1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 25 #ifdef CONFIG_F2FS_CHECK_FS 26 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 27 #define f2fs_down_write(x, y) down_write_nest_lock(x, y) 28 #else 29 #define f2fs_bug_on(sbi, condition) \ 30 do { \ 31 if (unlikely(condition)) { \ 32 WARN_ON(1); \ 33 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 34 } \ 35 } while (0) 36 #define f2fs_down_write(x, y) down_write(x) 37 #endif 38 39 /* 40 * For mount options 41 */ 42 #define F2FS_MOUNT_BG_GC 0x00000001 43 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 44 #define F2FS_MOUNT_DISCARD 0x00000004 45 #define F2FS_MOUNT_NOHEAP 0x00000008 46 #define F2FS_MOUNT_XATTR_USER 0x00000010 47 #define F2FS_MOUNT_POSIX_ACL 0x00000020 48 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 49 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 50 #define F2FS_MOUNT_INLINE_DATA 0x00000100 51 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 52 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 53 #define F2FS_MOUNT_NOBARRIER 0x00000800 54 #define F2FS_MOUNT_FASTBOOT 0x00001000 55 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 56 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 57 58 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 59 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 60 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 61 62 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 63 typecheck(unsigned long long, b) && \ 64 ((long long)((a) - (b)) > 0)) 65 66 typedef u32 block_t; /* 67 * should not change u32, since it is the on-disk block 68 * address format, __le32. 69 */ 70 typedef u32 nid_t; 71 72 struct f2fs_mount_info { 73 unsigned int opt; 74 }; 75 76 #define F2FS_FEATURE_ENCRYPT 0x0001 77 78 #define F2FS_HAS_FEATURE(sb, mask) \ 79 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 80 #define F2FS_SET_FEATURE(sb, mask) \ 81 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 82 #define F2FS_CLEAR_FEATURE(sb, mask) \ 83 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 84 85 #define CRCPOLY_LE 0xedb88320 86 87 static inline __u32 f2fs_crc32(void *buf, size_t len) 88 { 89 unsigned char *p = (unsigned char *)buf; 90 __u32 crc = F2FS_SUPER_MAGIC; 91 int i; 92 93 while (len--) { 94 crc ^= *p++; 95 for (i = 0; i < 8; i++) 96 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 97 } 98 return crc; 99 } 100 101 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 102 { 103 return f2fs_crc32(buf, buf_size) == blk_crc; 104 } 105 106 /* 107 * For checkpoint manager 108 */ 109 enum { 110 NAT_BITMAP, 111 SIT_BITMAP 112 }; 113 114 enum { 115 CP_UMOUNT, 116 CP_FASTBOOT, 117 CP_SYNC, 118 CP_RECOVERY, 119 CP_DISCARD, 120 }; 121 122 #define DEF_BATCHED_TRIM_SECTIONS 32 123 #define BATCHED_TRIM_SEGMENTS(sbi) \ 124 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 125 #define BATCHED_TRIM_BLOCKS(sbi) \ 126 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 127 #define DEF_CP_INTERVAL 60 /* 60 secs */ 128 129 struct cp_control { 130 int reason; 131 __u64 trim_start; 132 __u64 trim_end; 133 __u64 trim_minlen; 134 __u64 trimmed; 135 }; 136 137 /* 138 * For CP/NAT/SIT/SSA readahead 139 */ 140 enum { 141 META_CP, 142 META_NAT, 143 META_SIT, 144 META_SSA, 145 META_POR, 146 }; 147 148 /* for the list of ino */ 149 enum { 150 ORPHAN_INO, /* for orphan ino list */ 151 APPEND_INO, /* for append ino list */ 152 UPDATE_INO, /* for update ino list */ 153 MAX_INO_ENTRY, /* max. list */ 154 }; 155 156 struct ino_entry { 157 struct list_head list; /* list head */ 158 nid_t ino; /* inode number */ 159 }; 160 161 /* 162 * for the list of directory inodes or gc inodes. 163 * NOTE: there are two slab users for this structure, if we add/modify/delete 164 * fields in structure for one of slab users, it may affect fields or size of 165 * other one, in this condition, it's better to split both of slab and related 166 * data structure. 167 */ 168 struct inode_entry { 169 struct list_head list; /* list head */ 170 struct inode *inode; /* vfs inode pointer */ 171 }; 172 173 /* for the list of blockaddresses to be discarded */ 174 struct discard_entry { 175 struct list_head list; /* list head */ 176 block_t blkaddr; /* block address to be discarded */ 177 int len; /* # of consecutive blocks of the discard */ 178 }; 179 180 /* for the list of fsync inodes, used only during recovery */ 181 struct fsync_inode_entry { 182 struct list_head list; /* list head */ 183 struct inode *inode; /* vfs inode pointer */ 184 block_t blkaddr; /* block address locating the last fsync */ 185 block_t last_dentry; /* block address locating the last dentry */ 186 block_t last_inode; /* block address locating the last inode */ 187 }; 188 189 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 190 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 191 192 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 193 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 194 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 195 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 196 197 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum)) 198 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum)) 199 200 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 201 { 202 int before = nats_in_cursum(rs); 203 rs->n_nats = cpu_to_le16(before + i); 204 return before; 205 } 206 207 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 208 { 209 int before = sits_in_cursum(rs); 210 rs->n_sits = cpu_to_le16(before + i); 211 return before; 212 } 213 214 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size, 215 int type) 216 { 217 if (type == NAT_JOURNAL) 218 return size <= MAX_NAT_JENTRIES(sum); 219 return size <= MAX_SIT_JENTRIES(sum); 220 } 221 222 /* 223 * ioctl commands 224 */ 225 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 226 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 227 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 228 229 #define F2FS_IOCTL_MAGIC 0xf5 230 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 231 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 232 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 233 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 234 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 235 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 236 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 237 238 #define F2FS_IOC_SET_ENCRYPTION_POLICY \ 239 _IOR('f', 19, struct f2fs_encryption_policy) 240 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \ 241 _IOW('f', 20, __u8[16]) 242 #define F2FS_IOC_GET_ENCRYPTION_POLICY \ 243 _IOW('f', 21, struct f2fs_encryption_policy) 244 245 /* 246 * should be same as XFS_IOC_GOINGDOWN. 247 * Flags for going down operation used by FS_IOC_GOINGDOWN 248 */ 249 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 250 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 251 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 252 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 253 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 254 255 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 256 /* 257 * ioctl commands in 32 bit emulation 258 */ 259 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 260 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 261 #endif 262 263 /* 264 * For INODE and NODE manager 265 */ 266 /* for directory operations */ 267 struct f2fs_str { 268 unsigned char *name; 269 u32 len; 270 }; 271 272 struct f2fs_filename { 273 const struct qstr *usr_fname; 274 struct f2fs_str disk_name; 275 f2fs_hash_t hash; 276 #ifdef CONFIG_F2FS_FS_ENCRYPTION 277 struct f2fs_str crypto_buf; 278 #endif 279 }; 280 281 #define FSTR_INIT(n, l) { .name = n, .len = l } 282 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 283 #define fname_name(p) ((p)->disk_name.name) 284 #define fname_len(p) ((p)->disk_name.len) 285 286 struct f2fs_dentry_ptr { 287 struct inode *inode; 288 const void *bitmap; 289 struct f2fs_dir_entry *dentry; 290 __u8 (*filename)[F2FS_SLOT_LEN]; 291 int max; 292 }; 293 294 static inline void make_dentry_ptr(struct inode *inode, 295 struct f2fs_dentry_ptr *d, void *src, int type) 296 { 297 d->inode = inode; 298 299 if (type == 1) { 300 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 301 d->max = NR_DENTRY_IN_BLOCK; 302 d->bitmap = &t->dentry_bitmap; 303 d->dentry = t->dentry; 304 d->filename = t->filename; 305 } else { 306 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 307 d->max = NR_INLINE_DENTRY; 308 d->bitmap = &t->dentry_bitmap; 309 d->dentry = t->dentry; 310 d->filename = t->filename; 311 } 312 } 313 314 /* 315 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 316 * as its node offset to distinguish from index node blocks. 317 * But some bits are used to mark the node block. 318 */ 319 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 320 >> OFFSET_BIT_SHIFT) 321 enum { 322 ALLOC_NODE, /* allocate a new node page if needed */ 323 LOOKUP_NODE, /* look up a node without readahead */ 324 LOOKUP_NODE_RA, /* 325 * look up a node with readahead called 326 * by get_data_block. 327 */ 328 }; 329 330 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 331 332 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 333 334 /* vector size for gang look-up from extent cache that consists of radix tree */ 335 #define EXT_TREE_VEC_SIZE 64 336 337 /* for in-memory extent cache entry */ 338 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 339 340 /* number of extent info in extent cache we try to shrink */ 341 #define EXTENT_CACHE_SHRINK_NUMBER 128 342 343 struct extent_info { 344 unsigned int fofs; /* start offset in a file */ 345 u32 blk; /* start block address of the extent */ 346 unsigned int len; /* length of the extent */ 347 }; 348 349 struct extent_node { 350 struct rb_node rb_node; /* rb node located in rb-tree */ 351 struct list_head list; /* node in global extent list of sbi */ 352 struct extent_info ei; /* extent info */ 353 }; 354 355 struct extent_tree { 356 nid_t ino; /* inode number */ 357 struct rb_root root; /* root of extent info rb-tree */ 358 struct extent_node *cached_en; /* recently accessed extent node */ 359 struct extent_info largest; /* largested extent info */ 360 rwlock_t lock; /* protect extent info rb-tree */ 361 atomic_t refcount; /* reference count of rb-tree */ 362 unsigned int count; /* # of extent node in rb-tree*/ 363 }; 364 365 /* 366 * This structure is taken from ext4_map_blocks. 367 * 368 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 369 */ 370 #define F2FS_MAP_NEW (1 << BH_New) 371 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 372 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 373 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 374 F2FS_MAP_UNWRITTEN) 375 376 struct f2fs_map_blocks { 377 block_t m_pblk; 378 block_t m_lblk; 379 unsigned int m_len; 380 unsigned int m_flags; 381 }; 382 383 /* for flag in get_data_block */ 384 #define F2FS_GET_BLOCK_READ 0 385 #define F2FS_GET_BLOCK_DIO 1 386 #define F2FS_GET_BLOCK_FIEMAP 2 387 #define F2FS_GET_BLOCK_BMAP 3 388 389 /* 390 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 391 */ 392 #define FADVISE_COLD_BIT 0x01 393 #define FADVISE_LOST_PINO_BIT 0x02 394 #define FADVISE_ENCRYPT_BIT 0x04 395 #define FADVISE_ENC_NAME_BIT 0x08 396 397 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 398 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 399 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 400 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 401 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 402 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 403 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 404 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 405 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 406 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 407 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 408 409 /* Encryption algorithms */ 410 #define F2FS_ENCRYPTION_MODE_INVALID 0 411 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1 412 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2 413 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3 414 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4 415 416 #include "f2fs_crypto.h" 417 418 #define DEF_DIR_LEVEL 0 419 420 struct f2fs_inode_info { 421 struct inode vfs_inode; /* serve a vfs inode */ 422 unsigned long i_flags; /* keep an inode flags for ioctl */ 423 unsigned char i_advise; /* use to give file attribute hints */ 424 unsigned char i_dir_level; /* use for dentry level for large dir */ 425 unsigned int i_current_depth; /* use only in directory structure */ 426 unsigned int i_pino; /* parent inode number */ 427 umode_t i_acl_mode; /* keep file acl mode temporarily */ 428 429 /* Use below internally in f2fs*/ 430 unsigned long flags; /* use to pass per-file flags */ 431 struct rw_semaphore i_sem; /* protect fi info */ 432 atomic_t dirty_pages; /* # of dirty pages */ 433 f2fs_hash_t chash; /* hash value of given file name */ 434 unsigned int clevel; /* maximum level of given file name */ 435 nid_t i_xattr_nid; /* node id that contains xattrs */ 436 unsigned long long xattr_ver; /* cp version of xattr modification */ 437 struct inode_entry *dirty_dir; /* the pointer of dirty dir */ 438 439 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 440 struct mutex inmem_lock; /* lock for inmemory pages */ 441 442 struct extent_tree *extent_tree; /* cached extent_tree entry */ 443 444 #ifdef CONFIG_F2FS_FS_ENCRYPTION 445 /* Encryption params */ 446 struct f2fs_crypt_info *i_crypt_info; 447 #endif 448 }; 449 450 static inline void get_extent_info(struct extent_info *ext, 451 struct f2fs_extent i_ext) 452 { 453 ext->fofs = le32_to_cpu(i_ext.fofs); 454 ext->blk = le32_to_cpu(i_ext.blk); 455 ext->len = le32_to_cpu(i_ext.len); 456 } 457 458 static inline void set_raw_extent(struct extent_info *ext, 459 struct f2fs_extent *i_ext) 460 { 461 i_ext->fofs = cpu_to_le32(ext->fofs); 462 i_ext->blk = cpu_to_le32(ext->blk); 463 i_ext->len = cpu_to_le32(ext->len); 464 } 465 466 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 467 u32 blk, unsigned int len) 468 { 469 ei->fofs = fofs; 470 ei->blk = blk; 471 ei->len = len; 472 } 473 474 static inline bool __is_extent_same(struct extent_info *ei1, 475 struct extent_info *ei2) 476 { 477 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 478 ei1->len == ei2->len); 479 } 480 481 static inline bool __is_extent_mergeable(struct extent_info *back, 482 struct extent_info *front) 483 { 484 return (back->fofs + back->len == front->fofs && 485 back->blk + back->len == front->blk); 486 } 487 488 static inline bool __is_back_mergeable(struct extent_info *cur, 489 struct extent_info *back) 490 { 491 return __is_extent_mergeable(back, cur); 492 } 493 494 static inline bool __is_front_mergeable(struct extent_info *cur, 495 struct extent_info *front) 496 { 497 return __is_extent_mergeable(cur, front); 498 } 499 500 static inline void __try_update_largest_extent(struct extent_tree *et, 501 struct extent_node *en) 502 { 503 if (en->ei.len > et->largest.len) 504 et->largest = en->ei; 505 } 506 507 struct f2fs_nm_info { 508 block_t nat_blkaddr; /* base disk address of NAT */ 509 nid_t max_nid; /* maximum possible node ids */ 510 nid_t available_nids; /* maximum available node ids */ 511 nid_t next_scan_nid; /* the next nid to be scanned */ 512 unsigned int ram_thresh; /* control the memory footprint */ 513 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 514 515 /* NAT cache management */ 516 struct radix_tree_root nat_root;/* root of the nat entry cache */ 517 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 518 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 519 struct list_head nat_entries; /* cached nat entry list (clean) */ 520 unsigned int nat_cnt; /* the # of cached nat entries */ 521 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 522 523 /* free node ids management */ 524 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 525 struct list_head free_nid_list; /* a list for free nids */ 526 spinlock_t free_nid_list_lock; /* protect free nid list */ 527 unsigned int fcnt; /* the number of free node id */ 528 struct mutex build_lock; /* lock for build free nids */ 529 530 /* for checkpoint */ 531 char *nat_bitmap; /* NAT bitmap pointer */ 532 int bitmap_size; /* bitmap size */ 533 }; 534 535 /* 536 * this structure is used as one of function parameters. 537 * all the information are dedicated to a given direct node block determined 538 * by the data offset in a file. 539 */ 540 struct dnode_of_data { 541 struct inode *inode; /* vfs inode pointer */ 542 struct page *inode_page; /* its inode page, NULL is possible */ 543 struct page *node_page; /* cached direct node page */ 544 nid_t nid; /* node id of the direct node block */ 545 unsigned int ofs_in_node; /* data offset in the node page */ 546 bool inode_page_locked; /* inode page is locked or not */ 547 block_t data_blkaddr; /* block address of the node block */ 548 }; 549 550 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 551 struct page *ipage, struct page *npage, nid_t nid) 552 { 553 memset(dn, 0, sizeof(*dn)); 554 dn->inode = inode; 555 dn->inode_page = ipage; 556 dn->node_page = npage; 557 dn->nid = nid; 558 } 559 560 /* 561 * For SIT manager 562 * 563 * By default, there are 6 active log areas across the whole main area. 564 * When considering hot and cold data separation to reduce cleaning overhead, 565 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 566 * respectively. 567 * In the current design, you should not change the numbers intentionally. 568 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 569 * logs individually according to the underlying devices. (default: 6) 570 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 571 * data and 8 for node logs. 572 */ 573 #define NR_CURSEG_DATA_TYPE (3) 574 #define NR_CURSEG_NODE_TYPE (3) 575 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 576 577 enum { 578 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 579 CURSEG_WARM_DATA, /* data blocks */ 580 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 581 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 582 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 583 CURSEG_COLD_NODE, /* indirect node blocks */ 584 NO_CHECK_TYPE, 585 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 586 }; 587 588 struct flush_cmd { 589 struct completion wait; 590 struct llist_node llnode; 591 int ret; 592 }; 593 594 struct flush_cmd_control { 595 struct task_struct *f2fs_issue_flush; /* flush thread */ 596 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 597 struct llist_head issue_list; /* list for command issue */ 598 struct llist_node *dispatch_list; /* list for command dispatch */ 599 }; 600 601 struct f2fs_sm_info { 602 struct sit_info *sit_info; /* whole segment information */ 603 struct free_segmap_info *free_info; /* free segment information */ 604 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 605 struct curseg_info *curseg_array; /* active segment information */ 606 607 block_t seg0_blkaddr; /* block address of 0'th segment */ 608 block_t main_blkaddr; /* start block address of main area */ 609 block_t ssa_blkaddr; /* start block address of SSA area */ 610 611 unsigned int segment_count; /* total # of segments */ 612 unsigned int main_segments; /* # of segments in main area */ 613 unsigned int reserved_segments; /* # of reserved segments */ 614 unsigned int ovp_segments; /* # of overprovision segments */ 615 616 /* a threshold to reclaim prefree segments */ 617 unsigned int rec_prefree_segments; 618 619 /* for small discard management */ 620 struct list_head discard_list; /* 4KB discard list */ 621 int nr_discards; /* # of discards in the list */ 622 int max_discards; /* max. discards to be issued */ 623 624 /* for batched trimming */ 625 unsigned int trim_sections; /* # of sections to trim */ 626 627 struct list_head sit_entry_set; /* sit entry set list */ 628 629 unsigned int ipu_policy; /* in-place-update policy */ 630 unsigned int min_ipu_util; /* in-place-update threshold */ 631 unsigned int min_fsync_blocks; /* threshold for fsync */ 632 633 /* for flush command control */ 634 struct flush_cmd_control *cmd_control_info; 635 636 }; 637 638 /* 639 * For superblock 640 */ 641 /* 642 * COUNT_TYPE for monitoring 643 * 644 * f2fs monitors the number of several block types such as on-writeback, 645 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 646 */ 647 enum count_type { 648 F2FS_WRITEBACK, 649 F2FS_DIRTY_DENTS, 650 F2FS_DIRTY_NODES, 651 F2FS_DIRTY_META, 652 F2FS_INMEM_PAGES, 653 NR_COUNT_TYPE, 654 }; 655 656 /* 657 * The below are the page types of bios used in submit_bio(). 658 * The available types are: 659 * DATA User data pages. It operates as async mode. 660 * NODE Node pages. It operates as async mode. 661 * META FS metadata pages such as SIT, NAT, CP. 662 * NR_PAGE_TYPE The number of page types. 663 * META_FLUSH Make sure the previous pages are written 664 * with waiting the bio's completion 665 * ... Only can be used with META. 666 */ 667 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 668 enum page_type { 669 DATA, 670 NODE, 671 META, 672 NR_PAGE_TYPE, 673 META_FLUSH, 674 INMEM, /* the below types are used by tracepoints only. */ 675 INMEM_DROP, 676 IPU, 677 OPU, 678 }; 679 680 struct f2fs_io_info { 681 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 682 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 683 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 684 block_t blk_addr; /* block address to be written */ 685 struct page *page; /* page to be written */ 686 struct page *encrypted_page; /* encrypted page */ 687 }; 688 689 #define is_read_io(rw) (((rw) & 1) == READ) 690 struct f2fs_bio_info { 691 struct f2fs_sb_info *sbi; /* f2fs superblock */ 692 struct bio *bio; /* bios to merge */ 693 sector_t last_block_in_bio; /* last block number */ 694 struct f2fs_io_info fio; /* store buffered io info. */ 695 struct rw_semaphore io_rwsem; /* blocking op for bio */ 696 }; 697 698 /* for inner inode cache management */ 699 struct inode_management { 700 struct radix_tree_root ino_root; /* ino entry array */ 701 spinlock_t ino_lock; /* for ino entry lock */ 702 struct list_head ino_list; /* inode list head */ 703 unsigned long ino_num; /* number of entries */ 704 }; 705 706 /* For s_flag in struct f2fs_sb_info */ 707 enum { 708 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 709 SBI_IS_CLOSE, /* specify unmounting */ 710 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 711 SBI_POR_DOING, /* recovery is doing or not */ 712 }; 713 714 struct f2fs_sb_info { 715 struct super_block *sb; /* pointer to VFS super block */ 716 struct proc_dir_entry *s_proc; /* proc entry */ 717 struct buffer_head *raw_super_buf; /* buffer head of raw sb */ 718 struct f2fs_super_block *raw_super; /* raw super block pointer */ 719 int s_flag; /* flags for sbi */ 720 721 /* for node-related operations */ 722 struct f2fs_nm_info *nm_info; /* node manager */ 723 struct inode *node_inode; /* cache node blocks */ 724 725 /* for segment-related operations */ 726 struct f2fs_sm_info *sm_info; /* segment manager */ 727 728 /* for bio operations */ 729 struct f2fs_bio_info read_io; /* for read bios */ 730 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 731 732 /* for checkpoint */ 733 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 734 struct inode *meta_inode; /* cache meta blocks */ 735 struct mutex cp_mutex; /* checkpoint procedure lock */ 736 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 737 struct rw_semaphore node_write; /* locking node writes */ 738 struct mutex writepages; /* mutex for writepages() */ 739 wait_queue_head_t cp_wait; 740 long cp_expires, cp_interval; /* next expected periodic cp */ 741 742 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 743 744 /* for orphan inode, use 0'th array */ 745 unsigned int max_orphans; /* max orphan inodes */ 746 747 /* for directory inode management */ 748 struct list_head dir_inode_list; /* dir inode list */ 749 spinlock_t dir_inode_lock; /* for dir inode list lock */ 750 751 /* for extent tree cache */ 752 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 753 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 754 struct list_head extent_list; /* lru list for shrinker */ 755 spinlock_t extent_lock; /* locking extent lru list */ 756 int total_ext_tree; /* extent tree count */ 757 atomic_t total_ext_node; /* extent info count */ 758 759 /* basic filesystem units */ 760 unsigned int log_sectors_per_block; /* log2 sectors per block */ 761 unsigned int log_blocksize; /* log2 block size */ 762 unsigned int blocksize; /* block size */ 763 unsigned int root_ino_num; /* root inode number*/ 764 unsigned int node_ino_num; /* node inode number*/ 765 unsigned int meta_ino_num; /* meta inode number*/ 766 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 767 unsigned int blocks_per_seg; /* blocks per segment */ 768 unsigned int segs_per_sec; /* segments per section */ 769 unsigned int secs_per_zone; /* sections per zone */ 770 unsigned int total_sections; /* total section count */ 771 unsigned int total_node_count; /* total node block count */ 772 unsigned int total_valid_node_count; /* valid node block count */ 773 unsigned int total_valid_inode_count; /* valid inode count */ 774 int active_logs; /* # of active logs */ 775 int dir_level; /* directory level */ 776 777 block_t user_block_count; /* # of user blocks */ 778 block_t total_valid_block_count; /* # of valid blocks */ 779 block_t alloc_valid_block_count; /* # of allocated blocks */ 780 block_t discard_blks; /* discard command candidats */ 781 block_t last_valid_block_count; /* for recovery */ 782 u32 s_next_generation; /* for NFS support */ 783 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 784 785 struct f2fs_mount_info mount_opt; /* mount options */ 786 787 /* for cleaning operations */ 788 struct mutex gc_mutex; /* mutex for GC */ 789 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 790 unsigned int cur_victim_sec; /* current victim section num */ 791 792 /* maximum # of trials to find a victim segment for SSR and GC */ 793 unsigned int max_victim_search; 794 795 /* 796 * for stat information. 797 * one is for the LFS mode, and the other is for the SSR mode. 798 */ 799 #ifdef CONFIG_F2FS_STAT_FS 800 struct f2fs_stat_info *stat_info; /* FS status information */ 801 unsigned int segment_count[2]; /* # of allocated segments */ 802 unsigned int block_count[2]; /* # of allocated blocks */ 803 atomic_t inplace_count; /* # of inplace update */ 804 atomic64_t total_hit_ext; /* # of lookup extent cache */ 805 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 806 atomic64_t read_hit_largest; /* # of hit largest extent node */ 807 atomic64_t read_hit_cached; /* # of hit cached extent node */ 808 atomic_t inline_xattr; /* # of inline_xattr inodes */ 809 atomic_t inline_inode; /* # of inline_data inodes */ 810 atomic_t inline_dir; /* # of inline_dentry inodes */ 811 int bg_gc; /* background gc calls */ 812 unsigned int n_dirty_dirs; /* # of dir inodes */ 813 #endif 814 unsigned int last_victim[2]; /* last victim segment # */ 815 spinlock_t stat_lock; /* lock for stat operations */ 816 817 /* For sysfs suppport */ 818 struct kobject s_kobj; 819 struct completion s_kobj_unregister; 820 821 /* For shrinker support */ 822 struct list_head s_list; 823 struct mutex umount_mutex; 824 unsigned int shrinker_run_no; 825 }; 826 827 /* 828 * Inline functions 829 */ 830 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 831 { 832 return container_of(inode, struct f2fs_inode_info, vfs_inode); 833 } 834 835 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 836 { 837 return sb->s_fs_info; 838 } 839 840 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 841 { 842 return F2FS_SB(inode->i_sb); 843 } 844 845 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 846 { 847 return F2FS_I_SB(mapping->host); 848 } 849 850 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 851 { 852 return F2FS_M_SB(page->mapping); 853 } 854 855 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 856 { 857 return (struct f2fs_super_block *)(sbi->raw_super); 858 } 859 860 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 861 { 862 return (struct f2fs_checkpoint *)(sbi->ckpt); 863 } 864 865 static inline struct f2fs_node *F2FS_NODE(struct page *page) 866 { 867 return (struct f2fs_node *)page_address(page); 868 } 869 870 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 871 { 872 return &((struct f2fs_node *)page_address(page))->i; 873 } 874 875 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 876 { 877 return (struct f2fs_nm_info *)(sbi->nm_info); 878 } 879 880 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 881 { 882 return (struct f2fs_sm_info *)(sbi->sm_info); 883 } 884 885 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 886 { 887 return (struct sit_info *)(SM_I(sbi)->sit_info); 888 } 889 890 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 891 { 892 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 893 } 894 895 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 896 { 897 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 898 } 899 900 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 901 { 902 return sbi->meta_inode->i_mapping; 903 } 904 905 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 906 { 907 return sbi->node_inode->i_mapping; 908 } 909 910 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 911 { 912 return sbi->s_flag & (0x01 << type); 913 } 914 915 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 916 { 917 sbi->s_flag |= (0x01 << type); 918 } 919 920 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 921 { 922 sbi->s_flag &= ~(0x01 << type); 923 } 924 925 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 926 { 927 return le64_to_cpu(cp->checkpoint_ver); 928 } 929 930 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 931 { 932 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 933 return ckpt_flags & f; 934 } 935 936 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 937 { 938 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 939 ckpt_flags |= f; 940 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 941 } 942 943 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 944 { 945 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 946 ckpt_flags &= (~f); 947 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 948 } 949 950 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 951 { 952 down_read(&sbi->cp_rwsem); 953 } 954 955 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 956 { 957 up_read(&sbi->cp_rwsem); 958 } 959 960 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 961 { 962 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex); 963 } 964 965 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 966 { 967 up_write(&sbi->cp_rwsem); 968 } 969 970 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 971 { 972 int reason = CP_SYNC; 973 974 if (test_opt(sbi, FASTBOOT)) 975 reason = CP_FASTBOOT; 976 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 977 reason = CP_UMOUNT; 978 return reason; 979 } 980 981 static inline bool __remain_node_summaries(int reason) 982 { 983 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 984 } 985 986 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 987 { 988 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 989 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 990 } 991 992 /* 993 * Check whether the given nid is within node id range. 994 */ 995 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 996 { 997 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 998 return -EINVAL; 999 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1000 return -EINVAL; 1001 return 0; 1002 } 1003 1004 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1005 1006 /* 1007 * Check whether the inode has blocks or not 1008 */ 1009 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1010 { 1011 if (F2FS_I(inode)->i_xattr_nid) 1012 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1013 else 1014 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1015 } 1016 1017 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1018 { 1019 return ofs == XATTR_NODE_OFFSET; 1020 } 1021 1022 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1023 struct inode *inode, blkcnt_t count) 1024 { 1025 block_t valid_block_count; 1026 1027 spin_lock(&sbi->stat_lock); 1028 valid_block_count = 1029 sbi->total_valid_block_count + (block_t)count; 1030 if (unlikely(valid_block_count > sbi->user_block_count)) { 1031 spin_unlock(&sbi->stat_lock); 1032 return false; 1033 } 1034 inode->i_blocks += count; 1035 sbi->total_valid_block_count = valid_block_count; 1036 sbi->alloc_valid_block_count += (block_t)count; 1037 spin_unlock(&sbi->stat_lock); 1038 return true; 1039 } 1040 1041 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1042 struct inode *inode, 1043 blkcnt_t count) 1044 { 1045 spin_lock(&sbi->stat_lock); 1046 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1047 f2fs_bug_on(sbi, inode->i_blocks < count); 1048 inode->i_blocks -= count; 1049 sbi->total_valid_block_count -= (block_t)count; 1050 spin_unlock(&sbi->stat_lock); 1051 } 1052 1053 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1054 { 1055 atomic_inc(&sbi->nr_pages[count_type]); 1056 set_sbi_flag(sbi, SBI_IS_DIRTY); 1057 } 1058 1059 static inline void inode_inc_dirty_pages(struct inode *inode) 1060 { 1061 atomic_inc(&F2FS_I(inode)->dirty_pages); 1062 if (S_ISDIR(inode->i_mode)) 1063 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 1064 } 1065 1066 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1067 { 1068 atomic_dec(&sbi->nr_pages[count_type]); 1069 } 1070 1071 static inline void inode_dec_dirty_pages(struct inode *inode) 1072 { 1073 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1074 !S_ISLNK(inode->i_mode)) 1075 return; 1076 1077 atomic_dec(&F2FS_I(inode)->dirty_pages); 1078 1079 if (S_ISDIR(inode->i_mode)) 1080 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 1081 } 1082 1083 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 1084 { 1085 return atomic_read(&sbi->nr_pages[count_type]); 1086 } 1087 1088 static inline int get_dirty_pages(struct inode *inode) 1089 { 1090 return atomic_read(&F2FS_I(inode)->dirty_pages); 1091 } 1092 1093 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1094 { 1095 unsigned int pages_per_sec = sbi->segs_per_sec * 1096 (1 << sbi->log_blocks_per_seg); 1097 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 1098 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 1099 } 1100 1101 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1102 { 1103 return sbi->total_valid_block_count; 1104 } 1105 1106 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1107 { 1108 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1109 1110 /* return NAT or SIT bitmap */ 1111 if (flag == NAT_BITMAP) 1112 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1113 else if (flag == SIT_BITMAP) 1114 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1115 1116 return 0; 1117 } 1118 1119 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1120 { 1121 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1122 } 1123 1124 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1125 { 1126 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1127 int offset; 1128 1129 if (__cp_payload(sbi) > 0) { 1130 if (flag == NAT_BITMAP) 1131 return &ckpt->sit_nat_version_bitmap; 1132 else 1133 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1134 } else { 1135 offset = (flag == NAT_BITMAP) ? 1136 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1137 return &ckpt->sit_nat_version_bitmap + offset; 1138 } 1139 } 1140 1141 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1142 { 1143 block_t start_addr; 1144 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1145 unsigned long long ckpt_version = cur_cp_version(ckpt); 1146 1147 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1148 1149 /* 1150 * odd numbered checkpoint should at cp segment 0 1151 * and even segment must be at cp segment 1 1152 */ 1153 if (!(ckpt_version & 1)) 1154 start_addr += sbi->blocks_per_seg; 1155 1156 return start_addr; 1157 } 1158 1159 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1160 { 1161 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1162 } 1163 1164 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1165 struct inode *inode) 1166 { 1167 block_t valid_block_count; 1168 unsigned int valid_node_count; 1169 1170 spin_lock(&sbi->stat_lock); 1171 1172 valid_block_count = sbi->total_valid_block_count + 1; 1173 if (unlikely(valid_block_count > sbi->user_block_count)) { 1174 spin_unlock(&sbi->stat_lock); 1175 return false; 1176 } 1177 1178 valid_node_count = sbi->total_valid_node_count + 1; 1179 if (unlikely(valid_node_count > sbi->total_node_count)) { 1180 spin_unlock(&sbi->stat_lock); 1181 return false; 1182 } 1183 1184 if (inode) 1185 inode->i_blocks++; 1186 1187 sbi->alloc_valid_block_count++; 1188 sbi->total_valid_node_count++; 1189 sbi->total_valid_block_count++; 1190 spin_unlock(&sbi->stat_lock); 1191 1192 return true; 1193 } 1194 1195 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1196 struct inode *inode) 1197 { 1198 spin_lock(&sbi->stat_lock); 1199 1200 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1201 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1202 f2fs_bug_on(sbi, !inode->i_blocks); 1203 1204 inode->i_blocks--; 1205 sbi->total_valid_node_count--; 1206 sbi->total_valid_block_count--; 1207 1208 spin_unlock(&sbi->stat_lock); 1209 } 1210 1211 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1212 { 1213 return sbi->total_valid_node_count; 1214 } 1215 1216 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1217 { 1218 spin_lock(&sbi->stat_lock); 1219 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count); 1220 sbi->total_valid_inode_count++; 1221 spin_unlock(&sbi->stat_lock); 1222 } 1223 1224 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1225 { 1226 spin_lock(&sbi->stat_lock); 1227 f2fs_bug_on(sbi, !sbi->total_valid_inode_count); 1228 sbi->total_valid_inode_count--; 1229 spin_unlock(&sbi->stat_lock); 1230 } 1231 1232 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 1233 { 1234 return sbi->total_valid_inode_count; 1235 } 1236 1237 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1238 pgoff_t index, bool for_write) 1239 { 1240 if (!for_write) 1241 return grab_cache_page(mapping, index); 1242 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1243 } 1244 1245 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1246 { 1247 char *src_kaddr = kmap(src); 1248 char *dst_kaddr = kmap(dst); 1249 1250 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1251 kunmap(dst); 1252 kunmap(src); 1253 } 1254 1255 static inline void f2fs_put_page(struct page *page, int unlock) 1256 { 1257 if (!page) 1258 return; 1259 1260 if (unlock) { 1261 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1262 unlock_page(page); 1263 } 1264 page_cache_release(page); 1265 } 1266 1267 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1268 { 1269 if (dn->node_page) 1270 f2fs_put_page(dn->node_page, 1); 1271 if (dn->inode_page && dn->node_page != dn->inode_page) 1272 f2fs_put_page(dn->inode_page, 0); 1273 dn->node_page = NULL; 1274 dn->inode_page = NULL; 1275 } 1276 1277 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1278 size_t size) 1279 { 1280 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1281 } 1282 1283 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1284 gfp_t flags) 1285 { 1286 void *entry; 1287 1288 entry = kmem_cache_alloc(cachep, flags); 1289 if (!entry) 1290 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1291 return entry; 1292 } 1293 1294 static inline struct bio *f2fs_bio_alloc(int npages) 1295 { 1296 struct bio *bio; 1297 1298 /* No failure on bio allocation */ 1299 bio = bio_alloc(GFP_NOIO, npages); 1300 if (!bio) 1301 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1302 return bio; 1303 } 1304 1305 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1306 unsigned long index, void *item) 1307 { 1308 while (radix_tree_insert(root, index, item)) 1309 cond_resched(); 1310 } 1311 1312 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1313 1314 static inline bool IS_INODE(struct page *page) 1315 { 1316 struct f2fs_node *p = F2FS_NODE(page); 1317 return RAW_IS_INODE(p); 1318 } 1319 1320 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1321 { 1322 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1323 } 1324 1325 static inline block_t datablock_addr(struct page *node_page, 1326 unsigned int offset) 1327 { 1328 struct f2fs_node *raw_node; 1329 __le32 *addr_array; 1330 raw_node = F2FS_NODE(node_page); 1331 addr_array = blkaddr_in_node(raw_node); 1332 return le32_to_cpu(addr_array[offset]); 1333 } 1334 1335 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1336 { 1337 int mask; 1338 1339 addr += (nr >> 3); 1340 mask = 1 << (7 - (nr & 0x07)); 1341 return mask & *addr; 1342 } 1343 1344 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1345 { 1346 int mask; 1347 1348 addr += (nr >> 3); 1349 mask = 1 << (7 - (nr & 0x07)); 1350 *addr |= mask; 1351 } 1352 1353 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1354 { 1355 int mask; 1356 1357 addr += (nr >> 3); 1358 mask = 1 << (7 - (nr & 0x07)); 1359 *addr &= ~mask; 1360 } 1361 1362 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1363 { 1364 int mask; 1365 int ret; 1366 1367 addr += (nr >> 3); 1368 mask = 1 << (7 - (nr & 0x07)); 1369 ret = mask & *addr; 1370 *addr |= mask; 1371 return ret; 1372 } 1373 1374 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1375 { 1376 int mask; 1377 int ret; 1378 1379 addr += (nr >> 3); 1380 mask = 1 << (7 - (nr & 0x07)); 1381 ret = mask & *addr; 1382 *addr &= ~mask; 1383 return ret; 1384 } 1385 1386 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1387 { 1388 int mask; 1389 1390 addr += (nr >> 3); 1391 mask = 1 << (7 - (nr & 0x07)); 1392 *addr ^= mask; 1393 } 1394 1395 /* used for f2fs_inode_info->flags */ 1396 enum { 1397 FI_NEW_INODE, /* indicate newly allocated inode */ 1398 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1399 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1400 FI_INC_LINK, /* need to increment i_nlink */ 1401 FI_ACL_MODE, /* indicate acl mode */ 1402 FI_NO_ALLOC, /* should not allocate any blocks */ 1403 FI_FREE_NID, /* free allocated nide */ 1404 FI_UPDATE_DIR, /* should update inode block for consistency */ 1405 FI_DELAY_IPUT, /* used for the recovery */ 1406 FI_NO_EXTENT, /* not to use the extent cache */ 1407 FI_INLINE_XATTR, /* used for inline xattr */ 1408 FI_INLINE_DATA, /* used for inline data*/ 1409 FI_INLINE_DENTRY, /* used for inline dentry */ 1410 FI_APPEND_WRITE, /* inode has appended data */ 1411 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1412 FI_NEED_IPU, /* used for ipu per file */ 1413 FI_ATOMIC_FILE, /* indicate atomic file */ 1414 FI_VOLATILE_FILE, /* indicate volatile file */ 1415 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1416 FI_DROP_CACHE, /* drop dirty page cache */ 1417 FI_DATA_EXIST, /* indicate data exists */ 1418 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1419 }; 1420 1421 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 1422 { 1423 if (!test_bit(flag, &fi->flags)) 1424 set_bit(flag, &fi->flags); 1425 } 1426 1427 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 1428 { 1429 return test_bit(flag, &fi->flags); 1430 } 1431 1432 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1433 { 1434 if (test_bit(flag, &fi->flags)) 1435 clear_bit(flag, &fi->flags); 1436 } 1437 1438 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1439 { 1440 fi->i_acl_mode = mode; 1441 set_inode_flag(fi, FI_ACL_MODE); 1442 } 1443 1444 static inline void get_inline_info(struct f2fs_inode_info *fi, 1445 struct f2fs_inode *ri) 1446 { 1447 if (ri->i_inline & F2FS_INLINE_XATTR) 1448 set_inode_flag(fi, FI_INLINE_XATTR); 1449 if (ri->i_inline & F2FS_INLINE_DATA) 1450 set_inode_flag(fi, FI_INLINE_DATA); 1451 if (ri->i_inline & F2FS_INLINE_DENTRY) 1452 set_inode_flag(fi, FI_INLINE_DENTRY); 1453 if (ri->i_inline & F2FS_DATA_EXIST) 1454 set_inode_flag(fi, FI_DATA_EXIST); 1455 if (ri->i_inline & F2FS_INLINE_DOTS) 1456 set_inode_flag(fi, FI_INLINE_DOTS); 1457 } 1458 1459 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1460 struct f2fs_inode *ri) 1461 { 1462 ri->i_inline = 0; 1463 1464 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1465 ri->i_inline |= F2FS_INLINE_XATTR; 1466 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1467 ri->i_inline |= F2FS_INLINE_DATA; 1468 if (is_inode_flag_set(fi, FI_INLINE_DENTRY)) 1469 ri->i_inline |= F2FS_INLINE_DENTRY; 1470 if (is_inode_flag_set(fi, FI_DATA_EXIST)) 1471 ri->i_inline |= F2FS_DATA_EXIST; 1472 if (is_inode_flag_set(fi, FI_INLINE_DOTS)) 1473 ri->i_inline |= F2FS_INLINE_DOTS; 1474 } 1475 1476 static inline int f2fs_has_inline_xattr(struct inode *inode) 1477 { 1478 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1479 } 1480 1481 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi) 1482 { 1483 if (f2fs_has_inline_xattr(&fi->vfs_inode)) 1484 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1485 return DEF_ADDRS_PER_INODE; 1486 } 1487 1488 static inline void *inline_xattr_addr(struct page *page) 1489 { 1490 struct f2fs_inode *ri = F2FS_INODE(page); 1491 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1492 F2FS_INLINE_XATTR_ADDRS]); 1493 } 1494 1495 static inline int inline_xattr_size(struct inode *inode) 1496 { 1497 if (f2fs_has_inline_xattr(inode)) 1498 return F2FS_INLINE_XATTR_ADDRS << 2; 1499 else 1500 return 0; 1501 } 1502 1503 static inline int f2fs_has_inline_data(struct inode *inode) 1504 { 1505 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1506 } 1507 1508 static inline void f2fs_clear_inline_inode(struct inode *inode) 1509 { 1510 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 1511 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1512 } 1513 1514 static inline int f2fs_exist_data(struct inode *inode) 1515 { 1516 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST); 1517 } 1518 1519 static inline int f2fs_has_inline_dots(struct inode *inode) 1520 { 1521 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS); 1522 } 1523 1524 static inline bool f2fs_is_atomic_file(struct inode *inode) 1525 { 1526 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE); 1527 } 1528 1529 static inline bool f2fs_is_volatile_file(struct inode *inode) 1530 { 1531 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE); 1532 } 1533 1534 static inline bool f2fs_is_first_block_written(struct inode *inode) 1535 { 1536 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 1537 } 1538 1539 static inline bool f2fs_is_drop_cache(struct inode *inode) 1540 { 1541 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE); 1542 } 1543 1544 static inline void *inline_data_addr(struct page *page) 1545 { 1546 struct f2fs_inode *ri = F2FS_INODE(page); 1547 return (void *)&(ri->i_addr[1]); 1548 } 1549 1550 static inline int f2fs_has_inline_dentry(struct inode *inode) 1551 { 1552 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY); 1553 } 1554 1555 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1556 { 1557 if (!f2fs_has_inline_dentry(dir)) 1558 kunmap(page); 1559 } 1560 1561 static inline int is_file(struct inode *inode, int type) 1562 { 1563 return F2FS_I(inode)->i_advise & type; 1564 } 1565 1566 static inline void set_file(struct inode *inode, int type) 1567 { 1568 F2FS_I(inode)->i_advise |= type; 1569 } 1570 1571 static inline void clear_file(struct inode *inode, int type) 1572 { 1573 F2FS_I(inode)->i_advise &= ~type; 1574 } 1575 1576 static inline int f2fs_readonly(struct super_block *sb) 1577 { 1578 return sb->s_flags & MS_RDONLY; 1579 } 1580 1581 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1582 { 1583 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1584 } 1585 1586 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi) 1587 { 1588 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1589 sbi->sb->s_flags |= MS_RDONLY; 1590 } 1591 1592 static inline bool is_dot_dotdot(const struct qstr *str) 1593 { 1594 if (str->len == 1 && str->name[0] == '.') 1595 return true; 1596 1597 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1598 return true; 1599 1600 return false; 1601 } 1602 1603 static inline bool f2fs_may_extent_tree(struct inode *inode) 1604 { 1605 mode_t mode = inode->i_mode; 1606 1607 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1608 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) 1609 return false; 1610 1611 return S_ISREG(mode); 1612 } 1613 1614 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 1615 { 1616 void *ret; 1617 1618 ret = kmalloc(size, flags | __GFP_NOWARN); 1619 if (!ret) 1620 ret = __vmalloc(size, flags, PAGE_KERNEL); 1621 return ret; 1622 } 1623 1624 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 1625 { 1626 void *ret; 1627 1628 ret = kzalloc(size, flags | __GFP_NOWARN); 1629 if (!ret) 1630 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 1631 return ret; 1632 } 1633 1634 #define get_inode_mode(i) \ 1635 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1636 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1637 1638 /* get offset of first page in next direct node */ 1639 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \ 1640 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \ 1641 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \ 1642 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi)) 1643 1644 /* 1645 * file.c 1646 */ 1647 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1648 void truncate_data_blocks(struct dnode_of_data *); 1649 int truncate_blocks(struct inode *, u64, bool); 1650 int f2fs_truncate(struct inode *, bool); 1651 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1652 int f2fs_setattr(struct dentry *, struct iattr *); 1653 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1654 int truncate_data_blocks_range(struct dnode_of_data *, int); 1655 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1656 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1657 1658 /* 1659 * inode.c 1660 */ 1661 void f2fs_set_inode_flags(struct inode *); 1662 struct inode *f2fs_iget(struct super_block *, unsigned long); 1663 int try_to_free_nats(struct f2fs_sb_info *, int); 1664 void update_inode(struct inode *, struct page *); 1665 void update_inode_page(struct inode *); 1666 int f2fs_write_inode(struct inode *, struct writeback_control *); 1667 void f2fs_evict_inode(struct inode *); 1668 void handle_failed_inode(struct inode *); 1669 1670 /* 1671 * namei.c 1672 */ 1673 struct dentry *f2fs_get_parent(struct dentry *child); 1674 1675 /* 1676 * dir.c 1677 */ 1678 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX]; 1679 void set_de_type(struct f2fs_dir_entry *, umode_t); 1680 1681 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *, 1682 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1683 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1684 unsigned int, struct f2fs_str *); 1685 void do_make_empty_dir(struct inode *, struct inode *, 1686 struct f2fs_dentry_ptr *); 1687 struct page *init_inode_metadata(struct inode *, struct inode *, 1688 const struct qstr *, struct page *); 1689 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1690 int room_for_filename(const void *, int, int); 1691 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *); 1692 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1693 struct page **); 1694 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1695 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1696 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1697 struct page *, struct inode *); 1698 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1699 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1700 const struct qstr *, f2fs_hash_t , unsigned int); 1701 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1702 umode_t); 1703 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1704 struct inode *); 1705 int f2fs_do_tmpfile(struct inode *, struct inode *); 1706 bool f2fs_empty_dir(struct inode *); 1707 1708 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1709 { 1710 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1711 inode, inode->i_ino, inode->i_mode); 1712 } 1713 1714 /* 1715 * super.c 1716 */ 1717 int f2fs_commit_super(struct f2fs_sb_info *, bool); 1718 int f2fs_sync_fs(struct super_block *, int); 1719 extern __printf(3, 4) 1720 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1721 1722 /* 1723 * hash.c 1724 */ 1725 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1726 1727 /* 1728 * node.c 1729 */ 1730 struct dnode_of_data; 1731 struct node_info; 1732 1733 bool available_free_memory(struct f2fs_sb_info *, int); 1734 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 1735 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1736 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1737 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1738 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1739 int truncate_inode_blocks(struct inode *, pgoff_t); 1740 int truncate_xattr_node(struct inode *, struct page *); 1741 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1742 int remove_inode_page(struct inode *); 1743 struct page *new_inode_page(struct inode *); 1744 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1745 void ra_node_page(struct f2fs_sb_info *, nid_t); 1746 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1747 struct page *get_node_page_ra(struct page *, int); 1748 void sync_inode_page(struct dnode_of_data *); 1749 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1750 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1751 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1752 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1753 int try_to_free_nids(struct f2fs_sb_info *, int); 1754 void recover_inline_xattr(struct inode *, struct page *); 1755 void recover_xattr_data(struct inode *, struct page *, block_t); 1756 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1757 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1758 struct f2fs_summary_block *); 1759 void flush_nat_entries(struct f2fs_sb_info *); 1760 int build_node_manager(struct f2fs_sb_info *); 1761 void destroy_node_manager(struct f2fs_sb_info *); 1762 int __init create_node_manager_caches(void); 1763 void destroy_node_manager_caches(void); 1764 1765 /* 1766 * segment.c 1767 */ 1768 void register_inmem_page(struct inode *, struct page *); 1769 int commit_inmem_pages(struct inode *, bool); 1770 void f2fs_balance_fs(struct f2fs_sb_info *); 1771 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1772 int f2fs_issue_flush(struct f2fs_sb_info *); 1773 int create_flush_cmd_control(struct f2fs_sb_info *); 1774 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1775 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1776 bool is_checkpointed_data(struct f2fs_sb_info *, block_t); 1777 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1778 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 1779 void release_discard_addrs(struct f2fs_sb_info *); 1780 bool discard_next_dnode(struct f2fs_sb_info *, block_t); 1781 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 1782 void allocate_new_segments(struct f2fs_sb_info *); 1783 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 1784 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1785 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 1786 void write_meta_page(struct f2fs_sb_info *, struct page *); 1787 void write_node_page(unsigned int, struct f2fs_io_info *); 1788 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 1789 void rewrite_data_page(struct f2fs_io_info *); 1790 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 1791 block_t, block_t, unsigned char, bool); 1792 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1793 block_t, block_t *, struct f2fs_summary *, int); 1794 void f2fs_wait_on_page_writeback(struct page *, enum page_type); 1795 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t); 1796 void write_data_summaries(struct f2fs_sb_info *, block_t); 1797 void write_node_summaries(struct f2fs_sb_info *, block_t); 1798 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1799 int, unsigned int, int); 1800 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 1801 int build_segment_manager(struct f2fs_sb_info *); 1802 void destroy_segment_manager(struct f2fs_sb_info *); 1803 int __init create_segment_manager_caches(void); 1804 void destroy_segment_manager_caches(void); 1805 1806 /* 1807 * checkpoint.c 1808 */ 1809 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1810 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1811 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t); 1812 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 1813 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool); 1814 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 1815 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1816 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1817 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1818 void release_dirty_inode(struct f2fs_sb_info *); 1819 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 1820 int acquire_orphan_inode(struct f2fs_sb_info *); 1821 void release_orphan_inode(struct f2fs_sb_info *); 1822 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1823 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1824 int recover_orphan_inodes(struct f2fs_sb_info *); 1825 int get_valid_checkpoint(struct f2fs_sb_info *); 1826 void update_dirty_page(struct inode *, struct page *); 1827 void add_dirty_dir_inode(struct inode *); 1828 void remove_dirty_dir_inode(struct inode *); 1829 void sync_dirty_dir_inodes(struct f2fs_sb_info *); 1830 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 1831 void init_ino_entry_info(struct f2fs_sb_info *); 1832 int __init create_checkpoint_caches(void); 1833 void destroy_checkpoint_caches(void); 1834 1835 /* 1836 * data.c 1837 */ 1838 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1839 int f2fs_submit_page_bio(struct f2fs_io_info *); 1840 void f2fs_submit_page_mbio(struct f2fs_io_info *); 1841 void set_data_blkaddr(struct dnode_of_data *); 1842 int reserve_new_block(struct dnode_of_data *); 1843 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 1844 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1845 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool); 1846 struct page *find_data_page(struct inode *, pgoff_t); 1847 struct page *get_lock_data_page(struct inode *, pgoff_t, bool); 1848 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1849 int do_write_data_page(struct f2fs_io_info *); 1850 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1851 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 1852 int f2fs_release_page(struct page *, gfp_t); 1853 1854 /* 1855 * gc.c 1856 */ 1857 int start_gc_thread(struct f2fs_sb_info *); 1858 void stop_gc_thread(struct f2fs_sb_info *); 1859 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *); 1860 int f2fs_gc(struct f2fs_sb_info *, bool); 1861 void build_gc_manager(struct f2fs_sb_info *); 1862 1863 /* 1864 * recovery.c 1865 */ 1866 int recover_fsync_data(struct f2fs_sb_info *); 1867 bool space_for_roll_forward(struct f2fs_sb_info *); 1868 1869 /* 1870 * debug.c 1871 */ 1872 #ifdef CONFIG_F2FS_STAT_FS 1873 struct f2fs_stat_info { 1874 struct list_head stat_list; 1875 struct f2fs_sb_info *sbi; 1876 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1877 int main_area_segs, main_area_sections, main_area_zones; 1878 unsigned long long hit_largest, hit_cached, hit_rbtree; 1879 unsigned long long hit_total, total_ext; 1880 int ext_tree, ext_node; 1881 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; 1882 int nats, dirty_nats, sits, dirty_sits, fnids; 1883 int total_count, utilization; 1884 int bg_gc, inmem_pages, wb_pages; 1885 int inline_xattr, inline_inode, inline_dir; 1886 unsigned int valid_count, valid_node_count, valid_inode_count; 1887 unsigned int bimodal, avg_vblocks; 1888 int util_free, util_valid, util_invalid; 1889 int rsvd_segs, overp_segs; 1890 int dirty_count, node_pages, meta_pages; 1891 int prefree_count, call_count, cp_count; 1892 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1893 int bg_node_segs, bg_data_segs; 1894 int tot_blks, data_blks, node_blks; 1895 int bg_data_blks, bg_node_blks; 1896 int curseg[NR_CURSEG_TYPE]; 1897 int cursec[NR_CURSEG_TYPE]; 1898 int curzone[NR_CURSEG_TYPE]; 1899 1900 unsigned int segment_count[2]; 1901 unsigned int block_count[2]; 1902 unsigned int inplace_count; 1903 unsigned long long base_mem, cache_mem, page_mem; 1904 }; 1905 1906 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1907 { 1908 return (struct f2fs_stat_info *)sbi->stat_info; 1909 } 1910 1911 #define stat_inc_cp_count(si) ((si)->cp_count++) 1912 #define stat_inc_call_count(si) ((si)->call_count++) 1913 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1914 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++) 1915 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--) 1916 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 1917 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 1918 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 1919 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 1920 #define stat_inc_inline_xattr(inode) \ 1921 do { \ 1922 if (f2fs_has_inline_xattr(inode)) \ 1923 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 1924 } while (0) 1925 #define stat_dec_inline_xattr(inode) \ 1926 do { \ 1927 if (f2fs_has_inline_xattr(inode)) \ 1928 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 1929 } while (0) 1930 #define stat_inc_inline_inode(inode) \ 1931 do { \ 1932 if (f2fs_has_inline_data(inode)) \ 1933 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 1934 } while (0) 1935 #define stat_dec_inline_inode(inode) \ 1936 do { \ 1937 if (f2fs_has_inline_data(inode)) \ 1938 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 1939 } while (0) 1940 #define stat_inc_inline_dir(inode) \ 1941 do { \ 1942 if (f2fs_has_inline_dentry(inode)) \ 1943 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 1944 } while (0) 1945 #define stat_dec_inline_dir(inode) \ 1946 do { \ 1947 if (f2fs_has_inline_dentry(inode)) \ 1948 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 1949 } while (0) 1950 #define stat_inc_seg_type(sbi, curseg) \ 1951 ((sbi)->segment_count[(curseg)->alloc_type]++) 1952 #define stat_inc_block_count(sbi, curseg) \ 1953 ((sbi)->block_count[(curseg)->alloc_type]++) 1954 #define stat_inc_inplace_blocks(sbi) \ 1955 (atomic_inc(&(sbi)->inplace_count)) 1956 #define stat_inc_seg_count(sbi, type, gc_type) \ 1957 do { \ 1958 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1959 (si)->tot_segs++; \ 1960 if (type == SUM_TYPE_DATA) { \ 1961 si->data_segs++; \ 1962 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 1963 } else { \ 1964 si->node_segs++; \ 1965 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 1966 } \ 1967 } while (0) 1968 1969 #define stat_inc_tot_blk_count(si, blks) \ 1970 (si->tot_blks += (blks)) 1971 1972 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 1973 do { \ 1974 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1975 stat_inc_tot_blk_count(si, blks); \ 1976 si->data_blks += (blks); \ 1977 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 1978 } while (0) 1979 1980 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 1981 do { \ 1982 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1983 stat_inc_tot_blk_count(si, blks); \ 1984 si->node_blks += (blks); \ 1985 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 1986 } while (0) 1987 1988 int f2fs_build_stats(struct f2fs_sb_info *); 1989 void f2fs_destroy_stats(struct f2fs_sb_info *); 1990 void __init f2fs_create_root_stats(void); 1991 void f2fs_destroy_root_stats(void); 1992 #else 1993 #define stat_inc_cp_count(si) 1994 #define stat_inc_call_count(si) 1995 #define stat_inc_bggc_count(si) 1996 #define stat_inc_dirty_dir(sbi) 1997 #define stat_dec_dirty_dir(sbi) 1998 #define stat_inc_total_hit(sb) 1999 #define stat_inc_rbtree_node_hit(sb) 2000 #define stat_inc_largest_node_hit(sbi) 2001 #define stat_inc_cached_node_hit(sbi) 2002 #define stat_inc_inline_xattr(inode) 2003 #define stat_dec_inline_xattr(inode) 2004 #define stat_inc_inline_inode(inode) 2005 #define stat_dec_inline_inode(inode) 2006 #define stat_inc_inline_dir(inode) 2007 #define stat_dec_inline_dir(inode) 2008 #define stat_inc_seg_type(sbi, curseg) 2009 #define stat_inc_block_count(sbi, curseg) 2010 #define stat_inc_inplace_blocks(sbi) 2011 #define stat_inc_seg_count(sbi, type, gc_type) 2012 #define stat_inc_tot_blk_count(si, blks) 2013 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2014 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2015 2016 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2017 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2018 static inline void __init f2fs_create_root_stats(void) { } 2019 static inline void f2fs_destroy_root_stats(void) { } 2020 #endif 2021 2022 extern const struct file_operations f2fs_dir_operations; 2023 extern const struct file_operations f2fs_file_operations; 2024 extern const struct inode_operations f2fs_file_inode_operations; 2025 extern const struct address_space_operations f2fs_dblock_aops; 2026 extern const struct address_space_operations f2fs_node_aops; 2027 extern const struct address_space_operations f2fs_meta_aops; 2028 extern const struct inode_operations f2fs_dir_inode_operations; 2029 extern const struct inode_operations f2fs_symlink_inode_operations; 2030 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2031 extern const struct inode_operations f2fs_special_inode_operations; 2032 extern struct kmem_cache *inode_entry_slab; 2033 2034 /* 2035 * inline.c 2036 */ 2037 bool f2fs_may_inline_data(struct inode *); 2038 bool f2fs_may_inline_dentry(struct inode *); 2039 void read_inline_data(struct page *, struct page *); 2040 bool truncate_inline_inode(struct page *, u64); 2041 int f2fs_read_inline_data(struct inode *, struct page *); 2042 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 2043 int f2fs_convert_inline_inode(struct inode *); 2044 int f2fs_write_inline_data(struct inode *, struct page *); 2045 bool recover_inline_data(struct inode *, struct page *); 2046 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 2047 struct f2fs_filename *, struct page **); 2048 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **); 2049 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 2050 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *, 2051 nid_t, umode_t); 2052 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 2053 struct inode *, struct inode *); 2054 bool f2fs_empty_inline_dir(struct inode *); 2055 int f2fs_read_inline_dir(struct file *, struct dir_context *, 2056 struct f2fs_str *); 2057 int f2fs_inline_data_fiemap(struct inode *, 2058 struct fiemap_extent_info *, __u64, __u64); 2059 2060 /* 2061 * shrinker.c 2062 */ 2063 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2064 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2065 void f2fs_join_shrinker(struct f2fs_sb_info *); 2066 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2067 2068 /* 2069 * extent_cache.c 2070 */ 2071 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2072 void f2fs_drop_largest_extent(struct inode *, pgoff_t); 2073 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2074 unsigned int f2fs_destroy_extent_node(struct inode *); 2075 void f2fs_destroy_extent_tree(struct inode *); 2076 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2077 void f2fs_update_extent_cache(struct dnode_of_data *); 2078 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2079 pgoff_t, block_t, unsigned int); 2080 void init_extent_cache_info(struct f2fs_sb_info *); 2081 int __init create_extent_cache(void); 2082 void destroy_extent_cache(void); 2083 2084 /* 2085 * crypto support 2086 */ 2087 static inline int f2fs_encrypted_inode(struct inode *inode) 2088 { 2089 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2090 return file_is_encrypt(inode); 2091 #else 2092 return 0; 2093 #endif 2094 } 2095 2096 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2097 { 2098 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2099 file_set_encrypt(inode); 2100 #endif 2101 } 2102 2103 static inline bool f2fs_bio_encrypted(struct bio *bio) 2104 { 2105 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2106 return unlikely(bio->bi_private != NULL); 2107 #else 2108 return false; 2109 #endif 2110 } 2111 2112 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2113 { 2114 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2115 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2116 #else 2117 return 0; 2118 #endif 2119 } 2120 2121 static inline bool f2fs_may_encrypt(struct inode *inode) 2122 { 2123 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2124 mode_t mode = inode->i_mode; 2125 2126 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2127 #else 2128 return 0; 2129 #endif 2130 } 2131 2132 /* crypto_policy.c */ 2133 int f2fs_is_child_context_consistent_with_parent(struct inode *, 2134 struct inode *); 2135 int f2fs_inherit_context(struct inode *, struct inode *, struct page *); 2136 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *); 2137 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *); 2138 2139 /* crypt.c */ 2140 extern struct kmem_cache *f2fs_crypt_info_cachep; 2141 bool f2fs_valid_contents_enc_mode(uint32_t); 2142 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t); 2143 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *); 2144 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *); 2145 struct page *f2fs_encrypt(struct inode *, struct page *); 2146 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *); 2147 int f2fs_decrypt_one(struct inode *, struct page *); 2148 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *); 2149 2150 /* crypto_key.c */ 2151 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *); 2152 int _f2fs_get_encryption_info(struct inode *inode); 2153 2154 /* crypto_fname.c */ 2155 bool f2fs_valid_filenames_enc_mode(uint32_t); 2156 u32 f2fs_fname_crypto_round_up(u32, u32); 2157 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *); 2158 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *, 2159 const struct f2fs_str *, struct f2fs_str *); 2160 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *, 2161 struct f2fs_str *); 2162 2163 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2164 void f2fs_restore_and_release_control_page(struct page **); 2165 void f2fs_restore_control_page(struct page *); 2166 2167 int __init f2fs_init_crypto(void); 2168 int f2fs_crypto_initialize(void); 2169 void f2fs_exit_crypto(void); 2170 2171 int f2fs_has_encryption_key(struct inode *); 2172 2173 static inline int f2fs_get_encryption_info(struct inode *inode) 2174 { 2175 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info; 2176 2177 if (!ci || 2178 (ci->ci_keyring_key && 2179 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | 2180 (1 << KEY_FLAG_REVOKED) | 2181 (1 << KEY_FLAG_DEAD))))) 2182 return _f2fs_get_encryption_info(inode); 2183 return 0; 2184 } 2185 2186 void f2fs_fname_crypto_free_buffer(struct f2fs_str *); 2187 int f2fs_fname_setup_filename(struct inode *, const struct qstr *, 2188 int lookup, struct f2fs_filename *); 2189 void f2fs_fname_free_filename(struct f2fs_filename *); 2190 #else 2191 static inline void f2fs_restore_and_release_control_page(struct page **p) { } 2192 static inline void f2fs_restore_control_page(struct page *p) { } 2193 2194 static inline int __init f2fs_init_crypto(void) { return 0; } 2195 static inline void f2fs_exit_crypto(void) { } 2196 2197 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; } 2198 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; } 2199 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { } 2200 2201 static inline int f2fs_fname_setup_filename(struct inode *dir, 2202 const struct qstr *iname, 2203 int lookup, struct f2fs_filename *fname) 2204 { 2205 memset(fname, 0, sizeof(struct f2fs_filename)); 2206 fname->usr_fname = iname; 2207 fname->disk_name.name = (unsigned char *)iname->name; 2208 fname->disk_name.len = iname->len; 2209 return 0; 2210 } 2211 2212 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { } 2213 #endif 2214 #endif 2215