1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 23 #ifdef CONFIG_F2FS_CHECK_FS 24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y) 26 #else 27 #define f2fs_bug_on(sbi, condition) \ 28 do { \ 29 if (unlikely(condition)) { \ 30 WARN_ON(1); \ 31 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 32 } \ 33 } while (0) 34 #define f2fs_down_write(x, y) down_write(x) 35 #endif 36 37 /* 38 * For mount options 39 */ 40 #define F2FS_MOUNT_BG_GC 0x00000001 41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 42 #define F2FS_MOUNT_DISCARD 0x00000004 43 #define F2FS_MOUNT_NOHEAP 0x00000008 44 #define F2FS_MOUNT_XATTR_USER 0x00000010 45 #define F2FS_MOUNT_POSIX_ACL 0x00000020 46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 48 #define F2FS_MOUNT_INLINE_DATA 0x00000100 49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 51 #define F2FS_MOUNT_NOBARRIER 0x00000800 52 #define F2FS_MOUNT_FASTBOOT 0x00001000 53 54 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 55 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 56 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 57 58 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 59 typecheck(unsigned long long, b) && \ 60 ((long long)((a) - (b)) > 0)) 61 62 typedef u32 block_t; /* 63 * should not change u32, since it is the on-disk block 64 * address format, __le32. 65 */ 66 typedef u32 nid_t; 67 68 struct f2fs_mount_info { 69 unsigned int opt; 70 }; 71 72 #define CRCPOLY_LE 0xedb88320 73 74 static inline __u32 f2fs_crc32(void *buf, size_t len) 75 { 76 unsigned char *p = (unsigned char *)buf; 77 __u32 crc = F2FS_SUPER_MAGIC; 78 int i; 79 80 while (len--) { 81 crc ^= *p++; 82 for (i = 0; i < 8; i++) 83 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 84 } 85 return crc; 86 } 87 88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 89 { 90 return f2fs_crc32(buf, buf_size) == blk_crc; 91 } 92 93 /* 94 * For checkpoint manager 95 */ 96 enum { 97 NAT_BITMAP, 98 SIT_BITMAP 99 }; 100 101 enum { 102 CP_UMOUNT, 103 CP_FASTBOOT, 104 CP_SYNC, 105 CP_DISCARD, 106 }; 107 108 #define DEF_BATCHED_TRIM_SECTIONS 32 109 #define BATCHED_TRIM_SEGMENTS(sbi) \ 110 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 111 112 struct cp_control { 113 int reason; 114 __u64 trim_start; 115 __u64 trim_end; 116 __u64 trim_minlen; 117 __u64 trimmed; 118 }; 119 120 /* 121 * For CP/NAT/SIT/SSA readahead 122 */ 123 enum { 124 META_CP, 125 META_NAT, 126 META_SIT, 127 META_SSA, 128 META_POR, 129 }; 130 131 /* for the list of ino */ 132 enum { 133 ORPHAN_INO, /* for orphan ino list */ 134 APPEND_INO, /* for append ino list */ 135 UPDATE_INO, /* for update ino list */ 136 MAX_INO_ENTRY, /* max. list */ 137 }; 138 139 struct ino_entry { 140 struct list_head list; /* list head */ 141 nid_t ino; /* inode number */ 142 }; 143 144 /* 145 * for the list of directory inodes or gc inodes. 146 * NOTE: there are two slab users for this structure, if we add/modify/delete 147 * fields in structure for one of slab users, it may affect fields or size of 148 * other one, in this condition, it's better to split both of slab and related 149 * data structure. 150 */ 151 struct inode_entry { 152 struct list_head list; /* list head */ 153 struct inode *inode; /* vfs inode pointer */ 154 }; 155 156 /* for the list of blockaddresses to be discarded */ 157 struct discard_entry { 158 struct list_head list; /* list head */ 159 block_t blkaddr; /* block address to be discarded */ 160 int len; /* # of consecutive blocks of the discard */ 161 }; 162 163 /* for the list of fsync inodes, used only during recovery */ 164 struct fsync_inode_entry { 165 struct list_head list; /* list head */ 166 struct inode *inode; /* vfs inode pointer */ 167 block_t blkaddr; /* block address locating the last fsync */ 168 block_t last_dentry; /* block address locating the last dentry */ 169 block_t last_inode; /* block address locating the last inode */ 170 }; 171 172 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 173 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 174 175 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 176 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 177 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 178 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 179 180 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum)) 181 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum)) 182 183 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 184 { 185 int before = nats_in_cursum(rs); 186 rs->n_nats = cpu_to_le16(before + i); 187 return before; 188 } 189 190 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 191 { 192 int before = sits_in_cursum(rs); 193 rs->n_sits = cpu_to_le16(before + i); 194 return before; 195 } 196 197 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size, 198 int type) 199 { 200 if (type == NAT_JOURNAL) 201 return size <= MAX_NAT_JENTRIES(sum); 202 return size <= MAX_SIT_JENTRIES(sum); 203 } 204 205 /* 206 * ioctl commands 207 */ 208 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 209 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 210 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 211 212 #define F2FS_IOCTL_MAGIC 0xf5 213 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 214 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 215 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 216 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 217 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 218 219 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 220 /* 221 * ioctl commands in 32 bit emulation 222 */ 223 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 224 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 225 #endif 226 227 /* 228 * For INODE and NODE manager 229 */ 230 /* for directory operations */ 231 struct f2fs_dentry_ptr { 232 const void *bitmap; 233 struct f2fs_dir_entry *dentry; 234 __u8 (*filename)[F2FS_SLOT_LEN]; 235 int max; 236 }; 237 238 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d, 239 void *src, int type) 240 { 241 if (type == 1) { 242 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 243 d->max = NR_DENTRY_IN_BLOCK; 244 d->bitmap = &t->dentry_bitmap; 245 d->dentry = t->dentry; 246 d->filename = t->filename; 247 } else { 248 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 249 d->max = NR_INLINE_DENTRY; 250 d->bitmap = &t->dentry_bitmap; 251 d->dentry = t->dentry; 252 d->filename = t->filename; 253 } 254 } 255 256 /* 257 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 258 * as its node offset to distinguish from index node blocks. 259 * But some bits are used to mark the node block. 260 */ 261 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 262 >> OFFSET_BIT_SHIFT) 263 enum { 264 ALLOC_NODE, /* allocate a new node page if needed */ 265 LOOKUP_NODE, /* look up a node without readahead */ 266 LOOKUP_NODE_RA, /* 267 * look up a node with readahead called 268 * by get_data_block. 269 */ 270 }; 271 272 #define F2FS_LINK_MAX 32000 /* maximum link count per file */ 273 274 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 275 276 /* for in-memory extent cache entry */ 277 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */ 278 279 struct extent_info { 280 rwlock_t ext_lock; /* rwlock for consistency */ 281 unsigned int fofs; /* start offset in a file */ 282 u32 blk_addr; /* start block address of the extent */ 283 unsigned int len; /* length of the extent */ 284 }; 285 286 /* 287 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 288 */ 289 #define FADVISE_COLD_BIT 0x01 290 #define FADVISE_LOST_PINO_BIT 0x02 291 292 #define DEF_DIR_LEVEL 0 293 294 struct f2fs_inode_info { 295 struct inode vfs_inode; /* serve a vfs inode */ 296 unsigned long i_flags; /* keep an inode flags for ioctl */ 297 unsigned char i_advise; /* use to give file attribute hints */ 298 unsigned char i_dir_level; /* use for dentry level for large dir */ 299 unsigned int i_current_depth; /* use only in directory structure */ 300 unsigned int i_pino; /* parent inode number */ 301 umode_t i_acl_mode; /* keep file acl mode temporarily */ 302 303 /* Use below internally in f2fs*/ 304 unsigned long flags; /* use to pass per-file flags */ 305 struct rw_semaphore i_sem; /* protect fi info */ 306 atomic_t dirty_pages; /* # of dirty pages */ 307 f2fs_hash_t chash; /* hash value of given file name */ 308 unsigned int clevel; /* maximum level of given file name */ 309 nid_t i_xattr_nid; /* node id that contains xattrs */ 310 unsigned long long xattr_ver; /* cp version of xattr modification */ 311 struct extent_info ext; /* in-memory extent cache entry */ 312 struct inode_entry *dirty_dir; /* the pointer of dirty dir */ 313 314 struct radix_tree_root inmem_root; /* radix tree for inmem pages */ 315 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 316 struct mutex inmem_lock; /* lock for inmemory pages */ 317 }; 318 319 static inline void get_extent_info(struct extent_info *ext, 320 struct f2fs_extent i_ext) 321 { 322 write_lock(&ext->ext_lock); 323 ext->fofs = le32_to_cpu(i_ext.fofs); 324 ext->blk_addr = le32_to_cpu(i_ext.blk_addr); 325 ext->len = le32_to_cpu(i_ext.len); 326 write_unlock(&ext->ext_lock); 327 } 328 329 static inline void set_raw_extent(struct extent_info *ext, 330 struct f2fs_extent *i_ext) 331 { 332 read_lock(&ext->ext_lock); 333 i_ext->fofs = cpu_to_le32(ext->fofs); 334 i_ext->blk_addr = cpu_to_le32(ext->blk_addr); 335 i_ext->len = cpu_to_le32(ext->len); 336 read_unlock(&ext->ext_lock); 337 } 338 339 struct f2fs_nm_info { 340 block_t nat_blkaddr; /* base disk address of NAT */ 341 nid_t max_nid; /* maximum possible node ids */ 342 nid_t available_nids; /* maximum available node ids */ 343 nid_t next_scan_nid; /* the next nid to be scanned */ 344 unsigned int ram_thresh; /* control the memory footprint */ 345 346 /* NAT cache management */ 347 struct radix_tree_root nat_root;/* root of the nat entry cache */ 348 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 349 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 350 struct list_head nat_entries; /* cached nat entry list (clean) */ 351 unsigned int nat_cnt; /* the # of cached nat entries */ 352 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 353 354 /* free node ids management */ 355 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 356 struct list_head free_nid_list; /* a list for free nids */ 357 spinlock_t free_nid_list_lock; /* protect free nid list */ 358 unsigned int fcnt; /* the number of free node id */ 359 struct mutex build_lock; /* lock for build free nids */ 360 361 /* for checkpoint */ 362 char *nat_bitmap; /* NAT bitmap pointer */ 363 int bitmap_size; /* bitmap size */ 364 }; 365 366 /* 367 * this structure is used as one of function parameters. 368 * all the information are dedicated to a given direct node block determined 369 * by the data offset in a file. 370 */ 371 struct dnode_of_data { 372 struct inode *inode; /* vfs inode pointer */ 373 struct page *inode_page; /* its inode page, NULL is possible */ 374 struct page *node_page; /* cached direct node page */ 375 nid_t nid; /* node id of the direct node block */ 376 unsigned int ofs_in_node; /* data offset in the node page */ 377 bool inode_page_locked; /* inode page is locked or not */ 378 block_t data_blkaddr; /* block address of the node block */ 379 }; 380 381 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 382 struct page *ipage, struct page *npage, nid_t nid) 383 { 384 memset(dn, 0, sizeof(*dn)); 385 dn->inode = inode; 386 dn->inode_page = ipage; 387 dn->node_page = npage; 388 dn->nid = nid; 389 } 390 391 /* 392 * For SIT manager 393 * 394 * By default, there are 6 active log areas across the whole main area. 395 * When considering hot and cold data separation to reduce cleaning overhead, 396 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 397 * respectively. 398 * In the current design, you should not change the numbers intentionally. 399 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 400 * logs individually according to the underlying devices. (default: 6) 401 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 402 * data and 8 for node logs. 403 */ 404 #define NR_CURSEG_DATA_TYPE (3) 405 #define NR_CURSEG_NODE_TYPE (3) 406 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 407 408 enum { 409 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 410 CURSEG_WARM_DATA, /* data blocks */ 411 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 412 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 413 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 414 CURSEG_COLD_NODE, /* indirect node blocks */ 415 NO_CHECK_TYPE, 416 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 417 }; 418 419 struct flush_cmd { 420 struct completion wait; 421 struct llist_node llnode; 422 int ret; 423 }; 424 425 struct flush_cmd_control { 426 struct task_struct *f2fs_issue_flush; /* flush thread */ 427 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 428 struct llist_head issue_list; /* list for command issue */ 429 struct llist_node *dispatch_list; /* list for command dispatch */ 430 }; 431 432 struct f2fs_sm_info { 433 struct sit_info *sit_info; /* whole segment information */ 434 struct free_segmap_info *free_info; /* free segment information */ 435 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 436 struct curseg_info *curseg_array; /* active segment information */ 437 438 block_t seg0_blkaddr; /* block address of 0'th segment */ 439 block_t main_blkaddr; /* start block address of main area */ 440 block_t ssa_blkaddr; /* start block address of SSA area */ 441 442 unsigned int segment_count; /* total # of segments */ 443 unsigned int main_segments; /* # of segments in main area */ 444 unsigned int reserved_segments; /* # of reserved segments */ 445 unsigned int ovp_segments; /* # of overprovision segments */ 446 447 /* a threshold to reclaim prefree segments */ 448 unsigned int rec_prefree_segments; 449 450 /* for small discard management */ 451 struct list_head discard_list; /* 4KB discard list */ 452 int nr_discards; /* # of discards in the list */ 453 int max_discards; /* max. discards to be issued */ 454 455 /* for batched trimming */ 456 unsigned int trim_sections; /* # of sections to trim */ 457 458 struct list_head sit_entry_set; /* sit entry set list */ 459 460 unsigned int ipu_policy; /* in-place-update policy */ 461 unsigned int min_ipu_util; /* in-place-update threshold */ 462 unsigned int min_fsync_blocks; /* threshold for fsync */ 463 464 /* for flush command control */ 465 struct flush_cmd_control *cmd_control_info; 466 467 }; 468 469 /* 470 * For superblock 471 */ 472 /* 473 * COUNT_TYPE for monitoring 474 * 475 * f2fs monitors the number of several block types such as on-writeback, 476 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 477 */ 478 enum count_type { 479 F2FS_WRITEBACK, 480 F2FS_DIRTY_DENTS, 481 F2FS_DIRTY_NODES, 482 F2FS_DIRTY_META, 483 F2FS_INMEM_PAGES, 484 NR_COUNT_TYPE, 485 }; 486 487 /* 488 * The below are the page types of bios used in submit_bio(). 489 * The available types are: 490 * DATA User data pages. It operates as async mode. 491 * NODE Node pages. It operates as async mode. 492 * META FS metadata pages such as SIT, NAT, CP. 493 * NR_PAGE_TYPE The number of page types. 494 * META_FLUSH Make sure the previous pages are written 495 * with waiting the bio's completion 496 * ... Only can be used with META. 497 */ 498 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 499 enum page_type { 500 DATA, 501 NODE, 502 META, 503 NR_PAGE_TYPE, 504 META_FLUSH, 505 }; 506 507 struct f2fs_io_info { 508 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 509 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 510 block_t blk_addr; /* block address to be written */ 511 }; 512 513 #define is_read_io(rw) (((rw) & 1) == READ) 514 struct f2fs_bio_info { 515 struct f2fs_sb_info *sbi; /* f2fs superblock */ 516 struct bio *bio; /* bios to merge */ 517 sector_t last_block_in_bio; /* last block number */ 518 struct f2fs_io_info fio; /* store buffered io info. */ 519 struct rw_semaphore io_rwsem; /* blocking op for bio */ 520 }; 521 522 /* for inner inode cache management */ 523 struct inode_management { 524 struct radix_tree_root ino_root; /* ino entry array */ 525 spinlock_t ino_lock; /* for ino entry lock */ 526 struct list_head ino_list; /* inode list head */ 527 unsigned long ino_num; /* number of entries */ 528 }; 529 530 /* For s_flag in struct f2fs_sb_info */ 531 enum { 532 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 533 SBI_IS_CLOSE, /* specify unmounting */ 534 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 535 SBI_POR_DOING, /* recovery is doing or not */ 536 }; 537 538 struct f2fs_sb_info { 539 struct super_block *sb; /* pointer to VFS super block */ 540 struct proc_dir_entry *s_proc; /* proc entry */ 541 struct buffer_head *raw_super_buf; /* buffer head of raw sb */ 542 struct f2fs_super_block *raw_super; /* raw super block pointer */ 543 int s_flag; /* flags for sbi */ 544 545 /* for node-related operations */ 546 struct f2fs_nm_info *nm_info; /* node manager */ 547 struct inode *node_inode; /* cache node blocks */ 548 549 /* for segment-related operations */ 550 struct f2fs_sm_info *sm_info; /* segment manager */ 551 552 /* for bio operations */ 553 struct f2fs_bio_info read_io; /* for read bios */ 554 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 555 556 /* for checkpoint */ 557 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 558 struct inode *meta_inode; /* cache meta blocks */ 559 struct mutex cp_mutex; /* checkpoint procedure lock */ 560 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 561 struct rw_semaphore node_write; /* locking node writes */ 562 struct mutex writepages; /* mutex for writepages() */ 563 wait_queue_head_t cp_wait; 564 565 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 566 567 /* for orphan inode, use 0'th array */ 568 unsigned int max_orphans; /* max orphan inodes */ 569 570 /* for directory inode management */ 571 struct list_head dir_inode_list; /* dir inode list */ 572 spinlock_t dir_inode_lock; /* for dir inode list lock */ 573 574 /* basic filesystem units */ 575 unsigned int log_sectors_per_block; /* log2 sectors per block */ 576 unsigned int log_blocksize; /* log2 block size */ 577 unsigned int blocksize; /* block size */ 578 unsigned int root_ino_num; /* root inode number*/ 579 unsigned int node_ino_num; /* node inode number*/ 580 unsigned int meta_ino_num; /* meta inode number*/ 581 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 582 unsigned int blocks_per_seg; /* blocks per segment */ 583 unsigned int segs_per_sec; /* segments per section */ 584 unsigned int secs_per_zone; /* sections per zone */ 585 unsigned int total_sections; /* total section count */ 586 unsigned int total_node_count; /* total node block count */ 587 unsigned int total_valid_node_count; /* valid node block count */ 588 unsigned int total_valid_inode_count; /* valid inode count */ 589 int active_logs; /* # of active logs */ 590 int dir_level; /* directory level */ 591 592 block_t user_block_count; /* # of user blocks */ 593 block_t total_valid_block_count; /* # of valid blocks */ 594 block_t alloc_valid_block_count; /* # of allocated blocks */ 595 block_t last_valid_block_count; /* for recovery */ 596 u32 s_next_generation; /* for NFS support */ 597 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 598 599 struct f2fs_mount_info mount_opt; /* mount options */ 600 601 /* for cleaning operations */ 602 struct mutex gc_mutex; /* mutex for GC */ 603 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 604 unsigned int cur_victim_sec; /* current victim section num */ 605 606 /* maximum # of trials to find a victim segment for SSR and GC */ 607 unsigned int max_victim_search; 608 609 /* 610 * for stat information. 611 * one is for the LFS mode, and the other is for the SSR mode. 612 */ 613 #ifdef CONFIG_F2FS_STAT_FS 614 struct f2fs_stat_info *stat_info; /* FS status information */ 615 unsigned int segment_count[2]; /* # of allocated segments */ 616 unsigned int block_count[2]; /* # of allocated blocks */ 617 atomic_t inplace_count; /* # of inplace update */ 618 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */ 619 atomic_t inline_inode; /* # of inline_data inodes */ 620 atomic_t inline_dir; /* # of inline_dentry inodes */ 621 int bg_gc; /* background gc calls */ 622 unsigned int n_dirty_dirs; /* # of dir inodes */ 623 #endif 624 unsigned int last_victim[2]; /* last victim segment # */ 625 spinlock_t stat_lock; /* lock for stat operations */ 626 627 /* For sysfs suppport */ 628 struct kobject s_kobj; 629 struct completion s_kobj_unregister; 630 }; 631 632 /* 633 * Inline functions 634 */ 635 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 636 { 637 return container_of(inode, struct f2fs_inode_info, vfs_inode); 638 } 639 640 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 641 { 642 return sb->s_fs_info; 643 } 644 645 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 646 { 647 return F2FS_SB(inode->i_sb); 648 } 649 650 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 651 { 652 return F2FS_I_SB(mapping->host); 653 } 654 655 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 656 { 657 return F2FS_M_SB(page->mapping); 658 } 659 660 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 661 { 662 return (struct f2fs_super_block *)(sbi->raw_super); 663 } 664 665 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 666 { 667 return (struct f2fs_checkpoint *)(sbi->ckpt); 668 } 669 670 static inline struct f2fs_node *F2FS_NODE(struct page *page) 671 { 672 return (struct f2fs_node *)page_address(page); 673 } 674 675 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 676 { 677 return &((struct f2fs_node *)page_address(page))->i; 678 } 679 680 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 681 { 682 return (struct f2fs_nm_info *)(sbi->nm_info); 683 } 684 685 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 686 { 687 return (struct f2fs_sm_info *)(sbi->sm_info); 688 } 689 690 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 691 { 692 return (struct sit_info *)(SM_I(sbi)->sit_info); 693 } 694 695 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 696 { 697 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 698 } 699 700 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 701 { 702 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 703 } 704 705 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 706 { 707 return sbi->meta_inode->i_mapping; 708 } 709 710 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 711 { 712 return sbi->node_inode->i_mapping; 713 } 714 715 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 716 { 717 return sbi->s_flag & (0x01 << type); 718 } 719 720 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 721 { 722 sbi->s_flag |= (0x01 << type); 723 } 724 725 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 726 { 727 sbi->s_flag &= ~(0x01 << type); 728 } 729 730 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 731 { 732 return le64_to_cpu(cp->checkpoint_ver); 733 } 734 735 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 736 { 737 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 738 return ckpt_flags & f; 739 } 740 741 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 742 { 743 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 744 ckpt_flags |= f; 745 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 746 } 747 748 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 749 { 750 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 751 ckpt_flags &= (~f); 752 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 753 } 754 755 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 756 { 757 down_read(&sbi->cp_rwsem); 758 } 759 760 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 761 { 762 up_read(&sbi->cp_rwsem); 763 } 764 765 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 766 { 767 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex); 768 } 769 770 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 771 { 772 up_write(&sbi->cp_rwsem); 773 } 774 775 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 776 { 777 int reason = CP_SYNC; 778 779 if (test_opt(sbi, FASTBOOT)) 780 reason = CP_FASTBOOT; 781 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 782 reason = CP_UMOUNT; 783 return reason; 784 } 785 786 static inline bool __remain_node_summaries(int reason) 787 { 788 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 789 } 790 791 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 792 { 793 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 794 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 795 } 796 797 /* 798 * Check whether the given nid is within node id range. 799 */ 800 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 801 { 802 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 803 return -EINVAL; 804 if (unlikely(nid >= NM_I(sbi)->max_nid)) 805 return -EINVAL; 806 return 0; 807 } 808 809 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 810 811 /* 812 * Check whether the inode has blocks or not 813 */ 814 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 815 { 816 if (F2FS_I(inode)->i_xattr_nid) 817 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 818 else 819 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 820 } 821 822 static inline bool f2fs_has_xattr_block(unsigned int ofs) 823 { 824 return ofs == XATTR_NODE_OFFSET; 825 } 826 827 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 828 struct inode *inode, blkcnt_t count) 829 { 830 block_t valid_block_count; 831 832 spin_lock(&sbi->stat_lock); 833 valid_block_count = 834 sbi->total_valid_block_count + (block_t)count; 835 if (unlikely(valid_block_count > sbi->user_block_count)) { 836 spin_unlock(&sbi->stat_lock); 837 return false; 838 } 839 inode->i_blocks += count; 840 sbi->total_valid_block_count = valid_block_count; 841 sbi->alloc_valid_block_count += (block_t)count; 842 spin_unlock(&sbi->stat_lock); 843 return true; 844 } 845 846 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 847 struct inode *inode, 848 blkcnt_t count) 849 { 850 spin_lock(&sbi->stat_lock); 851 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 852 f2fs_bug_on(sbi, inode->i_blocks < count); 853 inode->i_blocks -= count; 854 sbi->total_valid_block_count -= (block_t)count; 855 spin_unlock(&sbi->stat_lock); 856 } 857 858 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 859 { 860 atomic_inc(&sbi->nr_pages[count_type]); 861 set_sbi_flag(sbi, SBI_IS_DIRTY); 862 } 863 864 static inline void inode_inc_dirty_pages(struct inode *inode) 865 { 866 atomic_inc(&F2FS_I(inode)->dirty_pages); 867 if (S_ISDIR(inode->i_mode)) 868 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 869 } 870 871 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 872 { 873 atomic_dec(&sbi->nr_pages[count_type]); 874 } 875 876 static inline void inode_dec_dirty_pages(struct inode *inode) 877 { 878 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode)) 879 return; 880 881 atomic_dec(&F2FS_I(inode)->dirty_pages); 882 883 if (S_ISDIR(inode->i_mode)) 884 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 885 } 886 887 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 888 { 889 return atomic_read(&sbi->nr_pages[count_type]); 890 } 891 892 static inline int get_dirty_pages(struct inode *inode) 893 { 894 return atomic_read(&F2FS_I(inode)->dirty_pages); 895 } 896 897 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 898 { 899 unsigned int pages_per_sec = sbi->segs_per_sec * 900 (1 << sbi->log_blocks_per_seg); 901 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 902 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 903 } 904 905 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 906 { 907 return sbi->total_valid_block_count; 908 } 909 910 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 911 { 912 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 913 914 /* return NAT or SIT bitmap */ 915 if (flag == NAT_BITMAP) 916 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 917 else if (flag == SIT_BITMAP) 918 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 919 920 return 0; 921 } 922 923 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 924 { 925 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 926 int offset; 927 928 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) { 929 if (flag == NAT_BITMAP) 930 return &ckpt->sit_nat_version_bitmap; 931 else 932 return (unsigned char *)ckpt + F2FS_BLKSIZE; 933 } else { 934 offset = (flag == NAT_BITMAP) ? 935 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 936 return &ckpt->sit_nat_version_bitmap + offset; 937 } 938 } 939 940 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 941 { 942 block_t start_addr; 943 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 944 unsigned long long ckpt_version = cur_cp_version(ckpt); 945 946 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 947 948 /* 949 * odd numbered checkpoint should at cp segment 0 950 * and even segment must be at cp segment 1 951 */ 952 if (!(ckpt_version & 1)) 953 start_addr += sbi->blocks_per_seg; 954 955 return start_addr; 956 } 957 958 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 959 { 960 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 961 } 962 963 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 964 struct inode *inode) 965 { 966 block_t valid_block_count; 967 unsigned int valid_node_count; 968 969 spin_lock(&sbi->stat_lock); 970 971 valid_block_count = sbi->total_valid_block_count + 1; 972 if (unlikely(valid_block_count > sbi->user_block_count)) { 973 spin_unlock(&sbi->stat_lock); 974 return false; 975 } 976 977 valid_node_count = sbi->total_valid_node_count + 1; 978 if (unlikely(valid_node_count > sbi->total_node_count)) { 979 spin_unlock(&sbi->stat_lock); 980 return false; 981 } 982 983 if (inode) 984 inode->i_blocks++; 985 986 sbi->alloc_valid_block_count++; 987 sbi->total_valid_node_count++; 988 sbi->total_valid_block_count++; 989 spin_unlock(&sbi->stat_lock); 990 991 return true; 992 } 993 994 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 995 struct inode *inode) 996 { 997 spin_lock(&sbi->stat_lock); 998 999 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1000 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1001 f2fs_bug_on(sbi, !inode->i_blocks); 1002 1003 inode->i_blocks--; 1004 sbi->total_valid_node_count--; 1005 sbi->total_valid_block_count--; 1006 1007 spin_unlock(&sbi->stat_lock); 1008 } 1009 1010 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1011 { 1012 return sbi->total_valid_node_count; 1013 } 1014 1015 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1016 { 1017 spin_lock(&sbi->stat_lock); 1018 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count); 1019 sbi->total_valid_inode_count++; 1020 spin_unlock(&sbi->stat_lock); 1021 } 1022 1023 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1024 { 1025 spin_lock(&sbi->stat_lock); 1026 f2fs_bug_on(sbi, !sbi->total_valid_inode_count); 1027 sbi->total_valid_inode_count--; 1028 spin_unlock(&sbi->stat_lock); 1029 } 1030 1031 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 1032 { 1033 return sbi->total_valid_inode_count; 1034 } 1035 1036 static inline void f2fs_put_page(struct page *page, int unlock) 1037 { 1038 if (!page) 1039 return; 1040 1041 if (unlock) { 1042 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1043 unlock_page(page); 1044 } 1045 page_cache_release(page); 1046 } 1047 1048 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1049 { 1050 if (dn->node_page) 1051 f2fs_put_page(dn->node_page, 1); 1052 if (dn->inode_page && dn->node_page != dn->inode_page) 1053 f2fs_put_page(dn->inode_page, 0); 1054 dn->node_page = NULL; 1055 dn->inode_page = NULL; 1056 } 1057 1058 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1059 size_t size) 1060 { 1061 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1062 } 1063 1064 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1065 gfp_t flags) 1066 { 1067 void *entry; 1068 retry: 1069 entry = kmem_cache_alloc(cachep, flags); 1070 if (!entry) { 1071 cond_resched(); 1072 goto retry; 1073 } 1074 1075 return entry; 1076 } 1077 1078 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1079 unsigned long index, void *item) 1080 { 1081 while (radix_tree_insert(root, index, item)) 1082 cond_resched(); 1083 } 1084 1085 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1086 1087 static inline bool IS_INODE(struct page *page) 1088 { 1089 struct f2fs_node *p = F2FS_NODE(page); 1090 return RAW_IS_INODE(p); 1091 } 1092 1093 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1094 { 1095 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1096 } 1097 1098 static inline block_t datablock_addr(struct page *node_page, 1099 unsigned int offset) 1100 { 1101 struct f2fs_node *raw_node; 1102 __le32 *addr_array; 1103 raw_node = F2FS_NODE(node_page); 1104 addr_array = blkaddr_in_node(raw_node); 1105 return le32_to_cpu(addr_array[offset]); 1106 } 1107 1108 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1109 { 1110 int mask; 1111 1112 addr += (nr >> 3); 1113 mask = 1 << (7 - (nr & 0x07)); 1114 return mask & *addr; 1115 } 1116 1117 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1118 { 1119 int mask; 1120 int ret; 1121 1122 addr += (nr >> 3); 1123 mask = 1 << (7 - (nr & 0x07)); 1124 ret = mask & *addr; 1125 *addr |= mask; 1126 return ret; 1127 } 1128 1129 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1130 { 1131 int mask; 1132 int ret; 1133 1134 addr += (nr >> 3); 1135 mask = 1 << (7 - (nr & 0x07)); 1136 ret = mask & *addr; 1137 *addr &= ~mask; 1138 return ret; 1139 } 1140 1141 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1142 { 1143 int mask; 1144 1145 addr += (nr >> 3); 1146 mask = 1 << (7 - (nr & 0x07)); 1147 *addr ^= mask; 1148 } 1149 1150 /* used for f2fs_inode_info->flags */ 1151 enum { 1152 FI_NEW_INODE, /* indicate newly allocated inode */ 1153 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1154 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1155 FI_INC_LINK, /* need to increment i_nlink */ 1156 FI_ACL_MODE, /* indicate acl mode */ 1157 FI_NO_ALLOC, /* should not allocate any blocks */ 1158 FI_UPDATE_DIR, /* should update inode block for consistency */ 1159 FI_DELAY_IPUT, /* used for the recovery */ 1160 FI_NO_EXTENT, /* not to use the extent cache */ 1161 FI_INLINE_XATTR, /* used for inline xattr */ 1162 FI_INLINE_DATA, /* used for inline data*/ 1163 FI_INLINE_DENTRY, /* used for inline dentry */ 1164 FI_APPEND_WRITE, /* inode has appended data */ 1165 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1166 FI_NEED_IPU, /* used for ipu per file */ 1167 FI_ATOMIC_FILE, /* indicate atomic file */ 1168 FI_VOLATILE_FILE, /* indicate volatile file */ 1169 FI_DROP_CACHE, /* drop dirty page cache */ 1170 FI_DATA_EXIST, /* indicate data exists */ 1171 }; 1172 1173 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 1174 { 1175 if (!test_bit(flag, &fi->flags)) 1176 set_bit(flag, &fi->flags); 1177 } 1178 1179 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 1180 { 1181 return test_bit(flag, &fi->flags); 1182 } 1183 1184 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1185 { 1186 if (test_bit(flag, &fi->flags)) 1187 clear_bit(flag, &fi->flags); 1188 } 1189 1190 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1191 { 1192 fi->i_acl_mode = mode; 1193 set_inode_flag(fi, FI_ACL_MODE); 1194 } 1195 1196 static inline void get_inline_info(struct f2fs_inode_info *fi, 1197 struct f2fs_inode *ri) 1198 { 1199 if (ri->i_inline & F2FS_INLINE_XATTR) 1200 set_inode_flag(fi, FI_INLINE_XATTR); 1201 if (ri->i_inline & F2FS_INLINE_DATA) 1202 set_inode_flag(fi, FI_INLINE_DATA); 1203 if (ri->i_inline & F2FS_INLINE_DENTRY) 1204 set_inode_flag(fi, FI_INLINE_DENTRY); 1205 if (ri->i_inline & F2FS_DATA_EXIST) 1206 set_inode_flag(fi, FI_DATA_EXIST); 1207 } 1208 1209 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1210 struct f2fs_inode *ri) 1211 { 1212 ri->i_inline = 0; 1213 1214 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1215 ri->i_inline |= F2FS_INLINE_XATTR; 1216 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1217 ri->i_inline |= F2FS_INLINE_DATA; 1218 if (is_inode_flag_set(fi, FI_INLINE_DENTRY)) 1219 ri->i_inline |= F2FS_INLINE_DENTRY; 1220 if (is_inode_flag_set(fi, FI_DATA_EXIST)) 1221 ri->i_inline |= F2FS_DATA_EXIST; 1222 } 1223 1224 static inline int f2fs_has_inline_xattr(struct inode *inode) 1225 { 1226 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1227 } 1228 1229 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi) 1230 { 1231 if (f2fs_has_inline_xattr(&fi->vfs_inode)) 1232 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1233 return DEF_ADDRS_PER_INODE; 1234 } 1235 1236 static inline void *inline_xattr_addr(struct page *page) 1237 { 1238 struct f2fs_inode *ri = F2FS_INODE(page); 1239 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1240 F2FS_INLINE_XATTR_ADDRS]); 1241 } 1242 1243 static inline int inline_xattr_size(struct inode *inode) 1244 { 1245 if (f2fs_has_inline_xattr(inode)) 1246 return F2FS_INLINE_XATTR_ADDRS << 2; 1247 else 1248 return 0; 1249 } 1250 1251 static inline int f2fs_has_inline_data(struct inode *inode) 1252 { 1253 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1254 } 1255 1256 static inline void f2fs_clear_inline_inode(struct inode *inode) 1257 { 1258 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 1259 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1260 } 1261 1262 static inline int f2fs_exist_data(struct inode *inode) 1263 { 1264 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST); 1265 } 1266 1267 static inline bool f2fs_is_atomic_file(struct inode *inode) 1268 { 1269 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE); 1270 } 1271 1272 static inline bool f2fs_is_volatile_file(struct inode *inode) 1273 { 1274 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE); 1275 } 1276 1277 static inline bool f2fs_is_drop_cache(struct inode *inode) 1278 { 1279 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE); 1280 } 1281 1282 static inline void *inline_data_addr(struct page *page) 1283 { 1284 struct f2fs_inode *ri = F2FS_INODE(page); 1285 return (void *)&(ri->i_addr[1]); 1286 } 1287 1288 static inline int f2fs_has_inline_dentry(struct inode *inode) 1289 { 1290 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY); 1291 } 1292 1293 static inline void *inline_dentry_addr(struct page *page) 1294 { 1295 struct f2fs_inode *ri = F2FS_INODE(page); 1296 return (void *)&(ri->i_addr[1]); 1297 } 1298 1299 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1300 { 1301 if (!f2fs_has_inline_dentry(dir)) 1302 kunmap(page); 1303 } 1304 1305 static inline int f2fs_readonly(struct super_block *sb) 1306 { 1307 return sb->s_flags & MS_RDONLY; 1308 } 1309 1310 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1311 { 1312 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1313 } 1314 1315 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi) 1316 { 1317 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1318 sbi->sb->s_flags |= MS_RDONLY; 1319 } 1320 1321 #define get_inode_mode(i) \ 1322 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1323 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1324 1325 /* get offset of first page in next direct node */ 1326 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \ 1327 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \ 1328 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \ 1329 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi)) 1330 1331 /* 1332 * file.c 1333 */ 1334 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1335 void truncate_data_blocks(struct dnode_of_data *); 1336 int truncate_blocks(struct inode *, u64, bool); 1337 void f2fs_truncate(struct inode *); 1338 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1339 int f2fs_setattr(struct dentry *, struct iattr *); 1340 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1341 int truncate_data_blocks_range(struct dnode_of_data *, int); 1342 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1343 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1344 1345 /* 1346 * inode.c 1347 */ 1348 void f2fs_set_inode_flags(struct inode *); 1349 struct inode *f2fs_iget(struct super_block *, unsigned long); 1350 int try_to_free_nats(struct f2fs_sb_info *, int); 1351 void update_inode(struct inode *, struct page *); 1352 void update_inode_page(struct inode *); 1353 int f2fs_write_inode(struct inode *, struct writeback_control *); 1354 void f2fs_evict_inode(struct inode *); 1355 void handle_failed_inode(struct inode *); 1356 1357 /* 1358 * namei.c 1359 */ 1360 struct dentry *f2fs_get_parent(struct dentry *child); 1361 1362 /* 1363 * dir.c 1364 */ 1365 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX]; 1366 void set_de_type(struct f2fs_dir_entry *, struct inode *); 1367 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *, 1368 struct f2fs_dentry_ptr *); 1369 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1370 unsigned int); 1371 void do_make_empty_dir(struct inode *, struct inode *, 1372 struct f2fs_dentry_ptr *); 1373 struct page *init_inode_metadata(struct inode *, struct inode *, 1374 const struct qstr *, struct page *); 1375 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1376 int room_for_filename(const void *, int, int); 1377 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *); 1378 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1379 struct page **); 1380 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1381 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1382 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1383 struct page *, struct inode *); 1384 int update_dent_inode(struct inode *, const struct qstr *); 1385 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *); 1386 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1387 struct inode *); 1388 int f2fs_do_tmpfile(struct inode *, struct inode *); 1389 int f2fs_make_empty(struct inode *, struct inode *); 1390 bool f2fs_empty_dir(struct inode *); 1391 1392 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1393 { 1394 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name, 1395 inode); 1396 } 1397 1398 /* 1399 * super.c 1400 */ 1401 int f2fs_sync_fs(struct super_block *, int); 1402 extern __printf(3, 4) 1403 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1404 1405 /* 1406 * hash.c 1407 */ 1408 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1409 1410 /* 1411 * node.c 1412 */ 1413 struct dnode_of_data; 1414 struct node_info; 1415 1416 bool available_free_memory(struct f2fs_sb_info *, int); 1417 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1418 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t); 1419 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1420 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1421 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1422 int truncate_inode_blocks(struct inode *, pgoff_t); 1423 int truncate_xattr_node(struct inode *, struct page *); 1424 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1425 void remove_inode_page(struct inode *); 1426 struct page *new_inode_page(struct inode *); 1427 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1428 void ra_node_page(struct f2fs_sb_info *, nid_t); 1429 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1430 struct page *get_node_page_ra(struct page *, int); 1431 void sync_inode_page(struct dnode_of_data *); 1432 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1433 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1434 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1435 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1436 void recover_inline_xattr(struct inode *, struct page *); 1437 void recover_xattr_data(struct inode *, struct page *, block_t); 1438 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1439 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1440 struct f2fs_summary_block *); 1441 void flush_nat_entries(struct f2fs_sb_info *); 1442 int build_node_manager(struct f2fs_sb_info *); 1443 void destroy_node_manager(struct f2fs_sb_info *); 1444 int __init create_node_manager_caches(void); 1445 void destroy_node_manager_caches(void); 1446 1447 /* 1448 * segment.c 1449 */ 1450 void register_inmem_page(struct inode *, struct page *); 1451 void commit_inmem_pages(struct inode *, bool); 1452 void f2fs_balance_fs(struct f2fs_sb_info *); 1453 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1454 int f2fs_issue_flush(struct f2fs_sb_info *); 1455 int create_flush_cmd_control(struct f2fs_sb_info *); 1456 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1457 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1458 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1459 void clear_prefree_segments(struct f2fs_sb_info *); 1460 void release_discard_addrs(struct f2fs_sb_info *); 1461 void discard_next_dnode(struct f2fs_sb_info *, block_t); 1462 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 1463 void allocate_new_segments(struct f2fs_sb_info *); 1464 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 1465 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1466 void write_meta_page(struct f2fs_sb_info *, struct page *); 1467 void write_node_page(struct f2fs_sb_info *, struct page *, 1468 unsigned int, struct f2fs_io_info *); 1469 void write_data_page(struct page *, struct dnode_of_data *, 1470 struct f2fs_io_info *); 1471 void rewrite_data_page(struct page *, struct f2fs_io_info *); 1472 void recover_data_page(struct f2fs_sb_info *, struct page *, 1473 struct f2fs_summary *, block_t, block_t); 1474 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1475 block_t, block_t *, struct f2fs_summary *, int); 1476 void f2fs_wait_on_page_writeback(struct page *, enum page_type); 1477 void write_data_summaries(struct f2fs_sb_info *, block_t); 1478 void write_node_summaries(struct f2fs_sb_info *, block_t); 1479 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1480 int, unsigned int, int); 1481 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 1482 int build_segment_manager(struct f2fs_sb_info *); 1483 void destroy_segment_manager(struct f2fs_sb_info *); 1484 int __init create_segment_manager_caches(void); 1485 void destroy_segment_manager_caches(void); 1486 1487 /* 1488 * checkpoint.c 1489 */ 1490 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1491 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1492 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int); 1493 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 1494 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1495 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1496 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1497 void release_dirty_inode(struct f2fs_sb_info *); 1498 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 1499 int acquire_orphan_inode(struct f2fs_sb_info *); 1500 void release_orphan_inode(struct f2fs_sb_info *); 1501 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1502 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1503 void recover_orphan_inodes(struct f2fs_sb_info *); 1504 int get_valid_checkpoint(struct f2fs_sb_info *); 1505 void update_dirty_page(struct inode *, struct page *); 1506 void add_dirty_dir_inode(struct inode *); 1507 void remove_dirty_dir_inode(struct inode *); 1508 void sync_dirty_dir_inodes(struct f2fs_sb_info *); 1509 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 1510 void init_ino_entry_info(struct f2fs_sb_info *); 1511 int __init create_checkpoint_caches(void); 1512 void destroy_checkpoint_caches(void); 1513 1514 /* 1515 * data.c 1516 */ 1517 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1518 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, 1519 struct f2fs_io_info *); 1520 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, 1521 struct f2fs_io_info *); 1522 int reserve_new_block(struct dnode_of_data *); 1523 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1524 void update_extent_cache(struct dnode_of_data *); 1525 struct page *find_data_page(struct inode *, pgoff_t, bool); 1526 struct page *get_lock_data_page(struct inode *, pgoff_t); 1527 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1528 int do_write_data_page(struct page *, struct f2fs_io_info *); 1529 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1530 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 1531 int f2fs_release_page(struct page *, gfp_t); 1532 1533 /* 1534 * gc.c 1535 */ 1536 int start_gc_thread(struct f2fs_sb_info *); 1537 void stop_gc_thread(struct f2fs_sb_info *); 1538 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *); 1539 int f2fs_gc(struct f2fs_sb_info *); 1540 void build_gc_manager(struct f2fs_sb_info *); 1541 1542 /* 1543 * recovery.c 1544 */ 1545 int recover_fsync_data(struct f2fs_sb_info *); 1546 bool space_for_roll_forward(struct f2fs_sb_info *); 1547 1548 /* 1549 * debug.c 1550 */ 1551 #ifdef CONFIG_F2FS_STAT_FS 1552 struct f2fs_stat_info { 1553 struct list_head stat_list; 1554 struct f2fs_sb_info *sbi; 1555 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1556 int main_area_segs, main_area_sections, main_area_zones; 1557 int hit_ext, total_ext; 1558 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; 1559 int nats, dirty_nats, sits, dirty_sits, fnids; 1560 int total_count, utilization; 1561 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages; 1562 unsigned int valid_count, valid_node_count, valid_inode_count; 1563 unsigned int bimodal, avg_vblocks; 1564 int util_free, util_valid, util_invalid; 1565 int rsvd_segs, overp_segs; 1566 int dirty_count, node_pages, meta_pages; 1567 int prefree_count, call_count, cp_count; 1568 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1569 int tot_blks, data_blks, node_blks; 1570 int curseg[NR_CURSEG_TYPE]; 1571 int cursec[NR_CURSEG_TYPE]; 1572 int curzone[NR_CURSEG_TYPE]; 1573 1574 unsigned int segment_count[2]; 1575 unsigned int block_count[2]; 1576 unsigned int inplace_count; 1577 unsigned base_mem, cache_mem, page_mem; 1578 }; 1579 1580 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1581 { 1582 return (struct f2fs_stat_info *)sbi->stat_info; 1583 } 1584 1585 #define stat_inc_cp_count(si) ((si)->cp_count++) 1586 #define stat_inc_call_count(si) ((si)->call_count++) 1587 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1588 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++) 1589 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--) 1590 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++) 1591 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++) 1592 #define stat_inc_inline_inode(inode) \ 1593 do { \ 1594 if (f2fs_has_inline_data(inode)) \ 1595 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 1596 } while (0) 1597 #define stat_dec_inline_inode(inode) \ 1598 do { \ 1599 if (f2fs_has_inline_data(inode)) \ 1600 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 1601 } while (0) 1602 #define stat_inc_inline_dir(inode) \ 1603 do { \ 1604 if (f2fs_has_inline_dentry(inode)) \ 1605 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 1606 } while (0) 1607 #define stat_dec_inline_dir(inode) \ 1608 do { \ 1609 if (f2fs_has_inline_dentry(inode)) \ 1610 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 1611 } while (0) 1612 #define stat_inc_seg_type(sbi, curseg) \ 1613 ((sbi)->segment_count[(curseg)->alloc_type]++) 1614 #define stat_inc_block_count(sbi, curseg) \ 1615 ((sbi)->block_count[(curseg)->alloc_type]++) 1616 #define stat_inc_inplace_blocks(sbi) \ 1617 (atomic_inc(&(sbi)->inplace_count)) 1618 #define stat_inc_seg_count(sbi, type) \ 1619 do { \ 1620 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1621 (si)->tot_segs++; \ 1622 if (type == SUM_TYPE_DATA) \ 1623 si->data_segs++; \ 1624 else \ 1625 si->node_segs++; \ 1626 } while (0) 1627 1628 #define stat_inc_tot_blk_count(si, blks) \ 1629 (si->tot_blks += (blks)) 1630 1631 #define stat_inc_data_blk_count(sbi, blks) \ 1632 do { \ 1633 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1634 stat_inc_tot_blk_count(si, blks); \ 1635 si->data_blks += (blks); \ 1636 } while (0) 1637 1638 #define stat_inc_node_blk_count(sbi, blks) \ 1639 do { \ 1640 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1641 stat_inc_tot_blk_count(si, blks); \ 1642 si->node_blks += (blks); \ 1643 } while (0) 1644 1645 int f2fs_build_stats(struct f2fs_sb_info *); 1646 void f2fs_destroy_stats(struct f2fs_sb_info *); 1647 void __init f2fs_create_root_stats(void); 1648 void f2fs_destroy_root_stats(void); 1649 #else 1650 #define stat_inc_cp_count(si) 1651 #define stat_inc_call_count(si) 1652 #define stat_inc_bggc_count(si) 1653 #define stat_inc_dirty_dir(sbi) 1654 #define stat_dec_dirty_dir(sbi) 1655 #define stat_inc_total_hit(sb) 1656 #define stat_inc_read_hit(sb) 1657 #define stat_inc_inline_inode(inode) 1658 #define stat_dec_inline_inode(inode) 1659 #define stat_inc_inline_dir(inode) 1660 #define stat_dec_inline_dir(inode) 1661 #define stat_inc_seg_type(sbi, curseg) 1662 #define stat_inc_block_count(sbi, curseg) 1663 #define stat_inc_inplace_blocks(sbi) 1664 #define stat_inc_seg_count(si, type) 1665 #define stat_inc_tot_blk_count(si, blks) 1666 #define stat_inc_data_blk_count(si, blks) 1667 #define stat_inc_node_blk_count(sbi, blks) 1668 1669 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 1670 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 1671 static inline void __init f2fs_create_root_stats(void) { } 1672 static inline void f2fs_destroy_root_stats(void) { } 1673 #endif 1674 1675 extern const struct file_operations f2fs_dir_operations; 1676 extern const struct file_operations f2fs_file_operations; 1677 extern const struct inode_operations f2fs_file_inode_operations; 1678 extern const struct address_space_operations f2fs_dblock_aops; 1679 extern const struct address_space_operations f2fs_node_aops; 1680 extern const struct address_space_operations f2fs_meta_aops; 1681 extern const struct inode_operations f2fs_dir_inode_operations; 1682 extern const struct inode_operations f2fs_symlink_inode_operations; 1683 extern const struct inode_operations f2fs_special_inode_operations; 1684 extern struct kmem_cache *inode_entry_slab; 1685 1686 /* 1687 * inline.c 1688 */ 1689 bool f2fs_may_inline(struct inode *); 1690 void read_inline_data(struct page *, struct page *); 1691 int f2fs_read_inline_data(struct inode *, struct page *); 1692 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 1693 int f2fs_convert_inline_inode(struct inode *); 1694 int f2fs_write_inline_data(struct inode *, struct page *); 1695 bool recover_inline_data(struct inode *, struct page *); 1696 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *, 1697 struct page **); 1698 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **); 1699 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 1700 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *); 1701 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 1702 struct inode *, struct inode *); 1703 bool f2fs_empty_inline_dir(struct inode *); 1704 int f2fs_read_inline_dir(struct file *, struct dir_context *); 1705 #endif 1706