xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 9cfc5c90)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 
25 #ifdef CONFIG_F2FS_CHECK_FS
26 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
27 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
28 #else
29 #define f2fs_bug_on(sbi, condition)					\
30 	do {								\
31 		if (unlikely(condition)) {				\
32 			WARN_ON(1);					\
33 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
34 		}							\
35 	} while (0)
36 #define f2fs_down_write(x, y)	down_write(x)
37 #endif
38 
39 /*
40  * For mount options
41  */
42 #define F2FS_MOUNT_BG_GC		0x00000001
43 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
44 #define F2FS_MOUNT_DISCARD		0x00000004
45 #define F2FS_MOUNT_NOHEAP		0x00000008
46 #define F2FS_MOUNT_XATTR_USER		0x00000010
47 #define F2FS_MOUNT_POSIX_ACL		0x00000020
48 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
49 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
50 #define F2FS_MOUNT_INLINE_DATA		0x00000100
51 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
52 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
53 #define F2FS_MOUNT_NOBARRIER		0x00000800
54 #define F2FS_MOUNT_FASTBOOT		0x00001000
55 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
56 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
57 
58 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
59 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
60 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
61 
62 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
63 		typecheck(unsigned long long, b) &&			\
64 		((long long)((a) - (b)) > 0))
65 
66 typedef u32 block_t;	/*
67 			 * should not change u32, since it is the on-disk block
68 			 * address format, __le32.
69 			 */
70 typedef u32 nid_t;
71 
72 struct f2fs_mount_info {
73 	unsigned int	opt;
74 };
75 
76 #define F2FS_FEATURE_ENCRYPT	0x0001
77 
78 #define F2FS_HAS_FEATURE(sb, mask)					\
79 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
80 #define F2FS_SET_FEATURE(sb, mask)					\
81 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
82 #define F2FS_CLEAR_FEATURE(sb, mask)					\
83 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
84 
85 #define CRCPOLY_LE 0xedb88320
86 
87 static inline __u32 f2fs_crc32(void *buf, size_t len)
88 {
89 	unsigned char *p = (unsigned char *)buf;
90 	__u32 crc = F2FS_SUPER_MAGIC;
91 	int i;
92 
93 	while (len--) {
94 		crc ^= *p++;
95 		for (i = 0; i < 8; i++)
96 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
97 	}
98 	return crc;
99 }
100 
101 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
102 {
103 	return f2fs_crc32(buf, buf_size) == blk_crc;
104 }
105 
106 /*
107  * For checkpoint manager
108  */
109 enum {
110 	NAT_BITMAP,
111 	SIT_BITMAP
112 };
113 
114 enum {
115 	CP_UMOUNT,
116 	CP_FASTBOOT,
117 	CP_SYNC,
118 	CP_RECOVERY,
119 	CP_DISCARD,
120 };
121 
122 #define DEF_BATCHED_TRIM_SECTIONS	32
123 #define BATCHED_TRIM_SEGMENTS(sbi)	\
124 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
125 #define BATCHED_TRIM_BLOCKS(sbi)	\
126 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
127 #define DEF_CP_INTERVAL			60	/* 60 secs */
128 
129 struct cp_control {
130 	int reason;
131 	__u64 trim_start;
132 	__u64 trim_end;
133 	__u64 trim_minlen;
134 	__u64 trimmed;
135 };
136 
137 /*
138  * For CP/NAT/SIT/SSA readahead
139  */
140 enum {
141 	META_CP,
142 	META_NAT,
143 	META_SIT,
144 	META_SSA,
145 	META_POR,
146 };
147 
148 /* for the list of ino */
149 enum {
150 	ORPHAN_INO,		/* for orphan ino list */
151 	APPEND_INO,		/* for append ino list */
152 	UPDATE_INO,		/* for update ino list */
153 	MAX_INO_ENTRY,		/* max. list */
154 };
155 
156 struct ino_entry {
157 	struct list_head list;	/* list head */
158 	nid_t ino;		/* inode number */
159 };
160 
161 /*
162  * for the list of directory inodes or gc inodes.
163  * NOTE: there are two slab users for this structure, if we add/modify/delete
164  * fields in structure for one of slab users, it may affect fields or size of
165  * other one, in this condition, it's better to split both of slab and related
166  * data structure.
167  */
168 struct inode_entry {
169 	struct list_head list;	/* list head */
170 	struct inode *inode;	/* vfs inode pointer */
171 };
172 
173 /* for the list of blockaddresses to be discarded */
174 struct discard_entry {
175 	struct list_head list;	/* list head */
176 	block_t blkaddr;	/* block address to be discarded */
177 	int len;		/* # of consecutive blocks of the discard */
178 };
179 
180 /* for the list of fsync inodes, used only during recovery */
181 struct fsync_inode_entry {
182 	struct list_head list;	/* list head */
183 	struct inode *inode;	/* vfs inode pointer */
184 	block_t blkaddr;	/* block address locating the last fsync */
185 	block_t last_dentry;	/* block address locating the last dentry */
186 	block_t last_inode;	/* block address locating the last inode */
187 };
188 
189 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
190 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
191 
192 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
193 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
194 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
195 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
196 
197 #define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
198 #define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
199 
200 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
201 {
202 	int before = nats_in_cursum(rs);
203 	rs->n_nats = cpu_to_le16(before + i);
204 	return before;
205 }
206 
207 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
208 {
209 	int before = sits_in_cursum(rs);
210 	rs->n_sits = cpu_to_le16(before + i);
211 	return before;
212 }
213 
214 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
215 								int type)
216 {
217 	if (type == NAT_JOURNAL)
218 		return size <= MAX_NAT_JENTRIES(sum);
219 	return size <= MAX_SIT_JENTRIES(sum);
220 }
221 
222 /*
223  * ioctl commands
224  */
225 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
226 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
227 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
228 
229 #define F2FS_IOCTL_MAGIC		0xf5
230 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
231 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
232 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
233 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
234 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
235 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
236 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
237 
238 #define F2FS_IOC_SET_ENCRYPTION_POLICY					\
239 		_IOR('f', 19, struct f2fs_encryption_policy)
240 #define F2FS_IOC_GET_ENCRYPTION_PWSALT					\
241 		_IOW('f', 20, __u8[16])
242 #define F2FS_IOC_GET_ENCRYPTION_POLICY					\
243 		_IOW('f', 21, struct f2fs_encryption_policy)
244 
245 /*
246  * should be same as XFS_IOC_GOINGDOWN.
247  * Flags for going down operation used by FS_IOC_GOINGDOWN
248  */
249 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
250 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
251 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
252 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
253 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
254 
255 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
256 /*
257  * ioctl commands in 32 bit emulation
258  */
259 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
260 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
261 #endif
262 
263 /*
264  * For INODE and NODE manager
265  */
266 /* for directory operations */
267 struct f2fs_str {
268 	unsigned char *name;
269 	u32 len;
270 };
271 
272 struct f2fs_filename {
273 	const struct qstr *usr_fname;
274 	struct f2fs_str disk_name;
275 	f2fs_hash_t hash;
276 #ifdef CONFIG_F2FS_FS_ENCRYPTION
277 	struct f2fs_str crypto_buf;
278 #endif
279 };
280 
281 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
282 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
283 #define fname_name(p)		((p)->disk_name.name)
284 #define fname_len(p)		((p)->disk_name.len)
285 
286 struct f2fs_dentry_ptr {
287 	struct inode *inode;
288 	const void *bitmap;
289 	struct f2fs_dir_entry *dentry;
290 	__u8 (*filename)[F2FS_SLOT_LEN];
291 	int max;
292 };
293 
294 static inline void make_dentry_ptr(struct inode *inode,
295 		struct f2fs_dentry_ptr *d, void *src, int type)
296 {
297 	d->inode = inode;
298 
299 	if (type == 1) {
300 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
301 		d->max = NR_DENTRY_IN_BLOCK;
302 		d->bitmap = &t->dentry_bitmap;
303 		d->dentry = t->dentry;
304 		d->filename = t->filename;
305 	} else {
306 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
307 		d->max = NR_INLINE_DENTRY;
308 		d->bitmap = &t->dentry_bitmap;
309 		d->dentry = t->dentry;
310 		d->filename = t->filename;
311 	}
312 }
313 
314 /*
315  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
316  * as its node offset to distinguish from index node blocks.
317  * But some bits are used to mark the node block.
318  */
319 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
320 				>> OFFSET_BIT_SHIFT)
321 enum {
322 	ALLOC_NODE,			/* allocate a new node page if needed */
323 	LOOKUP_NODE,			/* look up a node without readahead */
324 	LOOKUP_NODE_RA,			/*
325 					 * look up a node with readahead called
326 					 * by get_data_block.
327 					 */
328 };
329 
330 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
331 
332 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
333 
334 /* vector size for gang look-up from extent cache that consists of radix tree */
335 #define EXT_TREE_VEC_SIZE	64
336 
337 /* for in-memory extent cache entry */
338 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
339 
340 /* number of extent info in extent cache we try to shrink */
341 #define EXTENT_CACHE_SHRINK_NUMBER	128
342 
343 struct extent_info {
344 	unsigned int fofs;		/* start offset in a file */
345 	u32 blk;			/* start block address of the extent */
346 	unsigned int len;		/* length of the extent */
347 };
348 
349 struct extent_node {
350 	struct rb_node rb_node;		/* rb node located in rb-tree */
351 	struct list_head list;		/* node in global extent list of sbi */
352 	struct extent_info ei;		/* extent info */
353 };
354 
355 struct extent_tree {
356 	nid_t ino;			/* inode number */
357 	struct rb_root root;		/* root of extent info rb-tree */
358 	struct extent_node *cached_en;	/* recently accessed extent node */
359 	struct extent_info largest;	/* largested extent info */
360 	rwlock_t lock;			/* protect extent info rb-tree */
361 	atomic_t refcount;		/* reference count of rb-tree */
362 	unsigned int count;		/* # of extent node in rb-tree*/
363 };
364 
365 /*
366  * This structure is taken from ext4_map_blocks.
367  *
368  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
369  */
370 #define F2FS_MAP_NEW		(1 << BH_New)
371 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
372 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
373 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
374 				F2FS_MAP_UNWRITTEN)
375 
376 struct f2fs_map_blocks {
377 	block_t m_pblk;
378 	block_t m_lblk;
379 	unsigned int m_len;
380 	unsigned int m_flags;
381 };
382 
383 /* for flag in get_data_block */
384 #define F2FS_GET_BLOCK_READ		0
385 #define F2FS_GET_BLOCK_DIO		1
386 #define F2FS_GET_BLOCK_FIEMAP		2
387 #define F2FS_GET_BLOCK_BMAP		3
388 
389 /*
390  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
391  */
392 #define FADVISE_COLD_BIT	0x01
393 #define FADVISE_LOST_PINO_BIT	0x02
394 #define FADVISE_ENCRYPT_BIT	0x04
395 #define FADVISE_ENC_NAME_BIT	0x08
396 
397 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
398 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
399 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
400 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
401 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
402 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
403 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
404 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
405 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
406 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
407 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
408 
409 /* Encryption algorithms */
410 #define F2FS_ENCRYPTION_MODE_INVALID		0
411 #define F2FS_ENCRYPTION_MODE_AES_256_XTS	1
412 #define F2FS_ENCRYPTION_MODE_AES_256_GCM	2
413 #define F2FS_ENCRYPTION_MODE_AES_256_CBC	3
414 #define F2FS_ENCRYPTION_MODE_AES_256_CTS	4
415 
416 #include "f2fs_crypto.h"
417 
418 #define DEF_DIR_LEVEL		0
419 
420 struct f2fs_inode_info {
421 	struct inode vfs_inode;		/* serve a vfs inode */
422 	unsigned long i_flags;		/* keep an inode flags for ioctl */
423 	unsigned char i_advise;		/* use to give file attribute hints */
424 	unsigned char i_dir_level;	/* use for dentry level for large dir */
425 	unsigned int i_current_depth;	/* use only in directory structure */
426 	unsigned int i_pino;		/* parent inode number */
427 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
428 
429 	/* Use below internally in f2fs*/
430 	unsigned long flags;		/* use to pass per-file flags */
431 	struct rw_semaphore i_sem;	/* protect fi info */
432 	atomic_t dirty_pages;		/* # of dirty pages */
433 	f2fs_hash_t chash;		/* hash value of given file name */
434 	unsigned int clevel;		/* maximum level of given file name */
435 	nid_t i_xattr_nid;		/* node id that contains xattrs */
436 	unsigned long long xattr_ver;	/* cp version of xattr modification */
437 	struct inode_entry *dirty_dir;	/* the pointer of dirty dir */
438 
439 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
440 	struct mutex inmem_lock;	/* lock for inmemory pages */
441 
442 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
443 
444 #ifdef CONFIG_F2FS_FS_ENCRYPTION
445 	/* Encryption params */
446 	struct f2fs_crypt_info *i_crypt_info;
447 #endif
448 };
449 
450 static inline void get_extent_info(struct extent_info *ext,
451 					struct f2fs_extent i_ext)
452 {
453 	ext->fofs = le32_to_cpu(i_ext.fofs);
454 	ext->blk = le32_to_cpu(i_ext.blk);
455 	ext->len = le32_to_cpu(i_ext.len);
456 }
457 
458 static inline void set_raw_extent(struct extent_info *ext,
459 					struct f2fs_extent *i_ext)
460 {
461 	i_ext->fofs = cpu_to_le32(ext->fofs);
462 	i_ext->blk = cpu_to_le32(ext->blk);
463 	i_ext->len = cpu_to_le32(ext->len);
464 }
465 
466 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
467 						u32 blk, unsigned int len)
468 {
469 	ei->fofs = fofs;
470 	ei->blk = blk;
471 	ei->len = len;
472 }
473 
474 static inline bool __is_extent_same(struct extent_info *ei1,
475 						struct extent_info *ei2)
476 {
477 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
478 						ei1->len == ei2->len);
479 }
480 
481 static inline bool __is_extent_mergeable(struct extent_info *back,
482 						struct extent_info *front)
483 {
484 	return (back->fofs + back->len == front->fofs &&
485 			back->blk + back->len == front->blk);
486 }
487 
488 static inline bool __is_back_mergeable(struct extent_info *cur,
489 						struct extent_info *back)
490 {
491 	return __is_extent_mergeable(back, cur);
492 }
493 
494 static inline bool __is_front_mergeable(struct extent_info *cur,
495 						struct extent_info *front)
496 {
497 	return __is_extent_mergeable(cur, front);
498 }
499 
500 static inline void __try_update_largest_extent(struct extent_tree *et,
501 						struct extent_node *en)
502 {
503 	if (en->ei.len > et->largest.len)
504 		et->largest = en->ei;
505 }
506 
507 struct f2fs_nm_info {
508 	block_t nat_blkaddr;		/* base disk address of NAT */
509 	nid_t max_nid;			/* maximum possible node ids */
510 	nid_t available_nids;		/* maximum available node ids */
511 	nid_t next_scan_nid;		/* the next nid to be scanned */
512 	unsigned int ram_thresh;	/* control the memory footprint */
513 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
514 
515 	/* NAT cache management */
516 	struct radix_tree_root nat_root;/* root of the nat entry cache */
517 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
518 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
519 	struct list_head nat_entries;	/* cached nat entry list (clean) */
520 	unsigned int nat_cnt;		/* the # of cached nat entries */
521 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
522 
523 	/* free node ids management */
524 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
525 	struct list_head free_nid_list;	/* a list for free nids */
526 	spinlock_t free_nid_list_lock;	/* protect free nid list */
527 	unsigned int fcnt;		/* the number of free node id */
528 	struct mutex build_lock;	/* lock for build free nids */
529 
530 	/* for checkpoint */
531 	char *nat_bitmap;		/* NAT bitmap pointer */
532 	int bitmap_size;		/* bitmap size */
533 };
534 
535 /*
536  * this structure is used as one of function parameters.
537  * all the information are dedicated to a given direct node block determined
538  * by the data offset in a file.
539  */
540 struct dnode_of_data {
541 	struct inode *inode;		/* vfs inode pointer */
542 	struct page *inode_page;	/* its inode page, NULL is possible */
543 	struct page *node_page;		/* cached direct node page */
544 	nid_t nid;			/* node id of the direct node block */
545 	unsigned int ofs_in_node;	/* data offset in the node page */
546 	bool inode_page_locked;		/* inode page is locked or not */
547 	block_t	data_blkaddr;		/* block address of the node block */
548 };
549 
550 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
551 		struct page *ipage, struct page *npage, nid_t nid)
552 {
553 	memset(dn, 0, sizeof(*dn));
554 	dn->inode = inode;
555 	dn->inode_page = ipage;
556 	dn->node_page = npage;
557 	dn->nid = nid;
558 }
559 
560 /*
561  * For SIT manager
562  *
563  * By default, there are 6 active log areas across the whole main area.
564  * When considering hot and cold data separation to reduce cleaning overhead,
565  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
566  * respectively.
567  * In the current design, you should not change the numbers intentionally.
568  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
569  * logs individually according to the underlying devices. (default: 6)
570  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
571  * data and 8 for node logs.
572  */
573 #define	NR_CURSEG_DATA_TYPE	(3)
574 #define NR_CURSEG_NODE_TYPE	(3)
575 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
576 
577 enum {
578 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
579 	CURSEG_WARM_DATA,	/* data blocks */
580 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
581 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
582 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
583 	CURSEG_COLD_NODE,	/* indirect node blocks */
584 	NO_CHECK_TYPE,
585 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
586 };
587 
588 struct flush_cmd {
589 	struct completion wait;
590 	struct llist_node llnode;
591 	int ret;
592 };
593 
594 struct flush_cmd_control {
595 	struct task_struct *f2fs_issue_flush;	/* flush thread */
596 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
597 	struct llist_head issue_list;		/* list for command issue */
598 	struct llist_node *dispatch_list;	/* list for command dispatch */
599 };
600 
601 struct f2fs_sm_info {
602 	struct sit_info *sit_info;		/* whole segment information */
603 	struct free_segmap_info *free_info;	/* free segment information */
604 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
605 	struct curseg_info *curseg_array;	/* active segment information */
606 
607 	block_t seg0_blkaddr;		/* block address of 0'th segment */
608 	block_t main_blkaddr;		/* start block address of main area */
609 	block_t ssa_blkaddr;		/* start block address of SSA area */
610 
611 	unsigned int segment_count;	/* total # of segments */
612 	unsigned int main_segments;	/* # of segments in main area */
613 	unsigned int reserved_segments;	/* # of reserved segments */
614 	unsigned int ovp_segments;	/* # of overprovision segments */
615 
616 	/* a threshold to reclaim prefree segments */
617 	unsigned int rec_prefree_segments;
618 
619 	/* for small discard management */
620 	struct list_head discard_list;		/* 4KB discard list */
621 	int nr_discards;			/* # of discards in the list */
622 	int max_discards;			/* max. discards to be issued */
623 
624 	/* for batched trimming */
625 	unsigned int trim_sections;		/* # of sections to trim */
626 
627 	struct list_head sit_entry_set;	/* sit entry set list */
628 
629 	unsigned int ipu_policy;	/* in-place-update policy */
630 	unsigned int min_ipu_util;	/* in-place-update threshold */
631 	unsigned int min_fsync_blocks;	/* threshold for fsync */
632 
633 	/* for flush command control */
634 	struct flush_cmd_control *cmd_control_info;
635 
636 };
637 
638 /*
639  * For superblock
640  */
641 /*
642  * COUNT_TYPE for monitoring
643  *
644  * f2fs monitors the number of several block types such as on-writeback,
645  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
646  */
647 enum count_type {
648 	F2FS_WRITEBACK,
649 	F2FS_DIRTY_DENTS,
650 	F2FS_DIRTY_NODES,
651 	F2FS_DIRTY_META,
652 	F2FS_INMEM_PAGES,
653 	NR_COUNT_TYPE,
654 };
655 
656 /*
657  * The below are the page types of bios used in submit_bio().
658  * The available types are:
659  * DATA			User data pages. It operates as async mode.
660  * NODE			Node pages. It operates as async mode.
661  * META			FS metadata pages such as SIT, NAT, CP.
662  * NR_PAGE_TYPE		The number of page types.
663  * META_FLUSH		Make sure the previous pages are written
664  *			with waiting the bio's completion
665  * ...			Only can be used with META.
666  */
667 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
668 enum page_type {
669 	DATA,
670 	NODE,
671 	META,
672 	NR_PAGE_TYPE,
673 	META_FLUSH,
674 	INMEM,		/* the below types are used by tracepoints only. */
675 	INMEM_DROP,
676 	IPU,
677 	OPU,
678 };
679 
680 struct f2fs_io_info {
681 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
682 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
683 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
684 	block_t blk_addr;	/* block address to be written */
685 	struct page *page;	/* page to be written */
686 	struct page *encrypted_page;	/* encrypted page */
687 };
688 
689 #define is_read_io(rw)	(((rw) & 1) == READ)
690 struct f2fs_bio_info {
691 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
692 	struct bio *bio;		/* bios to merge */
693 	sector_t last_block_in_bio;	/* last block number */
694 	struct f2fs_io_info fio;	/* store buffered io info. */
695 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
696 };
697 
698 /* for inner inode cache management */
699 struct inode_management {
700 	struct radix_tree_root ino_root;	/* ino entry array */
701 	spinlock_t ino_lock;			/* for ino entry lock */
702 	struct list_head ino_list;		/* inode list head */
703 	unsigned long ino_num;			/* number of entries */
704 };
705 
706 /* For s_flag in struct f2fs_sb_info */
707 enum {
708 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
709 	SBI_IS_CLOSE,				/* specify unmounting */
710 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
711 	SBI_POR_DOING,				/* recovery is doing or not */
712 };
713 
714 struct f2fs_sb_info {
715 	struct super_block *sb;			/* pointer to VFS super block */
716 	struct proc_dir_entry *s_proc;		/* proc entry */
717 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
718 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
719 	int s_flag;				/* flags for sbi */
720 
721 	/* for node-related operations */
722 	struct f2fs_nm_info *nm_info;		/* node manager */
723 	struct inode *node_inode;		/* cache node blocks */
724 
725 	/* for segment-related operations */
726 	struct f2fs_sm_info *sm_info;		/* segment manager */
727 
728 	/* for bio operations */
729 	struct f2fs_bio_info read_io;			/* for read bios */
730 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
731 
732 	/* for checkpoint */
733 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
734 	struct inode *meta_inode;		/* cache meta blocks */
735 	struct mutex cp_mutex;			/* checkpoint procedure lock */
736 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
737 	struct rw_semaphore node_write;		/* locking node writes */
738 	struct mutex writepages;		/* mutex for writepages() */
739 	wait_queue_head_t cp_wait;
740 	long cp_expires, cp_interval;		/* next expected periodic cp */
741 
742 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
743 
744 	/* for orphan inode, use 0'th array */
745 	unsigned int max_orphans;		/* max orphan inodes */
746 
747 	/* for directory inode management */
748 	struct list_head dir_inode_list;	/* dir inode list */
749 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
750 
751 	/* for extent tree cache */
752 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
753 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
754 	struct list_head extent_list;		/* lru list for shrinker */
755 	spinlock_t extent_lock;			/* locking extent lru list */
756 	int total_ext_tree;			/* extent tree count */
757 	atomic_t total_ext_node;		/* extent info count */
758 
759 	/* basic filesystem units */
760 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
761 	unsigned int log_blocksize;		/* log2 block size */
762 	unsigned int blocksize;			/* block size */
763 	unsigned int root_ino_num;		/* root inode number*/
764 	unsigned int node_ino_num;		/* node inode number*/
765 	unsigned int meta_ino_num;		/* meta inode number*/
766 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
767 	unsigned int blocks_per_seg;		/* blocks per segment */
768 	unsigned int segs_per_sec;		/* segments per section */
769 	unsigned int secs_per_zone;		/* sections per zone */
770 	unsigned int total_sections;		/* total section count */
771 	unsigned int total_node_count;		/* total node block count */
772 	unsigned int total_valid_node_count;	/* valid node block count */
773 	unsigned int total_valid_inode_count;	/* valid inode count */
774 	int active_logs;			/* # of active logs */
775 	int dir_level;				/* directory level */
776 
777 	block_t user_block_count;		/* # of user blocks */
778 	block_t total_valid_block_count;	/* # of valid blocks */
779 	block_t alloc_valid_block_count;	/* # of allocated blocks */
780 	block_t discard_blks;			/* discard command candidats */
781 	block_t last_valid_block_count;		/* for recovery */
782 	u32 s_next_generation;			/* for NFS support */
783 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
784 
785 	struct f2fs_mount_info mount_opt;	/* mount options */
786 
787 	/* for cleaning operations */
788 	struct mutex gc_mutex;			/* mutex for GC */
789 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
790 	unsigned int cur_victim_sec;		/* current victim section num */
791 
792 	/* maximum # of trials to find a victim segment for SSR and GC */
793 	unsigned int max_victim_search;
794 
795 	/*
796 	 * for stat information.
797 	 * one is for the LFS mode, and the other is for the SSR mode.
798 	 */
799 #ifdef CONFIG_F2FS_STAT_FS
800 	struct f2fs_stat_info *stat_info;	/* FS status information */
801 	unsigned int segment_count[2];		/* # of allocated segments */
802 	unsigned int block_count[2];		/* # of allocated blocks */
803 	atomic_t inplace_count;		/* # of inplace update */
804 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
805 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
806 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
807 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
808 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
809 	atomic_t inline_inode;			/* # of inline_data inodes */
810 	atomic_t inline_dir;			/* # of inline_dentry inodes */
811 	int bg_gc;				/* background gc calls */
812 	unsigned int n_dirty_dirs;		/* # of dir inodes */
813 #endif
814 	unsigned int last_victim[2];		/* last victim segment # */
815 	spinlock_t stat_lock;			/* lock for stat operations */
816 
817 	/* For sysfs suppport */
818 	struct kobject s_kobj;
819 	struct completion s_kobj_unregister;
820 
821 	/* For shrinker support */
822 	struct list_head s_list;
823 	struct mutex umount_mutex;
824 	unsigned int shrinker_run_no;
825 };
826 
827 /*
828  * Inline functions
829  */
830 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
831 {
832 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
833 }
834 
835 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
836 {
837 	return sb->s_fs_info;
838 }
839 
840 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
841 {
842 	return F2FS_SB(inode->i_sb);
843 }
844 
845 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
846 {
847 	return F2FS_I_SB(mapping->host);
848 }
849 
850 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
851 {
852 	return F2FS_M_SB(page->mapping);
853 }
854 
855 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
856 {
857 	return (struct f2fs_super_block *)(sbi->raw_super);
858 }
859 
860 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
861 {
862 	return (struct f2fs_checkpoint *)(sbi->ckpt);
863 }
864 
865 static inline struct f2fs_node *F2FS_NODE(struct page *page)
866 {
867 	return (struct f2fs_node *)page_address(page);
868 }
869 
870 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
871 {
872 	return &((struct f2fs_node *)page_address(page))->i;
873 }
874 
875 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
876 {
877 	return (struct f2fs_nm_info *)(sbi->nm_info);
878 }
879 
880 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
881 {
882 	return (struct f2fs_sm_info *)(sbi->sm_info);
883 }
884 
885 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
886 {
887 	return (struct sit_info *)(SM_I(sbi)->sit_info);
888 }
889 
890 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
891 {
892 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
893 }
894 
895 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
896 {
897 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
898 }
899 
900 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
901 {
902 	return sbi->meta_inode->i_mapping;
903 }
904 
905 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
906 {
907 	return sbi->node_inode->i_mapping;
908 }
909 
910 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
911 {
912 	return sbi->s_flag & (0x01 << type);
913 }
914 
915 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
916 {
917 	sbi->s_flag |= (0x01 << type);
918 }
919 
920 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
921 {
922 	sbi->s_flag &= ~(0x01 << type);
923 }
924 
925 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
926 {
927 	return le64_to_cpu(cp->checkpoint_ver);
928 }
929 
930 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
931 {
932 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
933 	return ckpt_flags & f;
934 }
935 
936 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
937 {
938 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
939 	ckpt_flags |= f;
940 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
941 }
942 
943 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
944 {
945 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
946 	ckpt_flags &= (~f);
947 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
948 }
949 
950 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
951 {
952 	down_read(&sbi->cp_rwsem);
953 }
954 
955 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
956 {
957 	up_read(&sbi->cp_rwsem);
958 }
959 
960 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
961 {
962 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
963 }
964 
965 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
966 {
967 	up_write(&sbi->cp_rwsem);
968 }
969 
970 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
971 {
972 	int reason = CP_SYNC;
973 
974 	if (test_opt(sbi, FASTBOOT))
975 		reason = CP_FASTBOOT;
976 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
977 		reason = CP_UMOUNT;
978 	return reason;
979 }
980 
981 static inline bool __remain_node_summaries(int reason)
982 {
983 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
984 }
985 
986 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
987 {
988 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
989 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
990 }
991 
992 /*
993  * Check whether the given nid is within node id range.
994  */
995 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
996 {
997 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
998 		return -EINVAL;
999 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1000 		return -EINVAL;
1001 	return 0;
1002 }
1003 
1004 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1005 
1006 /*
1007  * Check whether the inode has blocks or not
1008  */
1009 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1010 {
1011 	if (F2FS_I(inode)->i_xattr_nid)
1012 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1013 	else
1014 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1015 }
1016 
1017 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1018 {
1019 	return ofs == XATTR_NODE_OFFSET;
1020 }
1021 
1022 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1023 				 struct inode *inode, blkcnt_t count)
1024 {
1025 	block_t	valid_block_count;
1026 
1027 	spin_lock(&sbi->stat_lock);
1028 	valid_block_count =
1029 		sbi->total_valid_block_count + (block_t)count;
1030 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1031 		spin_unlock(&sbi->stat_lock);
1032 		return false;
1033 	}
1034 	inode->i_blocks += count;
1035 	sbi->total_valid_block_count = valid_block_count;
1036 	sbi->alloc_valid_block_count += (block_t)count;
1037 	spin_unlock(&sbi->stat_lock);
1038 	return true;
1039 }
1040 
1041 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1042 						struct inode *inode,
1043 						blkcnt_t count)
1044 {
1045 	spin_lock(&sbi->stat_lock);
1046 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1047 	f2fs_bug_on(sbi, inode->i_blocks < count);
1048 	inode->i_blocks -= count;
1049 	sbi->total_valid_block_count -= (block_t)count;
1050 	spin_unlock(&sbi->stat_lock);
1051 }
1052 
1053 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1054 {
1055 	atomic_inc(&sbi->nr_pages[count_type]);
1056 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1057 }
1058 
1059 static inline void inode_inc_dirty_pages(struct inode *inode)
1060 {
1061 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1062 	if (S_ISDIR(inode->i_mode))
1063 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1064 }
1065 
1066 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1067 {
1068 	atomic_dec(&sbi->nr_pages[count_type]);
1069 }
1070 
1071 static inline void inode_dec_dirty_pages(struct inode *inode)
1072 {
1073 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1074 			!S_ISLNK(inode->i_mode))
1075 		return;
1076 
1077 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1078 
1079 	if (S_ISDIR(inode->i_mode))
1080 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1081 }
1082 
1083 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1084 {
1085 	return atomic_read(&sbi->nr_pages[count_type]);
1086 }
1087 
1088 static inline int get_dirty_pages(struct inode *inode)
1089 {
1090 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1091 }
1092 
1093 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1094 {
1095 	unsigned int pages_per_sec = sbi->segs_per_sec *
1096 					(1 << sbi->log_blocks_per_seg);
1097 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1098 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1099 }
1100 
1101 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1102 {
1103 	return sbi->total_valid_block_count;
1104 }
1105 
1106 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1107 {
1108 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1109 
1110 	/* return NAT or SIT bitmap */
1111 	if (flag == NAT_BITMAP)
1112 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1113 	else if (flag == SIT_BITMAP)
1114 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1115 
1116 	return 0;
1117 }
1118 
1119 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1120 {
1121 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1122 }
1123 
1124 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1125 {
1126 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1127 	int offset;
1128 
1129 	if (__cp_payload(sbi) > 0) {
1130 		if (flag == NAT_BITMAP)
1131 			return &ckpt->sit_nat_version_bitmap;
1132 		else
1133 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1134 	} else {
1135 		offset = (flag == NAT_BITMAP) ?
1136 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1137 		return &ckpt->sit_nat_version_bitmap + offset;
1138 	}
1139 }
1140 
1141 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1142 {
1143 	block_t start_addr;
1144 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1145 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1146 
1147 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1148 
1149 	/*
1150 	 * odd numbered checkpoint should at cp segment 0
1151 	 * and even segment must be at cp segment 1
1152 	 */
1153 	if (!(ckpt_version & 1))
1154 		start_addr += sbi->blocks_per_seg;
1155 
1156 	return start_addr;
1157 }
1158 
1159 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1160 {
1161 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1162 }
1163 
1164 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1165 						struct inode *inode)
1166 {
1167 	block_t	valid_block_count;
1168 	unsigned int valid_node_count;
1169 
1170 	spin_lock(&sbi->stat_lock);
1171 
1172 	valid_block_count = sbi->total_valid_block_count + 1;
1173 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1174 		spin_unlock(&sbi->stat_lock);
1175 		return false;
1176 	}
1177 
1178 	valid_node_count = sbi->total_valid_node_count + 1;
1179 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1180 		spin_unlock(&sbi->stat_lock);
1181 		return false;
1182 	}
1183 
1184 	if (inode)
1185 		inode->i_blocks++;
1186 
1187 	sbi->alloc_valid_block_count++;
1188 	sbi->total_valid_node_count++;
1189 	sbi->total_valid_block_count++;
1190 	spin_unlock(&sbi->stat_lock);
1191 
1192 	return true;
1193 }
1194 
1195 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1196 						struct inode *inode)
1197 {
1198 	spin_lock(&sbi->stat_lock);
1199 
1200 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1201 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1202 	f2fs_bug_on(sbi, !inode->i_blocks);
1203 
1204 	inode->i_blocks--;
1205 	sbi->total_valid_node_count--;
1206 	sbi->total_valid_block_count--;
1207 
1208 	spin_unlock(&sbi->stat_lock);
1209 }
1210 
1211 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1212 {
1213 	return sbi->total_valid_node_count;
1214 }
1215 
1216 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1217 {
1218 	spin_lock(&sbi->stat_lock);
1219 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1220 	sbi->total_valid_inode_count++;
1221 	spin_unlock(&sbi->stat_lock);
1222 }
1223 
1224 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1225 {
1226 	spin_lock(&sbi->stat_lock);
1227 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1228 	sbi->total_valid_inode_count--;
1229 	spin_unlock(&sbi->stat_lock);
1230 }
1231 
1232 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1233 {
1234 	return sbi->total_valid_inode_count;
1235 }
1236 
1237 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1238 						pgoff_t index, bool for_write)
1239 {
1240 	if (!for_write)
1241 		return grab_cache_page(mapping, index);
1242 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1243 }
1244 
1245 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1246 {
1247 	char *src_kaddr = kmap(src);
1248 	char *dst_kaddr = kmap(dst);
1249 
1250 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1251 	kunmap(dst);
1252 	kunmap(src);
1253 }
1254 
1255 static inline void f2fs_put_page(struct page *page, int unlock)
1256 {
1257 	if (!page)
1258 		return;
1259 
1260 	if (unlock) {
1261 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1262 		unlock_page(page);
1263 	}
1264 	page_cache_release(page);
1265 }
1266 
1267 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1268 {
1269 	if (dn->node_page)
1270 		f2fs_put_page(dn->node_page, 1);
1271 	if (dn->inode_page && dn->node_page != dn->inode_page)
1272 		f2fs_put_page(dn->inode_page, 0);
1273 	dn->node_page = NULL;
1274 	dn->inode_page = NULL;
1275 }
1276 
1277 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1278 					size_t size)
1279 {
1280 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1281 }
1282 
1283 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1284 						gfp_t flags)
1285 {
1286 	void *entry;
1287 
1288 	entry = kmem_cache_alloc(cachep, flags);
1289 	if (!entry)
1290 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1291 	return entry;
1292 }
1293 
1294 static inline struct bio *f2fs_bio_alloc(int npages)
1295 {
1296 	struct bio *bio;
1297 
1298 	/* No failure on bio allocation */
1299 	bio = bio_alloc(GFP_NOIO, npages);
1300 	if (!bio)
1301 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1302 	return bio;
1303 }
1304 
1305 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1306 				unsigned long index, void *item)
1307 {
1308 	while (radix_tree_insert(root, index, item))
1309 		cond_resched();
1310 }
1311 
1312 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1313 
1314 static inline bool IS_INODE(struct page *page)
1315 {
1316 	struct f2fs_node *p = F2FS_NODE(page);
1317 	return RAW_IS_INODE(p);
1318 }
1319 
1320 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1321 {
1322 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1323 }
1324 
1325 static inline block_t datablock_addr(struct page *node_page,
1326 		unsigned int offset)
1327 {
1328 	struct f2fs_node *raw_node;
1329 	__le32 *addr_array;
1330 	raw_node = F2FS_NODE(node_page);
1331 	addr_array = blkaddr_in_node(raw_node);
1332 	return le32_to_cpu(addr_array[offset]);
1333 }
1334 
1335 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1336 {
1337 	int mask;
1338 
1339 	addr += (nr >> 3);
1340 	mask = 1 << (7 - (nr & 0x07));
1341 	return mask & *addr;
1342 }
1343 
1344 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1345 {
1346 	int mask;
1347 
1348 	addr += (nr >> 3);
1349 	mask = 1 << (7 - (nr & 0x07));
1350 	*addr |= mask;
1351 }
1352 
1353 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1354 {
1355 	int mask;
1356 
1357 	addr += (nr >> 3);
1358 	mask = 1 << (7 - (nr & 0x07));
1359 	*addr &= ~mask;
1360 }
1361 
1362 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1363 {
1364 	int mask;
1365 	int ret;
1366 
1367 	addr += (nr >> 3);
1368 	mask = 1 << (7 - (nr & 0x07));
1369 	ret = mask & *addr;
1370 	*addr |= mask;
1371 	return ret;
1372 }
1373 
1374 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1375 {
1376 	int mask;
1377 	int ret;
1378 
1379 	addr += (nr >> 3);
1380 	mask = 1 << (7 - (nr & 0x07));
1381 	ret = mask & *addr;
1382 	*addr &= ~mask;
1383 	return ret;
1384 }
1385 
1386 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1387 {
1388 	int mask;
1389 
1390 	addr += (nr >> 3);
1391 	mask = 1 << (7 - (nr & 0x07));
1392 	*addr ^= mask;
1393 }
1394 
1395 /* used for f2fs_inode_info->flags */
1396 enum {
1397 	FI_NEW_INODE,		/* indicate newly allocated inode */
1398 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1399 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1400 	FI_INC_LINK,		/* need to increment i_nlink */
1401 	FI_ACL_MODE,		/* indicate acl mode */
1402 	FI_NO_ALLOC,		/* should not allocate any blocks */
1403 	FI_FREE_NID,		/* free allocated nide */
1404 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1405 	FI_DELAY_IPUT,		/* used for the recovery */
1406 	FI_NO_EXTENT,		/* not to use the extent cache */
1407 	FI_INLINE_XATTR,	/* used for inline xattr */
1408 	FI_INLINE_DATA,		/* used for inline data*/
1409 	FI_INLINE_DENTRY,	/* used for inline dentry */
1410 	FI_APPEND_WRITE,	/* inode has appended data */
1411 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1412 	FI_NEED_IPU,		/* used for ipu per file */
1413 	FI_ATOMIC_FILE,		/* indicate atomic file */
1414 	FI_VOLATILE_FILE,	/* indicate volatile file */
1415 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1416 	FI_DROP_CACHE,		/* drop dirty page cache */
1417 	FI_DATA_EXIST,		/* indicate data exists */
1418 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1419 };
1420 
1421 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1422 {
1423 	if (!test_bit(flag, &fi->flags))
1424 		set_bit(flag, &fi->flags);
1425 }
1426 
1427 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1428 {
1429 	return test_bit(flag, &fi->flags);
1430 }
1431 
1432 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1433 {
1434 	if (test_bit(flag, &fi->flags))
1435 		clear_bit(flag, &fi->flags);
1436 }
1437 
1438 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1439 {
1440 	fi->i_acl_mode = mode;
1441 	set_inode_flag(fi, FI_ACL_MODE);
1442 }
1443 
1444 static inline void get_inline_info(struct f2fs_inode_info *fi,
1445 					struct f2fs_inode *ri)
1446 {
1447 	if (ri->i_inline & F2FS_INLINE_XATTR)
1448 		set_inode_flag(fi, FI_INLINE_XATTR);
1449 	if (ri->i_inline & F2FS_INLINE_DATA)
1450 		set_inode_flag(fi, FI_INLINE_DATA);
1451 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1452 		set_inode_flag(fi, FI_INLINE_DENTRY);
1453 	if (ri->i_inline & F2FS_DATA_EXIST)
1454 		set_inode_flag(fi, FI_DATA_EXIST);
1455 	if (ri->i_inline & F2FS_INLINE_DOTS)
1456 		set_inode_flag(fi, FI_INLINE_DOTS);
1457 }
1458 
1459 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1460 					struct f2fs_inode *ri)
1461 {
1462 	ri->i_inline = 0;
1463 
1464 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1465 		ri->i_inline |= F2FS_INLINE_XATTR;
1466 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1467 		ri->i_inline |= F2FS_INLINE_DATA;
1468 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1469 		ri->i_inline |= F2FS_INLINE_DENTRY;
1470 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1471 		ri->i_inline |= F2FS_DATA_EXIST;
1472 	if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1473 		ri->i_inline |= F2FS_INLINE_DOTS;
1474 }
1475 
1476 static inline int f2fs_has_inline_xattr(struct inode *inode)
1477 {
1478 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1479 }
1480 
1481 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1482 {
1483 	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1484 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1485 	return DEF_ADDRS_PER_INODE;
1486 }
1487 
1488 static inline void *inline_xattr_addr(struct page *page)
1489 {
1490 	struct f2fs_inode *ri = F2FS_INODE(page);
1491 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1492 					F2FS_INLINE_XATTR_ADDRS]);
1493 }
1494 
1495 static inline int inline_xattr_size(struct inode *inode)
1496 {
1497 	if (f2fs_has_inline_xattr(inode))
1498 		return F2FS_INLINE_XATTR_ADDRS << 2;
1499 	else
1500 		return 0;
1501 }
1502 
1503 static inline int f2fs_has_inline_data(struct inode *inode)
1504 {
1505 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1506 }
1507 
1508 static inline void f2fs_clear_inline_inode(struct inode *inode)
1509 {
1510 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1511 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1512 }
1513 
1514 static inline int f2fs_exist_data(struct inode *inode)
1515 {
1516 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1517 }
1518 
1519 static inline int f2fs_has_inline_dots(struct inode *inode)
1520 {
1521 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1522 }
1523 
1524 static inline bool f2fs_is_atomic_file(struct inode *inode)
1525 {
1526 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1527 }
1528 
1529 static inline bool f2fs_is_volatile_file(struct inode *inode)
1530 {
1531 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1532 }
1533 
1534 static inline bool f2fs_is_first_block_written(struct inode *inode)
1535 {
1536 	return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1537 }
1538 
1539 static inline bool f2fs_is_drop_cache(struct inode *inode)
1540 {
1541 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1542 }
1543 
1544 static inline void *inline_data_addr(struct page *page)
1545 {
1546 	struct f2fs_inode *ri = F2FS_INODE(page);
1547 	return (void *)&(ri->i_addr[1]);
1548 }
1549 
1550 static inline int f2fs_has_inline_dentry(struct inode *inode)
1551 {
1552 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1553 }
1554 
1555 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1556 {
1557 	if (!f2fs_has_inline_dentry(dir))
1558 		kunmap(page);
1559 }
1560 
1561 static inline int is_file(struct inode *inode, int type)
1562 {
1563 	return F2FS_I(inode)->i_advise & type;
1564 }
1565 
1566 static inline void set_file(struct inode *inode, int type)
1567 {
1568 	F2FS_I(inode)->i_advise |= type;
1569 }
1570 
1571 static inline void clear_file(struct inode *inode, int type)
1572 {
1573 	F2FS_I(inode)->i_advise &= ~type;
1574 }
1575 
1576 static inline int f2fs_readonly(struct super_block *sb)
1577 {
1578 	return sb->s_flags & MS_RDONLY;
1579 }
1580 
1581 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1582 {
1583 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1584 }
1585 
1586 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1587 {
1588 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1589 	sbi->sb->s_flags |= MS_RDONLY;
1590 }
1591 
1592 static inline bool is_dot_dotdot(const struct qstr *str)
1593 {
1594 	if (str->len == 1 && str->name[0] == '.')
1595 		return true;
1596 
1597 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1598 		return true;
1599 
1600 	return false;
1601 }
1602 
1603 static inline bool f2fs_may_extent_tree(struct inode *inode)
1604 {
1605 	mode_t mode = inode->i_mode;
1606 
1607 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1608 			is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1609 		return false;
1610 
1611 	return S_ISREG(mode);
1612 }
1613 
1614 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1615 {
1616 	void *ret;
1617 
1618 	ret = kmalloc(size, flags | __GFP_NOWARN);
1619 	if (!ret)
1620 		ret = __vmalloc(size, flags, PAGE_KERNEL);
1621 	return ret;
1622 }
1623 
1624 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1625 {
1626 	void *ret;
1627 
1628 	ret = kzalloc(size, flags | __GFP_NOWARN);
1629 	if (!ret)
1630 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1631 	return ret;
1632 }
1633 
1634 #define get_inode_mode(i) \
1635 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1636 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1637 
1638 /* get offset of first page in next direct node */
1639 #define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1640 	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1641 	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1642 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1643 
1644 /*
1645  * file.c
1646  */
1647 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1648 void truncate_data_blocks(struct dnode_of_data *);
1649 int truncate_blocks(struct inode *, u64, bool);
1650 int f2fs_truncate(struct inode *, bool);
1651 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1652 int f2fs_setattr(struct dentry *, struct iattr *);
1653 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1654 int truncate_data_blocks_range(struct dnode_of_data *, int);
1655 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1656 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1657 
1658 /*
1659  * inode.c
1660  */
1661 void f2fs_set_inode_flags(struct inode *);
1662 struct inode *f2fs_iget(struct super_block *, unsigned long);
1663 int try_to_free_nats(struct f2fs_sb_info *, int);
1664 void update_inode(struct inode *, struct page *);
1665 void update_inode_page(struct inode *);
1666 int f2fs_write_inode(struct inode *, struct writeback_control *);
1667 void f2fs_evict_inode(struct inode *);
1668 void handle_failed_inode(struct inode *);
1669 
1670 /*
1671  * namei.c
1672  */
1673 struct dentry *f2fs_get_parent(struct dentry *child);
1674 
1675 /*
1676  * dir.c
1677  */
1678 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1679 void set_de_type(struct f2fs_dir_entry *, umode_t);
1680 
1681 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1682 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1683 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1684 			unsigned int, struct f2fs_str *);
1685 void do_make_empty_dir(struct inode *, struct inode *,
1686 			struct f2fs_dentry_ptr *);
1687 struct page *init_inode_metadata(struct inode *, struct inode *,
1688 			const struct qstr *, struct page *);
1689 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1690 int room_for_filename(const void *, int, int);
1691 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1692 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1693 							struct page **);
1694 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1695 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1696 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1697 				struct page *, struct inode *);
1698 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1699 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1700 			const struct qstr *, f2fs_hash_t , unsigned int);
1701 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1702 			umode_t);
1703 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1704 							struct inode *);
1705 int f2fs_do_tmpfile(struct inode *, struct inode *);
1706 bool f2fs_empty_dir(struct inode *);
1707 
1708 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1709 {
1710 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1711 				inode, inode->i_ino, inode->i_mode);
1712 }
1713 
1714 /*
1715  * super.c
1716  */
1717 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1718 int f2fs_sync_fs(struct super_block *, int);
1719 extern __printf(3, 4)
1720 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1721 
1722 /*
1723  * hash.c
1724  */
1725 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1726 
1727 /*
1728  * node.c
1729  */
1730 struct dnode_of_data;
1731 struct node_info;
1732 
1733 bool available_free_memory(struct f2fs_sb_info *, int);
1734 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1735 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1736 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1737 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1738 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1739 int truncate_inode_blocks(struct inode *, pgoff_t);
1740 int truncate_xattr_node(struct inode *, struct page *);
1741 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1742 int remove_inode_page(struct inode *);
1743 struct page *new_inode_page(struct inode *);
1744 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1745 void ra_node_page(struct f2fs_sb_info *, nid_t);
1746 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1747 struct page *get_node_page_ra(struct page *, int);
1748 void sync_inode_page(struct dnode_of_data *);
1749 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1750 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1751 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1752 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1753 int try_to_free_nids(struct f2fs_sb_info *, int);
1754 void recover_inline_xattr(struct inode *, struct page *);
1755 void recover_xattr_data(struct inode *, struct page *, block_t);
1756 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1757 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1758 				struct f2fs_summary_block *);
1759 void flush_nat_entries(struct f2fs_sb_info *);
1760 int build_node_manager(struct f2fs_sb_info *);
1761 void destroy_node_manager(struct f2fs_sb_info *);
1762 int __init create_node_manager_caches(void);
1763 void destroy_node_manager_caches(void);
1764 
1765 /*
1766  * segment.c
1767  */
1768 void register_inmem_page(struct inode *, struct page *);
1769 int commit_inmem_pages(struct inode *, bool);
1770 void f2fs_balance_fs(struct f2fs_sb_info *);
1771 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1772 int f2fs_issue_flush(struct f2fs_sb_info *);
1773 int create_flush_cmd_control(struct f2fs_sb_info *);
1774 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1775 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1776 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1777 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1778 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1779 void release_discard_addrs(struct f2fs_sb_info *);
1780 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1781 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1782 void allocate_new_segments(struct f2fs_sb_info *);
1783 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1784 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1785 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1786 void write_meta_page(struct f2fs_sb_info *, struct page *);
1787 void write_node_page(unsigned int, struct f2fs_io_info *);
1788 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1789 void rewrite_data_page(struct f2fs_io_info *);
1790 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1791 				block_t, block_t, unsigned char, bool);
1792 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1793 		block_t, block_t *, struct f2fs_summary *, int);
1794 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1795 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1796 void write_data_summaries(struct f2fs_sb_info *, block_t);
1797 void write_node_summaries(struct f2fs_sb_info *, block_t);
1798 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1799 					int, unsigned int, int);
1800 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1801 int build_segment_manager(struct f2fs_sb_info *);
1802 void destroy_segment_manager(struct f2fs_sb_info *);
1803 int __init create_segment_manager_caches(void);
1804 void destroy_segment_manager_caches(void);
1805 
1806 /*
1807  * checkpoint.c
1808  */
1809 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1810 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1811 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1812 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1813 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1814 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1815 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1816 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1817 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1818 void release_dirty_inode(struct f2fs_sb_info *);
1819 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1820 int acquire_orphan_inode(struct f2fs_sb_info *);
1821 void release_orphan_inode(struct f2fs_sb_info *);
1822 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1823 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1824 int recover_orphan_inodes(struct f2fs_sb_info *);
1825 int get_valid_checkpoint(struct f2fs_sb_info *);
1826 void update_dirty_page(struct inode *, struct page *);
1827 void add_dirty_dir_inode(struct inode *);
1828 void remove_dirty_dir_inode(struct inode *);
1829 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1830 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1831 void init_ino_entry_info(struct f2fs_sb_info *);
1832 int __init create_checkpoint_caches(void);
1833 void destroy_checkpoint_caches(void);
1834 
1835 /*
1836  * data.c
1837  */
1838 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1839 int f2fs_submit_page_bio(struct f2fs_io_info *);
1840 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1841 void set_data_blkaddr(struct dnode_of_data *);
1842 int reserve_new_block(struct dnode_of_data *);
1843 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1844 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1845 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1846 struct page *find_data_page(struct inode *, pgoff_t);
1847 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1848 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1849 int do_write_data_page(struct f2fs_io_info *);
1850 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1851 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1852 int f2fs_release_page(struct page *, gfp_t);
1853 
1854 /*
1855  * gc.c
1856  */
1857 int start_gc_thread(struct f2fs_sb_info *);
1858 void stop_gc_thread(struct f2fs_sb_info *);
1859 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1860 int f2fs_gc(struct f2fs_sb_info *, bool);
1861 void build_gc_manager(struct f2fs_sb_info *);
1862 
1863 /*
1864  * recovery.c
1865  */
1866 int recover_fsync_data(struct f2fs_sb_info *);
1867 bool space_for_roll_forward(struct f2fs_sb_info *);
1868 
1869 /*
1870  * debug.c
1871  */
1872 #ifdef CONFIG_F2FS_STAT_FS
1873 struct f2fs_stat_info {
1874 	struct list_head stat_list;
1875 	struct f2fs_sb_info *sbi;
1876 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1877 	int main_area_segs, main_area_sections, main_area_zones;
1878 	unsigned long long hit_largest, hit_cached, hit_rbtree;
1879 	unsigned long long hit_total, total_ext;
1880 	int ext_tree, ext_node;
1881 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1882 	int nats, dirty_nats, sits, dirty_sits, fnids;
1883 	int total_count, utilization;
1884 	int bg_gc, inmem_pages, wb_pages;
1885 	int inline_xattr, inline_inode, inline_dir;
1886 	unsigned int valid_count, valid_node_count, valid_inode_count;
1887 	unsigned int bimodal, avg_vblocks;
1888 	int util_free, util_valid, util_invalid;
1889 	int rsvd_segs, overp_segs;
1890 	int dirty_count, node_pages, meta_pages;
1891 	int prefree_count, call_count, cp_count;
1892 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1893 	int bg_node_segs, bg_data_segs;
1894 	int tot_blks, data_blks, node_blks;
1895 	int bg_data_blks, bg_node_blks;
1896 	int curseg[NR_CURSEG_TYPE];
1897 	int cursec[NR_CURSEG_TYPE];
1898 	int curzone[NR_CURSEG_TYPE];
1899 
1900 	unsigned int segment_count[2];
1901 	unsigned int block_count[2];
1902 	unsigned int inplace_count;
1903 	unsigned long long base_mem, cache_mem, page_mem;
1904 };
1905 
1906 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1907 {
1908 	return (struct f2fs_stat_info *)sbi->stat_info;
1909 }
1910 
1911 #define stat_inc_cp_count(si)		((si)->cp_count++)
1912 #define stat_inc_call_count(si)		((si)->call_count++)
1913 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1914 #define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1915 #define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1916 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
1917 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
1918 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
1919 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
1920 #define stat_inc_inline_xattr(inode)					\
1921 	do {								\
1922 		if (f2fs_has_inline_xattr(inode))			\
1923 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
1924 	} while (0)
1925 #define stat_dec_inline_xattr(inode)					\
1926 	do {								\
1927 		if (f2fs_has_inline_xattr(inode))			\
1928 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
1929 	} while (0)
1930 #define stat_inc_inline_inode(inode)					\
1931 	do {								\
1932 		if (f2fs_has_inline_data(inode))			\
1933 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
1934 	} while (0)
1935 #define stat_dec_inline_inode(inode)					\
1936 	do {								\
1937 		if (f2fs_has_inline_data(inode))			\
1938 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
1939 	} while (0)
1940 #define stat_inc_inline_dir(inode)					\
1941 	do {								\
1942 		if (f2fs_has_inline_dentry(inode))			\
1943 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
1944 	} while (0)
1945 #define stat_dec_inline_dir(inode)					\
1946 	do {								\
1947 		if (f2fs_has_inline_dentry(inode))			\
1948 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
1949 	} while (0)
1950 #define stat_inc_seg_type(sbi, curseg)					\
1951 		((sbi)->segment_count[(curseg)->alloc_type]++)
1952 #define stat_inc_block_count(sbi, curseg)				\
1953 		((sbi)->block_count[(curseg)->alloc_type]++)
1954 #define stat_inc_inplace_blocks(sbi)					\
1955 		(atomic_inc(&(sbi)->inplace_count))
1956 #define stat_inc_seg_count(sbi, type, gc_type)				\
1957 	do {								\
1958 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1959 		(si)->tot_segs++;					\
1960 		if (type == SUM_TYPE_DATA) {				\
1961 			si->data_segs++;				\
1962 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
1963 		} else {						\
1964 			si->node_segs++;				\
1965 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
1966 		}							\
1967 	} while (0)
1968 
1969 #define stat_inc_tot_blk_count(si, blks)				\
1970 	(si->tot_blks += (blks))
1971 
1972 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
1973 	do {								\
1974 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1975 		stat_inc_tot_blk_count(si, blks);			\
1976 		si->data_blks += (blks);				\
1977 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1978 	} while (0)
1979 
1980 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
1981 	do {								\
1982 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1983 		stat_inc_tot_blk_count(si, blks);			\
1984 		si->node_blks += (blks);				\
1985 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1986 	} while (0)
1987 
1988 int f2fs_build_stats(struct f2fs_sb_info *);
1989 void f2fs_destroy_stats(struct f2fs_sb_info *);
1990 void __init f2fs_create_root_stats(void);
1991 void f2fs_destroy_root_stats(void);
1992 #else
1993 #define stat_inc_cp_count(si)
1994 #define stat_inc_call_count(si)
1995 #define stat_inc_bggc_count(si)
1996 #define stat_inc_dirty_dir(sbi)
1997 #define stat_dec_dirty_dir(sbi)
1998 #define stat_inc_total_hit(sb)
1999 #define stat_inc_rbtree_node_hit(sb)
2000 #define stat_inc_largest_node_hit(sbi)
2001 #define stat_inc_cached_node_hit(sbi)
2002 #define stat_inc_inline_xattr(inode)
2003 #define stat_dec_inline_xattr(inode)
2004 #define stat_inc_inline_inode(inode)
2005 #define stat_dec_inline_inode(inode)
2006 #define stat_inc_inline_dir(inode)
2007 #define stat_dec_inline_dir(inode)
2008 #define stat_inc_seg_type(sbi, curseg)
2009 #define stat_inc_block_count(sbi, curseg)
2010 #define stat_inc_inplace_blocks(sbi)
2011 #define stat_inc_seg_count(sbi, type, gc_type)
2012 #define stat_inc_tot_blk_count(si, blks)
2013 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2014 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2015 
2016 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2017 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2018 static inline void __init f2fs_create_root_stats(void) { }
2019 static inline void f2fs_destroy_root_stats(void) { }
2020 #endif
2021 
2022 extern const struct file_operations f2fs_dir_operations;
2023 extern const struct file_operations f2fs_file_operations;
2024 extern const struct inode_operations f2fs_file_inode_operations;
2025 extern const struct address_space_operations f2fs_dblock_aops;
2026 extern const struct address_space_operations f2fs_node_aops;
2027 extern const struct address_space_operations f2fs_meta_aops;
2028 extern const struct inode_operations f2fs_dir_inode_operations;
2029 extern const struct inode_operations f2fs_symlink_inode_operations;
2030 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2031 extern const struct inode_operations f2fs_special_inode_operations;
2032 extern struct kmem_cache *inode_entry_slab;
2033 
2034 /*
2035  * inline.c
2036  */
2037 bool f2fs_may_inline_data(struct inode *);
2038 bool f2fs_may_inline_dentry(struct inode *);
2039 void read_inline_data(struct page *, struct page *);
2040 bool truncate_inline_inode(struct page *, u64);
2041 int f2fs_read_inline_data(struct inode *, struct page *);
2042 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2043 int f2fs_convert_inline_inode(struct inode *);
2044 int f2fs_write_inline_data(struct inode *, struct page *);
2045 bool recover_inline_data(struct inode *, struct page *);
2046 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2047 				struct f2fs_filename *, struct page **);
2048 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2049 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2050 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2051 						nid_t, umode_t);
2052 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2053 						struct inode *, struct inode *);
2054 bool f2fs_empty_inline_dir(struct inode *);
2055 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2056 						struct f2fs_str *);
2057 int f2fs_inline_data_fiemap(struct inode *,
2058 		struct fiemap_extent_info *, __u64, __u64);
2059 
2060 /*
2061  * shrinker.c
2062  */
2063 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2064 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2065 void f2fs_join_shrinker(struct f2fs_sb_info *);
2066 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2067 
2068 /*
2069  * extent_cache.c
2070  */
2071 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2072 void f2fs_drop_largest_extent(struct inode *, pgoff_t);
2073 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2074 unsigned int f2fs_destroy_extent_node(struct inode *);
2075 void f2fs_destroy_extent_tree(struct inode *);
2076 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2077 void f2fs_update_extent_cache(struct dnode_of_data *);
2078 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2079 						pgoff_t, block_t, unsigned int);
2080 void init_extent_cache_info(struct f2fs_sb_info *);
2081 int __init create_extent_cache(void);
2082 void destroy_extent_cache(void);
2083 
2084 /*
2085  * crypto support
2086  */
2087 static inline int f2fs_encrypted_inode(struct inode *inode)
2088 {
2089 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2090 	return file_is_encrypt(inode);
2091 #else
2092 	return 0;
2093 #endif
2094 }
2095 
2096 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2097 {
2098 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2099 	file_set_encrypt(inode);
2100 #endif
2101 }
2102 
2103 static inline bool f2fs_bio_encrypted(struct bio *bio)
2104 {
2105 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2106 	return unlikely(bio->bi_private != NULL);
2107 #else
2108 	return false;
2109 #endif
2110 }
2111 
2112 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2113 {
2114 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2115 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2116 #else
2117 	return 0;
2118 #endif
2119 }
2120 
2121 static inline bool f2fs_may_encrypt(struct inode *inode)
2122 {
2123 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2124 	mode_t mode = inode->i_mode;
2125 
2126 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2127 #else
2128 	return 0;
2129 #endif
2130 }
2131 
2132 /* crypto_policy.c */
2133 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2134 							struct inode *);
2135 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2136 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2137 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2138 
2139 /* crypt.c */
2140 extern struct kmem_cache *f2fs_crypt_info_cachep;
2141 bool f2fs_valid_contents_enc_mode(uint32_t);
2142 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2143 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2144 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2145 struct page *f2fs_encrypt(struct inode *, struct page *);
2146 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2147 int f2fs_decrypt_one(struct inode *, struct page *);
2148 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2149 
2150 /* crypto_key.c */
2151 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2152 int _f2fs_get_encryption_info(struct inode *inode);
2153 
2154 /* crypto_fname.c */
2155 bool f2fs_valid_filenames_enc_mode(uint32_t);
2156 u32 f2fs_fname_crypto_round_up(u32, u32);
2157 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2158 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2159 			const struct f2fs_str *, struct f2fs_str *);
2160 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2161 			struct f2fs_str *);
2162 
2163 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2164 void f2fs_restore_and_release_control_page(struct page **);
2165 void f2fs_restore_control_page(struct page *);
2166 
2167 int __init f2fs_init_crypto(void);
2168 int f2fs_crypto_initialize(void);
2169 void f2fs_exit_crypto(void);
2170 
2171 int f2fs_has_encryption_key(struct inode *);
2172 
2173 static inline int f2fs_get_encryption_info(struct inode *inode)
2174 {
2175 	struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2176 
2177 	if (!ci ||
2178 		(ci->ci_keyring_key &&
2179 		 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2180 					       (1 << KEY_FLAG_REVOKED) |
2181 					       (1 << KEY_FLAG_DEAD)))))
2182 		return _f2fs_get_encryption_info(inode);
2183 	return 0;
2184 }
2185 
2186 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2187 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2188 				int lookup, struct f2fs_filename *);
2189 void f2fs_fname_free_filename(struct f2fs_filename *);
2190 #else
2191 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2192 static inline void f2fs_restore_control_page(struct page *p) { }
2193 
2194 static inline int __init f2fs_init_crypto(void) { return 0; }
2195 static inline void f2fs_exit_crypto(void) { }
2196 
2197 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2198 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2199 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2200 
2201 static inline int f2fs_fname_setup_filename(struct inode *dir,
2202 					const struct qstr *iname,
2203 					int lookup, struct f2fs_filename *fname)
2204 {
2205 	memset(fname, 0, sizeof(struct f2fs_filename));
2206 	fname->usr_fname = iname;
2207 	fname->disk_name.name = (unsigned char *)iname->name;
2208 	fname->disk_name.len = iname->len;
2209 	return 0;
2210 }
2211 
2212 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2213 #endif
2214 #endif
2215