xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 929e2a61)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_MAX,
60 };
61 
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64 
65 struct f2fs_fault_info {
66 	atomic_t inject_ops;
67 	unsigned int inject_rate;
68 	unsigned int inject_type;
69 };
70 
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74 
75 /*
76  * For mount options
77  */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93 #define F2FS_MOUNT_USRQUOTA		0x00080000
94 #define F2FS_MOUNT_GRPQUOTA		0x00100000
95 #define F2FS_MOUNT_PRJQUOTA		0x00200000
96 #define F2FS_MOUNT_QUOTA		0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
100 #define F2FS_MOUNT_NORECOVERY		0x04000000
101 
102 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
103 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
104 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
105 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
106 
107 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
108 		typecheck(unsigned long long, b) &&			\
109 		((long long)((a) - (b)) > 0))
110 
111 typedef u32 block_t;	/*
112 			 * should not change u32, since it is the on-disk block
113 			 * address format, __le32.
114 			 */
115 typedef u32 nid_t;
116 
117 #define COMPRESS_EXT_NUM		16
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
140 	int bggc_mode;			/* bggc mode: off, on or sync */
141 	struct fscrypt_dummy_context dummy_enc_ctx; /* test dummy encryption */
142 	block_t unusable_cap_perc;	/* percentage for cap */
143 	block_t unusable_cap;		/* Amount of space allowed to be
144 					 * unusable when disabling checkpoint
145 					 */
146 
147 	/* For compression */
148 	unsigned char compress_algorithm;	/* algorithm type */
149 	unsigned compress_log_size;		/* cluster log size */
150 	unsigned char compress_ext_cnt;		/* extension count */
151 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
152 };
153 
154 #define F2FS_FEATURE_ENCRYPT		0x0001
155 #define F2FS_FEATURE_BLKZONED		0x0002
156 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
157 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
158 #define F2FS_FEATURE_PRJQUOTA		0x0010
159 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
160 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
161 #define F2FS_FEATURE_QUOTA_INO		0x0080
162 #define F2FS_FEATURE_INODE_CRTIME	0x0100
163 #define F2FS_FEATURE_LOST_FOUND		0x0200
164 #define F2FS_FEATURE_VERITY		0x0400
165 #define F2FS_FEATURE_SB_CHKSUM		0x0800
166 #define F2FS_FEATURE_CASEFOLD		0x1000
167 #define F2FS_FEATURE_COMPRESSION	0x2000
168 
169 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
170 	((raw_super->feature & cpu_to_le32(mask)) != 0)
171 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
172 #define F2FS_SET_FEATURE(sbi, mask)					\
173 	(sbi->raw_super->feature |= cpu_to_le32(mask))
174 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
175 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
176 
177 /*
178  * Default values for user and/or group using reserved blocks
179  */
180 #define	F2FS_DEF_RESUID		0
181 #define	F2FS_DEF_RESGID		0
182 
183 /*
184  * For checkpoint manager
185  */
186 enum {
187 	NAT_BITMAP,
188 	SIT_BITMAP
189 };
190 
191 #define	CP_UMOUNT	0x00000001
192 #define	CP_FASTBOOT	0x00000002
193 #define	CP_SYNC		0x00000004
194 #define	CP_RECOVERY	0x00000008
195 #define	CP_DISCARD	0x00000010
196 #define CP_TRIMMED	0x00000020
197 #define CP_PAUSE	0x00000040
198 #define CP_RESIZE 	0x00000080
199 
200 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
201 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
202 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
203 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
204 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
205 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
206 #define DEF_CP_INTERVAL			60	/* 60 secs */
207 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
208 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
209 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
210 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
211 
212 struct cp_control {
213 	int reason;
214 	__u64 trim_start;
215 	__u64 trim_end;
216 	__u64 trim_minlen;
217 };
218 
219 /*
220  * indicate meta/data type
221  */
222 enum {
223 	META_CP,
224 	META_NAT,
225 	META_SIT,
226 	META_SSA,
227 	META_MAX,
228 	META_POR,
229 	DATA_GENERIC,		/* check range only */
230 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
231 	DATA_GENERIC_ENHANCE_READ,	/*
232 					 * strong check on range and segment
233 					 * bitmap but no warning due to race
234 					 * condition of read on truncated area
235 					 * by extent_cache
236 					 */
237 	META_GENERIC,
238 };
239 
240 /* for the list of ino */
241 enum {
242 	ORPHAN_INO,		/* for orphan ino list */
243 	APPEND_INO,		/* for append ino list */
244 	UPDATE_INO,		/* for update ino list */
245 	TRANS_DIR_INO,		/* for trasactions dir ino list */
246 	FLUSH_INO,		/* for multiple device flushing */
247 	MAX_INO_ENTRY,		/* max. list */
248 };
249 
250 struct ino_entry {
251 	struct list_head list;		/* list head */
252 	nid_t ino;			/* inode number */
253 	unsigned int dirty_device;	/* dirty device bitmap */
254 };
255 
256 /* for the list of inodes to be GCed */
257 struct inode_entry {
258 	struct list_head list;	/* list head */
259 	struct inode *inode;	/* vfs inode pointer */
260 };
261 
262 struct fsync_node_entry {
263 	struct list_head list;	/* list head */
264 	struct page *page;	/* warm node page pointer */
265 	unsigned int seq_id;	/* sequence id */
266 };
267 
268 /* for the bitmap indicate blocks to be discarded */
269 struct discard_entry {
270 	struct list_head list;	/* list head */
271 	block_t start_blkaddr;	/* start blockaddr of current segment */
272 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
273 };
274 
275 /* default discard granularity of inner discard thread, unit: block count */
276 #define DEFAULT_DISCARD_GRANULARITY		16
277 
278 /* max discard pend list number */
279 #define MAX_PLIST_NUM		512
280 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
281 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
282 
283 enum {
284 	D_PREP,			/* initial */
285 	D_PARTIAL,		/* partially submitted */
286 	D_SUBMIT,		/* all submitted */
287 	D_DONE,			/* finished */
288 };
289 
290 struct discard_info {
291 	block_t lstart;			/* logical start address */
292 	block_t len;			/* length */
293 	block_t start;			/* actual start address in dev */
294 };
295 
296 struct discard_cmd {
297 	struct rb_node rb_node;		/* rb node located in rb-tree */
298 	union {
299 		struct {
300 			block_t lstart;	/* logical start address */
301 			block_t len;	/* length */
302 			block_t start;	/* actual start address in dev */
303 		};
304 		struct discard_info di;	/* discard info */
305 
306 	};
307 	struct list_head list;		/* command list */
308 	struct completion wait;		/* compleation */
309 	struct block_device *bdev;	/* bdev */
310 	unsigned short ref;		/* reference count */
311 	unsigned char state;		/* state */
312 	unsigned char queued;		/* queued discard */
313 	int error;			/* bio error */
314 	spinlock_t lock;		/* for state/bio_ref updating */
315 	unsigned short bio_ref;		/* bio reference count */
316 };
317 
318 enum {
319 	DPOLICY_BG,
320 	DPOLICY_FORCE,
321 	DPOLICY_FSTRIM,
322 	DPOLICY_UMOUNT,
323 	MAX_DPOLICY,
324 };
325 
326 struct discard_policy {
327 	int type;			/* type of discard */
328 	unsigned int min_interval;	/* used for candidates exist */
329 	unsigned int mid_interval;	/* used for device busy */
330 	unsigned int max_interval;	/* used for candidates not exist */
331 	unsigned int max_requests;	/* # of discards issued per round */
332 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
333 	bool io_aware;			/* issue discard in idle time */
334 	bool sync;			/* submit discard with REQ_SYNC flag */
335 	bool ordered;			/* issue discard by lba order */
336 	bool timeout;			/* discard timeout for put_super */
337 	unsigned int granularity;	/* discard granularity */
338 };
339 
340 struct discard_cmd_control {
341 	struct task_struct *f2fs_issue_discard;	/* discard thread */
342 	struct list_head entry_list;		/* 4KB discard entry list */
343 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
344 	struct list_head wait_list;		/* store on-flushing entries */
345 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
346 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
347 	unsigned int discard_wake;		/* to wake up discard thread */
348 	struct mutex cmd_lock;
349 	unsigned int nr_discards;		/* # of discards in the list */
350 	unsigned int max_discards;		/* max. discards to be issued */
351 	unsigned int discard_granularity;	/* discard granularity */
352 	unsigned int undiscard_blks;		/* # of undiscard blocks */
353 	unsigned int next_pos;			/* next discard position */
354 	atomic_t issued_discard;		/* # of issued discard */
355 	atomic_t queued_discard;		/* # of queued discard */
356 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
357 	struct rb_root_cached root;		/* root of discard rb-tree */
358 	bool rbtree_check;			/* config for consistence check */
359 };
360 
361 /* for the list of fsync inodes, used only during recovery */
362 struct fsync_inode_entry {
363 	struct list_head list;	/* list head */
364 	struct inode *inode;	/* vfs inode pointer */
365 	block_t blkaddr;	/* block address locating the last fsync */
366 	block_t last_dentry;	/* block address locating the last dentry */
367 };
368 
369 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
370 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
371 
372 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
373 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
374 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
375 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
376 
377 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
378 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
379 
380 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
381 {
382 	int before = nats_in_cursum(journal);
383 
384 	journal->n_nats = cpu_to_le16(before + i);
385 	return before;
386 }
387 
388 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
389 {
390 	int before = sits_in_cursum(journal);
391 
392 	journal->n_sits = cpu_to_le16(before + i);
393 	return before;
394 }
395 
396 static inline bool __has_cursum_space(struct f2fs_journal *journal,
397 							int size, int type)
398 {
399 	if (type == NAT_JOURNAL)
400 		return size <= MAX_NAT_JENTRIES(journal);
401 	return size <= MAX_SIT_JENTRIES(journal);
402 }
403 
404 /*
405  * f2fs-specific ioctl commands
406  */
407 #define F2FS_IOCTL_MAGIC		0xf5
408 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
409 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
410 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
411 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
412 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
413 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
414 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
415 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
416 						struct f2fs_defragment)
417 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
418 						struct f2fs_move_range)
419 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
420 						struct f2fs_flush_device)
421 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
422 						struct f2fs_gc_range)
423 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
424 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
425 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
426 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
427 #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
428 #define F2FS_IOC_GET_COMPRESS_BLOCKS	_IOR(F2FS_IOCTL_MAGIC, 17, __u64)
429 #define F2FS_IOC_RELEASE_COMPRESS_BLOCKS				\
430 					_IOR(F2FS_IOCTL_MAGIC, 18, __u64)
431 #define F2FS_IOC_RESERVE_COMPRESS_BLOCKS				\
432 					_IOR(F2FS_IOCTL_MAGIC, 19, __u64)
433 #define F2FS_IOC_SEC_TRIM_FILE		_IOW(F2FS_IOCTL_MAGIC, 20,	\
434 						struct f2fs_sectrim_range)
435 
436 /*
437  * should be same as XFS_IOC_GOINGDOWN.
438  * Flags for going down operation used by FS_IOC_GOINGDOWN
439  */
440 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
441 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
442 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
443 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
444 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
445 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
446 
447 /*
448  * Flags used by F2FS_IOC_SEC_TRIM_FILE
449  */
450 #define F2FS_TRIM_FILE_DISCARD		0x1	/* send discard command */
451 #define F2FS_TRIM_FILE_ZEROOUT		0x2	/* zero out */
452 #define F2FS_TRIM_FILE_MASK		0x3
453 
454 struct f2fs_gc_range {
455 	u32 sync;
456 	u64 start;
457 	u64 len;
458 };
459 
460 struct f2fs_defragment {
461 	u64 start;
462 	u64 len;
463 };
464 
465 struct f2fs_move_range {
466 	u32 dst_fd;		/* destination fd */
467 	u64 pos_in;		/* start position in src_fd */
468 	u64 pos_out;		/* start position in dst_fd */
469 	u64 len;		/* size to move */
470 };
471 
472 struct f2fs_flush_device {
473 	u32 dev_num;		/* device number to flush */
474 	u32 segments;		/* # of segments to flush */
475 };
476 
477 struct f2fs_sectrim_range {
478 	u64 start;
479 	u64 len;
480 	u64 flags;
481 };
482 
483 /* for inline stuff */
484 #define DEF_INLINE_RESERVED_SIZE	1
485 static inline int get_extra_isize(struct inode *inode);
486 static inline int get_inline_xattr_addrs(struct inode *inode);
487 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
488 				(CUR_ADDRS_PER_INODE(inode) -		\
489 				get_inline_xattr_addrs(inode) -	\
490 				DEF_INLINE_RESERVED_SIZE))
491 
492 /* for inline dir */
493 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
494 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
495 				BITS_PER_BYTE + 1))
496 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
497 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
498 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
499 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
500 				NR_INLINE_DENTRY(inode) + \
501 				INLINE_DENTRY_BITMAP_SIZE(inode)))
502 
503 /*
504  * For INODE and NODE manager
505  */
506 /* for directory operations */
507 
508 struct f2fs_filename {
509 	/*
510 	 * The filename the user specified.  This is NULL for some
511 	 * filesystem-internal operations, e.g. converting an inline directory
512 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
513 	 */
514 	const struct qstr *usr_fname;
515 
516 	/*
517 	 * The on-disk filename.  For encrypted directories, this is encrypted.
518 	 * This may be NULL for lookups in an encrypted dir without the key.
519 	 */
520 	struct fscrypt_str disk_name;
521 
522 	/* The dirhash of this filename */
523 	f2fs_hash_t hash;
524 
525 #ifdef CONFIG_FS_ENCRYPTION
526 	/*
527 	 * For lookups in encrypted directories: either the buffer backing
528 	 * disk_name, or a buffer that holds the decoded no-key name.
529 	 */
530 	struct fscrypt_str crypto_buf;
531 #endif
532 #ifdef CONFIG_UNICODE
533 	/*
534 	 * For casefolded directories: the casefolded name, but it's left NULL
535 	 * if the original name is not valid Unicode or if the filesystem is
536 	 * doing an internal operation where usr_fname is also NULL.  In these
537 	 * cases we fall back to treating the name as an opaque byte sequence.
538 	 */
539 	struct fscrypt_str cf_name;
540 #endif
541 };
542 
543 struct f2fs_dentry_ptr {
544 	struct inode *inode;
545 	void *bitmap;
546 	struct f2fs_dir_entry *dentry;
547 	__u8 (*filename)[F2FS_SLOT_LEN];
548 	int max;
549 	int nr_bitmap;
550 };
551 
552 static inline void make_dentry_ptr_block(struct inode *inode,
553 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
554 {
555 	d->inode = inode;
556 	d->max = NR_DENTRY_IN_BLOCK;
557 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
558 	d->bitmap = t->dentry_bitmap;
559 	d->dentry = t->dentry;
560 	d->filename = t->filename;
561 }
562 
563 static inline void make_dentry_ptr_inline(struct inode *inode,
564 					struct f2fs_dentry_ptr *d, void *t)
565 {
566 	int entry_cnt = NR_INLINE_DENTRY(inode);
567 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
568 	int reserved_size = INLINE_RESERVED_SIZE(inode);
569 
570 	d->inode = inode;
571 	d->max = entry_cnt;
572 	d->nr_bitmap = bitmap_size;
573 	d->bitmap = t;
574 	d->dentry = t + bitmap_size + reserved_size;
575 	d->filename = t + bitmap_size + reserved_size +
576 					SIZE_OF_DIR_ENTRY * entry_cnt;
577 }
578 
579 /*
580  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
581  * as its node offset to distinguish from index node blocks.
582  * But some bits are used to mark the node block.
583  */
584 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
585 				>> OFFSET_BIT_SHIFT)
586 enum {
587 	ALLOC_NODE,			/* allocate a new node page if needed */
588 	LOOKUP_NODE,			/* look up a node without readahead */
589 	LOOKUP_NODE_RA,			/*
590 					 * look up a node with readahead called
591 					 * by get_data_block.
592 					 */
593 };
594 
595 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
596 
597 /* congestion wait timeout value, default: 20ms */
598 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
599 
600 /* maximum retry quota flush count */
601 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
602 
603 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
604 
605 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
606 
607 /* for in-memory extent cache entry */
608 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
609 
610 /* number of extent info in extent cache we try to shrink */
611 #define EXTENT_CACHE_SHRINK_NUMBER	128
612 
613 struct rb_entry {
614 	struct rb_node rb_node;		/* rb node located in rb-tree */
615 	unsigned int ofs;		/* start offset of the entry */
616 	unsigned int len;		/* length of the entry */
617 };
618 
619 struct extent_info {
620 	unsigned int fofs;		/* start offset in a file */
621 	unsigned int len;		/* length of the extent */
622 	u32 blk;			/* start block address of the extent */
623 };
624 
625 struct extent_node {
626 	struct rb_node rb_node;		/* rb node located in rb-tree */
627 	struct extent_info ei;		/* extent info */
628 	struct list_head list;		/* node in global extent list of sbi */
629 	struct extent_tree *et;		/* extent tree pointer */
630 };
631 
632 struct extent_tree {
633 	nid_t ino;			/* inode number */
634 	struct rb_root_cached root;	/* root of extent info rb-tree */
635 	struct extent_node *cached_en;	/* recently accessed extent node */
636 	struct extent_info largest;	/* largested extent info */
637 	struct list_head list;		/* to be used by sbi->zombie_list */
638 	rwlock_t lock;			/* protect extent info rb-tree */
639 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
640 	bool largest_updated;		/* largest extent updated */
641 };
642 
643 /*
644  * This structure is taken from ext4_map_blocks.
645  *
646  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
647  */
648 #define F2FS_MAP_NEW		(1 << BH_New)
649 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
650 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
651 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
652 				F2FS_MAP_UNWRITTEN)
653 
654 struct f2fs_map_blocks {
655 	block_t m_pblk;
656 	block_t m_lblk;
657 	unsigned int m_len;
658 	unsigned int m_flags;
659 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
660 	pgoff_t *m_next_extent;		/* point to next possible extent */
661 	int m_seg_type;
662 	bool m_may_create;		/* indicate it is from write path */
663 };
664 
665 /* for flag in get_data_block */
666 enum {
667 	F2FS_GET_BLOCK_DEFAULT,
668 	F2FS_GET_BLOCK_FIEMAP,
669 	F2FS_GET_BLOCK_BMAP,
670 	F2FS_GET_BLOCK_DIO,
671 	F2FS_GET_BLOCK_PRE_DIO,
672 	F2FS_GET_BLOCK_PRE_AIO,
673 	F2FS_GET_BLOCK_PRECACHE,
674 };
675 
676 /*
677  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
678  */
679 #define FADVISE_COLD_BIT	0x01
680 #define FADVISE_LOST_PINO_BIT	0x02
681 #define FADVISE_ENCRYPT_BIT	0x04
682 #define FADVISE_ENC_NAME_BIT	0x08
683 #define FADVISE_KEEP_SIZE_BIT	0x10
684 #define FADVISE_HOT_BIT		0x20
685 #define FADVISE_VERITY_BIT	0x40
686 
687 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
688 
689 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
690 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
691 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
692 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
693 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
694 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
695 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
696 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
697 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
698 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
699 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
700 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
701 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
702 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
703 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
704 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
705 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
706 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
707 
708 #define DEF_DIR_LEVEL		0
709 
710 enum {
711 	GC_FAILURE_PIN,
712 	GC_FAILURE_ATOMIC,
713 	MAX_GC_FAILURE
714 };
715 
716 /* used for f2fs_inode_info->flags */
717 enum {
718 	FI_NEW_INODE,		/* indicate newly allocated inode */
719 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
720 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
721 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
722 	FI_INC_LINK,		/* need to increment i_nlink */
723 	FI_ACL_MODE,		/* indicate acl mode */
724 	FI_NO_ALLOC,		/* should not allocate any blocks */
725 	FI_FREE_NID,		/* free allocated nide */
726 	FI_NO_EXTENT,		/* not to use the extent cache */
727 	FI_INLINE_XATTR,	/* used for inline xattr */
728 	FI_INLINE_DATA,		/* used for inline data*/
729 	FI_INLINE_DENTRY,	/* used for inline dentry */
730 	FI_APPEND_WRITE,	/* inode has appended data */
731 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
732 	FI_NEED_IPU,		/* used for ipu per file */
733 	FI_ATOMIC_FILE,		/* indicate atomic file */
734 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
735 	FI_VOLATILE_FILE,	/* indicate volatile file */
736 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
737 	FI_DROP_CACHE,		/* drop dirty page cache */
738 	FI_DATA_EXIST,		/* indicate data exists */
739 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
740 	FI_DO_DEFRAG,		/* indicate defragment is running */
741 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
742 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
743 	FI_HOT_DATA,		/* indicate file is hot */
744 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
745 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
746 	FI_PIN_FILE,		/* indicate file should not be gced */
747 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
748 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
749 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
750 	FI_MMAP_FILE,		/* indicate file was mmapped */
751 	FI_MAX,			/* max flag, never be used */
752 };
753 
754 struct f2fs_inode_info {
755 	struct inode vfs_inode;		/* serve a vfs inode */
756 	unsigned long i_flags;		/* keep an inode flags for ioctl */
757 	unsigned char i_advise;		/* use to give file attribute hints */
758 	unsigned char i_dir_level;	/* use for dentry level for large dir */
759 	unsigned int i_current_depth;	/* only for directory depth */
760 	/* for gc failure statistic */
761 	unsigned int i_gc_failures[MAX_GC_FAILURE];
762 	unsigned int i_pino;		/* parent inode number */
763 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
764 
765 	/* Use below internally in f2fs*/
766 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
767 	struct rw_semaphore i_sem;	/* protect fi info */
768 	atomic_t dirty_pages;		/* # of dirty pages */
769 	f2fs_hash_t chash;		/* hash value of given file name */
770 	unsigned int clevel;		/* maximum level of given file name */
771 	struct task_struct *task;	/* lookup and create consistency */
772 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
773 	nid_t i_xattr_nid;		/* node id that contains xattrs */
774 	loff_t	last_disk_size;		/* lastly written file size */
775 	spinlock_t i_size_lock;		/* protect last_disk_size */
776 
777 #ifdef CONFIG_QUOTA
778 	struct dquot *i_dquot[MAXQUOTAS];
779 
780 	/* quota space reservation, managed internally by quota code */
781 	qsize_t i_reserved_quota;
782 #endif
783 	struct list_head dirty_list;	/* dirty list for dirs and files */
784 	struct list_head gdirty_list;	/* linked in global dirty list */
785 	struct list_head inmem_ilist;	/* list for inmem inodes */
786 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
787 	struct task_struct *inmem_task;	/* store inmemory task */
788 	struct mutex inmem_lock;	/* lock for inmemory pages */
789 	pgoff_t ra_offset;		/* ongoing readahead offset */
790 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
791 
792 	/* avoid racing between foreground op and gc */
793 	struct rw_semaphore i_gc_rwsem[2];
794 	struct rw_semaphore i_mmap_sem;
795 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
796 
797 	int i_extra_isize;		/* size of extra space located in i_addr */
798 	kprojid_t i_projid;		/* id for project quota */
799 	int i_inline_xattr_size;	/* inline xattr size */
800 	struct timespec64 i_crtime;	/* inode creation time */
801 	struct timespec64 i_disk_time[4];/* inode disk times */
802 
803 	/* for file compress */
804 	u64 i_compr_blocks;			/* # of compressed blocks */
805 	unsigned char i_compress_algorithm;	/* algorithm type */
806 	unsigned char i_log_cluster_size;	/* log of cluster size */
807 	unsigned int i_cluster_size;		/* cluster size */
808 };
809 
810 static inline void get_extent_info(struct extent_info *ext,
811 					struct f2fs_extent *i_ext)
812 {
813 	ext->fofs = le32_to_cpu(i_ext->fofs);
814 	ext->blk = le32_to_cpu(i_ext->blk);
815 	ext->len = le32_to_cpu(i_ext->len);
816 }
817 
818 static inline void set_raw_extent(struct extent_info *ext,
819 					struct f2fs_extent *i_ext)
820 {
821 	i_ext->fofs = cpu_to_le32(ext->fofs);
822 	i_ext->blk = cpu_to_le32(ext->blk);
823 	i_ext->len = cpu_to_le32(ext->len);
824 }
825 
826 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
827 						u32 blk, unsigned int len)
828 {
829 	ei->fofs = fofs;
830 	ei->blk = blk;
831 	ei->len = len;
832 }
833 
834 static inline bool __is_discard_mergeable(struct discard_info *back,
835 			struct discard_info *front, unsigned int max_len)
836 {
837 	return (back->lstart + back->len == front->lstart) &&
838 		(back->len + front->len <= max_len);
839 }
840 
841 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
842 			struct discard_info *back, unsigned int max_len)
843 {
844 	return __is_discard_mergeable(back, cur, max_len);
845 }
846 
847 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
848 			struct discard_info *front, unsigned int max_len)
849 {
850 	return __is_discard_mergeable(cur, front, max_len);
851 }
852 
853 static inline bool __is_extent_mergeable(struct extent_info *back,
854 						struct extent_info *front)
855 {
856 	return (back->fofs + back->len == front->fofs &&
857 			back->blk + back->len == front->blk);
858 }
859 
860 static inline bool __is_back_mergeable(struct extent_info *cur,
861 						struct extent_info *back)
862 {
863 	return __is_extent_mergeable(back, cur);
864 }
865 
866 static inline bool __is_front_mergeable(struct extent_info *cur,
867 						struct extent_info *front)
868 {
869 	return __is_extent_mergeable(cur, front);
870 }
871 
872 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
873 static inline void __try_update_largest_extent(struct extent_tree *et,
874 						struct extent_node *en)
875 {
876 	if (en->ei.len > et->largest.len) {
877 		et->largest = en->ei;
878 		et->largest_updated = true;
879 	}
880 }
881 
882 /*
883  * For free nid management
884  */
885 enum nid_state {
886 	FREE_NID,		/* newly added to free nid list */
887 	PREALLOC_NID,		/* it is preallocated */
888 	MAX_NID_STATE,
889 };
890 
891 struct f2fs_nm_info {
892 	block_t nat_blkaddr;		/* base disk address of NAT */
893 	nid_t max_nid;			/* maximum possible node ids */
894 	nid_t available_nids;		/* # of available node ids */
895 	nid_t next_scan_nid;		/* the next nid to be scanned */
896 	unsigned int ram_thresh;	/* control the memory footprint */
897 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
898 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
899 
900 	/* NAT cache management */
901 	struct radix_tree_root nat_root;/* root of the nat entry cache */
902 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
903 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
904 	struct list_head nat_entries;	/* cached nat entry list (clean) */
905 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
906 	unsigned int nat_cnt;		/* the # of cached nat entries */
907 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
908 	unsigned int nat_blocks;	/* # of nat blocks */
909 
910 	/* free node ids management */
911 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
912 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
913 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
914 	spinlock_t nid_list_lock;	/* protect nid lists ops */
915 	struct mutex build_lock;	/* lock for build free nids */
916 	unsigned char **free_nid_bitmap;
917 	unsigned char *nat_block_bitmap;
918 	unsigned short *free_nid_count;	/* free nid count of NAT block */
919 
920 	/* for checkpoint */
921 	char *nat_bitmap;		/* NAT bitmap pointer */
922 
923 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
924 	unsigned char *nat_bits;	/* NAT bits blocks */
925 	unsigned char *full_nat_bits;	/* full NAT pages */
926 	unsigned char *empty_nat_bits;	/* empty NAT pages */
927 #ifdef CONFIG_F2FS_CHECK_FS
928 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
929 #endif
930 	int bitmap_size;		/* bitmap size */
931 };
932 
933 /*
934  * this structure is used as one of function parameters.
935  * all the information are dedicated to a given direct node block determined
936  * by the data offset in a file.
937  */
938 struct dnode_of_data {
939 	struct inode *inode;		/* vfs inode pointer */
940 	struct page *inode_page;	/* its inode page, NULL is possible */
941 	struct page *node_page;		/* cached direct node page */
942 	nid_t nid;			/* node id of the direct node block */
943 	unsigned int ofs_in_node;	/* data offset in the node page */
944 	bool inode_page_locked;		/* inode page is locked or not */
945 	bool node_changed;		/* is node block changed */
946 	char cur_level;			/* level of hole node page */
947 	char max_level;			/* level of current page located */
948 	block_t	data_blkaddr;		/* block address of the node block */
949 };
950 
951 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
952 		struct page *ipage, struct page *npage, nid_t nid)
953 {
954 	memset(dn, 0, sizeof(*dn));
955 	dn->inode = inode;
956 	dn->inode_page = ipage;
957 	dn->node_page = npage;
958 	dn->nid = nid;
959 }
960 
961 /*
962  * For SIT manager
963  *
964  * By default, there are 6 active log areas across the whole main area.
965  * When considering hot and cold data separation to reduce cleaning overhead,
966  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
967  * respectively.
968  * In the current design, you should not change the numbers intentionally.
969  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
970  * logs individually according to the underlying devices. (default: 6)
971  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
972  * data and 8 for node logs.
973  */
974 #define	NR_CURSEG_DATA_TYPE	(3)
975 #define NR_CURSEG_NODE_TYPE	(3)
976 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
977 
978 enum {
979 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
980 	CURSEG_WARM_DATA,	/* data blocks */
981 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
982 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
983 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
984 	CURSEG_COLD_NODE,	/* indirect node blocks */
985 	NO_CHECK_TYPE,
986 	CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */
987 };
988 
989 struct flush_cmd {
990 	struct completion wait;
991 	struct llist_node llnode;
992 	nid_t ino;
993 	int ret;
994 };
995 
996 struct flush_cmd_control {
997 	struct task_struct *f2fs_issue_flush;	/* flush thread */
998 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
999 	atomic_t issued_flush;			/* # of issued flushes */
1000 	atomic_t queued_flush;			/* # of queued flushes */
1001 	struct llist_head issue_list;		/* list for command issue */
1002 	struct llist_node *dispatch_list;	/* list for command dispatch */
1003 };
1004 
1005 struct f2fs_sm_info {
1006 	struct sit_info *sit_info;		/* whole segment information */
1007 	struct free_segmap_info *free_info;	/* free segment information */
1008 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1009 	struct curseg_info *curseg_array;	/* active segment information */
1010 
1011 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
1012 
1013 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1014 	block_t main_blkaddr;		/* start block address of main area */
1015 	block_t ssa_blkaddr;		/* start block address of SSA area */
1016 
1017 	unsigned int segment_count;	/* total # of segments */
1018 	unsigned int main_segments;	/* # of segments in main area */
1019 	unsigned int reserved_segments;	/* # of reserved segments */
1020 	unsigned int ovp_segments;	/* # of overprovision segments */
1021 
1022 	/* a threshold to reclaim prefree segments */
1023 	unsigned int rec_prefree_segments;
1024 
1025 	/* for batched trimming */
1026 	unsigned int trim_sections;		/* # of sections to trim */
1027 
1028 	struct list_head sit_entry_set;	/* sit entry set list */
1029 
1030 	unsigned int ipu_policy;	/* in-place-update policy */
1031 	unsigned int min_ipu_util;	/* in-place-update threshold */
1032 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1033 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1034 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1035 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1036 
1037 	/* for flush command control */
1038 	struct flush_cmd_control *fcc_info;
1039 
1040 	/* for discard command control */
1041 	struct discard_cmd_control *dcc_info;
1042 };
1043 
1044 /*
1045  * For superblock
1046  */
1047 /*
1048  * COUNT_TYPE for monitoring
1049  *
1050  * f2fs monitors the number of several block types such as on-writeback,
1051  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1052  */
1053 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1054 enum count_type {
1055 	F2FS_DIRTY_DENTS,
1056 	F2FS_DIRTY_DATA,
1057 	F2FS_DIRTY_QDATA,
1058 	F2FS_DIRTY_NODES,
1059 	F2FS_DIRTY_META,
1060 	F2FS_INMEM_PAGES,
1061 	F2FS_DIRTY_IMETA,
1062 	F2FS_WB_CP_DATA,
1063 	F2FS_WB_DATA,
1064 	F2FS_RD_DATA,
1065 	F2FS_RD_NODE,
1066 	F2FS_RD_META,
1067 	F2FS_DIO_WRITE,
1068 	F2FS_DIO_READ,
1069 	NR_COUNT_TYPE,
1070 };
1071 
1072 /*
1073  * The below are the page types of bios used in submit_bio().
1074  * The available types are:
1075  * DATA			User data pages. It operates as async mode.
1076  * NODE			Node pages. It operates as async mode.
1077  * META			FS metadata pages such as SIT, NAT, CP.
1078  * NR_PAGE_TYPE		The number of page types.
1079  * META_FLUSH		Make sure the previous pages are written
1080  *			with waiting the bio's completion
1081  * ...			Only can be used with META.
1082  */
1083 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1084 enum page_type {
1085 	DATA,
1086 	NODE,
1087 	META,
1088 	NR_PAGE_TYPE,
1089 	META_FLUSH,
1090 	INMEM,		/* the below types are used by tracepoints only. */
1091 	INMEM_DROP,
1092 	INMEM_INVALIDATE,
1093 	INMEM_REVOKE,
1094 	IPU,
1095 	OPU,
1096 };
1097 
1098 enum temp_type {
1099 	HOT = 0,	/* must be zero for meta bio */
1100 	WARM,
1101 	COLD,
1102 	NR_TEMP_TYPE,
1103 };
1104 
1105 enum need_lock_type {
1106 	LOCK_REQ = 0,
1107 	LOCK_DONE,
1108 	LOCK_RETRY,
1109 };
1110 
1111 enum cp_reason_type {
1112 	CP_NO_NEEDED,
1113 	CP_NON_REGULAR,
1114 	CP_COMPRESSED,
1115 	CP_HARDLINK,
1116 	CP_SB_NEED_CP,
1117 	CP_WRONG_PINO,
1118 	CP_NO_SPC_ROLL,
1119 	CP_NODE_NEED_CP,
1120 	CP_FASTBOOT_MODE,
1121 	CP_SPEC_LOG_NUM,
1122 	CP_RECOVER_DIR,
1123 };
1124 
1125 enum iostat_type {
1126 	/* WRITE IO */
1127 	APP_DIRECT_IO,			/* app direct write IOs */
1128 	APP_BUFFERED_IO,		/* app buffered write IOs */
1129 	APP_WRITE_IO,			/* app write IOs */
1130 	APP_MAPPED_IO,			/* app mapped IOs */
1131 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1132 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1133 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1134 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1135 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1136 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1137 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1138 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1139 
1140 	/* READ IO */
1141 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1142 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1143 	APP_READ_IO,			/* app read IOs */
1144 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1145 	FS_DATA_READ_IO,		/* data read IOs */
1146 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1147 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1148 	FS_NODE_READ_IO,		/* node read IOs */
1149 	FS_META_READ_IO,		/* meta read IOs */
1150 
1151 	/* other */
1152 	FS_DISCARD,			/* discard */
1153 	NR_IO_TYPE,
1154 };
1155 
1156 struct f2fs_io_info {
1157 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1158 	nid_t ino;		/* inode number */
1159 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1160 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1161 	int op;			/* contains REQ_OP_ */
1162 	int op_flags;		/* req_flag_bits */
1163 	block_t new_blkaddr;	/* new block address to be written */
1164 	block_t old_blkaddr;	/* old block address before Cow */
1165 	struct page *page;	/* page to be written */
1166 	struct page *encrypted_page;	/* encrypted page */
1167 	struct page *compressed_page;	/* compressed page */
1168 	struct list_head list;		/* serialize IOs */
1169 	bool submitted;		/* indicate IO submission */
1170 	int need_lock;		/* indicate we need to lock cp_rwsem */
1171 	bool in_list;		/* indicate fio is in io_list */
1172 	bool is_por;		/* indicate IO is from recovery or not */
1173 	bool retry;		/* need to reallocate block address */
1174 	int compr_blocks;	/* # of compressed block addresses */
1175 	bool encrypted;		/* indicate file is encrypted */
1176 	enum iostat_type io_type;	/* io type */
1177 	struct writeback_control *io_wbc; /* writeback control */
1178 	struct bio **bio;		/* bio for ipu */
1179 	sector_t *last_block;		/* last block number in bio */
1180 	unsigned char version;		/* version of the node */
1181 };
1182 
1183 struct bio_entry {
1184 	struct bio *bio;
1185 	struct list_head list;
1186 };
1187 
1188 #define is_read_io(rw) ((rw) == READ)
1189 struct f2fs_bio_info {
1190 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1191 	struct bio *bio;		/* bios to merge */
1192 	sector_t last_block_in_bio;	/* last block number */
1193 	struct f2fs_io_info fio;	/* store buffered io info. */
1194 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1195 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1196 	struct list_head io_list;	/* track fios */
1197 	struct list_head bio_list;	/* bio entry list head */
1198 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1199 };
1200 
1201 #define FDEV(i)				(sbi->devs[i])
1202 #define RDEV(i)				(raw_super->devs[i])
1203 struct f2fs_dev_info {
1204 	struct block_device *bdev;
1205 	char path[MAX_PATH_LEN];
1206 	unsigned int total_segments;
1207 	block_t start_blk;
1208 	block_t end_blk;
1209 #ifdef CONFIG_BLK_DEV_ZONED
1210 	unsigned int nr_blkz;		/* Total number of zones */
1211 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1212 #endif
1213 };
1214 
1215 enum inode_type {
1216 	DIR_INODE,			/* for dirty dir inode */
1217 	FILE_INODE,			/* for dirty regular/symlink inode */
1218 	DIRTY_META,			/* for all dirtied inode metadata */
1219 	ATOMIC_FILE,			/* for all atomic files */
1220 	NR_INODE_TYPE,
1221 };
1222 
1223 /* for inner inode cache management */
1224 struct inode_management {
1225 	struct radix_tree_root ino_root;	/* ino entry array */
1226 	spinlock_t ino_lock;			/* for ino entry lock */
1227 	struct list_head ino_list;		/* inode list head */
1228 	unsigned long ino_num;			/* number of entries */
1229 };
1230 
1231 /* For s_flag in struct f2fs_sb_info */
1232 enum {
1233 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1234 	SBI_IS_CLOSE,				/* specify unmounting */
1235 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1236 	SBI_POR_DOING,				/* recovery is doing or not */
1237 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1238 	SBI_NEED_CP,				/* need to checkpoint */
1239 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1240 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1241 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1242 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1243 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1244 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1245 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1246 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1247 };
1248 
1249 enum {
1250 	CP_TIME,
1251 	REQ_TIME,
1252 	DISCARD_TIME,
1253 	GC_TIME,
1254 	DISABLE_TIME,
1255 	UMOUNT_DISCARD_TIMEOUT,
1256 	MAX_TIME,
1257 };
1258 
1259 enum {
1260 	GC_NORMAL,
1261 	GC_IDLE_CB,
1262 	GC_IDLE_GREEDY,
1263 	GC_URGENT_HIGH,
1264 	GC_URGENT_LOW,
1265 };
1266 
1267 enum {
1268 	BGGC_MODE_ON,		/* background gc is on */
1269 	BGGC_MODE_OFF,		/* background gc is off */
1270 	BGGC_MODE_SYNC,		/*
1271 				 * background gc is on, migrating blocks
1272 				 * like foreground gc
1273 				 */
1274 };
1275 
1276 enum {
1277 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1278 	FS_MODE_LFS,		/* use lfs allocation only */
1279 };
1280 
1281 enum {
1282 	WHINT_MODE_OFF,		/* not pass down write hints */
1283 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1284 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1285 };
1286 
1287 enum {
1288 	ALLOC_MODE_DEFAULT,	/* stay default */
1289 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1290 };
1291 
1292 enum fsync_mode {
1293 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1294 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1295 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1296 };
1297 
1298 /*
1299  * this value is set in page as a private data which indicate that
1300  * the page is atomically written, and it is in inmem_pages list.
1301  */
1302 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1303 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1304 
1305 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1306 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
1307 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1308 		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
1309 
1310 #ifdef CONFIG_F2FS_IO_TRACE
1311 #define IS_IO_TRACED_PAGE(page)			\
1312 		(page_private(page) > 0 &&		\
1313 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1314 #else
1315 #define IS_IO_TRACED_PAGE(page) (0)
1316 #endif
1317 
1318 #ifdef CONFIG_FS_ENCRYPTION
1319 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1320 	(unlikely(F2FS_OPTION(sbi).dummy_enc_ctx.ctx != NULL))
1321 #else
1322 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1323 #endif
1324 
1325 /* For compression */
1326 enum compress_algorithm_type {
1327 	COMPRESS_LZO,
1328 	COMPRESS_LZ4,
1329 	COMPRESS_ZSTD,
1330 	COMPRESS_LZORLE,
1331 	COMPRESS_MAX,
1332 };
1333 
1334 #define COMPRESS_DATA_RESERVED_SIZE		5
1335 struct compress_data {
1336 	__le32 clen;			/* compressed data size */
1337 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1338 	u8 cdata[];			/* compressed data */
1339 };
1340 
1341 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1342 
1343 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1344 
1345 /* compress context */
1346 struct compress_ctx {
1347 	struct inode *inode;		/* inode the context belong to */
1348 	pgoff_t cluster_idx;		/* cluster index number */
1349 	unsigned int cluster_size;	/* page count in cluster */
1350 	unsigned int log_cluster_size;	/* log of cluster size */
1351 	struct page **rpages;		/* pages store raw data in cluster */
1352 	unsigned int nr_rpages;		/* total page number in rpages */
1353 	struct page **cpages;		/* pages store compressed data in cluster */
1354 	unsigned int nr_cpages;		/* total page number in cpages */
1355 	void *rbuf;			/* virtual mapped address on rpages */
1356 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1357 	size_t rlen;			/* valid data length in rbuf */
1358 	size_t clen;			/* valid data length in cbuf */
1359 	void *private;			/* payload buffer for specified compression algorithm */
1360 	void *private2;			/* extra payload buffer */
1361 };
1362 
1363 /* compress context for write IO path */
1364 struct compress_io_ctx {
1365 	u32 magic;			/* magic number to indicate page is compressed */
1366 	struct inode *inode;		/* inode the context belong to */
1367 	struct page **rpages;		/* pages store raw data in cluster */
1368 	unsigned int nr_rpages;		/* total page number in rpages */
1369 	refcount_t ref;			/* referrence count of raw page */
1370 };
1371 
1372 /* decompress io context for read IO path */
1373 struct decompress_io_ctx {
1374 	u32 magic;			/* magic number to indicate page is compressed */
1375 	struct inode *inode;		/* inode the context belong to */
1376 	pgoff_t cluster_idx;		/* cluster index number */
1377 	unsigned int cluster_size;	/* page count in cluster */
1378 	unsigned int log_cluster_size;	/* log of cluster size */
1379 	struct page **rpages;		/* pages store raw data in cluster */
1380 	unsigned int nr_rpages;		/* total page number in rpages */
1381 	struct page **cpages;		/* pages store compressed data in cluster */
1382 	unsigned int nr_cpages;		/* total page number in cpages */
1383 	struct page **tpages;		/* temp pages to pad holes in cluster */
1384 	void *rbuf;			/* virtual mapped address on rpages */
1385 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1386 	size_t rlen;			/* valid data length in rbuf */
1387 	size_t clen;			/* valid data length in cbuf */
1388 	refcount_t ref;			/* referrence count of compressed page */
1389 	bool failed;			/* indicate IO error during decompression */
1390 	void *private;			/* payload buffer for specified decompression algorithm */
1391 	void *private2;			/* extra payload buffer */
1392 };
1393 
1394 #define NULL_CLUSTER			((unsigned int)(~0))
1395 #define MIN_COMPRESS_LOG_SIZE		2
1396 #define MAX_COMPRESS_LOG_SIZE		8
1397 #define MAX_COMPRESS_WINDOW_SIZE	((PAGE_SIZE) << MAX_COMPRESS_LOG_SIZE)
1398 
1399 struct f2fs_sb_info {
1400 	struct super_block *sb;			/* pointer to VFS super block */
1401 	struct proc_dir_entry *s_proc;		/* proc entry */
1402 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1403 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1404 	int valid_super_block;			/* valid super block no */
1405 	unsigned long s_flag;				/* flags for sbi */
1406 	struct mutex writepages;		/* mutex for writepages() */
1407 #ifdef CONFIG_UNICODE
1408 	struct unicode_map *s_encoding;
1409 	__u16 s_encoding_flags;
1410 #endif
1411 
1412 #ifdef CONFIG_BLK_DEV_ZONED
1413 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1414 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1415 #endif
1416 
1417 	/* for node-related operations */
1418 	struct f2fs_nm_info *nm_info;		/* node manager */
1419 	struct inode *node_inode;		/* cache node blocks */
1420 
1421 	/* for segment-related operations */
1422 	struct f2fs_sm_info *sm_info;		/* segment manager */
1423 
1424 	/* for bio operations */
1425 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1426 	/* keep migration IO order for LFS mode */
1427 	struct rw_semaphore io_order_lock;
1428 	mempool_t *write_io_dummy;		/* Dummy pages */
1429 
1430 	/* for checkpoint */
1431 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1432 	int cur_cp_pack;			/* remain current cp pack */
1433 	spinlock_t cp_lock;			/* for flag in ckpt */
1434 	struct inode *meta_inode;		/* cache meta blocks */
1435 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1436 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1437 	struct rw_semaphore node_write;		/* locking node writes */
1438 	struct rw_semaphore node_change;	/* locking node change */
1439 	wait_queue_head_t cp_wait;
1440 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1441 	long interval_time[MAX_TIME];		/* to store thresholds */
1442 
1443 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1444 
1445 	spinlock_t fsync_node_lock;		/* for node entry lock */
1446 	struct list_head fsync_node_list;	/* node list head */
1447 	unsigned int fsync_seg_id;		/* sequence id */
1448 	unsigned int fsync_node_num;		/* number of node entries */
1449 
1450 	/* for orphan inode, use 0'th array */
1451 	unsigned int max_orphans;		/* max orphan inodes */
1452 
1453 	/* for inode management */
1454 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1455 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1456 	struct mutex flush_lock;		/* for flush exclusion */
1457 
1458 	/* for extent tree cache */
1459 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1460 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1461 	struct list_head extent_list;		/* lru list for shrinker */
1462 	spinlock_t extent_lock;			/* locking extent lru list */
1463 	atomic_t total_ext_tree;		/* extent tree count */
1464 	struct list_head zombie_list;		/* extent zombie tree list */
1465 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1466 	atomic_t total_ext_node;		/* extent info count */
1467 
1468 	/* basic filesystem units */
1469 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1470 	unsigned int log_blocksize;		/* log2 block size */
1471 	unsigned int blocksize;			/* block size */
1472 	unsigned int root_ino_num;		/* root inode number*/
1473 	unsigned int node_ino_num;		/* node inode number*/
1474 	unsigned int meta_ino_num;		/* meta inode number*/
1475 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1476 	unsigned int blocks_per_seg;		/* blocks per segment */
1477 	unsigned int segs_per_sec;		/* segments per section */
1478 	unsigned int secs_per_zone;		/* sections per zone */
1479 	unsigned int total_sections;		/* total section count */
1480 	unsigned int total_node_count;		/* total node block count */
1481 	unsigned int total_valid_node_count;	/* valid node block count */
1482 	loff_t max_file_blocks;			/* max block index of file */
1483 	int dir_level;				/* directory level */
1484 	int readdir_ra;				/* readahead inode in readdir */
1485 
1486 	block_t user_block_count;		/* # of user blocks */
1487 	block_t total_valid_block_count;	/* # of valid blocks */
1488 	block_t discard_blks;			/* discard command candidats */
1489 	block_t last_valid_block_count;		/* for recovery */
1490 	block_t reserved_blocks;		/* configurable reserved blocks */
1491 	block_t current_reserved_blocks;	/* current reserved blocks */
1492 
1493 	/* Additional tracking for no checkpoint mode */
1494 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1495 
1496 	unsigned int nquota_files;		/* # of quota sysfile */
1497 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1498 
1499 	/* # of pages, see count_type */
1500 	atomic_t nr_pages[NR_COUNT_TYPE];
1501 	/* # of allocated blocks */
1502 	struct percpu_counter alloc_valid_block_count;
1503 
1504 	/* writeback control */
1505 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1506 
1507 	/* valid inode count */
1508 	struct percpu_counter total_valid_inode_count;
1509 
1510 	struct f2fs_mount_info mount_opt;	/* mount options */
1511 
1512 	/* for cleaning operations */
1513 	struct rw_semaphore gc_lock;		/*
1514 						 * semaphore for GC, avoid
1515 						 * race between GC and GC or CP
1516 						 */
1517 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1518 	unsigned int cur_victim_sec;		/* current victim section num */
1519 	unsigned int gc_mode;			/* current GC state */
1520 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1521 
1522 	/* for skip statistic */
1523 	unsigned int atomic_files;		/* # of opened atomic file */
1524 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1525 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1526 
1527 	/* threshold for gc trials on pinned files */
1528 	u64 gc_pin_file_threshold;
1529 	struct rw_semaphore pin_sem;
1530 
1531 	/* maximum # of trials to find a victim segment for SSR and GC */
1532 	unsigned int max_victim_search;
1533 	/* migration granularity of garbage collection, unit: segment */
1534 	unsigned int migration_granularity;
1535 
1536 	/*
1537 	 * for stat information.
1538 	 * one is for the LFS mode, and the other is for the SSR mode.
1539 	 */
1540 #ifdef CONFIG_F2FS_STAT_FS
1541 	struct f2fs_stat_info *stat_info;	/* FS status information */
1542 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1543 	unsigned int segment_count[2];		/* # of allocated segments */
1544 	unsigned int block_count[2];		/* # of allocated blocks */
1545 	atomic_t inplace_count;		/* # of inplace update */
1546 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1547 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1548 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1549 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1550 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1551 	atomic_t inline_inode;			/* # of inline_data inodes */
1552 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1553 	atomic_t compr_inode;			/* # of compressed inodes */
1554 	atomic_t compr_blocks;			/* # of compressed blocks */
1555 	atomic_t vw_cnt;			/* # of volatile writes */
1556 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1557 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1558 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1559 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1560 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1561 #endif
1562 	spinlock_t stat_lock;			/* lock for stat operations */
1563 
1564 	/* For app/fs IO statistics */
1565 	spinlock_t iostat_lock;
1566 	unsigned long long rw_iostat[NR_IO_TYPE];
1567 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1568 	bool iostat_enable;
1569 	unsigned long iostat_next_period;
1570 	unsigned int iostat_period_ms;
1571 
1572 	/* to attach REQ_META|REQ_FUA flags */
1573 	unsigned int data_io_flag;
1574 	unsigned int node_io_flag;
1575 
1576 	/* For sysfs suppport */
1577 	struct kobject s_kobj;
1578 	struct completion s_kobj_unregister;
1579 
1580 	/* For shrinker support */
1581 	struct list_head s_list;
1582 	int s_ndevs;				/* number of devices */
1583 	struct f2fs_dev_info *devs;		/* for device list */
1584 	unsigned int dirty_device;		/* for checkpoint data flush */
1585 	spinlock_t dev_lock;			/* protect dirty_device */
1586 	struct mutex umount_mutex;
1587 	unsigned int shrinker_run_no;
1588 
1589 	/* For write statistics */
1590 	u64 sectors_written_start;
1591 	u64 kbytes_written;
1592 
1593 	/* Reference to checksum algorithm driver via cryptoapi */
1594 	struct crypto_shash *s_chksum_driver;
1595 
1596 	/* Precomputed FS UUID checksum for seeding other checksums */
1597 	__u32 s_chksum_seed;
1598 
1599 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1600 
1601 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1602 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1603 };
1604 
1605 struct f2fs_private_dio {
1606 	struct inode *inode;
1607 	void *orig_private;
1608 	bio_end_io_t *orig_end_io;
1609 	bool write;
1610 };
1611 
1612 #ifdef CONFIG_F2FS_FAULT_INJECTION
1613 #define f2fs_show_injection_info(sbi, type)					\
1614 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1615 		KERN_INFO, sbi->sb->s_id,				\
1616 		f2fs_fault_name[type],					\
1617 		__func__, __builtin_return_address(0))
1618 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1619 {
1620 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1621 
1622 	if (!ffi->inject_rate)
1623 		return false;
1624 
1625 	if (!IS_FAULT_SET(ffi, type))
1626 		return false;
1627 
1628 	atomic_inc(&ffi->inject_ops);
1629 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1630 		atomic_set(&ffi->inject_ops, 0);
1631 		return true;
1632 	}
1633 	return false;
1634 }
1635 #else
1636 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1637 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1638 {
1639 	return false;
1640 }
1641 #endif
1642 
1643 /*
1644  * Test if the mounted volume is a multi-device volume.
1645  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1646  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1647  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1648  */
1649 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1650 {
1651 	return sbi->s_ndevs > 1;
1652 }
1653 
1654 /* For write statistics. Suppose sector size is 512 bytes,
1655  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1656  */
1657 #define BD_PART_WRITTEN(s)						 \
1658 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1659 		(s)->sectors_written_start) >> 1)
1660 
1661 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1662 {
1663 	unsigned long now = jiffies;
1664 
1665 	sbi->last_time[type] = now;
1666 
1667 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1668 	if (type == REQ_TIME) {
1669 		sbi->last_time[DISCARD_TIME] = now;
1670 		sbi->last_time[GC_TIME] = now;
1671 	}
1672 }
1673 
1674 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1675 {
1676 	unsigned long interval = sbi->interval_time[type] * HZ;
1677 
1678 	return time_after(jiffies, sbi->last_time[type] + interval);
1679 }
1680 
1681 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1682 						int type)
1683 {
1684 	unsigned long interval = sbi->interval_time[type] * HZ;
1685 	unsigned int wait_ms = 0;
1686 	long delta;
1687 
1688 	delta = (sbi->last_time[type] + interval) - jiffies;
1689 	if (delta > 0)
1690 		wait_ms = jiffies_to_msecs(delta);
1691 
1692 	return wait_ms;
1693 }
1694 
1695 /*
1696  * Inline functions
1697  */
1698 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1699 			      const void *address, unsigned int length)
1700 {
1701 	struct {
1702 		struct shash_desc shash;
1703 		char ctx[4];
1704 	} desc;
1705 	int err;
1706 
1707 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1708 
1709 	desc.shash.tfm = sbi->s_chksum_driver;
1710 	*(u32 *)desc.ctx = crc;
1711 
1712 	err = crypto_shash_update(&desc.shash, address, length);
1713 	BUG_ON(err);
1714 
1715 	return *(u32 *)desc.ctx;
1716 }
1717 
1718 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1719 			   unsigned int length)
1720 {
1721 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1722 }
1723 
1724 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1725 				  void *buf, size_t buf_size)
1726 {
1727 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1728 }
1729 
1730 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1731 			      const void *address, unsigned int length)
1732 {
1733 	return __f2fs_crc32(sbi, crc, address, length);
1734 }
1735 
1736 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1737 {
1738 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1739 }
1740 
1741 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1742 {
1743 	return sb->s_fs_info;
1744 }
1745 
1746 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1747 {
1748 	return F2FS_SB(inode->i_sb);
1749 }
1750 
1751 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1752 {
1753 	return F2FS_I_SB(mapping->host);
1754 }
1755 
1756 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1757 {
1758 	return F2FS_M_SB(page_file_mapping(page));
1759 }
1760 
1761 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1762 {
1763 	return (struct f2fs_super_block *)(sbi->raw_super);
1764 }
1765 
1766 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1767 {
1768 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1769 }
1770 
1771 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1772 {
1773 	return (struct f2fs_node *)page_address(page);
1774 }
1775 
1776 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1777 {
1778 	return &((struct f2fs_node *)page_address(page))->i;
1779 }
1780 
1781 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1782 {
1783 	return (struct f2fs_nm_info *)(sbi->nm_info);
1784 }
1785 
1786 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1787 {
1788 	return (struct f2fs_sm_info *)(sbi->sm_info);
1789 }
1790 
1791 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1792 {
1793 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1794 }
1795 
1796 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1797 {
1798 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1799 }
1800 
1801 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1802 {
1803 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1804 }
1805 
1806 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1807 {
1808 	return sbi->meta_inode->i_mapping;
1809 }
1810 
1811 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1812 {
1813 	return sbi->node_inode->i_mapping;
1814 }
1815 
1816 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1817 {
1818 	return test_bit(type, &sbi->s_flag);
1819 }
1820 
1821 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1822 {
1823 	set_bit(type, &sbi->s_flag);
1824 }
1825 
1826 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1827 {
1828 	clear_bit(type, &sbi->s_flag);
1829 }
1830 
1831 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1832 {
1833 	return le64_to_cpu(cp->checkpoint_ver);
1834 }
1835 
1836 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1837 {
1838 	if (type < F2FS_MAX_QUOTAS)
1839 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1840 	return 0;
1841 }
1842 
1843 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1844 {
1845 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1846 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1847 }
1848 
1849 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1850 {
1851 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1852 
1853 	return ckpt_flags & f;
1854 }
1855 
1856 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1857 {
1858 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1859 }
1860 
1861 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1862 {
1863 	unsigned int ckpt_flags;
1864 
1865 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1866 	ckpt_flags |= f;
1867 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1868 }
1869 
1870 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1871 {
1872 	unsigned long flags;
1873 
1874 	spin_lock_irqsave(&sbi->cp_lock, flags);
1875 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1876 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1877 }
1878 
1879 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1880 {
1881 	unsigned int ckpt_flags;
1882 
1883 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1884 	ckpt_flags &= (~f);
1885 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1886 }
1887 
1888 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1889 {
1890 	unsigned long flags;
1891 
1892 	spin_lock_irqsave(&sbi->cp_lock, flags);
1893 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1894 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1895 }
1896 
1897 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1898 {
1899 	unsigned long flags;
1900 	unsigned char *nat_bits;
1901 
1902 	/*
1903 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1904 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1905 	 * so let's rely on regular fsck or unclean shutdown.
1906 	 */
1907 
1908 	if (lock)
1909 		spin_lock_irqsave(&sbi->cp_lock, flags);
1910 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1911 	nat_bits = NM_I(sbi)->nat_bits;
1912 	NM_I(sbi)->nat_bits = NULL;
1913 	if (lock)
1914 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1915 
1916 	kvfree(nat_bits);
1917 }
1918 
1919 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1920 					struct cp_control *cpc)
1921 {
1922 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1923 
1924 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1925 }
1926 
1927 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1928 {
1929 	down_read(&sbi->cp_rwsem);
1930 }
1931 
1932 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1933 {
1934 	return down_read_trylock(&sbi->cp_rwsem);
1935 }
1936 
1937 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1938 {
1939 	up_read(&sbi->cp_rwsem);
1940 }
1941 
1942 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1943 {
1944 	down_write(&sbi->cp_rwsem);
1945 }
1946 
1947 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1948 {
1949 	up_write(&sbi->cp_rwsem);
1950 }
1951 
1952 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1953 {
1954 	int reason = CP_SYNC;
1955 
1956 	if (test_opt(sbi, FASTBOOT))
1957 		reason = CP_FASTBOOT;
1958 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1959 		reason = CP_UMOUNT;
1960 	return reason;
1961 }
1962 
1963 static inline bool __remain_node_summaries(int reason)
1964 {
1965 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1966 }
1967 
1968 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1969 {
1970 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1971 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1972 }
1973 
1974 /*
1975  * Check whether the inode has blocks or not
1976  */
1977 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1978 {
1979 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1980 
1981 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1982 }
1983 
1984 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1985 {
1986 	return ofs == XATTR_NODE_OFFSET;
1987 }
1988 
1989 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1990 					struct inode *inode, bool cap)
1991 {
1992 	if (!inode)
1993 		return true;
1994 	if (!test_opt(sbi, RESERVE_ROOT))
1995 		return false;
1996 	if (IS_NOQUOTA(inode))
1997 		return true;
1998 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1999 		return true;
2000 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2001 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2002 		return true;
2003 	if (cap && capable(CAP_SYS_RESOURCE))
2004 		return true;
2005 	return false;
2006 }
2007 
2008 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2009 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2010 				 struct inode *inode, blkcnt_t *count)
2011 {
2012 	blkcnt_t diff = 0, release = 0;
2013 	block_t avail_user_block_count;
2014 	int ret;
2015 
2016 	ret = dquot_reserve_block(inode, *count);
2017 	if (ret)
2018 		return ret;
2019 
2020 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2021 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2022 		release = *count;
2023 		goto release_quota;
2024 	}
2025 
2026 	/*
2027 	 * let's increase this in prior to actual block count change in order
2028 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2029 	 */
2030 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2031 
2032 	spin_lock(&sbi->stat_lock);
2033 	sbi->total_valid_block_count += (block_t)(*count);
2034 	avail_user_block_count = sbi->user_block_count -
2035 					sbi->current_reserved_blocks;
2036 
2037 	if (!__allow_reserved_blocks(sbi, inode, true))
2038 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2039 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2040 		if (avail_user_block_count > sbi->unusable_block_count)
2041 			avail_user_block_count -= sbi->unusable_block_count;
2042 		else
2043 			avail_user_block_count = 0;
2044 	}
2045 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2046 		diff = sbi->total_valid_block_count - avail_user_block_count;
2047 		if (diff > *count)
2048 			diff = *count;
2049 		*count -= diff;
2050 		release = diff;
2051 		sbi->total_valid_block_count -= diff;
2052 		if (!*count) {
2053 			spin_unlock(&sbi->stat_lock);
2054 			goto enospc;
2055 		}
2056 	}
2057 	spin_unlock(&sbi->stat_lock);
2058 
2059 	if (unlikely(release)) {
2060 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2061 		dquot_release_reservation_block(inode, release);
2062 	}
2063 	f2fs_i_blocks_write(inode, *count, true, true);
2064 	return 0;
2065 
2066 enospc:
2067 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2068 release_quota:
2069 	dquot_release_reservation_block(inode, release);
2070 	return -ENOSPC;
2071 }
2072 
2073 __printf(2, 3)
2074 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2075 
2076 #define f2fs_err(sbi, fmt, ...)						\
2077 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2078 #define f2fs_warn(sbi, fmt, ...)					\
2079 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2080 #define f2fs_notice(sbi, fmt, ...)					\
2081 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2082 #define f2fs_info(sbi, fmt, ...)					\
2083 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2084 #define f2fs_debug(sbi, fmt, ...)					\
2085 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2086 
2087 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2088 						struct inode *inode,
2089 						block_t count)
2090 {
2091 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2092 
2093 	spin_lock(&sbi->stat_lock);
2094 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2095 	sbi->total_valid_block_count -= (block_t)count;
2096 	if (sbi->reserved_blocks &&
2097 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2098 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2099 					sbi->current_reserved_blocks + count);
2100 	spin_unlock(&sbi->stat_lock);
2101 	if (unlikely(inode->i_blocks < sectors)) {
2102 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2103 			  inode->i_ino,
2104 			  (unsigned long long)inode->i_blocks,
2105 			  (unsigned long long)sectors);
2106 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2107 		return;
2108 	}
2109 	f2fs_i_blocks_write(inode, count, false, true);
2110 }
2111 
2112 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2113 {
2114 	atomic_inc(&sbi->nr_pages[count_type]);
2115 
2116 	if (count_type == F2FS_DIRTY_DENTS ||
2117 			count_type == F2FS_DIRTY_NODES ||
2118 			count_type == F2FS_DIRTY_META ||
2119 			count_type == F2FS_DIRTY_QDATA ||
2120 			count_type == F2FS_DIRTY_IMETA)
2121 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2122 }
2123 
2124 static inline void inode_inc_dirty_pages(struct inode *inode)
2125 {
2126 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2127 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2128 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2129 	if (IS_NOQUOTA(inode))
2130 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2131 }
2132 
2133 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2134 {
2135 	atomic_dec(&sbi->nr_pages[count_type]);
2136 }
2137 
2138 static inline void inode_dec_dirty_pages(struct inode *inode)
2139 {
2140 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2141 			!S_ISLNK(inode->i_mode))
2142 		return;
2143 
2144 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2145 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2146 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2147 	if (IS_NOQUOTA(inode))
2148 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2149 }
2150 
2151 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2152 {
2153 	return atomic_read(&sbi->nr_pages[count_type]);
2154 }
2155 
2156 static inline int get_dirty_pages(struct inode *inode)
2157 {
2158 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2159 }
2160 
2161 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2162 {
2163 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2164 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2165 						sbi->log_blocks_per_seg;
2166 
2167 	return segs / sbi->segs_per_sec;
2168 }
2169 
2170 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2171 {
2172 	return sbi->total_valid_block_count;
2173 }
2174 
2175 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2176 {
2177 	return sbi->discard_blks;
2178 }
2179 
2180 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2181 {
2182 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2183 
2184 	/* return NAT or SIT bitmap */
2185 	if (flag == NAT_BITMAP)
2186 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2187 	else if (flag == SIT_BITMAP)
2188 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2189 
2190 	return 0;
2191 }
2192 
2193 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2194 {
2195 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2196 }
2197 
2198 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2199 {
2200 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2201 	int offset;
2202 
2203 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2204 		offset = (flag == SIT_BITMAP) ?
2205 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2206 		/*
2207 		 * if large_nat_bitmap feature is enabled, leave checksum
2208 		 * protection for all nat/sit bitmaps.
2209 		 */
2210 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2211 	}
2212 
2213 	if (__cp_payload(sbi) > 0) {
2214 		if (flag == NAT_BITMAP)
2215 			return &ckpt->sit_nat_version_bitmap;
2216 		else
2217 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2218 	} else {
2219 		offset = (flag == NAT_BITMAP) ?
2220 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2221 		return &ckpt->sit_nat_version_bitmap + offset;
2222 	}
2223 }
2224 
2225 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2226 {
2227 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2228 
2229 	if (sbi->cur_cp_pack == 2)
2230 		start_addr += sbi->blocks_per_seg;
2231 	return start_addr;
2232 }
2233 
2234 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2235 {
2236 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2237 
2238 	if (sbi->cur_cp_pack == 1)
2239 		start_addr += sbi->blocks_per_seg;
2240 	return start_addr;
2241 }
2242 
2243 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2244 {
2245 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2246 }
2247 
2248 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2249 {
2250 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2251 }
2252 
2253 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2254 					struct inode *inode, bool is_inode)
2255 {
2256 	block_t	valid_block_count;
2257 	unsigned int valid_node_count, user_block_count;
2258 	int err;
2259 
2260 	if (is_inode) {
2261 		if (inode) {
2262 			err = dquot_alloc_inode(inode);
2263 			if (err)
2264 				return err;
2265 		}
2266 	} else {
2267 		err = dquot_reserve_block(inode, 1);
2268 		if (err)
2269 			return err;
2270 	}
2271 
2272 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2273 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2274 		goto enospc;
2275 	}
2276 
2277 	spin_lock(&sbi->stat_lock);
2278 
2279 	valid_block_count = sbi->total_valid_block_count +
2280 					sbi->current_reserved_blocks + 1;
2281 
2282 	if (!__allow_reserved_blocks(sbi, inode, false))
2283 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2284 	user_block_count = sbi->user_block_count;
2285 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2286 		user_block_count -= sbi->unusable_block_count;
2287 
2288 	if (unlikely(valid_block_count > user_block_count)) {
2289 		spin_unlock(&sbi->stat_lock);
2290 		goto enospc;
2291 	}
2292 
2293 	valid_node_count = sbi->total_valid_node_count + 1;
2294 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2295 		spin_unlock(&sbi->stat_lock);
2296 		goto enospc;
2297 	}
2298 
2299 	sbi->total_valid_node_count++;
2300 	sbi->total_valid_block_count++;
2301 	spin_unlock(&sbi->stat_lock);
2302 
2303 	if (inode) {
2304 		if (is_inode)
2305 			f2fs_mark_inode_dirty_sync(inode, true);
2306 		else
2307 			f2fs_i_blocks_write(inode, 1, true, true);
2308 	}
2309 
2310 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2311 	return 0;
2312 
2313 enospc:
2314 	if (is_inode) {
2315 		if (inode)
2316 			dquot_free_inode(inode);
2317 	} else {
2318 		dquot_release_reservation_block(inode, 1);
2319 	}
2320 	return -ENOSPC;
2321 }
2322 
2323 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2324 					struct inode *inode, bool is_inode)
2325 {
2326 	spin_lock(&sbi->stat_lock);
2327 
2328 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2329 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2330 
2331 	sbi->total_valid_node_count--;
2332 	sbi->total_valid_block_count--;
2333 	if (sbi->reserved_blocks &&
2334 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2335 		sbi->current_reserved_blocks++;
2336 
2337 	spin_unlock(&sbi->stat_lock);
2338 
2339 	if (is_inode) {
2340 		dquot_free_inode(inode);
2341 	} else {
2342 		if (unlikely(inode->i_blocks == 0)) {
2343 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2344 				  inode->i_ino,
2345 				  (unsigned long long)inode->i_blocks);
2346 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2347 			return;
2348 		}
2349 		f2fs_i_blocks_write(inode, 1, false, true);
2350 	}
2351 }
2352 
2353 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2354 {
2355 	return sbi->total_valid_node_count;
2356 }
2357 
2358 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2359 {
2360 	percpu_counter_inc(&sbi->total_valid_inode_count);
2361 }
2362 
2363 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2364 {
2365 	percpu_counter_dec(&sbi->total_valid_inode_count);
2366 }
2367 
2368 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2369 {
2370 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2371 }
2372 
2373 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2374 						pgoff_t index, bool for_write)
2375 {
2376 	struct page *page;
2377 
2378 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2379 		if (!for_write)
2380 			page = find_get_page_flags(mapping, index,
2381 							FGP_LOCK | FGP_ACCESSED);
2382 		else
2383 			page = find_lock_page(mapping, index);
2384 		if (page)
2385 			return page;
2386 
2387 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2388 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2389 							FAULT_PAGE_ALLOC);
2390 			return NULL;
2391 		}
2392 	}
2393 
2394 	if (!for_write)
2395 		return grab_cache_page(mapping, index);
2396 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2397 }
2398 
2399 static inline struct page *f2fs_pagecache_get_page(
2400 				struct address_space *mapping, pgoff_t index,
2401 				int fgp_flags, gfp_t gfp_mask)
2402 {
2403 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2404 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2405 		return NULL;
2406 	}
2407 
2408 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2409 }
2410 
2411 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2412 {
2413 	char *src_kaddr = kmap(src);
2414 	char *dst_kaddr = kmap(dst);
2415 
2416 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2417 	kunmap(dst);
2418 	kunmap(src);
2419 }
2420 
2421 static inline void f2fs_put_page(struct page *page, int unlock)
2422 {
2423 	if (!page)
2424 		return;
2425 
2426 	if (unlock) {
2427 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2428 		unlock_page(page);
2429 	}
2430 	put_page(page);
2431 }
2432 
2433 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2434 {
2435 	if (dn->node_page)
2436 		f2fs_put_page(dn->node_page, 1);
2437 	if (dn->inode_page && dn->node_page != dn->inode_page)
2438 		f2fs_put_page(dn->inode_page, 0);
2439 	dn->node_page = NULL;
2440 	dn->inode_page = NULL;
2441 }
2442 
2443 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2444 					size_t size)
2445 {
2446 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2447 }
2448 
2449 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2450 						gfp_t flags)
2451 {
2452 	void *entry;
2453 
2454 	entry = kmem_cache_alloc(cachep, flags);
2455 	if (!entry)
2456 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2457 	return entry;
2458 }
2459 
2460 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2461 {
2462 	if (sbi->gc_mode == GC_URGENT_HIGH)
2463 		return true;
2464 
2465 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2466 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2467 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2468 		get_pages(sbi, F2FS_DIO_READ) ||
2469 		get_pages(sbi, F2FS_DIO_WRITE))
2470 		return false;
2471 
2472 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2473 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2474 		return false;
2475 
2476 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2477 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2478 		return false;
2479 
2480 	if (sbi->gc_mode == GC_URGENT_LOW &&
2481 			(type == DISCARD_TIME || type == GC_TIME))
2482 		return true;
2483 
2484 	return f2fs_time_over(sbi, type);
2485 }
2486 
2487 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2488 				unsigned long index, void *item)
2489 {
2490 	while (radix_tree_insert(root, index, item))
2491 		cond_resched();
2492 }
2493 
2494 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2495 
2496 static inline bool IS_INODE(struct page *page)
2497 {
2498 	struct f2fs_node *p = F2FS_NODE(page);
2499 
2500 	return RAW_IS_INODE(p);
2501 }
2502 
2503 static inline int offset_in_addr(struct f2fs_inode *i)
2504 {
2505 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2506 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2507 }
2508 
2509 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2510 {
2511 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2512 }
2513 
2514 static inline int f2fs_has_extra_attr(struct inode *inode);
2515 static inline block_t data_blkaddr(struct inode *inode,
2516 			struct page *node_page, unsigned int offset)
2517 {
2518 	struct f2fs_node *raw_node;
2519 	__le32 *addr_array;
2520 	int base = 0;
2521 	bool is_inode = IS_INODE(node_page);
2522 
2523 	raw_node = F2FS_NODE(node_page);
2524 
2525 	if (is_inode) {
2526 		if (!inode)
2527 			/* from GC path only */
2528 			base = offset_in_addr(&raw_node->i);
2529 		else if (f2fs_has_extra_attr(inode))
2530 			base = get_extra_isize(inode);
2531 	}
2532 
2533 	addr_array = blkaddr_in_node(raw_node);
2534 	return le32_to_cpu(addr_array[base + offset]);
2535 }
2536 
2537 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2538 {
2539 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2540 }
2541 
2542 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2543 {
2544 	int mask;
2545 
2546 	addr += (nr >> 3);
2547 	mask = 1 << (7 - (nr & 0x07));
2548 	return mask & *addr;
2549 }
2550 
2551 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2552 {
2553 	int mask;
2554 
2555 	addr += (nr >> 3);
2556 	mask = 1 << (7 - (nr & 0x07));
2557 	*addr |= mask;
2558 }
2559 
2560 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2561 {
2562 	int mask;
2563 
2564 	addr += (nr >> 3);
2565 	mask = 1 << (7 - (nr & 0x07));
2566 	*addr &= ~mask;
2567 }
2568 
2569 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2570 {
2571 	int mask;
2572 	int ret;
2573 
2574 	addr += (nr >> 3);
2575 	mask = 1 << (7 - (nr & 0x07));
2576 	ret = mask & *addr;
2577 	*addr |= mask;
2578 	return ret;
2579 }
2580 
2581 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2582 {
2583 	int mask;
2584 	int ret;
2585 
2586 	addr += (nr >> 3);
2587 	mask = 1 << (7 - (nr & 0x07));
2588 	ret = mask & *addr;
2589 	*addr &= ~mask;
2590 	return ret;
2591 }
2592 
2593 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2594 {
2595 	int mask;
2596 
2597 	addr += (nr >> 3);
2598 	mask = 1 << (7 - (nr & 0x07));
2599 	*addr ^= mask;
2600 }
2601 
2602 /*
2603  * On-disk inode flags (f2fs_inode::i_flags)
2604  */
2605 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2606 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2607 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2608 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2609 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2610 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2611 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2612 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2613 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2614 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2615 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2616 
2617 /* Flags that should be inherited by new inodes from their parent. */
2618 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2619 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2620 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2621 
2622 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2623 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2624 				F2FS_CASEFOLD_FL))
2625 
2626 /* Flags that are appropriate for non-directories/regular files. */
2627 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2628 
2629 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2630 {
2631 	if (S_ISDIR(mode))
2632 		return flags;
2633 	else if (S_ISREG(mode))
2634 		return flags & F2FS_REG_FLMASK;
2635 	else
2636 		return flags & F2FS_OTHER_FLMASK;
2637 }
2638 
2639 static inline void __mark_inode_dirty_flag(struct inode *inode,
2640 						int flag, bool set)
2641 {
2642 	switch (flag) {
2643 	case FI_INLINE_XATTR:
2644 	case FI_INLINE_DATA:
2645 	case FI_INLINE_DENTRY:
2646 	case FI_NEW_INODE:
2647 		if (set)
2648 			return;
2649 		/* fall through */
2650 	case FI_DATA_EXIST:
2651 	case FI_INLINE_DOTS:
2652 	case FI_PIN_FILE:
2653 		f2fs_mark_inode_dirty_sync(inode, true);
2654 	}
2655 }
2656 
2657 static inline void set_inode_flag(struct inode *inode, int flag)
2658 {
2659 	set_bit(flag, F2FS_I(inode)->flags);
2660 	__mark_inode_dirty_flag(inode, flag, true);
2661 }
2662 
2663 static inline int is_inode_flag_set(struct inode *inode, int flag)
2664 {
2665 	return test_bit(flag, F2FS_I(inode)->flags);
2666 }
2667 
2668 static inline void clear_inode_flag(struct inode *inode, int flag)
2669 {
2670 	clear_bit(flag, F2FS_I(inode)->flags);
2671 	__mark_inode_dirty_flag(inode, flag, false);
2672 }
2673 
2674 static inline bool f2fs_verity_in_progress(struct inode *inode)
2675 {
2676 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2677 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2678 }
2679 
2680 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2681 {
2682 	F2FS_I(inode)->i_acl_mode = mode;
2683 	set_inode_flag(inode, FI_ACL_MODE);
2684 	f2fs_mark_inode_dirty_sync(inode, false);
2685 }
2686 
2687 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2688 {
2689 	if (inc)
2690 		inc_nlink(inode);
2691 	else
2692 		drop_nlink(inode);
2693 	f2fs_mark_inode_dirty_sync(inode, true);
2694 }
2695 
2696 static inline void f2fs_i_blocks_write(struct inode *inode,
2697 					block_t diff, bool add, bool claim)
2698 {
2699 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2700 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2701 
2702 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2703 	if (add) {
2704 		if (claim)
2705 			dquot_claim_block(inode, diff);
2706 		else
2707 			dquot_alloc_block_nofail(inode, diff);
2708 	} else {
2709 		dquot_free_block(inode, diff);
2710 	}
2711 
2712 	f2fs_mark_inode_dirty_sync(inode, true);
2713 	if (clean || recover)
2714 		set_inode_flag(inode, FI_AUTO_RECOVER);
2715 }
2716 
2717 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2718 {
2719 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2720 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2721 
2722 	if (i_size_read(inode) == i_size)
2723 		return;
2724 
2725 	i_size_write(inode, i_size);
2726 	f2fs_mark_inode_dirty_sync(inode, true);
2727 	if (clean || recover)
2728 		set_inode_flag(inode, FI_AUTO_RECOVER);
2729 }
2730 
2731 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2732 {
2733 	F2FS_I(inode)->i_current_depth = depth;
2734 	f2fs_mark_inode_dirty_sync(inode, true);
2735 }
2736 
2737 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2738 					unsigned int count)
2739 {
2740 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2741 	f2fs_mark_inode_dirty_sync(inode, true);
2742 }
2743 
2744 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2745 {
2746 	F2FS_I(inode)->i_xattr_nid = xnid;
2747 	f2fs_mark_inode_dirty_sync(inode, true);
2748 }
2749 
2750 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2751 {
2752 	F2FS_I(inode)->i_pino = pino;
2753 	f2fs_mark_inode_dirty_sync(inode, true);
2754 }
2755 
2756 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2757 {
2758 	struct f2fs_inode_info *fi = F2FS_I(inode);
2759 
2760 	if (ri->i_inline & F2FS_INLINE_XATTR)
2761 		set_bit(FI_INLINE_XATTR, fi->flags);
2762 	if (ri->i_inline & F2FS_INLINE_DATA)
2763 		set_bit(FI_INLINE_DATA, fi->flags);
2764 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2765 		set_bit(FI_INLINE_DENTRY, fi->flags);
2766 	if (ri->i_inline & F2FS_DATA_EXIST)
2767 		set_bit(FI_DATA_EXIST, fi->flags);
2768 	if (ri->i_inline & F2FS_INLINE_DOTS)
2769 		set_bit(FI_INLINE_DOTS, fi->flags);
2770 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2771 		set_bit(FI_EXTRA_ATTR, fi->flags);
2772 	if (ri->i_inline & F2FS_PIN_FILE)
2773 		set_bit(FI_PIN_FILE, fi->flags);
2774 }
2775 
2776 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2777 {
2778 	ri->i_inline = 0;
2779 
2780 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2781 		ri->i_inline |= F2FS_INLINE_XATTR;
2782 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2783 		ri->i_inline |= F2FS_INLINE_DATA;
2784 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2785 		ri->i_inline |= F2FS_INLINE_DENTRY;
2786 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2787 		ri->i_inline |= F2FS_DATA_EXIST;
2788 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2789 		ri->i_inline |= F2FS_INLINE_DOTS;
2790 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2791 		ri->i_inline |= F2FS_EXTRA_ATTR;
2792 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2793 		ri->i_inline |= F2FS_PIN_FILE;
2794 }
2795 
2796 static inline int f2fs_has_extra_attr(struct inode *inode)
2797 {
2798 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2799 }
2800 
2801 static inline int f2fs_has_inline_xattr(struct inode *inode)
2802 {
2803 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2804 }
2805 
2806 static inline int f2fs_compressed_file(struct inode *inode)
2807 {
2808 	return S_ISREG(inode->i_mode) &&
2809 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2810 }
2811 
2812 static inline unsigned int addrs_per_inode(struct inode *inode)
2813 {
2814 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2815 				get_inline_xattr_addrs(inode);
2816 
2817 	if (!f2fs_compressed_file(inode))
2818 		return addrs;
2819 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2820 }
2821 
2822 static inline unsigned int addrs_per_block(struct inode *inode)
2823 {
2824 	if (!f2fs_compressed_file(inode))
2825 		return DEF_ADDRS_PER_BLOCK;
2826 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2827 }
2828 
2829 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2830 {
2831 	struct f2fs_inode *ri = F2FS_INODE(page);
2832 
2833 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2834 					get_inline_xattr_addrs(inode)]);
2835 }
2836 
2837 static inline int inline_xattr_size(struct inode *inode)
2838 {
2839 	if (f2fs_has_inline_xattr(inode))
2840 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2841 	return 0;
2842 }
2843 
2844 static inline int f2fs_has_inline_data(struct inode *inode)
2845 {
2846 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2847 }
2848 
2849 static inline int f2fs_exist_data(struct inode *inode)
2850 {
2851 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2852 }
2853 
2854 static inline int f2fs_has_inline_dots(struct inode *inode)
2855 {
2856 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2857 }
2858 
2859 static inline int f2fs_is_mmap_file(struct inode *inode)
2860 {
2861 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2862 }
2863 
2864 static inline bool f2fs_is_pinned_file(struct inode *inode)
2865 {
2866 	return is_inode_flag_set(inode, FI_PIN_FILE);
2867 }
2868 
2869 static inline bool f2fs_is_atomic_file(struct inode *inode)
2870 {
2871 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2872 }
2873 
2874 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2875 {
2876 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2877 }
2878 
2879 static inline bool f2fs_is_volatile_file(struct inode *inode)
2880 {
2881 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2882 }
2883 
2884 static inline bool f2fs_is_first_block_written(struct inode *inode)
2885 {
2886 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2887 }
2888 
2889 static inline bool f2fs_is_drop_cache(struct inode *inode)
2890 {
2891 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2892 }
2893 
2894 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2895 {
2896 	struct f2fs_inode *ri = F2FS_INODE(page);
2897 	int extra_size = get_extra_isize(inode);
2898 
2899 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2900 }
2901 
2902 static inline int f2fs_has_inline_dentry(struct inode *inode)
2903 {
2904 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2905 }
2906 
2907 static inline int is_file(struct inode *inode, int type)
2908 {
2909 	return F2FS_I(inode)->i_advise & type;
2910 }
2911 
2912 static inline void set_file(struct inode *inode, int type)
2913 {
2914 	F2FS_I(inode)->i_advise |= type;
2915 	f2fs_mark_inode_dirty_sync(inode, true);
2916 }
2917 
2918 static inline void clear_file(struct inode *inode, int type)
2919 {
2920 	F2FS_I(inode)->i_advise &= ~type;
2921 	f2fs_mark_inode_dirty_sync(inode, true);
2922 }
2923 
2924 static inline bool f2fs_is_time_consistent(struct inode *inode)
2925 {
2926 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2927 		return false;
2928 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2929 		return false;
2930 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2931 		return false;
2932 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2933 						&F2FS_I(inode)->i_crtime))
2934 		return false;
2935 	return true;
2936 }
2937 
2938 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2939 {
2940 	bool ret;
2941 
2942 	if (dsync) {
2943 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2944 
2945 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2946 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2947 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2948 		return ret;
2949 	}
2950 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2951 			file_keep_isize(inode) ||
2952 			i_size_read(inode) & ~PAGE_MASK)
2953 		return false;
2954 
2955 	if (!f2fs_is_time_consistent(inode))
2956 		return false;
2957 
2958 	spin_lock(&F2FS_I(inode)->i_size_lock);
2959 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2960 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2961 
2962 	return ret;
2963 }
2964 
2965 static inline bool f2fs_readonly(struct super_block *sb)
2966 {
2967 	return sb_rdonly(sb);
2968 }
2969 
2970 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2971 {
2972 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2973 }
2974 
2975 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2976 {
2977 	if (len == 1 && name[0] == '.')
2978 		return true;
2979 
2980 	if (len == 2 && name[0] == '.' && name[1] == '.')
2981 		return true;
2982 
2983 	return false;
2984 }
2985 
2986 static inline bool f2fs_may_extent_tree(struct inode *inode)
2987 {
2988 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2989 
2990 	if (!test_opt(sbi, EXTENT_CACHE) ||
2991 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2992 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2993 		return false;
2994 
2995 	/*
2996 	 * for recovered files during mount do not create extents
2997 	 * if shrinker is not registered.
2998 	 */
2999 	if (list_empty(&sbi->s_list))
3000 		return false;
3001 
3002 	return S_ISREG(inode->i_mode);
3003 }
3004 
3005 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3006 					size_t size, gfp_t flags)
3007 {
3008 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3009 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3010 		return NULL;
3011 	}
3012 
3013 	return kmalloc(size, flags);
3014 }
3015 
3016 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3017 					size_t size, gfp_t flags)
3018 {
3019 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3020 }
3021 
3022 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3023 					size_t size, gfp_t flags)
3024 {
3025 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3026 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3027 		return NULL;
3028 	}
3029 
3030 	return kvmalloc(size, flags);
3031 }
3032 
3033 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3034 					size_t size, gfp_t flags)
3035 {
3036 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3037 }
3038 
3039 static inline int get_extra_isize(struct inode *inode)
3040 {
3041 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3042 }
3043 
3044 static inline int get_inline_xattr_addrs(struct inode *inode)
3045 {
3046 	return F2FS_I(inode)->i_inline_xattr_size;
3047 }
3048 
3049 #define f2fs_get_inode_mode(i) \
3050 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3051 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3052 
3053 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3054 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3055 	offsetof(struct f2fs_inode, i_extra_isize))	\
3056 
3057 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3058 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3059 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3060 		sizeof((f2fs_inode)->field))			\
3061 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3062 
3063 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3064 #define MIN_IOSTAT_PERIOD_MS		100
3065 /* maximum period of iostat tracing is 1 day */
3066 #define MAX_IOSTAT_PERIOD_MS		8640000
3067 
3068 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3069 {
3070 	int i;
3071 
3072 	spin_lock(&sbi->iostat_lock);
3073 	for (i = 0; i < NR_IO_TYPE; i++) {
3074 		sbi->rw_iostat[i] = 0;
3075 		sbi->prev_rw_iostat[i] = 0;
3076 	}
3077 	spin_unlock(&sbi->iostat_lock);
3078 }
3079 
3080 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3081 
3082 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3083 			enum iostat_type type, unsigned long long io_bytes)
3084 {
3085 	if (!sbi->iostat_enable)
3086 		return;
3087 	spin_lock(&sbi->iostat_lock);
3088 	sbi->rw_iostat[type] += io_bytes;
3089 
3090 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3091 		sbi->rw_iostat[APP_BUFFERED_IO] =
3092 			sbi->rw_iostat[APP_WRITE_IO] -
3093 			sbi->rw_iostat[APP_DIRECT_IO];
3094 
3095 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3096 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3097 			sbi->rw_iostat[APP_READ_IO] -
3098 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3099 	spin_unlock(&sbi->iostat_lock);
3100 
3101 	f2fs_record_iostat(sbi);
3102 }
3103 
3104 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3105 
3106 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3107 
3108 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3109 					block_t blkaddr, int type);
3110 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3111 					block_t blkaddr, int type)
3112 {
3113 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3114 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3115 			 blkaddr, type);
3116 		f2fs_bug_on(sbi, 1);
3117 	}
3118 }
3119 
3120 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3121 {
3122 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3123 			blkaddr == COMPRESS_ADDR)
3124 		return false;
3125 	return true;
3126 }
3127 
3128 static inline void f2fs_set_page_private(struct page *page,
3129 						unsigned long data)
3130 {
3131 	if (PagePrivate(page))
3132 		return;
3133 
3134 	attach_page_private(page, (void *)data);
3135 }
3136 
3137 static inline void f2fs_clear_page_private(struct page *page)
3138 {
3139 	detach_page_private(page);
3140 }
3141 
3142 /*
3143  * file.c
3144  */
3145 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3146 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3147 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3148 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3149 int f2fs_truncate(struct inode *inode);
3150 int f2fs_getattr(const struct path *path, struct kstat *stat,
3151 			u32 request_mask, unsigned int flags);
3152 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3153 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3154 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3155 int f2fs_precache_extents(struct inode *inode);
3156 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3157 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3158 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3159 int f2fs_pin_file_control(struct inode *inode, bool inc);
3160 
3161 /*
3162  * inode.c
3163  */
3164 void f2fs_set_inode_flags(struct inode *inode);
3165 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3166 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3167 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3168 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3169 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3170 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3171 void f2fs_update_inode_page(struct inode *inode);
3172 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3173 void f2fs_evict_inode(struct inode *inode);
3174 void f2fs_handle_failed_inode(struct inode *inode);
3175 
3176 /*
3177  * namei.c
3178  */
3179 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3180 							bool hot, bool set);
3181 struct dentry *f2fs_get_parent(struct dentry *child);
3182 
3183 /*
3184  * dir.c
3185  */
3186 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3187 int f2fs_init_casefolded_name(const struct inode *dir,
3188 			      struct f2fs_filename *fname);
3189 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3190 			int lookup, struct f2fs_filename *fname);
3191 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3192 			struct f2fs_filename *fname);
3193 void f2fs_free_filename(struct f2fs_filename *fname);
3194 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3195 			const struct f2fs_filename *fname, int *max_slots);
3196 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3197 			unsigned int start_pos, struct fscrypt_str *fstr);
3198 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3199 			struct f2fs_dentry_ptr *d);
3200 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3201 			const struct f2fs_filename *fname, struct page *dpage);
3202 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3203 			unsigned int current_depth);
3204 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3205 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3206 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3207 					 const struct f2fs_filename *fname,
3208 					 struct page **res_page);
3209 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3210 			const struct qstr *child, struct page **res_page);
3211 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3212 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3213 			struct page **page);
3214 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3215 			struct page *page, struct inode *inode);
3216 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3217 			  const struct f2fs_filename *fname);
3218 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3219 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3220 			unsigned int bit_pos);
3221 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3222 			struct inode *inode, nid_t ino, umode_t mode);
3223 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3224 			struct inode *inode, nid_t ino, umode_t mode);
3225 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3226 			struct inode *inode, nid_t ino, umode_t mode);
3227 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3228 			struct inode *dir, struct inode *inode);
3229 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3230 bool f2fs_empty_dir(struct inode *dir);
3231 
3232 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3233 {
3234 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3235 				inode, inode->i_ino, inode->i_mode);
3236 }
3237 
3238 /*
3239  * super.c
3240  */
3241 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3242 void f2fs_inode_synced(struct inode *inode);
3243 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3244 int f2fs_quota_sync(struct super_block *sb, int type);
3245 void f2fs_quota_off_umount(struct super_block *sb);
3246 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3247 int f2fs_sync_fs(struct super_block *sb, int sync);
3248 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3249 
3250 /*
3251  * hash.c
3252  */
3253 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3254 
3255 /*
3256  * node.c
3257  */
3258 struct dnode_of_data;
3259 struct node_info;
3260 
3261 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3262 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3263 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3264 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3265 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3266 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3267 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3268 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3269 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3270 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3271 						struct node_info *ni);
3272 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3273 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3274 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3275 int f2fs_truncate_xattr_node(struct inode *inode);
3276 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3277 					unsigned int seq_id);
3278 int f2fs_remove_inode_page(struct inode *inode);
3279 struct page *f2fs_new_inode_page(struct inode *inode);
3280 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3281 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3282 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3283 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3284 int f2fs_move_node_page(struct page *node_page, int gc_type);
3285 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3286 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3287 			struct writeback_control *wbc, bool atomic,
3288 			unsigned int *seq_id);
3289 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3290 			struct writeback_control *wbc,
3291 			bool do_balance, enum iostat_type io_type);
3292 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3293 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3294 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3295 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3296 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3297 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3298 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3299 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3300 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3301 			unsigned int segno, struct f2fs_summary_block *sum);
3302 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3303 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3304 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3305 int __init f2fs_create_node_manager_caches(void);
3306 void f2fs_destroy_node_manager_caches(void);
3307 
3308 /*
3309  * segment.c
3310  */
3311 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3312 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3313 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3314 void f2fs_drop_inmem_pages(struct inode *inode);
3315 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3316 int f2fs_commit_inmem_pages(struct inode *inode);
3317 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3318 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3319 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3320 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3321 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3322 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3323 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3324 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3325 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3326 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3327 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3328 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3329 					struct cp_control *cpc);
3330 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3331 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3332 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3333 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3334 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3335 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3336 					unsigned int start, unsigned int end);
3337 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3338 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3339 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3340 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3341 					struct cp_control *cpc);
3342 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3343 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3344 					block_t blk_addr);
3345 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3346 						enum iostat_type io_type);
3347 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3348 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3349 			struct f2fs_io_info *fio);
3350 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3351 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3352 			block_t old_blkaddr, block_t new_blkaddr,
3353 			bool recover_curseg, bool recover_newaddr);
3354 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3355 			block_t old_addr, block_t new_addr,
3356 			unsigned char version, bool recover_curseg,
3357 			bool recover_newaddr);
3358 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3359 			block_t old_blkaddr, block_t *new_blkaddr,
3360 			struct f2fs_summary *sum, int type,
3361 			struct f2fs_io_info *fio);
3362 void f2fs_wait_on_page_writeback(struct page *page,
3363 			enum page_type type, bool ordered, bool locked);
3364 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3365 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3366 								block_t len);
3367 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3368 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3369 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3370 			unsigned int val, int alloc);
3371 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3372 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3373 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3374 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3375 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3376 int __init f2fs_create_segment_manager_caches(void);
3377 void f2fs_destroy_segment_manager_caches(void);
3378 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3379 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3380 			enum page_type type, enum temp_type temp);
3381 
3382 /*
3383  * checkpoint.c
3384  */
3385 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3386 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3387 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3388 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3389 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3390 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3391 					block_t blkaddr, int type);
3392 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3393 			int type, bool sync);
3394 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3395 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3396 			long nr_to_write, enum iostat_type io_type);
3397 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3398 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3399 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3400 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3401 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3402 					unsigned int devidx, int type);
3403 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3404 					unsigned int devidx, int type);
3405 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3406 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3407 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3408 void f2fs_add_orphan_inode(struct inode *inode);
3409 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3410 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3411 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3412 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3413 void f2fs_remove_dirty_inode(struct inode *inode);
3414 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3415 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3416 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3417 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3418 int __init f2fs_create_checkpoint_caches(void);
3419 void f2fs_destroy_checkpoint_caches(void);
3420 
3421 /*
3422  * data.c
3423  */
3424 int __init f2fs_init_bioset(void);
3425 void f2fs_destroy_bioset(void);
3426 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3427 int f2fs_init_bio_entry_cache(void);
3428 void f2fs_destroy_bio_entry_cache(void);
3429 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3430 				struct bio *bio, enum page_type type);
3431 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3432 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3433 				struct inode *inode, struct page *page,
3434 				nid_t ino, enum page_type type);
3435 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3436 					struct bio **bio, struct page *page);
3437 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3438 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3439 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3440 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3441 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3442 			block_t blk_addr, struct bio *bio);
3443 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3444 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3445 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3446 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3447 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3448 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3449 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3450 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3451 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3452 			int op_flags, bool for_write);
3453 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3454 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3455 			bool for_write);
3456 struct page *f2fs_get_new_data_page(struct inode *inode,
3457 			struct page *ipage, pgoff_t index, bool new_i_size);
3458 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3459 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3460 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3461 			int create, int flag);
3462 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3463 			u64 start, u64 len);
3464 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3465 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3466 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3467 int f2fs_write_single_data_page(struct page *page, int *submitted,
3468 				struct bio **bio, sector_t *last_block,
3469 				struct writeback_control *wbc,
3470 				enum iostat_type io_type,
3471 				int compr_blocks);
3472 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3473 			unsigned int length);
3474 int f2fs_release_page(struct page *page, gfp_t wait);
3475 #ifdef CONFIG_MIGRATION
3476 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3477 			struct page *page, enum migrate_mode mode);
3478 #endif
3479 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3480 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3481 int f2fs_init_post_read_processing(void);
3482 void f2fs_destroy_post_read_processing(void);
3483 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3484 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3485 
3486 /*
3487  * gc.c
3488  */
3489 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3490 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3491 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3492 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3493 			unsigned int segno);
3494 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3495 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3496 
3497 /*
3498  * recovery.c
3499  */
3500 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3501 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3502 
3503 /*
3504  * debug.c
3505  */
3506 #ifdef CONFIG_F2FS_STAT_FS
3507 struct f2fs_stat_info {
3508 	struct list_head stat_list;
3509 	struct f2fs_sb_info *sbi;
3510 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3511 	int main_area_segs, main_area_sections, main_area_zones;
3512 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3513 	unsigned long long hit_total, total_ext;
3514 	int ext_tree, zombie_tree, ext_node;
3515 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3516 	int ndirty_data, ndirty_qdata;
3517 	int inmem_pages;
3518 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3519 	int nats, dirty_nats, sits, dirty_sits;
3520 	int free_nids, avail_nids, alloc_nids;
3521 	int total_count, utilization;
3522 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3523 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3524 	int nr_dio_read, nr_dio_write;
3525 	unsigned int io_skip_bggc, other_skip_bggc;
3526 	int nr_flushing, nr_flushed, flush_list_empty;
3527 	int nr_discarding, nr_discarded;
3528 	int nr_discard_cmd;
3529 	unsigned int undiscard_blks;
3530 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3531 	int compr_inode, compr_blocks;
3532 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3533 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3534 	unsigned int bimodal, avg_vblocks;
3535 	int util_free, util_valid, util_invalid;
3536 	int rsvd_segs, overp_segs;
3537 	int dirty_count, node_pages, meta_pages;
3538 	int prefree_count, call_count, cp_count, bg_cp_count;
3539 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3540 	int bg_node_segs, bg_data_segs;
3541 	int tot_blks, data_blks, node_blks;
3542 	int bg_data_blks, bg_node_blks;
3543 	unsigned long long skipped_atomic_files[2];
3544 	int curseg[NR_CURSEG_TYPE];
3545 	int cursec[NR_CURSEG_TYPE];
3546 	int curzone[NR_CURSEG_TYPE];
3547 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3548 	unsigned int full_seg[NR_CURSEG_TYPE];
3549 	unsigned int valid_blks[NR_CURSEG_TYPE];
3550 
3551 	unsigned int meta_count[META_MAX];
3552 	unsigned int segment_count[2];
3553 	unsigned int block_count[2];
3554 	unsigned int inplace_count;
3555 	unsigned long long base_mem, cache_mem, page_mem;
3556 };
3557 
3558 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3559 {
3560 	return (struct f2fs_stat_info *)sbi->stat_info;
3561 }
3562 
3563 #define stat_inc_cp_count(si)		((si)->cp_count++)
3564 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3565 #define stat_inc_call_count(si)		((si)->call_count++)
3566 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3567 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3568 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3569 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3570 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3571 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3572 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3573 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3574 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3575 #define stat_inc_inline_xattr(inode)					\
3576 	do {								\
3577 		if (f2fs_has_inline_xattr(inode))			\
3578 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3579 	} while (0)
3580 #define stat_dec_inline_xattr(inode)					\
3581 	do {								\
3582 		if (f2fs_has_inline_xattr(inode))			\
3583 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3584 	} while (0)
3585 #define stat_inc_inline_inode(inode)					\
3586 	do {								\
3587 		if (f2fs_has_inline_data(inode))			\
3588 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3589 	} while (0)
3590 #define stat_dec_inline_inode(inode)					\
3591 	do {								\
3592 		if (f2fs_has_inline_data(inode))			\
3593 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3594 	} while (0)
3595 #define stat_inc_inline_dir(inode)					\
3596 	do {								\
3597 		if (f2fs_has_inline_dentry(inode))			\
3598 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3599 	} while (0)
3600 #define stat_dec_inline_dir(inode)					\
3601 	do {								\
3602 		if (f2fs_has_inline_dentry(inode))			\
3603 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3604 	} while (0)
3605 #define stat_inc_compr_inode(inode)					\
3606 	do {								\
3607 		if (f2fs_compressed_file(inode))			\
3608 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3609 	} while (0)
3610 #define stat_dec_compr_inode(inode)					\
3611 	do {								\
3612 		if (f2fs_compressed_file(inode))			\
3613 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3614 	} while (0)
3615 #define stat_add_compr_blocks(inode, blocks)				\
3616 		(atomic_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3617 #define stat_sub_compr_blocks(inode, blocks)				\
3618 		(atomic_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3619 #define stat_inc_meta_count(sbi, blkaddr)				\
3620 	do {								\
3621 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3622 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3623 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3624 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3625 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3626 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3627 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3628 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3629 	} while (0)
3630 #define stat_inc_seg_type(sbi, curseg)					\
3631 		((sbi)->segment_count[(curseg)->alloc_type]++)
3632 #define stat_inc_block_count(sbi, curseg)				\
3633 		((sbi)->block_count[(curseg)->alloc_type]++)
3634 #define stat_inc_inplace_blocks(sbi)					\
3635 		(atomic_inc(&(sbi)->inplace_count))
3636 #define stat_update_max_atomic_write(inode)				\
3637 	do {								\
3638 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3639 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3640 		if (cur > max)						\
3641 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3642 	} while (0)
3643 #define stat_inc_volatile_write(inode)					\
3644 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3645 #define stat_dec_volatile_write(inode)					\
3646 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3647 #define stat_update_max_volatile_write(inode)				\
3648 	do {								\
3649 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3650 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3651 		if (cur > max)						\
3652 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3653 	} while (0)
3654 #define stat_inc_seg_count(sbi, type, gc_type)				\
3655 	do {								\
3656 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3657 		si->tot_segs++;						\
3658 		if ((type) == SUM_TYPE_DATA) {				\
3659 			si->data_segs++;				\
3660 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3661 		} else {						\
3662 			si->node_segs++;				\
3663 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3664 		}							\
3665 	} while (0)
3666 
3667 #define stat_inc_tot_blk_count(si, blks)				\
3668 	((si)->tot_blks += (blks))
3669 
3670 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3671 	do {								\
3672 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3673 		stat_inc_tot_blk_count(si, blks);			\
3674 		si->data_blks += (blks);				\
3675 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3676 	} while (0)
3677 
3678 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3679 	do {								\
3680 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3681 		stat_inc_tot_blk_count(si, blks);			\
3682 		si->node_blks += (blks);				\
3683 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3684 	} while (0)
3685 
3686 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3687 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3688 void __init f2fs_create_root_stats(void);
3689 void f2fs_destroy_root_stats(void);
3690 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3691 #else
3692 #define stat_inc_cp_count(si)				do { } while (0)
3693 #define stat_inc_bg_cp_count(si)			do { } while (0)
3694 #define stat_inc_call_count(si)				do { } while (0)
3695 #define stat_inc_bggc_count(si)				do { } while (0)
3696 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3697 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3698 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3699 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3700 #define stat_inc_total_hit(sbi)				do { } while (0)
3701 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3702 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3703 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3704 #define stat_inc_inline_xattr(inode)			do { } while (0)
3705 #define stat_dec_inline_xattr(inode)			do { } while (0)
3706 #define stat_inc_inline_inode(inode)			do { } while (0)
3707 #define stat_dec_inline_inode(inode)			do { } while (0)
3708 #define stat_inc_inline_dir(inode)			do { } while (0)
3709 #define stat_dec_inline_dir(inode)			do { } while (0)
3710 #define stat_inc_compr_inode(inode)			do { } while (0)
3711 #define stat_dec_compr_inode(inode)			do { } while (0)
3712 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3713 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3714 #define stat_inc_atomic_write(inode)			do { } while (0)
3715 #define stat_dec_atomic_write(inode)			do { } while (0)
3716 #define stat_update_max_atomic_write(inode)		do { } while (0)
3717 #define stat_inc_volatile_write(inode)			do { } while (0)
3718 #define stat_dec_volatile_write(inode)			do { } while (0)
3719 #define stat_update_max_volatile_write(inode)		do { } while (0)
3720 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3721 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3722 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3723 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3724 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3725 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3726 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3727 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3728 
3729 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3730 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3731 static inline void __init f2fs_create_root_stats(void) { }
3732 static inline void f2fs_destroy_root_stats(void) { }
3733 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3734 #endif
3735 
3736 extern const struct file_operations f2fs_dir_operations;
3737 #ifdef CONFIG_UNICODE
3738 extern const struct dentry_operations f2fs_dentry_ops;
3739 #endif
3740 extern const struct file_operations f2fs_file_operations;
3741 extern const struct inode_operations f2fs_file_inode_operations;
3742 extern const struct address_space_operations f2fs_dblock_aops;
3743 extern const struct address_space_operations f2fs_node_aops;
3744 extern const struct address_space_operations f2fs_meta_aops;
3745 extern const struct inode_operations f2fs_dir_inode_operations;
3746 extern const struct inode_operations f2fs_symlink_inode_operations;
3747 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3748 extern const struct inode_operations f2fs_special_inode_operations;
3749 extern struct kmem_cache *f2fs_inode_entry_slab;
3750 
3751 /*
3752  * inline.c
3753  */
3754 bool f2fs_may_inline_data(struct inode *inode);
3755 bool f2fs_may_inline_dentry(struct inode *inode);
3756 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3757 void f2fs_truncate_inline_inode(struct inode *inode,
3758 						struct page *ipage, u64 from);
3759 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3760 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3761 int f2fs_convert_inline_inode(struct inode *inode);
3762 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3763 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3764 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3765 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3766 					const struct f2fs_filename *fname,
3767 					struct page **res_page);
3768 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3769 			struct page *ipage);
3770 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3771 			struct inode *inode, nid_t ino, umode_t mode);
3772 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3773 				struct page *page, struct inode *dir,
3774 				struct inode *inode);
3775 bool f2fs_empty_inline_dir(struct inode *dir);
3776 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3777 			struct fscrypt_str *fstr);
3778 int f2fs_inline_data_fiemap(struct inode *inode,
3779 			struct fiemap_extent_info *fieinfo,
3780 			__u64 start, __u64 len);
3781 
3782 /*
3783  * shrinker.c
3784  */
3785 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3786 			struct shrink_control *sc);
3787 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3788 			struct shrink_control *sc);
3789 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3790 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3791 
3792 /*
3793  * extent_cache.c
3794  */
3795 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3796 				struct rb_entry *cached_re, unsigned int ofs);
3797 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3798 				struct rb_root_cached *root,
3799 				struct rb_node **parent,
3800 				unsigned int ofs, bool *leftmost);
3801 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3802 		struct rb_entry *cached_re, unsigned int ofs,
3803 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3804 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3805 		bool force, bool *leftmost);
3806 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3807 						struct rb_root_cached *root);
3808 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3809 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3810 void f2fs_drop_extent_tree(struct inode *inode);
3811 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3812 void f2fs_destroy_extent_tree(struct inode *inode);
3813 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3814 			struct extent_info *ei);
3815 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3816 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3817 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3818 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3819 int __init f2fs_create_extent_cache(void);
3820 void f2fs_destroy_extent_cache(void);
3821 
3822 /*
3823  * sysfs.c
3824  */
3825 int __init f2fs_init_sysfs(void);
3826 void f2fs_exit_sysfs(void);
3827 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3828 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3829 
3830 /* verity.c */
3831 extern const struct fsverity_operations f2fs_verityops;
3832 
3833 /*
3834  * crypto support
3835  */
3836 static inline bool f2fs_encrypted_file(struct inode *inode)
3837 {
3838 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3839 }
3840 
3841 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3842 {
3843 #ifdef CONFIG_FS_ENCRYPTION
3844 	file_set_encrypt(inode);
3845 	f2fs_set_inode_flags(inode);
3846 #endif
3847 }
3848 
3849 /*
3850  * Returns true if the reads of the inode's data need to undergo some
3851  * postprocessing step, like decryption or authenticity verification.
3852  */
3853 static inline bool f2fs_post_read_required(struct inode *inode)
3854 {
3855 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3856 		f2fs_compressed_file(inode);
3857 }
3858 
3859 /*
3860  * compress.c
3861  */
3862 #ifdef CONFIG_F2FS_FS_COMPRESSION
3863 bool f2fs_is_compressed_page(struct page *page);
3864 struct page *f2fs_compress_control_page(struct page *page);
3865 int f2fs_prepare_compress_overwrite(struct inode *inode,
3866 			struct page **pagep, pgoff_t index, void **fsdata);
3867 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3868 					pgoff_t index, unsigned copied);
3869 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3870 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3871 bool f2fs_is_compress_backend_ready(struct inode *inode);
3872 int f2fs_init_compress_mempool(void);
3873 void f2fs_destroy_compress_mempool(void);
3874 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3875 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3876 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3877 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3878 int f2fs_write_multi_pages(struct compress_ctx *cc,
3879 						int *submitted,
3880 						struct writeback_control *wbc,
3881 						enum iostat_type io_type);
3882 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3883 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3884 				unsigned nr_pages, sector_t *last_block_in_bio,
3885 				bool is_readahead, bool for_write);
3886 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3887 void f2fs_free_dic(struct decompress_io_ctx *dic);
3888 void f2fs_decompress_end_io(struct page **rpages,
3889 			unsigned int cluster_size, bool err, bool verity);
3890 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3891 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3892 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3893 #else
3894 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3895 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3896 {
3897 	if (!f2fs_compressed_file(inode))
3898 		return true;
3899 	/* not support compression */
3900 	return false;
3901 }
3902 static inline struct page *f2fs_compress_control_page(struct page *page)
3903 {
3904 	WARN_ON_ONCE(1);
3905 	return ERR_PTR(-EINVAL);
3906 }
3907 static inline int f2fs_init_compress_mempool(void) { return 0; }
3908 static inline void f2fs_destroy_compress_mempool(void) { }
3909 #endif
3910 
3911 static inline void set_compress_context(struct inode *inode)
3912 {
3913 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3914 
3915 	F2FS_I(inode)->i_compress_algorithm =
3916 			F2FS_OPTION(sbi).compress_algorithm;
3917 	F2FS_I(inode)->i_log_cluster_size =
3918 			F2FS_OPTION(sbi).compress_log_size;
3919 	F2FS_I(inode)->i_cluster_size =
3920 			1 << F2FS_I(inode)->i_log_cluster_size;
3921 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3922 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3923 	stat_inc_compr_inode(inode);
3924 	f2fs_mark_inode_dirty_sync(inode, true);
3925 }
3926 
3927 static inline u64 f2fs_disable_compressed_file(struct inode *inode)
3928 {
3929 	struct f2fs_inode_info *fi = F2FS_I(inode);
3930 
3931 	if (!f2fs_compressed_file(inode))
3932 		return 0;
3933 	if (S_ISREG(inode->i_mode)) {
3934 		if (get_dirty_pages(inode))
3935 			return 1;
3936 		if (fi->i_compr_blocks)
3937 			return fi->i_compr_blocks;
3938 	}
3939 
3940 	fi->i_flags &= ~F2FS_COMPR_FL;
3941 	stat_dec_compr_inode(inode);
3942 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3943 	f2fs_mark_inode_dirty_sync(inode, true);
3944 	return 0;
3945 }
3946 
3947 #define F2FS_FEATURE_FUNCS(name, flagname) \
3948 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3949 { \
3950 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3951 }
3952 
3953 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3954 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3955 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3956 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3957 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3958 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3959 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3960 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3961 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3962 F2FS_FEATURE_FUNCS(verity, VERITY);
3963 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3964 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3965 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3966 
3967 #ifdef CONFIG_BLK_DEV_ZONED
3968 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3969 				    block_t blkaddr)
3970 {
3971 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3972 
3973 	return test_bit(zno, FDEV(devi).blkz_seq);
3974 }
3975 #endif
3976 
3977 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3978 {
3979 	return f2fs_sb_has_blkzoned(sbi);
3980 }
3981 
3982 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3983 {
3984 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3985 	       bdev_is_zoned(bdev);
3986 }
3987 
3988 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3989 {
3990 	int i;
3991 
3992 	if (!f2fs_is_multi_device(sbi))
3993 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3994 
3995 	for (i = 0; i < sbi->s_ndevs; i++)
3996 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3997 			return true;
3998 	return false;
3999 }
4000 
4001 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4002 {
4003 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4004 					f2fs_hw_should_discard(sbi);
4005 }
4006 
4007 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4008 {
4009 	int i;
4010 
4011 	if (!f2fs_is_multi_device(sbi))
4012 		return bdev_read_only(sbi->sb->s_bdev);
4013 
4014 	for (i = 0; i < sbi->s_ndevs; i++)
4015 		if (bdev_read_only(FDEV(i).bdev))
4016 			return true;
4017 	return false;
4018 }
4019 
4020 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4021 {
4022 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4023 }
4024 
4025 static inline bool f2fs_may_encrypt(struct inode *dir, struct inode *inode)
4026 {
4027 #ifdef CONFIG_FS_ENCRYPTION
4028 	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
4029 	umode_t mode = inode->i_mode;
4030 
4031 	/*
4032 	 * If the directory encrypted or dummy encryption enabled,
4033 	 * then we should encrypt the inode.
4034 	 */
4035 	if (IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi))
4036 		return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
4037 #endif
4038 	return false;
4039 }
4040 
4041 static inline bool f2fs_may_compress(struct inode *inode)
4042 {
4043 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4044 				f2fs_is_atomic_file(inode) ||
4045 				f2fs_is_volatile_file(inode))
4046 		return false;
4047 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4048 }
4049 
4050 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4051 						u64 blocks, bool add)
4052 {
4053 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4054 
4055 	/* don't update i_compr_blocks if saved blocks were released */
4056 	if (!add && !F2FS_I(inode)->i_compr_blocks)
4057 		return;
4058 
4059 	if (add) {
4060 		F2FS_I(inode)->i_compr_blocks += diff;
4061 		stat_add_compr_blocks(inode, diff);
4062 	} else {
4063 		F2FS_I(inode)->i_compr_blocks -= diff;
4064 		stat_sub_compr_blocks(inode, diff);
4065 	}
4066 	f2fs_mark_inode_dirty_sync(inode, true);
4067 }
4068 
4069 static inline int block_unaligned_IO(struct inode *inode,
4070 				struct kiocb *iocb, struct iov_iter *iter)
4071 {
4072 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4073 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4074 	loff_t offset = iocb->ki_pos;
4075 	unsigned long align = offset | iov_iter_alignment(iter);
4076 
4077 	return align & blocksize_mask;
4078 }
4079 
4080 static inline int allow_outplace_dio(struct inode *inode,
4081 				struct kiocb *iocb, struct iov_iter *iter)
4082 {
4083 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4084 	int rw = iov_iter_rw(iter);
4085 
4086 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4087 				!block_unaligned_IO(inode, iocb, iter));
4088 }
4089 
4090 static inline bool f2fs_force_buffered_io(struct inode *inode,
4091 				struct kiocb *iocb, struct iov_iter *iter)
4092 {
4093 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4094 	int rw = iov_iter_rw(iter);
4095 
4096 	if (f2fs_post_read_required(inode))
4097 		return true;
4098 	if (f2fs_is_multi_device(sbi))
4099 		return true;
4100 	/*
4101 	 * for blkzoned device, fallback direct IO to buffered IO, so
4102 	 * all IOs can be serialized by log-structured write.
4103 	 */
4104 	if (f2fs_sb_has_blkzoned(sbi))
4105 		return true;
4106 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4107 		if (block_unaligned_IO(inode, iocb, iter))
4108 			return true;
4109 		if (F2FS_IO_ALIGNED(sbi))
4110 			return true;
4111 	}
4112 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4113 					!IS_SWAPFILE(inode))
4114 		return true;
4115 
4116 	return false;
4117 }
4118 
4119 #ifdef CONFIG_F2FS_FAULT_INJECTION
4120 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4121 							unsigned int type);
4122 #else
4123 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4124 #endif
4125 
4126 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4127 {
4128 #ifdef CONFIG_QUOTA
4129 	if (f2fs_sb_has_quota_ino(sbi))
4130 		return true;
4131 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4132 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4133 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4134 		return true;
4135 #endif
4136 	return false;
4137 }
4138 
4139 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4140 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4141 
4142 #endif /* _LINUX_F2FS_H */
4143