1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #ifdef CONFIG_F2FS_FS_ENCRYPTION 26 #include <linux/fscrypt_supp.h> 27 #else 28 #include <linux/fscrypt_notsupp.h> 29 #endif 30 #include <crypto/hash.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_ALLOC_NID, 49 FAULT_ORPHAN, 50 FAULT_BLOCK, 51 FAULT_DIR_DEPTH, 52 FAULT_EVICT_INODE, 53 FAULT_IO, 54 FAULT_CHECKPOINT, 55 FAULT_MAX, 56 }; 57 58 struct f2fs_fault_info { 59 atomic_t inject_ops; 60 unsigned int inject_rate; 61 unsigned int inject_type; 62 }; 63 64 extern char *fault_name[FAULT_MAX]; 65 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type))) 66 #endif 67 68 /* 69 * For mount options 70 */ 71 #define F2FS_MOUNT_BG_GC 0x00000001 72 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 73 #define F2FS_MOUNT_DISCARD 0x00000004 74 #define F2FS_MOUNT_NOHEAP 0x00000008 75 #define F2FS_MOUNT_XATTR_USER 0x00000010 76 #define F2FS_MOUNT_POSIX_ACL 0x00000020 77 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 78 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 79 #define F2FS_MOUNT_INLINE_DATA 0x00000100 80 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 81 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 82 #define F2FS_MOUNT_NOBARRIER 0x00000800 83 #define F2FS_MOUNT_FASTBOOT 0x00001000 84 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 85 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 86 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 87 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 88 #define F2FS_MOUNT_ADAPTIVE 0x00020000 89 #define F2FS_MOUNT_LFS 0x00040000 90 91 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 92 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 93 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 94 95 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 96 typecheck(unsigned long long, b) && \ 97 ((long long)((a) - (b)) > 0)) 98 99 typedef u32 block_t; /* 100 * should not change u32, since it is the on-disk block 101 * address format, __le32. 102 */ 103 typedef u32 nid_t; 104 105 struct f2fs_mount_info { 106 unsigned int opt; 107 }; 108 109 #define F2FS_FEATURE_ENCRYPT 0x0001 110 #define F2FS_FEATURE_BLKZONED 0x0002 111 112 #define F2FS_HAS_FEATURE(sb, mask) \ 113 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 114 #define F2FS_SET_FEATURE(sb, mask) \ 115 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 116 #define F2FS_CLEAR_FEATURE(sb, mask) \ 117 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 118 119 /* 120 * For checkpoint manager 121 */ 122 enum { 123 NAT_BITMAP, 124 SIT_BITMAP 125 }; 126 127 enum { 128 CP_UMOUNT, 129 CP_FASTBOOT, 130 CP_SYNC, 131 CP_RECOVERY, 132 CP_DISCARD, 133 }; 134 135 #define DEF_BATCHED_TRIM_SECTIONS 2 136 #define BATCHED_TRIM_SEGMENTS(sbi) \ 137 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 138 #define BATCHED_TRIM_BLOCKS(sbi) \ 139 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 140 #define DEF_CP_INTERVAL 60 /* 60 secs */ 141 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 142 143 struct cp_control { 144 int reason; 145 __u64 trim_start; 146 __u64 trim_end; 147 __u64 trim_minlen; 148 __u64 trimmed; 149 }; 150 151 /* 152 * For CP/NAT/SIT/SSA readahead 153 */ 154 enum { 155 META_CP, 156 META_NAT, 157 META_SIT, 158 META_SSA, 159 META_POR, 160 }; 161 162 /* for the list of ino */ 163 enum { 164 ORPHAN_INO, /* for orphan ino list */ 165 APPEND_INO, /* for append ino list */ 166 UPDATE_INO, /* for update ino list */ 167 MAX_INO_ENTRY, /* max. list */ 168 }; 169 170 struct ino_entry { 171 struct list_head list; /* list head */ 172 nid_t ino; /* inode number */ 173 }; 174 175 /* for the list of inodes to be GCed */ 176 struct inode_entry { 177 struct list_head list; /* list head */ 178 struct inode *inode; /* vfs inode pointer */ 179 }; 180 181 /* for the list of blockaddresses to be discarded */ 182 struct discard_entry { 183 struct list_head list; /* list head */ 184 block_t blkaddr; /* block address to be discarded */ 185 int len; /* # of consecutive blocks of the discard */ 186 }; 187 188 struct bio_entry { 189 struct list_head list; 190 struct bio *bio; 191 struct completion event; 192 int error; 193 }; 194 195 /* for the list of fsync inodes, used only during recovery */ 196 struct fsync_inode_entry { 197 struct list_head list; /* list head */ 198 struct inode *inode; /* vfs inode pointer */ 199 block_t blkaddr; /* block address locating the last fsync */ 200 block_t last_dentry; /* block address locating the last dentry */ 201 }; 202 203 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 204 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 205 206 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 207 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 208 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 209 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 210 211 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 212 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 213 214 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 215 { 216 int before = nats_in_cursum(journal); 217 journal->n_nats = cpu_to_le16(before + i); 218 return before; 219 } 220 221 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 222 { 223 int before = sits_in_cursum(journal); 224 journal->n_sits = cpu_to_le16(before + i); 225 return before; 226 } 227 228 static inline bool __has_cursum_space(struct f2fs_journal *journal, 229 int size, int type) 230 { 231 if (type == NAT_JOURNAL) 232 return size <= MAX_NAT_JENTRIES(journal); 233 return size <= MAX_SIT_JENTRIES(journal); 234 } 235 236 /* 237 * ioctl commands 238 */ 239 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 240 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 241 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 242 243 #define F2FS_IOCTL_MAGIC 0xf5 244 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 245 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 246 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 247 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 248 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 249 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 250 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 251 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 252 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 253 struct f2fs_move_range) 254 255 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 256 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 257 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 258 259 /* 260 * should be same as XFS_IOC_GOINGDOWN. 261 * Flags for going down operation used by FS_IOC_GOINGDOWN 262 */ 263 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 264 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 265 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 266 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 267 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 268 269 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 270 /* 271 * ioctl commands in 32 bit emulation 272 */ 273 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 274 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 275 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 276 #endif 277 278 struct f2fs_defragment { 279 u64 start; 280 u64 len; 281 }; 282 283 struct f2fs_move_range { 284 u32 dst_fd; /* destination fd */ 285 u64 pos_in; /* start position in src_fd */ 286 u64 pos_out; /* start position in dst_fd */ 287 u64 len; /* size to move */ 288 }; 289 290 /* 291 * For INODE and NODE manager 292 */ 293 /* for directory operations */ 294 struct f2fs_dentry_ptr { 295 struct inode *inode; 296 const void *bitmap; 297 struct f2fs_dir_entry *dentry; 298 __u8 (*filename)[F2FS_SLOT_LEN]; 299 int max; 300 }; 301 302 static inline void make_dentry_ptr(struct inode *inode, 303 struct f2fs_dentry_ptr *d, void *src, int type) 304 { 305 d->inode = inode; 306 307 if (type == 1) { 308 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 309 d->max = NR_DENTRY_IN_BLOCK; 310 d->bitmap = &t->dentry_bitmap; 311 d->dentry = t->dentry; 312 d->filename = t->filename; 313 } else { 314 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 315 d->max = NR_INLINE_DENTRY; 316 d->bitmap = &t->dentry_bitmap; 317 d->dentry = t->dentry; 318 d->filename = t->filename; 319 } 320 } 321 322 /* 323 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 324 * as its node offset to distinguish from index node blocks. 325 * But some bits are used to mark the node block. 326 */ 327 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 328 >> OFFSET_BIT_SHIFT) 329 enum { 330 ALLOC_NODE, /* allocate a new node page if needed */ 331 LOOKUP_NODE, /* look up a node without readahead */ 332 LOOKUP_NODE_RA, /* 333 * look up a node with readahead called 334 * by get_data_block. 335 */ 336 }; 337 338 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 339 340 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 341 342 /* vector size for gang look-up from extent cache that consists of radix tree */ 343 #define EXT_TREE_VEC_SIZE 64 344 345 /* for in-memory extent cache entry */ 346 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 347 348 /* number of extent info in extent cache we try to shrink */ 349 #define EXTENT_CACHE_SHRINK_NUMBER 128 350 351 struct extent_info { 352 unsigned int fofs; /* start offset in a file */ 353 u32 blk; /* start block address of the extent */ 354 unsigned int len; /* length of the extent */ 355 }; 356 357 struct extent_node { 358 struct rb_node rb_node; /* rb node located in rb-tree */ 359 struct list_head list; /* node in global extent list of sbi */ 360 struct extent_info ei; /* extent info */ 361 struct extent_tree *et; /* extent tree pointer */ 362 }; 363 364 struct extent_tree { 365 nid_t ino; /* inode number */ 366 struct rb_root root; /* root of extent info rb-tree */ 367 struct extent_node *cached_en; /* recently accessed extent node */ 368 struct extent_info largest; /* largested extent info */ 369 struct list_head list; /* to be used by sbi->zombie_list */ 370 rwlock_t lock; /* protect extent info rb-tree */ 371 atomic_t node_cnt; /* # of extent node in rb-tree*/ 372 }; 373 374 /* 375 * This structure is taken from ext4_map_blocks. 376 * 377 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 378 */ 379 #define F2FS_MAP_NEW (1 << BH_New) 380 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 381 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 382 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 383 F2FS_MAP_UNWRITTEN) 384 385 struct f2fs_map_blocks { 386 block_t m_pblk; 387 block_t m_lblk; 388 unsigned int m_len; 389 unsigned int m_flags; 390 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 391 }; 392 393 /* for flag in get_data_block */ 394 #define F2FS_GET_BLOCK_READ 0 395 #define F2FS_GET_BLOCK_DIO 1 396 #define F2FS_GET_BLOCK_FIEMAP 2 397 #define F2FS_GET_BLOCK_BMAP 3 398 #define F2FS_GET_BLOCK_PRE_DIO 4 399 #define F2FS_GET_BLOCK_PRE_AIO 5 400 401 /* 402 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 403 */ 404 #define FADVISE_COLD_BIT 0x01 405 #define FADVISE_LOST_PINO_BIT 0x02 406 #define FADVISE_ENCRYPT_BIT 0x04 407 #define FADVISE_ENC_NAME_BIT 0x08 408 #define FADVISE_KEEP_SIZE_BIT 0x10 409 410 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 411 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 412 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 413 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 414 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 415 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 416 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 417 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 418 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 419 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 420 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 421 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 422 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 423 424 #define DEF_DIR_LEVEL 0 425 426 struct f2fs_inode_info { 427 struct inode vfs_inode; /* serve a vfs inode */ 428 unsigned long i_flags; /* keep an inode flags for ioctl */ 429 unsigned char i_advise; /* use to give file attribute hints */ 430 unsigned char i_dir_level; /* use for dentry level for large dir */ 431 unsigned int i_current_depth; /* use only in directory structure */ 432 unsigned int i_pino; /* parent inode number */ 433 umode_t i_acl_mode; /* keep file acl mode temporarily */ 434 435 /* Use below internally in f2fs*/ 436 unsigned long flags; /* use to pass per-file flags */ 437 struct rw_semaphore i_sem; /* protect fi info */ 438 atomic_t dirty_pages; /* # of dirty pages */ 439 f2fs_hash_t chash; /* hash value of given file name */ 440 unsigned int clevel; /* maximum level of given file name */ 441 nid_t i_xattr_nid; /* node id that contains xattrs */ 442 unsigned long long xattr_ver; /* cp version of xattr modification */ 443 loff_t last_disk_size; /* lastly written file size */ 444 445 struct list_head dirty_list; /* dirty list for dirs and files */ 446 struct list_head gdirty_list; /* linked in global dirty list */ 447 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 448 struct mutex inmem_lock; /* lock for inmemory pages */ 449 struct extent_tree *extent_tree; /* cached extent_tree entry */ 450 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 451 }; 452 453 static inline void get_extent_info(struct extent_info *ext, 454 struct f2fs_extent *i_ext) 455 { 456 ext->fofs = le32_to_cpu(i_ext->fofs); 457 ext->blk = le32_to_cpu(i_ext->blk); 458 ext->len = le32_to_cpu(i_ext->len); 459 } 460 461 static inline void set_raw_extent(struct extent_info *ext, 462 struct f2fs_extent *i_ext) 463 { 464 i_ext->fofs = cpu_to_le32(ext->fofs); 465 i_ext->blk = cpu_to_le32(ext->blk); 466 i_ext->len = cpu_to_le32(ext->len); 467 } 468 469 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 470 u32 blk, unsigned int len) 471 { 472 ei->fofs = fofs; 473 ei->blk = blk; 474 ei->len = len; 475 } 476 477 static inline bool __is_extent_same(struct extent_info *ei1, 478 struct extent_info *ei2) 479 { 480 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 481 ei1->len == ei2->len); 482 } 483 484 static inline bool __is_extent_mergeable(struct extent_info *back, 485 struct extent_info *front) 486 { 487 return (back->fofs + back->len == front->fofs && 488 back->blk + back->len == front->blk); 489 } 490 491 static inline bool __is_back_mergeable(struct extent_info *cur, 492 struct extent_info *back) 493 { 494 return __is_extent_mergeable(back, cur); 495 } 496 497 static inline bool __is_front_mergeable(struct extent_info *cur, 498 struct extent_info *front) 499 { 500 return __is_extent_mergeable(cur, front); 501 } 502 503 extern void f2fs_mark_inode_dirty_sync(struct inode *, bool); 504 static inline void __try_update_largest_extent(struct inode *inode, 505 struct extent_tree *et, struct extent_node *en) 506 { 507 if (en->ei.len > et->largest.len) { 508 et->largest = en->ei; 509 f2fs_mark_inode_dirty_sync(inode, true); 510 } 511 } 512 513 enum nid_list { 514 FREE_NID_LIST, 515 ALLOC_NID_LIST, 516 MAX_NID_LIST, 517 }; 518 519 struct f2fs_nm_info { 520 block_t nat_blkaddr; /* base disk address of NAT */ 521 nid_t max_nid; /* maximum possible node ids */ 522 nid_t available_nids; /* # of available node ids */ 523 nid_t next_scan_nid; /* the next nid to be scanned */ 524 unsigned int ram_thresh; /* control the memory footprint */ 525 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 526 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 527 528 /* NAT cache management */ 529 struct radix_tree_root nat_root;/* root of the nat entry cache */ 530 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 531 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 532 struct list_head nat_entries; /* cached nat entry list (clean) */ 533 unsigned int nat_cnt; /* the # of cached nat entries */ 534 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 535 536 /* free node ids management */ 537 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 538 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ 539 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ 540 spinlock_t nid_list_lock; /* protect nid lists ops */ 541 struct mutex build_lock; /* lock for build free nids */ 542 543 /* for checkpoint */ 544 char *nat_bitmap; /* NAT bitmap pointer */ 545 int bitmap_size; /* bitmap size */ 546 }; 547 548 /* 549 * this structure is used as one of function parameters. 550 * all the information are dedicated to a given direct node block determined 551 * by the data offset in a file. 552 */ 553 struct dnode_of_data { 554 struct inode *inode; /* vfs inode pointer */ 555 struct page *inode_page; /* its inode page, NULL is possible */ 556 struct page *node_page; /* cached direct node page */ 557 nid_t nid; /* node id of the direct node block */ 558 unsigned int ofs_in_node; /* data offset in the node page */ 559 bool inode_page_locked; /* inode page is locked or not */ 560 bool node_changed; /* is node block changed */ 561 char cur_level; /* level of hole node page */ 562 char max_level; /* level of current page located */ 563 block_t data_blkaddr; /* block address of the node block */ 564 }; 565 566 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 567 struct page *ipage, struct page *npage, nid_t nid) 568 { 569 memset(dn, 0, sizeof(*dn)); 570 dn->inode = inode; 571 dn->inode_page = ipage; 572 dn->node_page = npage; 573 dn->nid = nid; 574 } 575 576 /* 577 * For SIT manager 578 * 579 * By default, there are 6 active log areas across the whole main area. 580 * When considering hot and cold data separation to reduce cleaning overhead, 581 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 582 * respectively. 583 * In the current design, you should not change the numbers intentionally. 584 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 585 * logs individually according to the underlying devices. (default: 6) 586 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 587 * data and 8 for node logs. 588 */ 589 #define NR_CURSEG_DATA_TYPE (3) 590 #define NR_CURSEG_NODE_TYPE (3) 591 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 592 593 enum { 594 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 595 CURSEG_WARM_DATA, /* data blocks */ 596 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 597 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 598 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 599 CURSEG_COLD_NODE, /* indirect node blocks */ 600 NO_CHECK_TYPE, 601 }; 602 603 struct flush_cmd { 604 struct completion wait; 605 struct llist_node llnode; 606 int ret; 607 }; 608 609 struct flush_cmd_control { 610 struct task_struct *f2fs_issue_flush; /* flush thread */ 611 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 612 atomic_t submit_flush; /* # of issued flushes */ 613 struct llist_head issue_list; /* list for command issue */ 614 struct llist_node *dispatch_list; /* list for command dispatch */ 615 }; 616 617 struct f2fs_sm_info { 618 struct sit_info *sit_info; /* whole segment information */ 619 struct free_segmap_info *free_info; /* free segment information */ 620 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 621 struct curseg_info *curseg_array; /* active segment information */ 622 623 block_t seg0_blkaddr; /* block address of 0'th segment */ 624 block_t main_blkaddr; /* start block address of main area */ 625 block_t ssa_blkaddr; /* start block address of SSA area */ 626 627 unsigned int segment_count; /* total # of segments */ 628 unsigned int main_segments; /* # of segments in main area */ 629 unsigned int reserved_segments; /* # of reserved segments */ 630 unsigned int ovp_segments; /* # of overprovision segments */ 631 632 /* a threshold to reclaim prefree segments */ 633 unsigned int rec_prefree_segments; 634 635 /* for small discard management */ 636 struct list_head discard_list; /* 4KB discard list */ 637 struct list_head wait_list; /* linked with issued discard bio */ 638 int nr_discards; /* # of discards in the list */ 639 int max_discards; /* max. discards to be issued */ 640 641 /* for batched trimming */ 642 unsigned int trim_sections; /* # of sections to trim */ 643 644 struct list_head sit_entry_set; /* sit entry set list */ 645 646 unsigned int ipu_policy; /* in-place-update policy */ 647 unsigned int min_ipu_util; /* in-place-update threshold */ 648 unsigned int min_fsync_blocks; /* threshold for fsync */ 649 650 /* for flush command control */ 651 struct flush_cmd_control *cmd_control_info; 652 653 }; 654 655 /* 656 * For superblock 657 */ 658 /* 659 * COUNT_TYPE for monitoring 660 * 661 * f2fs monitors the number of several block types such as on-writeback, 662 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 663 */ 664 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 665 enum count_type { 666 F2FS_DIRTY_DENTS, 667 F2FS_DIRTY_DATA, 668 F2FS_DIRTY_NODES, 669 F2FS_DIRTY_META, 670 F2FS_INMEM_PAGES, 671 F2FS_DIRTY_IMETA, 672 F2FS_WB_CP_DATA, 673 F2FS_WB_DATA, 674 NR_COUNT_TYPE, 675 }; 676 677 /* 678 * The below are the page types of bios used in submit_bio(). 679 * The available types are: 680 * DATA User data pages. It operates as async mode. 681 * NODE Node pages. It operates as async mode. 682 * META FS metadata pages such as SIT, NAT, CP. 683 * NR_PAGE_TYPE The number of page types. 684 * META_FLUSH Make sure the previous pages are written 685 * with waiting the bio's completion 686 * ... Only can be used with META. 687 */ 688 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 689 enum page_type { 690 DATA, 691 NODE, 692 META, 693 NR_PAGE_TYPE, 694 META_FLUSH, 695 INMEM, /* the below types are used by tracepoints only. */ 696 INMEM_DROP, 697 INMEM_REVOKE, 698 IPU, 699 OPU, 700 }; 701 702 struct f2fs_io_info { 703 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 704 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 705 int op; /* contains REQ_OP_ */ 706 int op_flags; /* req_flag_bits */ 707 block_t new_blkaddr; /* new block address to be written */ 708 block_t old_blkaddr; /* old block address before Cow */ 709 struct page *page; /* page to be written */ 710 struct page *encrypted_page; /* encrypted page */ 711 }; 712 713 #define is_read_io(rw) (rw == READ) 714 struct f2fs_bio_info { 715 struct f2fs_sb_info *sbi; /* f2fs superblock */ 716 struct bio *bio; /* bios to merge */ 717 sector_t last_block_in_bio; /* last block number */ 718 struct f2fs_io_info fio; /* store buffered io info. */ 719 struct rw_semaphore io_rwsem; /* blocking op for bio */ 720 }; 721 722 #define FDEV(i) (sbi->devs[i]) 723 #define RDEV(i) (raw_super->devs[i]) 724 struct f2fs_dev_info { 725 struct block_device *bdev; 726 char path[MAX_PATH_LEN]; 727 unsigned int total_segments; 728 block_t start_blk; 729 block_t end_blk; 730 #ifdef CONFIG_BLK_DEV_ZONED 731 unsigned int nr_blkz; /* Total number of zones */ 732 u8 *blkz_type; /* Array of zones type */ 733 #endif 734 }; 735 736 enum inode_type { 737 DIR_INODE, /* for dirty dir inode */ 738 FILE_INODE, /* for dirty regular/symlink inode */ 739 DIRTY_META, /* for all dirtied inode metadata */ 740 NR_INODE_TYPE, 741 }; 742 743 /* for inner inode cache management */ 744 struct inode_management { 745 struct radix_tree_root ino_root; /* ino entry array */ 746 spinlock_t ino_lock; /* for ino entry lock */ 747 struct list_head ino_list; /* inode list head */ 748 unsigned long ino_num; /* number of entries */ 749 }; 750 751 /* For s_flag in struct f2fs_sb_info */ 752 enum { 753 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 754 SBI_IS_CLOSE, /* specify unmounting */ 755 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 756 SBI_POR_DOING, /* recovery is doing or not */ 757 SBI_NEED_SB_WRITE, /* need to recover superblock */ 758 SBI_NEED_CP, /* need to checkpoint */ 759 }; 760 761 enum { 762 CP_TIME, 763 REQ_TIME, 764 MAX_TIME, 765 }; 766 767 struct f2fs_sb_info { 768 struct super_block *sb; /* pointer to VFS super block */ 769 struct proc_dir_entry *s_proc; /* proc entry */ 770 struct f2fs_super_block *raw_super; /* raw super block pointer */ 771 int valid_super_block; /* valid super block no */ 772 unsigned long s_flag; /* flags for sbi */ 773 774 #ifdef CONFIG_BLK_DEV_ZONED 775 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 776 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 777 #endif 778 779 /* for node-related operations */ 780 struct f2fs_nm_info *nm_info; /* node manager */ 781 struct inode *node_inode; /* cache node blocks */ 782 783 /* for segment-related operations */ 784 struct f2fs_sm_info *sm_info; /* segment manager */ 785 786 /* for bio operations */ 787 struct f2fs_bio_info read_io; /* for read bios */ 788 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 789 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ 790 791 /* for checkpoint */ 792 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 793 int cur_cp_pack; /* remain current cp pack */ 794 spinlock_t cp_lock; /* for flag in ckpt */ 795 struct inode *meta_inode; /* cache meta blocks */ 796 struct mutex cp_mutex; /* checkpoint procedure lock */ 797 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 798 struct rw_semaphore node_write; /* locking node writes */ 799 wait_queue_head_t cp_wait; 800 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 801 long interval_time[MAX_TIME]; /* to store thresholds */ 802 803 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 804 805 /* for orphan inode, use 0'th array */ 806 unsigned int max_orphans; /* max orphan inodes */ 807 808 /* for inode management */ 809 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 810 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 811 812 /* for extent tree cache */ 813 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 814 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 815 struct list_head extent_list; /* lru list for shrinker */ 816 spinlock_t extent_lock; /* locking extent lru list */ 817 atomic_t total_ext_tree; /* extent tree count */ 818 struct list_head zombie_list; /* extent zombie tree list */ 819 atomic_t total_zombie_tree; /* extent zombie tree count */ 820 atomic_t total_ext_node; /* extent info count */ 821 822 /* basic filesystem units */ 823 unsigned int log_sectors_per_block; /* log2 sectors per block */ 824 unsigned int log_blocksize; /* log2 block size */ 825 unsigned int blocksize; /* block size */ 826 unsigned int root_ino_num; /* root inode number*/ 827 unsigned int node_ino_num; /* node inode number*/ 828 unsigned int meta_ino_num; /* meta inode number*/ 829 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 830 unsigned int blocks_per_seg; /* blocks per segment */ 831 unsigned int segs_per_sec; /* segments per section */ 832 unsigned int secs_per_zone; /* sections per zone */ 833 unsigned int total_sections; /* total section count */ 834 unsigned int total_node_count; /* total node block count */ 835 unsigned int total_valid_node_count; /* valid node block count */ 836 loff_t max_file_blocks; /* max block index of file */ 837 int active_logs; /* # of active logs */ 838 int dir_level; /* directory level */ 839 840 block_t user_block_count; /* # of user blocks */ 841 block_t total_valid_block_count; /* # of valid blocks */ 842 block_t discard_blks; /* discard command candidats */ 843 block_t last_valid_block_count; /* for recovery */ 844 u32 s_next_generation; /* for NFS support */ 845 846 /* # of pages, see count_type */ 847 atomic_t nr_pages[NR_COUNT_TYPE]; 848 /* # of allocated blocks */ 849 struct percpu_counter alloc_valid_block_count; 850 851 /* valid inode count */ 852 struct percpu_counter total_valid_inode_count; 853 854 struct f2fs_mount_info mount_opt; /* mount options */ 855 856 /* for cleaning operations */ 857 struct mutex gc_mutex; /* mutex for GC */ 858 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 859 unsigned int cur_victim_sec; /* current victim section num */ 860 861 /* maximum # of trials to find a victim segment for SSR and GC */ 862 unsigned int max_victim_search; 863 864 /* 865 * for stat information. 866 * one is for the LFS mode, and the other is for the SSR mode. 867 */ 868 #ifdef CONFIG_F2FS_STAT_FS 869 struct f2fs_stat_info *stat_info; /* FS status information */ 870 unsigned int segment_count[2]; /* # of allocated segments */ 871 unsigned int block_count[2]; /* # of allocated blocks */ 872 atomic_t inplace_count; /* # of inplace update */ 873 atomic64_t total_hit_ext; /* # of lookup extent cache */ 874 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 875 atomic64_t read_hit_largest; /* # of hit largest extent node */ 876 atomic64_t read_hit_cached; /* # of hit cached extent node */ 877 atomic_t inline_xattr; /* # of inline_xattr inodes */ 878 atomic_t inline_inode; /* # of inline_data inodes */ 879 atomic_t inline_dir; /* # of inline_dentry inodes */ 880 int bg_gc; /* background gc calls */ 881 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 882 #endif 883 unsigned int last_victim[2]; /* last victim segment # */ 884 spinlock_t stat_lock; /* lock for stat operations */ 885 886 /* For sysfs suppport */ 887 struct kobject s_kobj; 888 struct completion s_kobj_unregister; 889 890 /* For shrinker support */ 891 struct list_head s_list; 892 int s_ndevs; /* number of devices */ 893 struct f2fs_dev_info *devs; /* for device list */ 894 struct mutex umount_mutex; 895 unsigned int shrinker_run_no; 896 897 /* For write statistics */ 898 u64 sectors_written_start; 899 u64 kbytes_written; 900 901 /* Reference to checksum algorithm driver via cryptoapi */ 902 struct crypto_shash *s_chksum_driver; 903 904 /* For fault injection */ 905 #ifdef CONFIG_F2FS_FAULT_INJECTION 906 struct f2fs_fault_info fault_info; 907 #endif 908 }; 909 910 #ifdef CONFIG_F2FS_FAULT_INJECTION 911 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 912 { 913 struct f2fs_fault_info *ffi = &sbi->fault_info; 914 915 if (!ffi->inject_rate) 916 return false; 917 918 if (!IS_FAULT_SET(ffi, type)) 919 return false; 920 921 atomic_inc(&ffi->inject_ops); 922 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 923 atomic_set(&ffi->inject_ops, 0); 924 printk("%sF2FS-fs : inject %s in %pF\n", 925 KERN_INFO, 926 fault_name[type], 927 __builtin_return_address(0)); 928 return true; 929 } 930 return false; 931 } 932 #endif 933 934 /* For write statistics. Suppose sector size is 512 bytes, 935 * and the return value is in kbytes. s is of struct f2fs_sb_info. 936 */ 937 #define BD_PART_WRITTEN(s) \ 938 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 939 s->sectors_written_start) >> 1) 940 941 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 942 { 943 sbi->last_time[type] = jiffies; 944 } 945 946 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 947 { 948 struct timespec ts = {sbi->interval_time[type], 0}; 949 unsigned long interval = timespec_to_jiffies(&ts); 950 951 return time_after(jiffies, sbi->last_time[type] + interval); 952 } 953 954 static inline bool is_idle(struct f2fs_sb_info *sbi) 955 { 956 struct block_device *bdev = sbi->sb->s_bdev; 957 struct request_queue *q = bdev_get_queue(bdev); 958 struct request_list *rl = &q->root_rl; 959 960 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 961 return 0; 962 963 return f2fs_time_over(sbi, REQ_TIME); 964 } 965 966 /* 967 * Inline functions 968 */ 969 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 970 unsigned int length) 971 { 972 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 973 u32 *ctx = (u32 *)shash_desc_ctx(shash); 974 int err; 975 976 shash->tfm = sbi->s_chksum_driver; 977 shash->flags = 0; 978 *ctx = F2FS_SUPER_MAGIC; 979 980 err = crypto_shash_update(shash, address, length); 981 BUG_ON(err); 982 983 return *ctx; 984 } 985 986 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 987 void *buf, size_t buf_size) 988 { 989 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 990 } 991 992 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 993 { 994 return container_of(inode, struct f2fs_inode_info, vfs_inode); 995 } 996 997 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 998 { 999 return sb->s_fs_info; 1000 } 1001 1002 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1003 { 1004 return F2FS_SB(inode->i_sb); 1005 } 1006 1007 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1008 { 1009 return F2FS_I_SB(mapping->host); 1010 } 1011 1012 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1013 { 1014 return F2FS_M_SB(page->mapping); 1015 } 1016 1017 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1018 { 1019 return (struct f2fs_super_block *)(sbi->raw_super); 1020 } 1021 1022 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1023 { 1024 return (struct f2fs_checkpoint *)(sbi->ckpt); 1025 } 1026 1027 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1028 { 1029 return (struct f2fs_node *)page_address(page); 1030 } 1031 1032 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1033 { 1034 return &((struct f2fs_node *)page_address(page))->i; 1035 } 1036 1037 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1038 { 1039 return (struct f2fs_nm_info *)(sbi->nm_info); 1040 } 1041 1042 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1043 { 1044 return (struct f2fs_sm_info *)(sbi->sm_info); 1045 } 1046 1047 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1048 { 1049 return (struct sit_info *)(SM_I(sbi)->sit_info); 1050 } 1051 1052 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1053 { 1054 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1055 } 1056 1057 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1058 { 1059 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1060 } 1061 1062 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1063 { 1064 return sbi->meta_inode->i_mapping; 1065 } 1066 1067 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1068 { 1069 return sbi->node_inode->i_mapping; 1070 } 1071 1072 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1073 { 1074 return test_bit(type, &sbi->s_flag); 1075 } 1076 1077 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1078 { 1079 set_bit(type, &sbi->s_flag); 1080 } 1081 1082 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1083 { 1084 clear_bit(type, &sbi->s_flag); 1085 } 1086 1087 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1088 { 1089 return le64_to_cpu(cp->checkpoint_ver); 1090 } 1091 1092 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1093 { 1094 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1095 1096 return ckpt_flags & f; 1097 } 1098 1099 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1100 { 1101 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1102 } 1103 1104 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1105 { 1106 unsigned int ckpt_flags; 1107 1108 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1109 ckpt_flags |= f; 1110 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1111 } 1112 1113 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1114 { 1115 spin_lock(&sbi->cp_lock); 1116 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1117 spin_unlock(&sbi->cp_lock); 1118 } 1119 1120 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1121 { 1122 unsigned int ckpt_flags; 1123 1124 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1125 ckpt_flags &= (~f); 1126 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1127 } 1128 1129 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1130 { 1131 spin_lock(&sbi->cp_lock); 1132 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1133 spin_unlock(&sbi->cp_lock); 1134 } 1135 1136 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1137 { 1138 down_read(&sbi->cp_rwsem); 1139 } 1140 1141 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1142 { 1143 up_read(&sbi->cp_rwsem); 1144 } 1145 1146 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1147 { 1148 down_write(&sbi->cp_rwsem); 1149 } 1150 1151 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1152 { 1153 up_write(&sbi->cp_rwsem); 1154 } 1155 1156 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1157 { 1158 int reason = CP_SYNC; 1159 1160 if (test_opt(sbi, FASTBOOT)) 1161 reason = CP_FASTBOOT; 1162 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1163 reason = CP_UMOUNT; 1164 return reason; 1165 } 1166 1167 static inline bool __remain_node_summaries(int reason) 1168 { 1169 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1170 } 1171 1172 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1173 { 1174 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1175 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1176 } 1177 1178 /* 1179 * Check whether the given nid is within node id range. 1180 */ 1181 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1182 { 1183 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1184 return -EINVAL; 1185 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1186 return -EINVAL; 1187 return 0; 1188 } 1189 1190 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1191 1192 /* 1193 * Check whether the inode has blocks or not 1194 */ 1195 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1196 { 1197 if (F2FS_I(inode)->i_xattr_nid) 1198 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1199 else 1200 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1201 } 1202 1203 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1204 { 1205 return ofs == XATTR_NODE_OFFSET; 1206 } 1207 1208 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); 1209 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1210 struct inode *inode, blkcnt_t *count) 1211 { 1212 blkcnt_t diff; 1213 1214 #ifdef CONFIG_F2FS_FAULT_INJECTION 1215 if (time_to_inject(sbi, FAULT_BLOCK)) 1216 return false; 1217 #endif 1218 /* 1219 * let's increase this in prior to actual block count change in order 1220 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1221 */ 1222 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1223 1224 spin_lock(&sbi->stat_lock); 1225 sbi->total_valid_block_count += (block_t)(*count); 1226 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { 1227 diff = sbi->total_valid_block_count - sbi->user_block_count; 1228 *count -= diff; 1229 sbi->total_valid_block_count = sbi->user_block_count; 1230 if (!*count) { 1231 spin_unlock(&sbi->stat_lock); 1232 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1233 return false; 1234 } 1235 } 1236 spin_unlock(&sbi->stat_lock); 1237 1238 f2fs_i_blocks_write(inode, *count, true); 1239 return true; 1240 } 1241 1242 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1243 struct inode *inode, 1244 blkcnt_t count) 1245 { 1246 spin_lock(&sbi->stat_lock); 1247 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1248 f2fs_bug_on(sbi, inode->i_blocks < count); 1249 sbi->total_valid_block_count -= (block_t)count; 1250 spin_unlock(&sbi->stat_lock); 1251 f2fs_i_blocks_write(inode, count, false); 1252 } 1253 1254 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1255 { 1256 atomic_inc(&sbi->nr_pages[count_type]); 1257 1258 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1259 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1260 return; 1261 1262 set_sbi_flag(sbi, SBI_IS_DIRTY); 1263 } 1264 1265 static inline void inode_inc_dirty_pages(struct inode *inode) 1266 { 1267 atomic_inc(&F2FS_I(inode)->dirty_pages); 1268 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1269 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1270 } 1271 1272 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1273 { 1274 atomic_dec(&sbi->nr_pages[count_type]); 1275 } 1276 1277 static inline void inode_dec_dirty_pages(struct inode *inode) 1278 { 1279 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1280 !S_ISLNK(inode->i_mode)) 1281 return; 1282 1283 atomic_dec(&F2FS_I(inode)->dirty_pages); 1284 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1285 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1286 } 1287 1288 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1289 { 1290 return atomic_read(&sbi->nr_pages[count_type]); 1291 } 1292 1293 static inline int get_dirty_pages(struct inode *inode) 1294 { 1295 return atomic_read(&F2FS_I(inode)->dirty_pages); 1296 } 1297 1298 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1299 { 1300 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1301 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1302 sbi->log_blocks_per_seg; 1303 1304 return segs / sbi->segs_per_sec; 1305 } 1306 1307 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1308 { 1309 return sbi->total_valid_block_count; 1310 } 1311 1312 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1313 { 1314 return sbi->discard_blks; 1315 } 1316 1317 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1318 { 1319 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1320 1321 /* return NAT or SIT bitmap */ 1322 if (flag == NAT_BITMAP) 1323 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1324 else if (flag == SIT_BITMAP) 1325 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1326 1327 return 0; 1328 } 1329 1330 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1331 { 1332 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1333 } 1334 1335 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1336 { 1337 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1338 int offset; 1339 1340 if (__cp_payload(sbi) > 0) { 1341 if (flag == NAT_BITMAP) 1342 return &ckpt->sit_nat_version_bitmap; 1343 else 1344 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1345 } else { 1346 offset = (flag == NAT_BITMAP) ? 1347 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1348 return &ckpt->sit_nat_version_bitmap + offset; 1349 } 1350 } 1351 1352 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1353 { 1354 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1355 1356 if (sbi->cur_cp_pack == 2) 1357 start_addr += sbi->blocks_per_seg; 1358 return start_addr; 1359 } 1360 1361 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1362 { 1363 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1364 1365 if (sbi->cur_cp_pack == 1) 1366 start_addr += sbi->blocks_per_seg; 1367 return start_addr; 1368 } 1369 1370 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1371 { 1372 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1373 } 1374 1375 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1376 { 1377 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1378 } 1379 1380 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1381 struct inode *inode) 1382 { 1383 block_t valid_block_count; 1384 unsigned int valid_node_count; 1385 1386 spin_lock(&sbi->stat_lock); 1387 1388 valid_block_count = sbi->total_valid_block_count + 1; 1389 if (unlikely(valid_block_count > sbi->user_block_count)) { 1390 spin_unlock(&sbi->stat_lock); 1391 return false; 1392 } 1393 1394 valid_node_count = sbi->total_valid_node_count + 1; 1395 if (unlikely(valid_node_count > sbi->total_node_count)) { 1396 spin_unlock(&sbi->stat_lock); 1397 return false; 1398 } 1399 1400 if (inode) 1401 f2fs_i_blocks_write(inode, 1, true); 1402 1403 sbi->total_valid_node_count++; 1404 sbi->total_valid_block_count++; 1405 spin_unlock(&sbi->stat_lock); 1406 1407 percpu_counter_inc(&sbi->alloc_valid_block_count); 1408 return true; 1409 } 1410 1411 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1412 struct inode *inode) 1413 { 1414 spin_lock(&sbi->stat_lock); 1415 1416 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1417 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1418 f2fs_bug_on(sbi, !inode->i_blocks); 1419 1420 f2fs_i_blocks_write(inode, 1, false); 1421 sbi->total_valid_node_count--; 1422 sbi->total_valid_block_count--; 1423 1424 spin_unlock(&sbi->stat_lock); 1425 } 1426 1427 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1428 { 1429 return sbi->total_valid_node_count; 1430 } 1431 1432 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1433 { 1434 percpu_counter_inc(&sbi->total_valid_inode_count); 1435 } 1436 1437 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1438 { 1439 percpu_counter_dec(&sbi->total_valid_inode_count); 1440 } 1441 1442 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1443 { 1444 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1445 } 1446 1447 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1448 pgoff_t index, bool for_write) 1449 { 1450 #ifdef CONFIG_F2FS_FAULT_INJECTION 1451 struct page *page = find_lock_page(mapping, index); 1452 if (page) 1453 return page; 1454 1455 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 1456 return NULL; 1457 #endif 1458 if (!for_write) 1459 return grab_cache_page(mapping, index); 1460 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1461 } 1462 1463 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1464 { 1465 char *src_kaddr = kmap(src); 1466 char *dst_kaddr = kmap(dst); 1467 1468 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1469 kunmap(dst); 1470 kunmap(src); 1471 } 1472 1473 static inline void f2fs_put_page(struct page *page, int unlock) 1474 { 1475 if (!page) 1476 return; 1477 1478 if (unlock) { 1479 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1480 unlock_page(page); 1481 } 1482 put_page(page); 1483 } 1484 1485 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1486 { 1487 if (dn->node_page) 1488 f2fs_put_page(dn->node_page, 1); 1489 if (dn->inode_page && dn->node_page != dn->inode_page) 1490 f2fs_put_page(dn->inode_page, 0); 1491 dn->node_page = NULL; 1492 dn->inode_page = NULL; 1493 } 1494 1495 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1496 size_t size) 1497 { 1498 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1499 } 1500 1501 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1502 gfp_t flags) 1503 { 1504 void *entry; 1505 1506 entry = kmem_cache_alloc(cachep, flags); 1507 if (!entry) 1508 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1509 return entry; 1510 } 1511 1512 static inline struct bio *f2fs_bio_alloc(int npages) 1513 { 1514 struct bio *bio; 1515 1516 /* No failure on bio allocation */ 1517 bio = bio_alloc(GFP_NOIO, npages); 1518 if (!bio) 1519 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1520 return bio; 1521 } 1522 1523 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1524 unsigned long index, void *item) 1525 { 1526 while (radix_tree_insert(root, index, item)) 1527 cond_resched(); 1528 } 1529 1530 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1531 1532 static inline bool IS_INODE(struct page *page) 1533 { 1534 struct f2fs_node *p = F2FS_NODE(page); 1535 return RAW_IS_INODE(p); 1536 } 1537 1538 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1539 { 1540 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1541 } 1542 1543 static inline block_t datablock_addr(struct page *node_page, 1544 unsigned int offset) 1545 { 1546 struct f2fs_node *raw_node; 1547 __le32 *addr_array; 1548 raw_node = F2FS_NODE(node_page); 1549 addr_array = blkaddr_in_node(raw_node); 1550 return le32_to_cpu(addr_array[offset]); 1551 } 1552 1553 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1554 { 1555 int mask; 1556 1557 addr += (nr >> 3); 1558 mask = 1 << (7 - (nr & 0x07)); 1559 return mask & *addr; 1560 } 1561 1562 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1563 { 1564 int mask; 1565 1566 addr += (nr >> 3); 1567 mask = 1 << (7 - (nr & 0x07)); 1568 *addr |= mask; 1569 } 1570 1571 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1572 { 1573 int mask; 1574 1575 addr += (nr >> 3); 1576 mask = 1 << (7 - (nr & 0x07)); 1577 *addr &= ~mask; 1578 } 1579 1580 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1581 { 1582 int mask; 1583 int ret; 1584 1585 addr += (nr >> 3); 1586 mask = 1 << (7 - (nr & 0x07)); 1587 ret = mask & *addr; 1588 *addr |= mask; 1589 return ret; 1590 } 1591 1592 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1593 { 1594 int mask; 1595 int ret; 1596 1597 addr += (nr >> 3); 1598 mask = 1 << (7 - (nr & 0x07)); 1599 ret = mask & *addr; 1600 *addr &= ~mask; 1601 return ret; 1602 } 1603 1604 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1605 { 1606 int mask; 1607 1608 addr += (nr >> 3); 1609 mask = 1 << (7 - (nr & 0x07)); 1610 *addr ^= mask; 1611 } 1612 1613 /* used for f2fs_inode_info->flags */ 1614 enum { 1615 FI_NEW_INODE, /* indicate newly allocated inode */ 1616 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1617 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1618 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1619 FI_INC_LINK, /* need to increment i_nlink */ 1620 FI_ACL_MODE, /* indicate acl mode */ 1621 FI_NO_ALLOC, /* should not allocate any blocks */ 1622 FI_FREE_NID, /* free allocated nide */ 1623 FI_NO_EXTENT, /* not to use the extent cache */ 1624 FI_INLINE_XATTR, /* used for inline xattr */ 1625 FI_INLINE_DATA, /* used for inline data*/ 1626 FI_INLINE_DENTRY, /* used for inline dentry */ 1627 FI_APPEND_WRITE, /* inode has appended data */ 1628 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1629 FI_NEED_IPU, /* used for ipu per file */ 1630 FI_ATOMIC_FILE, /* indicate atomic file */ 1631 FI_VOLATILE_FILE, /* indicate volatile file */ 1632 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1633 FI_DROP_CACHE, /* drop dirty page cache */ 1634 FI_DATA_EXIST, /* indicate data exists */ 1635 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1636 FI_DO_DEFRAG, /* indicate defragment is running */ 1637 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1638 }; 1639 1640 static inline void __mark_inode_dirty_flag(struct inode *inode, 1641 int flag, bool set) 1642 { 1643 switch (flag) { 1644 case FI_INLINE_XATTR: 1645 case FI_INLINE_DATA: 1646 case FI_INLINE_DENTRY: 1647 if (set) 1648 return; 1649 case FI_DATA_EXIST: 1650 case FI_INLINE_DOTS: 1651 f2fs_mark_inode_dirty_sync(inode, true); 1652 } 1653 } 1654 1655 static inline void set_inode_flag(struct inode *inode, int flag) 1656 { 1657 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1658 set_bit(flag, &F2FS_I(inode)->flags); 1659 __mark_inode_dirty_flag(inode, flag, true); 1660 } 1661 1662 static inline int is_inode_flag_set(struct inode *inode, int flag) 1663 { 1664 return test_bit(flag, &F2FS_I(inode)->flags); 1665 } 1666 1667 static inline void clear_inode_flag(struct inode *inode, int flag) 1668 { 1669 if (test_bit(flag, &F2FS_I(inode)->flags)) 1670 clear_bit(flag, &F2FS_I(inode)->flags); 1671 __mark_inode_dirty_flag(inode, flag, false); 1672 } 1673 1674 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1675 { 1676 F2FS_I(inode)->i_acl_mode = mode; 1677 set_inode_flag(inode, FI_ACL_MODE); 1678 f2fs_mark_inode_dirty_sync(inode, false); 1679 } 1680 1681 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1682 { 1683 if (inc) 1684 inc_nlink(inode); 1685 else 1686 drop_nlink(inode); 1687 f2fs_mark_inode_dirty_sync(inode, true); 1688 } 1689 1690 static inline void f2fs_i_blocks_write(struct inode *inode, 1691 blkcnt_t diff, bool add) 1692 { 1693 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1694 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1695 1696 inode->i_blocks = add ? inode->i_blocks + diff : 1697 inode->i_blocks - diff; 1698 f2fs_mark_inode_dirty_sync(inode, true); 1699 if (clean || recover) 1700 set_inode_flag(inode, FI_AUTO_RECOVER); 1701 } 1702 1703 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1704 { 1705 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1706 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1707 1708 if (i_size_read(inode) == i_size) 1709 return; 1710 1711 i_size_write(inode, i_size); 1712 f2fs_mark_inode_dirty_sync(inode, true); 1713 if (clean || recover) 1714 set_inode_flag(inode, FI_AUTO_RECOVER); 1715 } 1716 1717 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1718 { 1719 F2FS_I(inode)->i_current_depth = depth; 1720 f2fs_mark_inode_dirty_sync(inode, true); 1721 } 1722 1723 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1724 { 1725 F2FS_I(inode)->i_xattr_nid = xnid; 1726 f2fs_mark_inode_dirty_sync(inode, true); 1727 } 1728 1729 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1730 { 1731 F2FS_I(inode)->i_pino = pino; 1732 f2fs_mark_inode_dirty_sync(inode, true); 1733 } 1734 1735 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1736 { 1737 struct f2fs_inode_info *fi = F2FS_I(inode); 1738 1739 if (ri->i_inline & F2FS_INLINE_XATTR) 1740 set_bit(FI_INLINE_XATTR, &fi->flags); 1741 if (ri->i_inline & F2FS_INLINE_DATA) 1742 set_bit(FI_INLINE_DATA, &fi->flags); 1743 if (ri->i_inline & F2FS_INLINE_DENTRY) 1744 set_bit(FI_INLINE_DENTRY, &fi->flags); 1745 if (ri->i_inline & F2FS_DATA_EXIST) 1746 set_bit(FI_DATA_EXIST, &fi->flags); 1747 if (ri->i_inline & F2FS_INLINE_DOTS) 1748 set_bit(FI_INLINE_DOTS, &fi->flags); 1749 } 1750 1751 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1752 { 1753 ri->i_inline = 0; 1754 1755 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1756 ri->i_inline |= F2FS_INLINE_XATTR; 1757 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1758 ri->i_inline |= F2FS_INLINE_DATA; 1759 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1760 ri->i_inline |= F2FS_INLINE_DENTRY; 1761 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1762 ri->i_inline |= F2FS_DATA_EXIST; 1763 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 1764 ri->i_inline |= F2FS_INLINE_DOTS; 1765 } 1766 1767 static inline int f2fs_has_inline_xattr(struct inode *inode) 1768 { 1769 return is_inode_flag_set(inode, FI_INLINE_XATTR); 1770 } 1771 1772 static inline unsigned int addrs_per_inode(struct inode *inode) 1773 { 1774 if (f2fs_has_inline_xattr(inode)) 1775 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1776 return DEF_ADDRS_PER_INODE; 1777 } 1778 1779 static inline void *inline_xattr_addr(struct page *page) 1780 { 1781 struct f2fs_inode *ri = F2FS_INODE(page); 1782 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1783 F2FS_INLINE_XATTR_ADDRS]); 1784 } 1785 1786 static inline int inline_xattr_size(struct inode *inode) 1787 { 1788 if (f2fs_has_inline_xattr(inode)) 1789 return F2FS_INLINE_XATTR_ADDRS << 2; 1790 else 1791 return 0; 1792 } 1793 1794 static inline int f2fs_has_inline_data(struct inode *inode) 1795 { 1796 return is_inode_flag_set(inode, FI_INLINE_DATA); 1797 } 1798 1799 static inline void f2fs_clear_inline_inode(struct inode *inode) 1800 { 1801 clear_inode_flag(inode, FI_INLINE_DATA); 1802 clear_inode_flag(inode, FI_DATA_EXIST); 1803 } 1804 1805 static inline int f2fs_exist_data(struct inode *inode) 1806 { 1807 return is_inode_flag_set(inode, FI_DATA_EXIST); 1808 } 1809 1810 static inline int f2fs_has_inline_dots(struct inode *inode) 1811 { 1812 return is_inode_flag_set(inode, FI_INLINE_DOTS); 1813 } 1814 1815 static inline bool f2fs_is_atomic_file(struct inode *inode) 1816 { 1817 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 1818 } 1819 1820 static inline bool f2fs_is_volatile_file(struct inode *inode) 1821 { 1822 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 1823 } 1824 1825 static inline bool f2fs_is_first_block_written(struct inode *inode) 1826 { 1827 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 1828 } 1829 1830 static inline bool f2fs_is_drop_cache(struct inode *inode) 1831 { 1832 return is_inode_flag_set(inode, FI_DROP_CACHE); 1833 } 1834 1835 static inline void *inline_data_addr(struct page *page) 1836 { 1837 struct f2fs_inode *ri = F2FS_INODE(page); 1838 return (void *)&(ri->i_addr[1]); 1839 } 1840 1841 static inline int f2fs_has_inline_dentry(struct inode *inode) 1842 { 1843 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 1844 } 1845 1846 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1847 { 1848 if (!f2fs_has_inline_dentry(dir)) 1849 kunmap(page); 1850 } 1851 1852 static inline int is_file(struct inode *inode, int type) 1853 { 1854 return F2FS_I(inode)->i_advise & type; 1855 } 1856 1857 static inline void set_file(struct inode *inode, int type) 1858 { 1859 F2FS_I(inode)->i_advise |= type; 1860 f2fs_mark_inode_dirty_sync(inode, true); 1861 } 1862 1863 static inline void clear_file(struct inode *inode, int type) 1864 { 1865 F2FS_I(inode)->i_advise &= ~type; 1866 f2fs_mark_inode_dirty_sync(inode, true); 1867 } 1868 1869 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 1870 { 1871 if (dsync) { 1872 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1873 bool ret; 1874 1875 spin_lock(&sbi->inode_lock[DIRTY_META]); 1876 ret = list_empty(&F2FS_I(inode)->gdirty_list); 1877 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1878 return ret; 1879 } 1880 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 1881 file_keep_isize(inode) || 1882 i_size_read(inode) & PAGE_MASK) 1883 return false; 1884 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 1885 } 1886 1887 static inline int f2fs_readonly(struct super_block *sb) 1888 { 1889 return sb->s_flags & MS_RDONLY; 1890 } 1891 1892 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1893 { 1894 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 1895 } 1896 1897 static inline bool is_dot_dotdot(const struct qstr *str) 1898 { 1899 if (str->len == 1 && str->name[0] == '.') 1900 return true; 1901 1902 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1903 return true; 1904 1905 return false; 1906 } 1907 1908 static inline bool f2fs_may_extent_tree(struct inode *inode) 1909 { 1910 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1911 is_inode_flag_set(inode, FI_NO_EXTENT)) 1912 return false; 1913 1914 return S_ISREG(inode->i_mode); 1915 } 1916 1917 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 1918 size_t size, gfp_t flags) 1919 { 1920 #ifdef CONFIG_F2FS_FAULT_INJECTION 1921 if (time_to_inject(sbi, FAULT_KMALLOC)) 1922 return NULL; 1923 #endif 1924 return kmalloc(size, flags); 1925 } 1926 1927 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 1928 { 1929 void *ret; 1930 1931 ret = kmalloc(size, flags | __GFP_NOWARN); 1932 if (!ret) 1933 ret = __vmalloc(size, flags, PAGE_KERNEL); 1934 return ret; 1935 } 1936 1937 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 1938 { 1939 void *ret; 1940 1941 ret = kzalloc(size, flags | __GFP_NOWARN); 1942 if (!ret) 1943 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 1944 return ret; 1945 } 1946 1947 #define get_inode_mode(i) \ 1948 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 1949 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1950 1951 /* get offset of first page in next direct node */ 1952 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 1953 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 1954 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 1955 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 1956 1957 /* 1958 * file.c 1959 */ 1960 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1961 void truncate_data_blocks(struct dnode_of_data *); 1962 int truncate_blocks(struct inode *, u64, bool); 1963 int f2fs_truncate(struct inode *); 1964 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1965 int f2fs_setattr(struct dentry *, struct iattr *); 1966 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1967 int truncate_data_blocks_range(struct dnode_of_data *, int); 1968 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1969 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1970 1971 /* 1972 * inode.c 1973 */ 1974 void f2fs_set_inode_flags(struct inode *); 1975 struct inode *f2fs_iget(struct super_block *, unsigned long); 1976 struct inode *f2fs_iget_retry(struct super_block *, unsigned long); 1977 int try_to_free_nats(struct f2fs_sb_info *, int); 1978 int update_inode(struct inode *, struct page *); 1979 int update_inode_page(struct inode *); 1980 int f2fs_write_inode(struct inode *, struct writeback_control *); 1981 void f2fs_evict_inode(struct inode *); 1982 void handle_failed_inode(struct inode *); 1983 1984 /* 1985 * namei.c 1986 */ 1987 struct dentry *f2fs_get_parent(struct dentry *child); 1988 1989 /* 1990 * dir.c 1991 */ 1992 void set_de_type(struct f2fs_dir_entry *, umode_t); 1993 unsigned char get_de_type(struct f2fs_dir_entry *); 1994 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *, 1995 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1996 int f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1997 unsigned int, struct fscrypt_str *); 1998 void do_make_empty_dir(struct inode *, struct inode *, 1999 struct f2fs_dentry_ptr *); 2000 struct page *init_inode_metadata(struct inode *, struct inode *, 2001 const struct qstr *, const struct qstr *, struct page *); 2002 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 2003 int room_for_filename(const void *, int, int); 2004 void f2fs_drop_nlink(struct inode *, struct inode *); 2005 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *, 2006 struct page **); 2007 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *, 2008 struct page **); 2009 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 2010 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **); 2011 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 2012 struct page *, struct inode *); 2013 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 2014 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 2015 const struct qstr *, f2fs_hash_t , unsigned int); 2016 int f2fs_add_regular_entry(struct inode *, const struct qstr *, 2017 const struct qstr *, struct inode *, nid_t, umode_t); 2018 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *, 2019 nid_t, umode_t); 2020 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 2021 umode_t); 2022 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 2023 struct inode *); 2024 int f2fs_do_tmpfile(struct inode *, struct inode *); 2025 bool f2fs_empty_dir(struct inode *); 2026 2027 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2028 { 2029 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2030 inode, inode->i_ino, inode->i_mode); 2031 } 2032 2033 /* 2034 * super.c 2035 */ 2036 int f2fs_inode_dirtied(struct inode *, bool); 2037 void f2fs_inode_synced(struct inode *); 2038 int f2fs_commit_super(struct f2fs_sb_info *, bool); 2039 int f2fs_sync_fs(struct super_block *, int); 2040 extern __printf(3, 4) 2041 void f2fs_msg(struct super_block *, const char *, const char *, ...); 2042 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2043 2044 /* 2045 * hash.c 2046 */ 2047 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 2048 2049 /* 2050 * node.c 2051 */ 2052 struct dnode_of_data; 2053 struct node_info; 2054 2055 bool available_free_memory(struct f2fs_sb_info *, int); 2056 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 2057 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 2058 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 2059 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 2060 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t); 2061 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 2062 int truncate_inode_blocks(struct inode *, pgoff_t); 2063 int truncate_xattr_node(struct inode *, struct page *); 2064 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 2065 int remove_inode_page(struct inode *); 2066 struct page *new_inode_page(struct inode *); 2067 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 2068 void ra_node_page(struct f2fs_sb_info *, nid_t); 2069 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 2070 struct page *get_node_page_ra(struct page *, int); 2071 void move_node_page(struct page *, int); 2072 int fsync_node_pages(struct f2fs_sb_info *, struct inode *, 2073 struct writeback_control *, bool); 2074 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *); 2075 void build_free_nids(struct f2fs_sb_info *, bool); 2076 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 2077 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 2078 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 2079 int try_to_free_nids(struct f2fs_sb_info *, int); 2080 void recover_inline_xattr(struct inode *, struct page *); 2081 void recover_xattr_data(struct inode *, struct page *, block_t); 2082 int recover_inode_page(struct f2fs_sb_info *, struct page *); 2083 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 2084 struct f2fs_summary_block *); 2085 void flush_nat_entries(struct f2fs_sb_info *); 2086 int build_node_manager(struct f2fs_sb_info *); 2087 void destroy_node_manager(struct f2fs_sb_info *); 2088 int __init create_node_manager_caches(void); 2089 void destroy_node_manager_caches(void); 2090 2091 /* 2092 * segment.c 2093 */ 2094 void register_inmem_page(struct inode *, struct page *); 2095 void drop_inmem_pages(struct inode *); 2096 int commit_inmem_pages(struct inode *); 2097 void f2fs_balance_fs(struct f2fs_sb_info *, bool); 2098 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 2099 int f2fs_issue_flush(struct f2fs_sb_info *); 2100 int create_flush_cmd_control(struct f2fs_sb_info *); 2101 void destroy_flush_cmd_control(struct f2fs_sb_info *, bool); 2102 void invalidate_blocks(struct f2fs_sb_info *, block_t); 2103 bool is_checkpointed_data(struct f2fs_sb_info *, block_t); 2104 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 2105 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *); 2106 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 2107 void release_discard_addrs(struct f2fs_sb_info *); 2108 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 2109 void allocate_new_segments(struct f2fs_sb_info *); 2110 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 2111 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 2112 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 2113 void write_meta_page(struct f2fs_sb_info *, struct page *); 2114 void write_node_page(unsigned int, struct f2fs_io_info *); 2115 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 2116 void rewrite_data_page(struct f2fs_io_info *); 2117 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *, 2118 block_t, block_t, bool, bool); 2119 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 2120 block_t, block_t, unsigned char, bool, bool); 2121 void allocate_data_block(struct f2fs_sb_info *, struct page *, 2122 block_t, block_t *, struct f2fs_summary *, int); 2123 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool); 2124 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t); 2125 void write_data_summaries(struct f2fs_sb_info *, block_t); 2126 void write_node_summaries(struct f2fs_sb_info *, block_t); 2127 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int); 2128 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 2129 int build_segment_manager(struct f2fs_sb_info *); 2130 void destroy_segment_manager(struct f2fs_sb_info *); 2131 int __init create_segment_manager_caches(void); 2132 void destroy_segment_manager_caches(void); 2133 2134 /* 2135 * checkpoint.c 2136 */ 2137 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool); 2138 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 2139 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 2140 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t); 2141 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 2142 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool); 2143 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 2144 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 2145 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2146 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2147 void release_ino_entry(struct f2fs_sb_info *, bool); 2148 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 2149 int f2fs_sync_inode_meta(struct f2fs_sb_info *); 2150 int acquire_orphan_inode(struct f2fs_sb_info *); 2151 void release_orphan_inode(struct f2fs_sb_info *); 2152 void add_orphan_inode(struct inode *); 2153 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 2154 int recover_orphan_inodes(struct f2fs_sb_info *); 2155 int get_valid_checkpoint(struct f2fs_sb_info *); 2156 void update_dirty_page(struct inode *, struct page *); 2157 void remove_dirty_inode(struct inode *); 2158 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type); 2159 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 2160 void init_ino_entry_info(struct f2fs_sb_info *); 2161 int __init create_checkpoint_caches(void); 2162 void destroy_checkpoint_caches(void); 2163 2164 /* 2165 * data.c 2166 */ 2167 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 2168 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *, 2169 struct page *, nid_t, enum page_type, int); 2170 void f2fs_flush_merged_bios(struct f2fs_sb_info *); 2171 int f2fs_submit_page_bio(struct f2fs_io_info *); 2172 void f2fs_submit_page_mbio(struct f2fs_io_info *); 2173 struct block_device *f2fs_target_device(struct f2fs_sb_info *, 2174 block_t, struct bio *); 2175 int f2fs_target_device_index(struct f2fs_sb_info *, block_t); 2176 void set_data_blkaddr(struct dnode_of_data *); 2177 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t); 2178 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t); 2179 int reserve_new_block(struct dnode_of_data *); 2180 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 2181 int f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *); 2182 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 2183 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool); 2184 struct page *find_data_page(struct inode *, pgoff_t); 2185 struct page *get_lock_data_page(struct inode *, pgoff_t, bool); 2186 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 2187 int do_write_data_page(struct f2fs_io_info *); 2188 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int); 2189 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 2190 void f2fs_set_page_dirty_nobuffers(struct page *); 2191 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 2192 int f2fs_release_page(struct page *, gfp_t); 2193 #ifdef CONFIG_MIGRATION 2194 int f2fs_migrate_page(struct address_space *, struct page *, struct page *, 2195 enum migrate_mode); 2196 #endif 2197 2198 /* 2199 * gc.c 2200 */ 2201 int start_gc_thread(struct f2fs_sb_info *); 2202 void stop_gc_thread(struct f2fs_sb_info *); 2203 block_t start_bidx_of_node(unsigned int, struct inode *); 2204 int f2fs_gc(struct f2fs_sb_info *, bool, bool); 2205 void build_gc_manager(struct f2fs_sb_info *); 2206 2207 /* 2208 * recovery.c 2209 */ 2210 int recover_fsync_data(struct f2fs_sb_info *, bool); 2211 bool space_for_roll_forward(struct f2fs_sb_info *); 2212 2213 /* 2214 * debug.c 2215 */ 2216 #ifdef CONFIG_F2FS_STAT_FS 2217 struct f2fs_stat_info { 2218 struct list_head stat_list; 2219 struct f2fs_sb_info *sbi; 2220 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2221 int main_area_segs, main_area_sections, main_area_zones; 2222 unsigned long long hit_largest, hit_cached, hit_rbtree; 2223 unsigned long long hit_total, total_ext; 2224 int ext_tree, zombie_tree, ext_node; 2225 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2226 int inmem_pages; 2227 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2228 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids; 2229 int total_count, utilization; 2230 int bg_gc, nr_wb_cp_data, nr_wb_data; 2231 int inline_xattr, inline_inode, inline_dir, orphans; 2232 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2233 unsigned int bimodal, avg_vblocks; 2234 int util_free, util_valid, util_invalid; 2235 int rsvd_segs, overp_segs; 2236 int dirty_count, node_pages, meta_pages; 2237 int prefree_count, call_count, cp_count, bg_cp_count; 2238 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2239 int bg_node_segs, bg_data_segs; 2240 int tot_blks, data_blks, node_blks; 2241 int bg_data_blks, bg_node_blks; 2242 int curseg[NR_CURSEG_TYPE]; 2243 int cursec[NR_CURSEG_TYPE]; 2244 int curzone[NR_CURSEG_TYPE]; 2245 2246 unsigned int segment_count[2]; 2247 unsigned int block_count[2]; 2248 unsigned int inplace_count; 2249 unsigned long long base_mem, cache_mem, page_mem; 2250 }; 2251 2252 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2253 { 2254 return (struct f2fs_stat_info *)sbi->stat_info; 2255 } 2256 2257 #define stat_inc_cp_count(si) ((si)->cp_count++) 2258 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2259 #define stat_inc_call_count(si) ((si)->call_count++) 2260 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2261 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2262 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2263 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2264 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2265 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2266 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2267 #define stat_inc_inline_xattr(inode) \ 2268 do { \ 2269 if (f2fs_has_inline_xattr(inode)) \ 2270 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2271 } while (0) 2272 #define stat_dec_inline_xattr(inode) \ 2273 do { \ 2274 if (f2fs_has_inline_xattr(inode)) \ 2275 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2276 } while (0) 2277 #define stat_inc_inline_inode(inode) \ 2278 do { \ 2279 if (f2fs_has_inline_data(inode)) \ 2280 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2281 } while (0) 2282 #define stat_dec_inline_inode(inode) \ 2283 do { \ 2284 if (f2fs_has_inline_data(inode)) \ 2285 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2286 } while (0) 2287 #define stat_inc_inline_dir(inode) \ 2288 do { \ 2289 if (f2fs_has_inline_dentry(inode)) \ 2290 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2291 } while (0) 2292 #define stat_dec_inline_dir(inode) \ 2293 do { \ 2294 if (f2fs_has_inline_dentry(inode)) \ 2295 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2296 } while (0) 2297 #define stat_inc_seg_type(sbi, curseg) \ 2298 ((sbi)->segment_count[(curseg)->alloc_type]++) 2299 #define stat_inc_block_count(sbi, curseg) \ 2300 ((sbi)->block_count[(curseg)->alloc_type]++) 2301 #define stat_inc_inplace_blocks(sbi) \ 2302 (atomic_inc(&(sbi)->inplace_count)) 2303 #define stat_inc_seg_count(sbi, type, gc_type) \ 2304 do { \ 2305 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2306 (si)->tot_segs++; \ 2307 if (type == SUM_TYPE_DATA) { \ 2308 si->data_segs++; \ 2309 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2310 } else { \ 2311 si->node_segs++; \ 2312 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2313 } \ 2314 } while (0) 2315 2316 #define stat_inc_tot_blk_count(si, blks) \ 2317 (si->tot_blks += (blks)) 2318 2319 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2320 do { \ 2321 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2322 stat_inc_tot_blk_count(si, blks); \ 2323 si->data_blks += (blks); \ 2324 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2325 } while (0) 2326 2327 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2328 do { \ 2329 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2330 stat_inc_tot_blk_count(si, blks); \ 2331 si->node_blks += (blks); \ 2332 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2333 } while (0) 2334 2335 int f2fs_build_stats(struct f2fs_sb_info *); 2336 void f2fs_destroy_stats(struct f2fs_sb_info *); 2337 int __init f2fs_create_root_stats(void); 2338 void f2fs_destroy_root_stats(void); 2339 #else 2340 #define stat_inc_cp_count(si) 2341 #define stat_inc_bg_cp_count(si) 2342 #define stat_inc_call_count(si) 2343 #define stat_inc_bggc_count(si) 2344 #define stat_inc_dirty_inode(sbi, type) 2345 #define stat_dec_dirty_inode(sbi, type) 2346 #define stat_inc_total_hit(sb) 2347 #define stat_inc_rbtree_node_hit(sb) 2348 #define stat_inc_largest_node_hit(sbi) 2349 #define stat_inc_cached_node_hit(sbi) 2350 #define stat_inc_inline_xattr(inode) 2351 #define stat_dec_inline_xattr(inode) 2352 #define stat_inc_inline_inode(inode) 2353 #define stat_dec_inline_inode(inode) 2354 #define stat_inc_inline_dir(inode) 2355 #define stat_dec_inline_dir(inode) 2356 #define stat_inc_seg_type(sbi, curseg) 2357 #define stat_inc_block_count(sbi, curseg) 2358 #define stat_inc_inplace_blocks(sbi) 2359 #define stat_inc_seg_count(sbi, type, gc_type) 2360 #define stat_inc_tot_blk_count(si, blks) 2361 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2362 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2363 2364 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2365 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2366 static inline int __init f2fs_create_root_stats(void) { return 0; } 2367 static inline void f2fs_destroy_root_stats(void) { } 2368 #endif 2369 2370 extern const struct file_operations f2fs_dir_operations; 2371 extern const struct file_operations f2fs_file_operations; 2372 extern const struct inode_operations f2fs_file_inode_operations; 2373 extern const struct address_space_operations f2fs_dblock_aops; 2374 extern const struct address_space_operations f2fs_node_aops; 2375 extern const struct address_space_operations f2fs_meta_aops; 2376 extern const struct inode_operations f2fs_dir_inode_operations; 2377 extern const struct inode_operations f2fs_symlink_inode_operations; 2378 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2379 extern const struct inode_operations f2fs_special_inode_operations; 2380 extern struct kmem_cache *inode_entry_slab; 2381 2382 /* 2383 * inline.c 2384 */ 2385 bool f2fs_may_inline_data(struct inode *); 2386 bool f2fs_may_inline_dentry(struct inode *); 2387 void read_inline_data(struct page *, struct page *); 2388 bool truncate_inline_inode(struct page *, u64); 2389 int f2fs_read_inline_data(struct inode *, struct page *); 2390 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 2391 int f2fs_convert_inline_inode(struct inode *); 2392 int f2fs_write_inline_data(struct inode *, struct page *); 2393 bool recover_inline_data(struct inode *, struct page *); 2394 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 2395 struct fscrypt_name *, struct page **); 2396 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 2397 int f2fs_add_inline_entry(struct inode *, const struct qstr *, 2398 const struct qstr *, struct inode *, nid_t, umode_t); 2399 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 2400 struct inode *, struct inode *); 2401 bool f2fs_empty_inline_dir(struct inode *); 2402 int f2fs_read_inline_dir(struct file *, struct dir_context *, 2403 struct fscrypt_str *); 2404 int f2fs_inline_data_fiemap(struct inode *, 2405 struct fiemap_extent_info *, __u64, __u64); 2406 2407 /* 2408 * shrinker.c 2409 */ 2410 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2411 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2412 void f2fs_join_shrinker(struct f2fs_sb_info *); 2413 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2414 2415 /* 2416 * extent_cache.c 2417 */ 2418 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2419 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2420 void f2fs_drop_extent_tree(struct inode *); 2421 unsigned int f2fs_destroy_extent_node(struct inode *); 2422 void f2fs_destroy_extent_tree(struct inode *); 2423 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2424 void f2fs_update_extent_cache(struct dnode_of_data *); 2425 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2426 pgoff_t, block_t, unsigned int); 2427 void init_extent_cache_info(struct f2fs_sb_info *); 2428 int __init create_extent_cache(void); 2429 void destroy_extent_cache(void); 2430 2431 /* 2432 * crypto support 2433 */ 2434 static inline bool f2fs_encrypted_inode(struct inode *inode) 2435 { 2436 return file_is_encrypt(inode); 2437 } 2438 2439 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2440 { 2441 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2442 file_set_encrypt(inode); 2443 #endif 2444 } 2445 2446 static inline bool f2fs_bio_encrypted(struct bio *bio) 2447 { 2448 return bio->bi_private != NULL; 2449 } 2450 2451 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2452 { 2453 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2454 } 2455 2456 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 2457 { 2458 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 2459 } 2460 2461 #ifdef CONFIG_BLK_DEV_ZONED 2462 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 2463 struct block_device *bdev, block_t blkaddr) 2464 { 2465 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 2466 int i; 2467 2468 for (i = 0; i < sbi->s_ndevs; i++) 2469 if (FDEV(i).bdev == bdev) 2470 return FDEV(i).blkz_type[zno]; 2471 return -EINVAL; 2472 } 2473 #endif 2474 2475 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 2476 { 2477 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 2478 2479 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 2480 } 2481 2482 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2483 { 2484 clear_opt(sbi, ADAPTIVE); 2485 clear_opt(sbi, LFS); 2486 2487 switch (mt) { 2488 case F2FS_MOUNT_ADAPTIVE: 2489 set_opt(sbi, ADAPTIVE); 2490 break; 2491 case F2FS_MOUNT_LFS: 2492 set_opt(sbi, LFS); 2493 break; 2494 } 2495 } 2496 2497 static inline bool f2fs_may_encrypt(struct inode *inode) 2498 { 2499 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2500 umode_t mode = inode->i_mode; 2501 2502 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2503 #else 2504 return 0; 2505 #endif 2506 } 2507 2508 #endif 2509