xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 83268fa6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
28 #include <linux/fscrypt.h>
29 
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition)					\
34 	do {								\
35 		if (unlikely(condition)) {				\
36 			WARN_ON(1);					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 		}							\
39 	} while (0)
40 #endif
41 
42 enum {
43 	FAULT_KMALLOC,
44 	FAULT_KVMALLOC,
45 	FAULT_PAGE_ALLOC,
46 	FAULT_PAGE_GET,
47 	FAULT_ALLOC_BIO,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_READ_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_DISCARD,
57 	FAULT_WRITE_IO,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_BG_GC		0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_ADAPTIVE		0x00020000
95 #define F2FS_MOUNT_LFS			0x00040000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 };
141 
142 #define F2FS_FEATURE_ENCRYPT		0x0001
143 #define F2FS_FEATURE_BLKZONED		0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
146 #define F2FS_FEATURE_PRJQUOTA		0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
149 #define F2FS_FEATURE_QUOTA_INO		0x0080
150 #define F2FS_FEATURE_INODE_CRTIME	0x0100
151 #define F2FS_FEATURE_LOST_FOUND		0x0200
152 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
153 #define F2FS_FEATURE_SB_CHKSUM		0x0800
154 
155 #define F2FS_HAS_FEATURE(sb, mask)					\
156 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
157 #define F2FS_SET_FEATURE(sb, mask)					\
158 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
159 #define F2FS_CLEAR_FEATURE(sb, mask)					\
160 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
161 
162 /*
163  * Default values for user and/or group using reserved blocks
164  */
165 #define	F2FS_DEF_RESUID		0
166 #define	F2FS_DEF_RESGID		0
167 
168 /*
169  * For checkpoint manager
170  */
171 enum {
172 	NAT_BITMAP,
173 	SIT_BITMAP
174 };
175 
176 #define	CP_UMOUNT	0x00000001
177 #define	CP_FASTBOOT	0x00000002
178 #define	CP_SYNC		0x00000004
179 #define	CP_RECOVERY	0x00000008
180 #define	CP_DISCARD	0x00000010
181 #define CP_TRIMMED	0x00000020
182 #define CP_PAUSE	0x00000040
183 
184 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
185 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
186 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
187 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
188 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
189 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
190 #define DEF_CP_INTERVAL			60	/* 60 secs */
191 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
192 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
193 
194 struct cp_control {
195 	int reason;
196 	__u64 trim_start;
197 	__u64 trim_end;
198 	__u64 trim_minlen;
199 };
200 
201 /*
202  * indicate meta/data type
203  */
204 enum {
205 	META_CP,
206 	META_NAT,
207 	META_SIT,
208 	META_SSA,
209 	META_MAX,
210 	META_POR,
211 	DATA_GENERIC,
212 	META_GENERIC,
213 };
214 
215 /* for the list of ino */
216 enum {
217 	ORPHAN_INO,		/* for orphan ino list */
218 	APPEND_INO,		/* for append ino list */
219 	UPDATE_INO,		/* for update ino list */
220 	TRANS_DIR_INO,		/* for trasactions dir ino list */
221 	FLUSH_INO,		/* for multiple device flushing */
222 	MAX_INO_ENTRY,		/* max. list */
223 };
224 
225 struct ino_entry {
226 	struct list_head list;		/* list head */
227 	nid_t ino;			/* inode number */
228 	unsigned int dirty_device;	/* dirty device bitmap */
229 };
230 
231 /* for the list of inodes to be GCed */
232 struct inode_entry {
233 	struct list_head list;	/* list head */
234 	struct inode *inode;	/* vfs inode pointer */
235 };
236 
237 struct fsync_node_entry {
238 	struct list_head list;	/* list head */
239 	struct page *page;	/* warm node page pointer */
240 	unsigned int seq_id;	/* sequence id */
241 };
242 
243 /* for the bitmap indicate blocks to be discarded */
244 struct discard_entry {
245 	struct list_head list;	/* list head */
246 	block_t start_blkaddr;	/* start blockaddr of current segment */
247 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
248 };
249 
250 /* default discard granularity of inner discard thread, unit: block count */
251 #define DEFAULT_DISCARD_GRANULARITY		16
252 
253 /* max discard pend list number */
254 #define MAX_PLIST_NUM		512
255 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
256 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
257 
258 enum {
259 	D_PREP,			/* initial */
260 	D_PARTIAL,		/* partially submitted */
261 	D_SUBMIT,		/* all submitted */
262 	D_DONE,			/* finished */
263 };
264 
265 struct discard_info {
266 	block_t lstart;			/* logical start address */
267 	block_t len;			/* length */
268 	block_t start;			/* actual start address in dev */
269 };
270 
271 struct discard_cmd {
272 	struct rb_node rb_node;		/* rb node located in rb-tree */
273 	union {
274 		struct {
275 			block_t lstart;	/* logical start address */
276 			block_t len;	/* length */
277 			block_t start;	/* actual start address in dev */
278 		};
279 		struct discard_info di;	/* discard info */
280 
281 	};
282 	struct list_head list;		/* command list */
283 	struct completion wait;		/* compleation */
284 	struct block_device *bdev;	/* bdev */
285 	unsigned short ref;		/* reference count */
286 	unsigned char state;		/* state */
287 	unsigned char issuing;		/* issuing discard */
288 	int error;			/* bio error */
289 	spinlock_t lock;		/* for state/bio_ref updating */
290 	unsigned short bio_ref;		/* bio reference count */
291 };
292 
293 enum {
294 	DPOLICY_BG,
295 	DPOLICY_FORCE,
296 	DPOLICY_FSTRIM,
297 	DPOLICY_UMOUNT,
298 	MAX_DPOLICY,
299 };
300 
301 struct discard_policy {
302 	int type;			/* type of discard */
303 	unsigned int min_interval;	/* used for candidates exist */
304 	unsigned int mid_interval;	/* used for device busy */
305 	unsigned int max_interval;	/* used for candidates not exist */
306 	unsigned int max_requests;	/* # of discards issued per round */
307 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
308 	bool io_aware;			/* issue discard in idle time */
309 	bool sync;			/* submit discard with REQ_SYNC flag */
310 	bool ordered;			/* issue discard by lba order */
311 	unsigned int granularity;	/* discard granularity */
312 };
313 
314 struct discard_cmd_control {
315 	struct task_struct *f2fs_issue_discard;	/* discard thread */
316 	struct list_head entry_list;		/* 4KB discard entry list */
317 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
318 	struct list_head wait_list;		/* store on-flushing entries */
319 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
320 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
321 	unsigned int discard_wake;		/* to wake up discard thread */
322 	struct mutex cmd_lock;
323 	unsigned int nr_discards;		/* # of discards in the list */
324 	unsigned int max_discards;		/* max. discards to be issued */
325 	unsigned int discard_granularity;	/* discard granularity */
326 	unsigned int undiscard_blks;		/* # of undiscard blocks */
327 	unsigned int next_pos;			/* next discard position */
328 	atomic_t issued_discard;		/* # of issued discard */
329 	atomic_t issing_discard;		/* # of issing discard */
330 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
331 	struct rb_root_cached root;		/* root of discard rb-tree */
332 	bool rbtree_check;			/* config for consistence check */
333 };
334 
335 /* for the list of fsync inodes, used only during recovery */
336 struct fsync_inode_entry {
337 	struct list_head list;	/* list head */
338 	struct inode *inode;	/* vfs inode pointer */
339 	block_t blkaddr;	/* block address locating the last fsync */
340 	block_t last_dentry;	/* block address locating the last dentry */
341 };
342 
343 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
344 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
345 
346 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
347 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
348 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
349 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
350 
351 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
352 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
353 
354 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
355 {
356 	int before = nats_in_cursum(journal);
357 
358 	journal->n_nats = cpu_to_le16(before + i);
359 	return before;
360 }
361 
362 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
363 {
364 	int before = sits_in_cursum(journal);
365 
366 	journal->n_sits = cpu_to_le16(before + i);
367 	return before;
368 }
369 
370 static inline bool __has_cursum_space(struct f2fs_journal *journal,
371 							int size, int type)
372 {
373 	if (type == NAT_JOURNAL)
374 		return size <= MAX_NAT_JENTRIES(journal);
375 	return size <= MAX_SIT_JENTRIES(journal);
376 }
377 
378 /*
379  * ioctl commands
380  */
381 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
382 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
383 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
384 
385 #define F2FS_IOCTL_MAGIC		0xf5
386 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
387 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
388 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
389 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
390 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
391 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
392 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
393 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
394 						struct f2fs_defragment)
395 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
396 						struct f2fs_move_range)
397 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
398 						struct f2fs_flush_device)
399 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
400 						struct f2fs_gc_range)
401 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
402 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
403 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
404 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
405 
406 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
407 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
408 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
409 
410 /*
411  * should be same as XFS_IOC_GOINGDOWN.
412  * Flags for going down operation used by FS_IOC_GOINGDOWN
413  */
414 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
415 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
416 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
417 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
418 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
419 
420 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
421 /*
422  * ioctl commands in 32 bit emulation
423  */
424 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
425 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
426 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
427 #endif
428 
429 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
430 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
431 
432 struct f2fs_gc_range {
433 	u32 sync;
434 	u64 start;
435 	u64 len;
436 };
437 
438 struct f2fs_defragment {
439 	u64 start;
440 	u64 len;
441 };
442 
443 struct f2fs_move_range {
444 	u32 dst_fd;		/* destination fd */
445 	u64 pos_in;		/* start position in src_fd */
446 	u64 pos_out;		/* start position in dst_fd */
447 	u64 len;		/* size to move */
448 };
449 
450 struct f2fs_flush_device {
451 	u32 dev_num;		/* device number to flush */
452 	u32 segments;		/* # of segments to flush */
453 };
454 
455 /* for inline stuff */
456 #define DEF_INLINE_RESERVED_SIZE	1
457 #define DEF_MIN_INLINE_SIZE		1
458 static inline int get_extra_isize(struct inode *inode);
459 static inline int get_inline_xattr_addrs(struct inode *inode);
460 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
461 				(CUR_ADDRS_PER_INODE(inode) -		\
462 				get_inline_xattr_addrs(inode) -	\
463 				DEF_INLINE_RESERVED_SIZE))
464 
465 /* for inline dir */
466 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
467 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
468 				BITS_PER_BYTE + 1))
469 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
470 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
471 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
472 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
473 				NR_INLINE_DENTRY(inode) + \
474 				INLINE_DENTRY_BITMAP_SIZE(inode)))
475 
476 /*
477  * For INODE and NODE manager
478  */
479 /* for directory operations */
480 struct f2fs_dentry_ptr {
481 	struct inode *inode;
482 	void *bitmap;
483 	struct f2fs_dir_entry *dentry;
484 	__u8 (*filename)[F2FS_SLOT_LEN];
485 	int max;
486 	int nr_bitmap;
487 };
488 
489 static inline void make_dentry_ptr_block(struct inode *inode,
490 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
491 {
492 	d->inode = inode;
493 	d->max = NR_DENTRY_IN_BLOCK;
494 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
495 	d->bitmap = t->dentry_bitmap;
496 	d->dentry = t->dentry;
497 	d->filename = t->filename;
498 }
499 
500 static inline void make_dentry_ptr_inline(struct inode *inode,
501 					struct f2fs_dentry_ptr *d, void *t)
502 {
503 	int entry_cnt = NR_INLINE_DENTRY(inode);
504 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
505 	int reserved_size = INLINE_RESERVED_SIZE(inode);
506 
507 	d->inode = inode;
508 	d->max = entry_cnt;
509 	d->nr_bitmap = bitmap_size;
510 	d->bitmap = t;
511 	d->dentry = t + bitmap_size + reserved_size;
512 	d->filename = t + bitmap_size + reserved_size +
513 					SIZE_OF_DIR_ENTRY * entry_cnt;
514 }
515 
516 /*
517  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
518  * as its node offset to distinguish from index node blocks.
519  * But some bits are used to mark the node block.
520  */
521 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
522 				>> OFFSET_BIT_SHIFT)
523 enum {
524 	ALLOC_NODE,			/* allocate a new node page if needed */
525 	LOOKUP_NODE,			/* look up a node without readahead */
526 	LOOKUP_NODE_RA,			/*
527 					 * look up a node with readahead called
528 					 * by get_data_block.
529 					 */
530 };
531 
532 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
533 
534 /* maximum retry quota flush count */
535 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
536 
537 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
538 
539 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
540 
541 /* for in-memory extent cache entry */
542 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
543 
544 /* number of extent info in extent cache we try to shrink */
545 #define EXTENT_CACHE_SHRINK_NUMBER	128
546 
547 struct rb_entry {
548 	struct rb_node rb_node;		/* rb node located in rb-tree */
549 	unsigned int ofs;		/* start offset of the entry */
550 	unsigned int len;		/* length of the entry */
551 };
552 
553 struct extent_info {
554 	unsigned int fofs;		/* start offset in a file */
555 	unsigned int len;		/* length of the extent */
556 	u32 blk;			/* start block address of the extent */
557 };
558 
559 struct extent_node {
560 	struct rb_node rb_node;
561 	union {
562 		struct {
563 			unsigned int fofs;
564 			unsigned int len;
565 			u32 blk;
566 		};
567 		struct extent_info ei;	/* extent info */
568 
569 	};
570 	struct list_head list;		/* node in global extent list of sbi */
571 	struct extent_tree *et;		/* extent tree pointer */
572 };
573 
574 struct extent_tree {
575 	nid_t ino;			/* inode number */
576 	struct rb_root_cached root;	/* root of extent info rb-tree */
577 	struct extent_node *cached_en;	/* recently accessed extent node */
578 	struct extent_info largest;	/* largested extent info */
579 	struct list_head list;		/* to be used by sbi->zombie_list */
580 	rwlock_t lock;			/* protect extent info rb-tree */
581 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
582 	bool largest_updated;		/* largest extent updated */
583 };
584 
585 /*
586  * This structure is taken from ext4_map_blocks.
587  *
588  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
589  */
590 #define F2FS_MAP_NEW		(1 << BH_New)
591 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
592 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
593 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
594 				F2FS_MAP_UNWRITTEN)
595 
596 struct f2fs_map_blocks {
597 	block_t m_pblk;
598 	block_t m_lblk;
599 	unsigned int m_len;
600 	unsigned int m_flags;
601 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
602 	pgoff_t *m_next_extent;		/* point to next possible extent */
603 	int m_seg_type;
604 };
605 
606 /* for flag in get_data_block */
607 enum {
608 	F2FS_GET_BLOCK_DEFAULT,
609 	F2FS_GET_BLOCK_FIEMAP,
610 	F2FS_GET_BLOCK_BMAP,
611 	F2FS_GET_BLOCK_DIO,
612 	F2FS_GET_BLOCK_PRE_DIO,
613 	F2FS_GET_BLOCK_PRE_AIO,
614 	F2FS_GET_BLOCK_PRECACHE,
615 };
616 
617 /*
618  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
619  */
620 #define FADVISE_COLD_BIT	0x01
621 #define FADVISE_LOST_PINO_BIT	0x02
622 #define FADVISE_ENCRYPT_BIT	0x04
623 #define FADVISE_ENC_NAME_BIT	0x08
624 #define FADVISE_KEEP_SIZE_BIT	0x10
625 #define FADVISE_HOT_BIT		0x20
626 #define FADVISE_VERITY_BIT	0x40	/* reserved */
627 
628 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
629 
630 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
631 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
632 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
633 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
634 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
635 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
636 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
637 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
638 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
639 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
640 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
641 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
642 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
643 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
644 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
645 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
646 
647 #define DEF_DIR_LEVEL		0
648 
649 enum {
650 	GC_FAILURE_PIN,
651 	GC_FAILURE_ATOMIC,
652 	MAX_GC_FAILURE
653 };
654 
655 struct f2fs_inode_info {
656 	struct inode vfs_inode;		/* serve a vfs inode */
657 	unsigned long i_flags;		/* keep an inode flags for ioctl */
658 	unsigned char i_advise;		/* use to give file attribute hints */
659 	unsigned char i_dir_level;	/* use for dentry level for large dir */
660 	unsigned int i_current_depth;	/* only for directory depth */
661 	/* for gc failure statistic */
662 	unsigned int i_gc_failures[MAX_GC_FAILURE];
663 	unsigned int i_pino;		/* parent inode number */
664 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
665 
666 	/* Use below internally in f2fs*/
667 	unsigned long flags;		/* use to pass per-file flags */
668 	struct rw_semaphore i_sem;	/* protect fi info */
669 	atomic_t dirty_pages;		/* # of dirty pages */
670 	f2fs_hash_t chash;		/* hash value of given file name */
671 	unsigned int clevel;		/* maximum level of given file name */
672 	struct task_struct *task;	/* lookup and create consistency */
673 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
674 	nid_t i_xattr_nid;		/* node id that contains xattrs */
675 	loff_t	last_disk_size;		/* lastly written file size */
676 
677 #ifdef CONFIG_QUOTA
678 	struct dquot *i_dquot[MAXQUOTAS];
679 
680 	/* quota space reservation, managed internally by quota code */
681 	qsize_t i_reserved_quota;
682 #endif
683 	struct list_head dirty_list;	/* dirty list for dirs and files */
684 	struct list_head gdirty_list;	/* linked in global dirty list */
685 	struct list_head inmem_ilist;	/* list for inmem inodes */
686 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
687 	struct task_struct *inmem_task;	/* store inmemory task */
688 	struct mutex inmem_lock;	/* lock for inmemory pages */
689 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
690 
691 	/* avoid racing between foreground op and gc */
692 	struct rw_semaphore i_gc_rwsem[2];
693 	struct rw_semaphore i_mmap_sem;
694 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
695 
696 	int i_extra_isize;		/* size of extra space located in i_addr */
697 	kprojid_t i_projid;		/* id for project quota */
698 	int i_inline_xattr_size;	/* inline xattr size */
699 	struct timespec64 i_crtime;	/* inode creation time */
700 	struct timespec64 i_disk_time[4];/* inode disk times */
701 };
702 
703 static inline void get_extent_info(struct extent_info *ext,
704 					struct f2fs_extent *i_ext)
705 {
706 	ext->fofs = le32_to_cpu(i_ext->fofs);
707 	ext->blk = le32_to_cpu(i_ext->blk);
708 	ext->len = le32_to_cpu(i_ext->len);
709 }
710 
711 static inline void set_raw_extent(struct extent_info *ext,
712 					struct f2fs_extent *i_ext)
713 {
714 	i_ext->fofs = cpu_to_le32(ext->fofs);
715 	i_ext->blk = cpu_to_le32(ext->blk);
716 	i_ext->len = cpu_to_le32(ext->len);
717 }
718 
719 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
720 						u32 blk, unsigned int len)
721 {
722 	ei->fofs = fofs;
723 	ei->blk = blk;
724 	ei->len = len;
725 }
726 
727 static inline bool __is_discard_mergeable(struct discard_info *back,
728 			struct discard_info *front, unsigned int max_len)
729 {
730 	return (back->lstart + back->len == front->lstart) &&
731 		(back->len + front->len <= max_len);
732 }
733 
734 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
735 			struct discard_info *back, unsigned int max_len)
736 {
737 	return __is_discard_mergeable(back, cur, max_len);
738 }
739 
740 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
741 			struct discard_info *front, unsigned int max_len)
742 {
743 	return __is_discard_mergeable(cur, front, max_len);
744 }
745 
746 static inline bool __is_extent_mergeable(struct extent_info *back,
747 						struct extent_info *front)
748 {
749 	return (back->fofs + back->len == front->fofs &&
750 			back->blk + back->len == front->blk);
751 }
752 
753 static inline bool __is_back_mergeable(struct extent_info *cur,
754 						struct extent_info *back)
755 {
756 	return __is_extent_mergeable(back, cur);
757 }
758 
759 static inline bool __is_front_mergeable(struct extent_info *cur,
760 						struct extent_info *front)
761 {
762 	return __is_extent_mergeable(cur, front);
763 }
764 
765 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
766 static inline void __try_update_largest_extent(struct extent_tree *et,
767 						struct extent_node *en)
768 {
769 	if (en->ei.len > et->largest.len) {
770 		et->largest = en->ei;
771 		et->largest_updated = true;
772 	}
773 }
774 
775 /*
776  * For free nid management
777  */
778 enum nid_state {
779 	FREE_NID,		/* newly added to free nid list */
780 	PREALLOC_NID,		/* it is preallocated */
781 	MAX_NID_STATE,
782 };
783 
784 struct f2fs_nm_info {
785 	block_t nat_blkaddr;		/* base disk address of NAT */
786 	nid_t max_nid;			/* maximum possible node ids */
787 	nid_t available_nids;		/* # of available node ids */
788 	nid_t next_scan_nid;		/* the next nid to be scanned */
789 	unsigned int ram_thresh;	/* control the memory footprint */
790 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
791 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
792 
793 	/* NAT cache management */
794 	struct radix_tree_root nat_root;/* root of the nat entry cache */
795 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
796 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
797 	struct list_head nat_entries;	/* cached nat entry list (clean) */
798 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
799 	unsigned int nat_cnt;		/* the # of cached nat entries */
800 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
801 	unsigned int nat_blocks;	/* # of nat blocks */
802 
803 	/* free node ids management */
804 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
805 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
806 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
807 	spinlock_t nid_list_lock;	/* protect nid lists ops */
808 	struct mutex build_lock;	/* lock for build free nids */
809 	unsigned char **free_nid_bitmap;
810 	unsigned char *nat_block_bitmap;
811 	unsigned short *free_nid_count;	/* free nid count of NAT block */
812 
813 	/* for checkpoint */
814 	char *nat_bitmap;		/* NAT bitmap pointer */
815 
816 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
817 	unsigned char *nat_bits;	/* NAT bits blocks */
818 	unsigned char *full_nat_bits;	/* full NAT pages */
819 	unsigned char *empty_nat_bits;	/* empty NAT pages */
820 #ifdef CONFIG_F2FS_CHECK_FS
821 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
822 #endif
823 	int bitmap_size;		/* bitmap size */
824 };
825 
826 /*
827  * this structure is used as one of function parameters.
828  * all the information are dedicated to a given direct node block determined
829  * by the data offset in a file.
830  */
831 struct dnode_of_data {
832 	struct inode *inode;		/* vfs inode pointer */
833 	struct page *inode_page;	/* its inode page, NULL is possible */
834 	struct page *node_page;		/* cached direct node page */
835 	nid_t nid;			/* node id of the direct node block */
836 	unsigned int ofs_in_node;	/* data offset in the node page */
837 	bool inode_page_locked;		/* inode page is locked or not */
838 	bool node_changed;		/* is node block changed */
839 	char cur_level;			/* level of hole node page */
840 	char max_level;			/* level of current page located */
841 	block_t	data_blkaddr;		/* block address of the node block */
842 };
843 
844 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
845 		struct page *ipage, struct page *npage, nid_t nid)
846 {
847 	memset(dn, 0, sizeof(*dn));
848 	dn->inode = inode;
849 	dn->inode_page = ipage;
850 	dn->node_page = npage;
851 	dn->nid = nid;
852 }
853 
854 /*
855  * For SIT manager
856  *
857  * By default, there are 6 active log areas across the whole main area.
858  * When considering hot and cold data separation to reduce cleaning overhead,
859  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
860  * respectively.
861  * In the current design, you should not change the numbers intentionally.
862  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
863  * logs individually according to the underlying devices. (default: 6)
864  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
865  * data and 8 for node logs.
866  */
867 #define	NR_CURSEG_DATA_TYPE	(3)
868 #define NR_CURSEG_NODE_TYPE	(3)
869 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
870 
871 enum {
872 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
873 	CURSEG_WARM_DATA,	/* data blocks */
874 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
875 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
876 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
877 	CURSEG_COLD_NODE,	/* indirect node blocks */
878 	NO_CHECK_TYPE,
879 };
880 
881 struct flush_cmd {
882 	struct completion wait;
883 	struct llist_node llnode;
884 	nid_t ino;
885 	int ret;
886 };
887 
888 struct flush_cmd_control {
889 	struct task_struct *f2fs_issue_flush;	/* flush thread */
890 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
891 	atomic_t issued_flush;			/* # of issued flushes */
892 	atomic_t issing_flush;			/* # of issing flushes */
893 	struct llist_head issue_list;		/* list for command issue */
894 	struct llist_node *dispatch_list;	/* list for command dispatch */
895 };
896 
897 struct f2fs_sm_info {
898 	struct sit_info *sit_info;		/* whole segment information */
899 	struct free_segmap_info *free_info;	/* free segment information */
900 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
901 	struct curseg_info *curseg_array;	/* active segment information */
902 
903 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
904 
905 	block_t seg0_blkaddr;		/* block address of 0'th segment */
906 	block_t main_blkaddr;		/* start block address of main area */
907 	block_t ssa_blkaddr;		/* start block address of SSA area */
908 
909 	unsigned int segment_count;	/* total # of segments */
910 	unsigned int main_segments;	/* # of segments in main area */
911 	unsigned int reserved_segments;	/* # of reserved segments */
912 	unsigned int ovp_segments;	/* # of overprovision segments */
913 
914 	/* a threshold to reclaim prefree segments */
915 	unsigned int rec_prefree_segments;
916 
917 	/* for batched trimming */
918 	unsigned int trim_sections;		/* # of sections to trim */
919 
920 	struct list_head sit_entry_set;	/* sit entry set list */
921 
922 	unsigned int ipu_policy;	/* in-place-update policy */
923 	unsigned int min_ipu_util;	/* in-place-update threshold */
924 	unsigned int min_fsync_blocks;	/* threshold for fsync */
925 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
926 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
927 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
928 
929 	/* for flush command control */
930 	struct flush_cmd_control *fcc_info;
931 
932 	/* for discard command control */
933 	struct discard_cmd_control *dcc_info;
934 };
935 
936 /*
937  * For superblock
938  */
939 /*
940  * COUNT_TYPE for monitoring
941  *
942  * f2fs monitors the number of several block types such as on-writeback,
943  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
944  */
945 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
946 enum count_type {
947 	F2FS_DIRTY_DENTS,
948 	F2FS_DIRTY_DATA,
949 	F2FS_DIRTY_QDATA,
950 	F2FS_DIRTY_NODES,
951 	F2FS_DIRTY_META,
952 	F2FS_INMEM_PAGES,
953 	F2FS_DIRTY_IMETA,
954 	F2FS_WB_CP_DATA,
955 	F2FS_WB_DATA,
956 	F2FS_RD_DATA,
957 	F2FS_RD_NODE,
958 	F2FS_RD_META,
959 	NR_COUNT_TYPE,
960 };
961 
962 /*
963  * The below are the page types of bios used in submit_bio().
964  * The available types are:
965  * DATA			User data pages. It operates as async mode.
966  * NODE			Node pages. It operates as async mode.
967  * META			FS metadata pages such as SIT, NAT, CP.
968  * NR_PAGE_TYPE		The number of page types.
969  * META_FLUSH		Make sure the previous pages are written
970  *			with waiting the bio's completion
971  * ...			Only can be used with META.
972  */
973 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
974 enum page_type {
975 	DATA,
976 	NODE,
977 	META,
978 	NR_PAGE_TYPE,
979 	META_FLUSH,
980 	INMEM,		/* the below types are used by tracepoints only. */
981 	INMEM_DROP,
982 	INMEM_INVALIDATE,
983 	INMEM_REVOKE,
984 	IPU,
985 	OPU,
986 };
987 
988 enum temp_type {
989 	HOT = 0,	/* must be zero for meta bio */
990 	WARM,
991 	COLD,
992 	NR_TEMP_TYPE,
993 };
994 
995 enum need_lock_type {
996 	LOCK_REQ = 0,
997 	LOCK_DONE,
998 	LOCK_RETRY,
999 };
1000 
1001 enum cp_reason_type {
1002 	CP_NO_NEEDED,
1003 	CP_NON_REGULAR,
1004 	CP_HARDLINK,
1005 	CP_SB_NEED_CP,
1006 	CP_WRONG_PINO,
1007 	CP_NO_SPC_ROLL,
1008 	CP_NODE_NEED_CP,
1009 	CP_FASTBOOT_MODE,
1010 	CP_SPEC_LOG_NUM,
1011 	CP_RECOVER_DIR,
1012 };
1013 
1014 enum iostat_type {
1015 	APP_DIRECT_IO,			/* app direct IOs */
1016 	APP_BUFFERED_IO,		/* app buffered IOs */
1017 	APP_WRITE_IO,			/* app write IOs */
1018 	APP_MAPPED_IO,			/* app mapped IOs */
1019 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1020 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1021 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1022 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1023 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1024 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1025 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1026 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1027 	FS_DISCARD,			/* discard */
1028 	NR_IO_TYPE,
1029 };
1030 
1031 struct f2fs_io_info {
1032 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1033 	nid_t ino;		/* inode number */
1034 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1035 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1036 	int op;			/* contains REQ_OP_ */
1037 	int op_flags;		/* req_flag_bits */
1038 	block_t new_blkaddr;	/* new block address to be written */
1039 	block_t old_blkaddr;	/* old block address before Cow */
1040 	struct page *page;	/* page to be written */
1041 	struct page *encrypted_page;	/* encrypted page */
1042 	struct list_head list;		/* serialize IOs */
1043 	bool submitted;		/* indicate IO submission */
1044 	int need_lock;		/* indicate we need to lock cp_rwsem */
1045 	bool in_list;		/* indicate fio is in io_list */
1046 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1047 	bool retry;		/* need to reallocate block address */
1048 	enum iostat_type io_type;	/* io type */
1049 	struct writeback_control *io_wbc; /* writeback control */
1050 	unsigned char version;		/* version of the node */
1051 };
1052 
1053 #define is_read_io(rw) ((rw) == READ)
1054 struct f2fs_bio_info {
1055 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1056 	struct bio *bio;		/* bios to merge */
1057 	sector_t last_block_in_bio;	/* last block number */
1058 	struct f2fs_io_info fio;	/* store buffered io info. */
1059 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1060 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1061 	struct list_head io_list;	/* track fios */
1062 };
1063 
1064 #define FDEV(i)				(sbi->devs[i])
1065 #define RDEV(i)				(raw_super->devs[i])
1066 struct f2fs_dev_info {
1067 	struct block_device *bdev;
1068 	char path[MAX_PATH_LEN];
1069 	unsigned int total_segments;
1070 	block_t start_blk;
1071 	block_t end_blk;
1072 #ifdef CONFIG_BLK_DEV_ZONED
1073 	unsigned int nr_blkz;			/* Total number of zones */
1074 	u8 *blkz_type;				/* Array of zones type */
1075 #endif
1076 };
1077 
1078 enum inode_type {
1079 	DIR_INODE,			/* for dirty dir inode */
1080 	FILE_INODE,			/* for dirty regular/symlink inode */
1081 	DIRTY_META,			/* for all dirtied inode metadata */
1082 	ATOMIC_FILE,			/* for all atomic files */
1083 	NR_INODE_TYPE,
1084 };
1085 
1086 /* for inner inode cache management */
1087 struct inode_management {
1088 	struct radix_tree_root ino_root;	/* ino entry array */
1089 	spinlock_t ino_lock;			/* for ino entry lock */
1090 	struct list_head ino_list;		/* inode list head */
1091 	unsigned long ino_num;			/* number of entries */
1092 };
1093 
1094 /* For s_flag in struct f2fs_sb_info */
1095 enum {
1096 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1097 	SBI_IS_CLOSE,				/* specify unmounting */
1098 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1099 	SBI_POR_DOING,				/* recovery is doing or not */
1100 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1101 	SBI_NEED_CP,				/* need to checkpoint */
1102 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1103 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1104 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1105 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1106 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1107 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1108 };
1109 
1110 enum {
1111 	CP_TIME,
1112 	REQ_TIME,
1113 	DISCARD_TIME,
1114 	GC_TIME,
1115 	DISABLE_TIME,
1116 	MAX_TIME,
1117 };
1118 
1119 enum {
1120 	GC_NORMAL,
1121 	GC_IDLE_CB,
1122 	GC_IDLE_GREEDY,
1123 	GC_URGENT,
1124 };
1125 
1126 enum {
1127 	WHINT_MODE_OFF,		/* not pass down write hints */
1128 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1129 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1130 };
1131 
1132 enum {
1133 	ALLOC_MODE_DEFAULT,	/* stay default */
1134 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1135 };
1136 
1137 enum fsync_mode {
1138 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1139 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1140 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1141 };
1142 
1143 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1144 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1145 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1146 #else
1147 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1148 #endif
1149 
1150 struct f2fs_sb_info {
1151 	struct super_block *sb;			/* pointer to VFS super block */
1152 	struct proc_dir_entry *s_proc;		/* proc entry */
1153 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1154 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1155 	int valid_super_block;			/* valid super block no */
1156 	unsigned long s_flag;				/* flags for sbi */
1157 	struct mutex writepages;		/* mutex for writepages() */
1158 
1159 #ifdef CONFIG_BLK_DEV_ZONED
1160 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1161 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1162 #endif
1163 
1164 	/* for node-related operations */
1165 	struct f2fs_nm_info *nm_info;		/* node manager */
1166 	struct inode *node_inode;		/* cache node blocks */
1167 
1168 	/* for segment-related operations */
1169 	struct f2fs_sm_info *sm_info;		/* segment manager */
1170 
1171 	/* for bio operations */
1172 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1173 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1174 						/* bio ordering for NODE/DATA */
1175 	/* keep migration IO order for LFS mode */
1176 	struct rw_semaphore io_order_lock;
1177 	mempool_t *write_io_dummy;		/* Dummy pages */
1178 
1179 	/* for checkpoint */
1180 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1181 	int cur_cp_pack;			/* remain current cp pack */
1182 	spinlock_t cp_lock;			/* for flag in ckpt */
1183 	struct inode *meta_inode;		/* cache meta blocks */
1184 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1185 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1186 	struct rw_semaphore node_write;		/* locking node writes */
1187 	struct rw_semaphore node_change;	/* locking node change */
1188 	wait_queue_head_t cp_wait;
1189 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1190 	long interval_time[MAX_TIME];		/* to store thresholds */
1191 
1192 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1193 
1194 	spinlock_t fsync_node_lock;		/* for node entry lock */
1195 	struct list_head fsync_node_list;	/* node list head */
1196 	unsigned int fsync_seg_id;		/* sequence id */
1197 	unsigned int fsync_node_num;		/* number of node entries */
1198 
1199 	/* for orphan inode, use 0'th array */
1200 	unsigned int max_orphans;		/* max orphan inodes */
1201 
1202 	/* for inode management */
1203 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1204 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1205 
1206 	/* for extent tree cache */
1207 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1208 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1209 	struct list_head extent_list;		/* lru list for shrinker */
1210 	spinlock_t extent_lock;			/* locking extent lru list */
1211 	atomic_t total_ext_tree;		/* extent tree count */
1212 	struct list_head zombie_list;		/* extent zombie tree list */
1213 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1214 	atomic_t total_ext_node;		/* extent info count */
1215 
1216 	/* basic filesystem units */
1217 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1218 	unsigned int log_blocksize;		/* log2 block size */
1219 	unsigned int blocksize;			/* block size */
1220 	unsigned int root_ino_num;		/* root inode number*/
1221 	unsigned int node_ino_num;		/* node inode number*/
1222 	unsigned int meta_ino_num;		/* meta inode number*/
1223 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1224 	unsigned int blocks_per_seg;		/* blocks per segment */
1225 	unsigned int segs_per_sec;		/* segments per section */
1226 	unsigned int secs_per_zone;		/* sections per zone */
1227 	unsigned int total_sections;		/* total section count */
1228 	unsigned int total_node_count;		/* total node block count */
1229 	unsigned int total_valid_node_count;	/* valid node block count */
1230 	loff_t max_file_blocks;			/* max block index of file */
1231 	int dir_level;				/* directory level */
1232 	int readdir_ra;				/* readahead inode in readdir */
1233 
1234 	block_t user_block_count;		/* # of user blocks */
1235 	block_t total_valid_block_count;	/* # of valid blocks */
1236 	block_t discard_blks;			/* discard command candidats */
1237 	block_t last_valid_block_count;		/* for recovery */
1238 	block_t reserved_blocks;		/* configurable reserved blocks */
1239 	block_t current_reserved_blocks;	/* current reserved blocks */
1240 
1241 	/* Additional tracking for no checkpoint mode */
1242 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1243 
1244 	unsigned int nquota_files;		/* # of quota sysfile */
1245 
1246 	u32 s_next_generation;			/* for NFS support */
1247 
1248 	/* # of pages, see count_type */
1249 	atomic_t nr_pages[NR_COUNT_TYPE];
1250 	/* # of allocated blocks */
1251 	struct percpu_counter alloc_valid_block_count;
1252 
1253 	/* writeback control */
1254 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1255 
1256 	/* valid inode count */
1257 	struct percpu_counter total_valid_inode_count;
1258 
1259 	struct f2fs_mount_info mount_opt;	/* mount options */
1260 
1261 	/* for cleaning operations */
1262 	struct mutex gc_mutex;			/* mutex for GC */
1263 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1264 	unsigned int cur_victim_sec;		/* current victim section num */
1265 	unsigned int gc_mode;			/* current GC state */
1266 	/* for skip statistic */
1267 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1268 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1269 
1270 	/* threshold for gc trials on pinned files */
1271 	u64 gc_pin_file_threshold;
1272 
1273 	/* maximum # of trials to find a victim segment for SSR and GC */
1274 	unsigned int max_victim_search;
1275 
1276 	/*
1277 	 * for stat information.
1278 	 * one is for the LFS mode, and the other is for the SSR mode.
1279 	 */
1280 #ifdef CONFIG_F2FS_STAT_FS
1281 	struct f2fs_stat_info *stat_info;	/* FS status information */
1282 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1283 	unsigned int segment_count[2];		/* # of allocated segments */
1284 	unsigned int block_count[2];		/* # of allocated blocks */
1285 	atomic_t inplace_count;		/* # of inplace update */
1286 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1287 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1288 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1289 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1290 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1291 	atomic_t inline_inode;			/* # of inline_data inodes */
1292 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1293 	atomic_t aw_cnt;			/* # of atomic writes */
1294 	atomic_t vw_cnt;			/* # of volatile writes */
1295 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1296 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1297 	int bg_gc;				/* background gc calls */
1298 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1299 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1300 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1301 #endif
1302 	spinlock_t stat_lock;			/* lock for stat operations */
1303 
1304 	/* For app/fs IO statistics */
1305 	spinlock_t iostat_lock;
1306 	unsigned long long write_iostat[NR_IO_TYPE];
1307 	bool iostat_enable;
1308 
1309 	/* For sysfs suppport */
1310 	struct kobject s_kobj;
1311 	struct completion s_kobj_unregister;
1312 
1313 	/* For shrinker support */
1314 	struct list_head s_list;
1315 	int s_ndevs;				/* number of devices */
1316 	struct f2fs_dev_info *devs;		/* for device list */
1317 	unsigned int dirty_device;		/* for checkpoint data flush */
1318 	spinlock_t dev_lock;			/* protect dirty_device */
1319 	struct mutex umount_mutex;
1320 	unsigned int shrinker_run_no;
1321 
1322 	/* For write statistics */
1323 	u64 sectors_written_start;
1324 	u64 kbytes_written;
1325 
1326 	/* Reference to checksum algorithm driver via cryptoapi */
1327 	struct crypto_shash *s_chksum_driver;
1328 
1329 	/* Precomputed FS UUID checksum for seeding other checksums */
1330 	__u32 s_chksum_seed;
1331 };
1332 
1333 #ifdef CONFIG_F2FS_FAULT_INJECTION
1334 #define f2fs_show_injection_info(type)					\
1335 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n",	\
1336 		KERN_INFO, f2fs_fault_name[type],			\
1337 		__func__, __builtin_return_address(0))
1338 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1339 {
1340 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1341 
1342 	if (!ffi->inject_rate)
1343 		return false;
1344 
1345 	if (!IS_FAULT_SET(ffi, type))
1346 		return false;
1347 
1348 	atomic_inc(&ffi->inject_ops);
1349 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1350 		atomic_set(&ffi->inject_ops, 0);
1351 		return true;
1352 	}
1353 	return false;
1354 }
1355 #else
1356 #define f2fs_show_injection_info(type) do { } while (0)
1357 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1358 {
1359 	return false;
1360 }
1361 #endif
1362 
1363 /* For write statistics. Suppose sector size is 512 bytes,
1364  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1365  */
1366 #define BD_PART_WRITTEN(s)						 \
1367 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1368 		(s)->sectors_written_start) >> 1)
1369 
1370 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1371 {
1372 	unsigned long now = jiffies;
1373 
1374 	sbi->last_time[type] = now;
1375 
1376 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1377 	if (type == REQ_TIME) {
1378 		sbi->last_time[DISCARD_TIME] = now;
1379 		sbi->last_time[GC_TIME] = now;
1380 	}
1381 }
1382 
1383 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1384 {
1385 	unsigned long interval = sbi->interval_time[type] * HZ;
1386 
1387 	return time_after(jiffies, sbi->last_time[type] + interval);
1388 }
1389 
1390 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1391 						int type)
1392 {
1393 	unsigned long interval = sbi->interval_time[type] * HZ;
1394 	unsigned int wait_ms = 0;
1395 	long delta;
1396 
1397 	delta = (sbi->last_time[type] + interval) - jiffies;
1398 	if (delta > 0)
1399 		wait_ms = jiffies_to_msecs(delta);
1400 
1401 	return wait_ms;
1402 }
1403 
1404 /*
1405  * Inline functions
1406  */
1407 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1408 			      const void *address, unsigned int length)
1409 {
1410 	struct {
1411 		struct shash_desc shash;
1412 		char ctx[4];
1413 	} desc;
1414 	int err;
1415 
1416 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1417 
1418 	desc.shash.tfm = sbi->s_chksum_driver;
1419 	desc.shash.flags = 0;
1420 	*(u32 *)desc.ctx = crc;
1421 
1422 	err = crypto_shash_update(&desc.shash, address, length);
1423 	BUG_ON(err);
1424 
1425 	return *(u32 *)desc.ctx;
1426 }
1427 
1428 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1429 			   unsigned int length)
1430 {
1431 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1432 }
1433 
1434 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1435 				  void *buf, size_t buf_size)
1436 {
1437 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1438 }
1439 
1440 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1441 			      const void *address, unsigned int length)
1442 {
1443 	return __f2fs_crc32(sbi, crc, address, length);
1444 }
1445 
1446 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1447 {
1448 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1449 }
1450 
1451 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1452 {
1453 	return sb->s_fs_info;
1454 }
1455 
1456 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1457 {
1458 	return F2FS_SB(inode->i_sb);
1459 }
1460 
1461 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1462 {
1463 	return F2FS_I_SB(mapping->host);
1464 }
1465 
1466 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1467 {
1468 	return F2FS_M_SB(page->mapping);
1469 }
1470 
1471 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1472 {
1473 	return (struct f2fs_super_block *)(sbi->raw_super);
1474 }
1475 
1476 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1477 {
1478 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1479 }
1480 
1481 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1482 {
1483 	return (struct f2fs_node *)page_address(page);
1484 }
1485 
1486 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1487 {
1488 	return &((struct f2fs_node *)page_address(page))->i;
1489 }
1490 
1491 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1492 {
1493 	return (struct f2fs_nm_info *)(sbi->nm_info);
1494 }
1495 
1496 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1497 {
1498 	return (struct f2fs_sm_info *)(sbi->sm_info);
1499 }
1500 
1501 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1502 {
1503 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1504 }
1505 
1506 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1507 {
1508 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1509 }
1510 
1511 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1512 {
1513 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1514 }
1515 
1516 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1517 {
1518 	return sbi->meta_inode->i_mapping;
1519 }
1520 
1521 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1522 {
1523 	return sbi->node_inode->i_mapping;
1524 }
1525 
1526 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1527 {
1528 	return test_bit(type, &sbi->s_flag);
1529 }
1530 
1531 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1532 {
1533 	set_bit(type, &sbi->s_flag);
1534 }
1535 
1536 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1537 {
1538 	clear_bit(type, &sbi->s_flag);
1539 }
1540 
1541 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1542 {
1543 	return le64_to_cpu(cp->checkpoint_ver);
1544 }
1545 
1546 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1547 {
1548 	if (type < F2FS_MAX_QUOTAS)
1549 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1550 	return 0;
1551 }
1552 
1553 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1554 {
1555 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1556 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1557 }
1558 
1559 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1560 {
1561 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1562 
1563 	return ckpt_flags & f;
1564 }
1565 
1566 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1567 {
1568 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1569 }
1570 
1571 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1572 {
1573 	unsigned int ckpt_flags;
1574 
1575 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1576 	ckpt_flags |= f;
1577 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1578 }
1579 
1580 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1581 {
1582 	unsigned long flags;
1583 
1584 	spin_lock_irqsave(&sbi->cp_lock, flags);
1585 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1586 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1587 }
1588 
1589 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1590 {
1591 	unsigned int ckpt_flags;
1592 
1593 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1594 	ckpt_flags &= (~f);
1595 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1596 }
1597 
1598 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1599 {
1600 	unsigned long flags;
1601 
1602 	spin_lock_irqsave(&sbi->cp_lock, flags);
1603 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1604 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1605 }
1606 
1607 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1608 {
1609 	unsigned long flags;
1610 
1611 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1612 
1613 	if (lock)
1614 		spin_lock_irqsave(&sbi->cp_lock, flags);
1615 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1616 	kfree(NM_I(sbi)->nat_bits);
1617 	NM_I(sbi)->nat_bits = NULL;
1618 	if (lock)
1619 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1620 }
1621 
1622 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1623 					struct cp_control *cpc)
1624 {
1625 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1626 
1627 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1628 }
1629 
1630 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1631 {
1632 	down_read(&sbi->cp_rwsem);
1633 }
1634 
1635 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1636 {
1637 	return down_read_trylock(&sbi->cp_rwsem);
1638 }
1639 
1640 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1641 {
1642 	up_read(&sbi->cp_rwsem);
1643 }
1644 
1645 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1646 {
1647 	down_write(&sbi->cp_rwsem);
1648 }
1649 
1650 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1651 {
1652 	up_write(&sbi->cp_rwsem);
1653 }
1654 
1655 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1656 {
1657 	int reason = CP_SYNC;
1658 
1659 	if (test_opt(sbi, FASTBOOT))
1660 		reason = CP_FASTBOOT;
1661 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1662 		reason = CP_UMOUNT;
1663 	return reason;
1664 }
1665 
1666 static inline bool __remain_node_summaries(int reason)
1667 {
1668 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1669 }
1670 
1671 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1672 {
1673 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1674 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1675 }
1676 
1677 /*
1678  * Check whether the inode has blocks or not
1679  */
1680 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1681 {
1682 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1683 
1684 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1685 }
1686 
1687 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1688 {
1689 	return ofs == XATTR_NODE_OFFSET;
1690 }
1691 
1692 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1693 					struct inode *inode, bool cap)
1694 {
1695 	if (!inode)
1696 		return true;
1697 	if (!test_opt(sbi, RESERVE_ROOT))
1698 		return false;
1699 	if (IS_NOQUOTA(inode))
1700 		return true;
1701 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1702 		return true;
1703 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1704 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1705 		return true;
1706 	if (cap && capable(CAP_SYS_RESOURCE))
1707 		return true;
1708 	return false;
1709 }
1710 
1711 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1712 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1713 				 struct inode *inode, blkcnt_t *count)
1714 {
1715 	blkcnt_t diff = 0, release = 0;
1716 	block_t avail_user_block_count;
1717 	int ret;
1718 
1719 	ret = dquot_reserve_block(inode, *count);
1720 	if (ret)
1721 		return ret;
1722 
1723 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1724 		f2fs_show_injection_info(FAULT_BLOCK);
1725 		release = *count;
1726 		goto enospc;
1727 	}
1728 
1729 	/*
1730 	 * let's increase this in prior to actual block count change in order
1731 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1732 	 */
1733 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1734 
1735 	spin_lock(&sbi->stat_lock);
1736 	sbi->total_valid_block_count += (block_t)(*count);
1737 	avail_user_block_count = sbi->user_block_count -
1738 					sbi->current_reserved_blocks;
1739 
1740 	if (!__allow_reserved_blocks(sbi, inode, true))
1741 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1742 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1743 		avail_user_block_count -= sbi->unusable_block_count;
1744 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1745 		diff = sbi->total_valid_block_count - avail_user_block_count;
1746 		if (diff > *count)
1747 			diff = *count;
1748 		*count -= diff;
1749 		release = diff;
1750 		sbi->total_valid_block_count -= diff;
1751 		if (!*count) {
1752 			spin_unlock(&sbi->stat_lock);
1753 			goto enospc;
1754 		}
1755 	}
1756 	spin_unlock(&sbi->stat_lock);
1757 
1758 	if (unlikely(release)) {
1759 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1760 		dquot_release_reservation_block(inode, release);
1761 	}
1762 	f2fs_i_blocks_write(inode, *count, true, true);
1763 	return 0;
1764 
1765 enospc:
1766 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1767 	dquot_release_reservation_block(inode, release);
1768 	return -ENOSPC;
1769 }
1770 
1771 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1772 						struct inode *inode,
1773 						block_t count)
1774 {
1775 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1776 
1777 	spin_lock(&sbi->stat_lock);
1778 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1779 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1780 	sbi->total_valid_block_count -= (block_t)count;
1781 	if (sbi->reserved_blocks &&
1782 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1783 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1784 					sbi->current_reserved_blocks + count);
1785 	spin_unlock(&sbi->stat_lock);
1786 	f2fs_i_blocks_write(inode, count, false, true);
1787 }
1788 
1789 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1790 {
1791 	atomic_inc(&sbi->nr_pages[count_type]);
1792 
1793 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1794 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA ||
1795 		count_type == F2FS_RD_DATA || count_type == F2FS_RD_NODE ||
1796 		count_type == F2FS_RD_META)
1797 		return;
1798 
1799 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1800 }
1801 
1802 static inline void inode_inc_dirty_pages(struct inode *inode)
1803 {
1804 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1805 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1806 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1807 	if (IS_NOQUOTA(inode))
1808 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1809 }
1810 
1811 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1812 {
1813 	atomic_dec(&sbi->nr_pages[count_type]);
1814 }
1815 
1816 static inline void inode_dec_dirty_pages(struct inode *inode)
1817 {
1818 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1819 			!S_ISLNK(inode->i_mode))
1820 		return;
1821 
1822 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1823 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1824 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1825 	if (IS_NOQUOTA(inode))
1826 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1827 }
1828 
1829 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1830 {
1831 	return atomic_read(&sbi->nr_pages[count_type]);
1832 }
1833 
1834 static inline int get_dirty_pages(struct inode *inode)
1835 {
1836 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1837 }
1838 
1839 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1840 {
1841 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1842 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1843 						sbi->log_blocks_per_seg;
1844 
1845 	return segs / sbi->segs_per_sec;
1846 }
1847 
1848 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1849 {
1850 	return sbi->total_valid_block_count;
1851 }
1852 
1853 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1854 {
1855 	return sbi->discard_blks;
1856 }
1857 
1858 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1859 {
1860 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1861 
1862 	/* return NAT or SIT bitmap */
1863 	if (flag == NAT_BITMAP)
1864 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1865 	else if (flag == SIT_BITMAP)
1866 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1867 
1868 	return 0;
1869 }
1870 
1871 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1872 {
1873 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1874 }
1875 
1876 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1877 {
1878 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1879 	int offset;
1880 
1881 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1882 		offset = (flag == SIT_BITMAP) ?
1883 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1884 		return &ckpt->sit_nat_version_bitmap + offset;
1885 	}
1886 
1887 	if (__cp_payload(sbi) > 0) {
1888 		if (flag == NAT_BITMAP)
1889 			return &ckpt->sit_nat_version_bitmap;
1890 		else
1891 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1892 	} else {
1893 		offset = (flag == NAT_BITMAP) ?
1894 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1895 		return &ckpt->sit_nat_version_bitmap + offset;
1896 	}
1897 }
1898 
1899 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1900 {
1901 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1902 
1903 	if (sbi->cur_cp_pack == 2)
1904 		start_addr += sbi->blocks_per_seg;
1905 	return start_addr;
1906 }
1907 
1908 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1909 {
1910 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1911 
1912 	if (sbi->cur_cp_pack == 1)
1913 		start_addr += sbi->blocks_per_seg;
1914 	return start_addr;
1915 }
1916 
1917 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1918 {
1919 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1920 }
1921 
1922 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1923 {
1924 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1925 }
1926 
1927 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1928 					struct inode *inode, bool is_inode)
1929 {
1930 	block_t	valid_block_count;
1931 	unsigned int valid_node_count;
1932 	int err;
1933 
1934 	if (is_inode) {
1935 		if (inode) {
1936 			err = dquot_alloc_inode(inode);
1937 			if (err)
1938 				return err;
1939 		}
1940 	} else {
1941 		err = dquot_reserve_block(inode, 1);
1942 		if (err)
1943 			return err;
1944 	}
1945 
1946 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1947 		f2fs_show_injection_info(FAULT_BLOCK);
1948 		goto enospc;
1949 	}
1950 
1951 	spin_lock(&sbi->stat_lock);
1952 
1953 	valid_block_count = sbi->total_valid_block_count +
1954 					sbi->current_reserved_blocks + 1;
1955 
1956 	if (!__allow_reserved_blocks(sbi, inode, false))
1957 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1958 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1959 		valid_block_count += sbi->unusable_block_count;
1960 
1961 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1962 		spin_unlock(&sbi->stat_lock);
1963 		goto enospc;
1964 	}
1965 
1966 	valid_node_count = sbi->total_valid_node_count + 1;
1967 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1968 		spin_unlock(&sbi->stat_lock);
1969 		goto enospc;
1970 	}
1971 
1972 	sbi->total_valid_node_count++;
1973 	sbi->total_valid_block_count++;
1974 	spin_unlock(&sbi->stat_lock);
1975 
1976 	if (inode) {
1977 		if (is_inode)
1978 			f2fs_mark_inode_dirty_sync(inode, true);
1979 		else
1980 			f2fs_i_blocks_write(inode, 1, true, true);
1981 	}
1982 
1983 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1984 	return 0;
1985 
1986 enospc:
1987 	if (is_inode) {
1988 		if (inode)
1989 			dquot_free_inode(inode);
1990 	} else {
1991 		dquot_release_reservation_block(inode, 1);
1992 	}
1993 	return -ENOSPC;
1994 }
1995 
1996 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1997 					struct inode *inode, bool is_inode)
1998 {
1999 	spin_lock(&sbi->stat_lock);
2000 
2001 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2002 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2003 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2004 
2005 	sbi->total_valid_node_count--;
2006 	sbi->total_valid_block_count--;
2007 	if (sbi->reserved_blocks &&
2008 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2009 		sbi->current_reserved_blocks++;
2010 
2011 	spin_unlock(&sbi->stat_lock);
2012 
2013 	if (is_inode)
2014 		dquot_free_inode(inode);
2015 	else
2016 		f2fs_i_blocks_write(inode, 1, false, true);
2017 }
2018 
2019 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2020 {
2021 	return sbi->total_valid_node_count;
2022 }
2023 
2024 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2025 {
2026 	percpu_counter_inc(&sbi->total_valid_inode_count);
2027 }
2028 
2029 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2030 {
2031 	percpu_counter_dec(&sbi->total_valid_inode_count);
2032 }
2033 
2034 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2035 {
2036 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2037 }
2038 
2039 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2040 						pgoff_t index, bool for_write)
2041 {
2042 	struct page *page;
2043 
2044 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2045 		if (!for_write)
2046 			page = find_get_page_flags(mapping, index,
2047 							FGP_LOCK | FGP_ACCESSED);
2048 		else
2049 			page = find_lock_page(mapping, index);
2050 		if (page)
2051 			return page;
2052 
2053 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2054 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2055 			return NULL;
2056 		}
2057 	}
2058 
2059 	if (!for_write)
2060 		return grab_cache_page(mapping, index);
2061 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2062 }
2063 
2064 static inline struct page *f2fs_pagecache_get_page(
2065 				struct address_space *mapping, pgoff_t index,
2066 				int fgp_flags, gfp_t gfp_mask)
2067 {
2068 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2069 		f2fs_show_injection_info(FAULT_PAGE_GET);
2070 		return NULL;
2071 	}
2072 
2073 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2074 }
2075 
2076 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2077 {
2078 	char *src_kaddr = kmap(src);
2079 	char *dst_kaddr = kmap(dst);
2080 
2081 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2082 	kunmap(dst);
2083 	kunmap(src);
2084 }
2085 
2086 static inline void f2fs_put_page(struct page *page, int unlock)
2087 {
2088 	if (!page)
2089 		return;
2090 
2091 	if (unlock) {
2092 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2093 		unlock_page(page);
2094 	}
2095 	put_page(page);
2096 }
2097 
2098 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2099 {
2100 	if (dn->node_page)
2101 		f2fs_put_page(dn->node_page, 1);
2102 	if (dn->inode_page && dn->node_page != dn->inode_page)
2103 		f2fs_put_page(dn->inode_page, 0);
2104 	dn->node_page = NULL;
2105 	dn->inode_page = NULL;
2106 }
2107 
2108 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2109 					size_t size)
2110 {
2111 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2112 }
2113 
2114 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2115 						gfp_t flags)
2116 {
2117 	void *entry;
2118 
2119 	entry = kmem_cache_alloc(cachep, flags);
2120 	if (!entry)
2121 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2122 	return entry;
2123 }
2124 
2125 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2126 						int npages, bool no_fail)
2127 {
2128 	struct bio *bio;
2129 
2130 	if (no_fail) {
2131 		/* No failure on bio allocation */
2132 		bio = bio_alloc(GFP_NOIO, npages);
2133 		if (!bio)
2134 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2135 		return bio;
2136 	}
2137 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2138 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2139 		return NULL;
2140 	}
2141 
2142 	return bio_alloc(GFP_KERNEL, npages);
2143 }
2144 
2145 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2146 {
2147 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2148 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2149 		get_pages(sbi, F2FS_WB_CP_DATA))
2150 		return false;
2151 	return f2fs_time_over(sbi, type);
2152 }
2153 
2154 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2155 				unsigned long index, void *item)
2156 {
2157 	while (radix_tree_insert(root, index, item))
2158 		cond_resched();
2159 }
2160 
2161 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2162 
2163 static inline bool IS_INODE(struct page *page)
2164 {
2165 	struct f2fs_node *p = F2FS_NODE(page);
2166 
2167 	return RAW_IS_INODE(p);
2168 }
2169 
2170 static inline int offset_in_addr(struct f2fs_inode *i)
2171 {
2172 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2173 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2174 }
2175 
2176 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2177 {
2178 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2179 }
2180 
2181 static inline int f2fs_has_extra_attr(struct inode *inode);
2182 static inline block_t datablock_addr(struct inode *inode,
2183 			struct page *node_page, unsigned int offset)
2184 {
2185 	struct f2fs_node *raw_node;
2186 	__le32 *addr_array;
2187 	int base = 0;
2188 	bool is_inode = IS_INODE(node_page);
2189 
2190 	raw_node = F2FS_NODE(node_page);
2191 
2192 	/* from GC path only */
2193 	if (is_inode) {
2194 		if (!inode)
2195 			base = offset_in_addr(&raw_node->i);
2196 		else if (f2fs_has_extra_attr(inode))
2197 			base = get_extra_isize(inode);
2198 	}
2199 
2200 	addr_array = blkaddr_in_node(raw_node);
2201 	return le32_to_cpu(addr_array[base + offset]);
2202 }
2203 
2204 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2205 {
2206 	int mask;
2207 
2208 	addr += (nr >> 3);
2209 	mask = 1 << (7 - (nr & 0x07));
2210 	return mask & *addr;
2211 }
2212 
2213 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2214 {
2215 	int mask;
2216 
2217 	addr += (nr >> 3);
2218 	mask = 1 << (7 - (nr & 0x07));
2219 	*addr |= mask;
2220 }
2221 
2222 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2223 {
2224 	int mask;
2225 
2226 	addr += (nr >> 3);
2227 	mask = 1 << (7 - (nr & 0x07));
2228 	*addr &= ~mask;
2229 }
2230 
2231 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2232 {
2233 	int mask;
2234 	int ret;
2235 
2236 	addr += (nr >> 3);
2237 	mask = 1 << (7 - (nr & 0x07));
2238 	ret = mask & *addr;
2239 	*addr |= mask;
2240 	return ret;
2241 }
2242 
2243 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2244 {
2245 	int mask;
2246 	int ret;
2247 
2248 	addr += (nr >> 3);
2249 	mask = 1 << (7 - (nr & 0x07));
2250 	ret = mask & *addr;
2251 	*addr &= ~mask;
2252 	return ret;
2253 }
2254 
2255 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2256 {
2257 	int mask;
2258 
2259 	addr += (nr >> 3);
2260 	mask = 1 << (7 - (nr & 0x07));
2261 	*addr ^= mask;
2262 }
2263 
2264 /*
2265  * Inode flags
2266  */
2267 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2268 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2269 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2270 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2271 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2272 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2273 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2274 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2275 /* Reserved for compression usage... */
2276 #define F2FS_DIRTY_FL			0x00000100
2277 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2278 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2279 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2280 /* End compression flags --- maybe not all used */
2281 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2282 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2283 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2284 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2285 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2286 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2287 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2288 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2289 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2290 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2291 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2292 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2293 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2294 
2295 #define F2FS_FL_USER_VISIBLE		0x304BDFFF /* User visible flags */
2296 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2297 
2298 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2299 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2300 					 F2FS_IMMUTABLE_FL | \
2301 					 F2FS_APPEND_FL | \
2302 					 F2FS_NODUMP_FL | \
2303 					 F2FS_NOATIME_FL | \
2304 					 F2FS_PROJINHERIT_FL)
2305 
2306 /* Flags that should be inherited by new inodes from their parent. */
2307 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2308 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2309 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2310 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2311 			   F2FS_PROJINHERIT_FL)
2312 
2313 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2314 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2315 
2316 /* Flags that are appropriate for non-directories/regular files. */
2317 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2318 
2319 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2320 {
2321 	if (S_ISDIR(mode))
2322 		return flags;
2323 	else if (S_ISREG(mode))
2324 		return flags & F2FS_REG_FLMASK;
2325 	else
2326 		return flags & F2FS_OTHER_FLMASK;
2327 }
2328 
2329 /* used for f2fs_inode_info->flags */
2330 enum {
2331 	FI_NEW_INODE,		/* indicate newly allocated inode */
2332 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2333 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2334 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2335 	FI_INC_LINK,		/* need to increment i_nlink */
2336 	FI_ACL_MODE,		/* indicate acl mode */
2337 	FI_NO_ALLOC,		/* should not allocate any blocks */
2338 	FI_FREE_NID,		/* free allocated nide */
2339 	FI_NO_EXTENT,		/* not to use the extent cache */
2340 	FI_INLINE_XATTR,	/* used for inline xattr */
2341 	FI_INLINE_DATA,		/* used for inline data*/
2342 	FI_INLINE_DENTRY,	/* used for inline dentry */
2343 	FI_APPEND_WRITE,	/* inode has appended data */
2344 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2345 	FI_NEED_IPU,		/* used for ipu per file */
2346 	FI_ATOMIC_FILE,		/* indicate atomic file */
2347 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2348 	FI_VOLATILE_FILE,	/* indicate volatile file */
2349 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2350 	FI_DROP_CACHE,		/* drop dirty page cache */
2351 	FI_DATA_EXIST,		/* indicate data exists */
2352 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2353 	FI_DO_DEFRAG,		/* indicate defragment is running */
2354 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2355 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2356 	FI_HOT_DATA,		/* indicate file is hot */
2357 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2358 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2359 	FI_PIN_FILE,		/* indicate file should not be gced */
2360 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2361 };
2362 
2363 static inline void __mark_inode_dirty_flag(struct inode *inode,
2364 						int flag, bool set)
2365 {
2366 	switch (flag) {
2367 	case FI_INLINE_XATTR:
2368 	case FI_INLINE_DATA:
2369 	case FI_INLINE_DENTRY:
2370 	case FI_NEW_INODE:
2371 		if (set)
2372 			return;
2373 	case FI_DATA_EXIST:
2374 	case FI_INLINE_DOTS:
2375 	case FI_PIN_FILE:
2376 		f2fs_mark_inode_dirty_sync(inode, true);
2377 	}
2378 }
2379 
2380 static inline void set_inode_flag(struct inode *inode, int flag)
2381 {
2382 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2383 		set_bit(flag, &F2FS_I(inode)->flags);
2384 	__mark_inode_dirty_flag(inode, flag, true);
2385 }
2386 
2387 static inline int is_inode_flag_set(struct inode *inode, int flag)
2388 {
2389 	return test_bit(flag, &F2FS_I(inode)->flags);
2390 }
2391 
2392 static inline void clear_inode_flag(struct inode *inode, int flag)
2393 {
2394 	if (test_bit(flag, &F2FS_I(inode)->flags))
2395 		clear_bit(flag, &F2FS_I(inode)->flags);
2396 	__mark_inode_dirty_flag(inode, flag, false);
2397 }
2398 
2399 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2400 {
2401 	F2FS_I(inode)->i_acl_mode = mode;
2402 	set_inode_flag(inode, FI_ACL_MODE);
2403 	f2fs_mark_inode_dirty_sync(inode, false);
2404 }
2405 
2406 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2407 {
2408 	if (inc)
2409 		inc_nlink(inode);
2410 	else
2411 		drop_nlink(inode);
2412 	f2fs_mark_inode_dirty_sync(inode, true);
2413 }
2414 
2415 static inline void f2fs_i_blocks_write(struct inode *inode,
2416 					block_t diff, bool add, bool claim)
2417 {
2418 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2419 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2420 
2421 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2422 	if (add) {
2423 		if (claim)
2424 			dquot_claim_block(inode, diff);
2425 		else
2426 			dquot_alloc_block_nofail(inode, diff);
2427 	} else {
2428 		dquot_free_block(inode, diff);
2429 	}
2430 
2431 	f2fs_mark_inode_dirty_sync(inode, true);
2432 	if (clean || recover)
2433 		set_inode_flag(inode, FI_AUTO_RECOVER);
2434 }
2435 
2436 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2437 {
2438 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2439 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2440 
2441 	if (i_size_read(inode) == i_size)
2442 		return;
2443 
2444 	i_size_write(inode, i_size);
2445 	f2fs_mark_inode_dirty_sync(inode, true);
2446 	if (clean || recover)
2447 		set_inode_flag(inode, FI_AUTO_RECOVER);
2448 }
2449 
2450 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2451 {
2452 	F2FS_I(inode)->i_current_depth = depth;
2453 	f2fs_mark_inode_dirty_sync(inode, true);
2454 }
2455 
2456 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2457 					unsigned int count)
2458 {
2459 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2460 	f2fs_mark_inode_dirty_sync(inode, true);
2461 }
2462 
2463 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2464 {
2465 	F2FS_I(inode)->i_xattr_nid = xnid;
2466 	f2fs_mark_inode_dirty_sync(inode, true);
2467 }
2468 
2469 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2470 {
2471 	F2FS_I(inode)->i_pino = pino;
2472 	f2fs_mark_inode_dirty_sync(inode, true);
2473 }
2474 
2475 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2476 {
2477 	struct f2fs_inode_info *fi = F2FS_I(inode);
2478 
2479 	if (ri->i_inline & F2FS_INLINE_XATTR)
2480 		set_bit(FI_INLINE_XATTR, &fi->flags);
2481 	if (ri->i_inline & F2FS_INLINE_DATA)
2482 		set_bit(FI_INLINE_DATA, &fi->flags);
2483 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2484 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2485 	if (ri->i_inline & F2FS_DATA_EXIST)
2486 		set_bit(FI_DATA_EXIST, &fi->flags);
2487 	if (ri->i_inline & F2FS_INLINE_DOTS)
2488 		set_bit(FI_INLINE_DOTS, &fi->flags);
2489 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2490 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2491 	if (ri->i_inline & F2FS_PIN_FILE)
2492 		set_bit(FI_PIN_FILE, &fi->flags);
2493 }
2494 
2495 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2496 {
2497 	ri->i_inline = 0;
2498 
2499 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2500 		ri->i_inline |= F2FS_INLINE_XATTR;
2501 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2502 		ri->i_inline |= F2FS_INLINE_DATA;
2503 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2504 		ri->i_inline |= F2FS_INLINE_DENTRY;
2505 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2506 		ri->i_inline |= F2FS_DATA_EXIST;
2507 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2508 		ri->i_inline |= F2FS_INLINE_DOTS;
2509 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2510 		ri->i_inline |= F2FS_EXTRA_ATTR;
2511 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2512 		ri->i_inline |= F2FS_PIN_FILE;
2513 }
2514 
2515 static inline int f2fs_has_extra_attr(struct inode *inode)
2516 {
2517 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2518 }
2519 
2520 static inline int f2fs_has_inline_xattr(struct inode *inode)
2521 {
2522 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2523 }
2524 
2525 static inline unsigned int addrs_per_inode(struct inode *inode)
2526 {
2527 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2528 }
2529 
2530 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2531 {
2532 	struct f2fs_inode *ri = F2FS_INODE(page);
2533 
2534 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2535 					get_inline_xattr_addrs(inode)]);
2536 }
2537 
2538 static inline int inline_xattr_size(struct inode *inode)
2539 {
2540 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2541 }
2542 
2543 static inline int f2fs_has_inline_data(struct inode *inode)
2544 {
2545 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2546 }
2547 
2548 static inline int f2fs_exist_data(struct inode *inode)
2549 {
2550 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2551 }
2552 
2553 static inline int f2fs_has_inline_dots(struct inode *inode)
2554 {
2555 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2556 }
2557 
2558 static inline bool f2fs_is_pinned_file(struct inode *inode)
2559 {
2560 	return is_inode_flag_set(inode, FI_PIN_FILE);
2561 }
2562 
2563 static inline bool f2fs_is_atomic_file(struct inode *inode)
2564 {
2565 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2566 }
2567 
2568 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2569 {
2570 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2571 }
2572 
2573 static inline bool f2fs_is_volatile_file(struct inode *inode)
2574 {
2575 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2576 }
2577 
2578 static inline bool f2fs_is_first_block_written(struct inode *inode)
2579 {
2580 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2581 }
2582 
2583 static inline bool f2fs_is_drop_cache(struct inode *inode)
2584 {
2585 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2586 }
2587 
2588 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2589 {
2590 	struct f2fs_inode *ri = F2FS_INODE(page);
2591 	int extra_size = get_extra_isize(inode);
2592 
2593 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2594 }
2595 
2596 static inline int f2fs_has_inline_dentry(struct inode *inode)
2597 {
2598 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2599 }
2600 
2601 static inline int is_file(struct inode *inode, int type)
2602 {
2603 	return F2FS_I(inode)->i_advise & type;
2604 }
2605 
2606 static inline void set_file(struct inode *inode, int type)
2607 {
2608 	F2FS_I(inode)->i_advise |= type;
2609 	f2fs_mark_inode_dirty_sync(inode, true);
2610 }
2611 
2612 static inline void clear_file(struct inode *inode, int type)
2613 {
2614 	F2FS_I(inode)->i_advise &= ~type;
2615 	f2fs_mark_inode_dirty_sync(inode, true);
2616 }
2617 
2618 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2619 {
2620 	bool ret;
2621 
2622 	if (dsync) {
2623 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2624 
2625 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2626 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2627 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2628 		return ret;
2629 	}
2630 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2631 			file_keep_isize(inode) ||
2632 			i_size_read(inode) & ~PAGE_MASK)
2633 		return false;
2634 
2635 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2636 		return false;
2637 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2638 		return false;
2639 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2640 		return false;
2641 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2642 						&F2FS_I(inode)->i_crtime))
2643 		return false;
2644 
2645 	down_read(&F2FS_I(inode)->i_sem);
2646 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2647 	up_read(&F2FS_I(inode)->i_sem);
2648 
2649 	return ret;
2650 }
2651 
2652 static inline bool f2fs_readonly(struct super_block *sb)
2653 {
2654 	return sb_rdonly(sb);
2655 }
2656 
2657 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2658 {
2659 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2660 }
2661 
2662 static inline bool is_dot_dotdot(const struct qstr *str)
2663 {
2664 	if (str->len == 1 && str->name[0] == '.')
2665 		return true;
2666 
2667 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2668 		return true;
2669 
2670 	return false;
2671 }
2672 
2673 static inline bool f2fs_may_extent_tree(struct inode *inode)
2674 {
2675 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2676 			is_inode_flag_set(inode, FI_NO_EXTENT))
2677 		return false;
2678 
2679 	return S_ISREG(inode->i_mode);
2680 }
2681 
2682 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2683 					size_t size, gfp_t flags)
2684 {
2685 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2686 		f2fs_show_injection_info(FAULT_KMALLOC);
2687 		return NULL;
2688 	}
2689 
2690 	return kmalloc(size, flags);
2691 }
2692 
2693 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2694 					size_t size, gfp_t flags)
2695 {
2696 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2697 }
2698 
2699 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2700 					size_t size, gfp_t flags)
2701 {
2702 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2703 		f2fs_show_injection_info(FAULT_KVMALLOC);
2704 		return NULL;
2705 	}
2706 
2707 	return kvmalloc(size, flags);
2708 }
2709 
2710 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2711 					size_t size, gfp_t flags)
2712 {
2713 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2714 }
2715 
2716 static inline int get_extra_isize(struct inode *inode)
2717 {
2718 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2719 }
2720 
2721 static inline int get_inline_xattr_addrs(struct inode *inode)
2722 {
2723 	return F2FS_I(inode)->i_inline_xattr_size;
2724 }
2725 
2726 #define f2fs_get_inode_mode(i) \
2727 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2728 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2729 
2730 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2731 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2732 	offsetof(struct f2fs_inode, i_extra_isize))	\
2733 
2734 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2735 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2736 		((offsetof(typeof(*f2fs_inode), field) +	\
2737 		sizeof((f2fs_inode)->field))			\
2738 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2739 
2740 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2741 {
2742 	int i;
2743 
2744 	spin_lock(&sbi->iostat_lock);
2745 	for (i = 0; i < NR_IO_TYPE; i++)
2746 		sbi->write_iostat[i] = 0;
2747 	spin_unlock(&sbi->iostat_lock);
2748 }
2749 
2750 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2751 			enum iostat_type type, unsigned long long io_bytes)
2752 {
2753 	if (!sbi->iostat_enable)
2754 		return;
2755 	spin_lock(&sbi->iostat_lock);
2756 	sbi->write_iostat[type] += io_bytes;
2757 
2758 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2759 		sbi->write_iostat[APP_BUFFERED_IO] =
2760 			sbi->write_iostat[APP_WRITE_IO] -
2761 			sbi->write_iostat[APP_DIRECT_IO];
2762 	spin_unlock(&sbi->iostat_lock);
2763 }
2764 
2765 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META &&	\
2766 				(!is_read_io(fio->op) || fio->is_meta))
2767 
2768 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2769 					block_t blkaddr, int type);
2770 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2771 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2772 					block_t blkaddr, int type)
2773 {
2774 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2775 		f2fs_msg(sbi->sb, KERN_ERR,
2776 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2777 			blkaddr, type);
2778 		f2fs_bug_on(sbi, 1);
2779 	}
2780 }
2781 
2782 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2783 {
2784 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2785 		return false;
2786 	return true;
2787 }
2788 
2789 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2790 						block_t blkaddr)
2791 {
2792 	if (!__is_valid_data_blkaddr(blkaddr))
2793 		return false;
2794 	verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2795 	return true;
2796 }
2797 
2798 /*
2799  * file.c
2800  */
2801 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2802 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2803 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock,
2804 							bool buf_write);
2805 int f2fs_truncate(struct inode *inode);
2806 int f2fs_getattr(const struct path *path, struct kstat *stat,
2807 			u32 request_mask, unsigned int flags);
2808 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2809 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2810 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2811 int f2fs_precache_extents(struct inode *inode);
2812 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2813 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2814 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2815 int f2fs_pin_file_control(struct inode *inode, bool inc);
2816 
2817 /*
2818  * inode.c
2819  */
2820 void f2fs_set_inode_flags(struct inode *inode);
2821 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2822 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2823 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2824 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2825 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2826 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2827 void f2fs_update_inode_page(struct inode *inode);
2828 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2829 void f2fs_evict_inode(struct inode *inode);
2830 void f2fs_handle_failed_inode(struct inode *inode);
2831 
2832 /*
2833  * namei.c
2834  */
2835 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2836 							bool hot, bool set);
2837 struct dentry *f2fs_get_parent(struct dentry *child);
2838 
2839 /*
2840  * dir.c
2841  */
2842 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2843 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2844 			f2fs_hash_t namehash, int *max_slots,
2845 			struct f2fs_dentry_ptr *d);
2846 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2847 			unsigned int start_pos, struct fscrypt_str *fstr);
2848 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2849 			struct f2fs_dentry_ptr *d);
2850 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2851 			const struct qstr *new_name,
2852 			const struct qstr *orig_name, struct page *dpage);
2853 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2854 			unsigned int current_depth);
2855 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2856 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2857 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2858 			struct fscrypt_name *fname, struct page **res_page);
2859 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2860 			const struct qstr *child, struct page **res_page);
2861 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2862 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2863 			struct page **page);
2864 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2865 			struct page *page, struct inode *inode);
2866 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2867 			const struct qstr *name, f2fs_hash_t name_hash,
2868 			unsigned int bit_pos);
2869 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2870 			const struct qstr *orig_name,
2871 			struct inode *inode, nid_t ino, umode_t mode);
2872 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2873 			struct inode *inode, nid_t ino, umode_t mode);
2874 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2875 			struct inode *inode, nid_t ino, umode_t mode);
2876 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2877 			struct inode *dir, struct inode *inode);
2878 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2879 bool f2fs_empty_dir(struct inode *dir);
2880 
2881 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2882 {
2883 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2884 				inode, inode->i_ino, inode->i_mode);
2885 }
2886 
2887 /*
2888  * super.c
2889  */
2890 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2891 void f2fs_inode_synced(struct inode *inode);
2892 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2893 int f2fs_quota_sync(struct super_block *sb, int type);
2894 void f2fs_quota_off_umount(struct super_block *sb);
2895 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2896 int f2fs_sync_fs(struct super_block *sb, int sync);
2897 extern __printf(3, 4)
2898 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2899 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2900 
2901 /*
2902  * hash.c
2903  */
2904 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2905 				struct fscrypt_name *fname);
2906 
2907 /*
2908  * node.c
2909  */
2910 struct dnode_of_data;
2911 struct node_info;
2912 
2913 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2914 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2915 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2916 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2917 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2918 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2919 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2920 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2921 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2922 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2923 						struct node_info *ni);
2924 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2925 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2926 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2927 int f2fs_truncate_xattr_node(struct inode *inode);
2928 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2929 					unsigned int seq_id);
2930 int f2fs_remove_inode_page(struct inode *inode);
2931 struct page *f2fs_new_inode_page(struct inode *inode);
2932 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2933 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2934 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2935 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2936 int f2fs_move_node_page(struct page *node_page, int gc_type);
2937 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2938 			struct writeback_control *wbc, bool atomic,
2939 			unsigned int *seq_id);
2940 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2941 			struct writeback_control *wbc,
2942 			bool do_balance, enum iostat_type io_type);
2943 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2944 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2945 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2946 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2947 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2948 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2949 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2950 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2951 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2952 			unsigned int segno, struct f2fs_summary_block *sum);
2953 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2954 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2955 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2956 int __init f2fs_create_node_manager_caches(void);
2957 void f2fs_destroy_node_manager_caches(void);
2958 
2959 /*
2960  * segment.c
2961  */
2962 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
2963 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
2964 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
2965 void f2fs_drop_inmem_pages(struct inode *inode);
2966 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
2967 int f2fs_commit_inmem_pages(struct inode *inode);
2968 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2969 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2970 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2971 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
2972 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2973 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2974 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2975 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2976 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
2977 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
2978 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2979 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2980 					struct cp_control *cpc);
2981 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
2982 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
2983 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
2984 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2985 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
2986 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2987 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2988 					struct cp_control *cpc);
2989 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2990 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
2991 					block_t blk_addr);
2992 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2993 						enum iostat_type io_type);
2994 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2995 void f2fs_outplace_write_data(struct dnode_of_data *dn,
2996 			struct f2fs_io_info *fio);
2997 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
2998 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2999 			block_t old_blkaddr, block_t new_blkaddr,
3000 			bool recover_curseg, bool recover_newaddr);
3001 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3002 			block_t old_addr, block_t new_addr,
3003 			unsigned char version, bool recover_curseg,
3004 			bool recover_newaddr);
3005 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3006 			block_t old_blkaddr, block_t *new_blkaddr,
3007 			struct f2fs_summary *sum, int type,
3008 			struct f2fs_io_info *fio, bool add_list);
3009 void f2fs_wait_on_page_writeback(struct page *page,
3010 			enum page_type type, bool ordered);
3011 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3012 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3013 								block_t len);
3014 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3015 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3016 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3017 			unsigned int val, int alloc);
3018 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3019 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3020 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3021 int __init f2fs_create_segment_manager_caches(void);
3022 void f2fs_destroy_segment_manager_caches(void);
3023 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3024 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3025 			enum page_type type, enum temp_type temp);
3026 
3027 /*
3028  * checkpoint.c
3029  */
3030 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3031 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3032 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3033 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3034 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3035 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3036 					block_t blkaddr, int type);
3037 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3038 			int type, bool sync);
3039 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3040 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3041 			long nr_to_write, enum iostat_type io_type);
3042 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3043 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3044 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3045 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3046 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3047 					unsigned int devidx, int type);
3048 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3049 					unsigned int devidx, int type);
3050 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3051 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3052 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3053 void f2fs_add_orphan_inode(struct inode *inode);
3054 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3055 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3056 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3057 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3058 void f2fs_remove_dirty_inode(struct inode *inode);
3059 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3060 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3061 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3062 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3063 int __init f2fs_create_checkpoint_caches(void);
3064 void f2fs_destroy_checkpoint_caches(void);
3065 
3066 /*
3067  * data.c
3068  */
3069 int f2fs_init_post_read_processing(void);
3070 void f2fs_destroy_post_read_processing(void);
3071 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3072 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3073 				struct inode *inode, struct page *page,
3074 				nid_t ino, enum page_type type);
3075 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3076 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3077 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3078 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3079 			block_t blk_addr, struct bio *bio);
3080 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3081 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3082 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3083 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3084 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3085 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3086 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3087 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3088 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3089 			int op_flags, bool for_write);
3090 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3091 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3092 			bool for_write);
3093 struct page *f2fs_get_new_data_page(struct inode *inode,
3094 			struct page *ipage, pgoff_t index, bool new_i_size);
3095 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3096 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3097 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3098 			int create, int flag);
3099 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3100 			u64 start, u64 len);
3101 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3102 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3103 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3104 			unsigned int length);
3105 int f2fs_release_page(struct page *page, gfp_t wait);
3106 #ifdef CONFIG_MIGRATION
3107 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3108 			struct page *page, enum migrate_mode mode);
3109 #endif
3110 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3111 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3112 
3113 /*
3114  * gc.c
3115  */
3116 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3117 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3118 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3119 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3120 			unsigned int segno);
3121 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3122 
3123 /*
3124  * recovery.c
3125  */
3126 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3127 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3128 
3129 /*
3130  * debug.c
3131  */
3132 #ifdef CONFIG_F2FS_STAT_FS
3133 struct f2fs_stat_info {
3134 	struct list_head stat_list;
3135 	struct f2fs_sb_info *sbi;
3136 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3137 	int main_area_segs, main_area_sections, main_area_zones;
3138 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3139 	unsigned long long hit_total, total_ext;
3140 	int ext_tree, zombie_tree, ext_node;
3141 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3142 	int ndirty_data, ndirty_qdata;
3143 	int inmem_pages;
3144 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3145 	int nats, dirty_nats, sits, dirty_sits;
3146 	int free_nids, avail_nids, alloc_nids;
3147 	int total_count, utilization;
3148 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3149 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3150 	unsigned int io_skip_bggc, other_skip_bggc;
3151 	int nr_flushing, nr_flushed, flush_list_empty;
3152 	int nr_discarding, nr_discarded;
3153 	int nr_discard_cmd;
3154 	unsigned int undiscard_blks;
3155 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3156 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3157 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3158 	unsigned int bimodal, avg_vblocks;
3159 	int util_free, util_valid, util_invalid;
3160 	int rsvd_segs, overp_segs;
3161 	int dirty_count, node_pages, meta_pages;
3162 	int prefree_count, call_count, cp_count, bg_cp_count;
3163 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3164 	int bg_node_segs, bg_data_segs;
3165 	int tot_blks, data_blks, node_blks;
3166 	int bg_data_blks, bg_node_blks;
3167 	unsigned long long skipped_atomic_files[2];
3168 	int curseg[NR_CURSEG_TYPE];
3169 	int cursec[NR_CURSEG_TYPE];
3170 	int curzone[NR_CURSEG_TYPE];
3171 
3172 	unsigned int meta_count[META_MAX];
3173 	unsigned int segment_count[2];
3174 	unsigned int block_count[2];
3175 	unsigned int inplace_count;
3176 	unsigned long long base_mem, cache_mem, page_mem;
3177 };
3178 
3179 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3180 {
3181 	return (struct f2fs_stat_info *)sbi->stat_info;
3182 }
3183 
3184 #define stat_inc_cp_count(si)		((si)->cp_count++)
3185 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3186 #define stat_inc_call_count(si)		((si)->call_count++)
3187 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3188 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3189 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3190 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3191 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3192 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3193 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3194 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3195 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3196 #define stat_inc_inline_xattr(inode)					\
3197 	do {								\
3198 		if (f2fs_has_inline_xattr(inode))			\
3199 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3200 	} while (0)
3201 #define stat_dec_inline_xattr(inode)					\
3202 	do {								\
3203 		if (f2fs_has_inline_xattr(inode))			\
3204 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3205 	} while (0)
3206 #define stat_inc_inline_inode(inode)					\
3207 	do {								\
3208 		if (f2fs_has_inline_data(inode))			\
3209 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3210 	} while (0)
3211 #define stat_dec_inline_inode(inode)					\
3212 	do {								\
3213 		if (f2fs_has_inline_data(inode))			\
3214 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3215 	} while (0)
3216 #define stat_inc_inline_dir(inode)					\
3217 	do {								\
3218 		if (f2fs_has_inline_dentry(inode))			\
3219 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3220 	} while (0)
3221 #define stat_dec_inline_dir(inode)					\
3222 	do {								\
3223 		if (f2fs_has_inline_dentry(inode))			\
3224 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3225 	} while (0)
3226 #define stat_inc_meta_count(sbi, blkaddr)				\
3227 	do {								\
3228 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3229 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3230 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3231 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3232 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3233 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3234 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3235 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3236 	} while (0)
3237 #define stat_inc_seg_type(sbi, curseg)					\
3238 		((sbi)->segment_count[(curseg)->alloc_type]++)
3239 #define stat_inc_block_count(sbi, curseg)				\
3240 		((sbi)->block_count[(curseg)->alloc_type]++)
3241 #define stat_inc_inplace_blocks(sbi)					\
3242 		(atomic_inc(&(sbi)->inplace_count))
3243 #define stat_inc_atomic_write(inode)					\
3244 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3245 #define stat_dec_atomic_write(inode)					\
3246 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3247 #define stat_update_max_atomic_write(inode)				\
3248 	do {								\
3249 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3250 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3251 		if (cur > max)						\
3252 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3253 	} while (0)
3254 #define stat_inc_volatile_write(inode)					\
3255 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3256 #define stat_dec_volatile_write(inode)					\
3257 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3258 #define stat_update_max_volatile_write(inode)				\
3259 	do {								\
3260 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3261 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3262 		if (cur > max)						\
3263 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3264 	} while (0)
3265 #define stat_inc_seg_count(sbi, type, gc_type)				\
3266 	do {								\
3267 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3268 		si->tot_segs++;						\
3269 		if ((type) == SUM_TYPE_DATA) {				\
3270 			si->data_segs++;				\
3271 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3272 		} else {						\
3273 			si->node_segs++;				\
3274 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3275 		}							\
3276 	} while (0)
3277 
3278 #define stat_inc_tot_blk_count(si, blks)				\
3279 	((si)->tot_blks += (blks))
3280 
3281 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3282 	do {								\
3283 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3284 		stat_inc_tot_blk_count(si, blks);			\
3285 		si->data_blks += (blks);				\
3286 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3287 	} while (0)
3288 
3289 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3290 	do {								\
3291 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3292 		stat_inc_tot_blk_count(si, blks);			\
3293 		si->node_blks += (blks);				\
3294 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3295 	} while (0)
3296 
3297 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3298 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3299 int __init f2fs_create_root_stats(void);
3300 void f2fs_destroy_root_stats(void);
3301 #else
3302 #define stat_inc_cp_count(si)				do { } while (0)
3303 #define stat_inc_bg_cp_count(si)			do { } while (0)
3304 #define stat_inc_call_count(si)				do { } while (0)
3305 #define stat_inc_bggc_count(si)				do { } while (0)
3306 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3307 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3308 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3309 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3310 #define stat_inc_total_hit(sb)				do { } while (0)
3311 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3312 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3313 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3314 #define stat_inc_inline_xattr(inode)			do { } while (0)
3315 #define stat_dec_inline_xattr(inode)			do { } while (0)
3316 #define stat_inc_inline_inode(inode)			do { } while (0)
3317 #define stat_dec_inline_inode(inode)			do { } while (0)
3318 #define stat_inc_inline_dir(inode)			do { } while (0)
3319 #define stat_dec_inline_dir(inode)			do { } while (0)
3320 #define stat_inc_atomic_write(inode)			do { } while (0)
3321 #define stat_dec_atomic_write(inode)			do { } while (0)
3322 #define stat_update_max_atomic_write(inode)		do { } while (0)
3323 #define stat_inc_volatile_write(inode)			do { } while (0)
3324 #define stat_dec_volatile_write(inode)			do { } while (0)
3325 #define stat_update_max_volatile_write(inode)		do { } while (0)
3326 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3327 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3328 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3329 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3330 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3331 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3332 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3333 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3334 
3335 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3336 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3337 static inline int __init f2fs_create_root_stats(void) { return 0; }
3338 static inline void f2fs_destroy_root_stats(void) { }
3339 #endif
3340 
3341 extern const struct file_operations f2fs_dir_operations;
3342 extern const struct file_operations f2fs_file_operations;
3343 extern const struct inode_operations f2fs_file_inode_operations;
3344 extern const struct address_space_operations f2fs_dblock_aops;
3345 extern const struct address_space_operations f2fs_node_aops;
3346 extern const struct address_space_operations f2fs_meta_aops;
3347 extern const struct inode_operations f2fs_dir_inode_operations;
3348 extern const struct inode_operations f2fs_symlink_inode_operations;
3349 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3350 extern const struct inode_operations f2fs_special_inode_operations;
3351 extern struct kmem_cache *f2fs_inode_entry_slab;
3352 
3353 /*
3354  * inline.c
3355  */
3356 bool f2fs_may_inline_data(struct inode *inode);
3357 bool f2fs_may_inline_dentry(struct inode *inode);
3358 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3359 void f2fs_truncate_inline_inode(struct inode *inode,
3360 						struct page *ipage, u64 from);
3361 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3362 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3363 int f2fs_convert_inline_inode(struct inode *inode);
3364 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3365 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3366 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3367 			struct fscrypt_name *fname, struct page **res_page);
3368 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3369 			struct page *ipage);
3370 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3371 			const struct qstr *orig_name,
3372 			struct inode *inode, nid_t ino, umode_t mode);
3373 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3374 				struct page *page, struct inode *dir,
3375 				struct inode *inode);
3376 bool f2fs_empty_inline_dir(struct inode *dir);
3377 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3378 			struct fscrypt_str *fstr);
3379 int f2fs_inline_data_fiemap(struct inode *inode,
3380 			struct fiemap_extent_info *fieinfo,
3381 			__u64 start, __u64 len);
3382 
3383 /*
3384  * shrinker.c
3385  */
3386 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3387 			struct shrink_control *sc);
3388 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3389 			struct shrink_control *sc);
3390 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3391 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3392 
3393 /*
3394  * extent_cache.c
3395  */
3396 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3397 				struct rb_entry *cached_re, unsigned int ofs);
3398 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3399 				struct rb_root_cached *root,
3400 				struct rb_node **parent,
3401 				unsigned int ofs, bool *leftmost);
3402 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3403 		struct rb_entry *cached_re, unsigned int ofs,
3404 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3405 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3406 		bool force, bool *leftmost);
3407 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3408 						struct rb_root_cached *root);
3409 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3410 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3411 void f2fs_drop_extent_tree(struct inode *inode);
3412 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3413 void f2fs_destroy_extent_tree(struct inode *inode);
3414 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3415 			struct extent_info *ei);
3416 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3417 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3418 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3419 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3420 int __init f2fs_create_extent_cache(void);
3421 void f2fs_destroy_extent_cache(void);
3422 
3423 /*
3424  * sysfs.c
3425  */
3426 int __init f2fs_init_sysfs(void);
3427 void f2fs_exit_sysfs(void);
3428 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3429 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3430 
3431 /*
3432  * crypto support
3433  */
3434 static inline bool f2fs_encrypted_inode(struct inode *inode)
3435 {
3436 	return file_is_encrypt(inode);
3437 }
3438 
3439 static inline bool f2fs_encrypted_file(struct inode *inode)
3440 {
3441 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3442 }
3443 
3444 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3445 {
3446 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3447 	file_set_encrypt(inode);
3448 	f2fs_set_inode_flags(inode);
3449 #endif
3450 }
3451 
3452 /*
3453  * Returns true if the reads of the inode's data need to undergo some
3454  * postprocessing step, like decryption or authenticity verification.
3455  */
3456 static inline bool f2fs_post_read_required(struct inode *inode)
3457 {
3458 	return f2fs_encrypted_file(inode);
3459 }
3460 
3461 #define F2FS_FEATURE_FUNCS(name, flagname) \
3462 static inline int f2fs_sb_has_##name(struct super_block *sb) \
3463 { \
3464 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \
3465 }
3466 
3467 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3468 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3469 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3470 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3471 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3472 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3473 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3474 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3475 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3476 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3477 
3478 #ifdef CONFIG_BLK_DEV_ZONED
3479 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3480 			struct block_device *bdev, block_t blkaddr)
3481 {
3482 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3483 	int i;
3484 
3485 	for (i = 0; i < sbi->s_ndevs; i++)
3486 		if (FDEV(i).bdev == bdev)
3487 			return FDEV(i).blkz_type[zno];
3488 	return -EINVAL;
3489 }
3490 #endif
3491 
3492 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3493 {
3494 	return f2fs_sb_has_blkzoned(sbi->sb);
3495 }
3496 
3497 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3498 {
3499 	return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3500 }
3501 
3502 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3503 {
3504 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3505 					f2fs_hw_should_discard(sbi);
3506 }
3507 
3508 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3509 {
3510 	clear_opt(sbi, ADAPTIVE);
3511 	clear_opt(sbi, LFS);
3512 
3513 	switch (mt) {
3514 	case F2FS_MOUNT_ADAPTIVE:
3515 		set_opt(sbi, ADAPTIVE);
3516 		break;
3517 	case F2FS_MOUNT_LFS:
3518 		set_opt(sbi, LFS);
3519 		break;
3520 	}
3521 }
3522 
3523 static inline bool f2fs_may_encrypt(struct inode *inode)
3524 {
3525 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3526 	umode_t mode = inode->i_mode;
3527 
3528 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3529 #else
3530 	return false;
3531 #endif
3532 }
3533 
3534 static inline int block_unaligned_IO(struct inode *inode,
3535 				struct kiocb *iocb, struct iov_iter *iter)
3536 {
3537 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3538 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3539 	loff_t offset = iocb->ki_pos;
3540 	unsigned long align = offset | iov_iter_alignment(iter);
3541 
3542 	return align & blocksize_mask;
3543 }
3544 
3545 static inline int allow_outplace_dio(struct inode *inode,
3546 				struct kiocb *iocb, struct iov_iter *iter)
3547 {
3548 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3549 	int rw = iov_iter_rw(iter);
3550 
3551 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3552 				!block_unaligned_IO(inode, iocb, iter));
3553 }
3554 
3555 static inline bool f2fs_force_buffered_io(struct inode *inode,
3556 				struct kiocb *iocb, struct iov_iter *iter)
3557 {
3558 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3559 	int rw = iov_iter_rw(iter);
3560 
3561 	if (f2fs_post_read_required(inode))
3562 		return true;
3563 	if (sbi->s_ndevs)
3564 		return true;
3565 	/*
3566 	 * for blkzoned device, fallback direct IO to buffered IO, so
3567 	 * all IOs can be serialized by log-structured write.
3568 	 */
3569 	if (f2fs_sb_has_blkzoned(sbi->sb))
3570 		return true;
3571 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3572 				block_unaligned_IO(inode, iocb, iter))
3573 		return true;
3574 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3575 		return true;
3576 
3577 	return false;
3578 }
3579 
3580 #ifdef CONFIG_F2FS_FAULT_INJECTION
3581 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3582 							unsigned int type);
3583 #else
3584 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3585 #endif
3586 
3587 #endif
3588 
3589 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3590 {
3591 #ifdef CONFIG_QUOTA
3592 	if (f2fs_sb_has_quota_ino(sbi->sb))
3593 		return true;
3594 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3595 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3596 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3597 		return true;
3598 #endif
3599 	return false;
3600 }
3601