1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #ifdef CONFIG_F2FS_FS_ENCRYPTION 26 #include <linux/fscrypt_supp.h> 27 #else 28 #include <linux/fscrypt_notsupp.h> 29 #endif 30 #include <crypto/hash.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_ALLOC_NID, 49 FAULT_ORPHAN, 50 FAULT_BLOCK, 51 FAULT_DIR_DEPTH, 52 FAULT_EVICT_INODE, 53 FAULT_TRUNCATE, 54 FAULT_IO, 55 FAULT_CHECKPOINT, 56 FAULT_MAX, 57 }; 58 59 struct f2fs_fault_info { 60 atomic_t inject_ops; 61 unsigned int inject_rate; 62 unsigned int inject_type; 63 }; 64 65 extern char *fault_name[FAULT_MAX]; 66 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 67 #endif 68 69 /* 70 * For mount options 71 */ 72 #define F2FS_MOUNT_BG_GC 0x00000001 73 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 74 #define F2FS_MOUNT_DISCARD 0x00000004 75 #define F2FS_MOUNT_NOHEAP 0x00000008 76 #define F2FS_MOUNT_XATTR_USER 0x00000010 77 #define F2FS_MOUNT_POSIX_ACL 0x00000020 78 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 79 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 80 #define F2FS_MOUNT_INLINE_DATA 0x00000100 81 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 82 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 83 #define F2FS_MOUNT_NOBARRIER 0x00000800 84 #define F2FS_MOUNT_FASTBOOT 0x00001000 85 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 86 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 87 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 88 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 89 #define F2FS_MOUNT_ADAPTIVE 0x00020000 90 #define F2FS_MOUNT_LFS 0x00040000 91 92 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) 93 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) 94 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) 95 96 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 97 typecheck(unsigned long long, b) && \ 98 ((long long)((a) - (b)) > 0)) 99 100 typedef u32 block_t; /* 101 * should not change u32, since it is the on-disk block 102 * address format, __le32. 103 */ 104 typedef u32 nid_t; 105 106 struct f2fs_mount_info { 107 unsigned int opt; 108 }; 109 110 #define F2FS_FEATURE_ENCRYPT 0x0001 111 #define F2FS_FEATURE_BLKZONED 0x0002 112 113 #define F2FS_HAS_FEATURE(sb, mask) \ 114 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 115 #define F2FS_SET_FEATURE(sb, mask) \ 116 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 117 #define F2FS_CLEAR_FEATURE(sb, mask) \ 118 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 119 120 /* 121 * For checkpoint manager 122 */ 123 enum { 124 NAT_BITMAP, 125 SIT_BITMAP 126 }; 127 128 #define CP_UMOUNT 0x00000001 129 #define CP_FASTBOOT 0x00000002 130 #define CP_SYNC 0x00000004 131 #define CP_RECOVERY 0x00000008 132 #define CP_DISCARD 0x00000010 133 #define CP_TRIMMED 0x00000020 134 135 #define DEF_BATCHED_TRIM_SECTIONS 2048 136 #define BATCHED_TRIM_SEGMENTS(sbi) \ 137 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 138 #define BATCHED_TRIM_BLOCKS(sbi) \ 139 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 140 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 141 #define DISCARD_ISSUE_RATE 8 142 #define DEF_CP_INTERVAL 60 /* 60 secs */ 143 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 144 145 struct cp_control { 146 int reason; 147 __u64 trim_start; 148 __u64 trim_end; 149 __u64 trim_minlen; 150 __u64 trimmed; 151 }; 152 153 /* 154 * For CP/NAT/SIT/SSA readahead 155 */ 156 enum { 157 META_CP, 158 META_NAT, 159 META_SIT, 160 META_SSA, 161 META_POR, 162 }; 163 164 /* for the list of ino */ 165 enum { 166 ORPHAN_INO, /* for orphan ino list */ 167 APPEND_INO, /* for append ino list */ 168 UPDATE_INO, /* for update ino list */ 169 MAX_INO_ENTRY, /* max. list */ 170 }; 171 172 struct ino_entry { 173 struct list_head list; /* list head */ 174 nid_t ino; /* inode number */ 175 }; 176 177 /* for the list of inodes to be GCed */ 178 struct inode_entry { 179 struct list_head list; /* list head */ 180 struct inode *inode; /* vfs inode pointer */ 181 }; 182 183 /* for the bitmap indicate blocks to be discarded */ 184 struct discard_entry { 185 struct list_head list; /* list head */ 186 block_t start_blkaddr; /* start blockaddr of current segment */ 187 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 188 }; 189 190 /* max discard pend list number */ 191 #define MAX_PLIST_NUM 512 192 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 193 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 194 195 enum { 196 D_PREP, 197 D_SUBMIT, 198 D_DONE, 199 }; 200 201 struct discard_info { 202 block_t lstart; /* logical start address */ 203 block_t len; /* length */ 204 block_t start; /* actual start address in dev */ 205 }; 206 207 struct discard_cmd { 208 struct rb_node rb_node; /* rb node located in rb-tree */ 209 union { 210 struct { 211 block_t lstart; /* logical start address */ 212 block_t len; /* length */ 213 block_t start; /* actual start address in dev */ 214 }; 215 struct discard_info di; /* discard info */ 216 217 }; 218 struct list_head list; /* command list */ 219 struct completion wait; /* compleation */ 220 struct block_device *bdev; /* bdev */ 221 unsigned short ref; /* reference count */ 222 unsigned char state; /* state */ 223 int error; /* bio error */ 224 }; 225 226 struct discard_cmd_control { 227 struct task_struct *f2fs_issue_discard; /* discard thread */ 228 struct list_head entry_list; /* 4KB discard entry list */ 229 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 230 struct list_head wait_list; /* store on-flushing entries */ 231 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 232 struct mutex cmd_lock; 233 unsigned int nr_discards; /* # of discards in the list */ 234 unsigned int max_discards; /* max. discards to be issued */ 235 unsigned int undiscard_blks; /* # of undiscard blocks */ 236 atomic_t issued_discard; /* # of issued discard */ 237 atomic_t issing_discard; /* # of issing discard */ 238 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 239 struct rb_root root; /* root of discard rb-tree */ 240 }; 241 242 /* for the list of fsync inodes, used only during recovery */ 243 struct fsync_inode_entry { 244 struct list_head list; /* list head */ 245 struct inode *inode; /* vfs inode pointer */ 246 block_t blkaddr; /* block address locating the last fsync */ 247 block_t last_dentry; /* block address locating the last dentry */ 248 }; 249 250 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 251 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 252 253 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 254 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 255 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 256 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 257 258 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 259 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 260 261 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 262 { 263 int before = nats_in_cursum(journal); 264 265 journal->n_nats = cpu_to_le16(before + i); 266 return before; 267 } 268 269 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 270 { 271 int before = sits_in_cursum(journal); 272 273 journal->n_sits = cpu_to_le16(before + i); 274 return before; 275 } 276 277 static inline bool __has_cursum_space(struct f2fs_journal *journal, 278 int size, int type) 279 { 280 if (type == NAT_JOURNAL) 281 return size <= MAX_NAT_JENTRIES(journal); 282 return size <= MAX_SIT_JENTRIES(journal); 283 } 284 285 /* 286 * ioctl commands 287 */ 288 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 289 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 290 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 291 292 #define F2FS_IOCTL_MAGIC 0xf5 293 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 294 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 295 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 296 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 297 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 298 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 299 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 300 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 301 struct f2fs_defragment) 302 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 303 struct f2fs_move_range) 304 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 305 struct f2fs_flush_device) 306 307 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 308 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 309 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 310 311 /* 312 * should be same as XFS_IOC_GOINGDOWN. 313 * Flags for going down operation used by FS_IOC_GOINGDOWN 314 */ 315 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 316 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 317 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 318 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 319 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 320 321 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 322 /* 323 * ioctl commands in 32 bit emulation 324 */ 325 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 326 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 327 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 328 #endif 329 330 struct f2fs_defragment { 331 u64 start; 332 u64 len; 333 }; 334 335 struct f2fs_move_range { 336 u32 dst_fd; /* destination fd */ 337 u64 pos_in; /* start position in src_fd */ 338 u64 pos_out; /* start position in dst_fd */ 339 u64 len; /* size to move */ 340 }; 341 342 struct f2fs_flush_device { 343 u32 dev_num; /* device number to flush */ 344 u32 segments; /* # of segments to flush */ 345 }; 346 347 /* 348 * For INODE and NODE manager 349 */ 350 /* for directory operations */ 351 struct f2fs_dentry_ptr { 352 struct inode *inode; 353 const void *bitmap; 354 struct f2fs_dir_entry *dentry; 355 __u8 (*filename)[F2FS_SLOT_LEN]; 356 int max; 357 }; 358 359 static inline void make_dentry_ptr_block(struct inode *inode, 360 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 361 { 362 d->inode = inode; 363 d->max = NR_DENTRY_IN_BLOCK; 364 d->bitmap = &t->dentry_bitmap; 365 d->dentry = t->dentry; 366 d->filename = t->filename; 367 } 368 369 static inline void make_dentry_ptr_inline(struct inode *inode, 370 struct f2fs_dentry_ptr *d, struct f2fs_inline_dentry *t) 371 { 372 d->inode = inode; 373 d->max = NR_INLINE_DENTRY; 374 d->bitmap = &t->dentry_bitmap; 375 d->dentry = t->dentry; 376 d->filename = t->filename; 377 } 378 379 /* 380 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 381 * as its node offset to distinguish from index node blocks. 382 * But some bits are used to mark the node block. 383 */ 384 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 385 >> OFFSET_BIT_SHIFT) 386 enum { 387 ALLOC_NODE, /* allocate a new node page if needed */ 388 LOOKUP_NODE, /* look up a node without readahead */ 389 LOOKUP_NODE_RA, /* 390 * look up a node with readahead called 391 * by get_data_block. 392 */ 393 }; 394 395 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 396 397 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 398 399 /* vector size for gang look-up from extent cache that consists of radix tree */ 400 #define EXT_TREE_VEC_SIZE 64 401 402 /* for in-memory extent cache entry */ 403 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 404 405 /* number of extent info in extent cache we try to shrink */ 406 #define EXTENT_CACHE_SHRINK_NUMBER 128 407 408 struct rb_entry { 409 struct rb_node rb_node; /* rb node located in rb-tree */ 410 unsigned int ofs; /* start offset of the entry */ 411 unsigned int len; /* length of the entry */ 412 }; 413 414 struct extent_info { 415 unsigned int fofs; /* start offset in a file */ 416 unsigned int len; /* length of the extent */ 417 u32 blk; /* start block address of the extent */ 418 }; 419 420 struct extent_node { 421 struct rb_node rb_node; 422 union { 423 struct { 424 unsigned int fofs; 425 unsigned int len; 426 u32 blk; 427 }; 428 struct extent_info ei; /* extent info */ 429 430 }; 431 struct list_head list; /* node in global extent list of sbi */ 432 struct extent_tree *et; /* extent tree pointer */ 433 }; 434 435 struct extent_tree { 436 nid_t ino; /* inode number */ 437 struct rb_root root; /* root of extent info rb-tree */ 438 struct extent_node *cached_en; /* recently accessed extent node */ 439 struct extent_info largest; /* largested extent info */ 440 struct list_head list; /* to be used by sbi->zombie_list */ 441 rwlock_t lock; /* protect extent info rb-tree */ 442 atomic_t node_cnt; /* # of extent node in rb-tree*/ 443 }; 444 445 /* 446 * This structure is taken from ext4_map_blocks. 447 * 448 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 449 */ 450 #define F2FS_MAP_NEW (1 << BH_New) 451 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 452 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 453 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 454 F2FS_MAP_UNWRITTEN) 455 456 struct f2fs_map_blocks { 457 block_t m_pblk; 458 block_t m_lblk; 459 unsigned int m_len; 460 unsigned int m_flags; 461 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 462 }; 463 464 /* for flag in get_data_block */ 465 #define F2FS_GET_BLOCK_READ 0 466 #define F2FS_GET_BLOCK_DIO 1 467 #define F2FS_GET_BLOCK_FIEMAP 2 468 #define F2FS_GET_BLOCK_BMAP 3 469 #define F2FS_GET_BLOCK_PRE_DIO 4 470 #define F2FS_GET_BLOCK_PRE_AIO 5 471 472 /* 473 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 474 */ 475 #define FADVISE_COLD_BIT 0x01 476 #define FADVISE_LOST_PINO_BIT 0x02 477 #define FADVISE_ENCRYPT_BIT 0x04 478 #define FADVISE_ENC_NAME_BIT 0x08 479 #define FADVISE_KEEP_SIZE_BIT 0x10 480 481 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 482 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 483 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 484 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 485 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 486 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 487 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 488 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 489 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 490 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 491 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 492 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 493 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 494 495 #define DEF_DIR_LEVEL 0 496 497 struct f2fs_inode_info { 498 struct inode vfs_inode; /* serve a vfs inode */ 499 unsigned long i_flags; /* keep an inode flags for ioctl */ 500 unsigned char i_advise; /* use to give file attribute hints */ 501 unsigned char i_dir_level; /* use for dentry level for large dir */ 502 unsigned int i_current_depth; /* use only in directory structure */ 503 unsigned int i_pino; /* parent inode number */ 504 umode_t i_acl_mode; /* keep file acl mode temporarily */ 505 506 /* Use below internally in f2fs*/ 507 unsigned long flags; /* use to pass per-file flags */ 508 struct rw_semaphore i_sem; /* protect fi info */ 509 atomic_t dirty_pages; /* # of dirty pages */ 510 f2fs_hash_t chash; /* hash value of given file name */ 511 unsigned int clevel; /* maximum level of given file name */ 512 struct task_struct *task; /* lookup and create consistency */ 513 nid_t i_xattr_nid; /* node id that contains xattrs */ 514 loff_t last_disk_size; /* lastly written file size */ 515 516 struct list_head dirty_list; /* dirty list for dirs and files */ 517 struct list_head gdirty_list; /* linked in global dirty list */ 518 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 519 struct mutex inmem_lock; /* lock for inmemory pages */ 520 struct extent_tree *extent_tree; /* cached extent_tree entry */ 521 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 522 }; 523 524 static inline void get_extent_info(struct extent_info *ext, 525 struct f2fs_extent *i_ext) 526 { 527 ext->fofs = le32_to_cpu(i_ext->fofs); 528 ext->blk = le32_to_cpu(i_ext->blk); 529 ext->len = le32_to_cpu(i_ext->len); 530 } 531 532 static inline void set_raw_extent(struct extent_info *ext, 533 struct f2fs_extent *i_ext) 534 { 535 i_ext->fofs = cpu_to_le32(ext->fofs); 536 i_ext->blk = cpu_to_le32(ext->blk); 537 i_ext->len = cpu_to_le32(ext->len); 538 } 539 540 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 541 u32 blk, unsigned int len) 542 { 543 ei->fofs = fofs; 544 ei->blk = blk; 545 ei->len = len; 546 } 547 548 static inline bool __is_discard_mergeable(struct discard_info *back, 549 struct discard_info *front) 550 { 551 return back->lstart + back->len == front->lstart; 552 } 553 554 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 555 struct discard_info *back) 556 { 557 return __is_discard_mergeable(back, cur); 558 } 559 560 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 561 struct discard_info *front) 562 { 563 return __is_discard_mergeable(cur, front); 564 } 565 566 static inline bool __is_extent_mergeable(struct extent_info *back, 567 struct extent_info *front) 568 { 569 return (back->fofs + back->len == front->fofs && 570 back->blk + back->len == front->blk); 571 } 572 573 static inline bool __is_back_mergeable(struct extent_info *cur, 574 struct extent_info *back) 575 { 576 return __is_extent_mergeable(back, cur); 577 } 578 579 static inline bool __is_front_mergeable(struct extent_info *cur, 580 struct extent_info *front) 581 { 582 return __is_extent_mergeable(cur, front); 583 } 584 585 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 586 static inline void __try_update_largest_extent(struct inode *inode, 587 struct extent_tree *et, struct extent_node *en) 588 { 589 if (en->ei.len > et->largest.len) { 590 et->largest = en->ei; 591 f2fs_mark_inode_dirty_sync(inode, true); 592 } 593 } 594 595 enum nid_list { 596 FREE_NID_LIST, 597 ALLOC_NID_LIST, 598 MAX_NID_LIST, 599 }; 600 601 struct f2fs_nm_info { 602 block_t nat_blkaddr; /* base disk address of NAT */ 603 nid_t max_nid; /* maximum possible node ids */ 604 nid_t available_nids; /* # of available node ids */ 605 nid_t next_scan_nid; /* the next nid to be scanned */ 606 unsigned int ram_thresh; /* control the memory footprint */ 607 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 608 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 609 610 /* NAT cache management */ 611 struct radix_tree_root nat_root;/* root of the nat entry cache */ 612 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 613 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 614 struct list_head nat_entries; /* cached nat entry list (clean) */ 615 unsigned int nat_cnt; /* the # of cached nat entries */ 616 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 617 unsigned int nat_blocks; /* # of nat blocks */ 618 619 /* free node ids management */ 620 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 621 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ 622 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ 623 spinlock_t nid_list_lock; /* protect nid lists ops */ 624 struct mutex build_lock; /* lock for build free nids */ 625 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 626 unsigned char *nat_block_bitmap; 627 unsigned short *free_nid_count; /* free nid count of NAT block */ 628 629 /* for checkpoint */ 630 char *nat_bitmap; /* NAT bitmap pointer */ 631 632 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 633 unsigned char *nat_bits; /* NAT bits blocks */ 634 unsigned char *full_nat_bits; /* full NAT pages */ 635 unsigned char *empty_nat_bits; /* empty NAT pages */ 636 #ifdef CONFIG_F2FS_CHECK_FS 637 char *nat_bitmap_mir; /* NAT bitmap mirror */ 638 #endif 639 int bitmap_size; /* bitmap size */ 640 }; 641 642 /* 643 * this structure is used as one of function parameters. 644 * all the information are dedicated to a given direct node block determined 645 * by the data offset in a file. 646 */ 647 struct dnode_of_data { 648 struct inode *inode; /* vfs inode pointer */ 649 struct page *inode_page; /* its inode page, NULL is possible */ 650 struct page *node_page; /* cached direct node page */ 651 nid_t nid; /* node id of the direct node block */ 652 unsigned int ofs_in_node; /* data offset in the node page */ 653 bool inode_page_locked; /* inode page is locked or not */ 654 bool node_changed; /* is node block changed */ 655 char cur_level; /* level of hole node page */ 656 char max_level; /* level of current page located */ 657 block_t data_blkaddr; /* block address of the node block */ 658 }; 659 660 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 661 struct page *ipage, struct page *npage, nid_t nid) 662 { 663 memset(dn, 0, sizeof(*dn)); 664 dn->inode = inode; 665 dn->inode_page = ipage; 666 dn->node_page = npage; 667 dn->nid = nid; 668 } 669 670 /* 671 * For SIT manager 672 * 673 * By default, there are 6 active log areas across the whole main area. 674 * When considering hot and cold data separation to reduce cleaning overhead, 675 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 676 * respectively. 677 * In the current design, you should not change the numbers intentionally. 678 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 679 * logs individually according to the underlying devices. (default: 6) 680 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 681 * data and 8 for node logs. 682 */ 683 #define NR_CURSEG_DATA_TYPE (3) 684 #define NR_CURSEG_NODE_TYPE (3) 685 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 686 687 enum { 688 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 689 CURSEG_WARM_DATA, /* data blocks */ 690 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 691 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 692 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 693 CURSEG_COLD_NODE, /* indirect node blocks */ 694 NO_CHECK_TYPE, 695 }; 696 697 struct flush_cmd { 698 struct completion wait; 699 struct llist_node llnode; 700 int ret; 701 }; 702 703 struct flush_cmd_control { 704 struct task_struct *f2fs_issue_flush; /* flush thread */ 705 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 706 atomic_t issued_flush; /* # of issued flushes */ 707 atomic_t issing_flush; /* # of issing flushes */ 708 struct llist_head issue_list; /* list for command issue */ 709 struct llist_node *dispatch_list; /* list for command dispatch */ 710 }; 711 712 struct f2fs_sm_info { 713 struct sit_info *sit_info; /* whole segment information */ 714 struct free_segmap_info *free_info; /* free segment information */ 715 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 716 struct curseg_info *curseg_array; /* active segment information */ 717 718 block_t seg0_blkaddr; /* block address of 0'th segment */ 719 block_t main_blkaddr; /* start block address of main area */ 720 block_t ssa_blkaddr; /* start block address of SSA area */ 721 722 unsigned int segment_count; /* total # of segments */ 723 unsigned int main_segments; /* # of segments in main area */ 724 unsigned int reserved_segments; /* # of reserved segments */ 725 unsigned int ovp_segments; /* # of overprovision segments */ 726 727 /* a threshold to reclaim prefree segments */ 728 unsigned int rec_prefree_segments; 729 730 /* for batched trimming */ 731 unsigned int trim_sections; /* # of sections to trim */ 732 733 struct list_head sit_entry_set; /* sit entry set list */ 734 735 unsigned int ipu_policy; /* in-place-update policy */ 736 unsigned int min_ipu_util; /* in-place-update threshold */ 737 unsigned int min_fsync_blocks; /* threshold for fsync */ 738 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 739 740 /* for flush command control */ 741 struct flush_cmd_control *fcc_info; 742 743 /* for discard command control */ 744 struct discard_cmd_control *dcc_info; 745 }; 746 747 /* 748 * For superblock 749 */ 750 /* 751 * COUNT_TYPE for monitoring 752 * 753 * f2fs monitors the number of several block types such as on-writeback, 754 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 755 */ 756 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 757 enum count_type { 758 F2FS_DIRTY_DENTS, 759 F2FS_DIRTY_DATA, 760 F2FS_DIRTY_NODES, 761 F2FS_DIRTY_META, 762 F2FS_INMEM_PAGES, 763 F2FS_DIRTY_IMETA, 764 F2FS_WB_CP_DATA, 765 F2FS_WB_DATA, 766 NR_COUNT_TYPE, 767 }; 768 769 /* 770 * The below are the page types of bios used in submit_bio(). 771 * The available types are: 772 * DATA User data pages. It operates as async mode. 773 * NODE Node pages. It operates as async mode. 774 * META FS metadata pages such as SIT, NAT, CP. 775 * NR_PAGE_TYPE The number of page types. 776 * META_FLUSH Make sure the previous pages are written 777 * with waiting the bio's completion 778 * ... Only can be used with META. 779 */ 780 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 781 enum page_type { 782 DATA, 783 NODE, 784 META, 785 NR_PAGE_TYPE, 786 META_FLUSH, 787 INMEM, /* the below types are used by tracepoints only. */ 788 INMEM_DROP, 789 INMEM_INVALIDATE, 790 INMEM_REVOKE, 791 IPU, 792 OPU, 793 }; 794 795 struct f2fs_io_info { 796 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 797 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 798 int op; /* contains REQ_OP_ */ 799 int op_flags; /* req_flag_bits */ 800 block_t new_blkaddr; /* new block address to be written */ 801 block_t old_blkaddr; /* old block address before Cow */ 802 struct page *page; /* page to be written */ 803 struct page *encrypted_page; /* encrypted page */ 804 bool submitted; /* indicate IO submission */ 805 bool need_lock; /* indicate we need to lock cp_rwsem */ 806 }; 807 808 #define is_read_io(rw) ((rw) == READ) 809 struct f2fs_bio_info { 810 struct f2fs_sb_info *sbi; /* f2fs superblock */ 811 struct bio *bio; /* bios to merge */ 812 sector_t last_block_in_bio; /* last block number */ 813 struct f2fs_io_info fio; /* store buffered io info. */ 814 struct rw_semaphore io_rwsem; /* blocking op for bio */ 815 }; 816 817 #define FDEV(i) (sbi->devs[i]) 818 #define RDEV(i) (raw_super->devs[i]) 819 struct f2fs_dev_info { 820 struct block_device *bdev; 821 char path[MAX_PATH_LEN]; 822 unsigned int total_segments; 823 block_t start_blk; 824 block_t end_blk; 825 #ifdef CONFIG_BLK_DEV_ZONED 826 unsigned int nr_blkz; /* Total number of zones */ 827 u8 *blkz_type; /* Array of zones type */ 828 #endif 829 }; 830 831 enum inode_type { 832 DIR_INODE, /* for dirty dir inode */ 833 FILE_INODE, /* for dirty regular/symlink inode */ 834 DIRTY_META, /* for all dirtied inode metadata */ 835 NR_INODE_TYPE, 836 }; 837 838 /* for inner inode cache management */ 839 struct inode_management { 840 struct radix_tree_root ino_root; /* ino entry array */ 841 spinlock_t ino_lock; /* for ino entry lock */ 842 struct list_head ino_list; /* inode list head */ 843 unsigned long ino_num; /* number of entries */ 844 }; 845 846 /* For s_flag in struct f2fs_sb_info */ 847 enum { 848 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 849 SBI_IS_CLOSE, /* specify unmounting */ 850 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 851 SBI_POR_DOING, /* recovery is doing or not */ 852 SBI_NEED_SB_WRITE, /* need to recover superblock */ 853 SBI_NEED_CP, /* need to checkpoint */ 854 }; 855 856 enum { 857 CP_TIME, 858 REQ_TIME, 859 MAX_TIME, 860 }; 861 862 struct f2fs_sb_info { 863 struct super_block *sb; /* pointer to VFS super block */ 864 struct proc_dir_entry *s_proc; /* proc entry */ 865 struct f2fs_super_block *raw_super; /* raw super block pointer */ 866 int valid_super_block; /* valid super block no */ 867 unsigned long s_flag; /* flags for sbi */ 868 869 #ifdef CONFIG_BLK_DEV_ZONED 870 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 871 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 872 #endif 873 874 /* for node-related operations */ 875 struct f2fs_nm_info *nm_info; /* node manager */ 876 struct inode *node_inode; /* cache node blocks */ 877 878 /* for segment-related operations */ 879 struct f2fs_sm_info *sm_info; /* segment manager */ 880 881 /* for bio operations */ 882 struct f2fs_bio_info read_io; /* for read bios */ 883 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 884 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ 885 int write_io_size_bits; /* Write IO size bits */ 886 mempool_t *write_io_dummy; /* Dummy pages */ 887 888 /* for checkpoint */ 889 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 890 int cur_cp_pack; /* remain current cp pack */ 891 spinlock_t cp_lock; /* for flag in ckpt */ 892 struct inode *meta_inode; /* cache meta blocks */ 893 struct mutex cp_mutex; /* checkpoint procedure lock */ 894 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 895 struct rw_semaphore node_write; /* locking node writes */ 896 struct rw_semaphore node_change; /* locking node change */ 897 wait_queue_head_t cp_wait; 898 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 899 long interval_time[MAX_TIME]; /* to store thresholds */ 900 901 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 902 903 /* for orphan inode, use 0'th array */ 904 unsigned int max_orphans; /* max orphan inodes */ 905 906 /* for inode management */ 907 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 908 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 909 910 /* for extent tree cache */ 911 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 912 struct mutex extent_tree_lock; /* locking extent radix tree */ 913 struct list_head extent_list; /* lru list for shrinker */ 914 spinlock_t extent_lock; /* locking extent lru list */ 915 atomic_t total_ext_tree; /* extent tree count */ 916 struct list_head zombie_list; /* extent zombie tree list */ 917 atomic_t total_zombie_tree; /* extent zombie tree count */ 918 atomic_t total_ext_node; /* extent info count */ 919 920 /* basic filesystem units */ 921 unsigned int log_sectors_per_block; /* log2 sectors per block */ 922 unsigned int log_blocksize; /* log2 block size */ 923 unsigned int blocksize; /* block size */ 924 unsigned int root_ino_num; /* root inode number*/ 925 unsigned int node_ino_num; /* node inode number*/ 926 unsigned int meta_ino_num; /* meta inode number*/ 927 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 928 unsigned int blocks_per_seg; /* blocks per segment */ 929 unsigned int segs_per_sec; /* segments per section */ 930 unsigned int secs_per_zone; /* sections per zone */ 931 unsigned int total_sections; /* total section count */ 932 unsigned int total_node_count; /* total node block count */ 933 unsigned int total_valid_node_count; /* valid node block count */ 934 loff_t max_file_blocks; /* max block index of file */ 935 int active_logs; /* # of active logs */ 936 int dir_level; /* directory level */ 937 938 block_t user_block_count; /* # of user blocks */ 939 block_t total_valid_block_count; /* # of valid blocks */ 940 block_t discard_blks; /* discard command candidats */ 941 block_t last_valid_block_count; /* for recovery */ 942 u32 s_next_generation; /* for NFS support */ 943 944 /* # of pages, see count_type */ 945 atomic_t nr_pages[NR_COUNT_TYPE]; 946 /* # of allocated blocks */ 947 struct percpu_counter alloc_valid_block_count; 948 949 /* writeback control */ 950 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 951 952 /* valid inode count */ 953 struct percpu_counter total_valid_inode_count; 954 955 struct f2fs_mount_info mount_opt; /* mount options */ 956 957 /* for cleaning operations */ 958 struct mutex gc_mutex; /* mutex for GC */ 959 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 960 unsigned int cur_victim_sec; /* current victim section num */ 961 962 /* threshold for converting bg victims for fg */ 963 u64 fggc_threshold; 964 965 /* maximum # of trials to find a victim segment for SSR and GC */ 966 unsigned int max_victim_search; 967 968 /* 969 * for stat information. 970 * one is for the LFS mode, and the other is for the SSR mode. 971 */ 972 #ifdef CONFIG_F2FS_STAT_FS 973 struct f2fs_stat_info *stat_info; /* FS status information */ 974 unsigned int segment_count[2]; /* # of allocated segments */ 975 unsigned int block_count[2]; /* # of allocated blocks */ 976 atomic_t inplace_count; /* # of inplace update */ 977 atomic64_t total_hit_ext; /* # of lookup extent cache */ 978 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 979 atomic64_t read_hit_largest; /* # of hit largest extent node */ 980 atomic64_t read_hit_cached; /* # of hit cached extent node */ 981 atomic_t inline_xattr; /* # of inline_xattr inodes */ 982 atomic_t inline_inode; /* # of inline_data inodes */ 983 atomic_t inline_dir; /* # of inline_dentry inodes */ 984 atomic_t aw_cnt; /* # of atomic writes */ 985 atomic_t vw_cnt; /* # of volatile writes */ 986 atomic_t max_aw_cnt; /* max # of atomic writes */ 987 atomic_t max_vw_cnt; /* max # of volatile writes */ 988 int bg_gc; /* background gc calls */ 989 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 990 #endif 991 spinlock_t stat_lock; /* lock for stat operations */ 992 993 /* For sysfs suppport */ 994 struct kobject s_kobj; 995 struct completion s_kobj_unregister; 996 997 /* For shrinker support */ 998 struct list_head s_list; 999 int s_ndevs; /* number of devices */ 1000 struct f2fs_dev_info *devs; /* for device list */ 1001 struct mutex umount_mutex; 1002 unsigned int shrinker_run_no; 1003 1004 /* For write statistics */ 1005 u64 sectors_written_start; 1006 u64 kbytes_written; 1007 1008 /* Reference to checksum algorithm driver via cryptoapi */ 1009 struct crypto_shash *s_chksum_driver; 1010 1011 /* For fault injection */ 1012 #ifdef CONFIG_F2FS_FAULT_INJECTION 1013 struct f2fs_fault_info fault_info; 1014 #endif 1015 }; 1016 1017 #ifdef CONFIG_F2FS_FAULT_INJECTION 1018 #define f2fs_show_injection_info(type) \ 1019 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1020 KERN_INFO, fault_name[type], \ 1021 __func__, __builtin_return_address(0)) 1022 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1023 { 1024 struct f2fs_fault_info *ffi = &sbi->fault_info; 1025 1026 if (!ffi->inject_rate) 1027 return false; 1028 1029 if (!IS_FAULT_SET(ffi, type)) 1030 return false; 1031 1032 atomic_inc(&ffi->inject_ops); 1033 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1034 atomic_set(&ffi->inject_ops, 0); 1035 return true; 1036 } 1037 return false; 1038 } 1039 #endif 1040 1041 /* For write statistics. Suppose sector size is 512 bytes, 1042 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1043 */ 1044 #define BD_PART_WRITTEN(s) \ 1045 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1046 (s)->sectors_written_start) >> 1) 1047 1048 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1049 { 1050 sbi->last_time[type] = jiffies; 1051 } 1052 1053 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1054 { 1055 struct timespec ts = {sbi->interval_time[type], 0}; 1056 unsigned long interval = timespec_to_jiffies(&ts); 1057 1058 return time_after(jiffies, sbi->last_time[type] + interval); 1059 } 1060 1061 static inline bool is_idle(struct f2fs_sb_info *sbi) 1062 { 1063 struct block_device *bdev = sbi->sb->s_bdev; 1064 struct request_queue *q = bdev_get_queue(bdev); 1065 struct request_list *rl = &q->root_rl; 1066 1067 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1068 return 0; 1069 1070 return f2fs_time_over(sbi, REQ_TIME); 1071 } 1072 1073 /* 1074 * Inline functions 1075 */ 1076 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1077 unsigned int length) 1078 { 1079 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 1080 u32 *ctx = (u32 *)shash_desc_ctx(shash); 1081 int err; 1082 1083 shash->tfm = sbi->s_chksum_driver; 1084 shash->flags = 0; 1085 *ctx = F2FS_SUPER_MAGIC; 1086 1087 err = crypto_shash_update(shash, address, length); 1088 BUG_ON(err); 1089 1090 return *ctx; 1091 } 1092 1093 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1094 void *buf, size_t buf_size) 1095 { 1096 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1097 } 1098 1099 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1100 { 1101 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1102 } 1103 1104 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1105 { 1106 return sb->s_fs_info; 1107 } 1108 1109 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1110 { 1111 return F2FS_SB(inode->i_sb); 1112 } 1113 1114 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1115 { 1116 return F2FS_I_SB(mapping->host); 1117 } 1118 1119 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1120 { 1121 return F2FS_M_SB(page->mapping); 1122 } 1123 1124 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1125 { 1126 return (struct f2fs_super_block *)(sbi->raw_super); 1127 } 1128 1129 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1130 { 1131 return (struct f2fs_checkpoint *)(sbi->ckpt); 1132 } 1133 1134 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1135 { 1136 return (struct f2fs_node *)page_address(page); 1137 } 1138 1139 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1140 { 1141 return &((struct f2fs_node *)page_address(page))->i; 1142 } 1143 1144 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1145 { 1146 return (struct f2fs_nm_info *)(sbi->nm_info); 1147 } 1148 1149 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1150 { 1151 return (struct f2fs_sm_info *)(sbi->sm_info); 1152 } 1153 1154 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1155 { 1156 return (struct sit_info *)(SM_I(sbi)->sit_info); 1157 } 1158 1159 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1160 { 1161 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1162 } 1163 1164 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1165 { 1166 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1167 } 1168 1169 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1170 { 1171 return sbi->meta_inode->i_mapping; 1172 } 1173 1174 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1175 { 1176 return sbi->node_inode->i_mapping; 1177 } 1178 1179 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1180 { 1181 return test_bit(type, &sbi->s_flag); 1182 } 1183 1184 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1185 { 1186 set_bit(type, &sbi->s_flag); 1187 } 1188 1189 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1190 { 1191 clear_bit(type, &sbi->s_flag); 1192 } 1193 1194 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1195 { 1196 return le64_to_cpu(cp->checkpoint_ver); 1197 } 1198 1199 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1200 { 1201 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1202 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1203 } 1204 1205 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1206 { 1207 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1208 1209 return ckpt_flags & f; 1210 } 1211 1212 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1213 { 1214 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1215 } 1216 1217 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1218 { 1219 unsigned int ckpt_flags; 1220 1221 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1222 ckpt_flags |= f; 1223 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1224 } 1225 1226 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1227 { 1228 spin_lock(&sbi->cp_lock); 1229 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1230 spin_unlock(&sbi->cp_lock); 1231 } 1232 1233 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1234 { 1235 unsigned int ckpt_flags; 1236 1237 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1238 ckpt_flags &= (~f); 1239 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1240 } 1241 1242 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1243 { 1244 spin_lock(&sbi->cp_lock); 1245 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1246 spin_unlock(&sbi->cp_lock); 1247 } 1248 1249 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1250 { 1251 set_sbi_flag(sbi, SBI_NEED_FSCK); 1252 1253 if (lock) 1254 spin_lock(&sbi->cp_lock); 1255 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1256 kfree(NM_I(sbi)->nat_bits); 1257 NM_I(sbi)->nat_bits = NULL; 1258 if (lock) 1259 spin_unlock(&sbi->cp_lock); 1260 } 1261 1262 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1263 struct cp_control *cpc) 1264 { 1265 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1266 1267 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1268 } 1269 1270 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1271 { 1272 down_read(&sbi->cp_rwsem); 1273 } 1274 1275 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1276 { 1277 up_read(&sbi->cp_rwsem); 1278 } 1279 1280 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1281 { 1282 down_write(&sbi->cp_rwsem); 1283 } 1284 1285 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1286 { 1287 up_write(&sbi->cp_rwsem); 1288 } 1289 1290 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1291 { 1292 int reason = CP_SYNC; 1293 1294 if (test_opt(sbi, FASTBOOT)) 1295 reason = CP_FASTBOOT; 1296 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1297 reason = CP_UMOUNT; 1298 return reason; 1299 } 1300 1301 static inline bool __remain_node_summaries(int reason) 1302 { 1303 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1304 } 1305 1306 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1307 { 1308 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1309 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1310 } 1311 1312 /* 1313 * Check whether the given nid is within node id range. 1314 */ 1315 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1316 { 1317 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1318 return -EINVAL; 1319 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1320 return -EINVAL; 1321 return 0; 1322 } 1323 1324 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1325 1326 /* 1327 * Check whether the inode has blocks or not 1328 */ 1329 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1330 { 1331 if (F2FS_I(inode)->i_xattr_nid) 1332 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1333 else 1334 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1335 } 1336 1337 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1338 { 1339 return ofs == XATTR_NODE_OFFSET; 1340 } 1341 1342 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); 1343 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1344 struct inode *inode, blkcnt_t *count) 1345 { 1346 blkcnt_t diff; 1347 1348 #ifdef CONFIG_F2FS_FAULT_INJECTION 1349 if (time_to_inject(sbi, FAULT_BLOCK)) { 1350 f2fs_show_injection_info(FAULT_BLOCK); 1351 return false; 1352 } 1353 #endif 1354 /* 1355 * let's increase this in prior to actual block count change in order 1356 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1357 */ 1358 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1359 1360 spin_lock(&sbi->stat_lock); 1361 sbi->total_valid_block_count += (block_t)(*count); 1362 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { 1363 diff = sbi->total_valid_block_count - sbi->user_block_count; 1364 *count -= diff; 1365 sbi->total_valid_block_count = sbi->user_block_count; 1366 if (!*count) { 1367 spin_unlock(&sbi->stat_lock); 1368 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1369 return false; 1370 } 1371 } 1372 spin_unlock(&sbi->stat_lock); 1373 1374 f2fs_i_blocks_write(inode, *count, true); 1375 return true; 1376 } 1377 1378 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1379 struct inode *inode, 1380 blkcnt_t count) 1381 { 1382 spin_lock(&sbi->stat_lock); 1383 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1384 f2fs_bug_on(sbi, inode->i_blocks < count); 1385 sbi->total_valid_block_count -= (block_t)count; 1386 spin_unlock(&sbi->stat_lock); 1387 f2fs_i_blocks_write(inode, count, false); 1388 } 1389 1390 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1391 { 1392 atomic_inc(&sbi->nr_pages[count_type]); 1393 1394 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1395 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1396 return; 1397 1398 set_sbi_flag(sbi, SBI_IS_DIRTY); 1399 } 1400 1401 static inline void inode_inc_dirty_pages(struct inode *inode) 1402 { 1403 atomic_inc(&F2FS_I(inode)->dirty_pages); 1404 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1405 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1406 } 1407 1408 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1409 { 1410 atomic_dec(&sbi->nr_pages[count_type]); 1411 } 1412 1413 static inline void inode_dec_dirty_pages(struct inode *inode) 1414 { 1415 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1416 !S_ISLNK(inode->i_mode)) 1417 return; 1418 1419 atomic_dec(&F2FS_I(inode)->dirty_pages); 1420 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1421 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1422 } 1423 1424 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1425 { 1426 return atomic_read(&sbi->nr_pages[count_type]); 1427 } 1428 1429 static inline int get_dirty_pages(struct inode *inode) 1430 { 1431 return atomic_read(&F2FS_I(inode)->dirty_pages); 1432 } 1433 1434 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1435 { 1436 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1437 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1438 sbi->log_blocks_per_seg; 1439 1440 return segs / sbi->segs_per_sec; 1441 } 1442 1443 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1444 { 1445 return sbi->total_valid_block_count; 1446 } 1447 1448 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1449 { 1450 return sbi->discard_blks; 1451 } 1452 1453 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1454 { 1455 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1456 1457 /* return NAT or SIT bitmap */ 1458 if (flag == NAT_BITMAP) 1459 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1460 else if (flag == SIT_BITMAP) 1461 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1462 1463 return 0; 1464 } 1465 1466 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1467 { 1468 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1469 } 1470 1471 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1472 { 1473 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1474 int offset; 1475 1476 if (__cp_payload(sbi) > 0) { 1477 if (flag == NAT_BITMAP) 1478 return &ckpt->sit_nat_version_bitmap; 1479 else 1480 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1481 } else { 1482 offset = (flag == NAT_BITMAP) ? 1483 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1484 return &ckpt->sit_nat_version_bitmap + offset; 1485 } 1486 } 1487 1488 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1489 { 1490 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1491 1492 if (sbi->cur_cp_pack == 2) 1493 start_addr += sbi->blocks_per_seg; 1494 return start_addr; 1495 } 1496 1497 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1498 { 1499 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1500 1501 if (sbi->cur_cp_pack == 1) 1502 start_addr += sbi->blocks_per_seg; 1503 return start_addr; 1504 } 1505 1506 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1507 { 1508 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1509 } 1510 1511 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1512 { 1513 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1514 } 1515 1516 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1517 struct inode *inode) 1518 { 1519 block_t valid_block_count; 1520 unsigned int valid_node_count; 1521 1522 spin_lock(&sbi->stat_lock); 1523 1524 valid_block_count = sbi->total_valid_block_count + 1; 1525 if (unlikely(valid_block_count > sbi->user_block_count)) { 1526 spin_unlock(&sbi->stat_lock); 1527 return false; 1528 } 1529 1530 valid_node_count = sbi->total_valid_node_count + 1; 1531 if (unlikely(valid_node_count > sbi->total_node_count)) { 1532 spin_unlock(&sbi->stat_lock); 1533 return false; 1534 } 1535 1536 if (inode) 1537 f2fs_i_blocks_write(inode, 1, true); 1538 1539 sbi->total_valid_node_count++; 1540 sbi->total_valid_block_count++; 1541 spin_unlock(&sbi->stat_lock); 1542 1543 percpu_counter_inc(&sbi->alloc_valid_block_count); 1544 return true; 1545 } 1546 1547 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1548 struct inode *inode) 1549 { 1550 spin_lock(&sbi->stat_lock); 1551 1552 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1553 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1554 f2fs_bug_on(sbi, !inode->i_blocks); 1555 1556 f2fs_i_blocks_write(inode, 1, false); 1557 sbi->total_valid_node_count--; 1558 sbi->total_valid_block_count--; 1559 1560 spin_unlock(&sbi->stat_lock); 1561 } 1562 1563 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1564 { 1565 return sbi->total_valid_node_count; 1566 } 1567 1568 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1569 { 1570 percpu_counter_inc(&sbi->total_valid_inode_count); 1571 } 1572 1573 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1574 { 1575 percpu_counter_dec(&sbi->total_valid_inode_count); 1576 } 1577 1578 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1579 { 1580 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1581 } 1582 1583 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1584 pgoff_t index, bool for_write) 1585 { 1586 #ifdef CONFIG_F2FS_FAULT_INJECTION 1587 struct page *page = find_lock_page(mapping, index); 1588 1589 if (page) 1590 return page; 1591 1592 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1593 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1594 return NULL; 1595 } 1596 #endif 1597 if (!for_write) 1598 return grab_cache_page(mapping, index); 1599 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1600 } 1601 1602 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1603 { 1604 char *src_kaddr = kmap(src); 1605 char *dst_kaddr = kmap(dst); 1606 1607 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1608 kunmap(dst); 1609 kunmap(src); 1610 } 1611 1612 static inline void f2fs_put_page(struct page *page, int unlock) 1613 { 1614 if (!page) 1615 return; 1616 1617 if (unlock) { 1618 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1619 unlock_page(page); 1620 } 1621 put_page(page); 1622 } 1623 1624 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1625 { 1626 if (dn->node_page) 1627 f2fs_put_page(dn->node_page, 1); 1628 if (dn->inode_page && dn->node_page != dn->inode_page) 1629 f2fs_put_page(dn->inode_page, 0); 1630 dn->node_page = NULL; 1631 dn->inode_page = NULL; 1632 } 1633 1634 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1635 size_t size) 1636 { 1637 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1638 } 1639 1640 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1641 gfp_t flags) 1642 { 1643 void *entry; 1644 1645 entry = kmem_cache_alloc(cachep, flags); 1646 if (!entry) 1647 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1648 return entry; 1649 } 1650 1651 static inline struct bio *f2fs_bio_alloc(int npages) 1652 { 1653 struct bio *bio; 1654 1655 /* No failure on bio allocation */ 1656 bio = bio_alloc(GFP_NOIO, npages); 1657 if (!bio) 1658 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1659 return bio; 1660 } 1661 1662 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1663 unsigned long index, void *item) 1664 { 1665 while (radix_tree_insert(root, index, item)) 1666 cond_resched(); 1667 } 1668 1669 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1670 1671 static inline bool IS_INODE(struct page *page) 1672 { 1673 struct f2fs_node *p = F2FS_NODE(page); 1674 1675 return RAW_IS_INODE(p); 1676 } 1677 1678 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1679 { 1680 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1681 } 1682 1683 static inline block_t datablock_addr(struct page *node_page, 1684 unsigned int offset) 1685 { 1686 struct f2fs_node *raw_node; 1687 __le32 *addr_array; 1688 1689 raw_node = F2FS_NODE(node_page); 1690 addr_array = blkaddr_in_node(raw_node); 1691 return le32_to_cpu(addr_array[offset]); 1692 } 1693 1694 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1695 { 1696 int mask; 1697 1698 addr += (nr >> 3); 1699 mask = 1 << (7 - (nr & 0x07)); 1700 return mask & *addr; 1701 } 1702 1703 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1704 { 1705 int mask; 1706 1707 addr += (nr >> 3); 1708 mask = 1 << (7 - (nr & 0x07)); 1709 *addr |= mask; 1710 } 1711 1712 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1713 { 1714 int mask; 1715 1716 addr += (nr >> 3); 1717 mask = 1 << (7 - (nr & 0x07)); 1718 *addr &= ~mask; 1719 } 1720 1721 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1722 { 1723 int mask; 1724 int ret; 1725 1726 addr += (nr >> 3); 1727 mask = 1 << (7 - (nr & 0x07)); 1728 ret = mask & *addr; 1729 *addr |= mask; 1730 return ret; 1731 } 1732 1733 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1734 { 1735 int mask; 1736 int ret; 1737 1738 addr += (nr >> 3); 1739 mask = 1 << (7 - (nr & 0x07)); 1740 ret = mask & *addr; 1741 *addr &= ~mask; 1742 return ret; 1743 } 1744 1745 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1746 { 1747 int mask; 1748 1749 addr += (nr >> 3); 1750 mask = 1 << (7 - (nr & 0x07)); 1751 *addr ^= mask; 1752 } 1753 1754 /* used for f2fs_inode_info->flags */ 1755 enum { 1756 FI_NEW_INODE, /* indicate newly allocated inode */ 1757 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1758 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1759 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1760 FI_INC_LINK, /* need to increment i_nlink */ 1761 FI_ACL_MODE, /* indicate acl mode */ 1762 FI_NO_ALLOC, /* should not allocate any blocks */ 1763 FI_FREE_NID, /* free allocated nide */ 1764 FI_NO_EXTENT, /* not to use the extent cache */ 1765 FI_INLINE_XATTR, /* used for inline xattr */ 1766 FI_INLINE_DATA, /* used for inline data*/ 1767 FI_INLINE_DENTRY, /* used for inline dentry */ 1768 FI_APPEND_WRITE, /* inode has appended data */ 1769 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1770 FI_NEED_IPU, /* used for ipu per file */ 1771 FI_ATOMIC_FILE, /* indicate atomic file */ 1772 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 1773 FI_VOLATILE_FILE, /* indicate volatile file */ 1774 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1775 FI_DROP_CACHE, /* drop dirty page cache */ 1776 FI_DATA_EXIST, /* indicate data exists */ 1777 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1778 FI_DO_DEFRAG, /* indicate defragment is running */ 1779 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1780 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 1781 FI_HOT_DATA, /* indicate file is hot */ 1782 }; 1783 1784 static inline void __mark_inode_dirty_flag(struct inode *inode, 1785 int flag, bool set) 1786 { 1787 switch (flag) { 1788 case FI_INLINE_XATTR: 1789 case FI_INLINE_DATA: 1790 case FI_INLINE_DENTRY: 1791 if (set) 1792 return; 1793 case FI_DATA_EXIST: 1794 case FI_INLINE_DOTS: 1795 f2fs_mark_inode_dirty_sync(inode, true); 1796 } 1797 } 1798 1799 static inline void set_inode_flag(struct inode *inode, int flag) 1800 { 1801 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1802 set_bit(flag, &F2FS_I(inode)->flags); 1803 __mark_inode_dirty_flag(inode, flag, true); 1804 } 1805 1806 static inline int is_inode_flag_set(struct inode *inode, int flag) 1807 { 1808 return test_bit(flag, &F2FS_I(inode)->flags); 1809 } 1810 1811 static inline void clear_inode_flag(struct inode *inode, int flag) 1812 { 1813 if (test_bit(flag, &F2FS_I(inode)->flags)) 1814 clear_bit(flag, &F2FS_I(inode)->flags); 1815 __mark_inode_dirty_flag(inode, flag, false); 1816 } 1817 1818 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1819 { 1820 F2FS_I(inode)->i_acl_mode = mode; 1821 set_inode_flag(inode, FI_ACL_MODE); 1822 f2fs_mark_inode_dirty_sync(inode, false); 1823 } 1824 1825 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1826 { 1827 if (inc) 1828 inc_nlink(inode); 1829 else 1830 drop_nlink(inode); 1831 f2fs_mark_inode_dirty_sync(inode, true); 1832 } 1833 1834 static inline void f2fs_i_blocks_write(struct inode *inode, 1835 blkcnt_t diff, bool add) 1836 { 1837 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1838 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1839 1840 inode->i_blocks = add ? inode->i_blocks + diff : 1841 inode->i_blocks - diff; 1842 f2fs_mark_inode_dirty_sync(inode, true); 1843 if (clean || recover) 1844 set_inode_flag(inode, FI_AUTO_RECOVER); 1845 } 1846 1847 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1848 { 1849 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1850 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1851 1852 if (i_size_read(inode) == i_size) 1853 return; 1854 1855 i_size_write(inode, i_size); 1856 f2fs_mark_inode_dirty_sync(inode, true); 1857 if (clean || recover) 1858 set_inode_flag(inode, FI_AUTO_RECOVER); 1859 } 1860 1861 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1862 { 1863 F2FS_I(inode)->i_current_depth = depth; 1864 f2fs_mark_inode_dirty_sync(inode, true); 1865 } 1866 1867 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1868 { 1869 F2FS_I(inode)->i_xattr_nid = xnid; 1870 f2fs_mark_inode_dirty_sync(inode, true); 1871 } 1872 1873 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1874 { 1875 F2FS_I(inode)->i_pino = pino; 1876 f2fs_mark_inode_dirty_sync(inode, true); 1877 } 1878 1879 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1880 { 1881 struct f2fs_inode_info *fi = F2FS_I(inode); 1882 1883 if (ri->i_inline & F2FS_INLINE_XATTR) 1884 set_bit(FI_INLINE_XATTR, &fi->flags); 1885 if (ri->i_inline & F2FS_INLINE_DATA) 1886 set_bit(FI_INLINE_DATA, &fi->flags); 1887 if (ri->i_inline & F2FS_INLINE_DENTRY) 1888 set_bit(FI_INLINE_DENTRY, &fi->flags); 1889 if (ri->i_inline & F2FS_DATA_EXIST) 1890 set_bit(FI_DATA_EXIST, &fi->flags); 1891 if (ri->i_inline & F2FS_INLINE_DOTS) 1892 set_bit(FI_INLINE_DOTS, &fi->flags); 1893 } 1894 1895 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1896 { 1897 ri->i_inline = 0; 1898 1899 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1900 ri->i_inline |= F2FS_INLINE_XATTR; 1901 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1902 ri->i_inline |= F2FS_INLINE_DATA; 1903 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1904 ri->i_inline |= F2FS_INLINE_DENTRY; 1905 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1906 ri->i_inline |= F2FS_DATA_EXIST; 1907 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 1908 ri->i_inline |= F2FS_INLINE_DOTS; 1909 } 1910 1911 static inline int f2fs_has_inline_xattr(struct inode *inode) 1912 { 1913 return is_inode_flag_set(inode, FI_INLINE_XATTR); 1914 } 1915 1916 static inline unsigned int addrs_per_inode(struct inode *inode) 1917 { 1918 if (f2fs_has_inline_xattr(inode)) 1919 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1920 return DEF_ADDRS_PER_INODE; 1921 } 1922 1923 static inline void *inline_xattr_addr(struct page *page) 1924 { 1925 struct f2fs_inode *ri = F2FS_INODE(page); 1926 1927 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1928 F2FS_INLINE_XATTR_ADDRS]); 1929 } 1930 1931 static inline int inline_xattr_size(struct inode *inode) 1932 { 1933 if (f2fs_has_inline_xattr(inode)) 1934 return F2FS_INLINE_XATTR_ADDRS << 2; 1935 else 1936 return 0; 1937 } 1938 1939 static inline int f2fs_has_inline_data(struct inode *inode) 1940 { 1941 return is_inode_flag_set(inode, FI_INLINE_DATA); 1942 } 1943 1944 static inline int f2fs_exist_data(struct inode *inode) 1945 { 1946 return is_inode_flag_set(inode, FI_DATA_EXIST); 1947 } 1948 1949 static inline int f2fs_has_inline_dots(struct inode *inode) 1950 { 1951 return is_inode_flag_set(inode, FI_INLINE_DOTS); 1952 } 1953 1954 static inline bool f2fs_is_atomic_file(struct inode *inode) 1955 { 1956 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 1957 } 1958 1959 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 1960 { 1961 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 1962 } 1963 1964 static inline bool f2fs_is_volatile_file(struct inode *inode) 1965 { 1966 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 1967 } 1968 1969 static inline bool f2fs_is_first_block_written(struct inode *inode) 1970 { 1971 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 1972 } 1973 1974 static inline bool f2fs_is_drop_cache(struct inode *inode) 1975 { 1976 return is_inode_flag_set(inode, FI_DROP_CACHE); 1977 } 1978 1979 static inline void *inline_data_addr(struct page *page) 1980 { 1981 struct f2fs_inode *ri = F2FS_INODE(page); 1982 1983 return (void *)&(ri->i_addr[1]); 1984 } 1985 1986 static inline int f2fs_has_inline_dentry(struct inode *inode) 1987 { 1988 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 1989 } 1990 1991 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1992 { 1993 if (!f2fs_has_inline_dentry(dir)) 1994 kunmap(page); 1995 } 1996 1997 static inline int is_file(struct inode *inode, int type) 1998 { 1999 return F2FS_I(inode)->i_advise & type; 2000 } 2001 2002 static inline void set_file(struct inode *inode, int type) 2003 { 2004 F2FS_I(inode)->i_advise |= type; 2005 f2fs_mark_inode_dirty_sync(inode, true); 2006 } 2007 2008 static inline void clear_file(struct inode *inode, int type) 2009 { 2010 F2FS_I(inode)->i_advise &= ~type; 2011 f2fs_mark_inode_dirty_sync(inode, true); 2012 } 2013 2014 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2015 { 2016 if (dsync) { 2017 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2018 bool ret; 2019 2020 spin_lock(&sbi->inode_lock[DIRTY_META]); 2021 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2022 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2023 return ret; 2024 } 2025 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2026 file_keep_isize(inode) || 2027 i_size_read(inode) & PAGE_MASK) 2028 return false; 2029 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 2030 } 2031 2032 static inline int f2fs_readonly(struct super_block *sb) 2033 { 2034 return sb->s_flags & MS_RDONLY; 2035 } 2036 2037 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2038 { 2039 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2040 } 2041 2042 static inline bool is_dot_dotdot(const struct qstr *str) 2043 { 2044 if (str->len == 1 && str->name[0] == '.') 2045 return true; 2046 2047 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2048 return true; 2049 2050 return false; 2051 } 2052 2053 static inline bool f2fs_may_extent_tree(struct inode *inode) 2054 { 2055 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2056 is_inode_flag_set(inode, FI_NO_EXTENT)) 2057 return false; 2058 2059 return S_ISREG(inode->i_mode); 2060 } 2061 2062 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2063 size_t size, gfp_t flags) 2064 { 2065 #ifdef CONFIG_F2FS_FAULT_INJECTION 2066 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2067 f2fs_show_injection_info(FAULT_KMALLOC); 2068 return NULL; 2069 } 2070 #endif 2071 return kmalloc(size, flags); 2072 } 2073 2074 #define get_inode_mode(i) \ 2075 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2076 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2077 2078 /* 2079 * file.c 2080 */ 2081 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2082 void truncate_data_blocks(struct dnode_of_data *dn); 2083 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2084 int f2fs_truncate(struct inode *inode); 2085 int f2fs_getattr(const struct path *path, struct kstat *stat, 2086 u32 request_mask, unsigned int flags); 2087 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2088 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2089 int truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2090 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2091 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2092 2093 /* 2094 * inode.c 2095 */ 2096 void f2fs_set_inode_flags(struct inode *inode); 2097 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2098 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2099 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2100 int update_inode(struct inode *inode, struct page *node_page); 2101 int update_inode_page(struct inode *inode); 2102 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2103 void f2fs_evict_inode(struct inode *inode); 2104 void handle_failed_inode(struct inode *inode); 2105 2106 /* 2107 * namei.c 2108 */ 2109 struct dentry *f2fs_get_parent(struct dentry *child); 2110 2111 /* 2112 * dir.c 2113 */ 2114 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2115 unsigned char get_de_type(struct f2fs_dir_entry *de); 2116 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2117 f2fs_hash_t namehash, int *max_slots, 2118 struct f2fs_dentry_ptr *d); 2119 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2120 unsigned int start_pos, struct fscrypt_str *fstr); 2121 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2122 struct f2fs_dentry_ptr *d); 2123 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2124 const struct qstr *new_name, 2125 const struct qstr *orig_name, struct page *dpage); 2126 void update_parent_metadata(struct inode *dir, struct inode *inode, 2127 unsigned int current_depth); 2128 int room_for_filename(const void *bitmap, int slots, int max_slots); 2129 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2130 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2131 struct fscrypt_name *fname, struct page **res_page); 2132 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2133 const struct qstr *child, struct page **res_page); 2134 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2135 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2136 struct page **page); 2137 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2138 struct page *page, struct inode *inode); 2139 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2140 const struct qstr *name, f2fs_hash_t name_hash, 2141 unsigned int bit_pos); 2142 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2143 const struct qstr *orig_name, 2144 struct inode *inode, nid_t ino, umode_t mode); 2145 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2146 struct inode *inode, nid_t ino, umode_t mode); 2147 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2148 struct inode *inode, nid_t ino, umode_t mode); 2149 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2150 struct inode *dir, struct inode *inode); 2151 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2152 bool f2fs_empty_dir(struct inode *dir); 2153 2154 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2155 { 2156 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2157 inode, inode->i_ino, inode->i_mode); 2158 } 2159 2160 /* 2161 * super.c 2162 */ 2163 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2164 void f2fs_inode_synced(struct inode *inode); 2165 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2166 int f2fs_sync_fs(struct super_block *sb, int sync); 2167 extern __printf(3, 4) 2168 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2169 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2170 2171 /* 2172 * hash.c 2173 */ 2174 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2175 struct fscrypt_name *fname); 2176 2177 /* 2178 * node.c 2179 */ 2180 struct dnode_of_data; 2181 struct node_info; 2182 2183 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2184 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2185 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2186 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2187 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2188 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2189 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2190 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2191 int truncate_xattr_node(struct inode *inode, struct page *page); 2192 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2193 int remove_inode_page(struct inode *inode); 2194 struct page *new_inode_page(struct inode *inode); 2195 struct page *new_node_page(struct dnode_of_data *dn, 2196 unsigned int ofs, struct page *ipage); 2197 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2198 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2199 struct page *get_node_page_ra(struct page *parent, int start); 2200 void move_node_page(struct page *node_page, int gc_type); 2201 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2202 struct writeback_control *wbc, bool atomic); 2203 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc); 2204 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2205 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2206 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2207 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2208 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2209 void recover_inline_xattr(struct inode *inode, struct page *page); 2210 int recover_xattr_data(struct inode *inode, struct page *page, 2211 block_t blkaddr); 2212 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2213 int restore_node_summary(struct f2fs_sb_info *sbi, 2214 unsigned int segno, struct f2fs_summary_block *sum); 2215 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2216 int build_node_manager(struct f2fs_sb_info *sbi); 2217 void destroy_node_manager(struct f2fs_sb_info *sbi); 2218 int __init create_node_manager_caches(void); 2219 void destroy_node_manager_caches(void); 2220 2221 /* 2222 * segment.c 2223 */ 2224 void register_inmem_page(struct inode *inode, struct page *page); 2225 void drop_inmem_pages(struct inode *inode); 2226 void drop_inmem_page(struct inode *inode, struct page *page); 2227 int commit_inmem_pages(struct inode *inode); 2228 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2229 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2230 int f2fs_issue_flush(struct f2fs_sb_info *sbi); 2231 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2232 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2233 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2234 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2235 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new); 2236 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2237 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2238 void release_discard_addrs(struct f2fs_sb_info *sbi); 2239 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2240 void allocate_new_segments(struct f2fs_sb_info *sbi); 2241 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2242 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2243 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2244 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2245 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page); 2246 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2247 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2248 int rewrite_data_page(struct f2fs_io_info *fio); 2249 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2250 block_t old_blkaddr, block_t new_blkaddr, 2251 bool recover_curseg, bool recover_newaddr); 2252 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2253 block_t old_addr, block_t new_addr, 2254 unsigned char version, bool recover_curseg, 2255 bool recover_newaddr); 2256 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2257 block_t old_blkaddr, block_t *new_blkaddr, 2258 struct f2fs_summary *sum, int type); 2259 void f2fs_wait_on_page_writeback(struct page *page, 2260 enum page_type type, bool ordered); 2261 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 2262 block_t blkaddr); 2263 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2264 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2265 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2266 unsigned int val, int alloc); 2267 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2268 int build_segment_manager(struct f2fs_sb_info *sbi); 2269 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2270 int __init create_segment_manager_caches(void); 2271 void destroy_segment_manager_caches(void); 2272 2273 /* 2274 * checkpoint.c 2275 */ 2276 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2277 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2278 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2279 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2280 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2281 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2282 int type, bool sync); 2283 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2284 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2285 long nr_to_write); 2286 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2287 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2288 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2289 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2290 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2291 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2292 void release_orphan_inode(struct f2fs_sb_info *sbi); 2293 void add_orphan_inode(struct inode *inode); 2294 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2295 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2296 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2297 void update_dirty_page(struct inode *inode, struct page *page); 2298 void remove_dirty_inode(struct inode *inode); 2299 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2300 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2301 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2302 int __init create_checkpoint_caches(void); 2303 void destroy_checkpoint_caches(void); 2304 2305 /* 2306 * data.c 2307 */ 2308 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 2309 int rw); 2310 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 2311 struct inode *inode, nid_t ino, pgoff_t idx, 2312 enum page_type type, int rw); 2313 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi); 2314 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2315 int f2fs_submit_page_mbio(struct f2fs_io_info *fio); 2316 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2317 block_t blk_addr, struct bio *bio); 2318 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2319 void set_data_blkaddr(struct dnode_of_data *dn); 2320 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2321 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2322 int reserve_new_block(struct dnode_of_data *dn); 2323 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2324 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2325 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2326 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2327 int op_flags, bool for_write); 2328 struct page *find_data_page(struct inode *inode, pgoff_t index); 2329 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2330 bool for_write); 2331 struct page *get_new_data_page(struct inode *inode, 2332 struct page *ipage, pgoff_t index, bool new_i_size); 2333 int do_write_data_page(struct f2fs_io_info *fio); 2334 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2335 int create, int flag); 2336 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2337 u64 start, u64 len); 2338 void f2fs_set_page_dirty_nobuffers(struct page *page); 2339 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2340 unsigned int length); 2341 int f2fs_release_page(struct page *page, gfp_t wait); 2342 #ifdef CONFIG_MIGRATION 2343 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2344 struct page *page, enum migrate_mode mode); 2345 #endif 2346 2347 /* 2348 * gc.c 2349 */ 2350 int start_gc_thread(struct f2fs_sb_info *sbi); 2351 void stop_gc_thread(struct f2fs_sb_info *sbi); 2352 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2353 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2354 unsigned int segno); 2355 void build_gc_manager(struct f2fs_sb_info *sbi); 2356 2357 /* 2358 * recovery.c 2359 */ 2360 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2361 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2362 2363 /* 2364 * debug.c 2365 */ 2366 #ifdef CONFIG_F2FS_STAT_FS 2367 struct f2fs_stat_info { 2368 struct list_head stat_list; 2369 struct f2fs_sb_info *sbi; 2370 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2371 int main_area_segs, main_area_sections, main_area_zones; 2372 unsigned long long hit_largest, hit_cached, hit_rbtree; 2373 unsigned long long hit_total, total_ext; 2374 int ext_tree, zombie_tree, ext_node; 2375 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2376 int inmem_pages; 2377 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2378 int nats, dirty_nats, sits, dirty_sits; 2379 int free_nids, avail_nids, alloc_nids; 2380 int total_count, utilization; 2381 int bg_gc, nr_wb_cp_data, nr_wb_data; 2382 int nr_flushing, nr_flushed, nr_discarding, nr_discarded; 2383 int nr_discard_cmd; 2384 unsigned int undiscard_blks; 2385 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2386 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2387 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2388 unsigned int bimodal, avg_vblocks; 2389 int util_free, util_valid, util_invalid; 2390 int rsvd_segs, overp_segs; 2391 int dirty_count, node_pages, meta_pages; 2392 int prefree_count, call_count, cp_count, bg_cp_count; 2393 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2394 int bg_node_segs, bg_data_segs; 2395 int tot_blks, data_blks, node_blks; 2396 int bg_data_blks, bg_node_blks; 2397 int curseg[NR_CURSEG_TYPE]; 2398 int cursec[NR_CURSEG_TYPE]; 2399 int curzone[NR_CURSEG_TYPE]; 2400 2401 unsigned int segment_count[2]; 2402 unsigned int block_count[2]; 2403 unsigned int inplace_count; 2404 unsigned long long base_mem, cache_mem, page_mem; 2405 }; 2406 2407 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2408 { 2409 return (struct f2fs_stat_info *)sbi->stat_info; 2410 } 2411 2412 #define stat_inc_cp_count(si) ((si)->cp_count++) 2413 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2414 #define stat_inc_call_count(si) ((si)->call_count++) 2415 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2416 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2417 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2418 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2419 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2420 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2421 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2422 #define stat_inc_inline_xattr(inode) \ 2423 do { \ 2424 if (f2fs_has_inline_xattr(inode)) \ 2425 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2426 } while (0) 2427 #define stat_dec_inline_xattr(inode) \ 2428 do { \ 2429 if (f2fs_has_inline_xattr(inode)) \ 2430 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2431 } while (0) 2432 #define stat_inc_inline_inode(inode) \ 2433 do { \ 2434 if (f2fs_has_inline_data(inode)) \ 2435 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2436 } while (0) 2437 #define stat_dec_inline_inode(inode) \ 2438 do { \ 2439 if (f2fs_has_inline_data(inode)) \ 2440 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2441 } while (0) 2442 #define stat_inc_inline_dir(inode) \ 2443 do { \ 2444 if (f2fs_has_inline_dentry(inode)) \ 2445 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2446 } while (0) 2447 #define stat_dec_inline_dir(inode) \ 2448 do { \ 2449 if (f2fs_has_inline_dentry(inode)) \ 2450 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2451 } while (0) 2452 #define stat_inc_seg_type(sbi, curseg) \ 2453 ((sbi)->segment_count[(curseg)->alloc_type]++) 2454 #define stat_inc_block_count(sbi, curseg) \ 2455 ((sbi)->block_count[(curseg)->alloc_type]++) 2456 #define stat_inc_inplace_blocks(sbi) \ 2457 (atomic_inc(&(sbi)->inplace_count)) 2458 #define stat_inc_atomic_write(inode) \ 2459 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2460 #define stat_dec_atomic_write(inode) \ 2461 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2462 #define stat_update_max_atomic_write(inode) \ 2463 do { \ 2464 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2465 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2466 if (cur > max) \ 2467 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2468 } while (0) 2469 #define stat_inc_volatile_write(inode) \ 2470 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 2471 #define stat_dec_volatile_write(inode) \ 2472 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 2473 #define stat_update_max_volatile_write(inode) \ 2474 do { \ 2475 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 2476 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 2477 if (cur > max) \ 2478 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 2479 } while (0) 2480 #define stat_inc_seg_count(sbi, type, gc_type) \ 2481 do { \ 2482 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2483 si->tot_segs++; \ 2484 if ((type) == SUM_TYPE_DATA) { \ 2485 si->data_segs++; \ 2486 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2487 } else { \ 2488 si->node_segs++; \ 2489 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2490 } \ 2491 } while (0) 2492 2493 #define stat_inc_tot_blk_count(si, blks) \ 2494 ((si)->tot_blks += (blks)) 2495 2496 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2497 do { \ 2498 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2499 stat_inc_tot_blk_count(si, blks); \ 2500 si->data_blks += (blks); \ 2501 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2502 } while (0) 2503 2504 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2505 do { \ 2506 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2507 stat_inc_tot_blk_count(si, blks); \ 2508 si->node_blks += (blks); \ 2509 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 2510 } while (0) 2511 2512 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2513 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2514 int __init f2fs_create_root_stats(void); 2515 void f2fs_destroy_root_stats(void); 2516 #else 2517 #define stat_inc_cp_count(si) do { } while (0) 2518 #define stat_inc_bg_cp_count(si) do { } while (0) 2519 #define stat_inc_call_count(si) do { } while (0) 2520 #define stat_inc_bggc_count(si) do { } while (0) 2521 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 2522 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 2523 #define stat_inc_total_hit(sb) do { } while (0) 2524 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 2525 #define stat_inc_largest_node_hit(sbi) do { } while (0) 2526 #define stat_inc_cached_node_hit(sbi) do { } while (0) 2527 #define stat_inc_inline_xattr(inode) do { } while (0) 2528 #define stat_dec_inline_xattr(inode) do { } while (0) 2529 #define stat_inc_inline_inode(inode) do { } while (0) 2530 #define stat_dec_inline_inode(inode) do { } while (0) 2531 #define stat_inc_inline_dir(inode) do { } while (0) 2532 #define stat_dec_inline_dir(inode) do { } while (0) 2533 #define stat_inc_atomic_write(inode) do { } while (0) 2534 #define stat_dec_atomic_write(inode) do { } while (0) 2535 #define stat_update_max_atomic_write(inode) do { } while (0) 2536 #define stat_inc_volatile_write(inode) do { } while (0) 2537 #define stat_dec_volatile_write(inode) do { } while (0) 2538 #define stat_update_max_volatile_write(inode) do { } while (0) 2539 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 2540 #define stat_inc_block_count(sbi, curseg) do { } while (0) 2541 #define stat_inc_inplace_blocks(sbi) do { } while (0) 2542 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 2543 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 2544 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 2545 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 2546 2547 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2548 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2549 static inline int __init f2fs_create_root_stats(void) { return 0; } 2550 static inline void f2fs_destroy_root_stats(void) { } 2551 #endif 2552 2553 extern const struct file_operations f2fs_dir_operations; 2554 extern const struct file_operations f2fs_file_operations; 2555 extern const struct inode_operations f2fs_file_inode_operations; 2556 extern const struct address_space_operations f2fs_dblock_aops; 2557 extern const struct address_space_operations f2fs_node_aops; 2558 extern const struct address_space_operations f2fs_meta_aops; 2559 extern const struct inode_operations f2fs_dir_inode_operations; 2560 extern const struct inode_operations f2fs_symlink_inode_operations; 2561 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2562 extern const struct inode_operations f2fs_special_inode_operations; 2563 extern struct kmem_cache *inode_entry_slab; 2564 2565 /* 2566 * inline.c 2567 */ 2568 bool f2fs_may_inline_data(struct inode *inode); 2569 bool f2fs_may_inline_dentry(struct inode *inode); 2570 void read_inline_data(struct page *page, struct page *ipage); 2571 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 2572 int f2fs_read_inline_data(struct inode *inode, struct page *page); 2573 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 2574 int f2fs_convert_inline_inode(struct inode *inode); 2575 int f2fs_write_inline_data(struct inode *inode, struct page *page); 2576 bool recover_inline_data(struct inode *inode, struct page *npage); 2577 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 2578 struct fscrypt_name *fname, struct page **res_page); 2579 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 2580 struct page *ipage); 2581 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 2582 const struct qstr *orig_name, 2583 struct inode *inode, nid_t ino, umode_t mode); 2584 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 2585 struct inode *dir, struct inode *inode); 2586 bool f2fs_empty_inline_dir(struct inode *dir); 2587 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 2588 struct fscrypt_str *fstr); 2589 int f2fs_inline_data_fiemap(struct inode *inode, 2590 struct fiemap_extent_info *fieinfo, 2591 __u64 start, __u64 len); 2592 2593 /* 2594 * shrinker.c 2595 */ 2596 unsigned long f2fs_shrink_count(struct shrinker *shrink, 2597 struct shrink_control *sc); 2598 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 2599 struct shrink_control *sc); 2600 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 2601 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 2602 2603 /* 2604 * extent_cache.c 2605 */ 2606 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 2607 struct rb_entry *cached_re, unsigned int ofs); 2608 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 2609 struct rb_root *root, struct rb_node **parent, 2610 unsigned int ofs); 2611 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 2612 struct rb_entry *cached_re, unsigned int ofs, 2613 struct rb_entry **prev_entry, struct rb_entry **next_entry, 2614 struct rb_node ***insert_p, struct rb_node **insert_parent, 2615 bool force); 2616 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 2617 struct rb_root *root); 2618 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 2619 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 2620 void f2fs_drop_extent_tree(struct inode *inode); 2621 unsigned int f2fs_destroy_extent_node(struct inode *inode); 2622 void f2fs_destroy_extent_tree(struct inode *inode); 2623 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 2624 struct extent_info *ei); 2625 void f2fs_update_extent_cache(struct dnode_of_data *dn); 2626 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2627 pgoff_t fofs, block_t blkaddr, unsigned int len); 2628 void init_extent_cache_info(struct f2fs_sb_info *sbi); 2629 int __init create_extent_cache(void); 2630 void destroy_extent_cache(void); 2631 2632 /* 2633 * crypto support 2634 */ 2635 static inline bool f2fs_encrypted_inode(struct inode *inode) 2636 { 2637 return file_is_encrypt(inode); 2638 } 2639 2640 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2641 { 2642 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2643 file_set_encrypt(inode); 2644 #endif 2645 } 2646 2647 static inline bool f2fs_bio_encrypted(struct bio *bio) 2648 { 2649 return bio->bi_private != NULL; 2650 } 2651 2652 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2653 { 2654 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2655 } 2656 2657 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 2658 { 2659 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 2660 } 2661 2662 #ifdef CONFIG_BLK_DEV_ZONED 2663 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 2664 struct block_device *bdev, block_t blkaddr) 2665 { 2666 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 2667 int i; 2668 2669 for (i = 0; i < sbi->s_ndevs; i++) 2670 if (FDEV(i).bdev == bdev) 2671 return FDEV(i).blkz_type[zno]; 2672 return -EINVAL; 2673 } 2674 #endif 2675 2676 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 2677 { 2678 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 2679 2680 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 2681 } 2682 2683 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2684 { 2685 clear_opt(sbi, ADAPTIVE); 2686 clear_opt(sbi, LFS); 2687 2688 switch (mt) { 2689 case F2FS_MOUNT_ADAPTIVE: 2690 set_opt(sbi, ADAPTIVE); 2691 break; 2692 case F2FS_MOUNT_LFS: 2693 set_opt(sbi, LFS); 2694 break; 2695 } 2696 } 2697 2698 static inline bool f2fs_may_encrypt(struct inode *inode) 2699 { 2700 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2701 umode_t mode = inode->i_mode; 2702 2703 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2704 #else 2705 return 0; 2706 #endif 2707 } 2708 2709 #endif 2710