xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 8622a0e5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #include <linux/fscrypt.h>
28 #include <linux/fsverity.h>
29 
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition)					\
34 	do {								\
35 		if (unlikely(condition)) {				\
36 			WARN_ON(1);					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 		}							\
39 	} while (0)
40 #endif
41 
42 enum {
43 	FAULT_KMALLOC,
44 	FAULT_KVMALLOC,
45 	FAULT_PAGE_ALLOC,
46 	FAULT_PAGE_GET,
47 	FAULT_ALLOC_BIO,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_READ_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_DISCARD,
57 	FAULT_WRITE_IO,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_BG_GC		0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_ADAPTIVE		0x00020000
95 #define F2FS_MOUNT_LFS			0x00040000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 #define COMPRESS_EXT_NUM		16
120 
121 struct f2fs_mount_info {
122 	unsigned int opt;
123 	int write_io_size_bits;		/* Write IO size bits */
124 	block_t root_reserved_blocks;	/* root reserved blocks */
125 	kuid_t s_resuid;		/* reserved blocks for uid */
126 	kgid_t s_resgid;		/* reserved blocks for gid */
127 	int active_logs;		/* # of active logs */
128 	int inline_xattr_size;		/* inline xattr size */
129 #ifdef CONFIG_F2FS_FAULT_INJECTION
130 	struct f2fs_fault_info fault_info;	/* For fault injection */
131 #endif
132 #ifdef CONFIG_QUOTA
133 	/* Names of quota files with journalled quota */
134 	char *s_qf_names[MAXQUOTAS];
135 	int s_jquota_fmt;			/* Format of quota to use */
136 #endif
137 	/* For which write hints are passed down to block layer */
138 	int whint_mode;
139 	int alloc_mode;			/* segment allocation policy */
140 	int fsync_mode;			/* fsync policy */
141 	bool test_dummy_encryption;	/* test dummy encryption */
142 	block_t unusable_cap;		/* Amount of space allowed to be
143 					 * unusable when disabling checkpoint
144 					 */
145 
146 	/* For compression */
147 	unsigned char compress_algorithm;	/* algorithm type */
148 	unsigned compress_log_size;		/* cluster log size */
149 	unsigned char compress_ext_cnt;		/* extension count */
150 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
151 };
152 
153 #define F2FS_FEATURE_ENCRYPT		0x0001
154 #define F2FS_FEATURE_BLKZONED		0x0002
155 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
156 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
157 #define F2FS_FEATURE_PRJQUOTA		0x0010
158 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
159 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
160 #define F2FS_FEATURE_QUOTA_INO		0x0080
161 #define F2FS_FEATURE_INODE_CRTIME	0x0100
162 #define F2FS_FEATURE_LOST_FOUND		0x0200
163 #define F2FS_FEATURE_VERITY		0x0400
164 #define F2FS_FEATURE_SB_CHKSUM		0x0800
165 #define F2FS_FEATURE_CASEFOLD		0x1000
166 #define F2FS_FEATURE_COMPRESSION	0x2000
167 
168 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
169 	((raw_super->feature & cpu_to_le32(mask)) != 0)
170 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
171 #define F2FS_SET_FEATURE(sbi, mask)					\
172 	(sbi->raw_super->feature |= cpu_to_le32(mask))
173 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
174 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
175 
176 /*
177  * Default values for user and/or group using reserved blocks
178  */
179 #define	F2FS_DEF_RESUID		0
180 #define	F2FS_DEF_RESGID		0
181 
182 /*
183  * For checkpoint manager
184  */
185 enum {
186 	NAT_BITMAP,
187 	SIT_BITMAP
188 };
189 
190 #define	CP_UMOUNT	0x00000001
191 #define	CP_FASTBOOT	0x00000002
192 #define	CP_SYNC		0x00000004
193 #define	CP_RECOVERY	0x00000008
194 #define	CP_DISCARD	0x00000010
195 #define CP_TRIMMED	0x00000020
196 #define CP_PAUSE	0x00000040
197 
198 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
199 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
200 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
201 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
202 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
203 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
204 #define DEF_CP_INTERVAL			60	/* 60 secs */
205 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
206 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
207 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
208 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
209 
210 struct cp_control {
211 	int reason;
212 	__u64 trim_start;
213 	__u64 trim_end;
214 	__u64 trim_minlen;
215 };
216 
217 /*
218  * indicate meta/data type
219  */
220 enum {
221 	META_CP,
222 	META_NAT,
223 	META_SIT,
224 	META_SSA,
225 	META_MAX,
226 	META_POR,
227 	DATA_GENERIC,		/* check range only */
228 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
229 	DATA_GENERIC_ENHANCE_READ,	/*
230 					 * strong check on range and segment
231 					 * bitmap but no warning due to race
232 					 * condition of read on truncated area
233 					 * by extent_cache
234 					 */
235 	META_GENERIC,
236 };
237 
238 /* for the list of ino */
239 enum {
240 	ORPHAN_INO,		/* for orphan ino list */
241 	APPEND_INO,		/* for append ino list */
242 	UPDATE_INO,		/* for update ino list */
243 	TRANS_DIR_INO,		/* for trasactions dir ino list */
244 	FLUSH_INO,		/* for multiple device flushing */
245 	MAX_INO_ENTRY,		/* max. list */
246 };
247 
248 struct ino_entry {
249 	struct list_head list;		/* list head */
250 	nid_t ino;			/* inode number */
251 	unsigned int dirty_device;	/* dirty device bitmap */
252 };
253 
254 /* for the list of inodes to be GCed */
255 struct inode_entry {
256 	struct list_head list;	/* list head */
257 	struct inode *inode;	/* vfs inode pointer */
258 };
259 
260 struct fsync_node_entry {
261 	struct list_head list;	/* list head */
262 	struct page *page;	/* warm node page pointer */
263 	unsigned int seq_id;	/* sequence id */
264 };
265 
266 /* for the bitmap indicate blocks to be discarded */
267 struct discard_entry {
268 	struct list_head list;	/* list head */
269 	block_t start_blkaddr;	/* start blockaddr of current segment */
270 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
271 };
272 
273 /* default discard granularity of inner discard thread, unit: block count */
274 #define DEFAULT_DISCARD_GRANULARITY		16
275 
276 /* max discard pend list number */
277 #define MAX_PLIST_NUM		512
278 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
279 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
280 
281 enum {
282 	D_PREP,			/* initial */
283 	D_PARTIAL,		/* partially submitted */
284 	D_SUBMIT,		/* all submitted */
285 	D_DONE,			/* finished */
286 };
287 
288 struct discard_info {
289 	block_t lstart;			/* logical start address */
290 	block_t len;			/* length */
291 	block_t start;			/* actual start address in dev */
292 };
293 
294 struct discard_cmd {
295 	struct rb_node rb_node;		/* rb node located in rb-tree */
296 	union {
297 		struct {
298 			block_t lstart;	/* logical start address */
299 			block_t len;	/* length */
300 			block_t start;	/* actual start address in dev */
301 		};
302 		struct discard_info di;	/* discard info */
303 
304 	};
305 	struct list_head list;		/* command list */
306 	struct completion wait;		/* compleation */
307 	struct block_device *bdev;	/* bdev */
308 	unsigned short ref;		/* reference count */
309 	unsigned char state;		/* state */
310 	unsigned char queued;		/* queued discard */
311 	int error;			/* bio error */
312 	spinlock_t lock;		/* for state/bio_ref updating */
313 	unsigned short bio_ref;		/* bio reference count */
314 };
315 
316 enum {
317 	DPOLICY_BG,
318 	DPOLICY_FORCE,
319 	DPOLICY_FSTRIM,
320 	DPOLICY_UMOUNT,
321 	MAX_DPOLICY,
322 };
323 
324 struct discard_policy {
325 	int type;			/* type of discard */
326 	unsigned int min_interval;	/* used for candidates exist */
327 	unsigned int mid_interval;	/* used for device busy */
328 	unsigned int max_interval;	/* used for candidates not exist */
329 	unsigned int max_requests;	/* # of discards issued per round */
330 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
331 	bool io_aware;			/* issue discard in idle time */
332 	bool sync;			/* submit discard with REQ_SYNC flag */
333 	bool ordered;			/* issue discard by lba order */
334 	unsigned int granularity;	/* discard granularity */
335 	int timeout;			/* discard timeout for put_super */
336 };
337 
338 struct discard_cmd_control {
339 	struct task_struct *f2fs_issue_discard;	/* discard thread */
340 	struct list_head entry_list;		/* 4KB discard entry list */
341 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
342 	struct list_head wait_list;		/* store on-flushing entries */
343 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
344 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
345 	unsigned int discard_wake;		/* to wake up discard thread */
346 	struct mutex cmd_lock;
347 	unsigned int nr_discards;		/* # of discards in the list */
348 	unsigned int max_discards;		/* max. discards to be issued */
349 	unsigned int discard_granularity;	/* discard granularity */
350 	unsigned int undiscard_blks;		/* # of undiscard blocks */
351 	unsigned int next_pos;			/* next discard position */
352 	atomic_t issued_discard;		/* # of issued discard */
353 	atomic_t queued_discard;		/* # of queued discard */
354 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
355 	struct rb_root_cached root;		/* root of discard rb-tree */
356 	bool rbtree_check;			/* config for consistence check */
357 };
358 
359 /* for the list of fsync inodes, used only during recovery */
360 struct fsync_inode_entry {
361 	struct list_head list;	/* list head */
362 	struct inode *inode;	/* vfs inode pointer */
363 	block_t blkaddr;	/* block address locating the last fsync */
364 	block_t last_dentry;	/* block address locating the last dentry */
365 };
366 
367 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
368 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
369 
370 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
371 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
372 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
373 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
374 
375 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
376 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
377 
378 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
379 {
380 	int before = nats_in_cursum(journal);
381 
382 	journal->n_nats = cpu_to_le16(before + i);
383 	return before;
384 }
385 
386 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
387 {
388 	int before = sits_in_cursum(journal);
389 
390 	journal->n_sits = cpu_to_le16(before + i);
391 	return before;
392 }
393 
394 static inline bool __has_cursum_space(struct f2fs_journal *journal,
395 							int size, int type)
396 {
397 	if (type == NAT_JOURNAL)
398 		return size <= MAX_NAT_JENTRIES(journal);
399 	return size <= MAX_SIT_JENTRIES(journal);
400 }
401 
402 /*
403  * ioctl commands
404  */
405 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
406 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
407 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
408 
409 #define F2FS_IOCTL_MAGIC		0xf5
410 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
411 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
412 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
413 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
414 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
415 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
416 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
417 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
418 						struct f2fs_defragment)
419 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
420 						struct f2fs_move_range)
421 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
422 						struct f2fs_flush_device)
423 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
424 						struct f2fs_gc_range)
425 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
426 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
427 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
428 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
429 #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
430 
431 #define F2FS_IOC_GET_VOLUME_NAME	FS_IOC_GETFSLABEL
432 #define F2FS_IOC_SET_VOLUME_NAME	FS_IOC_SETFSLABEL
433 
434 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
435 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
436 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
437 
438 /*
439  * should be same as XFS_IOC_GOINGDOWN.
440  * Flags for going down operation used by FS_IOC_GOINGDOWN
441  */
442 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
443 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
444 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
445 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
446 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
447 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
448 
449 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
450 /*
451  * ioctl commands in 32 bit emulation
452  */
453 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
454 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
455 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
456 #endif
457 
458 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
459 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
460 
461 struct f2fs_gc_range {
462 	u32 sync;
463 	u64 start;
464 	u64 len;
465 };
466 
467 struct f2fs_defragment {
468 	u64 start;
469 	u64 len;
470 };
471 
472 struct f2fs_move_range {
473 	u32 dst_fd;		/* destination fd */
474 	u64 pos_in;		/* start position in src_fd */
475 	u64 pos_out;		/* start position in dst_fd */
476 	u64 len;		/* size to move */
477 };
478 
479 struct f2fs_flush_device {
480 	u32 dev_num;		/* device number to flush */
481 	u32 segments;		/* # of segments to flush */
482 };
483 
484 /* for inline stuff */
485 #define DEF_INLINE_RESERVED_SIZE	1
486 static inline int get_extra_isize(struct inode *inode);
487 static inline int get_inline_xattr_addrs(struct inode *inode);
488 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
489 				(CUR_ADDRS_PER_INODE(inode) -		\
490 				get_inline_xattr_addrs(inode) -	\
491 				DEF_INLINE_RESERVED_SIZE))
492 
493 /* for inline dir */
494 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
495 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
496 				BITS_PER_BYTE + 1))
497 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
498 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
499 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
500 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
501 				NR_INLINE_DENTRY(inode) + \
502 				INLINE_DENTRY_BITMAP_SIZE(inode)))
503 
504 /*
505  * For INODE and NODE manager
506  */
507 /* for directory operations */
508 struct f2fs_dentry_ptr {
509 	struct inode *inode;
510 	void *bitmap;
511 	struct f2fs_dir_entry *dentry;
512 	__u8 (*filename)[F2FS_SLOT_LEN];
513 	int max;
514 	int nr_bitmap;
515 };
516 
517 static inline void make_dentry_ptr_block(struct inode *inode,
518 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
519 {
520 	d->inode = inode;
521 	d->max = NR_DENTRY_IN_BLOCK;
522 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
523 	d->bitmap = t->dentry_bitmap;
524 	d->dentry = t->dentry;
525 	d->filename = t->filename;
526 }
527 
528 static inline void make_dentry_ptr_inline(struct inode *inode,
529 					struct f2fs_dentry_ptr *d, void *t)
530 {
531 	int entry_cnt = NR_INLINE_DENTRY(inode);
532 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
533 	int reserved_size = INLINE_RESERVED_SIZE(inode);
534 
535 	d->inode = inode;
536 	d->max = entry_cnt;
537 	d->nr_bitmap = bitmap_size;
538 	d->bitmap = t;
539 	d->dentry = t + bitmap_size + reserved_size;
540 	d->filename = t + bitmap_size + reserved_size +
541 					SIZE_OF_DIR_ENTRY * entry_cnt;
542 }
543 
544 /*
545  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
546  * as its node offset to distinguish from index node blocks.
547  * But some bits are used to mark the node block.
548  */
549 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
550 				>> OFFSET_BIT_SHIFT)
551 enum {
552 	ALLOC_NODE,			/* allocate a new node page if needed */
553 	LOOKUP_NODE,			/* look up a node without readahead */
554 	LOOKUP_NODE_RA,			/*
555 					 * look up a node with readahead called
556 					 * by get_data_block.
557 					 */
558 };
559 
560 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
561 
562 /* maximum retry quota flush count */
563 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
564 
565 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
566 
567 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
568 
569 /* for in-memory extent cache entry */
570 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
571 
572 /* number of extent info in extent cache we try to shrink */
573 #define EXTENT_CACHE_SHRINK_NUMBER	128
574 
575 struct rb_entry {
576 	struct rb_node rb_node;		/* rb node located in rb-tree */
577 	unsigned int ofs;		/* start offset of the entry */
578 	unsigned int len;		/* length of the entry */
579 };
580 
581 struct extent_info {
582 	unsigned int fofs;		/* start offset in a file */
583 	unsigned int len;		/* length of the extent */
584 	u32 blk;			/* start block address of the extent */
585 };
586 
587 struct extent_node {
588 	struct rb_node rb_node;		/* rb node located in rb-tree */
589 	struct extent_info ei;		/* extent info */
590 	struct list_head list;		/* node in global extent list of sbi */
591 	struct extent_tree *et;		/* extent tree pointer */
592 };
593 
594 struct extent_tree {
595 	nid_t ino;			/* inode number */
596 	struct rb_root_cached root;	/* root of extent info rb-tree */
597 	struct extent_node *cached_en;	/* recently accessed extent node */
598 	struct extent_info largest;	/* largested extent info */
599 	struct list_head list;		/* to be used by sbi->zombie_list */
600 	rwlock_t lock;			/* protect extent info rb-tree */
601 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
602 	bool largest_updated;		/* largest extent updated */
603 };
604 
605 /*
606  * This structure is taken from ext4_map_blocks.
607  *
608  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
609  */
610 #define F2FS_MAP_NEW		(1 << BH_New)
611 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
612 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
613 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
614 				F2FS_MAP_UNWRITTEN)
615 
616 struct f2fs_map_blocks {
617 	block_t m_pblk;
618 	block_t m_lblk;
619 	unsigned int m_len;
620 	unsigned int m_flags;
621 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
622 	pgoff_t *m_next_extent;		/* point to next possible extent */
623 	int m_seg_type;
624 	bool m_may_create;		/* indicate it is from write path */
625 };
626 
627 /* for flag in get_data_block */
628 enum {
629 	F2FS_GET_BLOCK_DEFAULT,
630 	F2FS_GET_BLOCK_FIEMAP,
631 	F2FS_GET_BLOCK_BMAP,
632 	F2FS_GET_BLOCK_DIO,
633 	F2FS_GET_BLOCK_PRE_DIO,
634 	F2FS_GET_BLOCK_PRE_AIO,
635 	F2FS_GET_BLOCK_PRECACHE,
636 };
637 
638 /*
639  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
640  */
641 #define FADVISE_COLD_BIT	0x01
642 #define FADVISE_LOST_PINO_BIT	0x02
643 #define FADVISE_ENCRYPT_BIT	0x04
644 #define FADVISE_ENC_NAME_BIT	0x08
645 #define FADVISE_KEEP_SIZE_BIT	0x10
646 #define FADVISE_HOT_BIT		0x20
647 #define FADVISE_VERITY_BIT	0x40
648 
649 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
650 
651 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
652 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
653 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
654 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
655 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
656 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
657 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
658 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
659 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
660 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
661 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
662 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
663 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
664 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
665 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
666 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
667 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
668 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
669 
670 #define DEF_DIR_LEVEL		0
671 
672 enum {
673 	GC_FAILURE_PIN,
674 	GC_FAILURE_ATOMIC,
675 	MAX_GC_FAILURE
676 };
677 
678 struct f2fs_inode_info {
679 	struct inode vfs_inode;		/* serve a vfs inode */
680 	unsigned long i_flags;		/* keep an inode flags for ioctl */
681 	unsigned char i_advise;		/* use to give file attribute hints */
682 	unsigned char i_dir_level;	/* use for dentry level for large dir */
683 	unsigned int i_current_depth;	/* only for directory depth */
684 	/* for gc failure statistic */
685 	unsigned int i_gc_failures[MAX_GC_FAILURE];
686 	unsigned int i_pino;		/* parent inode number */
687 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
688 
689 	/* Use below internally in f2fs*/
690 	unsigned long flags;		/* use to pass per-file flags */
691 	struct rw_semaphore i_sem;	/* protect fi info */
692 	atomic_t dirty_pages;		/* # of dirty pages */
693 	f2fs_hash_t chash;		/* hash value of given file name */
694 	unsigned int clevel;		/* maximum level of given file name */
695 	struct task_struct *task;	/* lookup and create consistency */
696 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
697 	nid_t i_xattr_nid;		/* node id that contains xattrs */
698 	loff_t	last_disk_size;		/* lastly written file size */
699 
700 #ifdef CONFIG_QUOTA
701 	struct dquot *i_dquot[MAXQUOTAS];
702 
703 	/* quota space reservation, managed internally by quota code */
704 	qsize_t i_reserved_quota;
705 #endif
706 	struct list_head dirty_list;	/* dirty list for dirs and files */
707 	struct list_head gdirty_list;	/* linked in global dirty list */
708 	struct list_head inmem_ilist;	/* list for inmem inodes */
709 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
710 	struct task_struct *inmem_task;	/* store inmemory task */
711 	struct mutex inmem_lock;	/* lock for inmemory pages */
712 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
713 
714 	/* avoid racing between foreground op and gc */
715 	struct rw_semaphore i_gc_rwsem[2];
716 	struct rw_semaphore i_mmap_sem;
717 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
718 
719 	int i_extra_isize;		/* size of extra space located in i_addr */
720 	kprojid_t i_projid;		/* id for project quota */
721 	int i_inline_xattr_size;	/* inline xattr size */
722 	struct timespec64 i_crtime;	/* inode creation time */
723 	struct timespec64 i_disk_time[4];/* inode disk times */
724 
725 	/* for file compress */
726 	u64 i_compr_blocks;			/* # of compressed blocks */
727 	unsigned char i_compress_algorithm;	/* algorithm type */
728 	unsigned char i_log_cluster_size;	/* log of cluster size */
729 	unsigned int i_cluster_size;		/* cluster size */
730 };
731 
732 static inline void get_extent_info(struct extent_info *ext,
733 					struct f2fs_extent *i_ext)
734 {
735 	ext->fofs = le32_to_cpu(i_ext->fofs);
736 	ext->blk = le32_to_cpu(i_ext->blk);
737 	ext->len = le32_to_cpu(i_ext->len);
738 }
739 
740 static inline void set_raw_extent(struct extent_info *ext,
741 					struct f2fs_extent *i_ext)
742 {
743 	i_ext->fofs = cpu_to_le32(ext->fofs);
744 	i_ext->blk = cpu_to_le32(ext->blk);
745 	i_ext->len = cpu_to_le32(ext->len);
746 }
747 
748 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
749 						u32 blk, unsigned int len)
750 {
751 	ei->fofs = fofs;
752 	ei->blk = blk;
753 	ei->len = len;
754 }
755 
756 static inline bool __is_discard_mergeable(struct discard_info *back,
757 			struct discard_info *front, unsigned int max_len)
758 {
759 	return (back->lstart + back->len == front->lstart) &&
760 		(back->len + front->len <= max_len);
761 }
762 
763 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
764 			struct discard_info *back, unsigned int max_len)
765 {
766 	return __is_discard_mergeable(back, cur, max_len);
767 }
768 
769 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
770 			struct discard_info *front, unsigned int max_len)
771 {
772 	return __is_discard_mergeable(cur, front, max_len);
773 }
774 
775 static inline bool __is_extent_mergeable(struct extent_info *back,
776 						struct extent_info *front)
777 {
778 	return (back->fofs + back->len == front->fofs &&
779 			back->blk + back->len == front->blk);
780 }
781 
782 static inline bool __is_back_mergeable(struct extent_info *cur,
783 						struct extent_info *back)
784 {
785 	return __is_extent_mergeable(back, cur);
786 }
787 
788 static inline bool __is_front_mergeable(struct extent_info *cur,
789 						struct extent_info *front)
790 {
791 	return __is_extent_mergeable(cur, front);
792 }
793 
794 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
795 static inline void __try_update_largest_extent(struct extent_tree *et,
796 						struct extent_node *en)
797 {
798 	if (en->ei.len > et->largest.len) {
799 		et->largest = en->ei;
800 		et->largest_updated = true;
801 	}
802 }
803 
804 /*
805  * For free nid management
806  */
807 enum nid_state {
808 	FREE_NID,		/* newly added to free nid list */
809 	PREALLOC_NID,		/* it is preallocated */
810 	MAX_NID_STATE,
811 };
812 
813 struct f2fs_nm_info {
814 	block_t nat_blkaddr;		/* base disk address of NAT */
815 	nid_t max_nid;			/* maximum possible node ids */
816 	nid_t available_nids;		/* # of available node ids */
817 	nid_t next_scan_nid;		/* the next nid to be scanned */
818 	unsigned int ram_thresh;	/* control the memory footprint */
819 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
820 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
821 
822 	/* NAT cache management */
823 	struct radix_tree_root nat_root;/* root of the nat entry cache */
824 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
825 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
826 	struct list_head nat_entries;	/* cached nat entry list (clean) */
827 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
828 	unsigned int nat_cnt;		/* the # of cached nat entries */
829 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
830 	unsigned int nat_blocks;	/* # of nat blocks */
831 
832 	/* free node ids management */
833 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
834 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
835 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
836 	spinlock_t nid_list_lock;	/* protect nid lists ops */
837 	struct mutex build_lock;	/* lock for build free nids */
838 	unsigned char **free_nid_bitmap;
839 	unsigned char *nat_block_bitmap;
840 	unsigned short *free_nid_count;	/* free nid count of NAT block */
841 
842 	/* for checkpoint */
843 	char *nat_bitmap;		/* NAT bitmap pointer */
844 
845 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
846 	unsigned char *nat_bits;	/* NAT bits blocks */
847 	unsigned char *full_nat_bits;	/* full NAT pages */
848 	unsigned char *empty_nat_bits;	/* empty NAT pages */
849 #ifdef CONFIG_F2FS_CHECK_FS
850 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
851 #endif
852 	int bitmap_size;		/* bitmap size */
853 };
854 
855 /*
856  * this structure is used as one of function parameters.
857  * all the information are dedicated to a given direct node block determined
858  * by the data offset in a file.
859  */
860 struct dnode_of_data {
861 	struct inode *inode;		/* vfs inode pointer */
862 	struct page *inode_page;	/* its inode page, NULL is possible */
863 	struct page *node_page;		/* cached direct node page */
864 	nid_t nid;			/* node id of the direct node block */
865 	unsigned int ofs_in_node;	/* data offset in the node page */
866 	bool inode_page_locked;		/* inode page is locked or not */
867 	bool node_changed;		/* is node block changed */
868 	char cur_level;			/* level of hole node page */
869 	char max_level;			/* level of current page located */
870 	block_t	data_blkaddr;		/* block address of the node block */
871 };
872 
873 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
874 		struct page *ipage, struct page *npage, nid_t nid)
875 {
876 	memset(dn, 0, sizeof(*dn));
877 	dn->inode = inode;
878 	dn->inode_page = ipage;
879 	dn->node_page = npage;
880 	dn->nid = nid;
881 }
882 
883 /*
884  * For SIT manager
885  *
886  * By default, there are 6 active log areas across the whole main area.
887  * When considering hot and cold data separation to reduce cleaning overhead,
888  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
889  * respectively.
890  * In the current design, you should not change the numbers intentionally.
891  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
892  * logs individually according to the underlying devices. (default: 6)
893  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
894  * data and 8 for node logs.
895  */
896 #define	NR_CURSEG_DATA_TYPE	(3)
897 #define NR_CURSEG_NODE_TYPE	(3)
898 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
899 
900 enum {
901 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
902 	CURSEG_WARM_DATA,	/* data blocks */
903 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
904 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
905 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
906 	CURSEG_COLD_NODE,	/* indirect node blocks */
907 	NO_CHECK_TYPE,
908 	CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */
909 };
910 
911 struct flush_cmd {
912 	struct completion wait;
913 	struct llist_node llnode;
914 	nid_t ino;
915 	int ret;
916 };
917 
918 struct flush_cmd_control {
919 	struct task_struct *f2fs_issue_flush;	/* flush thread */
920 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
921 	atomic_t issued_flush;			/* # of issued flushes */
922 	atomic_t queued_flush;			/* # of queued flushes */
923 	struct llist_head issue_list;		/* list for command issue */
924 	struct llist_node *dispatch_list;	/* list for command dispatch */
925 };
926 
927 struct f2fs_sm_info {
928 	struct sit_info *sit_info;		/* whole segment information */
929 	struct free_segmap_info *free_info;	/* free segment information */
930 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
931 	struct curseg_info *curseg_array;	/* active segment information */
932 
933 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
934 
935 	block_t seg0_blkaddr;		/* block address of 0'th segment */
936 	block_t main_blkaddr;		/* start block address of main area */
937 	block_t ssa_blkaddr;		/* start block address of SSA area */
938 
939 	unsigned int segment_count;	/* total # of segments */
940 	unsigned int main_segments;	/* # of segments in main area */
941 	unsigned int reserved_segments;	/* # of reserved segments */
942 	unsigned int ovp_segments;	/* # of overprovision segments */
943 
944 	/* a threshold to reclaim prefree segments */
945 	unsigned int rec_prefree_segments;
946 
947 	/* for batched trimming */
948 	unsigned int trim_sections;		/* # of sections to trim */
949 
950 	struct list_head sit_entry_set;	/* sit entry set list */
951 
952 	unsigned int ipu_policy;	/* in-place-update policy */
953 	unsigned int min_ipu_util;	/* in-place-update threshold */
954 	unsigned int min_fsync_blocks;	/* threshold for fsync */
955 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
956 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
957 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
958 
959 	/* for flush command control */
960 	struct flush_cmd_control *fcc_info;
961 
962 	/* for discard command control */
963 	struct discard_cmd_control *dcc_info;
964 };
965 
966 /*
967  * For superblock
968  */
969 /*
970  * COUNT_TYPE for monitoring
971  *
972  * f2fs monitors the number of several block types such as on-writeback,
973  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
974  */
975 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
976 enum count_type {
977 	F2FS_DIRTY_DENTS,
978 	F2FS_DIRTY_DATA,
979 	F2FS_DIRTY_QDATA,
980 	F2FS_DIRTY_NODES,
981 	F2FS_DIRTY_META,
982 	F2FS_INMEM_PAGES,
983 	F2FS_DIRTY_IMETA,
984 	F2FS_WB_CP_DATA,
985 	F2FS_WB_DATA,
986 	F2FS_RD_DATA,
987 	F2FS_RD_NODE,
988 	F2FS_RD_META,
989 	F2FS_DIO_WRITE,
990 	F2FS_DIO_READ,
991 	NR_COUNT_TYPE,
992 };
993 
994 /*
995  * The below are the page types of bios used in submit_bio().
996  * The available types are:
997  * DATA			User data pages. It operates as async mode.
998  * NODE			Node pages. It operates as async mode.
999  * META			FS metadata pages such as SIT, NAT, CP.
1000  * NR_PAGE_TYPE		The number of page types.
1001  * META_FLUSH		Make sure the previous pages are written
1002  *			with waiting the bio's completion
1003  * ...			Only can be used with META.
1004  */
1005 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1006 enum page_type {
1007 	DATA,
1008 	NODE,
1009 	META,
1010 	NR_PAGE_TYPE,
1011 	META_FLUSH,
1012 	INMEM,		/* the below types are used by tracepoints only. */
1013 	INMEM_DROP,
1014 	INMEM_INVALIDATE,
1015 	INMEM_REVOKE,
1016 	IPU,
1017 	OPU,
1018 };
1019 
1020 enum temp_type {
1021 	HOT = 0,	/* must be zero for meta bio */
1022 	WARM,
1023 	COLD,
1024 	NR_TEMP_TYPE,
1025 };
1026 
1027 enum need_lock_type {
1028 	LOCK_REQ = 0,
1029 	LOCK_DONE,
1030 	LOCK_RETRY,
1031 };
1032 
1033 enum cp_reason_type {
1034 	CP_NO_NEEDED,
1035 	CP_NON_REGULAR,
1036 	CP_COMPRESSED,
1037 	CP_HARDLINK,
1038 	CP_SB_NEED_CP,
1039 	CP_WRONG_PINO,
1040 	CP_NO_SPC_ROLL,
1041 	CP_NODE_NEED_CP,
1042 	CP_FASTBOOT_MODE,
1043 	CP_SPEC_LOG_NUM,
1044 	CP_RECOVER_DIR,
1045 };
1046 
1047 enum iostat_type {
1048 	APP_DIRECT_IO,			/* app direct IOs */
1049 	APP_BUFFERED_IO,		/* app buffered IOs */
1050 	APP_WRITE_IO,			/* app write IOs */
1051 	APP_MAPPED_IO,			/* app mapped IOs */
1052 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1053 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1054 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1055 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1056 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1057 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1058 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1059 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1060 	FS_DISCARD,			/* discard */
1061 	NR_IO_TYPE,
1062 };
1063 
1064 struct f2fs_io_info {
1065 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1066 	nid_t ino;		/* inode number */
1067 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1068 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1069 	int op;			/* contains REQ_OP_ */
1070 	int op_flags;		/* req_flag_bits */
1071 	block_t new_blkaddr;	/* new block address to be written */
1072 	block_t old_blkaddr;	/* old block address before Cow */
1073 	struct page *page;	/* page to be written */
1074 	struct page *encrypted_page;	/* encrypted page */
1075 	struct page *compressed_page;	/* compressed page */
1076 	struct list_head list;		/* serialize IOs */
1077 	bool submitted;		/* indicate IO submission */
1078 	int need_lock;		/* indicate we need to lock cp_rwsem */
1079 	bool in_list;		/* indicate fio is in io_list */
1080 	bool is_por;		/* indicate IO is from recovery or not */
1081 	bool retry;		/* need to reallocate block address */
1082 	int compr_blocks;	/* # of compressed block addresses */
1083 	bool encrypted;		/* indicate file is encrypted */
1084 	enum iostat_type io_type;	/* io type */
1085 	struct writeback_control *io_wbc; /* writeback control */
1086 	struct bio **bio;		/* bio for ipu */
1087 	sector_t *last_block;		/* last block number in bio */
1088 	unsigned char version;		/* version of the node */
1089 };
1090 
1091 struct bio_entry {
1092 	struct bio *bio;
1093 	struct list_head list;
1094 };
1095 
1096 #define is_read_io(rw) ((rw) == READ)
1097 struct f2fs_bio_info {
1098 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1099 	struct bio *bio;		/* bios to merge */
1100 	sector_t last_block_in_bio;	/* last block number */
1101 	struct f2fs_io_info fio;	/* store buffered io info. */
1102 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1103 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1104 	struct list_head io_list;	/* track fios */
1105 	struct list_head bio_list;	/* bio entry list head */
1106 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1107 };
1108 
1109 #define FDEV(i)				(sbi->devs[i])
1110 #define RDEV(i)				(raw_super->devs[i])
1111 struct f2fs_dev_info {
1112 	struct block_device *bdev;
1113 	char path[MAX_PATH_LEN];
1114 	unsigned int total_segments;
1115 	block_t start_blk;
1116 	block_t end_blk;
1117 #ifdef CONFIG_BLK_DEV_ZONED
1118 	unsigned int nr_blkz;		/* Total number of zones */
1119 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1120 #endif
1121 };
1122 
1123 enum inode_type {
1124 	DIR_INODE,			/* for dirty dir inode */
1125 	FILE_INODE,			/* for dirty regular/symlink inode */
1126 	DIRTY_META,			/* for all dirtied inode metadata */
1127 	ATOMIC_FILE,			/* for all atomic files */
1128 	NR_INODE_TYPE,
1129 };
1130 
1131 /* for inner inode cache management */
1132 struct inode_management {
1133 	struct radix_tree_root ino_root;	/* ino entry array */
1134 	spinlock_t ino_lock;			/* for ino entry lock */
1135 	struct list_head ino_list;		/* inode list head */
1136 	unsigned long ino_num;			/* number of entries */
1137 };
1138 
1139 /* For s_flag in struct f2fs_sb_info */
1140 enum {
1141 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1142 	SBI_IS_CLOSE,				/* specify unmounting */
1143 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1144 	SBI_POR_DOING,				/* recovery is doing or not */
1145 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1146 	SBI_NEED_CP,				/* need to checkpoint */
1147 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1148 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1149 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1150 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1151 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1152 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1153 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1154 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1155 };
1156 
1157 enum {
1158 	CP_TIME,
1159 	REQ_TIME,
1160 	DISCARD_TIME,
1161 	GC_TIME,
1162 	DISABLE_TIME,
1163 	UMOUNT_DISCARD_TIMEOUT,
1164 	MAX_TIME,
1165 };
1166 
1167 enum {
1168 	GC_NORMAL,
1169 	GC_IDLE_CB,
1170 	GC_IDLE_GREEDY,
1171 	GC_URGENT,
1172 };
1173 
1174 enum {
1175 	WHINT_MODE_OFF,		/* not pass down write hints */
1176 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1177 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1178 };
1179 
1180 enum {
1181 	ALLOC_MODE_DEFAULT,	/* stay default */
1182 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1183 };
1184 
1185 enum fsync_mode {
1186 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1187 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1188 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1189 };
1190 
1191 /*
1192  * this value is set in page as a private data which indicate that
1193  * the page is atomically written, and it is in inmem_pages list.
1194  */
1195 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1196 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1197 
1198 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1199 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
1200 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1201 		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
1202 
1203 #ifdef CONFIG_FS_ENCRYPTION
1204 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1205 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1206 #else
1207 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1208 #endif
1209 
1210 /* For compression */
1211 enum compress_algorithm_type {
1212 	COMPRESS_LZO,
1213 	COMPRESS_LZ4,
1214 	COMPRESS_MAX,
1215 };
1216 
1217 #define COMPRESS_DATA_RESERVED_SIZE		4
1218 struct compress_data {
1219 	__le32 clen;			/* compressed data size */
1220 	__le32 chksum;			/* checksum of compressed data */
1221 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1222 	u8 cdata[];			/* compressed data */
1223 };
1224 
1225 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1226 
1227 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1228 
1229 /* compress context */
1230 struct compress_ctx {
1231 	struct inode *inode;		/* inode the context belong to */
1232 	pgoff_t cluster_idx;		/* cluster index number */
1233 	unsigned int cluster_size;	/* page count in cluster */
1234 	unsigned int log_cluster_size;	/* log of cluster size */
1235 	struct page **rpages;		/* pages store raw data in cluster */
1236 	unsigned int nr_rpages;		/* total page number in rpages */
1237 	struct page **cpages;		/* pages store compressed data in cluster */
1238 	unsigned int nr_cpages;		/* total page number in cpages */
1239 	void *rbuf;			/* virtual mapped address on rpages */
1240 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1241 	size_t rlen;			/* valid data length in rbuf */
1242 	size_t clen;			/* valid data length in cbuf */
1243 	void *private;			/* payload buffer for specified compression algorithm */
1244 };
1245 
1246 /* compress context for write IO path */
1247 struct compress_io_ctx {
1248 	u32 magic;			/* magic number to indicate page is compressed */
1249 	struct inode *inode;		/* inode the context belong to */
1250 	struct page **rpages;		/* pages store raw data in cluster */
1251 	unsigned int nr_rpages;		/* total page number in rpages */
1252 	refcount_t ref;			/* referrence count of raw page */
1253 };
1254 
1255 /* decompress io context for read IO path */
1256 struct decompress_io_ctx {
1257 	u32 magic;			/* magic number to indicate page is compressed */
1258 	struct inode *inode;		/* inode the context belong to */
1259 	pgoff_t cluster_idx;		/* cluster index number */
1260 	unsigned int cluster_size;	/* page count in cluster */
1261 	unsigned int log_cluster_size;	/* log of cluster size */
1262 	struct page **rpages;		/* pages store raw data in cluster */
1263 	unsigned int nr_rpages;		/* total page number in rpages */
1264 	struct page **cpages;		/* pages store compressed data in cluster */
1265 	unsigned int nr_cpages;		/* total page number in cpages */
1266 	struct page **tpages;		/* temp pages to pad holes in cluster */
1267 	void *rbuf;			/* virtual mapped address on rpages */
1268 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1269 	size_t rlen;			/* valid data length in rbuf */
1270 	size_t clen;			/* valid data length in cbuf */
1271 	refcount_t ref;			/* referrence count of compressed page */
1272 	bool failed;			/* indicate IO error during decompression */
1273 };
1274 
1275 #define NULL_CLUSTER			((unsigned int)(~0))
1276 #define MIN_COMPRESS_LOG_SIZE		2
1277 #define MAX_COMPRESS_LOG_SIZE		8
1278 
1279 struct f2fs_sb_info {
1280 	struct super_block *sb;			/* pointer to VFS super block */
1281 	struct proc_dir_entry *s_proc;		/* proc entry */
1282 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1283 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1284 	int valid_super_block;			/* valid super block no */
1285 	unsigned long s_flag;				/* flags for sbi */
1286 	struct mutex writepages;		/* mutex for writepages() */
1287 #ifdef CONFIG_UNICODE
1288 	struct unicode_map *s_encoding;
1289 	__u16 s_encoding_flags;
1290 #endif
1291 
1292 #ifdef CONFIG_BLK_DEV_ZONED
1293 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1294 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1295 #endif
1296 
1297 	/* for node-related operations */
1298 	struct f2fs_nm_info *nm_info;		/* node manager */
1299 	struct inode *node_inode;		/* cache node blocks */
1300 
1301 	/* for segment-related operations */
1302 	struct f2fs_sm_info *sm_info;		/* segment manager */
1303 
1304 	/* for bio operations */
1305 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1306 	/* keep migration IO order for LFS mode */
1307 	struct rw_semaphore io_order_lock;
1308 	mempool_t *write_io_dummy;		/* Dummy pages */
1309 
1310 	/* for checkpoint */
1311 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1312 	int cur_cp_pack;			/* remain current cp pack */
1313 	spinlock_t cp_lock;			/* for flag in ckpt */
1314 	struct inode *meta_inode;		/* cache meta blocks */
1315 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1316 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1317 	struct rw_semaphore node_write;		/* locking node writes */
1318 	struct rw_semaphore node_change;	/* locking node change */
1319 	wait_queue_head_t cp_wait;
1320 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1321 	long interval_time[MAX_TIME];		/* to store thresholds */
1322 
1323 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1324 
1325 	spinlock_t fsync_node_lock;		/* for node entry lock */
1326 	struct list_head fsync_node_list;	/* node list head */
1327 	unsigned int fsync_seg_id;		/* sequence id */
1328 	unsigned int fsync_node_num;		/* number of node entries */
1329 
1330 	/* for orphan inode, use 0'th array */
1331 	unsigned int max_orphans;		/* max orphan inodes */
1332 
1333 	/* for inode management */
1334 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1335 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1336 	struct mutex flush_lock;		/* for flush exclusion */
1337 
1338 	/* for extent tree cache */
1339 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1340 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1341 	struct list_head extent_list;		/* lru list for shrinker */
1342 	spinlock_t extent_lock;			/* locking extent lru list */
1343 	atomic_t total_ext_tree;		/* extent tree count */
1344 	struct list_head zombie_list;		/* extent zombie tree list */
1345 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1346 	atomic_t total_ext_node;		/* extent info count */
1347 
1348 	/* basic filesystem units */
1349 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1350 	unsigned int log_blocksize;		/* log2 block size */
1351 	unsigned int blocksize;			/* block size */
1352 	unsigned int root_ino_num;		/* root inode number*/
1353 	unsigned int node_ino_num;		/* node inode number*/
1354 	unsigned int meta_ino_num;		/* meta inode number*/
1355 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1356 	unsigned int blocks_per_seg;		/* blocks per segment */
1357 	unsigned int segs_per_sec;		/* segments per section */
1358 	unsigned int secs_per_zone;		/* sections per zone */
1359 	unsigned int total_sections;		/* total section count */
1360 	struct mutex resize_mutex;		/* for resize exclusion */
1361 	unsigned int total_node_count;		/* total node block count */
1362 	unsigned int total_valid_node_count;	/* valid node block count */
1363 	loff_t max_file_blocks;			/* max block index of file */
1364 	int dir_level;				/* directory level */
1365 	int readdir_ra;				/* readahead inode in readdir */
1366 
1367 	block_t user_block_count;		/* # of user blocks */
1368 	block_t total_valid_block_count;	/* # of valid blocks */
1369 	block_t discard_blks;			/* discard command candidats */
1370 	block_t last_valid_block_count;		/* for recovery */
1371 	block_t reserved_blocks;		/* configurable reserved blocks */
1372 	block_t current_reserved_blocks;	/* current reserved blocks */
1373 
1374 	/* Additional tracking for no checkpoint mode */
1375 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1376 
1377 	unsigned int nquota_files;		/* # of quota sysfile */
1378 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1379 
1380 	/* # of pages, see count_type */
1381 	atomic_t nr_pages[NR_COUNT_TYPE];
1382 	/* # of allocated blocks */
1383 	struct percpu_counter alloc_valid_block_count;
1384 
1385 	/* writeback control */
1386 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1387 
1388 	/* valid inode count */
1389 	struct percpu_counter total_valid_inode_count;
1390 
1391 	struct f2fs_mount_info mount_opt;	/* mount options */
1392 
1393 	/* for cleaning operations */
1394 	struct rw_semaphore gc_lock;		/*
1395 						 * semaphore for GC, avoid
1396 						 * race between GC and GC or CP
1397 						 */
1398 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1399 	unsigned int cur_victim_sec;		/* current victim section num */
1400 	unsigned int gc_mode;			/* current GC state */
1401 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1402 	/* for skip statistic */
1403 	unsigned int atomic_files;              /* # of opened atomic file */
1404 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1405 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1406 
1407 	/* threshold for gc trials on pinned files */
1408 	u64 gc_pin_file_threshold;
1409 	struct rw_semaphore pin_sem;
1410 
1411 	/* maximum # of trials to find a victim segment for SSR and GC */
1412 	unsigned int max_victim_search;
1413 	/* migration granularity of garbage collection, unit: segment */
1414 	unsigned int migration_granularity;
1415 
1416 	/*
1417 	 * for stat information.
1418 	 * one is for the LFS mode, and the other is for the SSR mode.
1419 	 */
1420 #ifdef CONFIG_F2FS_STAT_FS
1421 	struct f2fs_stat_info *stat_info;	/* FS status information */
1422 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1423 	unsigned int segment_count[2];		/* # of allocated segments */
1424 	unsigned int block_count[2];		/* # of allocated blocks */
1425 	atomic_t inplace_count;		/* # of inplace update */
1426 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1427 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1428 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1429 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1430 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1431 	atomic_t inline_inode;			/* # of inline_data inodes */
1432 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1433 	atomic_t compr_inode;			/* # of compressed inodes */
1434 	atomic_t compr_blocks;			/* # of compressed blocks */
1435 	atomic_t vw_cnt;			/* # of volatile writes */
1436 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1437 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1438 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1439 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1440 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1441 #endif
1442 	spinlock_t stat_lock;			/* lock for stat operations */
1443 
1444 	/* For app/fs IO statistics */
1445 	spinlock_t iostat_lock;
1446 	unsigned long long write_iostat[NR_IO_TYPE];
1447 	bool iostat_enable;
1448 
1449 	/* For sysfs suppport */
1450 	struct kobject s_kobj;
1451 	struct completion s_kobj_unregister;
1452 
1453 	/* For shrinker support */
1454 	struct list_head s_list;
1455 	int s_ndevs;				/* number of devices */
1456 	struct f2fs_dev_info *devs;		/* for device list */
1457 	unsigned int dirty_device;		/* for checkpoint data flush */
1458 	spinlock_t dev_lock;			/* protect dirty_device */
1459 	struct mutex umount_mutex;
1460 	unsigned int shrinker_run_no;
1461 
1462 	/* For write statistics */
1463 	u64 sectors_written_start;
1464 	u64 kbytes_written;
1465 
1466 	/* Reference to checksum algorithm driver via cryptoapi */
1467 	struct crypto_shash *s_chksum_driver;
1468 
1469 	/* Precomputed FS UUID checksum for seeding other checksums */
1470 	__u32 s_chksum_seed;
1471 
1472 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1473 };
1474 
1475 struct f2fs_private_dio {
1476 	struct inode *inode;
1477 	void *orig_private;
1478 	bio_end_io_t *orig_end_io;
1479 	bool write;
1480 };
1481 
1482 #ifdef CONFIG_F2FS_FAULT_INJECTION
1483 #define f2fs_show_injection_info(sbi, type)					\
1484 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1485 		KERN_INFO, sbi->sb->s_id,				\
1486 		f2fs_fault_name[type],					\
1487 		__func__, __builtin_return_address(0))
1488 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1489 {
1490 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1491 
1492 	if (!ffi->inject_rate)
1493 		return false;
1494 
1495 	if (!IS_FAULT_SET(ffi, type))
1496 		return false;
1497 
1498 	atomic_inc(&ffi->inject_ops);
1499 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1500 		atomic_set(&ffi->inject_ops, 0);
1501 		return true;
1502 	}
1503 	return false;
1504 }
1505 #else
1506 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1507 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1508 {
1509 	return false;
1510 }
1511 #endif
1512 
1513 /*
1514  * Test if the mounted volume is a multi-device volume.
1515  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1516  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1517  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1518  */
1519 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1520 {
1521 	return sbi->s_ndevs > 1;
1522 }
1523 
1524 /* For write statistics. Suppose sector size is 512 bytes,
1525  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1526  */
1527 #define BD_PART_WRITTEN(s)						 \
1528 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1529 		(s)->sectors_written_start) >> 1)
1530 
1531 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1532 {
1533 	unsigned long now = jiffies;
1534 
1535 	sbi->last_time[type] = now;
1536 
1537 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1538 	if (type == REQ_TIME) {
1539 		sbi->last_time[DISCARD_TIME] = now;
1540 		sbi->last_time[GC_TIME] = now;
1541 	}
1542 }
1543 
1544 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1545 {
1546 	unsigned long interval = sbi->interval_time[type] * HZ;
1547 
1548 	return time_after(jiffies, sbi->last_time[type] + interval);
1549 }
1550 
1551 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1552 						int type)
1553 {
1554 	unsigned long interval = sbi->interval_time[type] * HZ;
1555 	unsigned int wait_ms = 0;
1556 	long delta;
1557 
1558 	delta = (sbi->last_time[type] + interval) - jiffies;
1559 	if (delta > 0)
1560 		wait_ms = jiffies_to_msecs(delta);
1561 
1562 	return wait_ms;
1563 }
1564 
1565 /*
1566  * Inline functions
1567  */
1568 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1569 			      const void *address, unsigned int length)
1570 {
1571 	struct {
1572 		struct shash_desc shash;
1573 		char ctx[4];
1574 	} desc;
1575 	int err;
1576 
1577 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1578 
1579 	desc.shash.tfm = sbi->s_chksum_driver;
1580 	*(u32 *)desc.ctx = crc;
1581 
1582 	err = crypto_shash_update(&desc.shash, address, length);
1583 	BUG_ON(err);
1584 
1585 	return *(u32 *)desc.ctx;
1586 }
1587 
1588 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1589 			   unsigned int length)
1590 {
1591 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1592 }
1593 
1594 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1595 				  void *buf, size_t buf_size)
1596 {
1597 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1598 }
1599 
1600 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1601 			      const void *address, unsigned int length)
1602 {
1603 	return __f2fs_crc32(sbi, crc, address, length);
1604 }
1605 
1606 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1607 {
1608 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1609 }
1610 
1611 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1612 {
1613 	return sb->s_fs_info;
1614 }
1615 
1616 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1617 {
1618 	return F2FS_SB(inode->i_sb);
1619 }
1620 
1621 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1622 {
1623 	return F2FS_I_SB(mapping->host);
1624 }
1625 
1626 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1627 {
1628 	return F2FS_M_SB(page_file_mapping(page));
1629 }
1630 
1631 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1632 {
1633 	return (struct f2fs_super_block *)(sbi->raw_super);
1634 }
1635 
1636 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1637 {
1638 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1639 }
1640 
1641 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1642 {
1643 	return (struct f2fs_node *)page_address(page);
1644 }
1645 
1646 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1647 {
1648 	return &((struct f2fs_node *)page_address(page))->i;
1649 }
1650 
1651 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1652 {
1653 	return (struct f2fs_nm_info *)(sbi->nm_info);
1654 }
1655 
1656 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1657 {
1658 	return (struct f2fs_sm_info *)(sbi->sm_info);
1659 }
1660 
1661 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1662 {
1663 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1664 }
1665 
1666 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1667 {
1668 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1669 }
1670 
1671 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1672 {
1673 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1674 }
1675 
1676 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1677 {
1678 	return sbi->meta_inode->i_mapping;
1679 }
1680 
1681 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1682 {
1683 	return sbi->node_inode->i_mapping;
1684 }
1685 
1686 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1687 {
1688 	return test_bit(type, &sbi->s_flag);
1689 }
1690 
1691 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1692 {
1693 	set_bit(type, &sbi->s_flag);
1694 }
1695 
1696 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1697 {
1698 	clear_bit(type, &sbi->s_flag);
1699 }
1700 
1701 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1702 {
1703 	return le64_to_cpu(cp->checkpoint_ver);
1704 }
1705 
1706 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1707 {
1708 	if (type < F2FS_MAX_QUOTAS)
1709 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1710 	return 0;
1711 }
1712 
1713 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1714 {
1715 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1716 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1717 }
1718 
1719 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1720 {
1721 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1722 
1723 	return ckpt_flags & f;
1724 }
1725 
1726 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1727 {
1728 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1729 }
1730 
1731 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1732 {
1733 	unsigned int ckpt_flags;
1734 
1735 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1736 	ckpt_flags |= f;
1737 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1738 }
1739 
1740 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1741 {
1742 	unsigned long flags;
1743 
1744 	spin_lock_irqsave(&sbi->cp_lock, flags);
1745 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1746 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1747 }
1748 
1749 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1750 {
1751 	unsigned int ckpt_flags;
1752 
1753 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1754 	ckpt_flags &= (~f);
1755 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1756 }
1757 
1758 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1759 {
1760 	unsigned long flags;
1761 
1762 	spin_lock_irqsave(&sbi->cp_lock, flags);
1763 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1764 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1765 }
1766 
1767 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1768 {
1769 	unsigned long flags;
1770 	unsigned char *nat_bits;
1771 
1772 	/*
1773 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1774 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1775 	 * so let's rely on regular fsck or unclean shutdown.
1776 	 */
1777 
1778 	if (lock)
1779 		spin_lock_irqsave(&sbi->cp_lock, flags);
1780 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1781 	nat_bits = NM_I(sbi)->nat_bits;
1782 	NM_I(sbi)->nat_bits = NULL;
1783 	if (lock)
1784 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1785 
1786 	kvfree(nat_bits);
1787 }
1788 
1789 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1790 					struct cp_control *cpc)
1791 {
1792 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1793 
1794 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1795 }
1796 
1797 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1798 {
1799 	down_read(&sbi->cp_rwsem);
1800 }
1801 
1802 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1803 {
1804 	return down_read_trylock(&sbi->cp_rwsem);
1805 }
1806 
1807 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1808 {
1809 	up_read(&sbi->cp_rwsem);
1810 }
1811 
1812 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1813 {
1814 	down_write(&sbi->cp_rwsem);
1815 }
1816 
1817 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1818 {
1819 	up_write(&sbi->cp_rwsem);
1820 }
1821 
1822 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1823 {
1824 	int reason = CP_SYNC;
1825 
1826 	if (test_opt(sbi, FASTBOOT))
1827 		reason = CP_FASTBOOT;
1828 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1829 		reason = CP_UMOUNT;
1830 	return reason;
1831 }
1832 
1833 static inline bool __remain_node_summaries(int reason)
1834 {
1835 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1836 }
1837 
1838 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1839 {
1840 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1841 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1842 }
1843 
1844 /*
1845  * Check whether the inode has blocks or not
1846  */
1847 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1848 {
1849 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1850 
1851 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1852 }
1853 
1854 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1855 {
1856 	return ofs == XATTR_NODE_OFFSET;
1857 }
1858 
1859 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1860 					struct inode *inode, bool cap)
1861 {
1862 	if (!inode)
1863 		return true;
1864 	if (!test_opt(sbi, RESERVE_ROOT))
1865 		return false;
1866 	if (IS_NOQUOTA(inode))
1867 		return true;
1868 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1869 		return true;
1870 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1871 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1872 		return true;
1873 	if (cap && capable(CAP_SYS_RESOURCE))
1874 		return true;
1875 	return false;
1876 }
1877 
1878 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1879 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1880 				 struct inode *inode, blkcnt_t *count)
1881 {
1882 	blkcnt_t diff = 0, release = 0;
1883 	block_t avail_user_block_count;
1884 	int ret;
1885 
1886 	ret = dquot_reserve_block(inode, *count);
1887 	if (ret)
1888 		return ret;
1889 
1890 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1891 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1892 		release = *count;
1893 		goto release_quota;
1894 	}
1895 
1896 	/*
1897 	 * let's increase this in prior to actual block count change in order
1898 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1899 	 */
1900 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1901 
1902 	spin_lock(&sbi->stat_lock);
1903 	sbi->total_valid_block_count += (block_t)(*count);
1904 	avail_user_block_count = sbi->user_block_count -
1905 					sbi->current_reserved_blocks;
1906 
1907 	if (!__allow_reserved_blocks(sbi, inode, true))
1908 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1909 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1910 		if (avail_user_block_count > sbi->unusable_block_count)
1911 			avail_user_block_count -= sbi->unusable_block_count;
1912 		else
1913 			avail_user_block_count = 0;
1914 	}
1915 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1916 		diff = sbi->total_valid_block_count - avail_user_block_count;
1917 		if (diff > *count)
1918 			diff = *count;
1919 		*count -= diff;
1920 		release = diff;
1921 		sbi->total_valid_block_count -= diff;
1922 		if (!*count) {
1923 			spin_unlock(&sbi->stat_lock);
1924 			goto enospc;
1925 		}
1926 	}
1927 	spin_unlock(&sbi->stat_lock);
1928 
1929 	if (unlikely(release)) {
1930 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1931 		dquot_release_reservation_block(inode, release);
1932 	}
1933 	f2fs_i_blocks_write(inode, *count, true, true);
1934 	return 0;
1935 
1936 enospc:
1937 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1938 release_quota:
1939 	dquot_release_reservation_block(inode, release);
1940 	return -ENOSPC;
1941 }
1942 
1943 __printf(2, 3)
1944 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
1945 
1946 #define f2fs_err(sbi, fmt, ...)						\
1947 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
1948 #define f2fs_warn(sbi, fmt, ...)					\
1949 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
1950 #define f2fs_notice(sbi, fmt, ...)					\
1951 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
1952 #define f2fs_info(sbi, fmt, ...)					\
1953 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
1954 #define f2fs_debug(sbi, fmt, ...)					\
1955 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
1956 
1957 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1958 						struct inode *inode,
1959 						block_t count)
1960 {
1961 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1962 
1963 	spin_lock(&sbi->stat_lock);
1964 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1965 	sbi->total_valid_block_count -= (block_t)count;
1966 	if (sbi->reserved_blocks &&
1967 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1968 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1969 					sbi->current_reserved_blocks + count);
1970 	spin_unlock(&sbi->stat_lock);
1971 	if (unlikely(inode->i_blocks < sectors)) {
1972 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1973 			  inode->i_ino,
1974 			  (unsigned long long)inode->i_blocks,
1975 			  (unsigned long long)sectors);
1976 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1977 		return;
1978 	}
1979 	f2fs_i_blocks_write(inode, count, false, true);
1980 }
1981 
1982 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1983 {
1984 	atomic_inc(&sbi->nr_pages[count_type]);
1985 
1986 	if (count_type == F2FS_DIRTY_DENTS ||
1987 			count_type == F2FS_DIRTY_NODES ||
1988 			count_type == F2FS_DIRTY_META ||
1989 			count_type == F2FS_DIRTY_QDATA ||
1990 			count_type == F2FS_DIRTY_IMETA)
1991 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1992 }
1993 
1994 static inline void inode_inc_dirty_pages(struct inode *inode)
1995 {
1996 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1997 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1998 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1999 	if (IS_NOQUOTA(inode))
2000 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2001 }
2002 
2003 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2004 {
2005 	atomic_dec(&sbi->nr_pages[count_type]);
2006 }
2007 
2008 static inline void inode_dec_dirty_pages(struct inode *inode)
2009 {
2010 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2011 			!S_ISLNK(inode->i_mode))
2012 		return;
2013 
2014 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2015 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2016 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2017 	if (IS_NOQUOTA(inode))
2018 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2019 }
2020 
2021 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2022 {
2023 	return atomic_read(&sbi->nr_pages[count_type]);
2024 }
2025 
2026 static inline int get_dirty_pages(struct inode *inode)
2027 {
2028 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2029 }
2030 
2031 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2032 {
2033 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2034 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2035 						sbi->log_blocks_per_seg;
2036 
2037 	return segs / sbi->segs_per_sec;
2038 }
2039 
2040 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2041 {
2042 	return sbi->total_valid_block_count;
2043 }
2044 
2045 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2046 {
2047 	return sbi->discard_blks;
2048 }
2049 
2050 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2051 {
2052 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2053 
2054 	/* return NAT or SIT bitmap */
2055 	if (flag == NAT_BITMAP)
2056 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2057 	else if (flag == SIT_BITMAP)
2058 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2059 
2060 	return 0;
2061 }
2062 
2063 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2064 {
2065 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2066 }
2067 
2068 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2069 {
2070 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2071 	int offset;
2072 
2073 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2074 		offset = (flag == SIT_BITMAP) ?
2075 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2076 		/*
2077 		 * if large_nat_bitmap feature is enabled, leave checksum
2078 		 * protection for all nat/sit bitmaps.
2079 		 */
2080 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2081 	}
2082 
2083 	if (__cp_payload(sbi) > 0) {
2084 		if (flag == NAT_BITMAP)
2085 			return &ckpt->sit_nat_version_bitmap;
2086 		else
2087 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2088 	} else {
2089 		offset = (flag == NAT_BITMAP) ?
2090 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2091 		return &ckpt->sit_nat_version_bitmap + offset;
2092 	}
2093 }
2094 
2095 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2096 {
2097 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2098 
2099 	if (sbi->cur_cp_pack == 2)
2100 		start_addr += sbi->blocks_per_seg;
2101 	return start_addr;
2102 }
2103 
2104 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2105 {
2106 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2107 
2108 	if (sbi->cur_cp_pack == 1)
2109 		start_addr += sbi->blocks_per_seg;
2110 	return start_addr;
2111 }
2112 
2113 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2114 {
2115 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2116 }
2117 
2118 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2119 {
2120 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2121 }
2122 
2123 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2124 					struct inode *inode, bool is_inode)
2125 {
2126 	block_t	valid_block_count;
2127 	unsigned int valid_node_count, user_block_count;
2128 	int err;
2129 
2130 	if (is_inode) {
2131 		if (inode) {
2132 			err = dquot_alloc_inode(inode);
2133 			if (err)
2134 				return err;
2135 		}
2136 	} else {
2137 		err = dquot_reserve_block(inode, 1);
2138 		if (err)
2139 			return err;
2140 	}
2141 
2142 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2143 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2144 		goto enospc;
2145 	}
2146 
2147 	spin_lock(&sbi->stat_lock);
2148 
2149 	valid_block_count = sbi->total_valid_block_count +
2150 					sbi->current_reserved_blocks + 1;
2151 
2152 	if (!__allow_reserved_blocks(sbi, inode, false))
2153 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2154 	user_block_count = sbi->user_block_count;
2155 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2156 		user_block_count -= sbi->unusable_block_count;
2157 
2158 	if (unlikely(valid_block_count > user_block_count)) {
2159 		spin_unlock(&sbi->stat_lock);
2160 		goto enospc;
2161 	}
2162 
2163 	valid_node_count = sbi->total_valid_node_count + 1;
2164 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2165 		spin_unlock(&sbi->stat_lock);
2166 		goto enospc;
2167 	}
2168 
2169 	sbi->total_valid_node_count++;
2170 	sbi->total_valid_block_count++;
2171 	spin_unlock(&sbi->stat_lock);
2172 
2173 	if (inode) {
2174 		if (is_inode)
2175 			f2fs_mark_inode_dirty_sync(inode, true);
2176 		else
2177 			f2fs_i_blocks_write(inode, 1, true, true);
2178 	}
2179 
2180 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2181 	return 0;
2182 
2183 enospc:
2184 	if (is_inode) {
2185 		if (inode)
2186 			dquot_free_inode(inode);
2187 	} else {
2188 		dquot_release_reservation_block(inode, 1);
2189 	}
2190 	return -ENOSPC;
2191 }
2192 
2193 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2194 					struct inode *inode, bool is_inode)
2195 {
2196 	spin_lock(&sbi->stat_lock);
2197 
2198 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2199 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2200 
2201 	sbi->total_valid_node_count--;
2202 	sbi->total_valid_block_count--;
2203 	if (sbi->reserved_blocks &&
2204 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2205 		sbi->current_reserved_blocks++;
2206 
2207 	spin_unlock(&sbi->stat_lock);
2208 
2209 	if (is_inode) {
2210 		dquot_free_inode(inode);
2211 	} else {
2212 		if (unlikely(inode->i_blocks == 0)) {
2213 			f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2214 				  inode->i_ino,
2215 				  (unsigned long long)inode->i_blocks);
2216 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2217 			return;
2218 		}
2219 		f2fs_i_blocks_write(inode, 1, false, true);
2220 	}
2221 }
2222 
2223 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2224 {
2225 	return sbi->total_valid_node_count;
2226 }
2227 
2228 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2229 {
2230 	percpu_counter_inc(&sbi->total_valid_inode_count);
2231 }
2232 
2233 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2234 {
2235 	percpu_counter_dec(&sbi->total_valid_inode_count);
2236 }
2237 
2238 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2239 {
2240 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2241 }
2242 
2243 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2244 						pgoff_t index, bool for_write)
2245 {
2246 	struct page *page;
2247 
2248 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2249 		if (!for_write)
2250 			page = find_get_page_flags(mapping, index,
2251 							FGP_LOCK | FGP_ACCESSED);
2252 		else
2253 			page = find_lock_page(mapping, index);
2254 		if (page)
2255 			return page;
2256 
2257 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2258 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2259 							FAULT_PAGE_ALLOC);
2260 			return NULL;
2261 		}
2262 	}
2263 
2264 	if (!for_write)
2265 		return grab_cache_page(mapping, index);
2266 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2267 }
2268 
2269 static inline struct page *f2fs_pagecache_get_page(
2270 				struct address_space *mapping, pgoff_t index,
2271 				int fgp_flags, gfp_t gfp_mask)
2272 {
2273 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2274 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2275 		return NULL;
2276 	}
2277 
2278 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2279 }
2280 
2281 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2282 {
2283 	char *src_kaddr = kmap(src);
2284 	char *dst_kaddr = kmap(dst);
2285 
2286 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2287 	kunmap(dst);
2288 	kunmap(src);
2289 }
2290 
2291 static inline void f2fs_put_page(struct page *page, int unlock)
2292 {
2293 	if (!page)
2294 		return;
2295 
2296 	if (unlock) {
2297 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2298 		unlock_page(page);
2299 	}
2300 	put_page(page);
2301 }
2302 
2303 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2304 {
2305 	if (dn->node_page)
2306 		f2fs_put_page(dn->node_page, 1);
2307 	if (dn->inode_page && dn->node_page != dn->inode_page)
2308 		f2fs_put_page(dn->inode_page, 0);
2309 	dn->node_page = NULL;
2310 	dn->inode_page = NULL;
2311 }
2312 
2313 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2314 					size_t size)
2315 {
2316 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2317 }
2318 
2319 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2320 						gfp_t flags)
2321 {
2322 	void *entry;
2323 
2324 	entry = kmem_cache_alloc(cachep, flags);
2325 	if (!entry)
2326 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2327 	return entry;
2328 }
2329 
2330 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2331 {
2332 	if (sbi->gc_mode == GC_URGENT)
2333 		return true;
2334 
2335 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2336 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2337 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2338 		get_pages(sbi, F2FS_DIO_READ) ||
2339 		get_pages(sbi, F2FS_DIO_WRITE))
2340 		return false;
2341 
2342 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2343 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2344 		return false;
2345 
2346 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2347 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2348 		return false;
2349 
2350 	return f2fs_time_over(sbi, type);
2351 }
2352 
2353 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2354 				unsigned long index, void *item)
2355 {
2356 	while (radix_tree_insert(root, index, item))
2357 		cond_resched();
2358 }
2359 
2360 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2361 
2362 static inline bool IS_INODE(struct page *page)
2363 {
2364 	struct f2fs_node *p = F2FS_NODE(page);
2365 
2366 	return RAW_IS_INODE(p);
2367 }
2368 
2369 static inline int offset_in_addr(struct f2fs_inode *i)
2370 {
2371 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2372 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2373 }
2374 
2375 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2376 {
2377 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2378 }
2379 
2380 static inline int f2fs_has_extra_attr(struct inode *inode);
2381 static inline block_t datablock_addr(struct inode *inode,
2382 			struct page *node_page, unsigned int offset)
2383 {
2384 	struct f2fs_node *raw_node;
2385 	__le32 *addr_array;
2386 	int base = 0;
2387 	bool is_inode = IS_INODE(node_page);
2388 
2389 	raw_node = F2FS_NODE(node_page);
2390 
2391 	/* from GC path only */
2392 	if (is_inode) {
2393 		if (!inode)
2394 			base = offset_in_addr(&raw_node->i);
2395 		else if (f2fs_has_extra_attr(inode))
2396 			base = get_extra_isize(inode);
2397 	}
2398 
2399 	addr_array = blkaddr_in_node(raw_node);
2400 	return le32_to_cpu(addr_array[base + offset]);
2401 }
2402 
2403 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2404 {
2405 	int mask;
2406 
2407 	addr += (nr >> 3);
2408 	mask = 1 << (7 - (nr & 0x07));
2409 	return mask & *addr;
2410 }
2411 
2412 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2413 {
2414 	int mask;
2415 
2416 	addr += (nr >> 3);
2417 	mask = 1 << (7 - (nr & 0x07));
2418 	*addr |= mask;
2419 }
2420 
2421 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2422 {
2423 	int mask;
2424 
2425 	addr += (nr >> 3);
2426 	mask = 1 << (7 - (nr & 0x07));
2427 	*addr &= ~mask;
2428 }
2429 
2430 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2431 {
2432 	int mask;
2433 	int ret;
2434 
2435 	addr += (nr >> 3);
2436 	mask = 1 << (7 - (nr & 0x07));
2437 	ret = mask & *addr;
2438 	*addr |= mask;
2439 	return ret;
2440 }
2441 
2442 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2443 {
2444 	int mask;
2445 	int ret;
2446 
2447 	addr += (nr >> 3);
2448 	mask = 1 << (7 - (nr & 0x07));
2449 	ret = mask & *addr;
2450 	*addr &= ~mask;
2451 	return ret;
2452 }
2453 
2454 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2455 {
2456 	int mask;
2457 
2458 	addr += (nr >> 3);
2459 	mask = 1 << (7 - (nr & 0x07));
2460 	*addr ^= mask;
2461 }
2462 
2463 /*
2464  * On-disk inode flags (f2fs_inode::i_flags)
2465  */
2466 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2467 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2468 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2469 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2470 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2471 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2472 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2473 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2474 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2475 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2476 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2477 
2478 /* Flags that should be inherited by new inodes from their parent. */
2479 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2480 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2481 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2482 
2483 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2484 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2485 				F2FS_CASEFOLD_FL))
2486 
2487 /* Flags that are appropriate for non-directories/regular files. */
2488 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2489 
2490 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2491 {
2492 	if (S_ISDIR(mode))
2493 		return flags;
2494 	else if (S_ISREG(mode))
2495 		return flags & F2FS_REG_FLMASK;
2496 	else
2497 		return flags & F2FS_OTHER_FLMASK;
2498 }
2499 
2500 /* used for f2fs_inode_info->flags */
2501 enum {
2502 	FI_NEW_INODE,		/* indicate newly allocated inode */
2503 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2504 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2505 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2506 	FI_INC_LINK,		/* need to increment i_nlink */
2507 	FI_ACL_MODE,		/* indicate acl mode */
2508 	FI_NO_ALLOC,		/* should not allocate any blocks */
2509 	FI_FREE_NID,		/* free allocated nide */
2510 	FI_NO_EXTENT,		/* not to use the extent cache */
2511 	FI_INLINE_XATTR,	/* used for inline xattr */
2512 	FI_INLINE_DATA,		/* used for inline data*/
2513 	FI_INLINE_DENTRY,	/* used for inline dentry */
2514 	FI_APPEND_WRITE,	/* inode has appended data */
2515 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2516 	FI_NEED_IPU,		/* used for ipu per file */
2517 	FI_ATOMIC_FILE,		/* indicate atomic file */
2518 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2519 	FI_VOLATILE_FILE,	/* indicate volatile file */
2520 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2521 	FI_DROP_CACHE,		/* drop dirty page cache */
2522 	FI_DATA_EXIST,		/* indicate data exists */
2523 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2524 	FI_DO_DEFRAG,		/* indicate defragment is running */
2525 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2526 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2527 	FI_HOT_DATA,		/* indicate file is hot */
2528 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2529 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2530 	FI_PIN_FILE,		/* indicate file should not be gced */
2531 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2532 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
2533 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
2534 	FI_MMAP_FILE,		/* indicate file was mmapped */
2535 };
2536 
2537 static inline void __mark_inode_dirty_flag(struct inode *inode,
2538 						int flag, bool set)
2539 {
2540 	switch (flag) {
2541 	case FI_INLINE_XATTR:
2542 	case FI_INLINE_DATA:
2543 	case FI_INLINE_DENTRY:
2544 	case FI_NEW_INODE:
2545 		if (set)
2546 			return;
2547 		/* fall through */
2548 	case FI_DATA_EXIST:
2549 	case FI_INLINE_DOTS:
2550 	case FI_PIN_FILE:
2551 	case FI_COMPRESSED_FILE:
2552 		f2fs_mark_inode_dirty_sync(inode, true);
2553 	}
2554 }
2555 
2556 static inline void set_inode_flag(struct inode *inode, int flag)
2557 {
2558 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2559 		set_bit(flag, &F2FS_I(inode)->flags);
2560 	__mark_inode_dirty_flag(inode, flag, true);
2561 }
2562 
2563 static inline int is_inode_flag_set(struct inode *inode, int flag)
2564 {
2565 	return test_bit(flag, &F2FS_I(inode)->flags);
2566 }
2567 
2568 static inline void clear_inode_flag(struct inode *inode, int flag)
2569 {
2570 	if (test_bit(flag, &F2FS_I(inode)->flags))
2571 		clear_bit(flag, &F2FS_I(inode)->flags);
2572 	__mark_inode_dirty_flag(inode, flag, false);
2573 }
2574 
2575 static inline bool f2fs_verity_in_progress(struct inode *inode)
2576 {
2577 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2578 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2579 }
2580 
2581 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2582 {
2583 	F2FS_I(inode)->i_acl_mode = mode;
2584 	set_inode_flag(inode, FI_ACL_MODE);
2585 	f2fs_mark_inode_dirty_sync(inode, false);
2586 }
2587 
2588 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2589 {
2590 	if (inc)
2591 		inc_nlink(inode);
2592 	else
2593 		drop_nlink(inode);
2594 	f2fs_mark_inode_dirty_sync(inode, true);
2595 }
2596 
2597 static inline void f2fs_i_blocks_write(struct inode *inode,
2598 					block_t diff, bool add, bool claim)
2599 {
2600 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2601 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2602 
2603 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2604 	if (add) {
2605 		if (claim)
2606 			dquot_claim_block(inode, diff);
2607 		else
2608 			dquot_alloc_block_nofail(inode, diff);
2609 	} else {
2610 		dquot_free_block(inode, diff);
2611 	}
2612 
2613 	f2fs_mark_inode_dirty_sync(inode, true);
2614 	if (clean || recover)
2615 		set_inode_flag(inode, FI_AUTO_RECOVER);
2616 }
2617 
2618 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2619 {
2620 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2621 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2622 
2623 	if (i_size_read(inode) == i_size)
2624 		return;
2625 
2626 	i_size_write(inode, i_size);
2627 	f2fs_mark_inode_dirty_sync(inode, true);
2628 	if (clean || recover)
2629 		set_inode_flag(inode, FI_AUTO_RECOVER);
2630 }
2631 
2632 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2633 {
2634 	F2FS_I(inode)->i_current_depth = depth;
2635 	f2fs_mark_inode_dirty_sync(inode, true);
2636 }
2637 
2638 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2639 					unsigned int count)
2640 {
2641 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2642 	f2fs_mark_inode_dirty_sync(inode, true);
2643 }
2644 
2645 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2646 {
2647 	F2FS_I(inode)->i_xattr_nid = xnid;
2648 	f2fs_mark_inode_dirty_sync(inode, true);
2649 }
2650 
2651 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2652 {
2653 	F2FS_I(inode)->i_pino = pino;
2654 	f2fs_mark_inode_dirty_sync(inode, true);
2655 }
2656 
2657 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2658 {
2659 	struct f2fs_inode_info *fi = F2FS_I(inode);
2660 
2661 	if (ri->i_inline & F2FS_INLINE_XATTR)
2662 		set_bit(FI_INLINE_XATTR, &fi->flags);
2663 	if (ri->i_inline & F2FS_INLINE_DATA)
2664 		set_bit(FI_INLINE_DATA, &fi->flags);
2665 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2666 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2667 	if (ri->i_inline & F2FS_DATA_EXIST)
2668 		set_bit(FI_DATA_EXIST, &fi->flags);
2669 	if (ri->i_inline & F2FS_INLINE_DOTS)
2670 		set_bit(FI_INLINE_DOTS, &fi->flags);
2671 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2672 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2673 	if (ri->i_inline & F2FS_PIN_FILE)
2674 		set_bit(FI_PIN_FILE, &fi->flags);
2675 }
2676 
2677 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2678 {
2679 	ri->i_inline = 0;
2680 
2681 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2682 		ri->i_inline |= F2FS_INLINE_XATTR;
2683 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2684 		ri->i_inline |= F2FS_INLINE_DATA;
2685 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2686 		ri->i_inline |= F2FS_INLINE_DENTRY;
2687 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2688 		ri->i_inline |= F2FS_DATA_EXIST;
2689 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2690 		ri->i_inline |= F2FS_INLINE_DOTS;
2691 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2692 		ri->i_inline |= F2FS_EXTRA_ATTR;
2693 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2694 		ri->i_inline |= F2FS_PIN_FILE;
2695 }
2696 
2697 static inline int f2fs_has_extra_attr(struct inode *inode)
2698 {
2699 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2700 }
2701 
2702 static inline int f2fs_has_inline_xattr(struct inode *inode)
2703 {
2704 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2705 }
2706 
2707 static inline int f2fs_compressed_file(struct inode *inode)
2708 {
2709 	return S_ISREG(inode->i_mode) &&
2710 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2711 }
2712 
2713 static inline unsigned int addrs_per_inode(struct inode *inode)
2714 {
2715 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2716 				get_inline_xattr_addrs(inode);
2717 
2718 	if (!f2fs_compressed_file(inode))
2719 		return addrs;
2720 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2721 }
2722 
2723 static inline unsigned int addrs_per_block(struct inode *inode)
2724 {
2725 	if (!f2fs_compressed_file(inode))
2726 		return DEF_ADDRS_PER_BLOCK;
2727 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2728 }
2729 
2730 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2731 {
2732 	struct f2fs_inode *ri = F2FS_INODE(page);
2733 
2734 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2735 					get_inline_xattr_addrs(inode)]);
2736 }
2737 
2738 static inline int inline_xattr_size(struct inode *inode)
2739 {
2740 	if (f2fs_has_inline_xattr(inode))
2741 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2742 	return 0;
2743 }
2744 
2745 static inline int f2fs_has_inline_data(struct inode *inode)
2746 {
2747 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2748 }
2749 
2750 static inline int f2fs_exist_data(struct inode *inode)
2751 {
2752 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2753 }
2754 
2755 static inline int f2fs_has_inline_dots(struct inode *inode)
2756 {
2757 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2758 }
2759 
2760 static inline int f2fs_is_mmap_file(struct inode *inode)
2761 {
2762 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2763 }
2764 
2765 static inline bool f2fs_is_pinned_file(struct inode *inode)
2766 {
2767 	return is_inode_flag_set(inode, FI_PIN_FILE);
2768 }
2769 
2770 static inline bool f2fs_is_atomic_file(struct inode *inode)
2771 {
2772 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2773 }
2774 
2775 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2776 {
2777 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2778 }
2779 
2780 static inline bool f2fs_is_volatile_file(struct inode *inode)
2781 {
2782 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2783 }
2784 
2785 static inline bool f2fs_is_first_block_written(struct inode *inode)
2786 {
2787 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2788 }
2789 
2790 static inline bool f2fs_is_drop_cache(struct inode *inode)
2791 {
2792 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2793 }
2794 
2795 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2796 {
2797 	struct f2fs_inode *ri = F2FS_INODE(page);
2798 	int extra_size = get_extra_isize(inode);
2799 
2800 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2801 }
2802 
2803 static inline int f2fs_has_inline_dentry(struct inode *inode)
2804 {
2805 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2806 }
2807 
2808 static inline int is_file(struct inode *inode, int type)
2809 {
2810 	return F2FS_I(inode)->i_advise & type;
2811 }
2812 
2813 static inline void set_file(struct inode *inode, int type)
2814 {
2815 	F2FS_I(inode)->i_advise |= type;
2816 	f2fs_mark_inode_dirty_sync(inode, true);
2817 }
2818 
2819 static inline void clear_file(struct inode *inode, int type)
2820 {
2821 	F2FS_I(inode)->i_advise &= ~type;
2822 	f2fs_mark_inode_dirty_sync(inode, true);
2823 }
2824 
2825 static inline bool f2fs_is_time_consistent(struct inode *inode)
2826 {
2827 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2828 		return false;
2829 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2830 		return false;
2831 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2832 		return false;
2833 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2834 						&F2FS_I(inode)->i_crtime))
2835 		return false;
2836 	return true;
2837 }
2838 
2839 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2840 {
2841 	bool ret;
2842 
2843 	if (dsync) {
2844 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2845 
2846 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2847 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2848 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2849 		return ret;
2850 	}
2851 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2852 			file_keep_isize(inode) ||
2853 			i_size_read(inode) & ~PAGE_MASK)
2854 		return false;
2855 
2856 	if (!f2fs_is_time_consistent(inode))
2857 		return false;
2858 
2859 	down_read(&F2FS_I(inode)->i_sem);
2860 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2861 	up_read(&F2FS_I(inode)->i_sem);
2862 
2863 	return ret;
2864 }
2865 
2866 static inline bool f2fs_readonly(struct super_block *sb)
2867 {
2868 	return sb_rdonly(sb);
2869 }
2870 
2871 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2872 {
2873 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2874 }
2875 
2876 static inline bool is_dot_dotdot(const struct qstr *str)
2877 {
2878 	if (str->len == 1 && str->name[0] == '.')
2879 		return true;
2880 
2881 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2882 		return true;
2883 
2884 	return false;
2885 }
2886 
2887 static inline bool f2fs_may_extent_tree(struct inode *inode)
2888 {
2889 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2890 
2891 	if (!test_opt(sbi, EXTENT_CACHE) ||
2892 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2893 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2894 		return false;
2895 
2896 	/*
2897 	 * for recovered files during mount do not create extents
2898 	 * if shrinker is not registered.
2899 	 */
2900 	if (list_empty(&sbi->s_list))
2901 		return false;
2902 
2903 	return S_ISREG(inode->i_mode);
2904 }
2905 
2906 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2907 					size_t size, gfp_t flags)
2908 {
2909 	void *ret;
2910 
2911 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2912 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2913 		return NULL;
2914 	}
2915 
2916 	ret = kmalloc(size, flags);
2917 	if (ret)
2918 		return ret;
2919 
2920 	return kvmalloc(size, flags);
2921 }
2922 
2923 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2924 					size_t size, gfp_t flags)
2925 {
2926 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2927 }
2928 
2929 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2930 					size_t size, gfp_t flags)
2931 {
2932 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2933 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
2934 		return NULL;
2935 	}
2936 
2937 	return kvmalloc(size, flags);
2938 }
2939 
2940 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2941 					size_t size, gfp_t flags)
2942 {
2943 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2944 }
2945 
2946 static inline int get_extra_isize(struct inode *inode)
2947 {
2948 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2949 }
2950 
2951 static inline int get_inline_xattr_addrs(struct inode *inode)
2952 {
2953 	return F2FS_I(inode)->i_inline_xattr_size;
2954 }
2955 
2956 #define f2fs_get_inode_mode(i) \
2957 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2958 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2959 
2960 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2961 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2962 	offsetof(struct f2fs_inode, i_extra_isize))	\
2963 
2964 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2965 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2966 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2967 		sizeof((f2fs_inode)->field))			\
2968 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2969 
2970 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2971 {
2972 	int i;
2973 
2974 	spin_lock(&sbi->iostat_lock);
2975 	for (i = 0; i < NR_IO_TYPE; i++)
2976 		sbi->write_iostat[i] = 0;
2977 	spin_unlock(&sbi->iostat_lock);
2978 }
2979 
2980 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2981 			enum iostat_type type, unsigned long long io_bytes)
2982 {
2983 	if (!sbi->iostat_enable)
2984 		return;
2985 	spin_lock(&sbi->iostat_lock);
2986 	sbi->write_iostat[type] += io_bytes;
2987 
2988 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2989 		sbi->write_iostat[APP_BUFFERED_IO] =
2990 			sbi->write_iostat[APP_WRITE_IO] -
2991 			sbi->write_iostat[APP_DIRECT_IO];
2992 	spin_unlock(&sbi->iostat_lock);
2993 }
2994 
2995 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2996 
2997 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2998 
2999 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3000 					block_t blkaddr, int type);
3001 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3002 					block_t blkaddr, int type)
3003 {
3004 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3005 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3006 			 blkaddr, type);
3007 		f2fs_bug_on(sbi, 1);
3008 	}
3009 }
3010 
3011 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3012 {
3013 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3014 			blkaddr == COMPRESS_ADDR)
3015 		return false;
3016 	return true;
3017 }
3018 
3019 static inline void f2fs_set_page_private(struct page *page,
3020 						unsigned long data)
3021 {
3022 	if (PagePrivate(page))
3023 		return;
3024 
3025 	get_page(page);
3026 	SetPagePrivate(page);
3027 	set_page_private(page, data);
3028 }
3029 
3030 static inline void f2fs_clear_page_private(struct page *page)
3031 {
3032 	if (!PagePrivate(page))
3033 		return;
3034 
3035 	set_page_private(page, 0);
3036 	ClearPagePrivate(page);
3037 	f2fs_put_page(page, 0);
3038 }
3039 
3040 /*
3041  * file.c
3042  */
3043 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3044 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3045 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3046 int f2fs_truncate(struct inode *inode);
3047 int f2fs_getattr(const struct path *path, struct kstat *stat,
3048 			u32 request_mask, unsigned int flags);
3049 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3050 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3051 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3052 int f2fs_precache_extents(struct inode *inode);
3053 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3054 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3055 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3056 int f2fs_pin_file_control(struct inode *inode, bool inc);
3057 
3058 /*
3059  * inode.c
3060  */
3061 void f2fs_set_inode_flags(struct inode *inode);
3062 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3063 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3064 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3065 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3066 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3067 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3068 void f2fs_update_inode_page(struct inode *inode);
3069 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3070 void f2fs_evict_inode(struct inode *inode);
3071 void f2fs_handle_failed_inode(struct inode *inode);
3072 
3073 /*
3074  * namei.c
3075  */
3076 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3077 							bool hot, bool set);
3078 struct dentry *f2fs_get_parent(struct dentry *child);
3079 
3080 extern int f2fs_ci_compare(const struct inode *parent,
3081 			   const struct qstr *name,
3082 			   const struct qstr *entry,
3083 			   bool quick);
3084 
3085 /*
3086  * dir.c
3087  */
3088 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3089 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
3090 			f2fs_hash_t namehash, int *max_slots,
3091 			struct f2fs_dentry_ptr *d);
3092 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3093 			unsigned int start_pos, struct fscrypt_str *fstr);
3094 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3095 			struct f2fs_dentry_ptr *d);
3096 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3097 			const struct qstr *new_name,
3098 			const struct qstr *orig_name, struct page *dpage);
3099 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3100 			unsigned int current_depth);
3101 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3102 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3103 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3104 			struct fscrypt_name *fname, struct page **res_page);
3105 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3106 			const struct qstr *child, struct page **res_page);
3107 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3108 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3109 			struct page **page);
3110 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3111 			struct page *page, struct inode *inode);
3112 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3113 			struct fscrypt_name *fname);
3114 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3115 			const struct qstr *name, f2fs_hash_t name_hash,
3116 			unsigned int bit_pos);
3117 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
3118 			const struct qstr *orig_name,
3119 			struct inode *inode, nid_t ino, umode_t mode);
3120 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
3121 			struct inode *inode, nid_t ino, umode_t mode);
3122 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3123 			struct inode *inode, nid_t ino, umode_t mode);
3124 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3125 			struct inode *dir, struct inode *inode);
3126 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3127 bool f2fs_empty_dir(struct inode *dir);
3128 
3129 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3130 {
3131 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3132 				inode, inode->i_ino, inode->i_mode);
3133 }
3134 
3135 /*
3136  * super.c
3137  */
3138 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3139 void f2fs_inode_synced(struct inode *inode);
3140 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3141 int f2fs_quota_sync(struct super_block *sb, int type);
3142 void f2fs_quota_off_umount(struct super_block *sb);
3143 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3144 int f2fs_sync_fs(struct super_block *sb, int sync);
3145 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3146 
3147 /*
3148  * hash.c
3149  */
3150 f2fs_hash_t f2fs_dentry_hash(const struct inode *dir,
3151 		const struct qstr *name_info, struct fscrypt_name *fname);
3152 
3153 /*
3154  * node.c
3155  */
3156 struct dnode_of_data;
3157 struct node_info;
3158 
3159 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3160 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3161 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3162 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3163 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3164 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3165 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3166 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3167 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3168 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3169 						struct node_info *ni);
3170 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3171 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3172 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3173 int f2fs_truncate_xattr_node(struct inode *inode);
3174 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3175 					unsigned int seq_id);
3176 int f2fs_remove_inode_page(struct inode *inode);
3177 struct page *f2fs_new_inode_page(struct inode *inode);
3178 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3179 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3180 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3181 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3182 int f2fs_move_node_page(struct page *node_page, int gc_type);
3183 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3184 			struct writeback_control *wbc, bool atomic,
3185 			unsigned int *seq_id);
3186 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3187 			struct writeback_control *wbc,
3188 			bool do_balance, enum iostat_type io_type);
3189 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3190 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3191 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3192 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3193 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3194 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3195 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3196 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3197 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3198 			unsigned int segno, struct f2fs_summary_block *sum);
3199 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3200 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3201 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3202 int __init f2fs_create_node_manager_caches(void);
3203 void f2fs_destroy_node_manager_caches(void);
3204 
3205 /*
3206  * segment.c
3207  */
3208 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3209 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3210 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3211 void f2fs_drop_inmem_pages(struct inode *inode);
3212 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3213 int f2fs_commit_inmem_pages(struct inode *inode);
3214 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3215 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3216 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3217 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3218 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3219 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3220 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3221 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3222 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3223 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3224 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3225 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3226 					struct cp_control *cpc);
3227 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3228 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3229 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3230 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3231 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3232 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3233 					unsigned int start, unsigned int end);
3234 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type);
3235 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3236 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3237 					struct cp_control *cpc);
3238 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3239 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3240 					block_t blk_addr);
3241 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3242 						enum iostat_type io_type);
3243 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3244 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3245 			struct f2fs_io_info *fio);
3246 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3247 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3248 			block_t old_blkaddr, block_t new_blkaddr,
3249 			bool recover_curseg, bool recover_newaddr);
3250 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3251 			block_t old_addr, block_t new_addr,
3252 			unsigned char version, bool recover_curseg,
3253 			bool recover_newaddr);
3254 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3255 			block_t old_blkaddr, block_t *new_blkaddr,
3256 			struct f2fs_summary *sum, int type,
3257 			struct f2fs_io_info *fio, bool add_list);
3258 void f2fs_wait_on_page_writeback(struct page *page,
3259 			enum page_type type, bool ordered, bool locked);
3260 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3261 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3262 								block_t len);
3263 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3264 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3265 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3266 			unsigned int val, int alloc);
3267 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3268 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3269 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3270 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3271 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3272 int __init f2fs_create_segment_manager_caches(void);
3273 void f2fs_destroy_segment_manager_caches(void);
3274 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3275 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3276 			enum page_type type, enum temp_type temp);
3277 
3278 /*
3279  * checkpoint.c
3280  */
3281 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3282 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3283 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3284 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3285 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3286 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3287 					block_t blkaddr, int type);
3288 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3289 			int type, bool sync);
3290 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3291 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3292 			long nr_to_write, enum iostat_type io_type);
3293 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3294 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3295 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3296 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3297 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3298 					unsigned int devidx, int type);
3299 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3300 					unsigned int devidx, int type);
3301 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3302 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3303 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3304 void f2fs_add_orphan_inode(struct inode *inode);
3305 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3306 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3307 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3308 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3309 void f2fs_remove_dirty_inode(struct inode *inode);
3310 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3311 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3312 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3313 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3314 int __init f2fs_create_checkpoint_caches(void);
3315 void f2fs_destroy_checkpoint_caches(void);
3316 
3317 /*
3318  * data.c
3319  */
3320 int __init f2fs_init_bioset(void);
3321 void f2fs_destroy_bioset(void);
3322 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool no_fail);
3323 int f2fs_init_bio_entry_cache(void);
3324 void f2fs_destroy_bio_entry_cache(void);
3325 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3326 				struct bio *bio, enum page_type type);
3327 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3328 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3329 				struct inode *inode, struct page *page,
3330 				nid_t ino, enum page_type type);
3331 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3332 					struct bio **bio, struct page *page);
3333 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3334 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3335 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3336 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3337 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3338 			block_t blk_addr, struct bio *bio);
3339 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3340 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3341 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3342 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3343 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3344 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3345 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3346 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3347 int f2fs_mpage_readpages(struct address_space *mapping,
3348 			struct list_head *pages, struct page *page,
3349 			unsigned nr_pages, bool is_readahead);
3350 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3351 			int op_flags, bool for_write);
3352 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3353 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3354 			bool for_write);
3355 struct page *f2fs_get_new_data_page(struct inode *inode,
3356 			struct page *ipage, pgoff_t index, bool new_i_size);
3357 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3358 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3359 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3360 			int create, int flag);
3361 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3362 			u64 start, u64 len);
3363 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3364 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3365 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3366 int f2fs_write_single_data_page(struct page *page, int *submitted,
3367 				struct bio **bio, sector_t *last_block,
3368 				struct writeback_control *wbc,
3369 				enum iostat_type io_type,
3370 				int compr_blocks);
3371 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3372 			unsigned int length);
3373 int f2fs_release_page(struct page *page, gfp_t wait);
3374 #ifdef CONFIG_MIGRATION
3375 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3376 			struct page *page, enum migrate_mode mode);
3377 #endif
3378 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3379 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3380 int f2fs_init_post_read_processing(void);
3381 void f2fs_destroy_post_read_processing(void);
3382 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3383 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3384 
3385 /*
3386  * gc.c
3387  */
3388 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3389 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3390 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3391 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3392 			unsigned int segno);
3393 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3394 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3395 
3396 /*
3397  * recovery.c
3398  */
3399 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3400 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3401 
3402 /*
3403  * debug.c
3404  */
3405 #ifdef CONFIG_F2FS_STAT_FS
3406 struct f2fs_stat_info {
3407 	struct list_head stat_list;
3408 	struct f2fs_sb_info *sbi;
3409 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3410 	int main_area_segs, main_area_sections, main_area_zones;
3411 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3412 	unsigned long long hit_total, total_ext;
3413 	int ext_tree, zombie_tree, ext_node;
3414 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3415 	int ndirty_data, ndirty_qdata;
3416 	int inmem_pages;
3417 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3418 	int nats, dirty_nats, sits, dirty_sits;
3419 	int free_nids, avail_nids, alloc_nids;
3420 	int total_count, utilization;
3421 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3422 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3423 	int nr_dio_read, nr_dio_write;
3424 	unsigned int io_skip_bggc, other_skip_bggc;
3425 	int nr_flushing, nr_flushed, flush_list_empty;
3426 	int nr_discarding, nr_discarded;
3427 	int nr_discard_cmd;
3428 	unsigned int undiscard_blks;
3429 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3430 	int compr_inode, compr_blocks;
3431 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3432 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3433 	unsigned int bimodal, avg_vblocks;
3434 	int util_free, util_valid, util_invalid;
3435 	int rsvd_segs, overp_segs;
3436 	int dirty_count, node_pages, meta_pages;
3437 	int prefree_count, call_count, cp_count, bg_cp_count;
3438 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3439 	int bg_node_segs, bg_data_segs;
3440 	int tot_blks, data_blks, node_blks;
3441 	int bg_data_blks, bg_node_blks;
3442 	unsigned long long skipped_atomic_files[2];
3443 	int curseg[NR_CURSEG_TYPE];
3444 	int cursec[NR_CURSEG_TYPE];
3445 	int curzone[NR_CURSEG_TYPE];
3446 
3447 	unsigned int meta_count[META_MAX];
3448 	unsigned int segment_count[2];
3449 	unsigned int block_count[2];
3450 	unsigned int inplace_count;
3451 	unsigned long long base_mem, cache_mem, page_mem;
3452 };
3453 
3454 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3455 {
3456 	return (struct f2fs_stat_info *)sbi->stat_info;
3457 }
3458 
3459 #define stat_inc_cp_count(si)		((si)->cp_count++)
3460 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3461 #define stat_inc_call_count(si)		((si)->call_count++)
3462 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3463 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3464 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3465 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3466 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3467 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3468 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3469 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3470 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3471 #define stat_inc_inline_xattr(inode)					\
3472 	do {								\
3473 		if (f2fs_has_inline_xattr(inode))			\
3474 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3475 	} while (0)
3476 #define stat_dec_inline_xattr(inode)					\
3477 	do {								\
3478 		if (f2fs_has_inline_xattr(inode))			\
3479 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3480 	} while (0)
3481 #define stat_inc_inline_inode(inode)					\
3482 	do {								\
3483 		if (f2fs_has_inline_data(inode))			\
3484 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3485 	} while (0)
3486 #define stat_dec_inline_inode(inode)					\
3487 	do {								\
3488 		if (f2fs_has_inline_data(inode))			\
3489 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3490 	} while (0)
3491 #define stat_inc_inline_dir(inode)					\
3492 	do {								\
3493 		if (f2fs_has_inline_dentry(inode))			\
3494 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3495 	} while (0)
3496 #define stat_dec_inline_dir(inode)					\
3497 	do {								\
3498 		if (f2fs_has_inline_dentry(inode))			\
3499 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3500 	} while (0)
3501 #define stat_inc_compr_inode(inode)					\
3502 	do {								\
3503 		if (f2fs_compressed_file(inode))			\
3504 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3505 	} while (0)
3506 #define stat_dec_compr_inode(inode)					\
3507 	do {								\
3508 		if (f2fs_compressed_file(inode))			\
3509 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3510 	} while (0)
3511 #define stat_add_compr_blocks(inode, blocks)				\
3512 		(atomic_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3513 #define stat_sub_compr_blocks(inode, blocks)				\
3514 		(atomic_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3515 #define stat_inc_meta_count(sbi, blkaddr)				\
3516 	do {								\
3517 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3518 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3519 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3520 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3521 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3522 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3523 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3524 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3525 	} while (0)
3526 #define stat_inc_seg_type(sbi, curseg)					\
3527 		((sbi)->segment_count[(curseg)->alloc_type]++)
3528 #define stat_inc_block_count(sbi, curseg)				\
3529 		((sbi)->block_count[(curseg)->alloc_type]++)
3530 #define stat_inc_inplace_blocks(sbi)					\
3531 		(atomic_inc(&(sbi)->inplace_count))
3532 #define stat_update_max_atomic_write(inode)				\
3533 	do {								\
3534 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3535 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3536 		if (cur > max)						\
3537 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3538 	} while (0)
3539 #define stat_inc_volatile_write(inode)					\
3540 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3541 #define stat_dec_volatile_write(inode)					\
3542 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3543 #define stat_update_max_volatile_write(inode)				\
3544 	do {								\
3545 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3546 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3547 		if (cur > max)						\
3548 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3549 	} while (0)
3550 #define stat_inc_seg_count(sbi, type, gc_type)				\
3551 	do {								\
3552 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3553 		si->tot_segs++;						\
3554 		if ((type) == SUM_TYPE_DATA) {				\
3555 			si->data_segs++;				\
3556 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3557 		} else {						\
3558 			si->node_segs++;				\
3559 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3560 		}							\
3561 	} while (0)
3562 
3563 #define stat_inc_tot_blk_count(si, blks)				\
3564 	((si)->tot_blks += (blks))
3565 
3566 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3567 	do {								\
3568 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3569 		stat_inc_tot_blk_count(si, blks);			\
3570 		si->data_blks += (blks);				\
3571 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3572 	} while (0)
3573 
3574 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3575 	do {								\
3576 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3577 		stat_inc_tot_blk_count(si, blks);			\
3578 		si->node_blks += (blks);				\
3579 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3580 	} while (0)
3581 
3582 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3583 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3584 void __init f2fs_create_root_stats(void);
3585 void f2fs_destroy_root_stats(void);
3586 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3587 #else
3588 #define stat_inc_cp_count(si)				do { } while (0)
3589 #define stat_inc_bg_cp_count(si)			do { } while (0)
3590 #define stat_inc_call_count(si)				do { } while (0)
3591 #define stat_inc_bggc_count(si)				do { } while (0)
3592 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3593 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3594 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3595 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3596 #define stat_inc_total_hit(sbi)				do { } while (0)
3597 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3598 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3599 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3600 #define stat_inc_inline_xattr(inode)			do { } while (0)
3601 #define stat_dec_inline_xattr(inode)			do { } while (0)
3602 #define stat_inc_inline_inode(inode)			do { } while (0)
3603 #define stat_dec_inline_inode(inode)			do { } while (0)
3604 #define stat_inc_inline_dir(inode)			do { } while (0)
3605 #define stat_dec_inline_dir(inode)			do { } while (0)
3606 #define stat_inc_compr_inode(inode)			do { } while (0)
3607 #define stat_dec_compr_inode(inode)			do { } while (0)
3608 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3609 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3610 #define stat_inc_atomic_write(inode)			do { } while (0)
3611 #define stat_dec_atomic_write(inode)			do { } while (0)
3612 #define stat_update_max_atomic_write(inode)		do { } while (0)
3613 #define stat_inc_volatile_write(inode)			do { } while (0)
3614 #define stat_dec_volatile_write(inode)			do { } while (0)
3615 #define stat_update_max_volatile_write(inode)		do { } while (0)
3616 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3617 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3618 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3619 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3620 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3621 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3622 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3623 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3624 
3625 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3626 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3627 static inline void __init f2fs_create_root_stats(void) { }
3628 static inline void f2fs_destroy_root_stats(void) { }
3629 static inline void update_sit_info(struct f2fs_sb_info *sbi) {}
3630 #endif
3631 
3632 extern const struct file_operations f2fs_dir_operations;
3633 #ifdef CONFIG_UNICODE
3634 extern const struct dentry_operations f2fs_dentry_ops;
3635 #endif
3636 extern const struct file_operations f2fs_file_operations;
3637 extern const struct inode_operations f2fs_file_inode_operations;
3638 extern const struct address_space_operations f2fs_dblock_aops;
3639 extern const struct address_space_operations f2fs_node_aops;
3640 extern const struct address_space_operations f2fs_meta_aops;
3641 extern const struct inode_operations f2fs_dir_inode_operations;
3642 extern const struct inode_operations f2fs_symlink_inode_operations;
3643 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3644 extern const struct inode_operations f2fs_special_inode_operations;
3645 extern struct kmem_cache *f2fs_inode_entry_slab;
3646 
3647 /*
3648  * inline.c
3649  */
3650 bool f2fs_may_inline_data(struct inode *inode);
3651 bool f2fs_may_inline_dentry(struct inode *inode);
3652 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3653 void f2fs_truncate_inline_inode(struct inode *inode,
3654 						struct page *ipage, u64 from);
3655 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3656 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3657 int f2fs_convert_inline_inode(struct inode *inode);
3658 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3659 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3660 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3661 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3662 			struct fscrypt_name *fname, struct page **res_page);
3663 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3664 			struct page *ipage);
3665 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3666 			const struct qstr *orig_name,
3667 			struct inode *inode, nid_t ino, umode_t mode);
3668 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3669 				struct page *page, struct inode *dir,
3670 				struct inode *inode);
3671 bool f2fs_empty_inline_dir(struct inode *dir);
3672 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3673 			struct fscrypt_str *fstr);
3674 int f2fs_inline_data_fiemap(struct inode *inode,
3675 			struct fiemap_extent_info *fieinfo,
3676 			__u64 start, __u64 len);
3677 
3678 /*
3679  * shrinker.c
3680  */
3681 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3682 			struct shrink_control *sc);
3683 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3684 			struct shrink_control *sc);
3685 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3686 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3687 
3688 /*
3689  * extent_cache.c
3690  */
3691 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3692 				struct rb_entry *cached_re, unsigned int ofs);
3693 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3694 				struct rb_root_cached *root,
3695 				struct rb_node **parent,
3696 				unsigned int ofs, bool *leftmost);
3697 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3698 		struct rb_entry *cached_re, unsigned int ofs,
3699 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3700 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3701 		bool force, bool *leftmost);
3702 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3703 						struct rb_root_cached *root);
3704 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3705 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3706 void f2fs_drop_extent_tree(struct inode *inode);
3707 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3708 void f2fs_destroy_extent_tree(struct inode *inode);
3709 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3710 			struct extent_info *ei);
3711 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3712 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3713 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3714 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3715 int __init f2fs_create_extent_cache(void);
3716 void f2fs_destroy_extent_cache(void);
3717 
3718 /*
3719  * sysfs.c
3720  */
3721 int __init f2fs_init_sysfs(void);
3722 void f2fs_exit_sysfs(void);
3723 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3724 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3725 
3726 /* verity.c */
3727 extern const struct fsverity_operations f2fs_verityops;
3728 
3729 /*
3730  * crypto support
3731  */
3732 static inline bool f2fs_encrypted_file(struct inode *inode)
3733 {
3734 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3735 }
3736 
3737 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3738 {
3739 #ifdef CONFIG_FS_ENCRYPTION
3740 	file_set_encrypt(inode);
3741 	f2fs_set_inode_flags(inode);
3742 #endif
3743 }
3744 
3745 /*
3746  * Returns true if the reads of the inode's data need to undergo some
3747  * postprocessing step, like decryption or authenticity verification.
3748  */
3749 static inline bool f2fs_post_read_required(struct inode *inode)
3750 {
3751 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3752 		f2fs_compressed_file(inode);
3753 }
3754 
3755 /*
3756  * compress.c
3757  */
3758 #ifdef CONFIG_F2FS_FS_COMPRESSION
3759 bool f2fs_is_compressed_page(struct page *page);
3760 struct page *f2fs_compress_control_page(struct page *page);
3761 int f2fs_prepare_compress_overwrite(struct inode *inode,
3762 			struct page **pagep, pgoff_t index, void **fsdata);
3763 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3764 					pgoff_t index, unsigned copied);
3765 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3766 bool f2fs_is_compress_backend_ready(struct inode *inode);
3767 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3768 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3769 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3770 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3771 int f2fs_write_multi_pages(struct compress_ctx *cc,
3772 						int *submitted,
3773 						struct writeback_control *wbc,
3774 						enum iostat_type io_type);
3775 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3776 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3777 				unsigned nr_pages, sector_t *last_block_in_bio,
3778 				bool is_readahead);
3779 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3780 void f2fs_free_dic(struct decompress_io_ctx *dic);
3781 void f2fs_decompress_end_io(struct page **rpages,
3782 			unsigned int cluster_size, bool err, bool verity);
3783 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3784 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3785 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3786 #else
3787 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3788 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3789 {
3790 	if (!f2fs_compressed_file(inode))
3791 		return true;
3792 	/* not support compression */
3793 	return false;
3794 }
3795 static inline struct page *f2fs_compress_control_page(struct page *page)
3796 {
3797 	WARN_ON_ONCE(1);
3798 	return ERR_PTR(-EINVAL);
3799 }
3800 #endif
3801 
3802 static inline void set_compress_context(struct inode *inode)
3803 {
3804 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3805 
3806 	F2FS_I(inode)->i_compress_algorithm =
3807 			F2FS_OPTION(sbi).compress_algorithm;
3808 	F2FS_I(inode)->i_log_cluster_size =
3809 			F2FS_OPTION(sbi).compress_log_size;
3810 	F2FS_I(inode)->i_cluster_size =
3811 			1 << F2FS_I(inode)->i_log_cluster_size;
3812 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3813 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3814 	stat_inc_compr_inode(inode);
3815 }
3816 
3817 static inline u64 f2fs_disable_compressed_file(struct inode *inode)
3818 {
3819 	struct f2fs_inode_info *fi = F2FS_I(inode);
3820 
3821 	if (!f2fs_compressed_file(inode))
3822 		return 0;
3823 	if (fi->i_compr_blocks)
3824 		return fi->i_compr_blocks;
3825 
3826 	fi->i_flags &= ~F2FS_COMPR_FL;
3827 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3828 	stat_dec_compr_inode(inode);
3829 	return 0;
3830 }
3831 
3832 #define F2FS_FEATURE_FUNCS(name, flagname) \
3833 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3834 { \
3835 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3836 }
3837 
3838 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3839 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3840 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3841 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3842 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3843 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3844 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3845 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3846 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3847 F2FS_FEATURE_FUNCS(verity, VERITY);
3848 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3849 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3850 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3851 
3852 #ifdef CONFIG_BLK_DEV_ZONED
3853 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3854 				    block_t blkaddr)
3855 {
3856 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3857 
3858 	return test_bit(zno, FDEV(devi).blkz_seq);
3859 }
3860 #endif
3861 
3862 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3863 {
3864 	return f2fs_sb_has_blkzoned(sbi);
3865 }
3866 
3867 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3868 {
3869 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3870 	       bdev_is_zoned(bdev);
3871 }
3872 
3873 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3874 {
3875 	int i;
3876 
3877 	if (!f2fs_is_multi_device(sbi))
3878 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3879 
3880 	for (i = 0; i < sbi->s_ndevs; i++)
3881 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3882 			return true;
3883 	return false;
3884 }
3885 
3886 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3887 {
3888 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3889 					f2fs_hw_should_discard(sbi);
3890 }
3891 
3892 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3893 {
3894 	int i;
3895 
3896 	if (!f2fs_is_multi_device(sbi))
3897 		return bdev_read_only(sbi->sb->s_bdev);
3898 
3899 	for (i = 0; i < sbi->s_ndevs; i++)
3900 		if (bdev_read_only(FDEV(i).bdev))
3901 			return true;
3902 	return false;
3903 }
3904 
3905 
3906 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3907 {
3908 	clear_opt(sbi, ADAPTIVE);
3909 	clear_opt(sbi, LFS);
3910 
3911 	switch (mt) {
3912 	case F2FS_MOUNT_ADAPTIVE:
3913 		set_opt(sbi, ADAPTIVE);
3914 		break;
3915 	case F2FS_MOUNT_LFS:
3916 		set_opt(sbi, LFS);
3917 		break;
3918 	}
3919 }
3920 
3921 static inline bool f2fs_may_encrypt(struct inode *inode)
3922 {
3923 #ifdef CONFIG_FS_ENCRYPTION
3924 	umode_t mode = inode->i_mode;
3925 
3926 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3927 #else
3928 	return false;
3929 #endif
3930 }
3931 
3932 static inline bool f2fs_may_compress(struct inode *inode)
3933 {
3934 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
3935 				f2fs_is_atomic_file(inode) ||
3936 				f2fs_is_volatile_file(inode))
3937 		return false;
3938 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
3939 }
3940 
3941 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
3942 						u64 blocks, bool add)
3943 {
3944 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
3945 
3946 	if (add) {
3947 		F2FS_I(inode)->i_compr_blocks += diff;
3948 		stat_add_compr_blocks(inode, diff);
3949 	} else {
3950 		F2FS_I(inode)->i_compr_blocks -= diff;
3951 		stat_sub_compr_blocks(inode, diff);
3952 	}
3953 	f2fs_mark_inode_dirty_sync(inode, true);
3954 }
3955 
3956 static inline int block_unaligned_IO(struct inode *inode,
3957 				struct kiocb *iocb, struct iov_iter *iter)
3958 {
3959 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3960 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3961 	loff_t offset = iocb->ki_pos;
3962 	unsigned long align = offset | iov_iter_alignment(iter);
3963 
3964 	return align & blocksize_mask;
3965 }
3966 
3967 static inline int allow_outplace_dio(struct inode *inode,
3968 				struct kiocb *iocb, struct iov_iter *iter)
3969 {
3970 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3971 	int rw = iov_iter_rw(iter);
3972 
3973 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3974 				!block_unaligned_IO(inode, iocb, iter));
3975 }
3976 
3977 static inline bool f2fs_force_buffered_io(struct inode *inode,
3978 				struct kiocb *iocb, struct iov_iter *iter)
3979 {
3980 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3981 	int rw = iov_iter_rw(iter);
3982 
3983 	if (f2fs_post_read_required(inode))
3984 		return true;
3985 	if (f2fs_is_multi_device(sbi))
3986 		return true;
3987 	if (f2fs_compressed_file(inode))
3988 		return true;
3989 	/*
3990 	 * for blkzoned device, fallback direct IO to buffered IO, so
3991 	 * all IOs can be serialized by log-structured write.
3992 	 */
3993 	if (f2fs_sb_has_blkzoned(sbi))
3994 		return true;
3995 	if (test_opt(sbi, LFS) && (rw == WRITE)) {
3996 		if (block_unaligned_IO(inode, iocb, iter))
3997 			return true;
3998 		if (F2FS_IO_ALIGNED(sbi))
3999 			return true;
4000 	}
4001 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4002 					!IS_SWAPFILE(inode))
4003 		return true;
4004 
4005 	return false;
4006 }
4007 
4008 #ifdef CONFIG_F2FS_FAULT_INJECTION
4009 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4010 							unsigned int type);
4011 #else
4012 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4013 #endif
4014 
4015 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4016 {
4017 #ifdef CONFIG_QUOTA
4018 	if (f2fs_sb_has_quota_ino(sbi))
4019 		return true;
4020 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4021 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4022 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4023 		return true;
4024 #endif
4025 	return false;
4026 }
4027 
4028 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4029 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4030 
4031 #endif /* _LINUX_F2FS_H */
4032