xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 7eec52db361a6ae6fbbd86c2299718586866b664)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
25 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition)					\
28 	do {								\
29 		if (unlikely(condition)) {				\
30 			WARN_ON(1);					\
31 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
32 		}							\
33 	} while (0)
34 #define f2fs_down_write(x, y)	down_write(x)
35 #endif
36 
37 /*
38  * For mount options
39  */
40 #define F2FS_MOUNT_BG_GC		0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
42 #define F2FS_MOUNT_DISCARD		0x00000004
43 #define F2FS_MOUNT_NOHEAP		0x00000008
44 #define F2FS_MOUNT_XATTR_USER		0x00000010
45 #define F2FS_MOUNT_POSIX_ACL		0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
48 #define F2FS_MOUNT_INLINE_DATA		0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
51 #define F2FS_MOUNT_NOBARRIER		0x00000800
52 #define F2FS_MOUNT_FASTBOOT		0x00001000
53 
54 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
55 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
56 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
57 
58 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
59 		typecheck(unsigned long long, b) &&			\
60 		((long long)((a) - (b)) > 0))
61 
62 typedef u32 block_t;	/*
63 			 * should not change u32, since it is the on-disk block
64 			 * address format, __le32.
65 			 */
66 typedef u32 nid_t;
67 
68 struct f2fs_mount_info {
69 	unsigned int	opt;
70 };
71 
72 #define CRCPOLY_LE 0xedb88320
73 
74 static inline __u32 f2fs_crc32(void *buf, size_t len)
75 {
76 	unsigned char *p = (unsigned char *)buf;
77 	__u32 crc = F2FS_SUPER_MAGIC;
78 	int i;
79 
80 	while (len--) {
81 		crc ^= *p++;
82 		for (i = 0; i < 8; i++)
83 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 	}
85 	return crc;
86 }
87 
88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
89 {
90 	return f2fs_crc32(buf, buf_size) == blk_crc;
91 }
92 
93 /*
94  * For checkpoint manager
95  */
96 enum {
97 	NAT_BITMAP,
98 	SIT_BITMAP
99 };
100 
101 enum {
102 	CP_UMOUNT,
103 	CP_FASTBOOT,
104 	CP_SYNC,
105 	CP_DISCARD,
106 };
107 
108 #define DEF_BATCHED_TRIM_SECTIONS	32
109 #define BATCHED_TRIM_SEGMENTS(sbi)	\
110 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
111 
112 struct cp_control {
113 	int reason;
114 	__u64 trim_start;
115 	__u64 trim_end;
116 	__u64 trim_minlen;
117 	__u64 trimmed;
118 };
119 
120 /*
121  * For CP/NAT/SIT/SSA readahead
122  */
123 enum {
124 	META_CP,
125 	META_NAT,
126 	META_SIT,
127 	META_SSA,
128 	META_POR,
129 };
130 
131 /* for the list of ino */
132 enum {
133 	ORPHAN_INO,		/* for orphan ino list */
134 	APPEND_INO,		/* for append ino list */
135 	UPDATE_INO,		/* for update ino list */
136 	MAX_INO_ENTRY,		/* max. list */
137 };
138 
139 struct ino_entry {
140 	struct list_head list;	/* list head */
141 	nid_t ino;		/* inode number */
142 };
143 
144 /*
145  * for the list of directory inodes or gc inodes.
146  * NOTE: there are two slab users for this structure, if we add/modify/delete
147  * fields in structure for one of slab users, it may affect fields or size of
148  * other one, in this condition, it's better to split both of slab and related
149  * data structure.
150  */
151 struct inode_entry {
152 	struct list_head list;	/* list head */
153 	struct inode *inode;	/* vfs inode pointer */
154 };
155 
156 /* for the list of blockaddresses to be discarded */
157 struct discard_entry {
158 	struct list_head list;	/* list head */
159 	block_t blkaddr;	/* block address to be discarded */
160 	int len;		/* # of consecutive blocks of the discard */
161 };
162 
163 /* for the list of fsync inodes, used only during recovery */
164 struct fsync_inode_entry {
165 	struct list_head list;	/* list head */
166 	struct inode *inode;	/* vfs inode pointer */
167 	block_t blkaddr;	/* block address locating the last fsync */
168 	block_t last_dentry;	/* block address locating the last dentry */
169 	block_t last_inode;	/* block address locating the last inode */
170 };
171 
172 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
173 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
174 
175 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
176 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
177 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
178 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
179 
180 #define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
181 #define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
182 
183 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
184 {
185 	int before = nats_in_cursum(rs);
186 	rs->n_nats = cpu_to_le16(before + i);
187 	return before;
188 }
189 
190 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
191 {
192 	int before = sits_in_cursum(rs);
193 	rs->n_sits = cpu_to_le16(before + i);
194 	return before;
195 }
196 
197 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
198 								int type)
199 {
200 	if (type == NAT_JOURNAL)
201 		return size <= MAX_NAT_JENTRIES(sum);
202 	return size <= MAX_SIT_JENTRIES(sum);
203 }
204 
205 /*
206  * ioctl commands
207  */
208 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
209 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
210 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
211 
212 #define F2FS_IOCTL_MAGIC		0xf5
213 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
214 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
215 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
216 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
217 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
218 
219 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
220 /*
221  * ioctl commands in 32 bit emulation
222  */
223 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
224 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
225 #endif
226 
227 /*
228  * For INODE and NODE manager
229  */
230 /* for directory operations */
231 struct f2fs_dentry_ptr {
232 	const void *bitmap;
233 	struct f2fs_dir_entry *dentry;
234 	__u8 (*filename)[F2FS_SLOT_LEN];
235 	int max;
236 };
237 
238 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
239 					void *src, int type)
240 {
241 	if (type == 1) {
242 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
243 		d->max = NR_DENTRY_IN_BLOCK;
244 		d->bitmap = &t->dentry_bitmap;
245 		d->dentry = t->dentry;
246 		d->filename = t->filename;
247 	} else {
248 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
249 		d->max = NR_INLINE_DENTRY;
250 		d->bitmap = &t->dentry_bitmap;
251 		d->dentry = t->dentry;
252 		d->filename = t->filename;
253 	}
254 }
255 
256 /*
257  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
258  * as its node offset to distinguish from index node blocks.
259  * But some bits are used to mark the node block.
260  */
261 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
262 				>> OFFSET_BIT_SHIFT)
263 enum {
264 	ALLOC_NODE,			/* allocate a new node page if needed */
265 	LOOKUP_NODE,			/* look up a node without readahead */
266 	LOOKUP_NODE_RA,			/*
267 					 * look up a node with readahead called
268 					 * by get_data_block.
269 					 */
270 };
271 
272 #define F2FS_LINK_MAX		32000	/* maximum link count per file */
273 
274 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
275 
276 /* for in-memory extent cache entry */
277 #define F2FS_MIN_EXTENT_LEN	16	/* minimum extent length */
278 
279 struct extent_info {
280 	rwlock_t ext_lock;	/* rwlock for consistency */
281 	unsigned int fofs;	/* start offset in a file */
282 	u32 blk_addr;		/* start block address of the extent */
283 	unsigned int len;	/* length of the extent */
284 };
285 
286 /*
287  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
288  */
289 #define FADVISE_COLD_BIT	0x01
290 #define FADVISE_LOST_PINO_BIT	0x02
291 
292 #define DEF_DIR_LEVEL		0
293 
294 struct f2fs_inode_info {
295 	struct inode vfs_inode;		/* serve a vfs inode */
296 	unsigned long i_flags;		/* keep an inode flags for ioctl */
297 	unsigned char i_advise;		/* use to give file attribute hints */
298 	unsigned char i_dir_level;	/* use for dentry level for large dir */
299 	unsigned int i_current_depth;	/* use only in directory structure */
300 	unsigned int i_pino;		/* parent inode number */
301 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
302 
303 	/* Use below internally in f2fs*/
304 	unsigned long flags;		/* use to pass per-file flags */
305 	struct rw_semaphore i_sem;	/* protect fi info */
306 	atomic_t dirty_pages;		/* # of dirty pages */
307 	f2fs_hash_t chash;		/* hash value of given file name */
308 	unsigned int clevel;		/* maximum level of given file name */
309 	nid_t i_xattr_nid;		/* node id that contains xattrs */
310 	unsigned long long xattr_ver;	/* cp version of xattr modification */
311 	struct extent_info ext;		/* in-memory extent cache entry */
312 	struct inode_entry *dirty_dir;	/* the pointer of dirty dir */
313 
314 	struct radix_tree_root inmem_root;	/* radix tree for inmem pages */
315 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
316 	struct mutex inmem_lock;	/* lock for inmemory pages */
317 };
318 
319 static inline void get_extent_info(struct extent_info *ext,
320 					struct f2fs_extent i_ext)
321 {
322 	write_lock(&ext->ext_lock);
323 	ext->fofs = le32_to_cpu(i_ext.fofs);
324 	ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
325 	ext->len = le32_to_cpu(i_ext.len);
326 	write_unlock(&ext->ext_lock);
327 }
328 
329 static inline void set_raw_extent(struct extent_info *ext,
330 					struct f2fs_extent *i_ext)
331 {
332 	read_lock(&ext->ext_lock);
333 	i_ext->fofs = cpu_to_le32(ext->fofs);
334 	i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
335 	i_ext->len = cpu_to_le32(ext->len);
336 	read_unlock(&ext->ext_lock);
337 }
338 
339 struct f2fs_nm_info {
340 	block_t nat_blkaddr;		/* base disk address of NAT */
341 	nid_t max_nid;			/* maximum possible node ids */
342 	nid_t available_nids;		/* maximum available node ids */
343 	nid_t next_scan_nid;		/* the next nid to be scanned */
344 	unsigned int ram_thresh;	/* control the memory footprint */
345 
346 	/* NAT cache management */
347 	struct radix_tree_root nat_root;/* root of the nat entry cache */
348 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
349 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
350 	struct list_head nat_entries;	/* cached nat entry list (clean) */
351 	unsigned int nat_cnt;		/* the # of cached nat entries */
352 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
353 
354 	/* free node ids management */
355 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
356 	struct list_head free_nid_list;	/* a list for free nids */
357 	spinlock_t free_nid_list_lock;	/* protect free nid list */
358 	unsigned int fcnt;		/* the number of free node id */
359 	struct mutex build_lock;	/* lock for build free nids */
360 
361 	/* for checkpoint */
362 	char *nat_bitmap;		/* NAT bitmap pointer */
363 	int bitmap_size;		/* bitmap size */
364 };
365 
366 /*
367  * this structure is used as one of function parameters.
368  * all the information are dedicated to a given direct node block determined
369  * by the data offset in a file.
370  */
371 struct dnode_of_data {
372 	struct inode *inode;		/* vfs inode pointer */
373 	struct page *inode_page;	/* its inode page, NULL is possible */
374 	struct page *node_page;		/* cached direct node page */
375 	nid_t nid;			/* node id of the direct node block */
376 	unsigned int ofs_in_node;	/* data offset in the node page */
377 	bool inode_page_locked;		/* inode page is locked or not */
378 	block_t	data_blkaddr;		/* block address of the node block */
379 };
380 
381 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
382 		struct page *ipage, struct page *npage, nid_t nid)
383 {
384 	memset(dn, 0, sizeof(*dn));
385 	dn->inode = inode;
386 	dn->inode_page = ipage;
387 	dn->node_page = npage;
388 	dn->nid = nid;
389 }
390 
391 /*
392  * For SIT manager
393  *
394  * By default, there are 6 active log areas across the whole main area.
395  * When considering hot and cold data separation to reduce cleaning overhead,
396  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
397  * respectively.
398  * In the current design, you should not change the numbers intentionally.
399  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
400  * logs individually according to the underlying devices. (default: 6)
401  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
402  * data and 8 for node logs.
403  */
404 #define	NR_CURSEG_DATA_TYPE	(3)
405 #define NR_CURSEG_NODE_TYPE	(3)
406 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
407 
408 enum {
409 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
410 	CURSEG_WARM_DATA,	/* data blocks */
411 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
412 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
413 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
414 	CURSEG_COLD_NODE,	/* indirect node blocks */
415 	NO_CHECK_TYPE,
416 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
417 };
418 
419 struct flush_cmd {
420 	struct completion wait;
421 	struct llist_node llnode;
422 	int ret;
423 };
424 
425 struct flush_cmd_control {
426 	struct task_struct *f2fs_issue_flush;	/* flush thread */
427 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
428 	struct llist_head issue_list;		/* list for command issue */
429 	struct llist_node *dispatch_list;	/* list for command dispatch */
430 };
431 
432 struct f2fs_sm_info {
433 	struct sit_info *sit_info;		/* whole segment information */
434 	struct free_segmap_info *free_info;	/* free segment information */
435 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
436 	struct curseg_info *curseg_array;	/* active segment information */
437 
438 	block_t seg0_blkaddr;		/* block address of 0'th segment */
439 	block_t main_blkaddr;		/* start block address of main area */
440 	block_t ssa_blkaddr;		/* start block address of SSA area */
441 
442 	unsigned int segment_count;	/* total # of segments */
443 	unsigned int main_segments;	/* # of segments in main area */
444 	unsigned int reserved_segments;	/* # of reserved segments */
445 	unsigned int ovp_segments;	/* # of overprovision segments */
446 
447 	/* a threshold to reclaim prefree segments */
448 	unsigned int rec_prefree_segments;
449 
450 	/* for small discard management */
451 	struct list_head discard_list;		/* 4KB discard list */
452 	int nr_discards;			/* # of discards in the list */
453 	int max_discards;			/* max. discards to be issued */
454 
455 	/* for batched trimming */
456 	unsigned int trim_sections;		/* # of sections to trim */
457 
458 	struct list_head sit_entry_set;	/* sit entry set list */
459 
460 	unsigned int ipu_policy;	/* in-place-update policy */
461 	unsigned int min_ipu_util;	/* in-place-update threshold */
462 	unsigned int min_fsync_blocks;	/* threshold for fsync */
463 
464 	/* for flush command control */
465 	struct flush_cmd_control *cmd_control_info;
466 
467 };
468 
469 /*
470  * For superblock
471  */
472 /*
473  * COUNT_TYPE for monitoring
474  *
475  * f2fs monitors the number of several block types such as on-writeback,
476  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
477  */
478 enum count_type {
479 	F2FS_WRITEBACK,
480 	F2FS_DIRTY_DENTS,
481 	F2FS_DIRTY_NODES,
482 	F2FS_DIRTY_META,
483 	F2FS_INMEM_PAGES,
484 	NR_COUNT_TYPE,
485 };
486 
487 /*
488  * The below are the page types of bios used in submit_bio().
489  * The available types are:
490  * DATA			User data pages. It operates as async mode.
491  * NODE			Node pages. It operates as async mode.
492  * META			FS metadata pages such as SIT, NAT, CP.
493  * NR_PAGE_TYPE		The number of page types.
494  * META_FLUSH		Make sure the previous pages are written
495  *			with waiting the bio's completion
496  * ...			Only can be used with META.
497  */
498 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
499 enum page_type {
500 	DATA,
501 	NODE,
502 	META,
503 	NR_PAGE_TYPE,
504 	META_FLUSH,
505 };
506 
507 struct f2fs_io_info {
508 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
509 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
510 	block_t blk_addr;	/* block address to be written */
511 };
512 
513 #define is_read_io(rw)	(((rw) & 1) == READ)
514 struct f2fs_bio_info {
515 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
516 	struct bio *bio;		/* bios to merge */
517 	sector_t last_block_in_bio;	/* last block number */
518 	struct f2fs_io_info fio;	/* store buffered io info. */
519 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
520 };
521 
522 /* for inner inode cache management */
523 struct inode_management {
524 	struct radix_tree_root ino_root;	/* ino entry array */
525 	spinlock_t ino_lock;			/* for ino entry lock */
526 	struct list_head ino_list;		/* inode list head */
527 	unsigned long ino_num;			/* number of entries */
528 };
529 
530 /* For s_flag in struct f2fs_sb_info */
531 enum {
532 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
533 	SBI_IS_CLOSE,				/* specify unmounting */
534 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
535 	SBI_POR_DOING,				/* recovery is doing or not */
536 };
537 
538 struct f2fs_sb_info {
539 	struct super_block *sb;			/* pointer to VFS super block */
540 	struct proc_dir_entry *s_proc;		/* proc entry */
541 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
542 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
543 	int s_flag;				/* flags for sbi */
544 
545 	/* for node-related operations */
546 	struct f2fs_nm_info *nm_info;		/* node manager */
547 	struct inode *node_inode;		/* cache node blocks */
548 
549 	/* for segment-related operations */
550 	struct f2fs_sm_info *sm_info;		/* segment manager */
551 
552 	/* for bio operations */
553 	struct f2fs_bio_info read_io;			/* for read bios */
554 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
555 
556 	/* for checkpoint */
557 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
558 	struct inode *meta_inode;		/* cache meta blocks */
559 	struct mutex cp_mutex;			/* checkpoint procedure lock */
560 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
561 	struct rw_semaphore node_write;		/* locking node writes */
562 	struct mutex writepages;		/* mutex for writepages() */
563 	wait_queue_head_t cp_wait;
564 
565 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
566 
567 	/* for orphan inode, use 0'th array */
568 	unsigned int max_orphans;		/* max orphan inodes */
569 
570 	/* for directory inode management */
571 	struct list_head dir_inode_list;	/* dir inode list */
572 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
573 
574 	/* basic filesystem units */
575 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
576 	unsigned int log_blocksize;		/* log2 block size */
577 	unsigned int blocksize;			/* block size */
578 	unsigned int root_ino_num;		/* root inode number*/
579 	unsigned int node_ino_num;		/* node inode number*/
580 	unsigned int meta_ino_num;		/* meta inode number*/
581 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
582 	unsigned int blocks_per_seg;		/* blocks per segment */
583 	unsigned int segs_per_sec;		/* segments per section */
584 	unsigned int secs_per_zone;		/* sections per zone */
585 	unsigned int total_sections;		/* total section count */
586 	unsigned int total_node_count;		/* total node block count */
587 	unsigned int total_valid_node_count;	/* valid node block count */
588 	unsigned int total_valid_inode_count;	/* valid inode count */
589 	int active_logs;			/* # of active logs */
590 	int dir_level;				/* directory level */
591 
592 	block_t user_block_count;		/* # of user blocks */
593 	block_t total_valid_block_count;	/* # of valid blocks */
594 	block_t alloc_valid_block_count;	/* # of allocated blocks */
595 	block_t last_valid_block_count;		/* for recovery */
596 	u32 s_next_generation;			/* for NFS support */
597 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
598 
599 	struct f2fs_mount_info mount_opt;	/* mount options */
600 
601 	/* for cleaning operations */
602 	struct mutex gc_mutex;			/* mutex for GC */
603 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
604 	unsigned int cur_victim_sec;		/* current victim section num */
605 
606 	/* maximum # of trials to find a victim segment for SSR and GC */
607 	unsigned int max_victim_search;
608 
609 	/*
610 	 * for stat information.
611 	 * one is for the LFS mode, and the other is for the SSR mode.
612 	 */
613 #ifdef CONFIG_F2FS_STAT_FS
614 	struct f2fs_stat_info *stat_info;	/* FS status information */
615 	unsigned int segment_count[2];		/* # of allocated segments */
616 	unsigned int block_count[2];		/* # of allocated blocks */
617 	atomic_t inplace_count;		/* # of inplace update */
618 	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
619 	atomic_t inline_inode;			/* # of inline_data inodes */
620 	atomic_t inline_dir;			/* # of inline_dentry inodes */
621 	int bg_gc;				/* background gc calls */
622 	unsigned int n_dirty_dirs;		/* # of dir inodes */
623 #endif
624 	unsigned int last_victim[2];		/* last victim segment # */
625 	spinlock_t stat_lock;			/* lock for stat operations */
626 
627 	/* For sysfs suppport */
628 	struct kobject s_kobj;
629 	struct completion s_kobj_unregister;
630 };
631 
632 /*
633  * Inline functions
634  */
635 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
636 {
637 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
638 }
639 
640 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
641 {
642 	return sb->s_fs_info;
643 }
644 
645 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
646 {
647 	return F2FS_SB(inode->i_sb);
648 }
649 
650 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
651 {
652 	return F2FS_I_SB(mapping->host);
653 }
654 
655 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
656 {
657 	return F2FS_M_SB(page->mapping);
658 }
659 
660 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
661 {
662 	return (struct f2fs_super_block *)(sbi->raw_super);
663 }
664 
665 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
666 {
667 	return (struct f2fs_checkpoint *)(sbi->ckpt);
668 }
669 
670 static inline struct f2fs_node *F2FS_NODE(struct page *page)
671 {
672 	return (struct f2fs_node *)page_address(page);
673 }
674 
675 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
676 {
677 	return &((struct f2fs_node *)page_address(page))->i;
678 }
679 
680 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
681 {
682 	return (struct f2fs_nm_info *)(sbi->nm_info);
683 }
684 
685 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
686 {
687 	return (struct f2fs_sm_info *)(sbi->sm_info);
688 }
689 
690 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
691 {
692 	return (struct sit_info *)(SM_I(sbi)->sit_info);
693 }
694 
695 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
696 {
697 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
698 }
699 
700 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
701 {
702 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
703 }
704 
705 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
706 {
707 	return sbi->meta_inode->i_mapping;
708 }
709 
710 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
711 {
712 	return sbi->node_inode->i_mapping;
713 }
714 
715 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
716 {
717 	return sbi->s_flag & (0x01 << type);
718 }
719 
720 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
721 {
722 	sbi->s_flag |= (0x01 << type);
723 }
724 
725 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
726 {
727 	sbi->s_flag &= ~(0x01 << type);
728 }
729 
730 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
731 {
732 	return le64_to_cpu(cp->checkpoint_ver);
733 }
734 
735 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
736 {
737 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
738 	return ckpt_flags & f;
739 }
740 
741 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
742 {
743 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
744 	ckpt_flags |= f;
745 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
746 }
747 
748 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
749 {
750 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
751 	ckpt_flags &= (~f);
752 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
753 }
754 
755 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
756 {
757 	down_read(&sbi->cp_rwsem);
758 }
759 
760 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
761 {
762 	up_read(&sbi->cp_rwsem);
763 }
764 
765 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
766 {
767 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
768 }
769 
770 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
771 {
772 	up_write(&sbi->cp_rwsem);
773 }
774 
775 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
776 {
777 	int reason = CP_SYNC;
778 
779 	if (test_opt(sbi, FASTBOOT))
780 		reason = CP_FASTBOOT;
781 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
782 		reason = CP_UMOUNT;
783 	return reason;
784 }
785 
786 static inline bool __remain_node_summaries(int reason)
787 {
788 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
789 }
790 
791 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
792 {
793 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
794 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
795 }
796 
797 /*
798  * Check whether the given nid is within node id range.
799  */
800 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
801 {
802 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
803 		return -EINVAL;
804 	if (unlikely(nid >= NM_I(sbi)->max_nid))
805 		return -EINVAL;
806 	return 0;
807 }
808 
809 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
810 
811 /*
812  * Check whether the inode has blocks or not
813  */
814 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
815 {
816 	if (F2FS_I(inode)->i_xattr_nid)
817 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
818 	else
819 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
820 }
821 
822 static inline bool f2fs_has_xattr_block(unsigned int ofs)
823 {
824 	return ofs == XATTR_NODE_OFFSET;
825 }
826 
827 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
828 				 struct inode *inode, blkcnt_t count)
829 {
830 	block_t	valid_block_count;
831 
832 	spin_lock(&sbi->stat_lock);
833 	valid_block_count =
834 		sbi->total_valid_block_count + (block_t)count;
835 	if (unlikely(valid_block_count > sbi->user_block_count)) {
836 		spin_unlock(&sbi->stat_lock);
837 		return false;
838 	}
839 	inode->i_blocks += count;
840 	sbi->total_valid_block_count = valid_block_count;
841 	sbi->alloc_valid_block_count += (block_t)count;
842 	spin_unlock(&sbi->stat_lock);
843 	return true;
844 }
845 
846 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
847 						struct inode *inode,
848 						blkcnt_t count)
849 {
850 	spin_lock(&sbi->stat_lock);
851 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
852 	f2fs_bug_on(sbi, inode->i_blocks < count);
853 	inode->i_blocks -= count;
854 	sbi->total_valid_block_count -= (block_t)count;
855 	spin_unlock(&sbi->stat_lock);
856 }
857 
858 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
859 {
860 	atomic_inc(&sbi->nr_pages[count_type]);
861 	set_sbi_flag(sbi, SBI_IS_DIRTY);
862 }
863 
864 static inline void inode_inc_dirty_pages(struct inode *inode)
865 {
866 	atomic_inc(&F2FS_I(inode)->dirty_pages);
867 	if (S_ISDIR(inode->i_mode))
868 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
869 }
870 
871 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
872 {
873 	atomic_dec(&sbi->nr_pages[count_type]);
874 }
875 
876 static inline void inode_dec_dirty_pages(struct inode *inode)
877 {
878 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
879 		return;
880 
881 	atomic_dec(&F2FS_I(inode)->dirty_pages);
882 
883 	if (S_ISDIR(inode->i_mode))
884 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
885 }
886 
887 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
888 {
889 	return atomic_read(&sbi->nr_pages[count_type]);
890 }
891 
892 static inline int get_dirty_pages(struct inode *inode)
893 {
894 	return atomic_read(&F2FS_I(inode)->dirty_pages);
895 }
896 
897 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
898 {
899 	unsigned int pages_per_sec = sbi->segs_per_sec *
900 					(1 << sbi->log_blocks_per_seg);
901 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
902 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
903 }
904 
905 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
906 {
907 	return sbi->total_valid_block_count;
908 }
909 
910 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
911 {
912 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
913 
914 	/* return NAT or SIT bitmap */
915 	if (flag == NAT_BITMAP)
916 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
917 	else if (flag == SIT_BITMAP)
918 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
919 
920 	return 0;
921 }
922 
923 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
924 {
925 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
926 	int offset;
927 
928 	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
929 		if (flag == NAT_BITMAP)
930 			return &ckpt->sit_nat_version_bitmap;
931 		else
932 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
933 	} else {
934 		offset = (flag == NAT_BITMAP) ?
935 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
936 		return &ckpt->sit_nat_version_bitmap + offset;
937 	}
938 }
939 
940 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
941 {
942 	block_t start_addr;
943 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
944 	unsigned long long ckpt_version = cur_cp_version(ckpt);
945 
946 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
947 
948 	/*
949 	 * odd numbered checkpoint should at cp segment 0
950 	 * and even segment must be at cp segment 1
951 	 */
952 	if (!(ckpt_version & 1))
953 		start_addr += sbi->blocks_per_seg;
954 
955 	return start_addr;
956 }
957 
958 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
959 {
960 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
961 }
962 
963 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
964 						struct inode *inode)
965 {
966 	block_t	valid_block_count;
967 	unsigned int valid_node_count;
968 
969 	spin_lock(&sbi->stat_lock);
970 
971 	valid_block_count = sbi->total_valid_block_count + 1;
972 	if (unlikely(valid_block_count > sbi->user_block_count)) {
973 		spin_unlock(&sbi->stat_lock);
974 		return false;
975 	}
976 
977 	valid_node_count = sbi->total_valid_node_count + 1;
978 	if (unlikely(valid_node_count > sbi->total_node_count)) {
979 		spin_unlock(&sbi->stat_lock);
980 		return false;
981 	}
982 
983 	if (inode)
984 		inode->i_blocks++;
985 
986 	sbi->alloc_valid_block_count++;
987 	sbi->total_valid_node_count++;
988 	sbi->total_valid_block_count++;
989 	spin_unlock(&sbi->stat_lock);
990 
991 	return true;
992 }
993 
994 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
995 						struct inode *inode)
996 {
997 	spin_lock(&sbi->stat_lock);
998 
999 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1000 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1001 	f2fs_bug_on(sbi, !inode->i_blocks);
1002 
1003 	inode->i_blocks--;
1004 	sbi->total_valid_node_count--;
1005 	sbi->total_valid_block_count--;
1006 
1007 	spin_unlock(&sbi->stat_lock);
1008 }
1009 
1010 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1011 {
1012 	return sbi->total_valid_node_count;
1013 }
1014 
1015 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1016 {
1017 	spin_lock(&sbi->stat_lock);
1018 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1019 	sbi->total_valid_inode_count++;
1020 	spin_unlock(&sbi->stat_lock);
1021 }
1022 
1023 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1024 {
1025 	spin_lock(&sbi->stat_lock);
1026 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1027 	sbi->total_valid_inode_count--;
1028 	spin_unlock(&sbi->stat_lock);
1029 }
1030 
1031 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1032 {
1033 	return sbi->total_valid_inode_count;
1034 }
1035 
1036 static inline void f2fs_put_page(struct page *page, int unlock)
1037 {
1038 	if (!page)
1039 		return;
1040 
1041 	if (unlock) {
1042 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1043 		unlock_page(page);
1044 	}
1045 	page_cache_release(page);
1046 }
1047 
1048 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1049 {
1050 	if (dn->node_page)
1051 		f2fs_put_page(dn->node_page, 1);
1052 	if (dn->inode_page && dn->node_page != dn->inode_page)
1053 		f2fs_put_page(dn->inode_page, 0);
1054 	dn->node_page = NULL;
1055 	dn->inode_page = NULL;
1056 }
1057 
1058 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1059 					size_t size)
1060 {
1061 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1062 }
1063 
1064 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1065 						gfp_t flags)
1066 {
1067 	void *entry;
1068 retry:
1069 	entry = kmem_cache_alloc(cachep, flags);
1070 	if (!entry) {
1071 		cond_resched();
1072 		goto retry;
1073 	}
1074 
1075 	return entry;
1076 }
1077 
1078 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1079 				unsigned long index, void *item)
1080 {
1081 	while (radix_tree_insert(root, index, item))
1082 		cond_resched();
1083 }
1084 
1085 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1086 
1087 static inline bool IS_INODE(struct page *page)
1088 {
1089 	struct f2fs_node *p = F2FS_NODE(page);
1090 	return RAW_IS_INODE(p);
1091 }
1092 
1093 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1094 {
1095 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1096 }
1097 
1098 static inline block_t datablock_addr(struct page *node_page,
1099 		unsigned int offset)
1100 {
1101 	struct f2fs_node *raw_node;
1102 	__le32 *addr_array;
1103 	raw_node = F2FS_NODE(node_page);
1104 	addr_array = blkaddr_in_node(raw_node);
1105 	return le32_to_cpu(addr_array[offset]);
1106 }
1107 
1108 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1109 {
1110 	int mask;
1111 
1112 	addr += (nr >> 3);
1113 	mask = 1 << (7 - (nr & 0x07));
1114 	return mask & *addr;
1115 }
1116 
1117 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1118 {
1119 	int mask;
1120 	int ret;
1121 
1122 	addr += (nr >> 3);
1123 	mask = 1 << (7 - (nr & 0x07));
1124 	ret = mask & *addr;
1125 	*addr |= mask;
1126 	return ret;
1127 }
1128 
1129 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1130 {
1131 	int mask;
1132 	int ret;
1133 
1134 	addr += (nr >> 3);
1135 	mask = 1 << (7 - (nr & 0x07));
1136 	ret = mask & *addr;
1137 	*addr &= ~mask;
1138 	return ret;
1139 }
1140 
1141 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1142 {
1143 	int mask;
1144 
1145 	addr += (nr >> 3);
1146 	mask = 1 << (7 - (nr & 0x07));
1147 	*addr ^= mask;
1148 }
1149 
1150 /* used for f2fs_inode_info->flags */
1151 enum {
1152 	FI_NEW_INODE,		/* indicate newly allocated inode */
1153 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1154 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1155 	FI_INC_LINK,		/* need to increment i_nlink */
1156 	FI_ACL_MODE,		/* indicate acl mode */
1157 	FI_NO_ALLOC,		/* should not allocate any blocks */
1158 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1159 	FI_DELAY_IPUT,		/* used for the recovery */
1160 	FI_NO_EXTENT,		/* not to use the extent cache */
1161 	FI_INLINE_XATTR,	/* used for inline xattr */
1162 	FI_INLINE_DATA,		/* used for inline data*/
1163 	FI_INLINE_DENTRY,	/* used for inline dentry */
1164 	FI_APPEND_WRITE,	/* inode has appended data */
1165 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1166 	FI_NEED_IPU,		/* used for ipu per file */
1167 	FI_ATOMIC_FILE,		/* indicate atomic file */
1168 	FI_VOLATILE_FILE,	/* indicate volatile file */
1169 	FI_DROP_CACHE,		/* drop dirty page cache */
1170 	FI_DATA_EXIST,		/* indicate data exists */
1171 };
1172 
1173 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1174 {
1175 	if (!test_bit(flag, &fi->flags))
1176 		set_bit(flag, &fi->flags);
1177 }
1178 
1179 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1180 {
1181 	return test_bit(flag, &fi->flags);
1182 }
1183 
1184 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1185 {
1186 	if (test_bit(flag, &fi->flags))
1187 		clear_bit(flag, &fi->flags);
1188 }
1189 
1190 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1191 {
1192 	fi->i_acl_mode = mode;
1193 	set_inode_flag(fi, FI_ACL_MODE);
1194 }
1195 
1196 static inline void get_inline_info(struct f2fs_inode_info *fi,
1197 					struct f2fs_inode *ri)
1198 {
1199 	if (ri->i_inline & F2FS_INLINE_XATTR)
1200 		set_inode_flag(fi, FI_INLINE_XATTR);
1201 	if (ri->i_inline & F2FS_INLINE_DATA)
1202 		set_inode_flag(fi, FI_INLINE_DATA);
1203 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1204 		set_inode_flag(fi, FI_INLINE_DENTRY);
1205 	if (ri->i_inline & F2FS_DATA_EXIST)
1206 		set_inode_flag(fi, FI_DATA_EXIST);
1207 }
1208 
1209 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1210 					struct f2fs_inode *ri)
1211 {
1212 	ri->i_inline = 0;
1213 
1214 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1215 		ri->i_inline |= F2FS_INLINE_XATTR;
1216 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1217 		ri->i_inline |= F2FS_INLINE_DATA;
1218 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1219 		ri->i_inline |= F2FS_INLINE_DENTRY;
1220 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1221 		ri->i_inline |= F2FS_DATA_EXIST;
1222 }
1223 
1224 static inline int f2fs_has_inline_xattr(struct inode *inode)
1225 {
1226 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1227 }
1228 
1229 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1230 {
1231 	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1232 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1233 	return DEF_ADDRS_PER_INODE;
1234 }
1235 
1236 static inline void *inline_xattr_addr(struct page *page)
1237 {
1238 	struct f2fs_inode *ri = F2FS_INODE(page);
1239 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1240 					F2FS_INLINE_XATTR_ADDRS]);
1241 }
1242 
1243 static inline int inline_xattr_size(struct inode *inode)
1244 {
1245 	if (f2fs_has_inline_xattr(inode))
1246 		return F2FS_INLINE_XATTR_ADDRS << 2;
1247 	else
1248 		return 0;
1249 }
1250 
1251 static inline int f2fs_has_inline_data(struct inode *inode)
1252 {
1253 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1254 }
1255 
1256 static inline void f2fs_clear_inline_inode(struct inode *inode)
1257 {
1258 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1259 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1260 }
1261 
1262 static inline int f2fs_exist_data(struct inode *inode)
1263 {
1264 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1265 }
1266 
1267 static inline bool f2fs_is_atomic_file(struct inode *inode)
1268 {
1269 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1270 }
1271 
1272 static inline bool f2fs_is_volatile_file(struct inode *inode)
1273 {
1274 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1275 }
1276 
1277 static inline bool f2fs_is_drop_cache(struct inode *inode)
1278 {
1279 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1280 }
1281 
1282 static inline void *inline_data_addr(struct page *page)
1283 {
1284 	struct f2fs_inode *ri = F2FS_INODE(page);
1285 	return (void *)&(ri->i_addr[1]);
1286 }
1287 
1288 static inline int f2fs_has_inline_dentry(struct inode *inode)
1289 {
1290 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1291 }
1292 
1293 static inline void *inline_dentry_addr(struct page *page)
1294 {
1295 	struct f2fs_inode *ri = F2FS_INODE(page);
1296 	return (void *)&(ri->i_addr[1]);
1297 }
1298 
1299 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1300 {
1301 	if (!f2fs_has_inline_dentry(dir))
1302 		kunmap(page);
1303 }
1304 
1305 static inline int f2fs_readonly(struct super_block *sb)
1306 {
1307 	return sb->s_flags & MS_RDONLY;
1308 }
1309 
1310 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1311 {
1312 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1313 }
1314 
1315 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1316 {
1317 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1318 	sbi->sb->s_flags |= MS_RDONLY;
1319 }
1320 
1321 #define get_inode_mode(i) \
1322 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1323 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1324 
1325 /* get offset of first page in next direct node */
1326 #define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1327 	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1328 	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1329 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1330 
1331 /*
1332  * file.c
1333  */
1334 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1335 void truncate_data_blocks(struct dnode_of_data *);
1336 int truncate_blocks(struct inode *, u64, bool);
1337 void f2fs_truncate(struct inode *);
1338 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1339 int f2fs_setattr(struct dentry *, struct iattr *);
1340 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1341 int truncate_data_blocks_range(struct dnode_of_data *, int);
1342 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1343 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1344 
1345 /*
1346  * inode.c
1347  */
1348 void f2fs_set_inode_flags(struct inode *);
1349 struct inode *f2fs_iget(struct super_block *, unsigned long);
1350 int try_to_free_nats(struct f2fs_sb_info *, int);
1351 void update_inode(struct inode *, struct page *);
1352 void update_inode_page(struct inode *);
1353 int f2fs_write_inode(struct inode *, struct writeback_control *);
1354 void f2fs_evict_inode(struct inode *);
1355 void handle_failed_inode(struct inode *);
1356 
1357 /*
1358  * namei.c
1359  */
1360 struct dentry *f2fs_get_parent(struct dentry *child);
1361 
1362 /*
1363  * dir.c
1364  */
1365 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1366 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1367 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1368 			struct f2fs_dentry_ptr *);
1369 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1370 			unsigned int);
1371 void do_make_empty_dir(struct inode *, struct inode *,
1372 			struct f2fs_dentry_ptr *);
1373 struct page *init_inode_metadata(struct inode *, struct inode *,
1374 			const struct qstr *, struct page *);
1375 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1376 int room_for_filename(const void *, int, int);
1377 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1378 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1379 							struct page **);
1380 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1381 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1382 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1383 				struct page *, struct inode *);
1384 int update_dent_inode(struct inode *, const struct qstr *);
1385 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1386 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1387 							struct inode *);
1388 int f2fs_do_tmpfile(struct inode *, struct inode *);
1389 int f2fs_make_empty(struct inode *, struct inode *);
1390 bool f2fs_empty_dir(struct inode *);
1391 
1392 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1393 {
1394 	return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1395 				inode);
1396 }
1397 
1398 /*
1399  * super.c
1400  */
1401 int f2fs_sync_fs(struct super_block *, int);
1402 extern __printf(3, 4)
1403 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1404 
1405 /*
1406  * hash.c
1407  */
1408 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1409 
1410 /*
1411  * node.c
1412  */
1413 struct dnode_of_data;
1414 struct node_info;
1415 
1416 bool available_free_memory(struct f2fs_sb_info *, int);
1417 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1418 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1419 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1420 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1421 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1422 int truncate_inode_blocks(struct inode *, pgoff_t);
1423 int truncate_xattr_node(struct inode *, struct page *);
1424 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1425 void remove_inode_page(struct inode *);
1426 struct page *new_inode_page(struct inode *);
1427 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1428 void ra_node_page(struct f2fs_sb_info *, nid_t);
1429 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1430 struct page *get_node_page_ra(struct page *, int);
1431 void sync_inode_page(struct dnode_of_data *);
1432 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1433 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1434 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1435 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1436 void recover_inline_xattr(struct inode *, struct page *);
1437 void recover_xattr_data(struct inode *, struct page *, block_t);
1438 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1439 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1440 				struct f2fs_summary_block *);
1441 void flush_nat_entries(struct f2fs_sb_info *);
1442 int build_node_manager(struct f2fs_sb_info *);
1443 void destroy_node_manager(struct f2fs_sb_info *);
1444 int __init create_node_manager_caches(void);
1445 void destroy_node_manager_caches(void);
1446 
1447 /*
1448  * segment.c
1449  */
1450 void register_inmem_page(struct inode *, struct page *);
1451 void commit_inmem_pages(struct inode *, bool);
1452 void f2fs_balance_fs(struct f2fs_sb_info *);
1453 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1454 int f2fs_issue_flush(struct f2fs_sb_info *);
1455 int create_flush_cmd_control(struct f2fs_sb_info *);
1456 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1457 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1458 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1459 void clear_prefree_segments(struct f2fs_sb_info *);
1460 void release_discard_addrs(struct f2fs_sb_info *);
1461 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1462 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1463 void allocate_new_segments(struct f2fs_sb_info *);
1464 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1465 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1466 void write_meta_page(struct f2fs_sb_info *, struct page *);
1467 void write_node_page(struct f2fs_sb_info *, struct page *,
1468 				unsigned int, struct f2fs_io_info *);
1469 void write_data_page(struct page *, struct dnode_of_data *,
1470 			struct f2fs_io_info *);
1471 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1472 void recover_data_page(struct f2fs_sb_info *, struct page *,
1473 				struct f2fs_summary *, block_t, block_t);
1474 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1475 		block_t, block_t *, struct f2fs_summary *, int);
1476 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1477 void write_data_summaries(struct f2fs_sb_info *, block_t);
1478 void write_node_summaries(struct f2fs_sb_info *, block_t);
1479 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1480 					int, unsigned int, int);
1481 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1482 int build_segment_manager(struct f2fs_sb_info *);
1483 void destroy_segment_manager(struct f2fs_sb_info *);
1484 int __init create_segment_manager_caches(void);
1485 void destroy_segment_manager_caches(void);
1486 
1487 /*
1488  * checkpoint.c
1489  */
1490 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1491 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1492 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1493 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1494 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1495 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1496 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1497 void release_dirty_inode(struct f2fs_sb_info *);
1498 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1499 int acquire_orphan_inode(struct f2fs_sb_info *);
1500 void release_orphan_inode(struct f2fs_sb_info *);
1501 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1502 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1503 void recover_orphan_inodes(struct f2fs_sb_info *);
1504 int get_valid_checkpoint(struct f2fs_sb_info *);
1505 void update_dirty_page(struct inode *, struct page *);
1506 void add_dirty_dir_inode(struct inode *);
1507 void remove_dirty_dir_inode(struct inode *);
1508 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1509 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1510 void init_ino_entry_info(struct f2fs_sb_info *);
1511 int __init create_checkpoint_caches(void);
1512 void destroy_checkpoint_caches(void);
1513 
1514 /*
1515  * data.c
1516  */
1517 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1518 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1519 						struct f2fs_io_info *);
1520 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1521 						struct f2fs_io_info *);
1522 int reserve_new_block(struct dnode_of_data *);
1523 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1524 void update_extent_cache(struct dnode_of_data *);
1525 struct page *find_data_page(struct inode *, pgoff_t, bool);
1526 struct page *get_lock_data_page(struct inode *, pgoff_t);
1527 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1528 int do_write_data_page(struct page *, struct f2fs_io_info *);
1529 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1530 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1531 int f2fs_release_page(struct page *, gfp_t);
1532 
1533 /*
1534  * gc.c
1535  */
1536 int start_gc_thread(struct f2fs_sb_info *);
1537 void stop_gc_thread(struct f2fs_sb_info *);
1538 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1539 int f2fs_gc(struct f2fs_sb_info *);
1540 void build_gc_manager(struct f2fs_sb_info *);
1541 
1542 /*
1543  * recovery.c
1544  */
1545 int recover_fsync_data(struct f2fs_sb_info *);
1546 bool space_for_roll_forward(struct f2fs_sb_info *);
1547 
1548 /*
1549  * debug.c
1550  */
1551 #ifdef CONFIG_F2FS_STAT_FS
1552 struct f2fs_stat_info {
1553 	struct list_head stat_list;
1554 	struct f2fs_sb_info *sbi;
1555 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1556 	int main_area_segs, main_area_sections, main_area_zones;
1557 	int hit_ext, total_ext;
1558 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1559 	int nats, dirty_nats, sits, dirty_sits, fnids;
1560 	int total_count, utilization;
1561 	int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1562 	unsigned int valid_count, valid_node_count, valid_inode_count;
1563 	unsigned int bimodal, avg_vblocks;
1564 	int util_free, util_valid, util_invalid;
1565 	int rsvd_segs, overp_segs;
1566 	int dirty_count, node_pages, meta_pages;
1567 	int prefree_count, call_count, cp_count;
1568 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1569 	int tot_blks, data_blks, node_blks;
1570 	int curseg[NR_CURSEG_TYPE];
1571 	int cursec[NR_CURSEG_TYPE];
1572 	int curzone[NR_CURSEG_TYPE];
1573 
1574 	unsigned int segment_count[2];
1575 	unsigned int block_count[2];
1576 	unsigned int inplace_count;
1577 	unsigned base_mem, cache_mem, page_mem;
1578 };
1579 
1580 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1581 {
1582 	return (struct f2fs_stat_info *)sbi->stat_info;
1583 }
1584 
1585 #define stat_inc_cp_count(si)		((si)->cp_count++)
1586 #define stat_inc_call_count(si)		((si)->call_count++)
1587 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1588 #define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1589 #define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1590 #define stat_inc_total_hit(sb)		((F2FS_SB(sb))->total_hit_ext++)
1591 #define stat_inc_read_hit(sb)		((F2FS_SB(sb))->read_hit_ext++)
1592 #define stat_inc_inline_inode(inode)					\
1593 	do {								\
1594 		if (f2fs_has_inline_data(inode))			\
1595 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
1596 	} while (0)
1597 #define stat_dec_inline_inode(inode)					\
1598 	do {								\
1599 		if (f2fs_has_inline_data(inode))			\
1600 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
1601 	} while (0)
1602 #define stat_inc_inline_dir(inode)					\
1603 	do {								\
1604 		if (f2fs_has_inline_dentry(inode))			\
1605 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
1606 	} while (0)
1607 #define stat_dec_inline_dir(inode)					\
1608 	do {								\
1609 		if (f2fs_has_inline_dentry(inode))			\
1610 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
1611 	} while (0)
1612 #define stat_inc_seg_type(sbi, curseg)					\
1613 		((sbi)->segment_count[(curseg)->alloc_type]++)
1614 #define stat_inc_block_count(sbi, curseg)				\
1615 		((sbi)->block_count[(curseg)->alloc_type]++)
1616 #define stat_inc_inplace_blocks(sbi)					\
1617 		(atomic_inc(&(sbi)->inplace_count))
1618 #define stat_inc_seg_count(sbi, type)					\
1619 	do {								\
1620 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1621 		(si)->tot_segs++;					\
1622 		if (type == SUM_TYPE_DATA)				\
1623 			si->data_segs++;				\
1624 		else							\
1625 			si->node_segs++;				\
1626 	} while (0)
1627 
1628 #define stat_inc_tot_blk_count(si, blks)				\
1629 	(si->tot_blks += (blks))
1630 
1631 #define stat_inc_data_blk_count(sbi, blks)				\
1632 	do {								\
1633 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1634 		stat_inc_tot_blk_count(si, blks);			\
1635 		si->data_blks += (blks);				\
1636 	} while (0)
1637 
1638 #define stat_inc_node_blk_count(sbi, blks)				\
1639 	do {								\
1640 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1641 		stat_inc_tot_blk_count(si, blks);			\
1642 		si->node_blks += (blks);				\
1643 	} while (0)
1644 
1645 int f2fs_build_stats(struct f2fs_sb_info *);
1646 void f2fs_destroy_stats(struct f2fs_sb_info *);
1647 void __init f2fs_create_root_stats(void);
1648 void f2fs_destroy_root_stats(void);
1649 #else
1650 #define stat_inc_cp_count(si)
1651 #define stat_inc_call_count(si)
1652 #define stat_inc_bggc_count(si)
1653 #define stat_inc_dirty_dir(sbi)
1654 #define stat_dec_dirty_dir(sbi)
1655 #define stat_inc_total_hit(sb)
1656 #define stat_inc_read_hit(sb)
1657 #define stat_inc_inline_inode(inode)
1658 #define stat_dec_inline_inode(inode)
1659 #define stat_inc_inline_dir(inode)
1660 #define stat_dec_inline_dir(inode)
1661 #define stat_inc_seg_type(sbi, curseg)
1662 #define stat_inc_block_count(sbi, curseg)
1663 #define stat_inc_inplace_blocks(sbi)
1664 #define stat_inc_seg_count(si, type)
1665 #define stat_inc_tot_blk_count(si, blks)
1666 #define stat_inc_data_blk_count(si, blks)
1667 #define stat_inc_node_blk_count(sbi, blks)
1668 
1669 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1670 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1671 static inline void __init f2fs_create_root_stats(void) { }
1672 static inline void f2fs_destroy_root_stats(void) { }
1673 #endif
1674 
1675 extern const struct file_operations f2fs_dir_operations;
1676 extern const struct file_operations f2fs_file_operations;
1677 extern const struct inode_operations f2fs_file_inode_operations;
1678 extern const struct address_space_operations f2fs_dblock_aops;
1679 extern const struct address_space_operations f2fs_node_aops;
1680 extern const struct address_space_operations f2fs_meta_aops;
1681 extern const struct inode_operations f2fs_dir_inode_operations;
1682 extern const struct inode_operations f2fs_symlink_inode_operations;
1683 extern const struct inode_operations f2fs_special_inode_operations;
1684 extern struct kmem_cache *inode_entry_slab;
1685 
1686 /*
1687  * inline.c
1688  */
1689 bool f2fs_may_inline(struct inode *);
1690 void read_inline_data(struct page *, struct page *);
1691 int f2fs_read_inline_data(struct inode *, struct page *);
1692 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1693 int f2fs_convert_inline_inode(struct inode *);
1694 int f2fs_write_inline_data(struct inode *, struct page *);
1695 bool recover_inline_data(struct inode *, struct page *);
1696 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1697 							struct page **);
1698 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1699 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1700 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1701 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1702 						struct inode *, struct inode *);
1703 bool f2fs_empty_inline_dir(struct inode *);
1704 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1705 #endif
1706