xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 8bd1369b)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/cred.h>
23 #include <linux/vmalloc.h>
24 #include <linux/bio.h>
25 #include <linux/blkdev.h>
26 #include <linux/quotaops.h>
27 #include <crypto/hash.h>
28 
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_KVMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_PAGE_GET,
50 	FAULT_ALLOC_BIO,
51 	FAULT_ALLOC_NID,
52 	FAULT_ORPHAN,
53 	FAULT_BLOCK,
54 	FAULT_DIR_DEPTH,
55 	FAULT_EVICT_INODE,
56 	FAULT_TRUNCATE,
57 	FAULT_IO,
58 	FAULT_CHECKPOINT,
59 	FAULT_MAX,
60 };
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_BG_GC		0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
77 #define F2FS_MOUNT_DISCARD		0x00000004
78 #define F2FS_MOUNT_NOHEAP		0x00000008
79 #define F2FS_MOUNT_XATTR_USER		0x00000010
80 #define F2FS_MOUNT_POSIX_ACL		0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
83 #define F2FS_MOUNT_INLINE_DATA		0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
86 #define F2FS_MOUNT_NOBARRIER		0x00000800
87 #define F2FS_MOUNT_FASTBOOT		0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_ADAPTIVE		0x00020000
93 #define F2FS_MOUNT_LFS			0x00040000
94 #define F2FS_MOUNT_USRQUOTA		0x00080000
95 #define F2FS_MOUNT_GRPQUOTA		0x00100000
96 #define F2FS_MOUNT_PRJQUOTA		0x00200000
97 #define F2FS_MOUNT_QUOTA		0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
100 
101 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
102 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
103 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
104 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
105 
106 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
107 		typecheck(unsigned long long, b) &&			\
108 		((long long)((a) - (b)) > 0))
109 
110 typedef u32 block_t;	/*
111 			 * should not change u32, since it is the on-disk block
112 			 * address format, __le32.
113 			 */
114 typedef u32 nid_t;
115 
116 struct f2fs_mount_info {
117 	unsigned int opt;
118 	int write_io_size_bits;		/* Write IO size bits */
119 	block_t root_reserved_blocks;	/* root reserved blocks */
120 	kuid_t s_resuid;		/* reserved blocks for uid */
121 	kgid_t s_resgid;		/* reserved blocks for gid */
122 	int active_logs;		/* # of active logs */
123 	int inline_xattr_size;		/* inline xattr size */
124 #ifdef CONFIG_F2FS_FAULT_INJECTION
125 	struct f2fs_fault_info fault_info;	/* For fault injection */
126 #endif
127 #ifdef CONFIG_QUOTA
128 	/* Names of quota files with journalled quota */
129 	char *s_qf_names[MAXQUOTAS];
130 	int s_jquota_fmt;			/* Format of quota to use */
131 #endif
132 	/* For which write hints are passed down to block layer */
133 	int whint_mode;
134 	int alloc_mode;			/* segment allocation policy */
135 	int fsync_mode;			/* fsync policy */
136 	bool test_dummy_encryption;	/* test dummy encryption */
137 };
138 
139 #define F2FS_FEATURE_ENCRYPT		0x0001
140 #define F2FS_FEATURE_BLKZONED		0x0002
141 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
142 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
143 #define F2FS_FEATURE_PRJQUOTA		0x0010
144 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
145 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
146 #define F2FS_FEATURE_QUOTA_INO		0x0080
147 #define F2FS_FEATURE_INODE_CRTIME	0x0100
148 #define F2FS_FEATURE_LOST_FOUND		0x0200
149 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
150 
151 #define F2FS_HAS_FEATURE(sb, mask)					\
152 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
153 #define F2FS_SET_FEATURE(sb, mask)					\
154 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
155 #define F2FS_CLEAR_FEATURE(sb, mask)					\
156 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
157 
158 /*
159  * Default values for user and/or group using reserved blocks
160  */
161 #define	F2FS_DEF_RESUID		0
162 #define	F2FS_DEF_RESGID		0
163 
164 /*
165  * For checkpoint manager
166  */
167 enum {
168 	NAT_BITMAP,
169 	SIT_BITMAP
170 };
171 
172 #define	CP_UMOUNT	0x00000001
173 #define	CP_FASTBOOT	0x00000002
174 #define	CP_SYNC		0x00000004
175 #define	CP_RECOVERY	0x00000008
176 #define	CP_DISCARD	0x00000010
177 #define CP_TRIMMED	0x00000020
178 
179 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
180 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
181 #define DEF_MAX_DISCARD_LEN		512	/* Max. 2MB per discard */
182 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
183 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
184 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
185 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
186 #define DEF_CP_INTERVAL			60	/* 60 secs */
187 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
188 
189 struct cp_control {
190 	int reason;
191 	__u64 trim_start;
192 	__u64 trim_end;
193 	__u64 trim_minlen;
194 };
195 
196 /*
197  * For CP/NAT/SIT/SSA readahead
198  */
199 enum {
200 	META_CP,
201 	META_NAT,
202 	META_SIT,
203 	META_SSA,
204 	META_POR,
205 };
206 
207 /* for the list of ino */
208 enum {
209 	ORPHAN_INO,		/* for orphan ino list */
210 	APPEND_INO,		/* for append ino list */
211 	UPDATE_INO,		/* for update ino list */
212 	TRANS_DIR_INO,		/* for trasactions dir ino list */
213 	FLUSH_INO,		/* for multiple device flushing */
214 	MAX_INO_ENTRY,		/* max. list */
215 };
216 
217 struct ino_entry {
218 	struct list_head list;		/* list head */
219 	nid_t ino;			/* inode number */
220 	unsigned int dirty_device;	/* dirty device bitmap */
221 };
222 
223 /* for the list of inodes to be GCed */
224 struct inode_entry {
225 	struct list_head list;	/* list head */
226 	struct inode *inode;	/* vfs inode pointer */
227 };
228 
229 /* for the bitmap indicate blocks to be discarded */
230 struct discard_entry {
231 	struct list_head list;	/* list head */
232 	block_t start_blkaddr;	/* start blockaddr of current segment */
233 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
234 };
235 
236 /* default discard granularity of inner discard thread, unit: block count */
237 #define DEFAULT_DISCARD_GRANULARITY		16
238 
239 /* max discard pend list number */
240 #define MAX_PLIST_NUM		512
241 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
242 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
243 
244 enum {
245 	D_PREP,
246 	D_SUBMIT,
247 	D_DONE,
248 };
249 
250 struct discard_info {
251 	block_t lstart;			/* logical start address */
252 	block_t len;			/* length */
253 	block_t start;			/* actual start address in dev */
254 };
255 
256 struct discard_cmd {
257 	struct rb_node rb_node;		/* rb node located in rb-tree */
258 	union {
259 		struct {
260 			block_t lstart;	/* logical start address */
261 			block_t len;	/* length */
262 			block_t start;	/* actual start address in dev */
263 		};
264 		struct discard_info di;	/* discard info */
265 
266 	};
267 	struct list_head list;		/* command list */
268 	struct completion wait;		/* compleation */
269 	struct block_device *bdev;	/* bdev */
270 	unsigned short ref;		/* reference count */
271 	unsigned char state;		/* state */
272 	int error;			/* bio error */
273 };
274 
275 enum {
276 	DPOLICY_BG,
277 	DPOLICY_FORCE,
278 	DPOLICY_FSTRIM,
279 	DPOLICY_UMOUNT,
280 	MAX_DPOLICY,
281 };
282 
283 struct discard_policy {
284 	int type;			/* type of discard */
285 	unsigned int min_interval;	/* used for candidates exist */
286 	unsigned int mid_interval;	/* used for device busy */
287 	unsigned int max_interval;	/* used for candidates not exist */
288 	unsigned int max_requests;	/* # of discards issued per round */
289 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
290 	bool io_aware;			/* issue discard in idle time */
291 	bool sync;			/* submit discard with REQ_SYNC flag */
292 	unsigned int granularity;	/* discard granularity */
293 };
294 
295 struct discard_cmd_control {
296 	struct task_struct *f2fs_issue_discard;	/* discard thread */
297 	struct list_head entry_list;		/* 4KB discard entry list */
298 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
299 	struct list_head wait_list;		/* store on-flushing entries */
300 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
301 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
302 	unsigned int discard_wake;		/* to wake up discard thread */
303 	struct mutex cmd_lock;
304 	unsigned int nr_discards;		/* # of discards in the list */
305 	unsigned int max_discards;		/* max. discards to be issued */
306 	unsigned int discard_granularity;	/* discard granularity */
307 	unsigned int undiscard_blks;		/* # of undiscard blocks */
308 	atomic_t issued_discard;		/* # of issued discard */
309 	atomic_t issing_discard;		/* # of issing discard */
310 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
311 	struct rb_root root;			/* root of discard rb-tree */
312 };
313 
314 /* for the list of fsync inodes, used only during recovery */
315 struct fsync_inode_entry {
316 	struct list_head list;	/* list head */
317 	struct inode *inode;	/* vfs inode pointer */
318 	block_t blkaddr;	/* block address locating the last fsync */
319 	block_t last_dentry;	/* block address locating the last dentry */
320 };
321 
322 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
323 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
324 
325 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
326 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
327 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
328 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
329 
330 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
331 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
332 
333 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
334 {
335 	int before = nats_in_cursum(journal);
336 
337 	journal->n_nats = cpu_to_le16(before + i);
338 	return before;
339 }
340 
341 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
342 {
343 	int before = sits_in_cursum(journal);
344 
345 	journal->n_sits = cpu_to_le16(before + i);
346 	return before;
347 }
348 
349 static inline bool __has_cursum_space(struct f2fs_journal *journal,
350 							int size, int type)
351 {
352 	if (type == NAT_JOURNAL)
353 		return size <= MAX_NAT_JENTRIES(journal);
354 	return size <= MAX_SIT_JENTRIES(journal);
355 }
356 
357 /*
358  * ioctl commands
359  */
360 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
361 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
362 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
363 
364 #define F2FS_IOCTL_MAGIC		0xf5
365 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
366 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
367 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
368 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
369 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
370 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
371 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
372 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
373 						struct f2fs_defragment)
374 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
375 						struct f2fs_move_range)
376 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
377 						struct f2fs_flush_device)
378 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
379 						struct f2fs_gc_range)
380 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
381 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
382 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
383 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
384 
385 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
386 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
387 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
388 
389 /*
390  * should be same as XFS_IOC_GOINGDOWN.
391  * Flags for going down operation used by FS_IOC_GOINGDOWN
392  */
393 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
394 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
395 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
396 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
397 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
398 
399 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
400 /*
401  * ioctl commands in 32 bit emulation
402  */
403 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
404 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
405 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
406 #endif
407 
408 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
409 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
410 
411 struct f2fs_gc_range {
412 	u32 sync;
413 	u64 start;
414 	u64 len;
415 };
416 
417 struct f2fs_defragment {
418 	u64 start;
419 	u64 len;
420 };
421 
422 struct f2fs_move_range {
423 	u32 dst_fd;		/* destination fd */
424 	u64 pos_in;		/* start position in src_fd */
425 	u64 pos_out;		/* start position in dst_fd */
426 	u64 len;		/* size to move */
427 };
428 
429 struct f2fs_flush_device {
430 	u32 dev_num;		/* device number to flush */
431 	u32 segments;		/* # of segments to flush */
432 };
433 
434 /* for inline stuff */
435 #define DEF_INLINE_RESERVED_SIZE	1
436 #define DEF_MIN_INLINE_SIZE		1
437 static inline int get_extra_isize(struct inode *inode);
438 static inline int get_inline_xattr_addrs(struct inode *inode);
439 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
440 				(CUR_ADDRS_PER_INODE(inode) -		\
441 				get_inline_xattr_addrs(inode) -	\
442 				DEF_INLINE_RESERVED_SIZE))
443 
444 /* for inline dir */
445 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
446 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
447 				BITS_PER_BYTE + 1))
448 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
449 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
450 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
451 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
452 				NR_INLINE_DENTRY(inode) + \
453 				INLINE_DENTRY_BITMAP_SIZE(inode)))
454 
455 /*
456  * For INODE and NODE manager
457  */
458 /* for directory operations */
459 struct f2fs_dentry_ptr {
460 	struct inode *inode;
461 	void *bitmap;
462 	struct f2fs_dir_entry *dentry;
463 	__u8 (*filename)[F2FS_SLOT_LEN];
464 	int max;
465 	int nr_bitmap;
466 };
467 
468 static inline void make_dentry_ptr_block(struct inode *inode,
469 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
470 {
471 	d->inode = inode;
472 	d->max = NR_DENTRY_IN_BLOCK;
473 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
474 	d->bitmap = t->dentry_bitmap;
475 	d->dentry = t->dentry;
476 	d->filename = t->filename;
477 }
478 
479 static inline void make_dentry_ptr_inline(struct inode *inode,
480 					struct f2fs_dentry_ptr *d, void *t)
481 {
482 	int entry_cnt = NR_INLINE_DENTRY(inode);
483 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
484 	int reserved_size = INLINE_RESERVED_SIZE(inode);
485 
486 	d->inode = inode;
487 	d->max = entry_cnt;
488 	d->nr_bitmap = bitmap_size;
489 	d->bitmap = t;
490 	d->dentry = t + bitmap_size + reserved_size;
491 	d->filename = t + bitmap_size + reserved_size +
492 					SIZE_OF_DIR_ENTRY * entry_cnt;
493 }
494 
495 /*
496  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
497  * as its node offset to distinguish from index node blocks.
498  * But some bits are used to mark the node block.
499  */
500 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
501 				>> OFFSET_BIT_SHIFT)
502 enum {
503 	ALLOC_NODE,			/* allocate a new node page if needed */
504 	LOOKUP_NODE,			/* look up a node without readahead */
505 	LOOKUP_NODE_RA,			/*
506 					 * look up a node with readahead called
507 					 * by get_data_block.
508 					 */
509 };
510 
511 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
512 
513 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
514 
515 /* vector size for gang look-up from extent cache that consists of radix tree */
516 #define EXT_TREE_VEC_SIZE	64
517 
518 /* for in-memory extent cache entry */
519 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
520 
521 /* number of extent info in extent cache we try to shrink */
522 #define EXTENT_CACHE_SHRINK_NUMBER	128
523 
524 struct rb_entry {
525 	struct rb_node rb_node;		/* rb node located in rb-tree */
526 	unsigned int ofs;		/* start offset of the entry */
527 	unsigned int len;		/* length of the entry */
528 };
529 
530 struct extent_info {
531 	unsigned int fofs;		/* start offset in a file */
532 	unsigned int len;		/* length of the extent */
533 	u32 blk;			/* start block address of the extent */
534 };
535 
536 struct extent_node {
537 	struct rb_node rb_node;
538 	union {
539 		struct {
540 			unsigned int fofs;
541 			unsigned int len;
542 			u32 blk;
543 		};
544 		struct extent_info ei;	/* extent info */
545 
546 	};
547 	struct list_head list;		/* node in global extent list of sbi */
548 	struct extent_tree *et;		/* extent tree pointer */
549 };
550 
551 struct extent_tree {
552 	nid_t ino;			/* inode number */
553 	struct rb_root root;		/* root of extent info rb-tree */
554 	struct extent_node *cached_en;	/* recently accessed extent node */
555 	struct extent_info largest;	/* largested extent info */
556 	struct list_head list;		/* to be used by sbi->zombie_list */
557 	rwlock_t lock;			/* protect extent info rb-tree */
558 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
559 };
560 
561 /*
562  * This structure is taken from ext4_map_blocks.
563  *
564  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
565  */
566 #define F2FS_MAP_NEW		(1 << BH_New)
567 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
568 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
569 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
570 				F2FS_MAP_UNWRITTEN)
571 
572 struct f2fs_map_blocks {
573 	block_t m_pblk;
574 	block_t m_lblk;
575 	unsigned int m_len;
576 	unsigned int m_flags;
577 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
578 	pgoff_t *m_next_extent;		/* point to next possible extent */
579 	int m_seg_type;
580 };
581 
582 /* for flag in get_data_block */
583 enum {
584 	F2FS_GET_BLOCK_DEFAULT,
585 	F2FS_GET_BLOCK_FIEMAP,
586 	F2FS_GET_BLOCK_BMAP,
587 	F2FS_GET_BLOCK_PRE_DIO,
588 	F2FS_GET_BLOCK_PRE_AIO,
589 	F2FS_GET_BLOCK_PRECACHE,
590 };
591 
592 /*
593  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
594  */
595 #define FADVISE_COLD_BIT	0x01
596 #define FADVISE_LOST_PINO_BIT	0x02
597 #define FADVISE_ENCRYPT_BIT	0x04
598 #define FADVISE_ENC_NAME_BIT	0x08
599 #define FADVISE_KEEP_SIZE_BIT	0x10
600 #define FADVISE_HOT_BIT		0x20
601 #define FADVISE_VERITY_BIT	0x40	/* reserved */
602 
603 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
604 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
605 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
606 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
607 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
608 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
609 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
610 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
611 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
612 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
613 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
614 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
615 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
616 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
617 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
618 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
619 
620 #define DEF_DIR_LEVEL		0
621 
622 enum {
623 	GC_FAILURE_PIN,
624 	GC_FAILURE_ATOMIC,
625 	MAX_GC_FAILURE
626 };
627 
628 struct f2fs_inode_info {
629 	struct inode vfs_inode;		/* serve a vfs inode */
630 	unsigned long i_flags;		/* keep an inode flags for ioctl */
631 	unsigned char i_advise;		/* use to give file attribute hints */
632 	unsigned char i_dir_level;	/* use for dentry level for large dir */
633 	unsigned int i_current_depth;	/* only for directory depth */
634 	/* for gc failure statistic */
635 	unsigned int i_gc_failures[MAX_GC_FAILURE];
636 	unsigned int i_pino;		/* parent inode number */
637 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
638 
639 	/* Use below internally in f2fs*/
640 	unsigned long flags;		/* use to pass per-file flags */
641 	struct rw_semaphore i_sem;	/* protect fi info */
642 	atomic_t dirty_pages;		/* # of dirty pages */
643 	f2fs_hash_t chash;		/* hash value of given file name */
644 	unsigned int clevel;		/* maximum level of given file name */
645 	struct task_struct *task;	/* lookup and create consistency */
646 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
647 	nid_t i_xattr_nid;		/* node id that contains xattrs */
648 	loff_t	last_disk_size;		/* lastly written file size */
649 
650 #ifdef CONFIG_QUOTA
651 	struct dquot *i_dquot[MAXQUOTAS];
652 
653 	/* quota space reservation, managed internally by quota code */
654 	qsize_t i_reserved_quota;
655 #endif
656 	struct list_head dirty_list;	/* dirty list for dirs and files */
657 	struct list_head gdirty_list;	/* linked in global dirty list */
658 	struct list_head inmem_ilist;	/* list for inmem inodes */
659 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
660 	struct task_struct *inmem_task;	/* store inmemory task */
661 	struct mutex inmem_lock;	/* lock for inmemory pages */
662 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
663 
664 	/* avoid racing between foreground op and gc */
665 	struct rw_semaphore i_gc_rwsem[2];
666 	struct rw_semaphore i_mmap_sem;
667 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
668 
669 	int i_extra_isize;		/* size of extra space located in i_addr */
670 	kprojid_t i_projid;		/* id for project quota */
671 	int i_inline_xattr_size;	/* inline xattr size */
672 	struct timespec i_crtime;	/* inode creation time */
673 	struct timespec i_disk_time[4];	/* inode disk times */
674 };
675 
676 static inline void get_extent_info(struct extent_info *ext,
677 					struct f2fs_extent *i_ext)
678 {
679 	ext->fofs = le32_to_cpu(i_ext->fofs);
680 	ext->blk = le32_to_cpu(i_ext->blk);
681 	ext->len = le32_to_cpu(i_ext->len);
682 }
683 
684 static inline void set_raw_extent(struct extent_info *ext,
685 					struct f2fs_extent *i_ext)
686 {
687 	i_ext->fofs = cpu_to_le32(ext->fofs);
688 	i_ext->blk = cpu_to_le32(ext->blk);
689 	i_ext->len = cpu_to_le32(ext->len);
690 }
691 
692 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
693 						u32 blk, unsigned int len)
694 {
695 	ei->fofs = fofs;
696 	ei->blk = blk;
697 	ei->len = len;
698 }
699 
700 static inline bool __is_discard_mergeable(struct discard_info *back,
701 						struct discard_info *front)
702 {
703 	return (back->lstart + back->len == front->lstart) &&
704 		(back->len + front->len < DEF_MAX_DISCARD_LEN);
705 }
706 
707 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
708 						struct discard_info *back)
709 {
710 	return __is_discard_mergeable(back, cur);
711 }
712 
713 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
714 						struct discard_info *front)
715 {
716 	return __is_discard_mergeable(cur, front);
717 }
718 
719 static inline bool __is_extent_mergeable(struct extent_info *back,
720 						struct extent_info *front)
721 {
722 	return (back->fofs + back->len == front->fofs &&
723 			back->blk + back->len == front->blk);
724 }
725 
726 static inline bool __is_back_mergeable(struct extent_info *cur,
727 						struct extent_info *back)
728 {
729 	return __is_extent_mergeable(back, cur);
730 }
731 
732 static inline bool __is_front_mergeable(struct extent_info *cur,
733 						struct extent_info *front)
734 {
735 	return __is_extent_mergeable(cur, front);
736 }
737 
738 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
739 static inline void __try_update_largest_extent(struct inode *inode,
740 			struct extent_tree *et, struct extent_node *en)
741 {
742 	if (en->ei.len > et->largest.len) {
743 		et->largest = en->ei;
744 		f2fs_mark_inode_dirty_sync(inode, true);
745 	}
746 }
747 
748 /*
749  * For free nid management
750  */
751 enum nid_state {
752 	FREE_NID,		/* newly added to free nid list */
753 	PREALLOC_NID,		/* it is preallocated */
754 	MAX_NID_STATE,
755 };
756 
757 struct f2fs_nm_info {
758 	block_t nat_blkaddr;		/* base disk address of NAT */
759 	nid_t max_nid;			/* maximum possible node ids */
760 	nid_t available_nids;		/* # of available node ids */
761 	nid_t next_scan_nid;		/* the next nid to be scanned */
762 	unsigned int ram_thresh;	/* control the memory footprint */
763 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
764 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
765 
766 	/* NAT cache management */
767 	struct radix_tree_root nat_root;/* root of the nat entry cache */
768 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
769 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
770 	struct list_head nat_entries;	/* cached nat entry list (clean) */
771 	unsigned int nat_cnt;		/* the # of cached nat entries */
772 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
773 	unsigned int nat_blocks;	/* # of nat blocks */
774 
775 	/* free node ids management */
776 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
777 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
778 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
779 	spinlock_t nid_list_lock;	/* protect nid lists ops */
780 	struct mutex build_lock;	/* lock for build free nids */
781 	unsigned char **free_nid_bitmap;
782 	unsigned char *nat_block_bitmap;
783 	unsigned short *free_nid_count;	/* free nid count of NAT block */
784 
785 	/* for checkpoint */
786 	char *nat_bitmap;		/* NAT bitmap pointer */
787 
788 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
789 	unsigned char *nat_bits;	/* NAT bits blocks */
790 	unsigned char *full_nat_bits;	/* full NAT pages */
791 	unsigned char *empty_nat_bits;	/* empty NAT pages */
792 #ifdef CONFIG_F2FS_CHECK_FS
793 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
794 #endif
795 	int bitmap_size;		/* bitmap size */
796 };
797 
798 /*
799  * this structure is used as one of function parameters.
800  * all the information are dedicated to a given direct node block determined
801  * by the data offset in a file.
802  */
803 struct dnode_of_data {
804 	struct inode *inode;		/* vfs inode pointer */
805 	struct page *inode_page;	/* its inode page, NULL is possible */
806 	struct page *node_page;		/* cached direct node page */
807 	nid_t nid;			/* node id of the direct node block */
808 	unsigned int ofs_in_node;	/* data offset in the node page */
809 	bool inode_page_locked;		/* inode page is locked or not */
810 	bool node_changed;		/* is node block changed */
811 	char cur_level;			/* level of hole node page */
812 	char max_level;			/* level of current page located */
813 	block_t	data_blkaddr;		/* block address of the node block */
814 };
815 
816 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
817 		struct page *ipage, struct page *npage, nid_t nid)
818 {
819 	memset(dn, 0, sizeof(*dn));
820 	dn->inode = inode;
821 	dn->inode_page = ipage;
822 	dn->node_page = npage;
823 	dn->nid = nid;
824 }
825 
826 /*
827  * For SIT manager
828  *
829  * By default, there are 6 active log areas across the whole main area.
830  * When considering hot and cold data separation to reduce cleaning overhead,
831  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
832  * respectively.
833  * In the current design, you should not change the numbers intentionally.
834  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
835  * logs individually according to the underlying devices. (default: 6)
836  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
837  * data and 8 for node logs.
838  */
839 #define	NR_CURSEG_DATA_TYPE	(3)
840 #define NR_CURSEG_NODE_TYPE	(3)
841 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
842 
843 enum {
844 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
845 	CURSEG_WARM_DATA,	/* data blocks */
846 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
847 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
848 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
849 	CURSEG_COLD_NODE,	/* indirect node blocks */
850 	NO_CHECK_TYPE,
851 };
852 
853 struct flush_cmd {
854 	struct completion wait;
855 	struct llist_node llnode;
856 	nid_t ino;
857 	int ret;
858 };
859 
860 struct flush_cmd_control {
861 	struct task_struct *f2fs_issue_flush;	/* flush thread */
862 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
863 	atomic_t issued_flush;			/* # of issued flushes */
864 	atomic_t issing_flush;			/* # of issing flushes */
865 	struct llist_head issue_list;		/* list for command issue */
866 	struct llist_node *dispatch_list;	/* list for command dispatch */
867 };
868 
869 struct f2fs_sm_info {
870 	struct sit_info *sit_info;		/* whole segment information */
871 	struct free_segmap_info *free_info;	/* free segment information */
872 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
873 	struct curseg_info *curseg_array;	/* active segment information */
874 
875 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
876 
877 	block_t seg0_blkaddr;		/* block address of 0'th segment */
878 	block_t main_blkaddr;		/* start block address of main area */
879 	block_t ssa_blkaddr;		/* start block address of SSA area */
880 
881 	unsigned int segment_count;	/* total # of segments */
882 	unsigned int main_segments;	/* # of segments in main area */
883 	unsigned int reserved_segments;	/* # of reserved segments */
884 	unsigned int ovp_segments;	/* # of overprovision segments */
885 
886 	/* a threshold to reclaim prefree segments */
887 	unsigned int rec_prefree_segments;
888 
889 	/* for batched trimming */
890 	unsigned int trim_sections;		/* # of sections to trim */
891 
892 	struct list_head sit_entry_set;	/* sit entry set list */
893 
894 	unsigned int ipu_policy;	/* in-place-update policy */
895 	unsigned int min_ipu_util;	/* in-place-update threshold */
896 	unsigned int min_fsync_blocks;	/* threshold for fsync */
897 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
898 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
899 
900 	/* for flush command control */
901 	struct flush_cmd_control *fcc_info;
902 
903 	/* for discard command control */
904 	struct discard_cmd_control *dcc_info;
905 };
906 
907 /*
908  * For superblock
909  */
910 /*
911  * COUNT_TYPE for monitoring
912  *
913  * f2fs monitors the number of several block types such as on-writeback,
914  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
915  */
916 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
917 enum count_type {
918 	F2FS_DIRTY_DENTS,
919 	F2FS_DIRTY_DATA,
920 	F2FS_DIRTY_QDATA,
921 	F2FS_DIRTY_NODES,
922 	F2FS_DIRTY_META,
923 	F2FS_INMEM_PAGES,
924 	F2FS_DIRTY_IMETA,
925 	F2FS_WB_CP_DATA,
926 	F2FS_WB_DATA,
927 	NR_COUNT_TYPE,
928 };
929 
930 /*
931  * The below are the page types of bios used in submit_bio().
932  * The available types are:
933  * DATA			User data pages. It operates as async mode.
934  * NODE			Node pages. It operates as async mode.
935  * META			FS metadata pages such as SIT, NAT, CP.
936  * NR_PAGE_TYPE		The number of page types.
937  * META_FLUSH		Make sure the previous pages are written
938  *			with waiting the bio's completion
939  * ...			Only can be used with META.
940  */
941 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
942 enum page_type {
943 	DATA,
944 	NODE,
945 	META,
946 	NR_PAGE_TYPE,
947 	META_FLUSH,
948 	INMEM,		/* the below types are used by tracepoints only. */
949 	INMEM_DROP,
950 	INMEM_INVALIDATE,
951 	INMEM_REVOKE,
952 	IPU,
953 	OPU,
954 };
955 
956 enum temp_type {
957 	HOT = 0,	/* must be zero for meta bio */
958 	WARM,
959 	COLD,
960 	NR_TEMP_TYPE,
961 };
962 
963 enum need_lock_type {
964 	LOCK_REQ = 0,
965 	LOCK_DONE,
966 	LOCK_RETRY,
967 };
968 
969 enum cp_reason_type {
970 	CP_NO_NEEDED,
971 	CP_NON_REGULAR,
972 	CP_HARDLINK,
973 	CP_SB_NEED_CP,
974 	CP_WRONG_PINO,
975 	CP_NO_SPC_ROLL,
976 	CP_NODE_NEED_CP,
977 	CP_FASTBOOT_MODE,
978 	CP_SPEC_LOG_NUM,
979 	CP_RECOVER_DIR,
980 };
981 
982 enum iostat_type {
983 	APP_DIRECT_IO,			/* app direct IOs */
984 	APP_BUFFERED_IO,		/* app buffered IOs */
985 	APP_WRITE_IO,			/* app write IOs */
986 	APP_MAPPED_IO,			/* app mapped IOs */
987 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
988 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
989 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
990 	FS_GC_DATA_IO,			/* data IOs from forground gc */
991 	FS_GC_NODE_IO,			/* node IOs from forground gc */
992 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
993 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
994 	FS_CP_META_IO,			/* meta IOs from checkpoint */
995 	FS_DISCARD,			/* discard */
996 	NR_IO_TYPE,
997 };
998 
999 struct f2fs_io_info {
1000 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1001 	nid_t ino;		/* inode number */
1002 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1003 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1004 	int op;			/* contains REQ_OP_ */
1005 	int op_flags;		/* req_flag_bits */
1006 	block_t new_blkaddr;	/* new block address to be written */
1007 	block_t old_blkaddr;	/* old block address before Cow */
1008 	struct page *page;	/* page to be written */
1009 	struct page *encrypted_page;	/* encrypted page */
1010 	struct list_head list;		/* serialize IOs */
1011 	bool submitted;		/* indicate IO submission */
1012 	int need_lock;		/* indicate we need to lock cp_rwsem */
1013 	bool in_list;		/* indicate fio is in io_list */
1014 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1015 	bool retry;		/* need to reallocate block address */
1016 	enum iostat_type io_type;	/* io type */
1017 	struct writeback_control *io_wbc; /* writeback control */
1018 };
1019 
1020 #define is_read_io(rw) ((rw) == READ)
1021 struct f2fs_bio_info {
1022 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1023 	struct bio *bio;		/* bios to merge */
1024 	sector_t last_block_in_bio;	/* last block number */
1025 	struct f2fs_io_info fio;	/* store buffered io info. */
1026 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1027 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1028 	struct list_head io_list;	/* track fios */
1029 };
1030 
1031 #define FDEV(i)				(sbi->devs[i])
1032 #define RDEV(i)				(raw_super->devs[i])
1033 struct f2fs_dev_info {
1034 	struct block_device *bdev;
1035 	char path[MAX_PATH_LEN];
1036 	unsigned int total_segments;
1037 	block_t start_blk;
1038 	block_t end_blk;
1039 #ifdef CONFIG_BLK_DEV_ZONED
1040 	unsigned int nr_blkz;			/* Total number of zones */
1041 	u8 *blkz_type;				/* Array of zones type */
1042 #endif
1043 };
1044 
1045 enum inode_type {
1046 	DIR_INODE,			/* for dirty dir inode */
1047 	FILE_INODE,			/* for dirty regular/symlink inode */
1048 	DIRTY_META,			/* for all dirtied inode metadata */
1049 	ATOMIC_FILE,			/* for all atomic files */
1050 	NR_INODE_TYPE,
1051 };
1052 
1053 /* for inner inode cache management */
1054 struct inode_management {
1055 	struct radix_tree_root ino_root;	/* ino entry array */
1056 	spinlock_t ino_lock;			/* for ino entry lock */
1057 	struct list_head ino_list;		/* inode list head */
1058 	unsigned long ino_num;			/* number of entries */
1059 };
1060 
1061 /* For s_flag in struct f2fs_sb_info */
1062 enum {
1063 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1064 	SBI_IS_CLOSE,				/* specify unmounting */
1065 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1066 	SBI_POR_DOING,				/* recovery is doing or not */
1067 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1068 	SBI_NEED_CP,				/* need to checkpoint */
1069 };
1070 
1071 enum {
1072 	CP_TIME,
1073 	REQ_TIME,
1074 	MAX_TIME,
1075 };
1076 
1077 enum {
1078 	GC_NORMAL,
1079 	GC_IDLE_CB,
1080 	GC_IDLE_GREEDY,
1081 	GC_URGENT,
1082 };
1083 
1084 enum {
1085 	WHINT_MODE_OFF,		/* not pass down write hints */
1086 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1087 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1088 };
1089 
1090 enum {
1091 	ALLOC_MODE_DEFAULT,	/* stay default */
1092 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1093 };
1094 
1095 enum fsync_mode {
1096 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1097 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1098 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1099 };
1100 
1101 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1102 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1103 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1104 #else
1105 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1106 #endif
1107 
1108 struct f2fs_sb_info {
1109 	struct super_block *sb;			/* pointer to VFS super block */
1110 	struct proc_dir_entry *s_proc;		/* proc entry */
1111 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1112 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1113 	int valid_super_block;			/* valid super block no */
1114 	unsigned long s_flag;				/* flags for sbi */
1115 
1116 #ifdef CONFIG_BLK_DEV_ZONED
1117 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1118 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1119 #endif
1120 
1121 	/* for node-related operations */
1122 	struct f2fs_nm_info *nm_info;		/* node manager */
1123 	struct inode *node_inode;		/* cache node blocks */
1124 
1125 	/* for segment-related operations */
1126 	struct f2fs_sm_info *sm_info;		/* segment manager */
1127 
1128 	/* for bio operations */
1129 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1130 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1131 						/* bio ordering for NODE/DATA */
1132 	/* keep migration IO order for LFS mode */
1133 	struct rw_semaphore io_order_lock;
1134 	mempool_t *write_io_dummy;		/* Dummy pages */
1135 
1136 	/* for checkpoint */
1137 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1138 	int cur_cp_pack;			/* remain current cp pack */
1139 	spinlock_t cp_lock;			/* for flag in ckpt */
1140 	struct inode *meta_inode;		/* cache meta blocks */
1141 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1142 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1143 	struct rw_semaphore node_write;		/* locking node writes */
1144 	struct rw_semaphore node_change;	/* locking node change */
1145 	wait_queue_head_t cp_wait;
1146 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1147 	long interval_time[MAX_TIME];		/* to store thresholds */
1148 
1149 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1150 
1151 	/* for orphan inode, use 0'th array */
1152 	unsigned int max_orphans;		/* max orphan inodes */
1153 
1154 	/* for inode management */
1155 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1156 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1157 
1158 	/* for extent tree cache */
1159 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1160 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1161 	struct list_head extent_list;		/* lru list for shrinker */
1162 	spinlock_t extent_lock;			/* locking extent lru list */
1163 	atomic_t total_ext_tree;		/* extent tree count */
1164 	struct list_head zombie_list;		/* extent zombie tree list */
1165 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1166 	atomic_t total_ext_node;		/* extent info count */
1167 
1168 	/* basic filesystem units */
1169 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1170 	unsigned int log_blocksize;		/* log2 block size */
1171 	unsigned int blocksize;			/* block size */
1172 	unsigned int root_ino_num;		/* root inode number*/
1173 	unsigned int node_ino_num;		/* node inode number*/
1174 	unsigned int meta_ino_num;		/* meta inode number*/
1175 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1176 	unsigned int blocks_per_seg;		/* blocks per segment */
1177 	unsigned int segs_per_sec;		/* segments per section */
1178 	unsigned int secs_per_zone;		/* sections per zone */
1179 	unsigned int total_sections;		/* total section count */
1180 	unsigned int total_node_count;		/* total node block count */
1181 	unsigned int total_valid_node_count;	/* valid node block count */
1182 	loff_t max_file_blocks;			/* max block index of file */
1183 	int dir_level;				/* directory level */
1184 	unsigned int trigger_ssr_threshold;	/* threshold to trigger ssr */
1185 	int readdir_ra;				/* readahead inode in readdir */
1186 
1187 	block_t user_block_count;		/* # of user blocks */
1188 	block_t total_valid_block_count;	/* # of valid blocks */
1189 	block_t discard_blks;			/* discard command candidats */
1190 	block_t last_valid_block_count;		/* for recovery */
1191 	block_t reserved_blocks;		/* configurable reserved blocks */
1192 	block_t current_reserved_blocks;	/* current reserved blocks */
1193 
1194 	unsigned int nquota_files;		/* # of quota sysfile */
1195 
1196 	u32 s_next_generation;			/* for NFS support */
1197 
1198 	/* # of pages, see count_type */
1199 	atomic_t nr_pages[NR_COUNT_TYPE];
1200 	/* # of allocated blocks */
1201 	struct percpu_counter alloc_valid_block_count;
1202 
1203 	/* writeback control */
1204 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1205 
1206 	/* valid inode count */
1207 	struct percpu_counter total_valid_inode_count;
1208 
1209 	struct f2fs_mount_info mount_opt;	/* mount options */
1210 
1211 	/* for cleaning operations */
1212 	struct mutex gc_mutex;			/* mutex for GC */
1213 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1214 	unsigned int cur_victim_sec;		/* current victim section num */
1215 	unsigned int gc_mode;			/* current GC state */
1216 	/* for skip statistic */
1217 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1218 
1219 	/* threshold for gc trials on pinned files */
1220 	u64 gc_pin_file_threshold;
1221 
1222 	/* maximum # of trials to find a victim segment for SSR and GC */
1223 	unsigned int max_victim_search;
1224 
1225 	/*
1226 	 * for stat information.
1227 	 * one is for the LFS mode, and the other is for the SSR mode.
1228 	 */
1229 #ifdef CONFIG_F2FS_STAT_FS
1230 	struct f2fs_stat_info *stat_info;	/* FS status information */
1231 	unsigned int segment_count[2];		/* # of allocated segments */
1232 	unsigned int block_count[2];		/* # of allocated blocks */
1233 	atomic_t inplace_count;		/* # of inplace update */
1234 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1235 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1236 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1237 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1238 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1239 	atomic_t inline_inode;			/* # of inline_data inodes */
1240 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1241 	atomic_t aw_cnt;			/* # of atomic writes */
1242 	atomic_t vw_cnt;			/* # of volatile writes */
1243 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1244 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1245 	int bg_gc;				/* background gc calls */
1246 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1247 #endif
1248 	spinlock_t stat_lock;			/* lock for stat operations */
1249 
1250 	/* For app/fs IO statistics */
1251 	spinlock_t iostat_lock;
1252 	unsigned long long write_iostat[NR_IO_TYPE];
1253 	bool iostat_enable;
1254 
1255 	/* For sysfs suppport */
1256 	struct kobject s_kobj;
1257 	struct completion s_kobj_unregister;
1258 
1259 	/* For shrinker support */
1260 	struct list_head s_list;
1261 	int s_ndevs;				/* number of devices */
1262 	struct f2fs_dev_info *devs;		/* for device list */
1263 	unsigned int dirty_device;		/* for checkpoint data flush */
1264 	spinlock_t dev_lock;			/* protect dirty_device */
1265 	struct mutex umount_mutex;
1266 	unsigned int shrinker_run_no;
1267 
1268 	/* For write statistics */
1269 	u64 sectors_written_start;
1270 	u64 kbytes_written;
1271 
1272 	/* Reference to checksum algorithm driver via cryptoapi */
1273 	struct crypto_shash *s_chksum_driver;
1274 
1275 	/* Precomputed FS UUID checksum for seeding other checksums */
1276 	__u32 s_chksum_seed;
1277 };
1278 
1279 #ifdef CONFIG_F2FS_FAULT_INJECTION
1280 #define f2fs_show_injection_info(type)				\
1281 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1282 		KERN_INFO, fault_name[type],			\
1283 		__func__, __builtin_return_address(0))
1284 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1285 {
1286 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1287 
1288 	if (!ffi->inject_rate)
1289 		return false;
1290 
1291 	if (!IS_FAULT_SET(ffi, type))
1292 		return false;
1293 
1294 	atomic_inc(&ffi->inject_ops);
1295 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1296 		atomic_set(&ffi->inject_ops, 0);
1297 		return true;
1298 	}
1299 	return false;
1300 }
1301 #endif
1302 
1303 /* For write statistics. Suppose sector size is 512 bytes,
1304  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1305  */
1306 #define BD_PART_WRITTEN(s)						 \
1307 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1308 		(s)->sectors_written_start) >> 1)
1309 
1310 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1311 {
1312 	sbi->last_time[type] = jiffies;
1313 }
1314 
1315 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1316 {
1317 	unsigned long interval = sbi->interval_time[type] * HZ;
1318 
1319 	return time_after(jiffies, sbi->last_time[type] + interval);
1320 }
1321 
1322 static inline bool is_idle(struct f2fs_sb_info *sbi)
1323 {
1324 	struct block_device *bdev = sbi->sb->s_bdev;
1325 	struct request_queue *q = bdev_get_queue(bdev);
1326 	struct request_list *rl = &q->root_rl;
1327 
1328 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1329 		return 0;
1330 
1331 	return f2fs_time_over(sbi, REQ_TIME);
1332 }
1333 
1334 /*
1335  * Inline functions
1336  */
1337 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1338 			      const void *address, unsigned int length)
1339 {
1340 	struct {
1341 		struct shash_desc shash;
1342 		char ctx[4];
1343 	} desc;
1344 	int err;
1345 
1346 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1347 
1348 	desc.shash.tfm = sbi->s_chksum_driver;
1349 	desc.shash.flags = 0;
1350 	*(u32 *)desc.ctx = crc;
1351 
1352 	err = crypto_shash_update(&desc.shash, address, length);
1353 	BUG_ON(err);
1354 
1355 	return *(u32 *)desc.ctx;
1356 }
1357 
1358 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1359 			   unsigned int length)
1360 {
1361 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1362 }
1363 
1364 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1365 				  void *buf, size_t buf_size)
1366 {
1367 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1368 }
1369 
1370 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1371 			      const void *address, unsigned int length)
1372 {
1373 	return __f2fs_crc32(sbi, crc, address, length);
1374 }
1375 
1376 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1377 {
1378 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1379 }
1380 
1381 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1382 {
1383 	return sb->s_fs_info;
1384 }
1385 
1386 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1387 {
1388 	return F2FS_SB(inode->i_sb);
1389 }
1390 
1391 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1392 {
1393 	return F2FS_I_SB(mapping->host);
1394 }
1395 
1396 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1397 {
1398 	return F2FS_M_SB(page->mapping);
1399 }
1400 
1401 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1402 {
1403 	return (struct f2fs_super_block *)(sbi->raw_super);
1404 }
1405 
1406 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1407 {
1408 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1409 }
1410 
1411 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1412 {
1413 	return (struct f2fs_node *)page_address(page);
1414 }
1415 
1416 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1417 {
1418 	return &((struct f2fs_node *)page_address(page))->i;
1419 }
1420 
1421 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1422 {
1423 	return (struct f2fs_nm_info *)(sbi->nm_info);
1424 }
1425 
1426 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1427 {
1428 	return (struct f2fs_sm_info *)(sbi->sm_info);
1429 }
1430 
1431 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1432 {
1433 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1434 }
1435 
1436 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1437 {
1438 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1439 }
1440 
1441 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1442 {
1443 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1444 }
1445 
1446 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1447 {
1448 	return sbi->meta_inode->i_mapping;
1449 }
1450 
1451 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1452 {
1453 	return sbi->node_inode->i_mapping;
1454 }
1455 
1456 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1457 {
1458 	return test_bit(type, &sbi->s_flag);
1459 }
1460 
1461 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1462 {
1463 	set_bit(type, &sbi->s_flag);
1464 }
1465 
1466 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1467 {
1468 	clear_bit(type, &sbi->s_flag);
1469 }
1470 
1471 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1472 {
1473 	return le64_to_cpu(cp->checkpoint_ver);
1474 }
1475 
1476 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1477 {
1478 	if (type < F2FS_MAX_QUOTAS)
1479 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1480 	return 0;
1481 }
1482 
1483 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1484 {
1485 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1486 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1487 }
1488 
1489 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1490 {
1491 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1492 
1493 	return ckpt_flags & f;
1494 }
1495 
1496 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1497 {
1498 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1499 }
1500 
1501 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1502 {
1503 	unsigned int ckpt_flags;
1504 
1505 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1506 	ckpt_flags |= f;
1507 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1508 }
1509 
1510 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1511 {
1512 	unsigned long flags;
1513 
1514 	spin_lock_irqsave(&sbi->cp_lock, flags);
1515 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1516 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1517 }
1518 
1519 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1520 {
1521 	unsigned int ckpt_flags;
1522 
1523 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1524 	ckpt_flags &= (~f);
1525 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1526 }
1527 
1528 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1529 {
1530 	unsigned long flags;
1531 
1532 	spin_lock_irqsave(&sbi->cp_lock, flags);
1533 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1534 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1535 }
1536 
1537 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1538 {
1539 	unsigned long flags;
1540 
1541 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1542 
1543 	if (lock)
1544 		spin_lock_irqsave(&sbi->cp_lock, flags);
1545 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1546 	kfree(NM_I(sbi)->nat_bits);
1547 	NM_I(sbi)->nat_bits = NULL;
1548 	if (lock)
1549 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1550 }
1551 
1552 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1553 					struct cp_control *cpc)
1554 {
1555 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1556 
1557 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1558 }
1559 
1560 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1561 {
1562 	down_read(&sbi->cp_rwsem);
1563 }
1564 
1565 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1566 {
1567 	return down_read_trylock(&sbi->cp_rwsem);
1568 }
1569 
1570 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1571 {
1572 	up_read(&sbi->cp_rwsem);
1573 }
1574 
1575 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1576 {
1577 	down_write(&sbi->cp_rwsem);
1578 }
1579 
1580 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1581 {
1582 	up_write(&sbi->cp_rwsem);
1583 }
1584 
1585 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1586 {
1587 	int reason = CP_SYNC;
1588 
1589 	if (test_opt(sbi, FASTBOOT))
1590 		reason = CP_FASTBOOT;
1591 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1592 		reason = CP_UMOUNT;
1593 	return reason;
1594 }
1595 
1596 static inline bool __remain_node_summaries(int reason)
1597 {
1598 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1599 }
1600 
1601 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1602 {
1603 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1604 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1605 }
1606 
1607 /*
1608  * Check whether the inode has blocks or not
1609  */
1610 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1611 {
1612 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1613 
1614 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1615 }
1616 
1617 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1618 {
1619 	return ofs == XATTR_NODE_OFFSET;
1620 }
1621 
1622 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1623 					struct inode *inode, bool cap)
1624 {
1625 	if (!inode)
1626 		return true;
1627 	if (!test_opt(sbi, RESERVE_ROOT))
1628 		return false;
1629 	if (IS_NOQUOTA(inode))
1630 		return true;
1631 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1632 		return true;
1633 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1634 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1635 		return true;
1636 	if (cap && capable(CAP_SYS_RESOURCE))
1637 		return true;
1638 	return false;
1639 }
1640 
1641 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1642 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1643 				 struct inode *inode, blkcnt_t *count)
1644 {
1645 	blkcnt_t diff = 0, release = 0;
1646 	block_t avail_user_block_count;
1647 	int ret;
1648 
1649 	ret = dquot_reserve_block(inode, *count);
1650 	if (ret)
1651 		return ret;
1652 
1653 #ifdef CONFIG_F2FS_FAULT_INJECTION
1654 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1655 		f2fs_show_injection_info(FAULT_BLOCK);
1656 		release = *count;
1657 		goto enospc;
1658 	}
1659 #endif
1660 	/*
1661 	 * let's increase this in prior to actual block count change in order
1662 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1663 	 */
1664 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1665 
1666 	spin_lock(&sbi->stat_lock);
1667 	sbi->total_valid_block_count += (block_t)(*count);
1668 	avail_user_block_count = sbi->user_block_count -
1669 					sbi->current_reserved_blocks;
1670 
1671 	if (!__allow_reserved_blocks(sbi, inode, true))
1672 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1673 
1674 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1675 		diff = sbi->total_valid_block_count - avail_user_block_count;
1676 		if (diff > *count)
1677 			diff = *count;
1678 		*count -= diff;
1679 		release = diff;
1680 		sbi->total_valid_block_count -= diff;
1681 		if (!*count) {
1682 			spin_unlock(&sbi->stat_lock);
1683 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1684 			goto enospc;
1685 		}
1686 	}
1687 	spin_unlock(&sbi->stat_lock);
1688 
1689 	if (unlikely(release))
1690 		dquot_release_reservation_block(inode, release);
1691 	f2fs_i_blocks_write(inode, *count, true, true);
1692 	return 0;
1693 
1694 enospc:
1695 	dquot_release_reservation_block(inode, release);
1696 	return -ENOSPC;
1697 }
1698 
1699 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1700 						struct inode *inode,
1701 						block_t count)
1702 {
1703 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1704 
1705 	spin_lock(&sbi->stat_lock);
1706 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1707 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1708 	sbi->total_valid_block_count -= (block_t)count;
1709 	if (sbi->reserved_blocks &&
1710 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1711 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1712 					sbi->current_reserved_blocks + count);
1713 	spin_unlock(&sbi->stat_lock);
1714 	f2fs_i_blocks_write(inode, count, false, true);
1715 }
1716 
1717 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1718 {
1719 	atomic_inc(&sbi->nr_pages[count_type]);
1720 
1721 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1722 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1723 		return;
1724 
1725 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1726 }
1727 
1728 static inline void inode_inc_dirty_pages(struct inode *inode)
1729 {
1730 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1731 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1732 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1733 	if (IS_NOQUOTA(inode))
1734 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1735 }
1736 
1737 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1738 {
1739 	atomic_dec(&sbi->nr_pages[count_type]);
1740 }
1741 
1742 static inline void inode_dec_dirty_pages(struct inode *inode)
1743 {
1744 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1745 			!S_ISLNK(inode->i_mode))
1746 		return;
1747 
1748 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1749 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1750 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1751 	if (IS_NOQUOTA(inode))
1752 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1753 }
1754 
1755 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1756 {
1757 	return atomic_read(&sbi->nr_pages[count_type]);
1758 }
1759 
1760 static inline int get_dirty_pages(struct inode *inode)
1761 {
1762 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1763 }
1764 
1765 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1766 {
1767 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1768 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1769 						sbi->log_blocks_per_seg;
1770 
1771 	return segs / sbi->segs_per_sec;
1772 }
1773 
1774 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1775 {
1776 	return sbi->total_valid_block_count;
1777 }
1778 
1779 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1780 {
1781 	return sbi->discard_blks;
1782 }
1783 
1784 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1785 {
1786 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1787 
1788 	/* return NAT or SIT bitmap */
1789 	if (flag == NAT_BITMAP)
1790 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1791 	else if (flag == SIT_BITMAP)
1792 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1793 
1794 	return 0;
1795 }
1796 
1797 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1798 {
1799 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1800 }
1801 
1802 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1803 {
1804 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1805 	int offset;
1806 
1807 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1808 		offset = (flag == SIT_BITMAP) ?
1809 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1810 		return &ckpt->sit_nat_version_bitmap + offset;
1811 	}
1812 
1813 	if (__cp_payload(sbi) > 0) {
1814 		if (flag == NAT_BITMAP)
1815 			return &ckpt->sit_nat_version_bitmap;
1816 		else
1817 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1818 	} else {
1819 		offset = (flag == NAT_BITMAP) ?
1820 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1821 		return &ckpt->sit_nat_version_bitmap + offset;
1822 	}
1823 }
1824 
1825 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1826 {
1827 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1828 
1829 	if (sbi->cur_cp_pack == 2)
1830 		start_addr += sbi->blocks_per_seg;
1831 	return start_addr;
1832 }
1833 
1834 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1835 {
1836 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1837 
1838 	if (sbi->cur_cp_pack == 1)
1839 		start_addr += sbi->blocks_per_seg;
1840 	return start_addr;
1841 }
1842 
1843 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1844 {
1845 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1846 }
1847 
1848 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1849 {
1850 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1851 }
1852 
1853 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1854 					struct inode *inode, bool is_inode)
1855 {
1856 	block_t	valid_block_count;
1857 	unsigned int valid_node_count;
1858 	bool quota = inode && !is_inode;
1859 
1860 	if (quota) {
1861 		int ret = dquot_reserve_block(inode, 1);
1862 		if (ret)
1863 			return ret;
1864 	}
1865 
1866 #ifdef CONFIG_F2FS_FAULT_INJECTION
1867 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1868 		f2fs_show_injection_info(FAULT_BLOCK);
1869 		goto enospc;
1870 	}
1871 #endif
1872 
1873 	spin_lock(&sbi->stat_lock);
1874 
1875 	valid_block_count = sbi->total_valid_block_count +
1876 					sbi->current_reserved_blocks + 1;
1877 
1878 	if (!__allow_reserved_blocks(sbi, inode, false))
1879 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1880 
1881 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1882 		spin_unlock(&sbi->stat_lock);
1883 		goto enospc;
1884 	}
1885 
1886 	valid_node_count = sbi->total_valid_node_count + 1;
1887 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1888 		spin_unlock(&sbi->stat_lock);
1889 		goto enospc;
1890 	}
1891 
1892 	sbi->total_valid_node_count++;
1893 	sbi->total_valid_block_count++;
1894 	spin_unlock(&sbi->stat_lock);
1895 
1896 	if (inode) {
1897 		if (is_inode)
1898 			f2fs_mark_inode_dirty_sync(inode, true);
1899 		else
1900 			f2fs_i_blocks_write(inode, 1, true, true);
1901 	}
1902 
1903 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1904 	return 0;
1905 
1906 enospc:
1907 	if (quota)
1908 		dquot_release_reservation_block(inode, 1);
1909 	return -ENOSPC;
1910 }
1911 
1912 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1913 					struct inode *inode, bool is_inode)
1914 {
1915 	spin_lock(&sbi->stat_lock);
1916 
1917 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1918 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1919 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1920 
1921 	sbi->total_valid_node_count--;
1922 	sbi->total_valid_block_count--;
1923 	if (sbi->reserved_blocks &&
1924 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1925 		sbi->current_reserved_blocks++;
1926 
1927 	spin_unlock(&sbi->stat_lock);
1928 
1929 	if (!is_inode)
1930 		f2fs_i_blocks_write(inode, 1, false, true);
1931 }
1932 
1933 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1934 {
1935 	return sbi->total_valid_node_count;
1936 }
1937 
1938 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1939 {
1940 	percpu_counter_inc(&sbi->total_valid_inode_count);
1941 }
1942 
1943 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1944 {
1945 	percpu_counter_dec(&sbi->total_valid_inode_count);
1946 }
1947 
1948 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1949 {
1950 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1951 }
1952 
1953 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1954 						pgoff_t index, bool for_write)
1955 {
1956 #ifdef CONFIG_F2FS_FAULT_INJECTION
1957 	struct page *page = find_lock_page(mapping, index);
1958 
1959 	if (page)
1960 		return page;
1961 
1962 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1963 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1964 		return NULL;
1965 	}
1966 #endif
1967 	if (!for_write)
1968 		return grab_cache_page(mapping, index);
1969 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1970 }
1971 
1972 static inline struct page *f2fs_pagecache_get_page(
1973 				struct address_space *mapping, pgoff_t index,
1974 				int fgp_flags, gfp_t gfp_mask)
1975 {
1976 #ifdef CONFIG_F2FS_FAULT_INJECTION
1977 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1978 		f2fs_show_injection_info(FAULT_PAGE_GET);
1979 		return NULL;
1980 	}
1981 #endif
1982 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1983 }
1984 
1985 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1986 {
1987 	char *src_kaddr = kmap(src);
1988 	char *dst_kaddr = kmap(dst);
1989 
1990 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1991 	kunmap(dst);
1992 	kunmap(src);
1993 }
1994 
1995 static inline void f2fs_put_page(struct page *page, int unlock)
1996 {
1997 	if (!page)
1998 		return;
1999 
2000 	if (unlock) {
2001 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2002 		unlock_page(page);
2003 	}
2004 	put_page(page);
2005 }
2006 
2007 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2008 {
2009 	if (dn->node_page)
2010 		f2fs_put_page(dn->node_page, 1);
2011 	if (dn->inode_page && dn->node_page != dn->inode_page)
2012 		f2fs_put_page(dn->inode_page, 0);
2013 	dn->node_page = NULL;
2014 	dn->inode_page = NULL;
2015 }
2016 
2017 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2018 					size_t size)
2019 {
2020 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2021 }
2022 
2023 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2024 						gfp_t flags)
2025 {
2026 	void *entry;
2027 
2028 	entry = kmem_cache_alloc(cachep, flags);
2029 	if (!entry)
2030 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2031 	return entry;
2032 }
2033 
2034 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2035 						int npages, bool no_fail)
2036 {
2037 	struct bio *bio;
2038 
2039 	if (no_fail) {
2040 		/* No failure on bio allocation */
2041 		bio = bio_alloc(GFP_NOIO, npages);
2042 		if (!bio)
2043 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2044 		return bio;
2045 	}
2046 #ifdef CONFIG_F2FS_FAULT_INJECTION
2047 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2048 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2049 		return NULL;
2050 	}
2051 #endif
2052 	return bio_alloc(GFP_KERNEL, npages);
2053 }
2054 
2055 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2056 				unsigned long index, void *item)
2057 {
2058 	while (radix_tree_insert(root, index, item))
2059 		cond_resched();
2060 }
2061 
2062 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2063 
2064 static inline bool IS_INODE(struct page *page)
2065 {
2066 	struct f2fs_node *p = F2FS_NODE(page);
2067 
2068 	return RAW_IS_INODE(p);
2069 }
2070 
2071 static inline int offset_in_addr(struct f2fs_inode *i)
2072 {
2073 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2074 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2075 }
2076 
2077 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2078 {
2079 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2080 }
2081 
2082 static inline int f2fs_has_extra_attr(struct inode *inode);
2083 static inline block_t datablock_addr(struct inode *inode,
2084 			struct page *node_page, unsigned int offset)
2085 {
2086 	struct f2fs_node *raw_node;
2087 	__le32 *addr_array;
2088 	int base = 0;
2089 	bool is_inode = IS_INODE(node_page);
2090 
2091 	raw_node = F2FS_NODE(node_page);
2092 
2093 	/* from GC path only */
2094 	if (is_inode) {
2095 		if (!inode)
2096 			base = offset_in_addr(&raw_node->i);
2097 		else if (f2fs_has_extra_attr(inode))
2098 			base = get_extra_isize(inode);
2099 	}
2100 
2101 	addr_array = blkaddr_in_node(raw_node);
2102 	return le32_to_cpu(addr_array[base + offset]);
2103 }
2104 
2105 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2106 {
2107 	int mask;
2108 
2109 	addr += (nr >> 3);
2110 	mask = 1 << (7 - (nr & 0x07));
2111 	return mask & *addr;
2112 }
2113 
2114 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2115 {
2116 	int mask;
2117 
2118 	addr += (nr >> 3);
2119 	mask = 1 << (7 - (nr & 0x07));
2120 	*addr |= mask;
2121 }
2122 
2123 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2124 {
2125 	int mask;
2126 
2127 	addr += (nr >> 3);
2128 	mask = 1 << (7 - (nr & 0x07));
2129 	*addr &= ~mask;
2130 }
2131 
2132 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2133 {
2134 	int mask;
2135 	int ret;
2136 
2137 	addr += (nr >> 3);
2138 	mask = 1 << (7 - (nr & 0x07));
2139 	ret = mask & *addr;
2140 	*addr |= mask;
2141 	return ret;
2142 }
2143 
2144 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2145 {
2146 	int mask;
2147 	int ret;
2148 
2149 	addr += (nr >> 3);
2150 	mask = 1 << (7 - (nr & 0x07));
2151 	ret = mask & *addr;
2152 	*addr &= ~mask;
2153 	return ret;
2154 }
2155 
2156 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2157 {
2158 	int mask;
2159 
2160 	addr += (nr >> 3);
2161 	mask = 1 << (7 - (nr & 0x07));
2162 	*addr ^= mask;
2163 }
2164 
2165 /*
2166  * Inode flags
2167  */
2168 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2169 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2170 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2171 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2172 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2173 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2174 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2175 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2176 /* Reserved for compression usage... */
2177 #define F2FS_DIRTY_FL			0x00000100
2178 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2179 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2180 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2181 /* End compression flags --- maybe not all used */
2182 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2183 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2184 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2185 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2186 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2187 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2188 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2189 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2190 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2191 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2192 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2193 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2194 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2195 
2196 #define F2FS_FL_USER_VISIBLE		0x304BDFFF /* User visible flags */
2197 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2198 
2199 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2200 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2201 					 F2FS_IMMUTABLE_FL | \
2202 					 F2FS_APPEND_FL | \
2203 					 F2FS_NODUMP_FL | \
2204 					 F2FS_NOATIME_FL | \
2205 					 F2FS_PROJINHERIT_FL)
2206 
2207 /* Flags that should be inherited by new inodes from their parent. */
2208 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2209 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2210 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2211 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2212 			   F2FS_PROJINHERIT_FL)
2213 
2214 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2215 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2216 
2217 /* Flags that are appropriate for non-directories/regular files. */
2218 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2219 
2220 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2221 {
2222 	if (S_ISDIR(mode))
2223 		return flags;
2224 	else if (S_ISREG(mode))
2225 		return flags & F2FS_REG_FLMASK;
2226 	else
2227 		return flags & F2FS_OTHER_FLMASK;
2228 }
2229 
2230 /* used for f2fs_inode_info->flags */
2231 enum {
2232 	FI_NEW_INODE,		/* indicate newly allocated inode */
2233 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2234 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2235 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2236 	FI_INC_LINK,		/* need to increment i_nlink */
2237 	FI_ACL_MODE,		/* indicate acl mode */
2238 	FI_NO_ALLOC,		/* should not allocate any blocks */
2239 	FI_FREE_NID,		/* free allocated nide */
2240 	FI_NO_EXTENT,		/* not to use the extent cache */
2241 	FI_INLINE_XATTR,	/* used for inline xattr */
2242 	FI_INLINE_DATA,		/* used for inline data*/
2243 	FI_INLINE_DENTRY,	/* used for inline dentry */
2244 	FI_APPEND_WRITE,	/* inode has appended data */
2245 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2246 	FI_NEED_IPU,		/* used for ipu per file */
2247 	FI_ATOMIC_FILE,		/* indicate atomic file */
2248 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2249 	FI_VOLATILE_FILE,	/* indicate volatile file */
2250 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2251 	FI_DROP_CACHE,		/* drop dirty page cache */
2252 	FI_DATA_EXIST,		/* indicate data exists */
2253 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2254 	FI_DO_DEFRAG,		/* indicate defragment is running */
2255 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2256 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2257 	FI_HOT_DATA,		/* indicate file is hot */
2258 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2259 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2260 	FI_PIN_FILE,		/* indicate file should not be gced */
2261 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2262 };
2263 
2264 static inline void __mark_inode_dirty_flag(struct inode *inode,
2265 						int flag, bool set)
2266 {
2267 	switch (flag) {
2268 	case FI_INLINE_XATTR:
2269 	case FI_INLINE_DATA:
2270 	case FI_INLINE_DENTRY:
2271 	case FI_NEW_INODE:
2272 		if (set)
2273 			return;
2274 	case FI_DATA_EXIST:
2275 	case FI_INLINE_DOTS:
2276 	case FI_PIN_FILE:
2277 		f2fs_mark_inode_dirty_sync(inode, true);
2278 	}
2279 }
2280 
2281 static inline void set_inode_flag(struct inode *inode, int flag)
2282 {
2283 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2284 		set_bit(flag, &F2FS_I(inode)->flags);
2285 	__mark_inode_dirty_flag(inode, flag, true);
2286 }
2287 
2288 static inline int is_inode_flag_set(struct inode *inode, int flag)
2289 {
2290 	return test_bit(flag, &F2FS_I(inode)->flags);
2291 }
2292 
2293 static inline void clear_inode_flag(struct inode *inode, int flag)
2294 {
2295 	if (test_bit(flag, &F2FS_I(inode)->flags))
2296 		clear_bit(flag, &F2FS_I(inode)->flags);
2297 	__mark_inode_dirty_flag(inode, flag, false);
2298 }
2299 
2300 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2301 {
2302 	F2FS_I(inode)->i_acl_mode = mode;
2303 	set_inode_flag(inode, FI_ACL_MODE);
2304 	f2fs_mark_inode_dirty_sync(inode, false);
2305 }
2306 
2307 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2308 {
2309 	if (inc)
2310 		inc_nlink(inode);
2311 	else
2312 		drop_nlink(inode);
2313 	f2fs_mark_inode_dirty_sync(inode, true);
2314 }
2315 
2316 static inline void f2fs_i_blocks_write(struct inode *inode,
2317 					block_t diff, bool add, bool claim)
2318 {
2319 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2320 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2321 
2322 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2323 	if (add) {
2324 		if (claim)
2325 			dquot_claim_block(inode, diff);
2326 		else
2327 			dquot_alloc_block_nofail(inode, diff);
2328 	} else {
2329 		dquot_free_block(inode, diff);
2330 	}
2331 
2332 	f2fs_mark_inode_dirty_sync(inode, true);
2333 	if (clean || recover)
2334 		set_inode_flag(inode, FI_AUTO_RECOVER);
2335 }
2336 
2337 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2338 {
2339 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2340 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2341 
2342 	if (i_size_read(inode) == i_size)
2343 		return;
2344 
2345 	i_size_write(inode, i_size);
2346 	f2fs_mark_inode_dirty_sync(inode, true);
2347 	if (clean || recover)
2348 		set_inode_flag(inode, FI_AUTO_RECOVER);
2349 }
2350 
2351 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2352 {
2353 	F2FS_I(inode)->i_current_depth = depth;
2354 	f2fs_mark_inode_dirty_sync(inode, true);
2355 }
2356 
2357 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2358 					unsigned int count)
2359 {
2360 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2361 	f2fs_mark_inode_dirty_sync(inode, true);
2362 }
2363 
2364 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2365 {
2366 	F2FS_I(inode)->i_xattr_nid = xnid;
2367 	f2fs_mark_inode_dirty_sync(inode, true);
2368 }
2369 
2370 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2371 {
2372 	F2FS_I(inode)->i_pino = pino;
2373 	f2fs_mark_inode_dirty_sync(inode, true);
2374 }
2375 
2376 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2377 {
2378 	struct f2fs_inode_info *fi = F2FS_I(inode);
2379 
2380 	if (ri->i_inline & F2FS_INLINE_XATTR)
2381 		set_bit(FI_INLINE_XATTR, &fi->flags);
2382 	if (ri->i_inline & F2FS_INLINE_DATA)
2383 		set_bit(FI_INLINE_DATA, &fi->flags);
2384 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2385 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2386 	if (ri->i_inline & F2FS_DATA_EXIST)
2387 		set_bit(FI_DATA_EXIST, &fi->flags);
2388 	if (ri->i_inline & F2FS_INLINE_DOTS)
2389 		set_bit(FI_INLINE_DOTS, &fi->flags);
2390 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2391 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2392 	if (ri->i_inline & F2FS_PIN_FILE)
2393 		set_bit(FI_PIN_FILE, &fi->flags);
2394 }
2395 
2396 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2397 {
2398 	ri->i_inline = 0;
2399 
2400 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2401 		ri->i_inline |= F2FS_INLINE_XATTR;
2402 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2403 		ri->i_inline |= F2FS_INLINE_DATA;
2404 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2405 		ri->i_inline |= F2FS_INLINE_DENTRY;
2406 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2407 		ri->i_inline |= F2FS_DATA_EXIST;
2408 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2409 		ri->i_inline |= F2FS_INLINE_DOTS;
2410 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2411 		ri->i_inline |= F2FS_EXTRA_ATTR;
2412 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2413 		ri->i_inline |= F2FS_PIN_FILE;
2414 }
2415 
2416 static inline int f2fs_has_extra_attr(struct inode *inode)
2417 {
2418 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2419 }
2420 
2421 static inline int f2fs_has_inline_xattr(struct inode *inode)
2422 {
2423 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2424 }
2425 
2426 static inline unsigned int addrs_per_inode(struct inode *inode)
2427 {
2428 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2429 }
2430 
2431 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2432 {
2433 	struct f2fs_inode *ri = F2FS_INODE(page);
2434 
2435 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2436 					get_inline_xattr_addrs(inode)]);
2437 }
2438 
2439 static inline int inline_xattr_size(struct inode *inode)
2440 {
2441 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2442 }
2443 
2444 static inline int f2fs_has_inline_data(struct inode *inode)
2445 {
2446 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2447 }
2448 
2449 static inline int f2fs_exist_data(struct inode *inode)
2450 {
2451 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2452 }
2453 
2454 static inline int f2fs_has_inline_dots(struct inode *inode)
2455 {
2456 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2457 }
2458 
2459 static inline bool f2fs_is_pinned_file(struct inode *inode)
2460 {
2461 	return is_inode_flag_set(inode, FI_PIN_FILE);
2462 }
2463 
2464 static inline bool f2fs_is_atomic_file(struct inode *inode)
2465 {
2466 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2467 }
2468 
2469 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2470 {
2471 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2472 }
2473 
2474 static inline bool f2fs_is_volatile_file(struct inode *inode)
2475 {
2476 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2477 }
2478 
2479 static inline bool f2fs_is_first_block_written(struct inode *inode)
2480 {
2481 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2482 }
2483 
2484 static inline bool f2fs_is_drop_cache(struct inode *inode)
2485 {
2486 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2487 }
2488 
2489 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2490 {
2491 	struct f2fs_inode *ri = F2FS_INODE(page);
2492 	int extra_size = get_extra_isize(inode);
2493 
2494 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2495 }
2496 
2497 static inline int f2fs_has_inline_dentry(struct inode *inode)
2498 {
2499 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2500 }
2501 
2502 static inline int is_file(struct inode *inode, int type)
2503 {
2504 	return F2FS_I(inode)->i_advise & type;
2505 }
2506 
2507 static inline void set_file(struct inode *inode, int type)
2508 {
2509 	F2FS_I(inode)->i_advise |= type;
2510 	f2fs_mark_inode_dirty_sync(inode, true);
2511 }
2512 
2513 static inline void clear_file(struct inode *inode, int type)
2514 {
2515 	F2FS_I(inode)->i_advise &= ~type;
2516 	f2fs_mark_inode_dirty_sync(inode, true);
2517 }
2518 
2519 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2520 {
2521 	struct timespec ts;
2522 	bool ret;
2523 
2524 	if (dsync) {
2525 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2526 
2527 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2528 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2529 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2530 		return ret;
2531 	}
2532 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2533 			file_keep_isize(inode) ||
2534 			i_size_read(inode) & ~PAGE_MASK)
2535 		return false;
2536 
2537 	ts = timespec64_to_timespec(inode->i_atime);
2538 	if (!timespec_equal(F2FS_I(inode)->i_disk_time, &ts))
2539 		return false;
2540 	ts = timespec64_to_timespec(inode->i_ctime);
2541 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
2542 		return false;
2543 	ts = timespec64_to_timespec(inode->i_mtime);
2544 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
2545 		return false;
2546 	if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3,
2547 						&F2FS_I(inode)->i_crtime))
2548 		return false;
2549 
2550 	down_read(&F2FS_I(inode)->i_sem);
2551 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2552 	up_read(&F2FS_I(inode)->i_sem);
2553 
2554 	return ret;
2555 }
2556 
2557 static inline bool f2fs_readonly(struct super_block *sb)
2558 {
2559 	return sb_rdonly(sb);
2560 }
2561 
2562 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2563 {
2564 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2565 }
2566 
2567 static inline bool is_dot_dotdot(const struct qstr *str)
2568 {
2569 	if (str->len == 1 && str->name[0] == '.')
2570 		return true;
2571 
2572 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2573 		return true;
2574 
2575 	return false;
2576 }
2577 
2578 static inline bool f2fs_may_extent_tree(struct inode *inode)
2579 {
2580 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2581 			is_inode_flag_set(inode, FI_NO_EXTENT))
2582 		return false;
2583 
2584 	return S_ISREG(inode->i_mode);
2585 }
2586 
2587 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2588 					size_t size, gfp_t flags)
2589 {
2590 #ifdef CONFIG_F2FS_FAULT_INJECTION
2591 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2592 		f2fs_show_injection_info(FAULT_KMALLOC);
2593 		return NULL;
2594 	}
2595 #endif
2596 	return kmalloc(size, flags);
2597 }
2598 
2599 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2600 					size_t size, gfp_t flags)
2601 {
2602 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2603 }
2604 
2605 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2606 					size_t size, gfp_t flags)
2607 {
2608 #ifdef CONFIG_F2FS_FAULT_INJECTION
2609 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2610 		f2fs_show_injection_info(FAULT_KVMALLOC);
2611 		return NULL;
2612 	}
2613 #endif
2614 	return kvmalloc(size, flags);
2615 }
2616 
2617 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2618 					size_t size, gfp_t flags)
2619 {
2620 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2621 }
2622 
2623 static inline int get_extra_isize(struct inode *inode)
2624 {
2625 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2626 }
2627 
2628 static inline int get_inline_xattr_addrs(struct inode *inode)
2629 {
2630 	return F2FS_I(inode)->i_inline_xattr_size;
2631 }
2632 
2633 #define f2fs_get_inode_mode(i) \
2634 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2635 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2636 
2637 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2638 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2639 	offsetof(struct f2fs_inode, i_extra_isize))	\
2640 
2641 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2642 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2643 		((offsetof(typeof(*f2fs_inode), field) +	\
2644 		sizeof((f2fs_inode)->field))			\
2645 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2646 
2647 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2648 {
2649 	int i;
2650 
2651 	spin_lock(&sbi->iostat_lock);
2652 	for (i = 0; i < NR_IO_TYPE; i++)
2653 		sbi->write_iostat[i] = 0;
2654 	spin_unlock(&sbi->iostat_lock);
2655 }
2656 
2657 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2658 			enum iostat_type type, unsigned long long io_bytes)
2659 {
2660 	if (!sbi->iostat_enable)
2661 		return;
2662 	spin_lock(&sbi->iostat_lock);
2663 	sbi->write_iostat[type] += io_bytes;
2664 
2665 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2666 		sbi->write_iostat[APP_BUFFERED_IO] =
2667 			sbi->write_iostat[APP_WRITE_IO] -
2668 			sbi->write_iostat[APP_DIRECT_IO];
2669 	spin_unlock(&sbi->iostat_lock);
2670 }
2671 
2672 static inline bool is_valid_blkaddr(block_t blkaddr)
2673 {
2674 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2675 		return false;
2676 	return true;
2677 }
2678 
2679 /*
2680  * file.c
2681  */
2682 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2683 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2684 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2685 int f2fs_truncate(struct inode *inode);
2686 int f2fs_getattr(const struct path *path, struct kstat *stat,
2687 			u32 request_mask, unsigned int flags);
2688 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2689 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2690 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2691 int f2fs_precache_extents(struct inode *inode);
2692 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2693 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2694 int f2fs_pin_file_control(struct inode *inode, bool inc);
2695 
2696 /*
2697  * inode.c
2698  */
2699 void f2fs_set_inode_flags(struct inode *inode);
2700 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2701 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2702 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2703 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2704 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2705 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2706 void f2fs_update_inode_page(struct inode *inode);
2707 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2708 void f2fs_evict_inode(struct inode *inode);
2709 void f2fs_handle_failed_inode(struct inode *inode);
2710 
2711 /*
2712  * namei.c
2713  */
2714 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2715 							bool hot, bool set);
2716 struct dentry *f2fs_get_parent(struct dentry *child);
2717 
2718 /*
2719  * dir.c
2720  */
2721 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2722 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2723 			f2fs_hash_t namehash, int *max_slots,
2724 			struct f2fs_dentry_ptr *d);
2725 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2726 			unsigned int start_pos, struct fscrypt_str *fstr);
2727 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2728 			struct f2fs_dentry_ptr *d);
2729 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2730 			const struct qstr *new_name,
2731 			const struct qstr *orig_name, struct page *dpage);
2732 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2733 			unsigned int current_depth);
2734 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2735 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2736 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2737 			struct fscrypt_name *fname, struct page **res_page);
2738 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2739 			const struct qstr *child, struct page **res_page);
2740 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2741 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2742 			struct page **page);
2743 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2744 			struct page *page, struct inode *inode);
2745 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2746 			const struct qstr *name, f2fs_hash_t name_hash,
2747 			unsigned int bit_pos);
2748 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2749 			const struct qstr *orig_name,
2750 			struct inode *inode, nid_t ino, umode_t mode);
2751 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2752 			struct inode *inode, nid_t ino, umode_t mode);
2753 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2754 			struct inode *inode, nid_t ino, umode_t mode);
2755 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2756 			struct inode *dir, struct inode *inode);
2757 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2758 bool f2fs_empty_dir(struct inode *dir);
2759 
2760 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2761 {
2762 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2763 				inode, inode->i_ino, inode->i_mode);
2764 }
2765 
2766 /*
2767  * super.c
2768  */
2769 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2770 void f2fs_inode_synced(struct inode *inode);
2771 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2772 void f2fs_quota_off_umount(struct super_block *sb);
2773 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2774 int f2fs_sync_fs(struct super_block *sb, int sync);
2775 extern __printf(3, 4)
2776 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2777 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2778 
2779 /*
2780  * hash.c
2781  */
2782 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2783 				struct fscrypt_name *fname);
2784 
2785 /*
2786  * node.c
2787  */
2788 struct dnode_of_data;
2789 struct node_info;
2790 
2791 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2792 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2793 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2794 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2795 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2796 void f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2797 						struct node_info *ni);
2798 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2799 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2800 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2801 int f2fs_truncate_xattr_node(struct inode *inode);
2802 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2803 int f2fs_remove_inode_page(struct inode *inode);
2804 struct page *f2fs_new_inode_page(struct inode *inode);
2805 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2806 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2807 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2808 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2809 void f2fs_move_node_page(struct page *node_page, int gc_type);
2810 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2811 			struct writeback_control *wbc, bool atomic);
2812 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2813 			struct writeback_control *wbc,
2814 			bool do_balance, enum iostat_type io_type);
2815 void f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2816 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2817 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2818 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2819 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2820 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2821 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2822 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2823 void f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2824 			unsigned int segno, struct f2fs_summary_block *sum);
2825 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2826 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2827 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2828 int __init f2fs_create_node_manager_caches(void);
2829 void f2fs_destroy_node_manager_caches(void);
2830 
2831 /*
2832  * segment.c
2833  */
2834 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2835 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
2836 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
2837 void f2fs_drop_inmem_pages(struct inode *inode);
2838 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
2839 int f2fs_commit_inmem_pages(struct inode *inode);
2840 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2841 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2842 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2843 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
2844 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2845 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2846 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2847 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2848 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
2849 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
2850 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2851 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2852 					struct cp_control *cpc);
2853 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
2854 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2855 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
2856 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2857 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2858 					struct cp_control *cpc);
2859 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2860 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
2861 					block_t blk_addr);
2862 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2863 						enum iostat_type io_type);
2864 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2865 void f2fs_outplace_write_data(struct dnode_of_data *dn,
2866 			struct f2fs_io_info *fio);
2867 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
2868 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2869 			block_t old_blkaddr, block_t new_blkaddr,
2870 			bool recover_curseg, bool recover_newaddr);
2871 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2872 			block_t old_addr, block_t new_addr,
2873 			unsigned char version, bool recover_curseg,
2874 			bool recover_newaddr);
2875 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2876 			block_t old_blkaddr, block_t *new_blkaddr,
2877 			struct f2fs_summary *sum, int type,
2878 			struct f2fs_io_info *fio, bool add_list);
2879 void f2fs_wait_on_page_writeback(struct page *page,
2880 			enum page_type type, bool ordered);
2881 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2882 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2883 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2884 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2885 			unsigned int val, int alloc);
2886 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2887 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
2888 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
2889 int __init f2fs_create_segment_manager_caches(void);
2890 void f2fs_destroy_segment_manager_caches(void);
2891 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
2892 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2893 			enum page_type type, enum temp_type temp);
2894 
2895 /*
2896  * checkpoint.c
2897  */
2898 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2899 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2900 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2901 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2902 bool f2fs_is_valid_meta_blkaddr(struct f2fs_sb_info *sbi,
2903 			block_t blkaddr, int type);
2904 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2905 			int type, bool sync);
2906 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2907 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2908 			long nr_to_write, enum iostat_type io_type);
2909 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2910 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2911 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2912 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2913 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2914 					unsigned int devidx, int type);
2915 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2916 					unsigned int devidx, int type);
2917 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2918 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
2919 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
2920 void f2fs_add_orphan_inode(struct inode *inode);
2921 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2922 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
2923 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
2924 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
2925 void f2fs_remove_dirty_inode(struct inode *inode);
2926 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2927 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2928 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
2929 int __init f2fs_create_checkpoint_caches(void);
2930 void f2fs_destroy_checkpoint_caches(void);
2931 
2932 /*
2933  * data.c
2934  */
2935 int f2fs_init_post_read_processing(void);
2936 void f2fs_destroy_post_read_processing(void);
2937 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2938 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2939 				struct inode *inode, nid_t ino, pgoff_t idx,
2940 				enum page_type type);
2941 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2942 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2943 void f2fs_submit_page_write(struct f2fs_io_info *fio);
2944 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2945 			block_t blk_addr, struct bio *bio);
2946 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2947 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
2948 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2949 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2950 int f2fs_reserve_new_block(struct dnode_of_data *dn);
2951 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2952 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2953 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2954 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
2955 			int op_flags, bool for_write);
2956 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
2957 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
2958 			bool for_write);
2959 struct page *f2fs_get_new_data_page(struct inode *inode,
2960 			struct page *ipage, pgoff_t index, bool new_i_size);
2961 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
2962 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2963 			int create, int flag);
2964 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2965 			u64 start, u64 len);
2966 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
2967 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
2968 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2969 			unsigned int length);
2970 int f2fs_release_page(struct page *page, gfp_t wait);
2971 #ifdef CONFIG_MIGRATION
2972 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2973 			struct page *page, enum migrate_mode mode);
2974 #endif
2975 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
2976 void f2fs_clear_radix_tree_dirty_tag(struct page *page);
2977 
2978 /*
2979  * gc.c
2980  */
2981 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
2982 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
2983 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2984 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2985 			unsigned int segno);
2986 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
2987 
2988 /*
2989  * recovery.c
2990  */
2991 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2992 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
2993 
2994 /*
2995  * debug.c
2996  */
2997 #ifdef CONFIG_F2FS_STAT_FS
2998 struct f2fs_stat_info {
2999 	struct list_head stat_list;
3000 	struct f2fs_sb_info *sbi;
3001 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3002 	int main_area_segs, main_area_sections, main_area_zones;
3003 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3004 	unsigned long long hit_total, total_ext;
3005 	int ext_tree, zombie_tree, ext_node;
3006 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3007 	int ndirty_data, ndirty_qdata;
3008 	int inmem_pages;
3009 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3010 	int nats, dirty_nats, sits, dirty_sits;
3011 	int free_nids, avail_nids, alloc_nids;
3012 	int total_count, utilization;
3013 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3014 	int nr_flushing, nr_flushed, flush_list_empty;
3015 	int nr_discarding, nr_discarded;
3016 	int nr_discard_cmd;
3017 	unsigned int undiscard_blks;
3018 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3019 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3020 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3021 	unsigned int bimodal, avg_vblocks;
3022 	int util_free, util_valid, util_invalid;
3023 	int rsvd_segs, overp_segs;
3024 	int dirty_count, node_pages, meta_pages;
3025 	int prefree_count, call_count, cp_count, bg_cp_count;
3026 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3027 	int bg_node_segs, bg_data_segs;
3028 	int tot_blks, data_blks, node_blks;
3029 	int bg_data_blks, bg_node_blks;
3030 	unsigned long long skipped_atomic_files[2];
3031 	int curseg[NR_CURSEG_TYPE];
3032 	int cursec[NR_CURSEG_TYPE];
3033 	int curzone[NR_CURSEG_TYPE];
3034 
3035 	unsigned int segment_count[2];
3036 	unsigned int block_count[2];
3037 	unsigned int inplace_count;
3038 	unsigned long long base_mem, cache_mem, page_mem;
3039 };
3040 
3041 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3042 {
3043 	return (struct f2fs_stat_info *)sbi->stat_info;
3044 }
3045 
3046 #define stat_inc_cp_count(si)		((si)->cp_count++)
3047 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3048 #define stat_inc_call_count(si)		((si)->call_count++)
3049 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3050 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3051 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3052 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3053 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3054 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3055 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3056 #define stat_inc_inline_xattr(inode)					\
3057 	do {								\
3058 		if (f2fs_has_inline_xattr(inode))			\
3059 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3060 	} while (0)
3061 #define stat_dec_inline_xattr(inode)					\
3062 	do {								\
3063 		if (f2fs_has_inline_xattr(inode))			\
3064 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3065 	} while (0)
3066 #define stat_inc_inline_inode(inode)					\
3067 	do {								\
3068 		if (f2fs_has_inline_data(inode))			\
3069 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3070 	} while (0)
3071 #define stat_dec_inline_inode(inode)					\
3072 	do {								\
3073 		if (f2fs_has_inline_data(inode))			\
3074 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3075 	} while (0)
3076 #define stat_inc_inline_dir(inode)					\
3077 	do {								\
3078 		if (f2fs_has_inline_dentry(inode))			\
3079 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3080 	} while (0)
3081 #define stat_dec_inline_dir(inode)					\
3082 	do {								\
3083 		if (f2fs_has_inline_dentry(inode))			\
3084 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3085 	} while (0)
3086 #define stat_inc_seg_type(sbi, curseg)					\
3087 		((sbi)->segment_count[(curseg)->alloc_type]++)
3088 #define stat_inc_block_count(sbi, curseg)				\
3089 		((sbi)->block_count[(curseg)->alloc_type]++)
3090 #define stat_inc_inplace_blocks(sbi)					\
3091 		(atomic_inc(&(sbi)->inplace_count))
3092 #define stat_inc_atomic_write(inode)					\
3093 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3094 #define stat_dec_atomic_write(inode)					\
3095 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3096 #define stat_update_max_atomic_write(inode)				\
3097 	do {								\
3098 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3099 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3100 		if (cur > max)						\
3101 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3102 	} while (0)
3103 #define stat_inc_volatile_write(inode)					\
3104 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3105 #define stat_dec_volatile_write(inode)					\
3106 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3107 #define stat_update_max_volatile_write(inode)				\
3108 	do {								\
3109 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3110 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3111 		if (cur > max)						\
3112 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3113 	} while (0)
3114 #define stat_inc_seg_count(sbi, type, gc_type)				\
3115 	do {								\
3116 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3117 		si->tot_segs++;						\
3118 		if ((type) == SUM_TYPE_DATA) {				\
3119 			si->data_segs++;				\
3120 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3121 		} else {						\
3122 			si->node_segs++;				\
3123 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3124 		}							\
3125 	} while (0)
3126 
3127 #define stat_inc_tot_blk_count(si, blks)				\
3128 	((si)->tot_blks += (blks))
3129 
3130 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3131 	do {								\
3132 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3133 		stat_inc_tot_blk_count(si, blks);			\
3134 		si->data_blks += (blks);				\
3135 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3136 	} while (0)
3137 
3138 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3139 	do {								\
3140 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3141 		stat_inc_tot_blk_count(si, blks);			\
3142 		si->node_blks += (blks);				\
3143 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3144 	} while (0)
3145 
3146 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3147 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3148 int __init f2fs_create_root_stats(void);
3149 void f2fs_destroy_root_stats(void);
3150 #else
3151 #define stat_inc_cp_count(si)				do { } while (0)
3152 #define stat_inc_bg_cp_count(si)			do { } while (0)
3153 #define stat_inc_call_count(si)				do { } while (0)
3154 #define stat_inc_bggc_count(si)				do { } while (0)
3155 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3156 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3157 #define stat_inc_total_hit(sb)				do { } while (0)
3158 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3159 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3160 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3161 #define stat_inc_inline_xattr(inode)			do { } while (0)
3162 #define stat_dec_inline_xattr(inode)			do { } while (0)
3163 #define stat_inc_inline_inode(inode)			do { } while (0)
3164 #define stat_dec_inline_inode(inode)			do { } while (0)
3165 #define stat_inc_inline_dir(inode)			do { } while (0)
3166 #define stat_dec_inline_dir(inode)			do { } while (0)
3167 #define stat_inc_atomic_write(inode)			do { } while (0)
3168 #define stat_dec_atomic_write(inode)			do { } while (0)
3169 #define stat_update_max_atomic_write(inode)		do { } while (0)
3170 #define stat_inc_volatile_write(inode)			do { } while (0)
3171 #define stat_dec_volatile_write(inode)			do { } while (0)
3172 #define stat_update_max_volatile_write(inode)		do { } while (0)
3173 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3174 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3175 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3176 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3177 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3178 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3179 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3180 
3181 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3182 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3183 static inline int __init f2fs_create_root_stats(void) { return 0; }
3184 static inline void f2fs_destroy_root_stats(void) { }
3185 #endif
3186 
3187 extern const struct file_operations f2fs_dir_operations;
3188 extern const struct file_operations f2fs_file_operations;
3189 extern const struct inode_operations f2fs_file_inode_operations;
3190 extern const struct address_space_operations f2fs_dblock_aops;
3191 extern const struct address_space_operations f2fs_node_aops;
3192 extern const struct address_space_operations f2fs_meta_aops;
3193 extern const struct inode_operations f2fs_dir_inode_operations;
3194 extern const struct inode_operations f2fs_symlink_inode_operations;
3195 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3196 extern const struct inode_operations f2fs_special_inode_operations;
3197 extern struct kmem_cache *f2fs_inode_entry_slab;
3198 
3199 /*
3200  * inline.c
3201  */
3202 bool f2fs_may_inline_data(struct inode *inode);
3203 bool f2fs_may_inline_dentry(struct inode *inode);
3204 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3205 void f2fs_truncate_inline_inode(struct inode *inode,
3206 						struct page *ipage, u64 from);
3207 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3208 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3209 int f2fs_convert_inline_inode(struct inode *inode);
3210 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3211 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3212 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3213 			struct fscrypt_name *fname, struct page **res_page);
3214 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3215 			struct page *ipage);
3216 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3217 			const struct qstr *orig_name,
3218 			struct inode *inode, nid_t ino, umode_t mode);
3219 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3220 				struct page *page, struct inode *dir,
3221 				struct inode *inode);
3222 bool f2fs_empty_inline_dir(struct inode *dir);
3223 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3224 			struct fscrypt_str *fstr);
3225 int f2fs_inline_data_fiemap(struct inode *inode,
3226 			struct fiemap_extent_info *fieinfo,
3227 			__u64 start, __u64 len);
3228 
3229 /*
3230  * shrinker.c
3231  */
3232 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3233 			struct shrink_control *sc);
3234 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3235 			struct shrink_control *sc);
3236 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3237 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3238 
3239 /*
3240  * extent_cache.c
3241  */
3242 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root *root,
3243 				struct rb_entry *cached_re, unsigned int ofs);
3244 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3245 				struct rb_root *root, struct rb_node **parent,
3246 				unsigned int ofs);
3247 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root *root,
3248 		struct rb_entry *cached_re, unsigned int ofs,
3249 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3250 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3251 		bool force);
3252 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3253 						struct rb_root *root);
3254 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3255 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3256 void f2fs_drop_extent_tree(struct inode *inode);
3257 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3258 void f2fs_destroy_extent_tree(struct inode *inode);
3259 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3260 			struct extent_info *ei);
3261 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3262 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3263 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3264 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3265 int __init f2fs_create_extent_cache(void);
3266 void f2fs_destroy_extent_cache(void);
3267 
3268 /*
3269  * sysfs.c
3270  */
3271 int __init f2fs_init_sysfs(void);
3272 void f2fs_exit_sysfs(void);
3273 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3274 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3275 
3276 /*
3277  * crypto support
3278  */
3279 static inline bool f2fs_encrypted_inode(struct inode *inode)
3280 {
3281 	return file_is_encrypt(inode);
3282 }
3283 
3284 static inline bool f2fs_encrypted_file(struct inode *inode)
3285 {
3286 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3287 }
3288 
3289 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3290 {
3291 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3292 	file_set_encrypt(inode);
3293 	inode->i_flags |= S_ENCRYPTED;
3294 #endif
3295 }
3296 
3297 /*
3298  * Returns true if the reads of the inode's data need to undergo some
3299  * postprocessing step, like decryption or authenticity verification.
3300  */
3301 static inline bool f2fs_post_read_required(struct inode *inode)
3302 {
3303 	return f2fs_encrypted_file(inode);
3304 }
3305 
3306 #define F2FS_FEATURE_FUNCS(name, flagname) \
3307 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3308 { \
3309 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3310 }
3311 
3312 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3313 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3314 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3315 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3316 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3317 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3318 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3319 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3320 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3321 
3322 #ifdef CONFIG_BLK_DEV_ZONED
3323 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3324 			struct block_device *bdev, block_t blkaddr)
3325 {
3326 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3327 	int i;
3328 
3329 	for (i = 0; i < sbi->s_ndevs; i++)
3330 		if (FDEV(i).bdev == bdev)
3331 			return FDEV(i).blkz_type[zno];
3332 	return -EINVAL;
3333 }
3334 #endif
3335 
3336 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3337 {
3338 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3339 
3340 	return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb);
3341 }
3342 
3343 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3344 {
3345 	clear_opt(sbi, ADAPTIVE);
3346 	clear_opt(sbi, LFS);
3347 
3348 	switch (mt) {
3349 	case F2FS_MOUNT_ADAPTIVE:
3350 		set_opt(sbi, ADAPTIVE);
3351 		break;
3352 	case F2FS_MOUNT_LFS:
3353 		set_opt(sbi, LFS);
3354 		break;
3355 	}
3356 }
3357 
3358 static inline bool f2fs_may_encrypt(struct inode *inode)
3359 {
3360 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3361 	umode_t mode = inode->i_mode;
3362 
3363 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3364 #else
3365 	return 0;
3366 #endif
3367 }
3368 
3369 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw)
3370 {
3371 	return (f2fs_post_read_required(inode) ||
3372 			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
3373 			F2FS_I_SB(inode)->s_ndevs);
3374 }
3375 
3376 #endif
3377