xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 7bcae826)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #ifdef CONFIG_F2FS_FS_ENCRYPTION
26 #include <linux/fscrypt_supp.h>
27 #else
28 #include <linux/fscrypt_notsupp.h>
29 #endif
30 #include <crypto/hash.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_MAX,
56 };
57 
58 struct f2fs_fault_info {
59 	atomic_t inject_ops;
60 	unsigned int inject_rate;
61 	unsigned int inject_type;
62 };
63 
64 extern char *fault_name[FAULT_MAX];
65 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
66 #endif
67 
68 /*
69  * For mount options
70  */
71 #define F2FS_MOUNT_BG_GC		0x00000001
72 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
73 #define F2FS_MOUNT_DISCARD		0x00000004
74 #define F2FS_MOUNT_NOHEAP		0x00000008
75 #define F2FS_MOUNT_XATTR_USER		0x00000010
76 #define F2FS_MOUNT_POSIX_ACL		0x00000020
77 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
78 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
79 #define F2FS_MOUNT_INLINE_DATA		0x00000100
80 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
81 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
82 #define F2FS_MOUNT_NOBARRIER		0x00000800
83 #define F2FS_MOUNT_FASTBOOT		0x00001000
84 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
85 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
86 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
87 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
88 #define F2FS_MOUNT_ADAPTIVE		0x00020000
89 #define F2FS_MOUNT_LFS			0x00040000
90 
91 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
92 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
93 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
94 
95 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
96 		typecheck(unsigned long long, b) &&			\
97 		((long long)((a) - (b)) > 0))
98 
99 typedef u32 block_t;	/*
100 			 * should not change u32, since it is the on-disk block
101 			 * address format, __le32.
102 			 */
103 typedef u32 nid_t;
104 
105 struct f2fs_mount_info {
106 	unsigned int	opt;
107 };
108 
109 #define F2FS_FEATURE_ENCRYPT	0x0001
110 #define F2FS_FEATURE_BLKZONED	0x0002
111 
112 #define F2FS_HAS_FEATURE(sb, mask)					\
113 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
114 #define F2FS_SET_FEATURE(sb, mask)					\
115 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
116 #define F2FS_CLEAR_FEATURE(sb, mask)					\
117 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
118 
119 /*
120  * For checkpoint manager
121  */
122 enum {
123 	NAT_BITMAP,
124 	SIT_BITMAP
125 };
126 
127 enum {
128 	CP_UMOUNT,
129 	CP_FASTBOOT,
130 	CP_SYNC,
131 	CP_RECOVERY,
132 	CP_DISCARD,
133 };
134 
135 #define DEF_BATCHED_TRIM_SECTIONS	2
136 #define BATCHED_TRIM_SEGMENTS(sbi)	\
137 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
138 #define BATCHED_TRIM_BLOCKS(sbi)	\
139 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
140 #define DEF_CP_INTERVAL			60	/* 60 secs */
141 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
142 
143 struct cp_control {
144 	int reason;
145 	__u64 trim_start;
146 	__u64 trim_end;
147 	__u64 trim_minlen;
148 	__u64 trimmed;
149 };
150 
151 /*
152  * For CP/NAT/SIT/SSA readahead
153  */
154 enum {
155 	META_CP,
156 	META_NAT,
157 	META_SIT,
158 	META_SSA,
159 	META_POR,
160 };
161 
162 /* for the list of ino */
163 enum {
164 	ORPHAN_INO,		/* for orphan ino list */
165 	APPEND_INO,		/* for append ino list */
166 	UPDATE_INO,		/* for update ino list */
167 	MAX_INO_ENTRY,		/* max. list */
168 };
169 
170 struct ino_entry {
171 	struct list_head list;	/* list head */
172 	nid_t ino;		/* inode number */
173 };
174 
175 /* for the list of inodes to be GCed */
176 struct inode_entry {
177 	struct list_head list;	/* list head */
178 	struct inode *inode;	/* vfs inode pointer */
179 };
180 
181 /* for the list of blockaddresses to be discarded */
182 struct discard_entry {
183 	struct list_head list;	/* list head */
184 	block_t blkaddr;	/* block address to be discarded */
185 	int len;		/* # of consecutive blocks of the discard */
186 };
187 
188 struct bio_entry {
189 	struct list_head list;
190 	struct bio *bio;
191 	struct completion event;
192 	int error;
193 };
194 
195 /* for the list of fsync inodes, used only during recovery */
196 struct fsync_inode_entry {
197 	struct list_head list;	/* list head */
198 	struct inode *inode;	/* vfs inode pointer */
199 	block_t blkaddr;	/* block address locating the last fsync */
200 	block_t last_dentry;	/* block address locating the last dentry */
201 };
202 
203 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
204 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
205 
206 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
207 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
208 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
209 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
210 
211 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
212 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
213 
214 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
215 {
216 	int before = nats_in_cursum(journal);
217 	journal->n_nats = cpu_to_le16(before + i);
218 	return before;
219 }
220 
221 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
222 {
223 	int before = sits_in_cursum(journal);
224 	journal->n_sits = cpu_to_le16(before + i);
225 	return before;
226 }
227 
228 static inline bool __has_cursum_space(struct f2fs_journal *journal,
229 							int size, int type)
230 {
231 	if (type == NAT_JOURNAL)
232 		return size <= MAX_NAT_JENTRIES(journal);
233 	return size <= MAX_SIT_JENTRIES(journal);
234 }
235 
236 /*
237  * ioctl commands
238  */
239 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
240 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
241 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
242 
243 #define F2FS_IOCTL_MAGIC		0xf5
244 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
245 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
246 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
247 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
248 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
249 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
250 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
251 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
252 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
253 						struct f2fs_move_range)
254 
255 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
256 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
257 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
258 
259 /*
260  * should be same as XFS_IOC_GOINGDOWN.
261  * Flags for going down operation used by FS_IOC_GOINGDOWN
262  */
263 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
264 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
265 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
266 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
267 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
268 
269 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
270 /*
271  * ioctl commands in 32 bit emulation
272  */
273 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
274 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
275 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
276 #endif
277 
278 struct f2fs_defragment {
279 	u64 start;
280 	u64 len;
281 };
282 
283 struct f2fs_move_range {
284 	u32 dst_fd;		/* destination fd */
285 	u64 pos_in;		/* start position in src_fd */
286 	u64 pos_out;		/* start position in dst_fd */
287 	u64 len;		/* size to move */
288 };
289 
290 /*
291  * For INODE and NODE manager
292  */
293 /* for directory operations */
294 struct f2fs_dentry_ptr {
295 	struct inode *inode;
296 	const void *bitmap;
297 	struct f2fs_dir_entry *dentry;
298 	__u8 (*filename)[F2FS_SLOT_LEN];
299 	int max;
300 };
301 
302 static inline void make_dentry_ptr(struct inode *inode,
303 		struct f2fs_dentry_ptr *d, void *src, int type)
304 {
305 	d->inode = inode;
306 
307 	if (type == 1) {
308 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
309 		d->max = NR_DENTRY_IN_BLOCK;
310 		d->bitmap = &t->dentry_bitmap;
311 		d->dentry = t->dentry;
312 		d->filename = t->filename;
313 	} else {
314 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
315 		d->max = NR_INLINE_DENTRY;
316 		d->bitmap = &t->dentry_bitmap;
317 		d->dentry = t->dentry;
318 		d->filename = t->filename;
319 	}
320 }
321 
322 /*
323  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
324  * as its node offset to distinguish from index node blocks.
325  * But some bits are used to mark the node block.
326  */
327 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
328 				>> OFFSET_BIT_SHIFT)
329 enum {
330 	ALLOC_NODE,			/* allocate a new node page if needed */
331 	LOOKUP_NODE,			/* look up a node without readahead */
332 	LOOKUP_NODE_RA,			/*
333 					 * look up a node with readahead called
334 					 * by get_data_block.
335 					 */
336 };
337 
338 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
339 
340 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
341 
342 /* vector size for gang look-up from extent cache that consists of radix tree */
343 #define EXT_TREE_VEC_SIZE	64
344 
345 /* for in-memory extent cache entry */
346 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
347 
348 /* number of extent info in extent cache we try to shrink */
349 #define EXTENT_CACHE_SHRINK_NUMBER	128
350 
351 struct extent_info {
352 	unsigned int fofs;		/* start offset in a file */
353 	u32 blk;			/* start block address of the extent */
354 	unsigned int len;		/* length of the extent */
355 };
356 
357 struct extent_node {
358 	struct rb_node rb_node;		/* rb node located in rb-tree */
359 	struct list_head list;		/* node in global extent list of sbi */
360 	struct extent_info ei;		/* extent info */
361 	struct extent_tree *et;		/* extent tree pointer */
362 };
363 
364 struct extent_tree {
365 	nid_t ino;			/* inode number */
366 	struct rb_root root;		/* root of extent info rb-tree */
367 	struct extent_node *cached_en;	/* recently accessed extent node */
368 	struct extent_info largest;	/* largested extent info */
369 	struct list_head list;		/* to be used by sbi->zombie_list */
370 	rwlock_t lock;			/* protect extent info rb-tree */
371 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
372 };
373 
374 /*
375  * This structure is taken from ext4_map_blocks.
376  *
377  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
378  */
379 #define F2FS_MAP_NEW		(1 << BH_New)
380 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
381 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
382 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
383 				F2FS_MAP_UNWRITTEN)
384 
385 struct f2fs_map_blocks {
386 	block_t m_pblk;
387 	block_t m_lblk;
388 	unsigned int m_len;
389 	unsigned int m_flags;
390 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
391 };
392 
393 /* for flag in get_data_block */
394 #define F2FS_GET_BLOCK_READ		0
395 #define F2FS_GET_BLOCK_DIO		1
396 #define F2FS_GET_BLOCK_FIEMAP		2
397 #define F2FS_GET_BLOCK_BMAP		3
398 #define F2FS_GET_BLOCK_PRE_DIO		4
399 #define F2FS_GET_BLOCK_PRE_AIO		5
400 
401 /*
402  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
403  */
404 #define FADVISE_COLD_BIT	0x01
405 #define FADVISE_LOST_PINO_BIT	0x02
406 #define FADVISE_ENCRYPT_BIT	0x04
407 #define FADVISE_ENC_NAME_BIT	0x08
408 #define FADVISE_KEEP_SIZE_BIT	0x10
409 
410 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
411 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
412 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
413 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
414 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
415 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
416 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
417 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
418 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
419 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
420 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
421 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
422 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
423 
424 #define DEF_DIR_LEVEL		0
425 
426 struct f2fs_inode_info {
427 	struct inode vfs_inode;		/* serve a vfs inode */
428 	unsigned long i_flags;		/* keep an inode flags for ioctl */
429 	unsigned char i_advise;		/* use to give file attribute hints */
430 	unsigned char i_dir_level;	/* use for dentry level for large dir */
431 	unsigned int i_current_depth;	/* use only in directory structure */
432 	unsigned int i_pino;		/* parent inode number */
433 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
434 
435 	/* Use below internally in f2fs*/
436 	unsigned long flags;		/* use to pass per-file flags */
437 	struct rw_semaphore i_sem;	/* protect fi info */
438 	atomic_t dirty_pages;		/* # of dirty pages */
439 	f2fs_hash_t chash;		/* hash value of given file name */
440 	unsigned int clevel;		/* maximum level of given file name */
441 	nid_t i_xattr_nid;		/* node id that contains xattrs */
442 	unsigned long long xattr_ver;	/* cp version of xattr modification */
443 	loff_t	last_disk_size;		/* lastly written file size */
444 
445 	struct list_head dirty_list;	/* dirty list for dirs and files */
446 	struct list_head gdirty_list;	/* linked in global dirty list */
447 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
448 	struct mutex inmem_lock;	/* lock for inmemory pages */
449 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
450 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
451 };
452 
453 static inline void get_extent_info(struct extent_info *ext,
454 					struct f2fs_extent *i_ext)
455 {
456 	ext->fofs = le32_to_cpu(i_ext->fofs);
457 	ext->blk = le32_to_cpu(i_ext->blk);
458 	ext->len = le32_to_cpu(i_ext->len);
459 }
460 
461 static inline void set_raw_extent(struct extent_info *ext,
462 					struct f2fs_extent *i_ext)
463 {
464 	i_ext->fofs = cpu_to_le32(ext->fofs);
465 	i_ext->blk = cpu_to_le32(ext->blk);
466 	i_ext->len = cpu_to_le32(ext->len);
467 }
468 
469 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
470 						u32 blk, unsigned int len)
471 {
472 	ei->fofs = fofs;
473 	ei->blk = blk;
474 	ei->len = len;
475 }
476 
477 static inline bool __is_extent_same(struct extent_info *ei1,
478 						struct extent_info *ei2)
479 {
480 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
481 						ei1->len == ei2->len);
482 }
483 
484 static inline bool __is_extent_mergeable(struct extent_info *back,
485 						struct extent_info *front)
486 {
487 	return (back->fofs + back->len == front->fofs &&
488 			back->blk + back->len == front->blk);
489 }
490 
491 static inline bool __is_back_mergeable(struct extent_info *cur,
492 						struct extent_info *back)
493 {
494 	return __is_extent_mergeable(back, cur);
495 }
496 
497 static inline bool __is_front_mergeable(struct extent_info *cur,
498 						struct extent_info *front)
499 {
500 	return __is_extent_mergeable(cur, front);
501 }
502 
503 extern void f2fs_mark_inode_dirty_sync(struct inode *, bool);
504 static inline void __try_update_largest_extent(struct inode *inode,
505 			struct extent_tree *et, struct extent_node *en)
506 {
507 	if (en->ei.len > et->largest.len) {
508 		et->largest = en->ei;
509 		f2fs_mark_inode_dirty_sync(inode, true);
510 	}
511 }
512 
513 enum nid_list {
514 	FREE_NID_LIST,
515 	ALLOC_NID_LIST,
516 	MAX_NID_LIST,
517 };
518 
519 struct f2fs_nm_info {
520 	block_t nat_blkaddr;		/* base disk address of NAT */
521 	nid_t max_nid;			/* maximum possible node ids */
522 	nid_t available_nids;		/* # of available node ids */
523 	nid_t next_scan_nid;		/* the next nid to be scanned */
524 	unsigned int ram_thresh;	/* control the memory footprint */
525 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
526 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
527 
528 	/* NAT cache management */
529 	struct radix_tree_root nat_root;/* root of the nat entry cache */
530 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
531 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
532 	struct list_head nat_entries;	/* cached nat entry list (clean) */
533 	unsigned int nat_cnt;		/* the # of cached nat entries */
534 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
535 
536 	/* free node ids management */
537 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
538 	struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
539 	unsigned int nid_cnt[MAX_NID_LIST];	/* the number of free node id */
540 	spinlock_t nid_list_lock;	/* protect nid lists ops */
541 	struct mutex build_lock;	/* lock for build free nids */
542 
543 	/* for checkpoint */
544 	char *nat_bitmap;		/* NAT bitmap pointer */
545 	int bitmap_size;		/* bitmap size */
546 };
547 
548 /*
549  * this structure is used as one of function parameters.
550  * all the information are dedicated to a given direct node block determined
551  * by the data offset in a file.
552  */
553 struct dnode_of_data {
554 	struct inode *inode;		/* vfs inode pointer */
555 	struct page *inode_page;	/* its inode page, NULL is possible */
556 	struct page *node_page;		/* cached direct node page */
557 	nid_t nid;			/* node id of the direct node block */
558 	unsigned int ofs_in_node;	/* data offset in the node page */
559 	bool inode_page_locked;		/* inode page is locked or not */
560 	bool node_changed;		/* is node block changed */
561 	char cur_level;			/* level of hole node page */
562 	char max_level;			/* level of current page located */
563 	block_t	data_blkaddr;		/* block address of the node block */
564 };
565 
566 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
567 		struct page *ipage, struct page *npage, nid_t nid)
568 {
569 	memset(dn, 0, sizeof(*dn));
570 	dn->inode = inode;
571 	dn->inode_page = ipage;
572 	dn->node_page = npage;
573 	dn->nid = nid;
574 }
575 
576 /*
577  * For SIT manager
578  *
579  * By default, there are 6 active log areas across the whole main area.
580  * When considering hot and cold data separation to reduce cleaning overhead,
581  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
582  * respectively.
583  * In the current design, you should not change the numbers intentionally.
584  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
585  * logs individually according to the underlying devices. (default: 6)
586  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
587  * data and 8 for node logs.
588  */
589 #define	NR_CURSEG_DATA_TYPE	(3)
590 #define NR_CURSEG_NODE_TYPE	(3)
591 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
592 
593 enum {
594 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
595 	CURSEG_WARM_DATA,	/* data blocks */
596 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
597 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
598 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
599 	CURSEG_COLD_NODE,	/* indirect node blocks */
600 	NO_CHECK_TYPE,
601 };
602 
603 struct flush_cmd {
604 	struct completion wait;
605 	struct llist_node llnode;
606 	int ret;
607 };
608 
609 struct flush_cmd_control {
610 	struct task_struct *f2fs_issue_flush;	/* flush thread */
611 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
612 	atomic_t submit_flush;			/* # of issued flushes */
613 	struct llist_head issue_list;		/* list for command issue */
614 	struct llist_node *dispatch_list;	/* list for command dispatch */
615 };
616 
617 struct f2fs_sm_info {
618 	struct sit_info *sit_info;		/* whole segment information */
619 	struct free_segmap_info *free_info;	/* free segment information */
620 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
621 	struct curseg_info *curseg_array;	/* active segment information */
622 
623 	block_t seg0_blkaddr;		/* block address of 0'th segment */
624 	block_t main_blkaddr;		/* start block address of main area */
625 	block_t ssa_blkaddr;		/* start block address of SSA area */
626 
627 	unsigned int segment_count;	/* total # of segments */
628 	unsigned int main_segments;	/* # of segments in main area */
629 	unsigned int reserved_segments;	/* # of reserved segments */
630 	unsigned int ovp_segments;	/* # of overprovision segments */
631 
632 	/* a threshold to reclaim prefree segments */
633 	unsigned int rec_prefree_segments;
634 
635 	/* for small discard management */
636 	struct list_head discard_list;		/* 4KB discard list */
637 	struct list_head wait_list;		/* linked with issued discard bio */
638 	int nr_discards;			/* # of discards in the list */
639 	int max_discards;			/* max. discards to be issued */
640 
641 	/* for batched trimming */
642 	unsigned int trim_sections;		/* # of sections to trim */
643 
644 	struct list_head sit_entry_set;	/* sit entry set list */
645 
646 	unsigned int ipu_policy;	/* in-place-update policy */
647 	unsigned int min_ipu_util;	/* in-place-update threshold */
648 	unsigned int min_fsync_blocks;	/* threshold for fsync */
649 
650 	/* for flush command control */
651 	struct flush_cmd_control *cmd_control_info;
652 
653 };
654 
655 /*
656  * For superblock
657  */
658 /*
659  * COUNT_TYPE for monitoring
660  *
661  * f2fs monitors the number of several block types such as on-writeback,
662  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
663  */
664 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
665 enum count_type {
666 	F2FS_DIRTY_DENTS,
667 	F2FS_DIRTY_DATA,
668 	F2FS_DIRTY_NODES,
669 	F2FS_DIRTY_META,
670 	F2FS_INMEM_PAGES,
671 	F2FS_DIRTY_IMETA,
672 	F2FS_WB_CP_DATA,
673 	F2FS_WB_DATA,
674 	NR_COUNT_TYPE,
675 };
676 
677 /*
678  * The below are the page types of bios used in submit_bio().
679  * The available types are:
680  * DATA			User data pages. It operates as async mode.
681  * NODE			Node pages. It operates as async mode.
682  * META			FS metadata pages such as SIT, NAT, CP.
683  * NR_PAGE_TYPE		The number of page types.
684  * META_FLUSH		Make sure the previous pages are written
685  *			with waiting the bio's completion
686  * ...			Only can be used with META.
687  */
688 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
689 enum page_type {
690 	DATA,
691 	NODE,
692 	META,
693 	NR_PAGE_TYPE,
694 	META_FLUSH,
695 	INMEM,		/* the below types are used by tracepoints only. */
696 	INMEM_DROP,
697 	INMEM_REVOKE,
698 	IPU,
699 	OPU,
700 };
701 
702 struct f2fs_io_info {
703 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
704 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
705 	int op;			/* contains REQ_OP_ */
706 	int op_flags;		/* req_flag_bits */
707 	block_t new_blkaddr;	/* new block address to be written */
708 	block_t old_blkaddr;	/* old block address before Cow */
709 	struct page *page;	/* page to be written */
710 	struct page *encrypted_page;	/* encrypted page */
711 };
712 
713 #define is_read_io(rw) (rw == READ)
714 struct f2fs_bio_info {
715 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
716 	struct bio *bio;		/* bios to merge */
717 	sector_t last_block_in_bio;	/* last block number */
718 	struct f2fs_io_info fio;	/* store buffered io info. */
719 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
720 };
721 
722 #define FDEV(i)				(sbi->devs[i])
723 #define RDEV(i)				(raw_super->devs[i])
724 struct f2fs_dev_info {
725 	struct block_device *bdev;
726 	char path[MAX_PATH_LEN];
727 	unsigned int total_segments;
728 	block_t start_blk;
729 	block_t end_blk;
730 #ifdef CONFIG_BLK_DEV_ZONED
731 	unsigned int nr_blkz;			/* Total number of zones */
732 	u8 *blkz_type;				/* Array of zones type */
733 #endif
734 };
735 
736 enum inode_type {
737 	DIR_INODE,			/* for dirty dir inode */
738 	FILE_INODE,			/* for dirty regular/symlink inode */
739 	DIRTY_META,			/* for all dirtied inode metadata */
740 	NR_INODE_TYPE,
741 };
742 
743 /* for inner inode cache management */
744 struct inode_management {
745 	struct radix_tree_root ino_root;	/* ino entry array */
746 	spinlock_t ino_lock;			/* for ino entry lock */
747 	struct list_head ino_list;		/* inode list head */
748 	unsigned long ino_num;			/* number of entries */
749 };
750 
751 /* For s_flag in struct f2fs_sb_info */
752 enum {
753 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
754 	SBI_IS_CLOSE,				/* specify unmounting */
755 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
756 	SBI_POR_DOING,				/* recovery is doing or not */
757 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
758 	SBI_NEED_CP,				/* need to checkpoint */
759 };
760 
761 enum {
762 	CP_TIME,
763 	REQ_TIME,
764 	MAX_TIME,
765 };
766 
767 struct f2fs_sb_info {
768 	struct super_block *sb;			/* pointer to VFS super block */
769 	struct proc_dir_entry *s_proc;		/* proc entry */
770 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
771 	int valid_super_block;			/* valid super block no */
772 	unsigned long s_flag;				/* flags for sbi */
773 
774 #ifdef CONFIG_BLK_DEV_ZONED
775 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
776 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
777 #endif
778 
779 	/* for node-related operations */
780 	struct f2fs_nm_info *nm_info;		/* node manager */
781 	struct inode *node_inode;		/* cache node blocks */
782 
783 	/* for segment-related operations */
784 	struct f2fs_sm_info *sm_info;		/* segment manager */
785 
786 	/* for bio operations */
787 	struct f2fs_bio_info read_io;			/* for read bios */
788 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
789 	struct mutex wio_mutex[NODE + 1];	/* bio ordering for NODE/DATA */
790 
791 	/* for checkpoint */
792 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
793 	int cur_cp_pack;			/* remain current cp pack */
794 	spinlock_t cp_lock;			/* for flag in ckpt */
795 	struct inode *meta_inode;		/* cache meta blocks */
796 	struct mutex cp_mutex;			/* checkpoint procedure lock */
797 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
798 	struct rw_semaphore node_write;		/* locking node writes */
799 	wait_queue_head_t cp_wait;
800 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
801 	long interval_time[MAX_TIME];		/* to store thresholds */
802 
803 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
804 
805 	/* for orphan inode, use 0'th array */
806 	unsigned int max_orphans;		/* max orphan inodes */
807 
808 	/* for inode management */
809 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
810 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
811 
812 	/* for extent tree cache */
813 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
814 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
815 	struct list_head extent_list;		/* lru list for shrinker */
816 	spinlock_t extent_lock;			/* locking extent lru list */
817 	atomic_t total_ext_tree;		/* extent tree count */
818 	struct list_head zombie_list;		/* extent zombie tree list */
819 	atomic_t total_zombie_tree;		/* extent zombie tree count */
820 	atomic_t total_ext_node;		/* extent info count */
821 
822 	/* basic filesystem units */
823 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
824 	unsigned int log_blocksize;		/* log2 block size */
825 	unsigned int blocksize;			/* block size */
826 	unsigned int root_ino_num;		/* root inode number*/
827 	unsigned int node_ino_num;		/* node inode number*/
828 	unsigned int meta_ino_num;		/* meta inode number*/
829 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
830 	unsigned int blocks_per_seg;		/* blocks per segment */
831 	unsigned int segs_per_sec;		/* segments per section */
832 	unsigned int secs_per_zone;		/* sections per zone */
833 	unsigned int total_sections;		/* total section count */
834 	unsigned int total_node_count;		/* total node block count */
835 	unsigned int total_valid_node_count;	/* valid node block count */
836 	loff_t max_file_blocks;			/* max block index of file */
837 	int active_logs;			/* # of active logs */
838 	int dir_level;				/* directory level */
839 
840 	block_t user_block_count;		/* # of user blocks */
841 	block_t total_valid_block_count;	/* # of valid blocks */
842 	block_t discard_blks;			/* discard command candidats */
843 	block_t last_valid_block_count;		/* for recovery */
844 	u32 s_next_generation;			/* for NFS support */
845 
846 	/* # of pages, see count_type */
847 	atomic_t nr_pages[NR_COUNT_TYPE];
848 	/* # of allocated blocks */
849 	struct percpu_counter alloc_valid_block_count;
850 
851 	/* valid inode count */
852 	struct percpu_counter total_valid_inode_count;
853 
854 	struct f2fs_mount_info mount_opt;	/* mount options */
855 
856 	/* for cleaning operations */
857 	struct mutex gc_mutex;			/* mutex for GC */
858 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
859 	unsigned int cur_victim_sec;		/* current victim section num */
860 
861 	/* maximum # of trials to find a victim segment for SSR and GC */
862 	unsigned int max_victim_search;
863 
864 	/*
865 	 * for stat information.
866 	 * one is for the LFS mode, and the other is for the SSR mode.
867 	 */
868 #ifdef CONFIG_F2FS_STAT_FS
869 	struct f2fs_stat_info *stat_info;	/* FS status information */
870 	unsigned int segment_count[2];		/* # of allocated segments */
871 	unsigned int block_count[2];		/* # of allocated blocks */
872 	atomic_t inplace_count;		/* # of inplace update */
873 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
874 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
875 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
876 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
877 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
878 	atomic_t inline_inode;			/* # of inline_data inodes */
879 	atomic_t inline_dir;			/* # of inline_dentry inodes */
880 	int bg_gc;				/* background gc calls */
881 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
882 #endif
883 	unsigned int last_victim[2];		/* last victim segment # */
884 	spinlock_t stat_lock;			/* lock for stat operations */
885 
886 	/* For sysfs suppport */
887 	struct kobject s_kobj;
888 	struct completion s_kobj_unregister;
889 
890 	/* For shrinker support */
891 	struct list_head s_list;
892 	int s_ndevs;				/* number of devices */
893 	struct f2fs_dev_info *devs;		/* for device list */
894 	struct mutex umount_mutex;
895 	unsigned int shrinker_run_no;
896 
897 	/* For write statistics */
898 	u64 sectors_written_start;
899 	u64 kbytes_written;
900 
901 	/* Reference to checksum algorithm driver via cryptoapi */
902 	struct crypto_shash *s_chksum_driver;
903 
904 	/* For fault injection */
905 #ifdef CONFIG_F2FS_FAULT_INJECTION
906 	struct f2fs_fault_info fault_info;
907 #endif
908 };
909 
910 #ifdef CONFIG_F2FS_FAULT_INJECTION
911 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
912 {
913 	struct f2fs_fault_info *ffi = &sbi->fault_info;
914 
915 	if (!ffi->inject_rate)
916 		return false;
917 
918 	if (!IS_FAULT_SET(ffi, type))
919 		return false;
920 
921 	atomic_inc(&ffi->inject_ops);
922 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
923 		atomic_set(&ffi->inject_ops, 0);
924 		printk("%sF2FS-fs : inject %s in %pF\n",
925 				KERN_INFO,
926 				fault_name[type],
927 				__builtin_return_address(0));
928 		return true;
929 	}
930 	return false;
931 }
932 #endif
933 
934 /* For write statistics. Suppose sector size is 512 bytes,
935  * and the return value is in kbytes. s is of struct f2fs_sb_info.
936  */
937 #define BD_PART_WRITTEN(s)						 \
938 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
939 		s->sectors_written_start) >> 1)
940 
941 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
942 {
943 	sbi->last_time[type] = jiffies;
944 }
945 
946 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
947 {
948 	struct timespec ts = {sbi->interval_time[type], 0};
949 	unsigned long interval = timespec_to_jiffies(&ts);
950 
951 	return time_after(jiffies, sbi->last_time[type] + interval);
952 }
953 
954 static inline bool is_idle(struct f2fs_sb_info *sbi)
955 {
956 	struct block_device *bdev = sbi->sb->s_bdev;
957 	struct request_queue *q = bdev_get_queue(bdev);
958 	struct request_list *rl = &q->root_rl;
959 
960 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
961 		return 0;
962 
963 	return f2fs_time_over(sbi, REQ_TIME);
964 }
965 
966 /*
967  * Inline functions
968  */
969 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
970 			   unsigned int length)
971 {
972 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
973 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
974 	int err;
975 
976 	shash->tfm = sbi->s_chksum_driver;
977 	shash->flags = 0;
978 	*ctx = F2FS_SUPER_MAGIC;
979 
980 	err = crypto_shash_update(shash, address, length);
981 	BUG_ON(err);
982 
983 	return *ctx;
984 }
985 
986 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
987 				  void *buf, size_t buf_size)
988 {
989 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
990 }
991 
992 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
993 {
994 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
995 }
996 
997 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
998 {
999 	return sb->s_fs_info;
1000 }
1001 
1002 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1003 {
1004 	return F2FS_SB(inode->i_sb);
1005 }
1006 
1007 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1008 {
1009 	return F2FS_I_SB(mapping->host);
1010 }
1011 
1012 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1013 {
1014 	return F2FS_M_SB(page->mapping);
1015 }
1016 
1017 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1018 {
1019 	return (struct f2fs_super_block *)(sbi->raw_super);
1020 }
1021 
1022 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1023 {
1024 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1025 }
1026 
1027 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1028 {
1029 	return (struct f2fs_node *)page_address(page);
1030 }
1031 
1032 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1033 {
1034 	return &((struct f2fs_node *)page_address(page))->i;
1035 }
1036 
1037 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1038 {
1039 	return (struct f2fs_nm_info *)(sbi->nm_info);
1040 }
1041 
1042 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1043 {
1044 	return (struct f2fs_sm_info *)(sbi->sm_info);
1045 }
1046 
1047 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1048 {
1049 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1050 }
1051 
1052 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1053 {
1054 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1055 }
1056 
1057 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1058 {
1059 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1060 }
1061 
1062 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1063 {
1064 	return sbi->meta_inode->i_mapping;
1065 }
1066 
1067 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1068 {
1069 	return sbi->node_inode->i_mapping;
1070 }
1071 
1072 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1073 {
1074 	return test_bit(type, &sbi->s_flag);
1075 }
1076 
1077 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1078 {
1079 	set_bit(type, &sbi->s_flag);
1080 }
1081 
1082 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1083 {
1084 	clear_bit(type, &sbi->s_flag);
1085 }
1086 
1087 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1088 {
1089 	return le64_to_cpu(cp->checkpoint_ver);
1090 }
1091 
1092 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1093 {
1094 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1095 
1096 	return ckpt_flags & f;
1097 }
1098 
1099 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1100 {
1101 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1102 }
1103 
1104 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1105 {
1106 	unsigned int ckpt_flags;
1107 
1108 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1109 	ckpt_flags |= f;
1110 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1111 }
1112 
1113 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1114 {
1115 	spin_lock(&sbi->cp_lock);
1116 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1117 	spin_unlock(&sbi->cp_lock);
1118 }
1119 
1120 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1121 {
1122 	unsigned int ckpt_flags;
1123 
1124 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1125 	ckpt_flags &= (~f);
1126 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1127 }
1128 
1129 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1130 {
1131 	spin_lock(&sbi->cp_lock);
1132 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1133 	spin_unlock(&sbi->cp_lock);
1134 }
1135 
1136 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1137 {
1138 	down_read(&sbi->cp_rwsem);
1139 }
1140 
1141 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1142 {
1143 	up_read(&sbi->cp_rwsem);
1144 }
1145 
1146 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1147 {
1148 	down_write(&sbi->cp_rwsem);
1149 }
1150 
1151 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1152 {
1153 	up_write(&sbi->cp_rwsem);
1154 }
1155 
1156 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1157 {
1158 	int reason = CP_SYNC;
1159 
1160 	if (test_opt(sbi, FASTBOOT))
1161 		reason = CP_FASTBOOT;
1162 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1163 		reason = CP_UMOUNT;
1164 	return reason;
1165 }
1166 
1167 static inline bool __remain_node_summaries(int reason)
1168 {
1169 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1170 }
1171 
1172 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1173 {
1174 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1175 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1176 }
1177 
1178 /*
1179  * Check whether the given nid is within node id range.
1180  */
1181 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1182 {
1183 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1184 		return -EINVAL;
1185 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1186 		return -EINVAL;
1187 	return 0;
1188 }
1189 
1190 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1191 
1192 /*
1193  * Check whether the inode has blocks or not
1194  */
1195 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1196 {
1197 	if (F2FS_I(inode)->i_xattr_nid)
1198 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1199 	else
1200 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1201 }
1202 
1203 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1204 {
1205 	return ofs == XATTR_NODE_OFFSET;
1206 }
1207 
1208 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1209 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1210 				 struct inode *inode, blkcnt_t *count)
1211 {
1212 	blkcnt_t diff;
1213 
1214 #ifdef CONFIG_F2FS_FAULT_INJECTION
1215 	if (time_to_inject(sbi, FAULT_BLOCK))
1216 		return false;
1217 #endif
1218 	/*
1219 	 * let's increase this in prior to actual block count change in order
1220 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1221 	 */
1222 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1223 
1224 	spin_lock(&sbi->stat_lock);
1225 	sbi->total_valid_block_count += (block_t)(*count);
1226 	if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1227 		diff = sbi->total_valid_block_count - sbi->user_block_count;
1228 		*count -= diff;
1229 		sbi->total_valid_block_count = sbi->user_block_count;
1230 		if (!*count) {
1231 			spin_unlock(&sbi->stat_lock);
1232 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1233 			return false;
1234 		}
1235 	}
1236 	spin_unlock(&sbi->stat_lock);
1237 
1238 	f2fs_i_blocks_write(inode, *count, true);
1239 	return true;
1240 }
1241 
1242 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1243 						struct inode *inode,
1244 						blkcnt_t count)
1245 {
1246 	spin_lock(&sbi->stat_lock);
1247 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1248 	f2fs_bug_on(sbi, inode->i_blocks < count);
1249 	sbi->total_valid_block_count -= (block_t)count;
1250 	spin_unlock(&sbi->stat_lock);
1251 	f2fs_i_blocks_write(inode, count, false);
1252 }
1253 
1254 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1255 {
1256 	atomic_inc(&sbi->nr_pages[count_type]);
1257 
1258 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1259 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1260 		return;
1261 
1262 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1263 }
1264 
1265 static inline void inode_inc_dirty_pages(struct inode *inode)
1266 {
1267 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1268 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1269 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1270 }
1271 
1272 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1273 {
1274 	atomic_dec(&sbi->nr_pages[count_type]);
1275 }
1276 
1277 static inline void inode_dec_dirty_pages(struct inode *inode)
1278 {
1279 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1280 			!S_ISLNK(inode->i_mode))
1281 		return;
1282 
1283 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1284 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1285 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1286 }
1287 
1288 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1289 {
1290 	return atomic_read(&sbi->nr_pages[count_type]);
1291 }
1292 
1293 static inline int get_dirty_pages(struct inode *inode)
1294 {
1295 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1296 }
1297 
1298 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1299 {
1300 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1301 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1302 						sbi->log_blocks_per_seg;
1303 
1304 	return segs / sbi->segs_per_sec;
1305 }
1306 
1307 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1308 {
1309 	return sbi->total_valid_block_count;
1310 }
1311 
1312 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1313 {
1314 	return sbi->discard_blks;
1315 }
1316 
1317 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1318 {
1319 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1320 
1321 	/* return NAT or SIT bitmap */
1322 	if (flag == NAT_BITMAP)
1323 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1324 	else if (flag == SIT_BITMAP)
1325 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1326 
1327 	return 0;
1328 }
1329 
1330 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1331 {
1332 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1333 }
1334 
1335 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1336 {
1337 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1338 	int offset;
1339 
1340 	if (__cp_payload(sbi) > 0) {
1341 		if (flag == NAT_BITMAP)
1342 			return &ckpt->sit_nat_version_bitmap;
1343 		else
1344 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1345 	} else {
1346 		offset = (flag == NAT_BITMAP) ?
1347 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1348 		return &ckpt->sit_nat_version_bitmap + offset;
1349 	}
1350 }
1351 
1352 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1353 {
1354 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1355 
1356 	if (sbi->cur_cp_pack == 2)
1357 		start_addr += sbi->blocks_per_seg;
1358 	return start_addr;
1359 }
1360 
1361 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1362 {
1363 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1364 
1365 	if (sbi->cur_cp_pack == 1)
1366 		start_addr += sbi->blocks_per_seg;
1367 	return start_addr;
1368 }
1369 
1370 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1371 {
1372 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1373 }
1374 
1375 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1376 {
1377 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1378 }
1379 
1380 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1381 						struct inode *inode)
1382 {
1383 	block_t	valid_block_count;
1384 	unsigned int valid_node_count;
1385 
1386 	spin_lock(&sbi->stat_lock);
1387 
1388 	valid_block_count = sbi->total_valid_block_count + 1;
1389 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1390 		spin_unlock(&sbi->stat_lock);
1391 		return false;
1392 	}
1393 
1394 	valid_node_count = sbi->total_valid_node_count + 1;
1395 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1396 		spin_unlock(&sbi->stat_lock);
1397 		return false;
1398 	}
1399 
1400 	if (inode)
1401 		f2fs_i_blocks_write(inode, 1, true);
1402 
1403 	sbi->total_valid_node_count++;
1404 	sbi->total_valid_block_count++;
1405 	spin_unlock(&sbi->stat_lock);
1406 
1407 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1408 	return true;
1409 }
1410 
1411 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1412 						struct inode *inode)
1413 {
1414 	spin_lock(&sbi->stat_lock);
1415 
1416 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1417 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1418 	f2fs_bug_on(sbi, !inode->i_blocks);
1419 
1420 	f2fs_i_blocks_write(inode, 1, false);
1421 	sbi->total_valid_node_count--;
1422 	sbi->total_valid_block_count--;
1423 
1424 	spin_unlock(&sbi->stat_lock);
1425 }
1426 
1427 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1428 {
1429 	return sbi->total_valid_node_count;
1430 }
1431 
1432 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1433 {
1434 	percpu_counter_inc(&sbi->total_valid_inode_count);
1435 }
1436 
1437 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1438 {
1439 	percpu_counter_dec(&sbi->total_valid_inode_count);
1440 }
1441 
1442 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1443 {
1444 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1445 }
1446 
1447 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1448 						pgoff_t index, bool for_write)
1449 {
1450 #ifdef CONFIG_F2FS_FAULT_INJECTION
1451 	struct page *page = find_lock_page(mapping, index);
1452 	if (page)
1453 		return page;
1454 
1455 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
1456 		return NULL;
1457 #endif
1458 	if (!for_write)
1459 		return grab_cache_page(mapping, index);
1460 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1461 }
1462 
1463 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1464 {
1465 	char *src_kaddr = kmap(src);
1466 	char *dst_kaddr = kmap(dst);
1467 
1468 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1469 	kunmap(dst);
1470 	kunmap(src);
1471 }
1472 
1473 static inline void f2fs_put_page(struct page *page, int unlock)
1474 {
1475 	if (!page)
1476 		return;
1477 
1478 	if (unlock) {
1479 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1480 		unlock_page(page);
1481 	}
1482 	put_page(page);
1483 }
1484 
1485 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1486 {
1487 	if (dn->node_page)
1488 		f2fs_put_page(dn->node_page, 1);
1489 	if (dn->inode_page && dn->node_page != dn->inode_page)
1490 		f2fs_put_page(dn->inode_page, 0);
1491 	dn->node_page = NULL;
1492 	dn->inode_page = NULL;
1493 }
1494 
1495 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1496 					size_t size)
1497 {
1498 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1499 }
1500 
1501 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1502 						gfp_t flags)
1503 {
1504 	void *entry;
1505 
1506 	entry = kmem_cache_alloc(cachep, flags);
1507 	if (!entry)
1508 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1509 	return entry;
1510 }
1511 
1512 static inline struct bio *f2fs_bio_alloc(int npages)
1513 {
1514 	struct bio *bio;
1515 
1516 	/* No failure on bio allocation */
1517 	bio = bio_alloc(GFP_NOIO, npages);
1518 	if (!bio)
1519 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1520 	return bio;
1521 }
1522 
1523 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1524 				unsigned long index, void *item)
1525 {
1526 	while (radix_tree_insert(root, index, item))
1527 		cond_resched();
1528 }
1529 
1530 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1531 
1532 static inline bool IS_INODE(struct page *page)
1533 {
1534 	struct f2fs_node *p = F2FS_NODE(page);
1535 	return RAW_IS_INODE(p);
1536 }
1537 
1538 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1539 {
1540 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1541 }
1542 
1543 static inline block_t datablock_addr(struct page *node_page,
1544 		unsigned int offset)
1545 {
1546 	struct f2fs_node *raw_node;
1547 	__le32 *addr_array;
1548 	raw_node = F2FS_NODE(node_page);
1549 	addr_array = blkaddr_in_node(raw_node);
1550 	return le32_to_cpu(addr_array[offset]);
1551 }
1552 
1553 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1554 {
1555 	int mask;
1556 
1557 	addr += (nr >> 3);
1558 	mask = 1 << (7 - (nr & 0x07));
1559 	return mask & *addr;
1560 }
1561 
1562 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1563 {
1564 	int mask;
1565 
1566 	addr += (nr >> 3);
1567 	mask = 1 << (7 - (nr & 0x07));
1568 	*addr |= mask;
1569 }
1570 
1571 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1572 {
1573 	int mask;
1574 
1575 	addr += (nr >> 3);
1576 	mask = 1 << (7 - (nr & 0x07));
1577 	*addr &= ~mask;
1578 }
1579 
1580 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1581 {
1582 	int mask;
1583 	int ret;
1584 
1585 	addr += (nr >> 3);
1586 	mask = 1 << (7 - (nr & 0x07));
1587 	ret = mask & *addr;
1588 	*addr |= mask;
1589 	return ret;
1590 }
1591 
1592 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1593 {
1594 	int mask;
1595 	int ret;
1596 
1597 	addr += (nr >> 3);
1598 	mask = 1 << (7 - (nr & 0x07));
1599 	ret = mask & *addr;
1600 	*addr &= ~mask;
1601 	return ret;
1602 }
1603 
1604 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1605 {
1606 	int mask;
1607 
1608 	addr += (nr >> 3);
1609 	mask = 1 << (7 - (nr & 0x07));
1610 	*addr ^= mask;
1611 }
1612 
1613 /* used for f2fs_inode_info->flags */
1614 enum {
1615 	FI_NEW_INODE,		/* indicate newly allocated inode */
1616 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1617 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1618 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1619 	FI_INC_LINK,		/* need to increment i_nlink */
1620 	FI_ACL_MODE,		/* indicate acl mode */
1621 	FI_NO_ALLOC,		/* should not allocate any blocks */
1622 	FI_FREE_NID,		/* free allocated nide */
1623 	FI_NO_EXTENT,		/* not to use the extent cache */
1624 	FI_INLINE_XATTR,	/* used for inline xattr */
1625 	FI_INLINE_DATA,		/* used for inline data*/
1626 	FI_INLINE_DENTRY,	/* used for inline dentry */
1627 	FI_APPEND_WRITE,	/* inode has appended data */
1628 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1629 	FI_NEED_IPU,		/* used for ipu per file */
1630 	FI_ATOMIC_FILE,		/* indicate atomic file */
1631 	FI_VOLATILE_FILE,	/* indicate volatile file */
1632 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1633 	FI_DROP_CACHE,		/* drop dirty page cache */
1634 	FI_DATA_EXIST,		/* indicate data exists */
1635 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1636 	FI_DO_DEFRAG,		/* indicate defragment is running */
1637 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1638 };
1639 
1640 static inline void __mark_inode_dirty_flag(struct inode *inode,
1641 						int flag, bool set)
1642 {
1643 	switch (flag) {
1644 	case FI_INLINE_XATTR:
1645 	case FI_INLINE_DATA:
1646 	case FI_INLINE_DENTRY:
1647 		if (set)
1648 			return;
1649 	case FI_DATA_EXIST:
1650 	case FI_INLINE_DOTS:
1651 		f2fs_mark_inode_dirty_sync(inode, true);
1652 	}
1653 }
1654 
1655 static inline void set_inode_flag(struct inode *inode, int flag)
1656 {
1657 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1658 		set_bit(flag, &F2FS_I(inode)->flags);
1659 	__mark_inode_dirty_flag(inode, flag, true);
1660 }
1661 
1662 static inline int is_inode_flag_set(struct inode *inode, int flag)
1663 {
1664 	return test_bit(flag, &F2FS_I(inode)->flags);
1665 }
1666 
1667 static inline void clear_inode_flag(struct inode *inode, int flag)
1668 {
1669 	if (test_bit(flag, &F2FS_I(inode)->flags))
1670 		clear_bit(flag, &F2FS_I(inode)->flags);
1671 	__mark_inode_dirty_flag(inode, flag, false);
1672 }
1673 
1674 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1675 {
1676 	F2FS_I(inode)->i_acl_mode = mode;
1677 	set_inode_flag(inode, FI_ACL_MODE);
1678 	f2fs_mark_inode_dirty_sync(inode, false);
1679 }
1680 
1681 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1682 {
1683 	if (inc)
1684 		inc_nlink(inode);
1685 	else
1686 		drop_nlink(inode);
1687 	f2fs_mark_inode_dirty_sync(inode, true);
1688 }
1689 
1690 static inline void f2fs_i_blocks_write(struct inode *inode,
1691 					blkcnt_t diff, bool add)
1692 {
1693 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1694 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1695 
1696 	inode->i_blocks = add ? inode->i_blocks + diff :
1697 				inode->i_blocks - diff;
1698 	f2fs_mark_inode_dirty_sync(inode, true);
1699 	if (clean || recover)
1700 		set_inode_flag(inode, FI_AUTO_RECOVER);
1701 }
1702 
1703 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1704 {
1705 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1706 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1707 
1708 	if (i_size_read(inode) == i_size)
1709 		return;
1710 
1711 	i_size_write(inode, i_size);
1712 	f2fs_mark_inode_dirty_sync(inode, true);
1713 	if (clean || recover)
1714 		set_inode_flag(inode, FI_AUTO_RECOVER);
1715 }
1716 
1717 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1718 {
1719 	F2FS_I(inode)->i_current_depth = depth;
1720 	f2fs_mark_inode_dirty_sync(inode, true);
1721 }
1722 
1723 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1724 {
1725 	F2FS_I(inode)->i_xattr_nid = xnid;
1726 	f2fs_mark_inode_dirty_sync(inode, true);
1727 }
1728 
1729 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1730 {
1731 	F2FS_I(inode)->i_pino = pino;
1732 	f2fs_mark_inode_dirty_sync(inode, true);
1733 }
1734 
1735 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1736 {
1737 	struct f2fs_inode_info *fi = F2FS_I(inode);
1738 
1739 	if (ri->i_inline & F2FS_INLINE_XATTR)
1740 		set_bit(FI_INLINE_XATTR, &fi->flags);
1741 	if (ri->i_inline & F2FS_INLINE_DATA)
1742 		set_bit(FI_INLINE_DATA, &fi->flags);
1743 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1744 		set_bit(FI_INLINE_DENTRY, &fi->flags);
1745 	if (ri->i_inline & F2FS_DATA_EXIST)
1746 		set_bit(FI_DATA_EXIST, &fi->flags);
1747 	if (ri->i_inline & F2FS_INLINE_DOTS)
1748 		set_bit(FI_INLINE_DOTS, &fi->flags);
1749 }
1750 
1751 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1752 {
1753 	ri->i_inline = 0;
1754 
1755 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1756 		ri->i_inline |= F2FS_INLINE_XATTR;
1757 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
1758 		ri->i_inline |= F2FS_INLINE_DATA;
1759 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1760 		ri->i_inline |= F2FS_INLINE_DENTRY;
1761 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
1762 		ri->i_inline |= F2FS_DATA_EXIST;
1763 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1764 		ri->i_inline |= F2FS_INLINE_DOTS;
1765 }
1766 
1767 static inline int f2fs_has_inline_xattr(struct inode *inode)
1768 {
1769 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
1770 }
1771 
1772 static inline unsigned int addrs_per_inode(struct inode *inode)
1773 {
1774 	if (f2fs_has_inline_xattr(inode))
1775 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1776 	return DEF_ADDRS_PER_INODE;
1777 }
1778 
1779 static inline void *inline_xattr_addr(struct page *page)
1780 {
1781 	struct f2fs_inode *ri = F2FS_INODE(page);
1782 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1783 					F2FS_INLINE_XATTR_ADDRS]);
1784 }
1785 
1786 static inline int inline_xattr_size(struct inode *inode)
1787 {
1788 	if (f2fs_has_inline_xattr(inode))
1789 		return F2FS_INLINE_XATTR_ADDRS << 2;
1790 	else
1791 		return 0;
1792 }
1793 
1794 static inline int f2fs_has_inline_data(struct inode *inode)
1795 {
1796 	return is_inode_flag_set(inode, FI_INLINE_DATA);
1797 }
1798 
1799 static inline void f2fs_clear_inline_inode(struct inode *inode)
1800 {
1801 	clear_inode_flag(inode, FI_INLINE_DATA);
1802 	clear_inode_flag(inode, FI_DATA_EXIST);
1803 }
1804 
1805 static inline int f2fs_exist_data(struct inode *inode)
1806 {
1807 	return is_inode_flag_set(inode, FI_DATA_EXIST);
1808 }
1809 
1810 static inline int f2fs_has_inline_dots(struct inode *inode)
1811 {
1812 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
1813 }
1814 
1815 static inline bool f2fs_is_atomic_file(struct inode *inode)
1816 {
1817 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1818 }
1819 
1820 static inline bool f2fs_is_volatile_file(struct inode *inode)
1821 {
1822 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1823 }
1824 
1825 static inline bool f2fs_is_first_block_written(struct inode *inode)
1826 {
1827 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1828 }
1829 
1830 static inline bool f2fs_is_drop_cache(struct inode *inode)
1831 {
1832 	return is_inode_flag_set(inode, FI_DROP_CACHE);
1833 }
1834 
1835 static inline void *inline_data_addr(struct page *page)
1836 {
1837 	struct f2fs_inode *ri = F2FS_INODE(page);
1838 	return (void *)&(ri->i_addr[1]);
1839 }
1840 
1841 static inline int f2fs_has_inline_dentry(struct inode *inode)
1842 {
1843 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1844 }
1845 
1846 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1847 {
1848 	if (!f2fs_has_inline_dentry(dir))
1849 		kunmap(page);
1850 }
1851 
1852 static inline int is_file(struct inode *inode, int type)
1853 {
1854 	return F2FS_I(inode)->i_advise & type;
1855 }
1856 
1857 static inline void set_file(struct inode *inode, int type)
1858 {
1859 	F2FS_I(inode)->i_advise |= type;
1860 	f2fs_mark_inode_dirty_sync(inode, true);
1861 }
1862 
1863 static inline void clear_file(struct inode *inode, int type)
1864 {
1865 	F2FS_I(inode)->i_advise &= ~type;
1866 	f2fs_mark_inode_dirty_sync(inode, true);
1867 }
1868 
1869 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1870 {
1871 	if (dsync) {
1872 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1873 		bool ret;
1874 
1875 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1876 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
1877 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1878 		return ret;
1879 	}
1880 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1881 			file_keep_isize(inode) ||
1882 			i_size_read(inode) & PAGE_MASK)
1883 		return false;
1884 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1885 }
1886 
1887 static inline int f2fs_readonly(struct super_block *sb)
1888 {
1889 	return sb->s_flags & MS_RDONLY;
1890 }
1891 
1892 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1893 {
1894 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1895 }
1896 
1897 static inline bool is_dot_dotdot(const struct qstr *str)
1898 {
1899 	if (str->len == 1 && str->name[0] == '.')
1900 		return true;
1901 
1902 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1903 		return true;
1904 
1905 	return false;
1906 }
1907 
1908 static inline bool f2fs_may_extent_tree(struct inode *inode)
1909 {
1910 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1911 			is_inode_flag_set(inode, FI_NO_EXTENT))
1912 		return false;
1913 
1914 	return S_ISREG(inode->i_mode);
1915 }
1916 
1917 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1918 					size_t size, gfp_t flags)
1919 {
1920 #ifdef CONFIG_F2FS_FAULT_INJECTION
1921 	if (time_to_inject(sbi, FAULT_KMALLOC))
1922 		return NULL;
1923 #endif
1924 	return kmalloc(size, flags);
1925 }
1926 
1927 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1928 {
1929 	void *ret;
1930 
1931 	ret = kmalloc(size, flags | __GFP_NOWARN);
1932 	if (!ret)
1933 		ret = __vmalloc(size, flags, PAGE_KERNEL);
1934 	return ret;
1935 }
1936 
1937 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1938 {
1939 	void *ret;
1940 
1941 	ret = kzalloc(size, flags | __GFP_NOWARN);
1942 	if (!ret)
1943 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1944 	return ret;
1945 }
1946 
1947 #define get_inode_mode(i) \
1948 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1949 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1950 
1951 /* get offset of first page in next direct node */
1952 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
1953 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
1954 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
1955 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1956 
1957 /*
1958  * file.c
1959  */
1960 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1961 void truncate_data_blocks(struct dnode_of_data *);
1962 int truncate_blocks(struct inode *, u64, bool);
1963 int f2fs_truncate(struct inode *);
1964 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1965 int f2fs_setattr(struct dentry *, struct iattr *);
1966 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1967 int truncate_data_blocks_range(struct dnode_of_data *, int);
1968 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1969 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1970 
1971 /*
1972  * inode.c
1973  */
1974 void f2fs_set_inode_flags(struct inode *);
1975 struct inode *f2fs_iget(struct super_block *, unsigned long);
1976 struct inode *f2fs_iget_retry(struct super_block *, unsigned long);
1977 int try_to_free_nats(struct f2fs_sb_info *, int);
1978 int update_inode(struct inode *, struct page *);
1979 int update_inode_page(struct inode *);
1980 int f2fs_write_inode(struct inode *, struct writeback_control *);
1981 void f2fs_evict_inode(struct inode *);
1982 void handle_failed_inode(struct inode *);
1983 
1984 /*
1985  * namei.c
1986  */
1987 struct dentry *f2fs_get_parent(struct dentry *child);
1988 
1989 /*
1990  * dir.c
1991  */
1992 void set_de_type(struct f2fs_dir_entry *, umode_t);
1993 unsigned char get_de_type(struct f2fs_dir_entry *);
1994 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1995 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1996 int f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1997 			unsigned int, struct fscrypt_str *);
1998 void do_make_empty_dir(struct inode *, struct inode *,
1999 			struct f2fs_dentry_ptr *);
2000 struct page *init_inode_metadata(struct inode *, struct inode *,
2001 		const struct qstr *, const struct qstr *, struct page *);
2002 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
2003 int room_for_filename(const void *, int, int);
2004 void f2fs_drop_nlink(struct inode *, struct inode *);
2005 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *,
2006 							struct page **);
2007 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *,
2008 							struct page **);
2009 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
2010 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **);
2011 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
2012 				struct page *, struct inode *);
2013 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
2014 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
2015 			const struct qstr *, f2fs_hash_t , unsigned int);
2016 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
2017 			const struct qstr *, struct inode *, nid_t, umode_t);
2018 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *,
2019 			nid_t, umode_t);
2020 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
2021 			umode_t);
2022 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
2023 							struct inode *);
2024 int f2fs_do_tmpfile(struct inode *, struct inode *);
2025 bool f2fs_empty_dir(struct inode *);
2026 
2027 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2028 {
2029 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2030 				inode, inode->i_ino, inode->i_mode);
2031 }
2032 
2033 /*
2034  * super.c
2035  */
2036 int f2fs_inode_dirtied(struct inode *, bool);
2037 void f2fs_inode_synced(struct inode *);
2038 int f2fs_commit_super(struct f2fs_sb_info *, bool);
2039 int f2fs_sync_fs(struct super_block *, int);
2040 extern __printf(3, 4)
2041 void f2fs_msg(struct super_block *, const char *, const char *, ...);
2042 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2043 
2044 /*
2045  * hash.c
2046  */
2047 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
2048 
2049 /*
2050  * node.c
2051  */
2052 struct dnode_of_data;
2053 struct node_info;
2054 
2055 bool available_free_memory(struct f2fs_sb_info *, int);
2056 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
2057 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
2058 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
2059 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
2060 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
2061 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
2062 int truncate_inode_blocks(struct inode *, pgoff_t);
2063 int truncate_xattr_node(struct inode *, struct page *);
2064 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
2065 int remove_inode_page(struct inode *);
2066 struct page *new_inode_page(struct inode *);
2067 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
2068 void ra_node_page(struct f2fs_sb_info *, nid_t);
2069 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
2070 struct page *get_node_page_ra(struct page *, int);
2071 void move_node_page(struct page *, int);
2072 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
2073 			struct writeback_control *, bool);
2074 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
2075 void build_free_nids(struct f2fs_sb_info *, bool);
2076 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
2077 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
2078 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
2079 int try_to_free_nids(struct f2fs_sb_info *, int);
2080 void recover_inline_xattr(struct inode *, struct page *);
2081 void recover_xattr_data(struct inode *, struct page *, block_t);
2082 int recover_inode_page(struct f2fs_sb_info *, struct page *);
2083 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
2084 				struct f2fs_summary_block *);
2085 void flush_nat_entries(struct f2fs_sb_info *);
2086 int build_node_manager(struct f2fs_sb_info *);
2087 void destroy_node_manager(struct f2fs_sb_info *);
2088 int __init create_node_manager_caches(void);
2089 void destroy_node_manager_caches(void);
2090 
2091 /*
2092  * segment.c
2093  */
2094 void register_inmem_page(struct inode *, struct page *);
2095 void drop_inmem_pages(struct inode *);
2096 int commit_inmem_pages(struct inode *);
2097 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
2098 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
2099 int f2fs_issue_flush(struct f2fs_sb_info *);
2100 int create_flush_cmd_control(struct f2fs_sb_info *);
2101 void destroy_flush_cmd_control(struct f2fs_sb_info *, bool);
2102 void invalidate_blocks(struct f2fs_sb_info *, block_t);
2103 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
2104 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
2105 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *);
2106 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
2107 void release_discard_addrs(struct f2fs_sb_info *);
2108 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
2109 void allocate_new_segments(struct f2fs_sb_info *);
2110 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
2111 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2112 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2113 void write_meta_page(struct f2fs_sb_info *, struct page *);
2114 void write_node_page(unsigned int, struct f2fs_io_info *);
2115 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2116 void rewrite_data_page(struct f2fs_io_info *);
2117 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2118 					block_t, block_t, bool, bool);
2119 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2120 				block_t, block_t, unsigned char, bool, bool);
2121 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2122 		block_t, block_t *, struct f2fs_summary *, int);
2123 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2124 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2125 void write_data_summaries(struct f2fs_sb_info *, block_t);
2126 void write_node_summaries(struct f2fs_sb_info *, block_t);
2127 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2128 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2129 int build_segment_manager(struct f2fs_sb_info *);
2130 void destroy_segment_manager(struct f2fs_sb_info *);
2131 int __init create_segment_manager_caches(void);
2132 void destroy_segment_manager_caches(void);
2133 
2134 /*
2135  * checkpoint.c
2136  */
2137 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2138 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2139 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2140 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2141 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2142 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2143 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2144 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2145 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2146 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2147 void release_ino_entry(struct f2fs_sb_info *, bool);
2148 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2149 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2150 int acquire_orphan_inode(struct f2fs_sb_info *);
2151 void release_orphan_inode(struct f2fs_sb_info *);
2152 void add_orphan_inode(struct inode *);
2153 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2154 int recover_orphan_inodes(struct f2fs_sb_info *);
2155 int get_valid_checkpoint(struct f2fs_sb_info *);
2156 void update_dirty_page(struct inode *, struct page *);
2157 void remove_dirty_inode(struct inode *);
2158 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2159 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2160 void init_ino_entry_info(struct f2fs_sb_info *);
2161 int __init create_checkpoint_caches(void);
2162 void destroy_checkpoint_caches(void);
2163 
2164 /*
2165  * data.c
2166  */
2167 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2168 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2169 				struct page *, nid_t, enum page_type, int);
2170 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2171 int f2fs_submit_page_bio(struct f2fs_io_info *);
2172 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2173 struct block_device *f2fs_target_device(struct f2fs_sb_info *,
2174 				block_t, struct bio *);
2175 int f2fs_target_device_index(struct f2fs_sb_info *, block_t);
2176 void set_data_blkaddr(struct dnode_of_data *);
2177 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2178 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2179 int reserve_new_block(struct dnode_of_data *);
2180 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2181 int f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2182 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2183 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2184 struct page *find_data_page(struct inode *, pgoff_t);
2185 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2186 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2187 int do_write_data_page(struct f2fs_io_info *);
2188 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2189 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2190 void f2fs_set_page_dirty_nobuffers(struct page *);
2191 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2192 int f2fs_release_page(struct page *, gfp_t);
2193 #ifdef CONFIG_MIGRATION
2194 int f2fs_migrate_page(struct address_space *, struct page *, struct page *,
2195 				enum migrate_mode);
2196 #endif
2197 
2198 /*
2199  * gc.c
2200  */
2201 int start_gc_thread(struct f2fs_sb_info *);
2202 void stop_gc_thread(struct f2fs_sb_info *);
2203 block_t start_bidx_of_node(unsigned int, struct inode *);
2204 int f2fs_gc(struct f2fs_sb_info *, bool, bool);
2205 void build_gc_manager(struct f2fs_sb_info *);
2206 
2207 /*
2208  * recovery.c
2209  */
2210 int recover_fsync_data(struct f2fs_sb_info *, bool);
2211 bool space_for_roll_forward(struct f2fs_sb_info *);
2212 
2213 /*
2214  * debug.c
2215  */
2216 #ifdef CONFIG_F2FS_STAT_FS
2217 struct f2fs_stat_info {
2218 	struct list_head stat_list;
2219 	struct f2fs_sb_info *sbi;
2220 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2221 	int main_area_segs, main_area_sections, main_area_zones;
2222 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2223 	unsigned long long hit_total, total_ext;
2224 	int ext_tree, zombie_tree, ext_node;
2225 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2226 	int inmem_pages;
2227 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2228 	int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2229 	int total_count, utilization;
2230 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2231 	int inline_xattr, inline_inode, inline_dir, orphans;
2232 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2233 	unsigned int bimodal, avg_vblocks;
2234 	int util_free, util_valid, util_invalid;
2235 	int rsvd_segs, overp_segs;
2236 	int dirty_count, node_pages, meta_pages;
2237 	int prefree_count, call_count, cp_count, bg_cp_count;
2238 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2239 	int bg_node_segs, bg_data_segs;
2240 	int tot_blks, data_blks, node_blks;
2241 	int bg_data_blks, bg_node_blks;
2242 	int curseg[NR_CURSEG_TYPE];
2243 	int cursec[NR_CURSEG_TYPE];
2244 	int curzone[NR_CURSEG_TYPE];
2245 
2246 	unsigned int segment_count[2];
2247 	unsigned int block_count[2];
2248 	unsigned int inplace_count;
2249 	unsigned long long base_mem, cache_mem, page_mem;
2250 };
2251 
2252 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2253 {
2254 	return (struct f2fs_stat_info *)sbi->stat_info;
2255 }
2256 
2257 #define stat_inc_cp_count(si)		((si)->cp_count++)
2258 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2259 #define stat_inc_call_count(si)		((si)->call_count++)
2260 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2261 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2262 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2263 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2264 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2265 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2266 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2267 #define stat_inc_inline_xattr(inode)					\
2268 	do {								\
2269 		if (f2fs_has_inline_xattr(inode))			\
2270 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2271 	} while (0)
2272 #define stat_dec_inline_xattr(inode)					\
2273 	do {								\
2274 		if (f2fs_has_inline_xattr(inode))			\
2275 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2276 	} while (0)
2277 #define stat_inc_inline_inode(inode)					\
2278 	do {								\
2279 		if (f2fs_has_inline_data(inode))			\
2280 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2281 	} while (0)
2282 #define stat_dec_inline_inode(inode)					\
2283 	do {								\
2284 		if (f2fs_has_inline_data(inode))			\
2285 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2286 	} while (0)
2287 #define stat_inc_inline_dir(inode)					\
2288 	do {								\
2289 		if (f2fs_has_inline_dentry(inode))			\
2290 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2291 	} while (0)
2292 #define stat_dec_inline_dir(inode)					\
2293 	do {								\
2294 		if (f2fs_has_inline_dentry(inode))			\
2295 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2296 	} while (0)
2297 #define stat_inc_seg_type(sbi, curseg)					\
2298 		((sbi)->segment_count[(curseg)->alloc_type]++)
2299 #define stat_inc_block_count(sbi, curseg)				\
2300 		((sbi)->block_count[(curseg)->alloc_type]++)
2301 #define stat_inc_inplace_blocks(sbi)					\
2302 		(atomic_inc(&(sbi)->inplace_count))
2303 #define stat_inc_seg_count(sbi, type, gc_type)				\
2304 	do {								\
2305 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2306 		(si)->tot_segs++;					\
2307 		if (type == SUM_TYPE_DATA) {				\
2308 			si->data_segs++;				\
2309 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2310 		} else {						\
2311 			si->node_segs++;				\
2312 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2313 		}							\
2314 	} while (0)
2315 
2316 #define stat_inc_tot_blk_count(si, blks)				\
2317 	(si->tot_blks += (blks))
2318 
2319 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2320 	do {								\
2321 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2322 		stat_inc_tot_blk_count(si, blks);			\
2323 		si->data_blks += (blks);				\
2324 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2325 	} while (0)
2326 
2327 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2328 	do {								\
2329 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2330 		stat_inc_tot_blk_count(si, blks);			\
2331 		si->node_blks += (blks);				\
2332 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2333 	} while (0)
2334 
2335 int f2fs_build_stats(struct f2fs_sb_info *);
2336 void f2fs_destroy_stats(struct f2fs_sb_info *);
2337 int __init f2fs_create_root_stats(void);
2338 void f2fs_destroy_root_stats(void);
2339 #else
2340 #define stat_inc_cp_count(si)
2341 #define stat_inc_bg_cp_count(si)
2342 #define stat_inc_call_count(si)
2343 #define stat_inc_bggc_count(si)
2344 #define stat_inc_dirty_inode(sbi, type)
2345 #define stat_dec_dirty_inode(sbi, type)
2346 #define stat_inc_total_hit(sb)
2347 #define stat_inc_rbtree_node_hit(sb)
2348 #define stat_inc_largest_node_hit(sbi)
2349 #define stat_inc_cached_node_hit(sbi)
2350 #define stat_inc_inline_xattr(inode)
2351 #define stat_dec_inline_xattr(inode)
2352 #define stat_inc_inline_inode(inode)
2353 #define stat_dec_inline_inode(inode)
2354 #define stat_inc_inline_dir(inode)
2355 #define stat_dec_inline_dir(inode)
2356 #define stat_inc_seg_type(sbi, curseg)
2357 #define stat_inc_block_count(sbi, curseg)
2358 #define stat_inc_inplace_blocks(sbi)
2359 #define stat_inc_seg_count(sbi, type, gc_type)
2360 #define stat_inc_tot_blk_count(si, blks)
2361 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2362 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2363 
2364 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2365 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2366 static inline int __init f2fs_create_root_stats(void) { return 0; }
2367 static inline void f2fs_destroy_root_stats(void) { }
2368 #endif
2369 
2370 extern const struct file_operations f2fs_dir_operations;
2371 extern const struct file_operations f2fs_file_operations;
2372 extern const struct inode_operations f2fs_file_inode_operations;
2373 extern const struct address_space_operations f2fs_dblock_aops;
2374 extern const struct address_space_operations f2fs_node_aops;
2375 extern const struct address_space_operations f2fs_meta_aops;
2376 extern const struct inode_operations f2fs_dir_inode_operations;
2377 extern const struct inode_operations f2fs_symlink_inode_operations;
2378 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2379 extern const struct inode_operations f2fs_special_inode_operations;
2380 extern struct kmem_cache *inode_entry_slab;
2381 
2382 /*
2383  * inline.c
2384  */
2385 bool f2fs_may_inline_data(struct inode *);
2386 bool f2fs_may_inline_dentry(struct inode *);
2387 void read_inline_data(struct page *, struct page *);
2388 bool truncate_inline_inode(struct page *, u64);
2389 int f2fs_read_inline_data(struct inode *, struct page *);
2390 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2391 int f2fs_convert_inline_inode(struct inode *);
2392 int f2fs_write_inline_data(struct inode *, struct page *);
2393 bool recover_inline_data(struct inode *, struct page *);
2394 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2395 				struct fscrypt_name *, struct page **);
2396 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2397 int f2fs_add_inline_entry(struct inode *, const struct qstr *,
2398 		const struct qstr *, struct inode *, nid_t, umode_t);
2399 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2400 						struct inode *, struct inode *);
2401 bool f2fs_empty_inline_dir(struct inode *);
2402 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2403 						struct fscrypt_str *);
2404 int f2fs_inline_data_fiemap(struct inode *,
2405 		struct fiemap_extent_info *, __u64, __u64);
2406 
2407 /*
2408  * shrinker.c
2409  */
2410 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2411 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2412 void f2fs_join_shrinker(struct f2fs_sb_info *);
2413 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2414 
2415 /*
2416  * extent_cache.c
2417  */
2418 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2419 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2420 void f2fs_drop_extent_tree(struct inode *);
2421 unsigned int f2fs_destroy_extent_node(struct inode *);
2422 void f2fs_destroy_extent_tree(struct inode *);
2423 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2424 void f2fs_update_extent_cache(struct dnode_of_data *);
2425 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2426 						pgoff_t, block_t, unsigned int);
2427 void init_extent_cache_info(struct f2fs_sb_info *);
2428 int __init create_extent_cache(void);
2429 void destroy_extent_cache(void);
2430 
2431 /*
2432  * crypto support
2433  */
2434 static inline bool f2fs_encrypted_inode(struct inode *inode)
2435 {
2436 	return file_is_encrypt(inode);
2437 }
2438 
2439 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2440 {
2441 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2442 	file_set_encrypt(inode);
2443 #endif
2444 }
2445 
2446 static inline bool f2fs_bio_encrypted(struct bio *bio)
2447 {
2448 	return bio->bi_private != NULL;
2449 }
2450 
2451 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2452 {
2453 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2454 }
2455 
2456 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2457 {
2458 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2459 }
2460 
2461 #ifdef CONFIG_BLK_DEV_ZONED
2462 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2463 			struct block_device *bdev, block_t blkaddr)
2464 {
2465 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2466 	int i;
2467 
2468 	for (i = 0; i < sbi->s_ndevs; i++)
2469 		if (FDEV(i).bdev == bdev)
2470 			return FDEV(i).blkz_type[zno];
2471 	return -EINVAL;
2472 }
2473 #endif
2474 
2475 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2476 {
2477 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2478 
2479 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2480 }
2481 
2482 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2483 {
2484 	clear_opt(sbi, ADAPTIVE);
2485 	clear_opt(sbi, LFS);
2486 
2487 	switch (mt) {
2488 	case F2FS_MOUNT_ADAPTIVE:
2489 		set_opt(sbi, ADAPTIVE);
2490 		break;
2491 	case F2FS_MOUNT_LFS:
2492 		set_opt(sbi, LFS);
2493 		break;
2494 	}
2495 }
2496 
2497 static inline bool f2fs_may_encrypt(struct inode *inode)
2498 {
2499 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2500 	umode_t mode = inode->i_mode;
2501 
2502 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2503 #else
2504 	return 0;
2505 #endif
2506 }
2507 
2508 #endif
2509