xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 86f33603)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_MAX,
60 };
61 
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64 
65 struct f2fs_fault_info {
66 	atomic_t inject_ops;
67 	unsigned int inject_rate;
68 	unsigned int inject_type;
69 };
70 
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74 
75 /*
76  * For mount options
77  */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93 #define F2FS_MOUNT_USRQUOTA		0x00080000
94 #define F2FS_MOUNT_GRPQUOTA		0x00100000
95 #define F2FS_MOUNT_PRJQUOTA		0x00200000
96 #define F2FS_MOUNT_QUOTA		0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
100 #define F2FS_MOUNT_NORECOVERY		0x04000000
101 #define F2FS_MOUNT_ATGC			0x08000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 #define COMPRESS_EXT_NUM		16
119 
120 struct f2fs_mount_info {
121 	unsigned int opt;
122 	int write_io_size_bits;		/* Write IO size bits */
123 	block_t root_reserved_blocks;	/* root reserved blocks */
124 	kuid_t s_resuid;		/* reserved blocks for uid */
125 	kgid_t s_resgid;		/* reserved blocks for gid */
126 	int active_logs;		/* # of active logs */
127 	int inline_xattr_size;		/* inline xattr size */
128 #ifdef CONFIG_F2FS_FAULT_INJECTION
129 	struct f2fs_fault_info fault_info;	/* For fault injection */
130 #endif
131 #ifdef CONFIG_QUOTA
132 	/* Names of quota files with journalled quota */
133 	char *s_qf_names[MAXQUOTAS];
134 	int s_jquota_fmt;			/* Format of quota to use */
135 #endif
136 	/* For which write hints are passed down to block layer */
137 	int whint_mode;
138 	int alloc_mode;			/* segment allocation policy */
139 	int fsync_mode;			/* fsync policy */
140 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
141 	int bggc_mode;			/* bggc mode: off, on or sync */
142 	struct fscrypt_dummy_context dummy_enc_ctx; /* test dummy encryption */
143 	block_t unusable_cap_perc;	/* percentage for cap */
144 	block_t unusable_cap;		/* Amount of space allowed to be
145 					 * unusable when disabling checkpoint
146 					 */
147 
148 	/* For compression */
149 	unsigned char compress_algorithm;	/* algorithm type */
150 	unsigned compress_log_size;		/* cluster log size */
151 	unsigned char compress_ext_cnt;		/* extension count */
152 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
153 };
154 
155 #define F2FS_FEATURE_ENCRYPT		0x0001
156 #define F2FS_FEATURE_BLKZONED		0x0002
157 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
158 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
159 #define F2FS_FEATURE_PRJQUOTA		0x0010
160 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
161 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
162 #define F2FS_FEATURE_QUOTA_INO		0x0080
163 #define F2FS_FEATURE_INODE_CRTIME	0x0100
164 #define F2FS_FEATURE_LOST_FOUND		0x0200
165 #define F2FS_FEATURE_VERITY		0x0400
166 #define F2FS_FEATURE_SB_CHKSUM		0x0800
167 #define F2FS_FEATURE_CASEFOLD		0x1000
168 #define F2FS_FEATURE_COMPRESSION	0x2000
169 
170 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
171 	((raw_super->feature & cpu_to_le32(mask)) != 0)
172 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
173 #define F2FS_SET_FEATURE(sbi, mask)					\
174 	(sbi->raw_super->feature |= cpu_to_le32(mask))
175 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
176 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
177 
178 /*
179  * Default values for user and/or group using reserved blocks
180  */
181 #define	F2FS_DEF_RESUID		0
182 #define	F2FS_DEF_RESGID		0
183 
184 /*
185  * For checkpoint manager
186  */
187 enum {
188 	NAT_BITMAP,
189 	SIT_BITMAP
190 };
191 
192 #define	CP_UMOUNT	0x00000001
193 #define	CP_FASTBOOT	0x00000002
194 #define	CP_SYNC		0x00000004
195 #define	CP_RECOVERY	0x00000008
196 #define	CP_DISCARD	0x00000010
197 #define CP_TRIMMED	0x00000020
198 #define CP_PAUSE	0x00000040
199 #define CP_RESIZE 	0x00000080
200 
201 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
202 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
203 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
204 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
205 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
206 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
207 #define DEF_CP_INTERVAL			60	/* 60 secs */
208 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
209 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
210 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
211 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
212 
213 struct cp_control {
214 	int reason;
215 	__u64 trim_start;
216 	__u64 trim_end;
217 	__u64 trim_minlen;
218 };
219 
220 /*
221  * indicate meta/data type
222  */
223 enum {
224 	META_CP,
225 	META_NAT,
226 	META_SIT,
227 	META_SSA,
228 	META_MAX,
229 	META_POR,
230 	DATA_GENERIC,		/* check range only */
231 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
232 	DATA_GENERIC_ENHANCE_READ,	/*
233 					 * strong check on range and segment
234 					 * bitmap but no warning due to race
235 					 * condition of read on truncated area
236 					 * by extent_cache
237 					 */
238 	META_GENERIC,
239 };
240 
241 /* for the list of ino */
242 enum {
243 	ORPHAN_INO,		/* for orphan ino list */
244 	APPEND_INO,		/* for append ino list */
245 	UPDATE_INO,		/* for update ino list */
246 	TRANS_DIR_INO,		/* for trasactions dir ino list */
247 	FLUSH_INO,		/* for multiple device flushing */
248 	MAX_INO_ENTRY,		/* max. list */
249 };
250 
251 struct ino_entry {
252 	struct list_head list;		/* list head */
253 	nid_t ino;			/* inode number */
254 	unsigned int dirty_device;	/* dirty device bitmap */
255 };
256 
257 /* for the list of inodes to be GCed */
258 struct inode_entry {
259 	struct list_head list;	/* list head */
260 	struct inode *inode;	/* vfs inode pointer */
261 };
262 
263 struct fsync_node_entry {
264 	struct list_head list;	/* list head */
265 	struct page *page;	/* warm node page pointer */
266 	unsigned int seq_id;	/* sequence id */
267 };
268 
269 /* for the bitmap indicate blocks to be discarded */
270 struct discard_entry {
271 	struct list_head list;	/* list head */
272 	block_t start_blkaddr;	/* start blockaddr of current segment */
273 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
274 };
275 
276 /* default discard granularity of inner discard thread, unit: block count */
277 #define DEFAULT_DISCARD_GRANULARITY		16
278 
279 /* max discard pend list number */
280 #define MAX_PLIST_NUM		512
281 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
282 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283 
284 enum {
285 	D_PREP,			/* initial */
286 	D_PARTIAL,		/* partially submitted */
287 	D_SUBMIT,		/* all submitted */
288 	D_DONE,			/* finished */
289 };
290 
291 struct discard_info {
292 	block_t lstart;			/* logical start address */
293 	block_t len;			/* length */
294 	block_t start;			/* actual start address in dev */
295 };
296 
297 struct discard_cmd {
298 	struct rb_node rb_node;		/* rb node located in rb-tree */
299 	union {
300 		struct {
301 			block_t lstart;	/* logical start address */
302 			block_t len;	/* length */
303 			block_t start;	/* actual start address in dev */
304 		};
305 		struct discard_info di;	/* discard info */
306 
307 	};
308 	struct list_head list;		/* command list */
309 	struct completion wait;		/* compleation */
310 	struct block_device *bdev;	/* bdev */
311 	unsigned short ref;		/* reference count */
312 	unsigned char state;		/* state */
313 	unsigned char queued;		/* queued discard */
314 	int error;			/* bio error */
315 	spinlock_t lock;		/* for state/bio_ref updating */
316 	unsigned short bio_ref;		/* bio reference count */
317 };
318 
319 enum {
320 	DPOLICY_BG,
321 	DPOLICY_FORCE,
322 	DPOLICY_FSTRIM,
323 	DPOLICY_UMOUNT,
324 	MAX_DPOLICY,
325 };
326 
327 struct discard_policy {
328 	int type;			/* type of discard */
329 	unsigned int min_interval;	/* used for candidates exist */
330 	unsigned int mid_interval;	/* used for device busy */
331 	unsigned int max_interval;	/* used for candidates not exist */
332 	unsigned int max_requests;	/* # of discards issued per round */
333 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
334 	bool io_aware;			/* issue discard in idle time */
335 	bool sync;			/* submit discard with REQ_SYNC flag */
336 	bool ordered;			/* issue discard by lba order */
337 	bool timeout;			/* discard timeout for put_super */
338 	unsigned int granularity;	/* discard granularity */
339 };
340 
341 struct discard_cmd_control {
342 	struct task_struct *f2fs_issue_discard;	/* discard thread */
343 	struct list_head entry_list;		/* 4KB discard entry list */
344 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345 	struct list_head wait_list;		/* store on-flushing entries */
346 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
347 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
348 	unsigned int discard_wake;		/* to wake up discard thread */
349 	struct mutex cmd_lock;
350 	unsigned int nr_discards;		/* # of discards in the list */
351 	unsigned int max_discards;		/* max. discards to be issued */
352 	unsigned int discard_granularity;	/* discard granularity */
353 	unsigned int undiscard_blks;		/* # of undiscard blocks */
354 	unsigned int next_pos;			/* next discard position */
355 	atomic_t issued_discard;		/* # of issued discard */
356 	atomic_t queued_discard;		/* # of queued discard */
357 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
358 	struct rb_root_cached root;		/* root of discard rb-tree */
359 	bool rbtree_check;			/* config for consistence check */
360 };
361 
362 /* for the list of fsync inodes, used only during recovery */
363 struct fsync_inode_entry {
364 	struct list_head list;	/* list head */
365 	struct inode *inode;	/* vfs inode pointer */
366 	block_t blkaddr;	/* block address locating the last fsync */
367 	block_t last_dentry;	/* block address locating the last dentry */
368 };
369 
370 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
371 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
372 
373 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
374 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
375 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
376 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
377 
378 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380 
381 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382 {
383 	int before = nats_in_cursum(journal);
384 
385 	journal->n_nats = cpu_to_le16(before + i);
386 	return before;
387 }
388 
389 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390 {
391 	int before = sits_in_cursum(journal);
392 
393 	journal->n_sits = cpu_to_le16(before + i);
394 	return before;
395 }
396 
397 static inline bool __has_cursum_space(struct f2fs_journal *journal,
398 							int size, int type)
399 {
400 	if (type == NAT_JOURNAL)
401 		return size <= MAX_NAT_JENTRIES(journal);
402 	return size <= MAX_SIT_JENTRIES(journal);
403 }
404 
405 /*
406  * f2fs-specific ioctl commands
407  */
408 #define F2FS_IOCTL_MAGIC		0xf5
409 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
410 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
411 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
412 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
413 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
414 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
415 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
416 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
417 						struct f2fs_defragment)
418 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
419 						struct f2fs_move_range)
420 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
421 						struct f2fs_flush_device)
422 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
423 						struct f2fs_gc_range)
424 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
425 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
426 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
427 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
428 #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
429 #define F2FS_IOC_GET_COMPRESS_BLOCKS	_IOR(F2FS_IOCTL_MAGIC, 17, __u64)
430 #define F2FS_IOC_RELEASE_COMPRESS_BLOCKS				\
431 					_IOR(F2FS_IOCTL_MAGIC, 18, __u64)
432 #define F2FS_IOC_RESERVE_COMPRESS_BLOCKS				\
433 					_IOR(F2FS_IOCTL_MAGIC, 19, __u64)
434 #define F2FS_IOC_SEC_TRIM_FILE		_IOW(F2FS_IOCTL_MAGIC, 20,	\
435 						struct f2fs_sectrim_range)
436 
437 /*
438  * should be same as XFS_IOC_GOINGDOWN.
439  * Flags for going down operation used by FS_IOC_GOINGDOWN
440  */
441 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
442 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
443 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
444 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
445 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
446 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
447 
448 /*
449  * Flags used by F2FS_IOC_SEC_TRIM_FILE
450  */
451 #define F2FS_TRIM_FILE_DISCARD		0x1	/* send discard command */
452 #define F2FS_TRIM_FILE_ZEROOUT		0x2	/* zero out */
453 #define F2FS_TRIM_FILE_MASK		0x3
454 
455 struct f2fs_gc_range {
456 	u32 sync;
457 	u64 start;
458 	u64 len;
459 };
460 
461 struct f2fs_defragment {
462 	u64 start;
463 	u64 len;
464 };
465 
466 struct f2fs_move_range {
467 	u32 dst_fd;		/* destination fd */
468 	u64 pos_in;		/* start position in src_fd */
469 	u64 pos_out;		/* start position in dst_fd */
470 	u64 len;		/* size to move */
471 };
472 
473 struct f2fs_flush_device {
474 	u32 dev_num;		/* device number to flush */
475 	u32 segments;		/* # of segments to flush */
476 };
477 
478 struct f2fs_sectrim_range {
479 	u64 start;
480 	u64 len;
481 	u64 flags;
482 };
483 
484 /* for inline stuff */
485 #define DEF_INLINE_RESERVED_SIZE	1
486 static inline int get_extra_isize(struct inode *inode);
487 static inline int get_inline_xattr_addrs(struct inode *inode);
488 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
489 				(CUR_ADDRS_PER_INODE(inode) -		\
490 				get_inline_xattr_addrs(inode) -	\
491 				DEF_INLINE_RESERVED_SIZE))
492 
493 /* for inline dir */
494 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
495 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
496 				BITS_PER_BYTE + 1))
497 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
498 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
499 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
500 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
501 				NR_INLINE_DENTRY(inode) + \
502 				INLINE_DENTRY_BITMAP_SIZE(inode)))
503 
504 /*
505  * For INODE and NODE manager
506  */
507 /* for directory operations */
508 
509 struct f2fs_filename {
510 	/*
511 	 * The filename the user specified.  This is NULL for some
512 	 * filesystem-internal operations, e.g. converting an inline directory
513 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
514 	 */
515 	const struct qstr *usr_fname;
516 
517 	/*
518 	 * The on-disk filename.  For encrypted directories, this is encrypted.
519 	 * This may be NULL for lookups in an encrypted dir without the key.
520 	 */
521 	struct fscrypt_str disk_name;
522 
523 	/* The dirhash of this filename */
524 	f2fs_hash_t hash;
525 
526 #ifdef CONFIG_FS_ENCRYPTION
527 	/*
528 	 * For lookups in encrypted directories: either the buffer backing
529 	 * disk_name, or a buffer that holds the decoded no-key name.
530 	 */
531 	struct fscrypt_str crypto_buf;
532 #endif
533 #ifdef CONFIG_UNICODE
534 	/*
535 	 * For casefolded directories: the casefolded name, but it's left NULL
536 	 * if the original name is not valid Unicode or if the filesystem is
537 	 * doing an internal operation where usr_fname is also NULL.  In these
538 	 * cases we fall back to treating the name as an opaque byte sequence.
539 	 */
540 	struct fscrypt_str cf_name;
541 #endif
542 };
543 
544 struct f2fs_dentry_ptr {
545 	struct inode *inode;
546 	void *bitmap;
547 	struct f2fs_dir_entry *dentry;
548 	__u8 (*filename)[F2FS_SLOT_LEN];
549 	int max;
550 	int nr_bitmap;
551 };
552 
553 static inline void make_dentry_ptr_block(struct inode *inode,
554 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
555 {
556 	d->inode = inode;
557 	d->max = NR_DENTRY_IN_BLOCK;
558 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
559 	d->bitmap = t->dentry_bitmap;
560 	d->dentry = t->dentry;
561 	d->filename = t->filename;
562 }
563 
564 static inline void make_dentry_ptr_inline(struct inode *inode,
565 					struct f2fs_dentry_ptr *d, void *t)
566 {
567 	int entry_cnt = NR_INLINE_DENTRY(inode);
568 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
569 	int reserved_size = INLINE_RESERVED_SIZE(inode);
570 
571 	d->inode = inode;
572 	d->max = entry_cnt;
573 	d->nr_bitmap = bitmap_size;
574 	d->bitmap = t;
575 	d->dentry = t + bitmap_size + reserved_size;
576 	d->filename = t + bitmap_size + reserved_size +
577 					SIZE_OF_DIR_ENTRY * entry_cnt;
578 }
579 
580 /*
581  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
582  * as its node offset to distinguish from index node blocks.
583  * But some bits are used to mark the node block.
584  */
585 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
586 				>> OFFSET_BIT_SHIFT)
587 enum {
588 	ALLOC_NODE,			/* allocate a new node page if needed */
589 	LOOKUP_NODE,			/* look up a node without readahead */
590 	LOOKUP_NODE_RA,			/*
591 					 * look up a node with readahead called
592 					 * by get_data_block.
593 					 */
594 };
595 
596 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
597 
598 /* congestion wait timeout value, default: 20ms */
599 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
600 
601 /* maximum retry quota flush count */
602 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
603 
604 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
605 
606 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
607 
608 /* for in-memory extent cache entry */
609 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
610 
611 /* number of extent info in extent cache we try to shrink */
612 #define EXTENT_CACHE_SHRINK_NUMBER	128
613 
614 struct rb_entry {
615 	struct rb_node rb_node;		/* rb node located in rb-tree */
616 	union {
617 		struct {
618 			unsigned int ofs;	/* start offset of the entry */
619 			unsigned int len;	/* length of the entry */
620 		};
621 		unsigned long long key;		/* 64-bits key */
622 	} __packed;
623 };
624 
625 struct extent_info {
626 	unsigned int fofs;		/* start offset in a file */
627 	unsigned int len;		/* length of the extent */
628 	u32 blk;			/* start block address of the extent */
629 };
630 
631 struct extent_node {
632 	struct rb_node rb_node;		/* rb node located in rb-tree */
633 	struct extent_info ei;		/* extent info */
634 	struct list_head list;		/* node in global extent list of sbi */
635 	struct extent_tree *et;		/* extent tree pointer */
636 };
637 
638 struct extent_tree {
639 	nid_t ino;			/* inode number */
640 	struct rb_root_cached root;	/* root of extent info rb-tree */
641 	struct extent_node *cached_en;	/* recently accessed extent node */
642 	struct extent_info largest;	/* largested extent info */
643 	struct list_head list;		/* to be used by sbi->zombie_list */
644 	rwlock_t lock;			/* protect extent info rb-tree */
645 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
646 	bool largest_updated;		/* largest extent updated */
647 };
648 
649 /*
650  * This structure is taken from ext4_map_blocks.
651  *
652  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
653  */
654 #define F2FS_MAP_NEW		(1 << BH_New)
655 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
656 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
657 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
658 				F2FS_MAP_UNWRITTEN)
659 
660 struct f2fs_map_blocks {
661 	block_t m_pblk;
662 	block_t m_lblk;
663 	unsigned int m_len;
664 	unsigned int m_flags;
665 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
666 	pgoff_t *m_next_extent;		/* point to next possible extent */
667 	int m_seg_type;
668 	bool m_may_create;		/* indicate it is from write path */
669 };
670 
671 /* for flag in get_data_block */
672 enum {
673 	F2FS_GET_BLOCK_DEFAULT,
674 	F2FS_GET_BLOCK_FIEMAP,
675 	F2FS_GET_BLOCK_BMAP,
676 	F2FS_GET_BLOCK_DIO,
677 	F2FS_GET_BLOCK_PRE_DIO,
678 	F2FS_GET_BLOCK_PRE_AIO,
679 	F2FS_GET_BLOCK_PRECACHE,
680 };
681 
682 /*
683  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
684  */
685 #define FADVISE_COLD_BIT	0x01
686 #define FADVISE_LOST_PINO_BIT	0x02
687 #define FADVISE_ENCRYPT_BIT	0x04
688 #define FADVISE_ENC_NAME_BIT	0x08
689 #define FADVISE_KEEP_SIZE_BIT	0x10
690 #define FADVISE_HOT_BIT		0x20
691 #define FADVISE_VERITY_BIT	0x40
692 
693 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
694 
695 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
696 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
697 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
698 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
699 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
700 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
701 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
702 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
703 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
704 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
705 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
706 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
707 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
708 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
709 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
710 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
711 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
712 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
713 
714 #define DEF_DIR_LEVEL		0
715 
716 enum {
717 	GC_FAILURE_PIN,
718 	GC_FAILURE_ATOMIC,
719 	MAX_GC_FAILURE
720 };
721 
722 /* used for f2fs_inode_info->flags */
723 enum {
724 	FI_NEW_INODE,		/* indicate newly allocated inode */
725 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
726 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
727 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
728 	FI_INC_LINK,		/* need to increment i_nlink */
729 	FI_ACL_MODE,		/* indicate acl mode */
730 	FI_NO_ALLOC,		/* should not allocate any blocks */
731 	FI_FREE_NID,		/* free allocated nide */
732 	FI_NO_EXTENT,		/* not to use the extent cache */
733 	FI_INLINE_XATTR,	/* used for inline xattr */
734 	FI_INLINE_DATA,		/* used for inline data*/
735 	FI_INLINE_DENTRY,	/* used for inline dentry */
736 	FI_APPEND_WRITE,	/* inode has appended data */
737 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
738 	FI_NEED_IPU,		/* used for ipu per file */
739 	FI_ATOMIC_FILE,		/* indicate atomic file */
740 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
741 	FI_VOLATILE_FILE,	/* indicate volatile file */
742 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
743 	FI_DROP_CACHE,		/* drop dirty page cache */
744 	FI_DATA_EXIST,		/* indicate data exists */
745 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
746 	FI_DO_DEFRAG,		/* indicate defragment is running */
747 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
748 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
749 	FI_HOT_DATA,		/* indicate file is hot */
750 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
751 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
752 	FI_PIN_FILE,		/* indicate file should not be gced */
753 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
754 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
755 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
756 	FI_MMAP_FILE,		/* indicate file was mmapped */
757 	FI_MAX,			/* max flag, never be used */
758 };
759 
760 struct f2fs_inode_info {
761 	struct inode vfs_inode;		/* serve a vfs inode */
762 	unsigned long i_flags;		/* keep an inode flags for ioctl */
763 	unsigned char i_advise;		/* use to give file attribute hints */
764 	unsigned char i_dir_level;	/* use for dentry level for large dir */
765 	unsigned int i_current_depth;	/* only for directory depth */
766 	/* for gc failure statistic */
767 	unsigned int i_gc_failures[MAX_GC_FAILURE];
768 	unsigned int i_pino;		/* parent inode number */
769 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
770 
771 	/* Use below internally in f2fs*/
772 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
773 	struct rw_semaphore i_sem;	/* protect fi info */
774 	atomic_t dirty_pages;		/* # of dirty pages */
775 	f2fs_hash_t chash;		/* hash value of given file name */
776 	unsigned int clevel;		/* maximum level of given file name */
777 	struct task_struct *task;	/* lookup and create consistency */
778 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
779 	nid_t i_xattr_nid;		/* node id that contains xattrs */
780 	loff_t	last_disk_size;		/* lastly written file size */
781 	spinlock_t i_size_lock;		/* protect last_disk_size */
782 
783 #ifdef CONFIG_QUOTA
784 	struct dquot *i_dquot[MAXQUOTAS];
785 
786 	/* quota space reservation, managed internally by quota code */
787 	qsize_t i_reserved_quota;
788 #endif
789 	struct list_head dirty_list;	/* dirty list for dirs and files */
790 	struct list_head gdirty_list;	/* linked in global dirty list */
791 	struct list_head inmem_ilist;	/* list for inmem inodes */
792 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
793 	struct task_struct *inmem_task;	/* store inmemory task */
794 	struct mutex inmem_lock;	/* lock for inmemory pages */
795 	pgoff_t ra_offset;		/* ongoing readahead offset */
796 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
797 
798 	/* avoid racing between foreground op and gc */
799 	struct rw_semaphore i_gc_rwsem[2];
800 	struct rw_semaphore i_mmap_sem;
801 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
802 
803 	int i_extra_isize;		/* size of extra space located in i_addr */
804 	kprojid_t i_projid;		/* id for project quota */
805 	int i_inline_xattr_size;	/* inline xattr size */
806 	struct timespec64 i_crtime;	/* inode creation time */
807 	struct timespec64 i_disk_time[4];/* inode disk times */
808 
809 	/* for file compress */
810 	atomic_t i_compr_blocks;		/* # of compressed blocks */
811 	unsigned char i_compress_algorithm;	/* algorithm type */
812 	unsigned char i_log_cluster_size;	/* log of cluster size */
813 	unsigned int i_cluster_size;		/* cluster size */
814 };
815 
816 static inline void get_extent_info(struct extent_info *ext,
817 					struct f2fs_extent *i_ext)
818 {
819 	ext->fofs = le32_to_cpu(i_ext->fofs);
820 	ext->blk = le32_to_cpu(i_ext->blk);
821 	ext->len = le32_to_cpu(i_ext->len);
822 }
823 
824 static inline void set_raw_extent(struct extent_info *ext,
825 					struct f2fs_extent *i_ext)
826 {
827 	i_ext->fofs = cpu_to_le32(ext->fofs);
828 	i_ext->blk = cpu_to_le32(ext->blk);
829 	i_ext->len = cpu_to_le32(ext->len);
830 }
831 
832 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
833 						u32 blk, unsigned int len)
834 {
835 	ei->fofs = fofs;
836 	ei->blk = blk;
837 	ei->len = len;
838 }
839 
840 static inline bool __is_discard_mergeable(struct discard_info *back,
841 			struct discard_info *front, unsigned int max_len)
842 {
843 	return (back->lstart + back->len == front->lstart) &&
844 		(back->len + front->len <= max_len);
845 }
846 
847 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
848 			struct discard_info *back, unsigned int max_len)
849 {
850 	return __is_discard_mergeable(back, cur, max_len);
851 }
852 
853 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
854 			struct discard_info *front, unsigned int max_len)
855 {
856 	return __is_discard_mergeable(cur, front, max_len);
857 }
858 
859 static inline bool __is_extent_mergeable(struct extent_info *back,
860 						struct extent_info *front)
861 {
862 	return (back->fofs + back->len == front->fofs &&
863 			back->blk + back->len == front->blk);
864 }
865 
866 static inline bool __is_back_mergeable(struct extent_info *cur,
867 						struct extent_info *back)
868 {
869 	return __is_extent_mergeable(back, cur);
870 }
871 
872 static inline bool __is_front_mergeable(struct extent_info *cur,
873 						struct extent_info *front)
874 {
875 	return __is_extent_mergeable(cur, front);
876 }
877 
878 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
879 static inline void __try_update_largest_extent(struct extent_tree *et,
880 						struct extent_node *en)
881 {
882 	if (en->ei.len > et->largest.len) {
883 		et->largest = en->ei;
884 		et->largest_updated = true;
885 	}
886 }
887 
888 /*
889  * For free nid management
890  */
891 enum nid_state {
892 	FREE_NID,		/* newly added to free nid list */
893 	PREALLOC_NID,		/* it is preallocated */
894 	MAX_NID_STATE,
895 };
896 
897 struct f2fs_nm_info {
898 	block_t nat_blkaddr;		/* base disk address of NAT */
899 	nid_t max_nid;			/* maximum possible node ids */
900 	nid_t available_nids;		/* # of available node ids */
901 	nid_t next_scan_nid;		/* the next nid to be scanned */
902 	unsigned int ram_thresh;	/* control the memory footprint */
903 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
904 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
905 
906 	/* NAT cache management */
907 	struct radix_tree_root nat_root;/* root of the nat entry cache */
908 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
909 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
910 	struct list_head nat_entries;	/* cached nat entry list (clean) */
911 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
912 	unsigned int nat_cnt;		/* the # of cached nat entries */
913 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
914 	unsigned int nat_blocks;	/* # of nat blocks */
915 
916 	/* free node ids management */
917 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
918 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
919 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
920 	spinlock_t nid_list_lock;	/* protect nid lists ops */
921 	struct mutex build_lock;	/* lock for build free nids */
922 	unsigned char **free_nid_bitmap;
923 	unsigned char *nat_block_bitmap;
924 	unsigned short *free_nid_count;	/* free nid count of NAT block */
925 
926 	/* for checkpoint */
927 	char *nat_bitmap;		/* NAT bitmap pointer */
928 
929 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
930 	unsigned char *nat_bits;	/* NAT bits blocks */
931 	unsigned char *full_nat_bits;	/* full NAT pages */
932 	unsigned char *empty_nat_bits;	/* empty NAT pages */
933 #ifdef CONFIG_F2FS_CHECK_FS
934 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
935 #endif
936 	int bitmap_size;		/* bitmap size */
937 };
938 
939 /*
940  * this structure is used as one of function parameters.
941  * all the information are dedicated to a given direct node block determined
942  * by the data offset in a file.
943  */
944 struct dnode_of_data {
945 	struct inode *inode;		/* vfs inode pointer */
946 	struct page *inode_page;	/* its inode page, NULL is possible */
947 	struct page *node_page;		/* cached direct node page */
948 	nid_t nid;			/* node id of the direct node block */
949 	unsigned int ofs_in_node;	/* data offset in the node page */
950 	bool inode_page_locked;		/* inode page is locked or not */
951 	bool node_changed;		/* is node block changed */
952 	char cur_level;			/* level of hole node page */
953 	char max_level;			/* level of current page located */
954 	block_t	data_blkaddr;		/* block address of the node block */
955 };
956 
957 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
958 		struct page *ipage, struct page *npage, nid_t nid)
959 {
960 	memset(dn, 0, sizeof(*dn));
961 	dn->inode = inode;
962 	dn->inode_page = ipage;
963 	dn->node_page = npage;
964 	dn->nid = nid;
965 }
966 
967 /*
968  * For SIT manager
969  *
970  * By default, there are 6 active log areas across the whole main area.
971  * When considering hot and cold data separation to reduce cleaning overhead,
972  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
973  * respectively.
974  * In the current design, you should not change the numbers intentionally.
975  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
976  * logs individually according to the underlying devices. (default: 6)
977  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
978  * data and 8 for node logs.
979  */
980 #define	NR_CURSEG_DATA_TYPE	(3)
981 #define NR_CURSEG_NODE_TYPE	(3)
982 #define NR_CURSEG_INMEM_TYPE	(2)
983 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
984 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
985 
986 enum {
987 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
988 	CURSEG_WARM_DATA,	/* data blocks */
989 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
990 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
991 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
992 	CURSEG_COLD_NODE,	/* indirect node blocks */
993 	NR_PERSISTENT_LOG,	/* number of persistent log */
994 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
995 				/* pinned file that needs consecutive block address */
996 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
997 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
998 };
999 
1000 struct flush_cmd {
1001 	struct completion wait;
1002 	struct llist_node llnode;
1003 	nid_t ino;
1004 	int ret;
1005 };
1006 
1007 struct flush_cmd_control {
1008 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1009 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1010 	atomic_t issued_flush;			/* # of issued flushes */
1011 	atomic_t queued_flush;			/* # of queued flushes */
1012 	struct llist_head issue_list;		/* list for command issue */
1013 	struct llist_node *dispatch_list;	/* list for command dispatch */
1014 };
1015 
1016 struct f2fs_sm_info {
1017 	struct sit_info *sit_info;		/* whole segment information */
1018 	struct free_segmap_info *free_info;	/* free segment information */
1019 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1020 	struct curseg_info *curseg_array;	/* active segment information */
1021 
1022 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
1023 
1024 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1025 	block_t main_blkaddr;		/* start block address of main area */
1026 	block_t ssa_blkaddr;		/* start block address of SSA area */
1027 
1028 	unsigned int segment_count;	/* total # of segments */
1029 	unsigned int main_segments;	/* # of segments in main area */
1030 	unsigned int reserved_segments;	/* # of reserved segments */
1031 	unsigned int ovp_segments;	/* # of overprovision segments */
1032 
1033 	/* a threshold to reclaim prefree segments */
1034 	unsigned int rec_prefree_segments;
1035 
1036 	/* for batched trimming */
1037 	unsigned int trim_sections;		/* # of sections to trim */
1038 
1039 	struct list_head sit_entry_set;	/* sit entry set list */
1040 
1041 	unsigned int ipu_policy;	/* in-place-update policy */
1042 	unsigned int min_ipu_util;	/* in-place-update threshold */
1043 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1044 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1045 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1046 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1047 
1048 	/* for flush command control */
1049 	struct flush_cmd_control *fcc_info;
1050 
1051 	/* for discard command control */
1052 	struct discard_cmd_control *dcc_info;
1053 };
1054 
1055 /*
1056  * For superblock
1057  */
1058 /*
1059  * COUNT_TYPE for monitoring
1060  *
1061  * f2fs monitors the number of several block types such as on-writeback,
1062  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1063  */
1064 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1065 enum count_type {
1066 	F2FS_DIRTY_DENTS,
1067 	F2FS_DIRTY_DATA,
1068 	F2FS_DIRTY_QDATA,
1069 	F2FS_DIRTY_NODES,
1070 	F2FS_DIRTY_META,
1071 	F2FS_INMEM_PAGES,
1072 	F2FS_DIRTY_IMETA,
1073 	F2FS_WB_CP_DATA,
1074 	F2FS_WB_DATA,
1075 	F2FS_RD_DATA,
1076 	F2FS_RD_NODE,
1077 	F2FS_RD_META,
1078 	F2FS_DIO_WRITE,
1079 	F2FS_DIO_READ,
1080 	NR_COUNT_TYPE,
1081 };
1082 
1083 /*
1084  * The below are the page types of bios used in submit_bio().
1085  * The available types are:
1086  * DATA			User data pages. It operates as async mode.
1087  * NODE			Node pages. It operates as async mode.
1088  * META			FS metadata pages such as SIT, NAT, CP.
1089  * NR_PAGE_TYPE		The number of page types.
1090  * META_FLUSH		Make sure the previous pages are written
1091  *			with waiting the bio's completion
1092  * ...			Only can be used with META.
1093  */
1094 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1095 enum page_type {
1096 	DATA,
1097 	NODE,
1098 	META,
1099 	NR_PAGE_TYPE,
1100 	META_FLUSH,
1101 	INMEM,		/* the below types are used by tracepoints only. */
1102 	INMEM_DROP,
1103 	INMEM_INVALIDATE,
1104 	INMEM_REVOKE,
1105 	IPU,
1106 	OPU,
1107 };
1108 
1109 enum temp_type {
1110 	HOT = 0,	/* must be zero for meta bio */
1111 	WARM,
1112 	COLD,
1113 	NR_TEMP_TYPE,
1114 };
1115 
1116 enum need_lock_type {
1117 	LOCK_REQ = 0,
1118 	LOCK_DONE,
1119 	LOCK_RETRY,
1120 };
1121 
1122 enum cp_reason_type {
1123 	CP_NO_NEEDED,
1124 	CP_NON_REGULAR,
1125 	CP_COMPRESSED,
1126 	CP_HARDLINK,
1127 	CP_SB_NEED_CP,
1128 	CP_WRONG_PINO,
1129 	CP_NO_SPC_ROLL,
1130 	CP_NODE_NEED_CP,
1131 	CP_FASTBOOT_MODE,
1132 	CP_SPEC_LOG_NUM,
1133 	CP_RECOVER_DIR,
1134 };
1135 
1136 enum iostat_type {
1137 	/* WRITE IO */
1138 	APP_DIRECT_IO,			/* app direct write IOs */
1139 	APP_BUFFERED_IO,		/* app buffered write IOs */
1140 	APP_WRITE_IO,			/* app write IOs */
1141 	APP_MAPPED_IO,			/* app mapped IOs */
1142 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1143 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1144 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1145 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1146 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1147 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1148 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1149 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1150 
1151 	/* READ IO */
1152 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1153 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1154 	APP_READ_IO,			/* app read IOs */
1155 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1156 	FS_DATA_READ_IO,		/* data read IOs */
1157 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1158 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1159 	FS_NODE_READ_IO,		/* node read IOs */
1160 	FS_META_READ_IO,		/* meta read IOs */
1161 
1162 	/* other */
1163 	FS_DISCARD,			/* discard */
1164 	NR_IO_TYPE,
1165 };
1166 
1167 struct f2fs_io_info {
1168 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1169 	nid_t ino;		/* inode number */
1170 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1171 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1172 	int op;			/* contains REQ_OP_ */
1173 	int op_flags;		/* req_flag_bits */
1174 	block_t new_blkaddr;	/* new block address to be written */
1175 	block_t old_blkaddr;	/* old block address before Cow */
1176 	struct page *page;	/* page to be written */
1177 	struct page *encrypted_page;	/* encrypted page */
1178 	struct page *compressed_page;	/* compressed page */
1179 	struct list_head list;		/* serialize IOs */
1180 	bool submitted;		/* indicate IO submission */
1181 	int need_lock;		/* indicate we need to lock cp_rwsem */
1182 	bool in_list;		/* indicate fio is in io_list */
1183 	bool is_por;		/* indicate IO is from recovery or not */
1184 	bool retry;		/* need to reallocate block address */
1185 	int compr_blocks;	/* # of compressed block addresses */
1186 	bool encrypted;		/* indicate file is encrypted */
1187 	enum iostat_type io_type;	/* io type */
1188 	struct writeback_control *io_wbc; /* writeback control */
1189 	struct bio **bio;		/* bio for ipu */
1190 	sector_t *last_block;		/* last block number in bio */
1191 	unsigned char version;		/* version of the node */
1192 };
1193 
1194 struct bio_entry {
1195 	struct bio *bio;
1196 	struct list_head list;
1197 };
1198 
1199 #define is_read_io(rw) ((rw) == READ)
1200 struct f2fs_bio_info {
1201 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1202 	struct bio *bio;		/* bios to merge */
1203 	sector_t last_block_in_bio;	/* last block number */
1204 	struct f2fs_io_info fio;	/* store buffered io info. */
1205 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1206 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1207 	struct list_head io_list;	/* track fios */
1208 	struct list_head bio_list;	/* bio entry list head */
1209 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1210 };
1211 
1212 #define FDEV(i)				(sbi->devs[i])
1213 #define RDEV(i)				(raw_super->devs[i])
1214 struct f2fs_dev_info {
1215 	struct block_device *bdev;
1216 	char path[MAX_PATH_LEN];
1217 	unsigned int total_segments;
1218 	block_t start_blk;
1219 	block_t end_blk;
1220 #ifdef CONFIG_BLK_DEV_ZONED
1221 	unsigned int nr_blkz;		/* Total number of zones */
1222 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1223 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1224 #endif
1225 };
1226 
1227 enum inode_type {
1228 	DIR_INODE,			/* for dirty dir inode */
1229 	FILE_INODE,			/* for dirty regular/symlink inode */
1230 	DIRTY_META,			/* for all dirtied inode metadata */
1231 	ATOMIC_FILE,			/* for all atomic files */
1232 	NR_INODE_TYPE,
1233 };
1234 
1235 /* for inner inode cache management */
1236 struct inode_management {
1237 	struct radix_tree_root ino_root;	/* ino entry array */
1238 	spinlock_t ino_lock;			/* for ino entry lock */
1239 	struct list_head ino_list;		/* inode list head */
1240 	unsigned long ino_num;			/* number of entries */
1241 };
1242 
1243 /* for GC_AT */
1244 struct atgc_management {
1245 	bool atgc_enabled;			/* ATGC is enabled or not */
1246 	struct rb_root_cached root;		/* root of victim rb-tree */
1247 	struct list_head victim_list;		/* linked with all victim entries */
1248 	unsigned int victim_count;		/* victim count in rb-tree */
1249 	unsigned int candidate_ratio;		/* candidate ratio */
1250 	unsigned int max_candidate_count;	/* max candidate count */
1251 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1252 	unsigned long long age_threshold;	/* age threshold */
1253 };
1254 
1255 /* For s_flag in struct f2fs_sb_info */
1256 enum {
1257 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1258 	SBI_IS_CLOSE,				/* specify unmounting */
1259 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1260 	SBI_POR_DOING,				/* recovery is doing or not */
1261 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1262 	SBI_NEED_CP,				/* need to checkpoint */
1263 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1264 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1265 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1266 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1267 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1268 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1269 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1270 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1271 };
1272 
1273 enum {
1274 	CP_TIME,
1275 	REQ_TIME,
1276 	DISCARD_TIME,
1277 	GC_TIME,
1278 	DISABLE_TIME,
1279 	UMOUNT_DISCARD_TIMEOUT,
1280 	MAX_TIME,
1281 };
1282 
1283 enum {
1284 	GC_NORMAL,
1285 	GC_IDLE_CB,
1286 	GC_IDLE_GREEDY,
1287 	GC_IDLE_AT,
1288 	GC_URGENT_HIGH,
1289 	GC_URGENT_LOW,
1290 };
1291 
1292 enum {
1293 	BGGC_MODE_ON,		/* background gc is on */
1294 	BGGC_MODE_OFF,		/* background gc is off */
1295 	BGGC_MODE_SYNC,		/*
1296 				 * background gc is on, migrating blocks
1297 				 * like foreground gc
1298 				 */
1299 };
1300 
1301 enum {
1302 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1303 	FS_MODE_LFS,		/* use lfs allocation only */
1304 };
1305 
1306 enum {
1307 	WHINT_MODE_OFF,		/* not pass down write hints */
1308 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1309 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1310 };
1311 
1312 enum {
1313 	ALLOC_MODE_DEFAULT,	/* stay default */
1314 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1315 };
1316 
1317 enum fsync_mode {
1318 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1319 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1320 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1321 };
1322 
1323 /*
1324  * this value is set in page as a private data which indicate that
1325  * the page is atomically written, and it is in inmem_pages list.
1326  */
1327 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1328 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1329 
1330 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1331 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1332 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1333 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1334 
1335 #ifdef CONFIG_F2FS_IO_TRACE
1336 #define IS_IO_TRACED_PAGE(page)			\
1337 		(page_private(page) > 0 &&		\
1338 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1339 #else
1340 #define IS_IO_TRACED_PAGE(page) (0)
1341 #endif
1342 
1343 #ifdef CONFIG_FS_ENCRYPTION
1344 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1345 	(unlikely(F2FS_OPTION(sbi).dummy_enc_ctx.ctx != NULL))
1346 #else
1347 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1348 #endif
1349 
1350 /* For compression */
1351 enum compress_algorithm_type {
1352 	COMPRESS_LZO,
1353 	COMPRESS_LZ4,
1354 	COMPRESS_ZSTD,
1355 	COMPRESS_LZORLE,
1356 	COMPRESS_MAX,
1357 };
1358 
1359 #define COMPRESS_DATA_RESERVED_SIZE		5
1360 struct compress_data {
1361 	__le32 clen;			/* compressed data size */
1362 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1363 	u8 cdata[];			/* compressed data */
1364 };
1365 
1366 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1367 
1368 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1369 
1370 /* compress context */
1371 struct compress_ctx {
1372 	struct inode *inode;		/* inode the context belong to */
1373 	pgoff_t cluster_idx;		/* cluster index number */
1374 	unsigned int cluster_size;	/* page count in cluster */
1375 	unsigned int log_cluster_size;	/* log of cluster size */
1376 	struct page **rpages;		/* pages store raw data in cluster */
1377 	unsigned int nr_rpages;		/* total page number in rpages */
1378 	struct page **cpages;		/* pages store compressed data in cluster */
1379 	unsigned int nr_cpages;		/* total page number in cpages */
1380 	void *rbuf;			/* virtual mapped address on rpages */
1381 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1382 	size_t rlen;			/* valid data length in rbuf */
1383 	size_t clen;			/* valid data length in cbuf */
1384 	void *private;			/* payload buffer for specified compression algorithm */
1385 	void *private2;			/* extra payload buffer */
1386 };
1387 
1388 /* compress context for write IO path */
1389 struct compress_io_ctx {
1390 	u32 magic;			/* magic number to indicate page is compressed */
1391 	struct inode *inode;		/* inode the context belong to */
1392 	struct page **rpages;		/* pages store raw data in cluster */
1393 	unsigned int nr_rpages;		/* total page number in rpages */
1394 	atomic_t pending_pages;		/* in-flight compressed page count */
1395 };
1396 
1397 /* decompress io context for read IO path */
1398 struct decompress_io_ctx {
1399 	u32 magic;			/* magic number to indicate page is compressed */
1400 	struct inode *inode;		/* inode the context belong to */
1401 	pgoff_t cluster_idx;		/* cluster index number */
1402 	unsigned int cluster_size;	/* page count in cluster */
1403 	unsigned int log_cluster_size;	/* log of cluster size */
1404 	struct page **rpages;		/* pages store raw data in cluster */
1405 	unsigned int nr_rpages;		/* total page number in rpages */
1406 	struct page **cpages;		/* pages store compressed data in cluster */
1407 	unsigned int nr_cpages;		/* total page number in cpages */
1408 	struct page **tpages;		/* temp pages to pad holes in cluster */
1409 	void *rbuf;			/* virtual mapped address on rpages */
1410 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1411 	size_t rlen;			/* valid data length in rbuf */
1412 	size_t clen;			/* valid data length in cbuf */
1413 	atomic_t pending_pages;		/* in-flight compressed page count */
1414 	bool failed;			/* indicate IO error during decompression */
1415 	void *private;			/* payload buffer for specified decompression algorithm */
1416 	void *private2;			/* extra payload buffer */
1417 };
1418 
1419 #define NULL_CLUSTER			((unsigned int)(~0))
1420 #define MIN_COMPRESS_LOG_SIZE		2
1421 #define MAX_COMPRESS_LOG_SIZE		8
1422 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1423 
1424 struct f2fs_sb_info {
1425 	struct super_block *sb;			/* pointer to VFS super block */
1426 	struct proc_dir_entry *s_proc;		/* proc entry */
1427 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1428 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1429 	int valid_super_block;			/* valid super block no */
1430 	unsigned long s_flag;				/* flags for sbi */
1431 	struct mutex writepages;		/* mutex for writepages() */
1432 
1433 #ifdef CONFIG_BLK_DEV_ZONED
1434 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1435 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1436 #endif
1437 
1438 	/* for node-related operations */
1439 	struct f2fs_nm_info *nm_info;		/* node manager */
1440 	struct inode *node_inode;		/* cache node blocks */
1441 
1442 	/* for segment-related operations */
1443 	struct f2fs_sm_info *sm_info;		/* segment manager */
1444 
1445 	/* for bio operations */
1446 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1447 	/* keep migration IO order for LFS mode */
1448 	struct rw_semaphore io_order_lock;
1449 	mempool_t *write_io_dummy;		/* Dummy pages */
1450 
1451 	/* for checkpoint */
1452 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1453 	int cur_cp_pack;			/* remain current cp pack */
1454 	spinlock_t cp_lock;			/* for flag in ckpt */
1455 	struct inode *meta_inode;		/* cache meta blocks */
1456 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1457 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1458 	struct rw_semaphore node_write;		/* locking node writes */
1459 	struct rw_semaphore node_change;	/* locking node change */
1460 	wait_queue_head_t cp_wait;
1461 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1462 	long interval_time[MAX_TIME];		/* to store thresholds */
1463 
1464 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1465 
1466 	spinlock_t fsync_node_lock;		/* for node entry lock */
1467 	struct list_head fsync_node_list;	/* node list head */
1468 	unsigned int fsync_seg_id;		/* sequence id */
1469 	unsigned int fsync_node_num;		/* number of node entries */
1470 
1471 	/* for orphan inode, use 0'th array */
1472 	unsigned int max_orphans;		/* max orphan inodes */
1473 
1474 	/* for inode management */
1475 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1476 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1477 	struct mutex flush_lock;		/* for flush exclusion */
1478 
1479 	/* for extent tree cache */
1480 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1481 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1482 	struct list_head extent_list;		/* lru list for shrinker */
1483 	spinlock_t extent_lock;			/* locking extent lru list */
1484 	atomic_t total_ext_tree;		/* extent tree count */
1485 	struct list_head zombie_list;		/* extent zombie tree list */
1486 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1487 	atomic_t total_ext_node;		/* extent info count */
1488 
1489 	/* basic filesystem units */
1490 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1491 	unsigned int log_blocksize;		/* log2 block size */
1492 	unsigned int blocksize;			/* block size */
1493 	unsigned int root_ino_num;		/* root inode number*/
1494 	unsigned int node_ino_num;		/* node inode number*/
1495 	unsigned int meta_ino_num;		/* meta inode number*/
1496 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1497 	unsigned int blocks_per_seg;		/* blocks per segment */
1498 	unsigned int segs_per_sec;		/* segments per section */
1499 	unsigned int secs_per_zone;		/* sections per zone */
1500 	unsigned int total_sections;		/* total section count */
1501 	unsigned int total_node_count;		/* total node block count */
1502 	unsigned int total_valid_node_count;	/* valid node block count */
1503 	loff_t max_file_blocks;			/* max block index of file */
1504 	int dir_level;				/* directory level */
1505 	int readdir_ra;				/* readahead inode in readdir */
1506 
1507 	block_t user_block_count;		/* # of user blocks */
1508 	block_t total_valid_block_count;	/* # of valid blocks */
1509 	block_t discard_blks;			/* discard command candidats */
1510 	block_t last_valid_block_count;		/* for recovery */
1511 	block_t reserved_blocks;		/* configurable reserved blocks */
1512 	block_t current_reserved_blocks;	/* current reserved blocks */
1513 
1514 	/* Additional tracking for no checkpoint mode */
1515 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1516 
1517 	unsigned int nquota_files;		/* # of quota sysfile */
1518 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1519 
1520 	/* # of pages, see count_type */
1521 	atomic_t nr_pages[NR_COUNT_TYPE];
1522 	/* # of allocated blocks */
1523 	struct percpu_counter alloc_valid_block_count;
1524 
1525 	/* writeback control */
1526 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1527 
1528 	/* valid inode count */
1529 	struct percpu_counter total_valid_inode_count;
1530 
1531 	struct f2fs_mount_info mount_opt;	/* mount options */
1532 
1533 	/* for cleaning operations */
1534 	struct rw_semaphore gc_lock;		/*
1535 						 * semaphore for GC, avoid
1536 						 * race between GC and GC or CP
1537 						 */
1538 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1539 	struct atgc_management am;		/* atgc management */
1540 	unsigned int cur_victim_sec;		/* current victim section num */
1541 	unsigned int gc_mode;			/* current GC state */
1542 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1543 
1544 	/* for skip statistic */
1545 	unsigned int atomic_files;		/* # of opened atomic file */
1546 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1547 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1548 
1549 	/* threshold for gc trials on pinned files */
1550 	u64 gc_pin_file_threshold;
1551 	struct rw_semaphore pin_sem;
1552 
1553 	/* maximum # of trials to find a victim segment for SSR and GC */
1554 	unsigned int max_victim_search;
1555 	/* migration granularity of garbage collection, unit: segment */
1556 	unsigned int migration_granularity;
1557 
1558 	/*
1559 	 * for stat information.
1560 	 * one is for the LFS mode, and the other is for the SSR mode.
1561 	 */
1562 #ifdef CONFIG_F2FS_STAT_FS
1563 	struct f2fs_stat_info *stat_info;	/* FS status information */
1564 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1565 	unsigned int segment_count[2];		/* # of allocated segments */
1566 	unsigned int block_count[2];		/* # of allocated blocks */
1567 	atomic_t inplace_count;		/* # of inplace update */
1568 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1569 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1570 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1571 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1572 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1573 	atomic_t inline_inode;			/* # of inline_data inodes */
1574 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1575 	atomic_t compr_inode;			/* # of compressed inodes */
1576 	atomic64_t compr_blocks;		/* # of compressed blocks */
1577 	atomic_t vw_cnt;			/* # of volatile writes */
1578 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1579 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1580 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1581 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1582 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1583 #endif
1584 	spinlock_t stat_lock;			/* lock for stat operations */
1585 
1586 	/* For app/fs IO statistics */
1587 	spinlock_t iostat_lock;
1588 	unsigned long long rw_iostat[NR_IO_TYPE];
1589 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1590 	bool iostat_enable;
1591 	unsigned long iostat_next_period;
1592 	unsigned int iostat_period_ms;
1593 
1594 	/* to attach REQ_META|REQ_FUA flags */
1595 	unsigned int data_io_flag;
1596 	unsigned int node_io_flag;
1597 
1598 	/* For sysfs suppport */
1599 	struct kobject s_kobj;
1600 	struct completion s_kobj_unregister;
1601 
1602 	/* For shrinker support */
1603 	struct list_head s_list;
1604 	int s_ndevs;				/* number of devices */
1605 	struct f2fs_dev_info *devs;		/* for device list */
1606 	unsigned int dirty_device;		/* for checkpoint data flush */
1607 	spinlock_t dev_lock;			/* protect dirty_device */
1608 	struct mutex umount_mutex;
1609 	unsigned int shrinker_run_no;
1610 
1611 	/* For write statistics */
1612 	u64 sectors_written_start;
1613 	u64 kbytes_written;
1614 
1615 	/* Reference to checksum algorithm driver via cryptoapi */
1616 	struct crypto_shash *s_chksum_driver;
1617 
1618 	/* Precomputed FS UUID checksum for seeding other checksums */
1619 	__u32 s_chksum_seed;
1620 
1621 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1622 
1623 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1624 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1625 
1626 #ifdef CONFIG_F2FS_FS_COMPRESSION
1627 	struct kmem_cache *page_array_slab;	/* page array entry */
1628 	unsigned int page_array_slab_size;	/* default page array slab size */
1629 #endif
1630 };
1631 
1632 struct f2fs_private_dio {
1633 	struct inode *inode;
1634 	void *orig_private;
1635 	bio_end_io_t *orig_end_io;
1636 	bool write;
1637 };
1638 
1639 #ifdef CONFIG_F2FS_FAULT_INJECTION
1640 #define f2fs_show_injection_info(sbi, type)					\
1641 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1642 		KERN_INFO, sbi->sb->s_id,				\
1643 		f2fs_fault_name[type],					\
1644 		__func__, __builtin_return_address(0))
1645 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1646 {
1647 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1648 
1649 	if (!ffi->inject_rate)
1650 		return false;
1651 
1652 	if (!IS_FAULT_SET(ffi, type))
1653 		return false;
1654 
1655 	atomic_inc(&ffi->inject_ops);
1656 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1657 		atomic_set(&ffi->inject_ops, 0);
1658 		return true;
1659 	}
1660 	return false;
1661 }
1662 #else
1663 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1664 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1665 {
1666 	return false;
1667 }
1668 #endif
1669 
1670 /*
1671  * Test if the mounted volume is a multi-device volume.
1672  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1673  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1674  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1675  */
1676 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1677 {
1678 	return sbi->s_ndevs > 1;
1679 }
1680 
1681 /* For write statistics. Suppose sector size is 512 bytes,
1682  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1683  */
1684 #define BD_PART_WRITTEN(s)						 \
1685 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1686 		(s)->sectors_written_start) >> 1)
1687 
1688 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1689 {
1690 	unsigned long now = jiffies;
1691 
1692 	sbi->last_time[type] = now;
1693 
1694 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1695 	if (type == REQ_TIME) {
1696 		sbi->last_time[DISCARD_TIME] = now;
1697 		sbi->last_time[GC_TIME] = now;
1698 	}
1699 }
1700 
1701 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1702 {
1703 	unsigned long interval = sbi->interval_time[type] * HZ;
1704 
1705 	return time_after(jiffies, sbi->last_time[type] + interval);
1706 }
1707 
1708 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1709 						int type)
1710 {
1711 	unsigned long interval = sbi->interval_time[type] * HZ;
1712 	unsigned int wait_ms = 0;
1713 	long delta;
1714 
1715 	delta = (sbi->last_time[type] + interval) - jiffies;
1716 	if (delta > 0)
1717 		wait_ms = jiffies_to_msecs(delta);
1718 
1719 	return wait_ms;
1720 }
1721 
1722 /*
1723  * Inline functions
1724  */
1725 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1726 			      const void *address, unsigned int length)
1727 {
1728 	struct {
1729 		struct shash_desc shash;
1730 		char ctx[4];
1731 	} desc;
1732 	int err;
1733 
1734 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1735 
1736 	desc.shash.tfm = sbi->s_chksum_driver;
1737 	*(u32 *)desc.ctx = crc;
1738 
1739 	err = crypto_shash_update(&desc.shash, address, length);
1740 	BUG_ON(err);
1741 
1742 	return *(u32 *)desc.ctx;
1743 }
1744 
1745 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1746 			   unsigned int length)
1747 {
1748 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1749 }
1750 
1751 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1752 				  void *buf, size_t buf_size)
1753 {
1754 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1755 }
1756 
1757 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1758 			      const void *address, unsigned int length)
1759 {
1760 	return __f2fs_crc32(sbi, crc, address, length);
1761 }
1762 
1763 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1764 {
1765 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1766 }
1767 
1768 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1769 {
1770 	return sb->s_fs_info;
1771 }
1772 
1773 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1774 {
1775 	return F2FS_SB(inode->i_sb);
1776 }
1777 
1778 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1779 {
1780 	return F2FS_I_SB(mapping->host);
1781 }
1782 
1783 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1784 {
1785 	return F2FS_M_SB(page_file_mapping(page));
1786 }
1787 
1788 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1789 {
1790 	return (struct f2fs_super_block *)(sbi->raw_super);
1791 }
1792 
1793 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1794 {
1795 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1796 }
1797 
1798 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1799 {
1800 	return (struct f2fs_node *)page_address(page);
1801 }
1802 
1803 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1804 {
1805 	return &((struct f2fs_node *)page_address(page))->i;
1806 }
1807 
1808 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1809 {
1810 	return (struct f2fs_nm_info *)(sbi->nm_info);
1811 }
1812 
1813 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1814 {
1815 	return (struct f2fs_sm_info *)(sbi->sm_info);
1816 }
1817 
1818 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1819 {
1820 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1821 }
1822 
1823 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1824 {
1825 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1826 }
1827 
1828 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1829 {
1830 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1831 }
1832 
1833 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1834 {
1835 	return sbi->meta_inode->i_mapping;
1836 }
1837 
1838 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1839 {
1840 	return sbi->node_inode->i_mapping;
1841 }
1842 
1843 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1844 {
1845 	return test_bit(type, &sbi->s_flag);
1846 }
1847 
1848 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1849 {
1850 	set_bit(type, &sbi->s_flag);
1851 }
1852 
1853 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1854 {
1855 	clear_bit(type, &sbi->s_flag);
1856 }
1857 
1858 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1859 {
1860 	return le64_to_cpu(cp->checkpoint_ver);
1861 }
1862 
1863 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1864 {
1865 	if (type < F2FS_MAX_QUOTAS)
1866 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1867 	return 0;
1868 }
1869 
1870 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1871 {
1872 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1873 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1874 }
1875 
1876 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1877 {
1878 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1879 
1880 	return ckpt_flags & f;
1881 }
1882 
1883 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1884 {
1885 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1886 }
1887 
1888 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1889 {
1890 	unsigned int ckpt_flags;
1891 
1892 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1893 	ckpt_flags |= f;
1894 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1895 }
1896 
1897 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1898 {
1899 	unsigned long flags;
1900 
1901 	spin_lock_irqsave(&sbi->cp_lock, flags);
1902 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1903 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1904 }
1905 
1906 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1907 {
1908 	unsigned int ckpt_flags;
1909 
1910 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1911 	ckpt_flags &= (~f);
1912 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1913 }
1914 
1915 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1916 {
1917 	unsigned long flags;
1918 
1919 	spin_lock_irqsave(&sbi->cp_lock, flags);
1920 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1921 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1922 }
1923 
1924 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1925 {
1926 	unsigned long flags;
1927 	unsigned char *nat_bits;
1928 
1929 	/*
1930 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1931 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1932 	 * so let's rely on regular fsck or unclean shutdown.
1933 	 */
1934 
1935 	if (lock)
1936 		spin_lock_irqsave(&sbi->cp_lock, flags);
1937 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1938 	nat_bits = NM_I(sbi)->nat_bits;
1939 	NM_I(sbi)->nat_bits = NULL;
1940 	if (lock)
1941 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1942 
1943 	kvfree(nat_bits);
1944 }
1945 
1946 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1947 					struct cp_control *cpc)
1948 {
1949 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1950 
1951 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1952 }
1953 
1954 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1955 {
1956 	down_read(&sbi->cp_rwsem);
1957 }
1958 
1959 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1960 {
1961 	return down_read_trylock(&sbi->cp_rwsem);
1962 }
1963 
1964 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1965 {
1966 	up_read(&sbi->cp_rwsem);
1967 }
1968 
1969 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1970 {
1971 	down_write(&sbi->cp_rwsem);
1972 }
1973 
1974 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1975 {
1976 	up_write(&sbi->cp_rwsem);
1977 }
1978 
1979 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1980 {
1981 	int reason = CP_SYNC;
1982 
1983 	if (test_opt(sbi, FASTBOOT))
1984 		reason = CP_FASTBOOT;
1985 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1986 		reason = CP_UMOUNT;
1987 	return reason;
1988 }
1989 
1990 static inline bool __remain_node_summaries(int reason)
1991 {
1992 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1993 }
1994 
1995 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1996 {
1997 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1998 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1999 }
2000 
2001 /*
2002  * Check whether the inode has blocks or not
2003  */
2004 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2005 {
2006 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2007 
2008 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2009 }
2010 
2011 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2012 {
2013 	return ofs == XATTR_NODE_OFFSET;
2014 }
2015 
2016 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2017 					struct inode *inode, bool cap)
2018 {
2019 	if (!inode)
2020 		return true;
2021 	if (!test_opt(sbi, RESERVE_ROOT))
2022 		return false;
2023 	if (IS_NOQUOTA(inode))
2024 		return true;
2025 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2026 		return true;
2027 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2028 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2029 		return true;
2030 	if (cap && capable(CAP_SYS_RESOURCE))
2031 		return true;
2032 	return false;
2033 }
2034 
2035 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2036 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2037 				 struct inode *inode, blkcnt_t *count)
2038 {
2039 	blkcnt_t diff = 0, release = 0;
2040 	block_t avail_user_block_count;
2041 	int ret;
2042 
2043 	ret = dquot_reserve_block(inode, *count);
2044 	if (ret)
2045 		return ret;
2046 
2047 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2048 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2049 		release = *count;
2050 		goto release_quota;
2051 	}
2052 
2053 	/*
2054 	 * let's increase this in prior to actual block count change in order
2055 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2056 	 */
2057 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2058 
2059 	spin_lock(&sbi->stat_lock);
2060 	sbi->total_valid_block_count += (block_t)(*count);
2061 	avail_user_block_count = sbi->user_block_count -
2062 					sbi->current_reserved_blocks;
2063 
2064 	if (!__allow_reserved_blocks(sbi, inode, true))
2065 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2066 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2067 		if (avail_user_block_count > sbi->unusable_block_count)
2068 			avail_user_block_count -= sbi->unusable_block_count;
2069 		else
2070 			avail_user_block_count = 0;
2071 	}
2072 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2073 		diff = sbi->total_valid_block_count - avail_user_block_count;
2074 		if (diff > *count)
2075 			diff = *count;
2076 		*count -= diff;
2077 		release = diff;
2078 		sbi->total_valid_block_count -= diff;
2079 		if (!*count) {
2080 			spin_unlock(&sbi->stat_lock);
2081 			goto enospc;
2082 		}
2083 	}
2084 	spin_unlock(&sbi->stat_lock);
2085 
2086 	if (unlikely(release)) {
2087 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2088 		dquot_release_reservation_block(inode, release);
2089 	}
2090 	f2fs_i_blocks_write(inode, *count, true, true);
2091 	return 0;
2092 
2093 enospc:
2094 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2095 release_quota:
2096 	dquot_release_reservation_block(inode, release);
2097 	return -ENOSPC;
2098 }
2099 
2100 __printf(2, 3)
2101 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2102 
2103 #define f2fs_err(sbi, fmt, ...)						\
2104 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2105 #define f2fs_warn(sbi, fmt, ...)					\
2106 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2107 #define f2fs_notice(sbi, fmt, ...)					\
2108 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2109 #define f2fs_info(sbi, fmt, ...)					\
2110 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2111 #define f2fs_debug(sbi, fmt, ...)					\
2112 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2113 
2114 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2115 						struct inode *inode,
2116 						block_t count)
2117 {
2118 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2119 
2120 	spin_lock(&sbi->stat_lock);
2121 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2122 	sbi->total_valid_block_count -= (block_t)count;
2123 	if (sbi->reserved_blocks &&
2124 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2125 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2126 					sbi->current_reserved_blocks + count);
2127 	spin_unlock(&sbi->stat_lock);
2128 	if (unlikely(inode->i_blocks < sectors)) {
2129 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2130 			  inode->i_ino,
2131 			  (unsigned long long)inode->i_blocks,
2132 			  (unsigned long long)sectors);
2133 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2134 		return;
2135 	}
2136 	f2fs_i_blocks_write(inode, count, false, true);
2137 }
2138 
2139 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2140 {
2141 	atomic_inc(&sbi->nr_pages[count_type]);
2142 
2143 	if (count_type == F2FS_DIRTY_DENTS ||
2144 			count_type == F2FS_DIRTY_NODES ||
2145 			count_type == F2FS_DIRTY_META ||
2146 			count_type == F2FS_DIRTY_QDATA ||
2147 			count_type == F2FS_DIRTY_IMETA)
2148 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2149 }
2150 
2151 static inline void inode_inc_dirty_pages(struct inode *inode)
2152 {
2153 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2154 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2155 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2156 	if (IS_NOQUOTA(inode))
2157 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2158 }
2159 
2160 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2161 {
2162 	atomic_dec(&sbi->nr_pages[count_type]);
2163 }
2164 
2165 static inline void inode_dec_dirty_pages(struct inode *inode)
2166 {
2167 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2168 			!S_ISLNK(inode->i_mode))
2169 		return;
2170 
2171 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2172 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2173 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2174 	if (IS_NOQUOTA(inode))
2175 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2176 }
2177 
2178 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2179 {
2180 	return atomic_read(&sbi->nr_pages[count_type]);
2181 }
2182 
2183 static inline int get_dirty_pages(struct inode *inode)
2184 {
2185 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2186 }
2187 
2188 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2189 {
2190 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2191 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2192 						sbi->log_blocks_per_seg;
2193 
2194 	return segs / sbi->segs_per_sec;
2195 }
2196 
2197 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2198 {
2199 	return sbi->total_valid_block_count;
2200 }
2201 
2202 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2203 {
2204 	return sbi->discard_blks;
2205 }
2206 
2207 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2208 {
2209 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2210 
2211 	/* return NAT or SIT bitmap */
2212 	if (flag == NAT_BITMAP)
2213 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2214 	else if (flag == SIT_BITMAP)
2215 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2216 
2217 	return 0;
2218 }
2219 
2220 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2221 {
2222 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2223 }
2224 
2225 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2226 {
2227 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2228 	int offset;
2229 
2230 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2231 		offset = (flag == SIT_BITMAP) ?
2232 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2233 		/*
2234 		 * if large_nat_bitmap feature is enabled, leave checksum
2235 		 * protection for all nat/sit bitmaps.
2236 		 */
2237 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2238 	}
2239 
2240 	if (__cp_payload(sbi) > 0) {
2241 		if (flag == NAT_BITMAP)
2242 			return &ckpt->sit_nat_version_bitmap;
2243 		else
2244 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2245 	} else {
2246 		offset = (flag == NAT_BITMAP) ?
2247 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2248 		return &ckpt->sit_nat_version_bitmap + offset;
2249 	}
2250 }
2251 
2252 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2253 {
2254 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2255 
2256 	if (sbi->cur_cp_pack == 2)
2257 		start_addr += sbi->blocks_per_seg;
2258 	return start_addr;
2259 }
2260 
2261 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2262 {
2263 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2264 
2265 	if (sbi->cur_cp_pack == 1)
2266 		start_addr += sbi->blocks_per_seg;
2267 	return start_addr;
2268 }
2269 
2270 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2271 {
2272 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2273 }
2274 
2275 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2276 {
2277 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2278 }
2279 
2280 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2281 					struct inode *inode, bool is_inode)
2282 {
2283 	block_t	valid_block_count;
2284 	unsigned int valid_node_count, user_block_count;
2285 	int err;
2286 
2287 	if (is_inode) {
2288 		if (inode) {
2289 			err = dquot_alloc_inode(inode);
2290 			if (err)
2291 				return err;
2292 		}
2293 	} else {
2294 		err = dquot_reserve_block(inode, 1);
2295 		if (err)
2296 			return err;
2297 	}
2298 
2299 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2300 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2301 		goto enospc;
2302 	}
2303 
2304 	spin_lock(&sbi->stat_lock);
2305 
2306 	valid_block_count = sbi->total_valid_block_count +
2307 					sbi->current_reserved_blocks + 1;
2308 
2309 	if (!__allow_reserved_blocks(sbi, inode, false))
2310 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2311 	user_block_count = sbi->user_block_count;
2312 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2313 		user_block_count -= sbi->unusable_block_count;
2314 
2315 	if (unlikely(valid_block_count > user_block_count)) {
2316 		spin_unlock(&sbi->stat_lock);
2317 		goto enospc;
2318 	}
2319 
2320 	valid_node_count = sbi->total_valid_node_count + 1;
2321 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2322 		spin_unlock(&sbi->stat_lock);
2323 		goto enospc;
2324 	}
2325 
2326 	sbi->total_valid_node_count++;
2327 	sbi->total_valid_block_count++;
2328 	spin_unlock(&sbi->stat_lock);
2329 
2330 	if (inode) {
2331 		if (is_inode)
2332 			f2fs_mark_inode_dirty_sync(inode, true);
2333 		else
2334 			f2fs_i_blocks_write(inode, 1, true, true);
2335 	}
2336 
2337 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2338 	return 0;
2339 
2340 enospc:
2341 	if (is_inode) {
2342 		if (inode)
2343 			dquot_free_inode(inode);
2344 	} else {
2345 		dquot_release_reservation_block(inode, 1);
2346 	}
2347 	return -ENOSPC;
2348 }
2349 
2350 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2351 					struct inode *inode, bool is_inode)
2352 {
2353 	spin_lock(&sbi->stat_lock);
2354 
2355 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2356 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2357 
2358 	sbi->total_valid_node_count--;
2359 	sbi->total_valid_block_count--;
2360 	if (sbi->reserved_blocks &&
2361 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2362 		sbi->current_reserved_blocks++;
2363 
2364 	spin_unlock(&sbi->stat_lock);
2365 
2366 	if (is_inode) {
2367 		dquot_free_inode(inode);
2368 	} else {
2369 		if (unlikely(inode->i_blocks == 0)) {
2370 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2371 				  inode->i_ino,
2372 				  (unsigned long long)inode->i_blocks);
2373 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2374 			return;
2375 		}
2376 		f2fs_i_blocks_write(inode, 1, false, true);
2377 	}
2378 }
2379 
2380 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2381 {
2382 	return sbi->total_valid_node_count;
2383 }
2384 
2385 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2386 {
2387 	percpu_counter_inc(&sbi->total_valid_inode_count);
2388 }
2389 
2390 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2391 {
2392 	percpu_counter_dec(&sbi->total_valid_inode_count);
2393 }
2394 
2395 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2396 {
2397 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2398 }
2399 
2400 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2401 						pgoff_t index, bool for_write)
2402 {
2403 	struct page *page;
2404 
2405 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2406 		if (!for_write)
2407 			page = find_get_page_flags(mapping, index,
2408 							FGP_LOCK | FGP_ACCESSED);
2409 		else
2410 			page = find_lock_page(mapping, index);
2411 		if (page)
2412 			return page;
2413 
2414 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2415 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2416 							FAULT_PAGE_ALLOC);
2417 			return NULL;
2418 		}
2419 	}
2420 
2421 	if (!for_write)
2422 		return grab_cache_page(mapping, index);
2423 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2424 }
2425 
2426 static inline struct page *f2fs_pagecache_get_page(
2427 				struct address_space *mapping, pgoff_t index,
2428 				int fgp_flags, gfp_t gfp_mask)
2429 {
2430 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2431 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2432 		return NULL;
2433 	}
2434 
2435 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2436 }
2437 
2438 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2439 {
2440 	char *src_kaddr = kmap(src);
2441 	char *dst_kaddr = kmap(dst);
2442 
2443 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2444 	kunmap(dst);
2445 	kunmap(src);
2446 }
2447 
2448 static inline void f2fs_put_page(struct page *page, int unlock)
2449 {
2450 	if (!page)
2451 		return;
2452 
2453 	if (unlock) {
2454 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2455 		unlock_page(page);
2456 	}
2457 	put_page(page);
2458 }
2459 
2460 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2461 {
2462 	if (dn->node_page)
2463 		f2fs_put_page(dn->node_page, 1);
2464 	if (dn->inode_page && dn->node_page != dn->inode_page)
2465 		f2fs_put_page(dn->inode_page, 0);
2466 	dn->node_page = NULL;
2467 	dn->inode_page = NULL;
2468 }
2469 
2470 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2471 					size_t size)
2472 {
2473 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2474 }
2475 
2476 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2477 						gfp_t flags)
2478 {
2479 	void *entry;
2480 
2481 	entry = kmem_cache_alloc(cachep, flags);
2482 	if (!entry)
2483 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2484 	return entry;
2485 }
2486 
2487 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2488 {
2489 	if (sbi->gc_mode == GC_URGENT_HIGH)
2490 		return true;
2491 
2492 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2493 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2494 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2495 		get_pages(sbi, F2FS_DIO_READ) ||
2496 		get_pages(sbi, F2FS_DIO_WRITE))
2497 		return false;
2498 
2499 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2500 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2501 		return false;
2502 
2503 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2504 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2505 		return false;
2506 
2507 	if (sbi->gc_mode == GC_URGENT_LOW &&
2508 			(type == DISCARD_TIME || type == GC_TIME))
2509 		return true;
2510 
2511 	return f2fs_time_over(sbi, type);
2512 }
2513 
2514 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2515 				unsigned long index, void *item)
2516 {
2517 	while (radix_tree_insert(root, index, item))
2518 		cond_resched();
2519 }
2520 
2521 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2522 
2523 static inline bool IS_INODE(struct page *page)
2524 {
2525 	struct f2fs_node *p = F2FS_NODE(page);
2526 
2527 	return RAW_IS_INODE(p);
2528 }
2529 
2530 static inline int offset_in_addr(struct f2fs_inode *i)
2531 {
2532 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2533 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2534 }
2535 
2536 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2537 {
2538 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2539 }
2540 
2541 static inline int f2fs_has_extra_attr(struct inode *inode);
2542 static inline block_t data_blkaddr(struct inode *inode,
2543 			struct page *node_page, unsigned int offset)
2544 {
2545 	struct f2fs_node *raw_node;
2546 	__le32 *addr_array;
2547 	int base = 0;
2548 	bool is_inode = IS_INODE(node_page);
2549 
2550 	raw_node = F2FS_NODE(node_page);
2551 
2552 	if (is_inode) {
2553 		if (!inode)
2554 			/* from GC path only */
2555 			base = offset_in_addr(&raw_node->i);
2556 		else if (f2fs_has_extra_attr(inode))
2557 			base = get_extra_isize(inode);
2558 	}
2559 
2560 	addr_array = blkaddr_in_node(raw_node);
2561 	return le32_to_cpu(addr_array[base + offset]);
2562 }
2563 
2564 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2565 {
2566 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2567 }
2568 
2569 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2570 {
2571 	int mask;
2572 
2573 	addr += (nr >> 3);
2574 	mask = 1 << (7 - (nr & 0x07));
2575 	return mask & *addr;
2576 }
2577 
2578 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2579 {
2580 	int mask;
2581 
2582 	addr += (nr >> 3);
2583 	mask = 1 << (7 - (nr & 0x07));
2584 	*addr |= mask;
2585 }
2586 
2587 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2588 {
2589 	int mask;
2590 
2591 	addr += (nr >> 3);
2592 	mask = 1 << (7 - (nr & 0x07));
2593 	*addr &= ~mask;
2594 }
2595 
2596 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2597 {
2598 	int mask;
2599 	int ret;
2600 
2601 	addr += (nr >> 3);
2602 	mask = 1 << (7 - (nr & 0x07));
2603 	ret = mask & *addr;
2604 	*addr |= mask;
2605 	return ret;
2606 }
2607 
2608 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2609 {
2610 	int mask;
2611 	int ret;
2612 
2613 	addr += (nr >> 3);
2614 	mask = 1 << (7 - (nr & 0x07));
2615 	ret = mask & *addr;
2616 	*addr &= ~mask;
2617 	return ret;
2618 }
2619 
2620 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2621 {
2622 	int mask;
2623 
2624 	addr += (nr >> 3);
2625 	mask = 1 << (7 - (nr & 0x07));
2626 	*addr ^= mask;
2627 }
2628 
2629 /*
2630  * On-disk inode flags (f2fs_inode::i_flags)
2631  */
2632 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2633 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2634 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2635 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2636 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2637 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2638 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2639 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2640 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2641 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2642 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2643 
2644 /* Flags that should be inherited by new inodes from their parent. */
2645 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2646 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2647 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2648 
2649 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2650 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2651 				F2FS_CASEFOLD_FL))
2652 
2653 /* Flags that are appropriate for non-directories/regular files. */
2654 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2655 
2656 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2657 {
2658 	if (S_ISDIR(mode))
2659 		return flags;
2660 	else if (S_ISREG(mode))
2661 		return flags & F2FS_REG_FLMASK;
2662 	else
2663 		return flags & F2FS_OTHER_FLMASK;
2664 }
2665 
2666 static inline void __mark_inode_dirty_flag(struct inode *inode,
2667 						int flag, bool set)
2668 {
2669 	switch (flag) {
2670 	case FI_INLINE_XATTR:
2671 	case FI_INLINE_DATA:
2672 	case FI_INLINE_DENTRY:
2673 	case FI_NEW_INODE:
2674 		if (set)
2675 			return;
2676 		fallthrough;
2677 	case FI_DATA_EXIST:
2678 	case FI_INLINE_DOTS:
2679 	case FI_PIN_FILE:
2680 		f2fs_mark_inode_dirty_sync(inode, true);
2681 	}
2682 }
2683 
2684 static inline void set_inode_flag(struct inode *inode, int flag)
2685 {
2686 	set_bit(flag, F2FS_I(inode)->flags);
2687 	__mark_inode_dirty_flag(inode, flag, true);
2688 }
2689 
2690 static inline int is_inode_flag_set(struct inode *inode, int flag)
2691 {
2692 	return test_bit(flag, F2FS_I(inode)->flags);
2693 }
2694 
2695 static inline void clear_inode_flag(struct inode *inode, int flag)
2696 {
2697 	clear_bit(flag, F2FS_I(inode)->flags);
2698 	__mark_inode_dirty_flag(inode, flag, false);
2699 }
2700 
2701 static inline bool f2fs_verity_in_progress(struct inode *inode)
2702 {
2703 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2704 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2705 }
2706 
2707 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2708 {
2709 	F2FS_I(inode)->i_acl_mode = mode;
2710 	set_inode_flag(inode, FI_ACL_MODE);
2711 	f2fs_mark_inode_dirty_sync(inode, false);
2712 }
2713 
2714 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2715 {
2716 	if (inc)
2717 		inc_nlink(inode);
2718 	else
2719 		drop_nlink(inode);
2720 	f2fs_mark_inode_dirty_sync(inode, true);
2721 }
2722 
2723 static inline void f2fs_i_blocks_write(struct inode *inode,
2724 					block_t diff, bool add, bool claim)
2725 {
2726 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2727 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2728 
2729 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2730 	if (add) {
2731 		if (claim)
2732 			dquot_claim_block(inode, diff);
2733 		else
2734 			dquot_alloc_block_nofail(inode, diff);
2735 	} else {
2736 		dquot_free_block(inode, diff);
2737 	}
2738 
2739 	f2fs_mark_inode_dirty_sync(inode, true);
2740 	if (clean || recover)
2741 		set_inode_flag(inode, FI_AUTO_RECOVER);
2742 }
2743 
2744 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2745 {
2746 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2747 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2748 
2749 	if (i_size_read(inode) == i_size)
2750 		return;
2751 
2752 	i_size_write(inode, i_size);
2753 	f2fs_mark_inode_dirty_sync(inode, true);
2754 	if (clean || recover)
2755 		set_inode_flag(inode, FI_AUTO_RECOVER);
2756 }
2757 
2758 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2759 {
2760 	F2FS_I(inode)->i_current_depth = depth;
2761 	f2fs_mark_inode_dirty_sync(inode, true);
2762 }
2763 
2764 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2765 					unsigned int count)
2766 {
2767 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2768 	f2fs_mark_inode_dirty_sync(inode, true);
2769 }
2770 
2771 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2772 {
2773 	F2FS_I(inode)->i_xattr_nid = xnid;
2774 	f2fs_mark_inode_dirty_sync(inode, true);
2775 }
2776 
2777 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2778 {
2779 	F2FS_I(inode)->i_pino = pino;
2780 	f2fs_mark_inode_dirty_sync(inode, true);
2781 }
2782 
2783 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2784 {
2785 	struct f2fs_inode_info *fi = F2FS_I(inode);
2786 
2787 	if (ri->i_inline & F2FS_INLINE_XATTR)
2788 		set_bit(FI_INLINE_XATTR, fi->flags);
2789 	if (ri->i_inline & F2FS_INLINE_DATA)
2790 		set_bit(FI_INLINE_DATA, fi->flags);
2791 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2792 		set_bit(FI_INLINE_DENTRY, fi->flags);
2793 	if (ri->i_inline & F2FS_DATA_EXIST)
2794 		set_bit(FI_DATA_EXIST, fi->flags);
2795 	if (ri->i_inline & F2FS_INLINE_DOTS)
2796 		set_bit(FI_INLINE_DOTS, fi->flags);
2797 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2798 		set_bit(FI_EXTRA_ATTR, fi->flags);
2799 	if (ri->i_inline & F2FS_PIN_FILE)
2800 		set_bit(FI_PIN_FILE, fi->flags);
2801 }
2802 
2803 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2804 {
2805 	ri->i_inline = 0;
2806 
2807 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2808 		ri->i_inline |= F2FS_INLINE_XATTR;
2809 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2810 		ri->i_inline |= F2FS_INLINE_DATA;
2811 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2812 		ri->i_inline |= F2FS_INLINE_DENTRY;
2813 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2814 		ri->i_inline |= F2FS_DATA_EXIST;
2815 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2816 		ri->i_inline |= F2FS_INLINE_DOTS;
2817 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2818 		ri->i_inline |= F2FS_EXTRA_ATTR;
2819 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2820 		ri->i_inline |= F2FS_PIN_FILE;
2821 }
2822 
2823 static inline int f2fs_has_extra_attr(struct inode *inode)
2824 {
2825 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2826 }
2827 
2828 static inline int f2fs_has_inline_xattr(struct inode *inode)
2829 {
2830 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2831 }
2832 
2833 static inline int f2fs_compressed_file(struct inode *inode)
2834 {
2835 	return S_ISREG(inode->i_mode) &&
2836 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2837 }
2838 
2839 static inline unsigned int addrs_per_inode(struct inode *inode)
2840 {
2841 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2842 				get_inline_xattr_addrs(inode);
2843 
2844 	if (!f2fs_compressed_file(inode))
2845 		return addrs;
2846 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2847 }
2848 
2849 static inline unsigned int addrs_per_block(struct inode *inode)
2850 {
2851 	if (!f2fs_compressed_file(inode))
2852 		return DEF_ADDRS_PER_BLOCK;
2853 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2854 }
2855 
2856 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2857 {
2858 	struct f2fs_inode *ri = F2FS_INODE(page);
2859 
2860 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2861 					get_inline_xattr_addrs(inode)]);
2862 }
2863 
2864 static inline int inline_xattr_size(struct inode *inode)
2865 {
2866 	if (f2fs_has_inline_xattr(inode))
2867 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2868 	return 0;
2869 }
2870 
2871 static inline int f2fs_has_inline_data(struct inode *inode)
2872 {
2873 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2874 }
2875 
2876 static inline int f2fs_exist_data(struct inode *inode)
2877 {
2878 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2879 }
2880 
2881 static inline int f2fs_has_inline_dots(struct inode *inode)
2882 {
2883 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2884 }
2885 
2886 static inline int f2fs_is_mmap_file(struct inode *inode)
2887 {
2888 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2889 }
2890 
2891 static inline bool f2fs_is_pinned_file(struct inode *inode)
2892 {
2893 	return is_inode_flag_set(inode, FI_PIN_FILE);
2894 }
2895 
2896 static inline bool f2fs_is_atomic_file(struct inode *inode)
2897 {
2898 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2899 }
2900 
2901 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2902 {
2903 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2904 }
2905 
2906 static inline bool f2fs_is_volatile_file(struct inode *inode)
2907 {
2908 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2909 }
2910 
2911 static inline bool f2fs_is_first_block_written(struct inode *inode)
2912 {
2913 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2914 }
2915 
2916 static inline bool f2fs_is_drop_cache(struct inode *inode)
2917 {
2918 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2919 }
2920 
2921 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2922 {
2923 	struct f2fs_inode *ri = F2FS_INODE(page);
2924 	int extra_size = get_extra_isize(inode);
2925 
2926 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2927 }
2928 
2929 static inline int f2fs_has_inline_dentry(struct inode *inode)
2930 {
2931 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2932 }
2933 
2934 static inline int is_file(struct inode *inode, int type)
2935 {
2936 	return F2FS_I(inode)->i_advise & type;
2937 }
2938 
2939 static inline void set_file(struct inode *inode, int type)
2940 {
2941 	F2FS_I(inode)->i_advise |= type;
2942 	f2fs_mark_inode_dirty_sync(inode, true);
2943 }
2944 
2945 static inline void clear_file(struct inode *inode, int type)
2946 {
2947 	F2FS_I(inode)->i_advise &= ~type;
2948 	f2fs_mark_inode_dirty_sync(inode, true);
2949 }
2950 
2951 static inline bool f2fs_is_time_consistent(struct inode *inode)
2952 {
2953 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2954 		return false;
2955 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2956 		return false;
2957 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2958 		return false;
2959 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2960 						&F2FS_I(inode)->i_crtime))
2961 		return false;
2962 	return true;
2963 }
2964 
2965 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2966 {
2967 	bool ret;
2968 
2969 	if (dsync) {
2970 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2971 
2972 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2973 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2974 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2975 		return ret;
2976 	}
2977 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2978 			file_keep_isize(inode) ||
2979 			i_size_read(inode) & ~PAGE_MASK)
2980 		return false;
2981 
2982 	if (!f2fs_is_time_consistent(inode))
2983 		return false;
2984 
2985 	spin_lock(&F2FS_I(inode)->i_size_lock);
2986 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2987 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2988 
2989 	return ret;
2990 }
2991 
2992 static inline bool f2fs_readonly(struct super_block *sb)
2993 {
2994 	return sb_rdonly(sb);
2995 }
2996 
2997 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2998 {
2999 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3000 }
3001 
3002 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3003 {
3004 	if (len == 1 && name[0] == '.')
3005 		return true;
3006 
3007 	if (len == 2 && name[0] == '.' && name[1] == '.')
3008 		return true;
3009 
3010 	return false;
3011 }
3012 
3013 static inline bool f2fs_may_extent_tree(struct inode *inode)
3014 {
3015 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3016 
3017 	if (!test_opt(sbi, EXTENT_CACHE) ||
3018 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
3019 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3020 		return false;
3021 
3022 	/*
3023 	 * for recovered files during mount do not create extents
3024 	 * if shrinker is not registered.
3025 	 */
3026 	if (list_empty(&sbi->s_list))
3027 		return false;
3028 
3029 	return S_ISREG(inode->i_mode);
3030 }
3031 
3032 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3033 					size_t size, gfp_t flags)
3034 {
3035 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3036 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3037 		return NULL;
3038 	}
3039 
3040 	return kmalloc(size, flags);
3041 }
3042 
3043 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3044 					size_t size, gfp_t flags)
3045 {
3046 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3047 }
3048 
3049 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3050 					size_t size, gfp_t flags)
3051 {
3052 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3053 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3054 		return NULL;
3055 	}
3056 
3057 	return kvmalloc(size, flags);
3058 }
3059 
3060 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3061 					size_t size, gfp_t flags)
3062 {
3063 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3064 }
3065 
3066 static inline int get_extra_isize(struct inode *inode)
3067 {
3068 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3069 }
3070 
3071 static inline int get_inline_xattr_addrs(struct inode *inode)
3072 {
3073 	return F2FS_I(inode)->i_inline_xattr_size;
3074 }
3075 
3076 #define f2fs_get_inode_mode(i) \
3077 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3078 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3079 
3080 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3081 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3082 	offsetof(struct f2fs_inode, i_extra_isize))	\
3083 
3084 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3085 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3086 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3087 		sizeof((f2fs_inode)->field))			\
3088 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3089 
3090 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3091 #define MIN_IOSTAT_PERIOD_MS		100
3092 /* maximum period of iostat tracing is 1 day */
3093 #define MAX_IOSTAT_PERIOD_MS		8640000
3094 
3095 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3096 {
3097 	int i;
3098 
3099 	spin_lock(&sbi->iostat_lock);
3100 	for (i = 0; i < NR_IO_TYPE; i++) {
3101 		sbi->rw_iostat[i] = 0;
3102 		sbi->prev_rw_iostat[i] = 0;
3103 	}
3104 	spin_unlock(&sbi->iostat_lock);
3105 }
3106 
3107 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3108 
3109 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3110 			enum iostat_type type, unsigned long long io_bytes)
3111 {
3112 	if (!sbi->iostat_enable)
3113 		return;
3114 	spin_lock(&sbi->iostat_lock);
3115 	sbi->rw_iostat[type] += io_bytes;
3116 
3117 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3118 		sbi->rw_iostat[APP_BUFFERED_IO] =
3119 			sbi->rw_iostat[APP_WRITE_IO] -
3120 			sbi->rw_iostat[APP_DIRECT_IO];
3121 
3122 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3123 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3124 			sbi->rw_iostat[APP_READ_IO] -
3125 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3126 	spin_unlock(&sbi->iostat_lock);
3127 
3128 	f2fs_record_iostat(sbi);
3129 }
3130 
3131 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3132 
3133 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3134 
3135 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3136 					block_t blkaddr, int type);
3137 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3138 					block_t blkaddr, int type)
3139 {
3140 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3141 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3142 			 blkaddr, type);
3143 		f2fs_bug_on(sbi, 1);
3144 	}
3145 }
3146 
3147 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3148 {
3149 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3150 			blkaddr == COMPRESS_ADDR)
3151 		return false;
3152 	return true;
3153 }
3154 
3155 static inline void f2fs_set_page_private(struct page *page,
3156 						unsigned long data)
3157 {
3158 	if (PagePrivate(page))
3159 		return;
3160 
3161 	attach_page_private(page, (void *)data);
3162 }
3163 
3164 static inline void f2fs_clear_page_private(struct page *page)
3165 {
3166 	detach_page_private(page);
3167 }
3168 
3169 /*
3170  * file.c
3171  */
3172 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3173 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3174 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3175 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3176 int f2fs_truncate(struct inode *inode);
3177 int f2fs_getattr(const struct path *path, struct kstat *stat,
3178 			u32 request_mask, unsigned int flags);
3179 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3180 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3181 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3182 int f2fs_precache_extents(struct inode *inode);
3183 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3184 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3185 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3186 int f2fs_pin_file_control(struct inode *inode, bool inc);
3187 
3188 /*
3189  * inode.c
3190  */
3191 void f2fs_set_inode_flags(struct inode *inode);
3192 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3193 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3194 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3195 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3196 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3197 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3198 void f2fs_update_inode_page(struct inode *inode);
3199 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3200 void f2fs_evict_inode(struct inode *inode);
3201 void f2fs_handle_failed_inode(struct inode *inode);
3202 
3203 /*
3204  * namei.c
3205  */
3206 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3207 							bool hot, bool set);
3208 struct dentry *f2fs_get_parent(struct dentry *child);
3209 
3210 /*
3211  * dir.c
3212  */
3213 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3214 int f2fs_init_casefolded_name(const struct inode *dir,
3215 			      struct f2fs_filename *fname);
3216 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3217 			int lookup, struct f2fs_filename *fname);
3218 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3219 			struct f2fs_filename *fname);
3220 void f2fs_free_filename(struct f2fs_filename *fname);
3221 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3222 			const struct f2fs_filename *fname, int *max_slots);
3223 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3224 			unsigned int start_pos, struct fscrypt_str *fstr);
3225 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3226 			struct f2fs_dentry_ptr *d);
3227 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3228 			const struct f2fs_filename *fname, struct page *dpage);
3229 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3230 			unsigned int current_depth);
3231 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3232 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3233 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3234 					 const struct f2fs_filename *fname,
3235 					 struct page **res_page);
3236 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3237 			const struct qstr *child, struct page **res_page);
3238 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3239 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3240 			struct page **page);
3241 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3242 			struct page *page, struct inode *inode);
3243 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3244 			  const struct f2fs_filename *fname);
3245 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3246 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3247 			unsigned int bit_pos);
3248 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3249 			struct inode *inode, nid_t ino, umode_t mode);
3250 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3251 			struct inode *inode, nid_t ino, umode_t mode);
3252 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3253 			struct inode *inode, nid_t ino, umode_t mode);
3254 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3255 			struct inode *dir, struct inode *inode);
3256 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3257 bool f2fs_empty_dir(struct inode *dir);
3258 
3259 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3260 {
3261 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3262 				inode, inode->i_ino, inode->i_mode);
3263 }
3264 
3265 /*
3266  * super.c
3267  */
3268 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3269 void f2fs_inode_synced(struct inode *inode);
3270 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3271 int f2fs_quota_sync(struct super_block *sb, int type);
3272 void f2fs_quota_off_umount(struct super_block *sb);
3273 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3274 int f2fs_sync_fs(struct super_block *sb, int sync);
3275 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3276 
3277 /*
3278  * hash.c
3279  */
3280 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3281 
3282 /*
3283  * node.c
3284  */
3285 struct dnode_of_data;
3286 struct node_info;
3287 
3288 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3289 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3291 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3292 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3293 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3294 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3295 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3296 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3297 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3298 						struct node_info *ni);
3299 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3300 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3301 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3302 int f2fs_truncate_xattr_node(struct inode *inode);
3303 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3304 					unsigned int seq_id);
3305 int f2fs_remove_inode_page(struct inode *inode);
3306 struct page *f2fs_new_inode_page(struct inode *inode);
3307 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3308 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3309 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3310 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3311 int f2fs_move_node_page(struct page *node_page, int gc_type);
3312 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3313 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3314 			struct writeback_control *wbc, bool atomic,
3315 			unsigned int *seq_id);
3316 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3317 			struct writeback_control *wbc,
3318 			bool do_balance, enum iostat_type io_type);
3319 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3320 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3321 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3322 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3323 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3324 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3325 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3326 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3327 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3328 			unsigned int segno, struct f2fs_summary_block *sum);
3329 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3330 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3331 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3332 int __init f2fs_create_node_manager_caches(void);
3333 void f2fs_destroy_node_manager_caches(void);
3334 
3335 /*
3336  * segment.c
3337  */
3338 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3339 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3340 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3341 void f2fs_drop_inmem_pages(struct inode *inode);
3342 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3343 int f2fs_commit_inmem_pages(struct inode *inode);
3344 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3345 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3346 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3347 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3348 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3349 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3350 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3351 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3352 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3353 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3354 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3355 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3356 					struct cp_control *cpc);
3357 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3358 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3359 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3360 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3361 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3362 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3363 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3364 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3365 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3366 			unsigned int *newseg, bool new_sec, int dir);
3367 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3368 					unsigned int start, unsigned int end);
3369 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3370 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3371 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3372 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3373 					struct cp_control *cpc);
3374 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3375 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3376 					block_t blk_addr);
3377 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3378 						enum iostat_type io_type);
3379 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3380 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3381 			struct f2fs_io_info *fio);
3382 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3383 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3384 			block_t old_blkaddr, block_t new_blkaddr,
3385 			bool recover_curseg, bool recover_newaddr,
3386 			bool from_gc);
3387 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3388 			block_t old_addr, block_t new_addr,
3389 			unsigned char version, bool recover_curseg,
3390 			bool recover_newaddr);
3391 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3392 			block_t old_blkaddr, block_t *new_blkaddr,
3393 			struct f2fs_summary *sum, int type,
3394 			struct f2fs_io_info *fio);
3395 void f2fs_wait_on_page_writeback(struct page *page,
3396 			enum page_type type, bool ordered, bool locked);
3397 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3398 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3399 								block_t len);
3400 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3401 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3402 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3403 			unsigned int val, int alloc);
3404 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3405 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3406 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3407 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3408 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3409 int __init f2fs_create_segment_manager_caches(void);
3410 void f2fs_destroy_segment_manager_caches(void);
3411 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3412 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3413 			enum page_type type, enum temp_type temp);
3414 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3415 			unsigned int segno);
3416 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3417 			unsigned int segno);
3418 
3419 /*
3420  * checkpoint.c
3421  */
3422 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3423 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3424 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3425 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3426 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3427 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3428 					block_t blkaddr, int type);
3429 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3430 			int type, bool sync);
3431 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3432 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3433 			long nr_to_write, enum iostat_type io_type);
3434 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3435 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3436 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3437 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3438 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3439 					unsigned int devidx, int type);
3440 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3441 					unsigned int devidx, int type);
3442 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3443 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3444 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3445 void f2fs_add_orphan_inode(struct inode *inode);
3446 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3447 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3448 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3449 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3450 void f2fs_remove_dirty_inode(struct inode *inode);
3451 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3452 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3453 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3454 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3455 int __init f2fs_create_checkpoint_caches(void);
3456 void f2fs_destroy_checkpoint_caches(void);
3457 
3458 /*
3459  * data.c
3460  */
3461 int __init f2fs_init_bioset(void);
3462 void f2fs_destroy_bioset(void);
3463 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3464 int f2fs_init_bio_entry_cache(void);
3465 void f2fs_destroy_bio_entry_cache(void);
3466 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3467 				struct bio *bio, enum page_type type);
3468 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3469 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3470 				struct inode *inode, struct page *page,
3471 				nid_t ino, enum page_type type);
3472 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3473 					struct bio **bio, struct page *page);
3474 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3475 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3476 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3477 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3478 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3479 			block_t blk_addr, struct bio *bio);
3480 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3481 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3482 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3483 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3484 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3485 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3486 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3487 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3488 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3489 			int op_flags, bool for_write);
3490 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3491 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3492 			bool for_write);
3493 struct page *f2fs_get_new_data_page(struct inode *inode,
3494 			struct page *ipage, pgoff_t index, bool new_i_size);
3495 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3496 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3497 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3498 			int create, int flag);
3499 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3500 			u64 start, u64 len);
3501 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3502 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3503 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3504 int f2fs_write_single_data_page(struct page *page, int *submitted,
3505 				struct bio **bio, sector_t *last_block,
3506 				struct writeback_control *wbc,
3507 				enum iostat_type io_type,
3508 				int compr_blocks);
3509 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3510 			unsigned int length);
3511 int f2fs_release_page(struct page *page, gfp_t wait);
3512 #ifdef CONFIG_MIGRATION
3513 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3514 			struct page *page, enum migrate_mode mode);
3515 #endif
3516 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3517 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3518 int f2fs_init_post_read_processing(void);
3519 void f2fs_destroy_post_read_processing(void);
3520 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3521 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3522 
3523 /*
3524  * gc.c
3525  */
3526 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3527 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3528 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3529 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3530 			unsigned int segno);
3531 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3532 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3533 int __init f2fs_create_garbage_collection_cache(void);
3534 void f2fs_destroy_garbage_collection_cache(void);
3535 
3536 /*
3537  * recovery.c
3538  */
3539 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3540 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3541 
3542 /*
3543  * debug.c
3544  */
3545 #ifdef CONFIG_F2FS_STAT_FS
3546 struct f2fs_stat_info {
3547 	struct list_head stat_list;
3548 	struct f2fs_sb_info *sbi;
3549 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3550 	int main_area_segs, main_area_sections, main_area_zones;
3551 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3552 	unsigned long long hit_total, total_ext;
3553 	int ext_tree, zombie_tree, ext_node;
3554 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3555 	int ndirty_data, ndirty_qdata;
3556 	int inmem_pages;
3557 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3558 	int nats, dirty_nats, sits, dirty_sits;
3559 	int free_nids, avail_nids, alloc_nids;
3560 	int total_count, utilization;
3561 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3562 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3563 	int nr_dio_read, nr_dio_write;
3564 	unsigned int io_skip_bggc, other_skip_bggc;
3565 	int nr_flushing, nr_flushed, flush_list_empty;
3566 	int nr_discarding, nr_discarded;
3567 	int nr_discard_cmd;
3568 	unsigned int undiscard_blks;
3569 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3570 	int compr_inode;
3571 	unsigned long long compr_blocks;
3572 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3573 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3574 	unsigned int bimodal, avg_vblocks;
3575 	int util_free, util_valid, util_invalid;
3576 	int rsvd_segs, overp_segs;
3577 	int dirty_count, node_pages, meta_pages;
3578 	int prefree_count, call_count, cp_count, bg_cp_count;
3579 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3580 	int bg_node_segs, bg_data_segs;
3581 	int tot_blks, data_blks, node_blks;
3582 	int bg_data_blks, bg_node_blks;
3583 	unsigned long long skipped_atomic_files[2];
3584 	int curseg[NR_CURSEG_TYPE];
3585 	int cursec[NR_CURSEG_TYPE];
3586 	int curzone[NR_CURSEG_TYPE];
3587 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3588 	unsigned int full_seg[NR_CURSEG_TYPE];
3589 	unsigned int valid_blks[NR_CURSEG_TYPE];
3590 
3591 	unsigned int meta_count[META_MAX];
3592 	unsigned int segment_count[2];
3593 	unsigned int block_count[2];
3594 	unsigned int inplace_count;
3595 	unsigned long long base_mem, cache_mem, page_mem;
3596 };
3597 
3598 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3599 {
3600 	return (struct f2fs_stat_info *)sbi->stat_info;
3601 }
3602 
3603 #define stat_inc_cp_count(si)		((si)->cp_count++)
3604 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3605 #define stat_inc_call_count(si)		((si)->call_count++)
3606 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3607 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3608 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3609 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3610 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3611 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3612 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3613 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3614 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3615 #define stat_inc_inline_xattr(inode)					\
3616 	do {								\
3617 		if (f2fs_has_inline_xattr(inode))			\
3618 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3619 	} while (0)
3620 #define stat_dec_inline_xattr(inode)					\
3621 	do {								\
3622 		if (f2fs_has_inline_xattr(inode))			\
3623 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3624 	} while (0)
3625 #define stat_inc_inline_inode(inode)					\
3626 	do {								\
3627 		if (f2fs_has_inline_data(inode))			\
3628 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3629 	} while (0)
3630 #define stat_dec_inline_inode(inode)					\
3631 	do {								\
3632 		if (f2fs_has_inline_data(inode))			\
3633 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3634 	} while (0)
3635 #define stat_inc_inline_dir(inode)					\
3636 	do {								\
3637 		if (f2fs_has_inline_dentry(inode))			\
3638 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3639 	} while (0)
3640 #define stat_dec_inline_dir(inode)					\
3641 	do {								\
3642 		if (f2fs_has_inline_dentry(inode))			\
3643 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3644 	} while (0)
3645 #define stat_inc_compr_inode(inode)					\
3646 	do {								\
3647 		if (f2fs_compressed_file(inode))			\
3648 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3649 	} while (0)
3650 #define stat_dec_compr_inode(inode)					\
3651 	do {								\
3652 		if (f2fs_compressed_file(inode))			\
3653 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3654 	} while (0)
3655 #define stat_add_compr_blocks(inode, blocks)				\
3656 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3657 #define stat_sub_compr_blocks(inode, blocks)				\
3658 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3659 #define stat_inc_meta_count(sbi, blkaddr)				\
3660 	do {								\
3661 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3662 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3663 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3664 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3665 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3666 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3667 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3668 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3669 	} while (0)
3670 #define stat_inc_seg_type(sbi, curseg)					\
3671 		((sbi)->segment_count[(curseg)->alloc_type]++)
3672 #define stat_inc_block_count(sbi, curseg)				\
3673 		((sbi)->block_count[(curseg)->alloc_type]++)
3674 #define stat_inc_inplace_blocks(sbi)					\
3675 		(atomic_inc(&(sbi)->inplace_count))
3676 #define stat_update_max_atomic_write(inode)				\
3677 	do {								\
3678 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3679 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3680 		if (cur > max)						\
3681 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3682 	} while (0)
3683 #define stat_inc_volatile_write(inode)					\
3684 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3685 #define stat_dec_volatile_write(inode)					\
3686 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3687 #define stat_update_max_volatile_write(inode)				\
3688 	do {								\
3689 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3690 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3691 		if (cur > max)						\
3692 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3693 	} while (0)
3694 #define stat_inc_seg_count(sbi, type, gc_type)				\
3695 	do {								\
3696 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3697 		si->tot_segs++;						\
3698 		if ((type) == SUM_TYPE_DATA) {				\
3699 			si->data_segs++;				\
3700 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3701 		} else {						\
3702 			si->node_segs++;				\
3703 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3704 		}							\
3705 	} while (0)
3706 
3707 #define stat_inc_tot_blk_count(si, blks)				\
3708 	((si)->tot_blks += (blks))
3709 
3710 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3711 	do {								\
3712 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3713 		stat_inc_tot_blk_count(si, blks);			\
3714 		si->data_blks += (blks);				\
3715 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3716 	} while (0)
3717 
3718 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3719 	do {								\
3720 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3721 		stat_inc_tot_blk_count(si, blks);			\
3722 		si->node_blks += (blks);				\
3723 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3724 	} while (0)
3725 
3726 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3727 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3728 void __init f2fs_create_root_stats(void);
3729 void f2fs_destroy_root_stats(void);
3730 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3731 #else
3732 #define stat_inc_cp_count(si)				do { } while (0)
3733 #define stat_inc_bg_cp_count(si)			do { } while (0)
3734 #define stat_inc_call_count(si)				do { } while (0)
3735 #define stat_inc_bggc_count(si)				do { } while (0)
3736 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3737 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3738 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3739 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3740 #define stat_inc_total_hit(sbi)				do { } while (0)
3741 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3742 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3743 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3744 #define stat_inc_inline_xattr(inode)			do { } while (0)
3745 #define stat_dec_inline_xattr(inode)			do { } while (0)
3746 #define stat_inc_inline_inode(inode)			do { } while (0)
3747 #define stat_dec_inline_inode(inode)			do { } while (0)
3748 #define stat_inc_inline_dir(inode)			do { } while (0)
3749 #define stat_dec_inline_dir(inode)			do { } while (0)
3750 #define stat_inc_compr_inode(inode)			do { } while (0)
3751 #define stat_dec_compr_inode(inode)			do { } while (0)
3752 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3753 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3754 #define stat_inc_atomic_write(inode)			do { } while (0)
3755 #define stat_dec_atomic_write(inode)			do { } while (0)
3756 #define stat_update_max_atomic_write(inode)		do { } while (0)
3757 #define stat_inc_volatile_write(inode)			do { } while (0)
3758 #define stat_dec_volatile_write(inode)			do { } while (0)
3759 #define stat_update_max_volatile_write(inode)		do { } while (0)
3760 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3761 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3762 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3763 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3764 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3765 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3766 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3767 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3768 
3769 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3770 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3771 static inline void __init f2fs_create_root_stats(void) { }
3772 static inline void f2fs_destroy_root_stats(void) { }
3773 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3774 #endif
3775 
3776 extern const struct file_operations f2fs_dir_operations;
3777 #ifdef CONFIG_UNICODE
3778 extern const struct dentry_operations f2fs_dentry_ops;
3779 #endif
3780 extern const struct file_operations f2fs_file_operations;
3781 extern const struct inode_operations f2fs_file_inode_operations;
3782 extern const struct address_space_operations f2fs_dblock_aops;
3783 extern const struct address_space_operations f2fs_node_aops;
3784 extern const struct address_space_operations f2fs_meta_aops;
3785 extern const struct inode_operations f2fs_dir_inode_operations;
3786 extern const struct inode_operations f2fs_symlink_inode_operations;
3787 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3788 extern const struct inode_operations f2fs_special_inode_operations;
3789 extern struct kmem_cache *f2fs_inode_entry_slab;
3790 
3791 /*
3792  * inline.c
3793  */
3794 bool f2fs_may_inline_data(struct inode *inode);
3795 bool f2fs_may_inline_dentry(struct inode *inode);
3796 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3797 void f2fs_truncate_inline_inode(struct inode *inode,
3798 						struct page *ipage, u64 from);
3799 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3800 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3801 int f2fs_convert_inline_inode(struct inode *inode);
3802 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3803 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3804 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3805 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3806 					const struct f2fs_filename *fname,
3807 					struct page **res_page);
3808 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3809 			struct page *ipage);
3810 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3811 			struct inode *inode, nid_t ino, umode_t mode);
3812 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3813 				struct page *page, struct inode *dir,
3814 				struct inode *inode);
3815 bool f2fs_empty_inline_dir(struct inode *dir);
3816 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3817 			struct fscrypt_str *fstr);
3818 int f2fs_inline_data_fiemap(struct inode *inode,
3819 			struct fiemap_extent_info *fieinfo,
3820 			__u64 start, __u64 len);
3821 
3822 /*
3823  * shrinker.c
3824  */
3825 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3826 			struct shrink_control *sc);
3827 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3828 			struct shrink_control *sc);
3829 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3830 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3831 
3832 /*
3833  * extent_cache.c
3834  */
3835 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3836 				struct rb_entry *cached_re, unsigned int ofs);
3837 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3838 				struct rb_root_cached *root,
3839 				struct rb_node **parent,
3840 				unsigned long long key, bool *left_most);
3841 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3842 				struct rb_root_cached *root,
3843 				struct rb_node **parent,
3844 				unsigned int ofs, bool *leftmost);
3845 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3846 		struct rb_entry *cached_re, unsigned int ofs,
3847 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3848 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3849 		bool force, bool *leftmost);
3850 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3851 				struct rb_root_cached *root, bool check_key);
3852 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3853 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3854 void f2fs_drop_extent_tree(struct inode *inode);
3855 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3856 void f2fs_destroy_extent_tree(struct inode *inode);
3857 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3858 			struct extent_info *ei);
3859 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3860 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3861 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3862 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3863 int __init f2fs_create_extent_cache(void);
3864 void f2fs_destroy_extent_cache(void);
3865 
3866 /*
3867  * sysfs.c
3868  */
3869 int __init f2fs_init_sysfs(void);
3870 void f2fs_exit_sysfs(void);
3871 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3872 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3873 
3874 /* verity.c */
3875 extern const struct fsverity_operations f2fs_verityops;
3876 
3877 /*
3878  * crypto support
3879  */
3880 static inline bool f2fs_encrypted_file(struct inode *inode)
3881 {
3882 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3883 }
3884 
3885 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3886 {
3887 #ifdef CONFIG_FS_ENCRYPTION
3888 	file_set_encrypt(inode);
3889 	f2fs_set_inode_flags(inode);
3890 #endif
3891 }
3892 
3893 /*
3894  * Returns true if the reads of the inode's data need to undergo some
3895  * postprocessing step, like decryption or authenticity verification.
3896  */
3897 static inline bool f2fs_post_read_required(struct inode *inode)
3898 {
3899 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3900 		f2fs_compressed_file(inode);
3901 }
3902 
3903 /*
3904  * compress.c
3905  */
3906 #ifdef CONFIG_F2FS_FS_COMPRESSION
3907 bool f2fs_is_compressed_page(struct page *page);
3908 struct page *f2fs_compress_control_page(struct page *page);
3909 int f2fs_prepare_compress_overwrite(struct inode *inode,
3910 			struct page **pagep, pgoff_t index, void **fsdata);
3911 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3912 					pgoff_t index, unsigned copied);
3913 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3914 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3915 bool f2fs_is_compress_backend_ready(struct inode *inode);
3916 int f2fs_init_compress_mempool(void);
3917 void f2fs_destroy_compress_mempool(void);
3918 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3919 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3920 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3921 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3922 int f2fs_write_multi_pages(struct compress_ctx *cc,
3923 						int *submitted,
3924 						struct writeback_control *wbc,
3925 						enum iostat_type io_type);
3926 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3927 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3928 				unsigned nr_pages, sector_t *last_block_in_bio,
3929 				bool is_readahead, bool for_write);
3930 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3931 void f2fs_free_dic(struct decompress_io_ctx *dic);
3932 void f2fs_decompress_end_io(struct page **rpages,
3933 			unsigned int cluster_size, bool err, bool verity);
3934 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3935 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3936 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3937 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3938 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3939 int __init f2fs_init_compress_cache(void);
3940 void f2fs_destroy_compress_cache(void);
3941 #else
3942 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3943 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3944 {
3945 	if (!f2fs_compressed_file(inode))
3946 		return true;
3947 	/* not support compression */
3948 	return false;
3949 }
3950 static inline struct page *f2fs_compress_control_page(struct page *page)
3951 {
3952 	WARN_ON_ONCE(1);
3953 	return ERR_PTR(-EINVAL);
3954 }
3955 static inline int f2fs_init_compress_mempool(void) { return 0; }
3956 static inline void f2fs_destroy_compress_mempool(void) { }
3957 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3958 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3959 static inline int __init f2fs_init_compress_cache(void) { return 0; }
3960 static inline void f2fs_destroy_compress_cache(void) { }
3961 #endif
3962 
3963 static inline void set_compress_context(struct inode *inode)
3964 {
3965 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3966 
3967 	F2FS_I(inode)->i_compress_algorithm =
3968 			F2FS_OPTION(sbi).compress_algorithm;
3969 	F2FS_I(inode)->i_log_cluster_size =
3970 			F2FS_OPTION(sbi).compress_log_size;
3971 	F2FS_I(inode)->i_cluster_size =
3972 			1 << F2FS_I(inode)->i_log_cluster_size;
3973 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3974 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3975 	stat_inc_compr_inode(inode);
3976 	f2fs_mark_inode_dirty_sync(inode, true);
3977 }
3978 
3979 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3980 {
3981 	struct f2fs_inode_info *fi = F2FS_I(inode);
3982 
3983 	if (!f2fs_compressed_file(inode))
3984 		return true;
3985 	if (S_ISREG(inode->i_mode) &&
3986 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3987 		return false;
3988 
3989 	fi->i_flags &= ~F2FS_COMPR_FL;
3990 	stat_dec_compr_inode(inode);
3991 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3992 	f2fs_mark_inode_dirty_sync(inode, true);
3993 	return true;
3994 }
3995 
3996 #define F2FS_FEATURE_FUNCS(name, flagname) \
3997 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3998 { \
3999 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4000 }
4001 
4002 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4003 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4004 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4005 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4006 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4007 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4008 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4009 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4010 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4011 F2FS_FEATURE_FUNCS(verity, VERITY);
4012 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4013 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4014 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4015 
4016 #ifdef CONFIG_BLK_DEV_ZONED
4017 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4018 				    block_t blkaddr)
4019 {
4020 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4021 
4022 	return test_bit(zno, FDEV(devi).blkz_seq);
4023 }
4024 #endif
4025 
4026 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4027 {
4028 	return f2fs_sb_has_blkzoned(sbi);
4029 }
4030 
4031 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4032 {
4033 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4034 	       bdev_is_zoned(bdev);
4035 }
4036 
4037 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4038 {
4039 	int i;
4040 
4041 	if (!f2fs_is_multi_device(sbi))
4042 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4043 
4044 	for (i = 0; i < sbi->s_ndevs; i++)
4045 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4046 			return true;
4047 	return false;
4048 }
4049 
4050 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4051 {
4052 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4053 					f2fs_hw_should_discard(sbi);
4054 }
4055 
4056 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4057 {
4058 	int i;
4059 
4060 	if (!f2fs_is_multi_device(sbi))
4061 		return bdev_read_only(sbi->sb->s_bdev);
4062 
4063 	for (i = 0; i < sbi->s_ndevs; i++)
4064 		if (bdev_read_only(FDEV(i).bdev))
4065 			return true;
4066 	return false;
4067 }
4068 
4069 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4070 {
4071 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4072 }
4073 
4074 static inline bool f2fs_may_encrypt(struct inode *dir, struct inode *inode)
4075 {
4076 #ifdef CONFIG_FS_ENCRYPTION
4077 	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
4078 	umode_t mode = inode->i_mode;
4079 
4080 	/*
4081 	 * If the directory encrypted or dummy encryption enabled,
4082 	 * then we should encrypt the inode.
4083 	 */
4084 	if (IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi))
4085 		return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
4086 #endif
4087 	return false;
4088 }
4089 
4090 static inline bool f2fs_may_compress(struct inode *inode)
4091 {
4092 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4093 				f2fs_is_atomic_file(inode) ||
4094 				f2fs_is_volatile_file(inode))
4095 		return false;
4096 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4097 }
4098 
4099 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4100 						u64 blocks, bool add)
4101 {
4102 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4103 	struct f2fs_inode_info *fi = F2FS_I(inode);
4104 
4105 	/* don't update i_compr_blocks if saved blocks were released */
4106 	if (!add && !atomic_read(&fi->i_compr_blocks))
4107 		return;
4108 
4109 	if (add) {
4110 		atomic_add(diff, &fi->i_compr_blocks);
4111 		stat_add_compr_blocks(inode, diff);
4112 	} else {
4113 		atomic_sub(diff, &fi->i_compr_blocks);
4114 		stat_sub_compr_blocks(inode, diff);
4115 	}
4116 	f2fs_mark_inode_dirty_sync(inode, true);
4117 }
4118 
4119 static inline int block_unaligned_IO(struct inode *inode,
4120 				struct kiocb *iocb, struct iov_iter *iter)
4121 {
4122 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4123 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4124 	loff_t offset = iocb->ki_pos;
4125 	unsigned long align = offset | iov_iter_alignment(iter);
4126 
4127 	return align & blocksize_mask;
4128 }
4129 
4130 static inline int allow_outplace_dio(struct inode *inode,
4131 				struct kiocb *iocb, struct iov_iter *iter)
4132 {
4133 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4134 	int rw = iov_iter_rw(iter);
4135 
4136 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4137 				!block_unaligned_IO(inode, iocb, iter));
4138 }
4139 
4140 static inline bool f2fs_force_buffered_io(struct inode *inode,
4141 				struct kiocb *iocb, struct iov_iter *iter)
4142 {
4143 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4144 	int rw = iov_iter_rw(iter);
4145 
4146 	if (f2fs_post_read_required(inode))
4147 		return true;
4148 	if (f2fs_is_multi_device(sbi))
4149 		return true;
4150 	/*
4151 	 * for blkzoned device, fallback direct IO to buffered IO, so
4152 	 * all IOs can be serialized by log-structured write.
4153 	 */
4154 	if (f2fs_sb_has_blkzoned(sbi))
4155 		return true;
4156 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4157 		if (block_unaligned_IO(inode, iocb, iter))
4158 			return true;
4159 		if (F2FS_IO_ALIGNED(sbi))
4160 			return true;
4161 	}
4162 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4163 					!IS_SWAPFILE(inode))
4164 		return true;
4165 
4166 	return false;
4167 }
4168 
4169 #ifdef CONFIG_F2FS_FAULT_INJECTION
4170 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4171 							unsigned int type);
4172 #else
4173 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4174 #endif
4175 
4176 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4177 {
4178 #ifdef CONFIG_QUOTA
4179 	if (f2fs_sb_has_quota_ino(sbi))
4180 		return true;
4181 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4182 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4183 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4184 		return true;
4185 #endif
4186 	return false;
4187 }
4188 
4189 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4190 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4191 
4192 #endif /* _LINUX_F2FS_H */
4193