451 	} while (0)
2452 #define stat_inc_seg_type(sbi, curseg)					\
2453 		((sbi)->segment_count[(curseg)->alloc_type]++)
2454 #define stat_inc_block_count(sbi, curseg)				\
2455 		((sbi)->block_count[(curseg)->alloc_type]++)
2456 #define stat_inc_inplace_blocks(sbi)					\
2457 		(atomic_inc(&(sbi)->inplace_count))
2458 #define stat_inc_atomic_write(inode)					\
2459 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2460 #define stat_dec_atomic_write(inode)					\
2461 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2462 #define stat_update_max_atomic_write(inode)				\
2463 	do {								\
2464 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2465 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2466 		if (cur > max)						\
2467 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2468 	} while (0)
2469 #define stat_inc_volatile_write(inode)					\
2470 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2471 #define stat_dec_volatile_write(inode)					\
2472 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2473 #define stat_update_max_volatile_write(inode)				\
2474 	do {								\
2475 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
2476 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
2477 		if (cur > max)						\
2478 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
2479 	} while (0)
2480 #define stat_inc_seg_count(sbi, type, gc_type)				\
2481 	do {								\
2482 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2483 		si->tot_segs++;						\
2484 		if ((type) == SUM_TYPE_DATA) {				\
2485 			si->data_segs++;				\
2486 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2487 		} else {						\
2488 			si->node_segs++;				\
2489 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2490 		}							\
2491 	} while (0)
2492 
2493 #define stat_inc_tot_blk_count(si, blks)				\
2494 	((si)->tot_blks += (blks))
2495 
2496 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2497 	do {								\
2498 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2499 		stat_inc_tot_blk_count(si, blks);			\
2500 		si->data_blks += (blks);				\
2501 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2502 	} while (0)
2503 
2504 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2505 	do {								\
2506 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2507 		stat_inc_tot_blk_count(si, blks);			\
2508 		si->node_blks += (blks);				\
2509 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2510 	} while (0)
2511 
2512 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2513 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2514 int __init f2fs_create_root_stats(void);
2515 void f2fs_destroy_root_stats(void);
2516 #else
2517 #define stat_inc_cp_count(si)				do { } while (0)
2518 #define stat_inc_bg_cp_count(si)			do { } while (0)
2519 #define stat_inc_call_count(si)				do { } while (0)
2520 #define stat_inc_bggc_count(si)				do { } while (0)
2521 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
2522 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
2523 #define stat_inc_total_hit(sb)				do { } while (0)
2524 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
2525 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
2526 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
2527 #define stat_inc_inline_xattr(inode)			do { } while (0)
2528 #define stat_dec_inline_xattr(inode)			do { } while (0)
2529 #define stat_inc_inline_inode(inode)			do { } while (0)
2530 #define stat_dec_inline_inode(inode)			do { } while (0)
2531 #define stat_inc_inline_dir(inode)			do { } while (0)
2532 #define stat_dec_inline_dir(inode)			do { } while (0)
2533 #define stat_inc_atomic_write(inode)			do { } while (0)
2534 #define stat_dec_atomic_write(inode)			do { } while (0)
2535 #define stat_update_max_atomic_write(inode)		do { } while (0)
2536 #define stat_inc_volatile_write(inode)			do { } while (0)
2537 #define stat_dec_volatile_write(inode)			do { } while (0)
2538 #define stat_update_max_volatile_write(inode)		do { } while (0)
2539 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
2540 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
2541 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
2542 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
2543 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
2544 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
2545 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
2546 
2547 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2548 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2549 static inline int __init f2fs_create_root_stats(void) { return 0; }
2550 static inline void f2fs_destroy_root_stats(void) { }
2551 #endif
2552 
2553 extern const struct file_operations f2fs_dir_operations;
2554 extern const struct file_operations f2fs_file_operations;
2555 extern const struct inode_operations f2fs_file_inode_operations;
2556 extern const struct address_space_operations f2fs_dblock_aops;
2557 extern const struct address_space_operations f2fs_node_aops;
2558 extern const struct address_space_operations f2fs_meta_aops;
2559 extern const struct inode_operations f2fs_dir_inode_operations;
2560 extern const struct inode_operations f2fs_symlink_inode_operations;
2561 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2562 extern const struct inode_operations f2fs_special_inode_operations;
2563 extern struct kmem_cache *inode_entry_slab;
2564 
2565 /*
2566  * inline.c
2567  */
2568 bool f2fs_may_inline_data(struct inode *inode);
2569 bool f2fs_may_inline_dentry(struct inode *inode);
2570 void read_inline_data(struct page *page, struct page *ipage);
2571 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2572 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2573 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2574 int f2fs_convert_inline_inode(struct inode *inode);
2575 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2576 bool recover_inline_data(struct inode *inode, struct page *npage);
2577 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2578 			struct fscrypt_name *fname, struct page **res_page);
2579 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2580 			struct page *ipage);
2581 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2582 			const struct qstr *orig_name,
2583 			struct inode *inode, nid_t ino, umode_t mode);
2584 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2585 			struct inode *dir, struct inode *inode);
2586 bool f2fs_empty_inline_dir(struct inode *dir);
2587 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2588 			struct fscrypt_str *fstr);
2589 int f2fs_inline_data_fiemap(struct inode *inode,
2590 			struct fiemap_extent_info *fieinfo,
2591 			__u64 start, __u64 len);
2592 
2593 /*
2594  * shrinker.c
2595  */
2596 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2597 			struct shrink_control *sc);
2598 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2599 			struct shrink_control *sc);
2600 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2601 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2602 
2603 /*
2604  * extent_cache.c
2605  */
2606 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2607 				struct rb_entry *cached_re, unsigned int ofs);
2608 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2609 				struct rb_root *root, struct rb_node **parent,
2610 				unsigned int ofs);
2611 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2612 		struct rb_entry *cached_re, unsigned int ofs,
2613 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
2614 		struct rb_node ***insert_p, struct rb_node **insert_parent,
2615 		bool force);
2616 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2617 						struct rb_root *root);
2618 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2619 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2620 void f2fs_drop_extent_tree(struct inode *inode);
2621 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2622 void f2fs_destroy_extent_tree(struct inode *inode);
2623 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2624 			struct extent_info *ei);
2625 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2626 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2627 			pgoff_t fofs, block_t blkaddr, unsigned int len);
2628 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2629 int __init create_extent_cache(void);
2630 void destroy_extent_cache(void);
2631 
2632 /*
2633  * crypto support
2634  */
2635 static inline bool f2fs_encrypted_inode(struct inode *inode)
2636 {
2637 	return file_is_encrypt(inode);
2638 }
2639 
2640 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2641 {
2642 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2643 	file_set_encrypt(inode);
2644 #endif
2645 }
2646 
2647 static inline bool f2fs_bio_encrypted(struct bio *bio)
2648 {
2649 	return bio->bi_private != NULL;
2650 }
2651 
2652 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2653 {
2654 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2655 }
2656 
2657 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2658 {
2659 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2660 }
2661 
2662 #ifdef CONFIG_BLK_DEV_ZONED
2663 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2664 			struct block_device *bdev, block_t blkaddr)
2665 {
2666 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2667 	int i;
2668 
2669 	for (i = 0; i < sbi->s_ndevs; i++)
2670 		if (FDEV(i).bdev == bdev)
2671 			return FDEV(i).blkz_type[zno];
2672 	return -EINVAL;
2673 }
2674 #endif
2675 
2676 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2677 {
2678 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2679 
2680 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2681 }
2682 
2683 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2684 {
2685 	clear_opt(sbi, ADAPTIVE);
2686 	clear_opt(sbi, LFS);
2687 
2688 	switch (mt) {
2689 	case F2FS_MOUNT_ADAPTIVE:
2690 		set_opt(sbi, ADAPTIVE);
2691 		break;
2692 	case F2FS_MOUNT_LFS:
2693 		set_opt(sbi, LFS);
2694 		break;
2695 	}
2696 }
2697 
2698 static inline bool f2fs_may_encrypt(struct inode *inode)
2699 {
2700 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2701 	umode_t mode = inode->i_mode;
2702 
2703 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2704 #else
2705 	return 0;
2706 #endif
2707 }
2708 
2709 #endif
2710