xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 7ad08a58)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_MAX,
60 };
61 
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64 
65 struct f2fs_fault_info {
66 	atomic_t inject_ops;
67 	unsigned int inject_rate;
68 	unsigned int inject_type;
69 };
70 
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74 
75 /*
76  * For mount options
77  */
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93 #define F2FS_MOUNT_USRQUOTA		0x00080000
94 #define F2FS_MOUNT_GRPQUOTA		0x00100000
95 #define F2FS_MOUNT_PRJQUOTA		0x00200000
96 #define F2FS_MOUNT_QUOTA		0x00400000
97 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
98 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
99 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
100 #define F2FS_MOUNT_NORECOVERY		0x04000000
101 #define F2FS_MOUNT_ATGC			0x08000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 #define COMPRESS_EXT_NUM		16
119 
120 struct f2fs_mount_info {
121 	unsigned int opt;
122 	int write_io_size_bits;		/* Write IO size bits */
123 	block_t root_reserved_blocks;	/* root reserved blocks */
124 	kuid_t s_resuid;		/* reserved blocks for uid */
125 	kgid_t s_resgid;		/* reserved blocks for gid */
126 	int active_logs;		/* # of active logs */
127 	int inline_xattr_size;		/* inline xattr size */
128 #ifdef CONFIG_F2FS_FAULT_INJECTION
129 	struct f2fs_fault_info fault_info;	/* For fault injection */
130 #endif
131 #ifdef CONFIG_QUOTA
132 	/* Names of quota files with journalled quota */
133 	char *s_qf_names[MAXQUOTAS];
134 	int s_jquota_fmt;			/* Format of quota to use */
135 #endif
136 	/* For which write hints are passed down to block layer */
137 	int whint_mode;
138 	int alloc_mode;			/* segment allocation policy */
139 	int fsync_mode;			/* fsync policy */
140 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
141 	int bggc_mode;			/* bggc mode: off, on or sync */
142 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
143 	block_t unusable_cap_perc;	/* percentage for cap */
144 	block_t unusable_cap;		/* Amount of space allowed to be
145 					 * unusable when disabling checkpoint
146 					 */
147 
148 	/* For compression */
149 	unsigned char compress_algorithm;	/* algorithm type */
150 	unsigned compress_log_size;		/* cluster log size */
151 	unsigned char compress_ext_cnt;		/* extension count */
152 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
153 };
154 
155 #define F2FS_FEATURE_ENCRYPT		0x0001
156 #define F2FS_FEATURE_BLKZONED		0x0002
157 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
158 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
159 #define F2FS_FEATURE_PRJQUOTA		0x0010
160 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
161 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
162 #define F2FS_FEATURE_QUOTA_INO		0x0080
163 #define F2FS_FEATURE_INODE_CRTIME	0x0100
164 #define F2FS_FEATURE_LOST_FOUND		0x0200
165 #define F2FS_FEATURE_VERITY		0x0400
166 #define F2FS_FEATURE_SB_CHKSUM		0x0800
167 #define F2FS_FEATURE_CASEFOLD		0x1000
168 #define F2FS_FEATURE_COMPRESSION	0x2000
169 
170 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
171 	((raw_super->feature & cpu_to_le32(mask)) != 0)
172 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
173 #define F2FS_SET_FEATURE(sbi, mask)					\
174 	(sbi->raw_super->feature |= cpu_to_le32(mask))
175 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
176 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
177 
178 /*
179  * Default values for user and/or group using reserved blocks
180  */
181 #define	F2FS_DEF_RESUID		0
182 #define	F2FS_DEF_RESGID		0
183 
184 /*
185  * For checkpoint manager
186  */
187 enum {
188 	NAT_BITMAP,
189 	SIT_BITMAP
190 };
191 
192 #define	CP_UMOUNT	0x00000001
193 #define	CP_FASTBOOT	0x00000002
194 #define	CP_SYNC		0x00000004
195 #define	CP_RECOVERY	0x00000008
196 #define	CP_DISCARD	0x00000010
197 #define CP_TRIMMED	0x00000020
198 #define CP_PAUSE	0x00000040
199 #define CP_RESIZE 	0x00000080
200 
201 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
202 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
203 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
204 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
205 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
206 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
207 #define DEF_CP_INTERVAL			60	/* 60 secs */
208 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
209 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
210 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
211 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
212 
213 struct cp_control {
214 	int reason;
215 	__u64 trim_start;
216 	__u64 trim_end;
217 	__u64 trim_minlen;
218 };
219 
220 /*
221  * indicate meta/data type
222  */
223 enum {
224 	META_CP,
225 	META_NAT,
226 	META_SIT,
227 	META_SSA,
228 	META_MAX,
229 	META_POR,
230 	DATA_GENERIC,		/* check range only */
231 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
232 	DATA_GENERIC_ENHANCE_READ,	/*
233 					 * strong check on range and segment
234 					 * bitmap but no warning due to race
235 					 * condition of read on truncated area
236 					 * by extent_cache
237 					 */
238 	META_GENERIC,
239 };
240 
241 /* for the list of ino */
242 enum {
243 	ORPHAN_INO,		/* for orphan ino list */
244 	APPEND_INO,		/* for append ino list */
245 	UPDATE_INO,		/* for update ino list */
246 	TRANS_DIR_INO,		/* for trasactions dir ino list */
247 	FLUSH_INO,		/* for multiple device flushing */
248 	MAX_INO_ENTRY,		/* max. list */
249 };
250 
251 struct ino_entry {
252 	struct list_head list;		/* list head */
253 	nid_t ino;			/* inode number */
254 	unsigned int dirty_device;	/* dirty device bitmap */
255 };
256 
257 /* for the list of inodes to be GCed */
258 struct inode_entry {
259 	struct list_head list;	/* list head */
260 	struct inode *inode;	/* vfs inode pointer */
261 };
262 
263 struct fsync_node_entry {
264 	struct list_head list;	/* list head */
265 	struct page *page;	/* warm node page pointer */
266 	unsigned int seq_id;	/* sequence id */
267 };
268 
269 /* for the bitmap indicate blocks to be discarded */
270 struct discard_entry {
271 	struct list_head list;	/* list head */
272 	block_t start_blkaddr;	/* start blockaddr of current segment */
273 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
274 };
275 
276 /* default discard granularity of inner discard thread, unit: block count */
277 #define DEFAULT_DISCARD_GRANULARITY		16
278 
279 /* max discard pend list number */
280 #define MAX_PLIST_NUM		512
281 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
282 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
283 
284 enum {
285 	D_PREP,			/* initial */
286 	D_PARTIAL,		/* partially submitted */
287 	D_SUBMIT,		/* all submitted */
288 	D_DONE,			/* finished */
289 };
290 
291 struct discard_info {
292 	block_t lstart;			/* logical start address */
293 	block_t len;			/* length */
294 	block_t start;			/* actual start address in dev */
295 };
296 
297 struct discard_cmd {
298 	struct rb_node rb_node;		/* rb node located in rb-tree */
299 	union {
300 		struct {
301 			block_t lstart;	/* logical start address */
302 			block_t len;	/* length */
303 			block_t start;	/* actual start address in dev */
304 		};
305 		struct discard_info di;	/* discard info */
306 
307 	};
308 	struct list_head list;		/* command list */
309 	struct completion wait;		/* compleation */
310 	struct block_device *bdev;	/* bdev */
311 	unsigned short ref;		/* reference count */
312 	unsigned char state;		/* state */
313 	unsigned char queued;		/* queued discard */
314 	int error;			/* bio error */
315 	spinlock_t lock;		/* for state/bio_ref updating */
316 	unsigned short bio_ref;		/* bio reference count */
317 };
318 
319 enum {
320 	DPOLICY_BG,
321 	DPOLICY_FORCE,
322 	DPOLICY_FSTRIM,
323 	DPOLICY_UMOUNT,
324 	MAX_DPOLICY,
325 };
326 
327 struct discard_policy {
328 	int type;			/* type of discard */
329 	unsigned int min_interval;	/* used for candidates exist */
330 	unsigned int mid_interval;	/* used for device busy */
331 	unsigned int max_interval;	/* used for candidates not exist */
332 	unsigned int max_requests;	/* # of discards issued per round */
333 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
334 	bool io_aware;			/* issue discard in idle time */
335 	bool sync;			/* submit discard with REQ_SYNC flag */
336 	bool ordered;			/* issue discard by lba order */
337 	bool timeout;			/* discard timeout for put_super */
338 	unsigned int granularity;	/* discard granularity */
339 };
340 
341 struct discard_cmd_control {
342 	struct task_struct *f2fs_issue_discard;	/* discard thread */
343 	struct list_head entry_list;		/* 4KB discard entry list */
344 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
345 	struct list_head wait_list;		/* store on-flushing entries */
346 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
347 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
348 	unsigned int discard_wake;		/* to wake up discard thread */
349 	struct mutex cmd_lock;
350 	unsigned int nr_discards;		/* # of discards in the list */
351 	unsigned int max_discards;		/* max. discards to be issued */
352 	unsigned int discard_granularity;	/* discard granularity */
353 	unsigned int undiscard_blks;		/* # of undiscard blocks */
354 	unsigned int next_pos;			/* next discard position */
355 	atomic_t issued_discard;		/* # of issued discard */
356 	atomic_t queued_discard;		/* # of queued discard */
357 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
358 	struct rb_root_cached root;		/* root of discard rb-tree */
359 	bool rbtree_check;			/* config for consistence check */
360 };
361 
362 /* for the list of fsync inodes, used only during recovery */
363 struct fsync_inode_entry {
364 	struct list_head list;	/* list head */
365 	struct inode *inode;	/* vfs inode pointer */
366 	block_t blkaddr;	/* block address locating the last fsync */
367 	block_t last_dentry;	/* block address locating the last dentry */
368 };
369 
370 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
371 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
372 
373 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
374 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
375 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
376 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
377 
378 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
379 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
380 
381 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
382 {
383 	int before = nats_in_cursum(journal);
384 
385 	journal->n_nats = cpu_to_le16(before + i);
386 	return before;
387 }
388 
389 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
390 {
391 	int before = sits_in_cursum(journal);
392 
393 	journal->n_sits = cpu_to_le16(before + i);
394 	return before;
395 }
396 
397 static inline bool __has_cursum_space(struct f2fs_journal *journal,
398 							int size, int type)
399 {
400 	if (type == NAT_JOURNAL)
401 		return size <= MAX_NAT_JENTRIES(journal);
402 	return size <= MAX_SIT_JENTRIES(journal);
403 }
404 
405 /* for inline stuff */
406 #define DEF_INLINE_RESERVED_SIZE	1
407 static inline int get_extra_isize(struct inode *inode);
408 static inline int get_inline_xattr_addrs(struct inode *inode);
409 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
410 				(CUR_ADDRS_PER_INODE(inode) -		\
411 				get_inline_xattr_addrs(inode) -	\
412 				DEF_INLINE_RESERVED_SIZE))
413 
414 /* for inline dir */
415 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
416 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
417 				BITS_PER_BYTE + 1))
418 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
419 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
420 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
421 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
422 				NR_INLINE_DENTRY(inode) + \
423 				INLINE_DENTRY_BITMAP_SIZE(inode)))
424 
425 /*
426  * For INODE and NODE manager
427  */
428 /* for directory operations */
429 
430 struct f2fs_filename {
431 	/*
432 	 * The filename the user specified.  This is NULL for some
433 	 * filesystem-internal operations, e.g. converting an inline directory
434 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
435 	 */
436 	const struct qstr *usr_fname;
437 
438 	/*
439 	 * The on-disk filename.  For encrypted directories, this is encrypted.
440 	 * This may be NULL for lookups in an encrypted dir without the key.
441 	 */
442 	struct fscrypt_str disk_name;
443 
444 	/* The dirhash of this filename */
445 	f2fs_hash_t hash;
446 
447 #ifdef CONFIG_FS_ENCRYPTION
448 	/*
449 	 * For lookups in encrypted directories: either the buffer backing
450 	 * disk_name, or a buffer that holds the decoded no-key name.
451 	 */
452 	struct fscrypt_str crypto_buf;
453 #endif
454 #ifdef CONFIG_UNICODE
455 	/*
456 	 * For casefolded directories: the casefolded name, but it's left NULL
457 	 * if the original name is not valid Unicode, if the directory is both
458 	 * casefolded and encrypted and its encryption key is unavailable, or if
459 	 * the filesystem is doing an internal operation where usr_fname is also
460 	 * NULL.  In all these cases we fall back to treating the name as an
461 	 * opaque byte sequence.
462 	 */
463 	struct fscrypt_str cf_name;
464 #endif
465 };
466 
467 struct f2fs_dentry_ptr {
468 	struct inode *inode;
469 	void *bitmap;
470 	struct f2fs_dir_entry *dentry;
471 	__u8 (*filename)[F2FS_SLOT_LEN];
472 	int max;
473 	int nr_bitmap;
474 };
475 
476 static inline void make_dentry_ptr_block(struct inode *inode,
477 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
478 {
479 	d->inode = inode;
480 	d->max = NR_DENTRY_IN_BLOCK;
481 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
482 	d->bitmap = t->dentry_bitmap;
483 	d->dentry = t->dentry;
484 	d->filename = t->filename;
485 }
486 
487 static inline void make_dentry_ptr_inline(struct inode *inode,
488 					struct f2fs_dentry_ptr *d, void *t)
489 {
490 	int entry_cnt = NR_INLINE_DENTRY(inode);
491 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
492 	int reserved_size = INLINE_RESERVED_SIZE(inode);
493 
494 	d->inode = inode;
495 	d->max = entry_cnt;
496 	d->nr_bitmap = bitmap_size;
497 	d->bitmap = t;
498 	d->dentry = t + bitmap_size + reserved_size;
499 	d->filename = t + bitmap_size + reserved_size +
500 					SIZE_OF_DIR_ENTRY * entry_cnt;
501 }
502 
503 /*
504  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
505  * as its node offset to distinguish from index node blocks.
506  * But some bits are used to mark the node block.
507  */
508 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
509 				>> OFFSET_BIT_SHIFT)
510 enum {
511 	ALLOC_NODE,			/* allocate a new node page if needed */
512 	LOOKUP_NODE,			/* look up a node without readahead */
513 	LOOKUP_NODE_RA,			/*
514 					 * look up a node with readahead called
515 					 * by get_data_block.
516 					 */
517 };
518 
519 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
520 
521 /* congestion wait timeout value, default: 20ms */
522 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
523 
524 /* maximum retry quota flush count */
525 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
526 
527 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
528 
529 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
530 
531 /* for in-memory extent cache entry */
532 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
533 
534 /* number of extent info in extent cache we try to shrink */
535 #define EXTENT_CACHE_SHRINK_NUMBER	128
536 
537 struct rb_entry {
538 	struct rb_node rb_node;		/* rb node located in rb-tree */
539 	union {
540 		struct {
541 			unsigned int ofs;	/* start offset of the entry */
542 			unsigned int len;	/* length of the entry */
543 		};
544 		unsigned long long key;		/* 64-bits key */
545 	} __packed;
546 };
547 
548 struct extent_info {
549 	unsigned int fofs;		/* start offset in a file */
550 	unsigned int len;		/* length of the extent */
551 	u32 blk;			/* start block address of the extent */
552 };
553 
554 struct extent_node {
555 	struct rb_node rb_node;		/* rb node located in rb-tree */
556 	struct extent_info ei;		/* extent info */
557 	struct list_head list;		/* node in global extent list of sbi */
558 	struct extent_tree *et;		/* extent tree pointer */
559 };
560 
561 struct extent_tree {
562 	nid_t ino;			/* inode number */
563 	struct rb_root_cached root;	/* root of extent info rb-tree */
564 	struct extent_node *cached_en;	/* recently accessed extent node */
565 	struct extent_info largest;	/* largested extent info */
566 	struct list_head list;		/* to be used by sbi->zombie_list */
567 	rwlock_t lock;			/* protect extent info rb-tree */
568 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
569 	bool largest_updated;		/* largest extent updated */
570 };
571 
572 /*
573  * This structure is taken from ext4_map_blocks.
574  *
575  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
576  */
577 #define F2FS_MAP_NEW		(1 << BH_New)
578 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
579 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
580 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
581 				F2FS_MAP_UNWRITTEN)
582 
583 struct f2fs_map_blocks {
584 	block_t m_pblk;
585 	block_t m_lblk;
586 	unsigned int m_len;
587 	unsigned int m_flags;
588 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
589 	pgoff_t *m_next_extent;		/* point to next possible extent */
590 	int m_seg_type;
591 	bool m_may_create;		/* indicate it is from write path */
592 };
593 
594 /* for flag in get_data_block */
595 enum {
596 	F2FS_GET_BLOCK_DEFAULT,
597 	F2FS_GET_BLOCK_FIEMAP,
598 	F2FS_GET_BLOCK_BMAP,
599 	F2FS_GET_BLOCK_DIO,
600 	F2FS_GET_BLOCK_PRE_DIO,
601 	F2FS_GET_BLOCK_PRE_AIO,
602 	F2FS_GET_BLOCK_PRECACHE,
603 };
604 
605 /*
606  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
607  */
608 #define FADVISE_COLD_BIT	0x01
609 #define FADVISE_LOST_PINO_BIT	0x02
610 #define FADVISE_ENCRYPT_BIT	0x04
611 #define FADVISE_ENC_NAME_BIT	0x08
612 #define FADVISE_KEEP_SIZE_BIT	0x10
613 #define FADVISE_HOT_BIT		0x20
614 #define FADVISE_VERITY_BIT	0x40
615 
616 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
617 
618 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
619 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
620 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
621 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
622 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
623 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
624 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
625 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
626 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
627 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
628 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
629 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
630 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
631 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
632 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
633 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
634 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
635 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
636 
637 #define DEF_DIR_LEVEL		0
638 
639 enum {
640 	GC_FAILURE_PIN,
641 	GC_FAILURE_ATOMIC,
642 	MAX_GC_FAILURE
643 };
644 
645 /* used for f2fs_inode_info->flags */
646 enum {
647 	FI_NEW_INODE,		/* indicate newly allocated inode */
648 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
649 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
650 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
651 	FI_INC_LINK,		/* need to increment i_nlink */
652 	FI_ACL_MODE,		/* indicate acl mode */
653 	FI_NO_ALLOC,		/* should not allocate any blocks */
654 	FI_FREE_NID,		/* free allocated nide */
655 	FI_NO_EXTENT,		/* not to use the extent cache */
656 	FI_INLINE_XATTR,	/* used for inline xattr */
657 	FI_INLINE_DATA,		/* used for inline data*/
658 	FI_INLINE_DENTRY,	/* used for inline dentry */
659 	FI_APPEND_WRITE,	/* inode has appended data */
660 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
661 	FI_NEED_IPU,		/* used for ipu per file */
662 	FI_ATOMIC_FILE,		/* indicate atomic file */
663 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
664 	FI_VOLATILE_FILE,	/* indicate volatile file */
665 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
666 	FI_DROP_CACHE,		/* drop dirty page cache */
667 	FI_DATA_EXIST,		/* indicate data exists */
668 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
669 	FI_DO_DEFRAG,		/* indicate defragment is running */
670 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
671 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
672 	FI_HOT_DATA,		/* indicate file is hot */
673 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
674 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
675 	FI_PIN_FILE,		/* indicate file should not be gced */
676 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
677 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
678 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
679 	FI_MMAP_FILE,		/* indicate file was mmapped */
680 	FI_MAX,			/* max flag, never be used */
681 };
682 
683 struct f2fs_inode_info {
684 	struct inode vfs_inode;		/* serve a vfs inode */
685 	unsigned long i_flags;		/* keep an inode flags for ioctl */
686 	unsigned char i_advise;		/* use to give file attribute hints */
687 	unsigned char i_dir_level;	/* use for dentry level for large dir */
688 	unsigned int i_current_depth;	/* only for directory depth */
689 	/* for gc failure statistic */
690 	unsigned int i_gc_failures[MAX_GC_FAILURE];
691 	unsigned int i_pino;		/* parent inode number */
692 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
693 
694 	/* Use below internally in f2fs*/
695 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
696 	struct rw_semaphore i_sem;	/* protect fi info */
697 	atomic_t dirty_pages;		/* # of dirty pages */
698 	f2fs_hash_t chash;		/* hash value of given file name */
699 	unsigned int clevel;		/* maximum level of given file name */
700 	struct task_struct *task;	/* lookup and create consistency */
701 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
702 	nid_t i_xattr_nid;		/* node id that contains xattrs */
703 	loff_t	last_disk_size;		/* lastly written file size */
704 	spinlock_t i_size_lock;		/* protect last_disk_size */
705 
706 #ifdef CONFIG_QUOTA
707 	struct dquot *i_dquot[MAXQUOTAS];
708 
709 	/* quota space reservation, managed internally by quota code */
710 	qsize_t i_reserved_quota;
711 #endif
712 	struct list_head dirty_list;	/* dirty list for dirs and files */
713 	struct list_head gdirty_list;	/* linked in global dirty list */
714 	struct list_head inmem_ilist;	/* list for inmem inodes */
715 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
716 	struct task_struct *inmem_task;	/* store inmemory task */
717 	struct mutex inmem_lock;	/* lock for inmemory pages */
718 	pgoff_t ra_offset;		/* ongoing readahead offset */
719 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
720 
721 	/* avoid racing between foreground op and gc */
722 	struct rw_semaphore i_gc_rwsem[2];
723 	struct rw_semaphore i_mmap_sem;
724 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
725 
726 	int i_extra_isize;		/* size of extra space located in i_addr */
727 	kprojid_t i_projid;		/* id for project quota */
728 	int i_inline_xattr_size;	/* inline xattr size */
729 	struct timespec64 i_crtime;	/* inode creation time */
730 	struct timespec64 i_disk_time[4];/* inode disk times */
731 
732 	/* for file compress */
733 	atomic_t i_compr_blocks;		/* # of compressed blocks */
734 	unsigned char i_compress_algorithm;	/* algorithm type */
735 	unsigned char i_log_cluster_size;	/* log of cluster size */
736 	unsigned int i_cluster_size;		/* cluster size */
737 };
738 
739 static inline void get_extent_info(struct extent_info *ext,
740 					struct f2fs_extent *i_ext)
741 {
742 	ext->fofs = le32_to_cpu(i_ext->fofs);
743 	ext->blk = le32_to_cpu(i_ext->blk);
744 	ext->len = le32_to_cpu(i_ext->len);
745 }
746 
747 static inline void set_raw_extent(struct extent_info *ext,
748 					struct f2fs_extent *i_ext)
749 {
750 	i_ext->fofs = cpu_to_le32(ext->fofs);
751 	i_ext->blk = cpu_to_le32(ext->blk);
752 	i_ext->len = cpu_to_le32(ext->len);
753 }
754 
755 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
756 						u32 blk, unsigned int len)
757 {
758 	ei->fofs = fofs;
759 	ei->blk = blk;
760 	ei->len = len;
761 }
762 
763 static inline bool __is_discard_mergeable(struct discard_info *back,
764 			struct discard_info *front, unsigned int max_len)
765 {
766 	return (back->lstart + back->len == front->lstart) &&
767 		(back->len + front->len <= max_len);
768 }
769 
770 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
771 			struct discard_info *back, unsigned int max_len)
772 {
773 	return __is_discard_mergeable(back, cur, max_len);
774 }
775 
776 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
777 			struct discard_info *front, unsigned int max_len)
778 {
779 	return __is_discard_mergeable(cur, front, max_len);
780 }
781 
782 static inline bool __is_extent_mergeable(struct extent_info *back,
783 						struct extent_info *front)
784 {
785 	return (back->fofs + back->len == front->fofs &&
786 			back->blk + back->len == front->blk);
787 }
788 
789 static inline bool __is_back_mergeable(struct extent_info *cur,
790 						struct extent_info *back)
791 {
792 	return __is_extent_mergeable(back, cur);
793 }
794 
795 static inline bool __is_front_mergeable(struct extent_info *cur,
796 						struct extent_info *front)
797 {
798 	return __is_extent_mergeable(cur, front);
799 }
800 
801 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
802 static inline void __try_update_largest_extent(struct extent_tree *et,
803 						struct extent_node *en)
804 {
805 	if (en->ei.len > et->largest.len) {
806 		et->largest = en->ei;
807 		et->largest_updated = true;
808 	}
809 }
810 
811 /*
812  * For free nid management
813  */
814 enum nid_state {
815 	FREE_NID,		/* newly added to free nid list */
816 	PREALLOC_NID,		/* it is preallocated */
817 	MAX_NID_STATE,
818 };
819 
820 struct f2fs_nm_info {
821 	block_t nat_blkaddr;		/* base disk address of NAT */
822 	nid_t max_nid;			/* maximum possible node ids */
823 	nid_t available_nids;		/* # of available node ids */
824 	nid_t next_scan_nid;		/* the next nid to be scanned */
825 	unsigned int ram_thresh;	/* control the memory footprint */
826 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
827 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
828 
829 	/* NAT cache management */
830 	struct radix_tree_root nat_root;/* root of the nat entry cache */
831 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
832 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
833 	struct list_head nat_entries;	/* cached nat entry list (clean) */
834 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
835 	unsigned int nat_cnt;		/* the # of cached nat entries */
836 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
837 	unsigned int nat_blocks;	/* # of nat blocks */
838 
839 	/* free node ids management */
840 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
841 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
842 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
843 	spinlock_t nid_list_lock;	/* protect nid lists ops */
844 	struct mutex build_lock;	/* lock for build free nids */
845 	unsigned char **free_nid_bitmap;
846 	unsigned char *nat_block_bitmap;
847 	unsigned short *free_nid_count;	/* free nid count of NAT block */
848 
849 	/* for checkpoint */
850 	char *nat_bitmap;		/* NAT bitmap pointer */
851 
852 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
853 	unsigned char *nat_bits;	/* NAT bits blocks */
854 	unsigned char *full_nat_bits;	/* full NAT pages */
855 	unsigned char *empty_nat_bits;	/* empty NAT pages */
856 #ifdef CONFIG_F2FS_CHECK_FS
857 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
858 #endif
859 	int bitmap_size;		/* bitmap size */
860 };
861 
862 /*
863  * this structure is used as one of function parameters.
864  * all the information are dedicated to a given direct node block determined
865  * by the data offset in a file.
866  */
867 struct dnode_of_data {
868 	struct inode *inode;		/* vfs inode pointer */
869 	struct page *inode_page;	/* its inode page, NULL is possible */
870 	struct page *node_page;		/* cached direct node page */
871 	nid_t nid;			/* node id of the direct node block */
872 	unsigned int ofs_in_node;	/* data offset in the node page */
873 	bool inode_page_locked;		/* inode page is locked or not */
874 	bool node_changed;		/* is node block changed */
875 	char cur_level;			/* level of hole node page */
876 	char max_level;			/* level of current page located */
877 	block_t	data_blkaddr;		/* block address of the node block */
878 };
879 
880 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
881 		struct page *ipage, struct page *npage, nid_t nid)
882 {
883 	memset(dn, 0, sizeof(*dn));
884 	dn->inode = inode;
885 	dn->inode_page = ipage;
886 	dn->node_page = npage;
887 	dn->nid = nid;
888 }
889 
890 /*
891  * For SIT manager
892  *
893  * By default, there are 6 active log areas across the whole main area.
894  * When considering hot and cold data separation to reduce cleaning overhead,
895  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
896  * respectively.
897  * In the current design, you should not change the numbers intentionally.
898  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
899  * logs individually according to the underlying devices. (default: 6)
900  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
901  * data and 8 for node logs.
902  */
903 #define	NR_CURSEG_DATA_TYPE	(3)
904 #define NR_CURSEG_NODE_TYPE	(3)
905 #define NR_CURSEG_INMEM_TYPE	(2)
906 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
907 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
908 
909 enum {
910 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
911 	CURSEG_WARM_DATA,	/* data blocks */
912 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
913 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
914 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
915 	CURSEG_COLD_NODE,	/* indirect node blocks */
916 	NR_PERSISTENT_LOG,	/* number of persistent log */
917 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
918 				/* pinned file that needs consecutive block address */
919 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
920 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
921 };
922 
923 struct flush_cmd {
924 	struct completion wait;
925 	struct llist_node llnode;
926 	nid_t ino;
927 	int ret;
928 };
929 
930 struct flush_cmd_control {
931 	struct task_struct *f2fs_issue_flush;	/* flush thread */
932 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
933 	atomic_t issued_flush;			/* # of issued flushes */
934 	atomic_t queued_flush;			/* # of queued flushes */
935 	struct llist_head issue_list;		/* list for command issue */
936 	struct llist_node *dispatch_list;	/* list for command dispatch */
937 };
938 
939 struct f2fs_sm_info {
940 	struct sit_info *sit_info;		/* whole segment information */
941 	struct free_segmap_info *free_info;	/* free segment information */
942 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
943 	struct curseg_info *curseg_array;	/* active segment information */
944 
945 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
946 
947 	block_t seg0_blkaddr;		/* block address of 0'th segment */
948 	block_t main_blkaddr;		/* start block address of main area */
949 	block_t ssa_blkaddr;		/* start block address of SSA area */
950 
951 	unsigned int segment_count;	/* total # of segments */
952 	unsigned int main_segments;	/* # of segments in main area */
953 	unsigned int reserved_segments;	/* # of reserved segments */
954 	unsigned int ovp_segments;	/* # of overprovision segments */
955 
956 	/* a threshold to reclaim prefree segments */
957 	unsigned int rec_prefree_segments;
958 
959 	/* for batched trimming */
960 	unsigned int trim_sections;		/* # of sections to trim */
961 
962 	struct list_head sit_entry_set;	/* sit entry set list */
963 
964 	unsigned int ipu_policy;	/* in-place-update policy */
965 	unsigned int min_ipu_util;	/* in-place-update threshold */
966 	unsigned int min_fsync_blocks;	/* threshold for fsync */
967 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
968 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
969 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
970 
971 	/* for flush command control */
972 	struct flush_cmd_control *fcc_info;
973 
974 	/* for discard command control */
975 	struct discard_cmd_control *dcc_info;
976 };
977 
978 /*
979  * For superblock
980  */
981 /*
982  * COUNT_TYPE for monitoring
983  *
984  * f2fs monitors the number of several block types such as on-writeback,
985  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
986  */
987 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
988 enum count_type {
989 	F2FS_DIRTY_DENTS,
990 	F2FS_DIRTY_DATA,
991 	F2FS_DIRTY_QDATA,
992 	F2FS_DIRTY_NODES,
993 	F2FS_DIRTY_META,
994 	F2FS_INMEM_PAGES,
995 	F2FS_DIRTY_IMETA,
996 	F2FS_WB_CP_DATA,
997 	F2FS_WB_DATA,
998 	F2FS_RD_DATA,
999 	F2FS_RD_NODE,
1000 	F2FS_RD_META,
1001 	F2FS_DIO_WRITE,
1002 	F2FS_DIO_READ,
1003 	NR_COUNT_TYPE,
1004 };
1005 
1006 /*
1007  * The below are the page types of bios used in submit_bio().
1008  * The available types are:
1009  * DATA			User data pages. It operates as async mode.
1010  * NODE			Node pages. It operates as async mode.
1011  * META			FS metadata pages such as SIT, NAT, CP.
1012  * NR_PAGE_TYPE		The number of page types.
1013  * META_FLUSH		Make sure the previous pages are written
1014  *			with waiting the bio's completion
1015  * ...			Only can be used with META.
1016  */
1017 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1018 enum page_type {
1019 	DATA,
1020 	NODE,
1021 	META,
1022 	NR_PAGE_TYPE,
1023 	META_FLUSH,
1024 	INMEM,		/* the below types are used by tracepoints only. */
1025 	INMEM_DROP,
1026 	INMEM_INVALIDATE,
1027 	INMEM_REVOKE,
1028 	IPU,
1029 	OPU,
1030 };
1031 
1032 enum temp_type {
1033 	HOT = 0,	/* must be zero for meta bio */
1034 	WARM,
1035 	COLD,
1036 	NR_TEMP_TYPE,
1037 };
1038 
1039 enum need_lock_type {
1040 	LOCK_REQ = 0,
1041 	LOCK_DONE,
1042 	LOCK_RETRY,
1043 };
1044 
1045 enum cp_reason_type {
1046 	CP_NO_NEEDED,
1047 	CP_NON_REGULAR,
1048 	CP_COMPRESSED,
1049 	CP_HARDLINK,
1050 	CP_SB_NEED_CP,
1051 	CP_WRONG_PINO,
1052 	CP_NO_SPC_ROLL,
1053 	CP_NODE_NEED_CP,
1054 	CP_FASTBOOT_MODE,
1055 	CP_SPEC_LOG_NUM,
1056 	CP_RECOVER_DIR,
1057 };
1058 
1059 enum iostat_type {
1060 	/* WRITE IO */
1061 	APP_DIRECT_IO,			/* app direct write IOs */
1062 	APP_BUFFERED_IO,		/* app buffered write IOs */
1063 	APP_WRITE_IO,			/* app write IOs */
1064 	APP_MAPPED_IO,			/* app mapped IOs */
1065 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1066 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1067 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1068 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1069 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1070 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1071 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1072 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1073 
1074 	/* READ IO */
1075 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1076 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1077 	APP_READ_IO,			/* app read IOs */
1078 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1079 	FS_DATA_READ_IO,		/* data read IOs */
1080 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1081 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1082 	FS_NODE_READ_IO,		/* node read IOs */
1083 	FS_META_READ_IO,		/* meta read IOs */
1084 
1085 	/* other */
1086 	FS_DISCARD,			/* discard */
1087 	NR_IO_TYPE,
1088 };
1089 
1090 struct f2fs_io_info {
1091 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1092 	nid_t ino;		/* inode number */
1093 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1094 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1095 	int op;			/* contains REQ_OP_ */
1096 	int op_flags;		/* req_flag_bits */
1097 	block_t new_blkaddr;	/* new block address to be written */
1098 	block_t old_blkaddr;	/* old block address before Cow */
1099 	struct page *page;	/* page to be written */
1100 	struct page *encrypted_page;	/* encrypted page */
1101 	struct page *compressed_page;	/* compressed page */
1102 	struct list_head list;		/* serialize IOs */
1103 	bool submitted;		/* indicate IO submission */
1104 	int need_lock;		/* indicate we need to lock cp_rwsem */
1105 	bool in_list;		/* indicate fio is in io_list */
1106 	bool is_por;		/* indicate IO is from recovery or not */
1107 	bool retry;		/* need to reallocate block address */
1108 	int compr_blocks;	/* # of compressed block addresses */
1109 	bool encrypted;		/* indicate file is encrypted */
1110 	enum iostat_type io_type;	/* io type */
1111 	struct writeback_control *io_wbc; /* writeback control */
1112 	struct bio **bio;		/* bio for ipu */
1113 	sector_t *last_block;		/* last block number in bio */
1114 	unsigned char version;		/* version of the node */
1115 };
1116 
1117 struct bio_entry {
1118 	struct bio *bio;
1119 	struct list_head list;
1120 };
1121 
1122 #define is_read_io(rw) ((rw) == READ)
1123 struct f2fs_bio_info {
1124 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1125 	struct bio *bio;		/* bios to merge */
1126 	sector_t last_block_in_bio;	/* last block number */
1127 	struct f2fs_io_info fio;	/* store buffered io info. */
1128 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1129 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1130 	struct list_head io_list;	/* track fios */
1131 	struct list_head bio_list;	/* bio entry list head */
1132 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1133 };
1134 
1135 #define FDEV(i)				(sbi->devs[i])
1136 #define RDEV(i)				(raw_super->devs[i])
1137 struct f2fs_dev_info {
1138 	struct block_device *bdev;
1139 	char path[MAX_PATH_LEN];
1140 	unsigned int total_segments;
1141 	block_t start_blk;
1142 	block_t end_blk;
1143 #ifdef CONFIG_BLK_DEV_ZONED
1144 	unsigned int nr_blkz;		/* Total number of zones */
1145 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1146 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1147 #endif
1148 };
1149 
1150 enum inode_type {
1151 	DIR_INODE,			/* for dirty dir inode */
1152 	FILE_INODE,			/* for dirty regular/symlink inode */
1153 	DIRTY_META,			/* for all dirtied inode metadata */
1154 	ATOMIC_FILE,			/* for all atomic files */
1155 	NR_INODE_TYPE,
1156 };
1157 
1158 /* for inner inode cache management */
1159 struct inode_management {
1160 	struct radix_tree_root ino_root;	/* ino entry array */
1161 	spinlock_t ino_lock;			/* for ino entry lock */
1162 	struct list_head ino_list;		/* inode list head */
1163 	unsigned long ino_num;			/* number of entries */
1164 };
1165 
1166 /* for GC_AT */
1167 struct atgc_management {
1168 	bool atgc_enabled;			/* ATGC is enabled or not */
1169 	struct rb_root_cached root;		/* root of victim rb-tree */
1170 	struct list_head victim_list;		/* linked with all victim entries */
1171 	unsigned int victim_count;		/* victim count in rb-tree */
1172 	unsigned int candidate_ratio;		/* candidate ratio */
1173 	unsigned int max_candidate_count;	/* max candidate count */
1174 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1175 	unsigned long long age_threshold;	/* age threshold */
1176 };
1177 
1178 /* For s_flag in struct f2fs_sb_info */
1179 enum {
1180 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1181 	SBI_IS_CLOSE,				/* specify unmounting */
1182 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1183 	SBI_POR_DOING,				/* recovery is doing or not */
1184 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1185 	SBI_NEED_CP,				/* need to checkpoint */
1186 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1187 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1188 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1189 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1190 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1191 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1192 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1193 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1194 };
1195 
1196 enum {
1197 	CP_TIME,
1198 	REQ_TIME,
1199 	DISCARD_TIME,
1200 	GC_TIME,
1201 	DISABLE_TIME,
1202 	UMOUNT_DISCARD_TIMEOUT,
1203 	MAX_TIME,
1204 };
1205 
1206 enum {
1207 	GC_NORMAL,
1208 	GC_IDLE_CB,
1209 	GC_IDLE_GREEDY,
1210 	GC_IDLE_AT,
1211 	GC_URGENT_HIGH,
1212 	GC_URGENT_LOW,
1213 };
1214 
1215 enum {
1216 	BGGC_MODE_ON,		/* background gc is on */
1217 	BGGC_MODE_OFF,		/* background gc is off */
1218 	BGGC_MODE_SYNC,		/*
1219 				 * background gc is on, migrating blocks
1220 				 * like foreground gc
1221 				 */
1222 };
1223 
1224 enum {
1225 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1226 	FS_MODE_LFS,		/* use lfs allocation only */
1227 };
1228 
1229 enum {
1230 	WHINT_MODE_OFF,		/* not pass down write hints */
1231 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1232 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1233 };
1234 
1235 enum {
1236 	ALLOC_MODE_DEFAULT,	/* stay default */
1237 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1238 };
1239 
1240 enum fsync_mode {
1241 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1242 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1243 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1244 };
1245 
1246 /*
1247  * this value is set in page as a private data which indicate that
1248  * the page is atomically written, and it is in inmem_pages list.
1249  */
1250 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1251 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1252 
1253 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1254 		(page_private(page) == ATOMIC_WRITTEN_PAGE)
1255 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1256 		(page_private(page) == DUMMY_WRITTEN_PAGE)
1257 
1258 #ifdef CONFIG_F2FS_IO_TRACE
1259 #define IS_IO_TRACED_PAGE(page)			\
1260 		(page_private(page) > 0 &&		\
1261 		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1262 #else
1263 #define IS_IO_TRACED_PAGE(page) (0)
1264 #endif
1265 
1266 /* For compression */
1267 enum compress_algorithm_type {
1268 	COMPRESS_LZO,
1269 	COMPRESS_LZ4,
1270 	COMPRESS_ZSTD,
1271 	COMPRESS_LZORLE,
1272 	COMPRESS_MAX,
1273 };
1274 
1275 #define COMPRESS_DATA_RESERVED_SIZE		5
1276 struct compress_data {
1277 	__le32 clen;			/* compressed data size */
1278 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1279 	u8 cdata[];			/* compressed data */
1280 };
1281 
1282 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1283 
1284 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1285 
1286 /* compress context */
1287 struct compress_ctx {
1288 	struct inode *inode;		/* inode the context belong to */
1289 	pgoff_t cluster_idx;		/* cluster index number */
1290 	unsigned int cluster_size;	/* page count in cluster */
1291 	unsigned int log_cluster_size;	/* log of cluster size */
1292 	struct page **rpages;		/* pages store raw data in cluster */
1293 	unsigned int nr_rpages;		/* total page number in rpages */
1294 	struct page **cpages;		/* pages store compressed data in cluster */
1295 	unsigned int nr_cpages;		/* total page number in cpages */
1296 	void *rbuf;			/* virtual mapped address on rpages */
1297 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1298 	size_t rlen;			/* valid data length in rbuf */
1299 	size_t clen;			/* valid data length in cbuf */
1300 	void *private;			/* payload buffer for specified compression algorithm */
1301 	void *private2;			/* extra payload buffer */
1302 };
1303 
1304 /* compress context for write IO path */
1305 struct compress_io_ctx {
1306 	u32 magic;			/* magic number to indicate page is compressed */
1307 	struct inode *inode;		/* inode the context belong to */
1308 	struct page **rpages;		/* pages store raw data in cluster */
1309 	unsigned int nr_rpages;		/* total page number in rpages */
1310 	atomic_t pending_pages;		/* in-flight compressed page count */
1311 };
1312 
1313 /* decompress io context for read IO path */
1314 struct decompress_io_ctx {
1315 	u32 magic;			/* magic number to indicate page is compressed */
1316 	struct inode *inode;		/* inode the context belong to */
1317 	pgoff_t cluster_idx;		/* cluster index number */
1318 	unsigned int cluster_size;	/* page count in cluster */
1319 	unsigned int log_cluster_size;	/* log of cluster size */
1320 	struct page **rpages;		/* pages store raw data in cluster */
1321 	unsigned int nr_rpages;		/* total page number in rpages */
1322 	struct page **cpages;		/* pages store compressed data in cluster */
1323 	unsigned int nr_cpages;		/* total page number in cpages */
1324 	struct page **tpages;		/* temp pages to pad holes in cluster */
1325 	void *rbuf;			/* virtual mapped address on rpages */
1326 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1327 	size_t rlen;			/* valid data length in rbuf */
1328 	size_t clen;			/* valid data length in cbuf */
1329 	atomic_t pending_pages;		/* in-flight compressed page count */
1330 	bool failed;			/* indicate IO error during decompression */
1331 	void *private;			/* payload buffer for specified decompression algorithm */
1332 	void *private2;			/* extra payload buffer */
1333 };
1334 
1335 #define NULL_CLUSTER			((unsigned int)(~0))
1336 #define MIN_COMPRESS_LOG_SIZE		2
1337 #define MAX_COMPRESS_LOG_SIZE		8
1338 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1339 
1340 struct f2fs_sb_info {
1341 	struct super_block *sb;			/* pointer to VFS super block */
1342 	struct proc_dir_entry *s_proc;		/* proc entry */
1343 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1344 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1345 	int valid_super_block;			/* valid super block no */
1346 	unsigned long s_flag;				/* flags for sbi */
1347 	struct mutex writepages;		/* mutex for writepages() */
1348 
1349 #ifdef CONFIG_BLK_DEV_ZONED
1350 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1351 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1352 #endif
1353 
1354 	/* for node-related operations */
1355 	struct f2fs_nm_info *nm_info;		/* node manager */
1356 	struct inode *node_inode;		/* cache node blocks */
1357 
1358 	/* for segment-related operations */
1359 	struct f2fs_sm_info *sm_info;		/* segment manager */
1360 
1361 	/* for bio operations */
1362 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1363 	/* keep migration IO order for LFS mode */
1364 	struct rw_semaphore io_order_lock;
1365 	mempool_t *write_io_dummy;		/* Dummy pages */
1366 
1367 	/* for checkpoint */
1368 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1369 	int cur_cp_pack;			/* remain current cp pack */
1370 	spinlock_t cp_lock;			/* for flag in ckpt */
1371 	struct inode *meta_inode;		/* cache meta blocks */
1372 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1373 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1374 	struct rw_semaphore node_write;		/* locking node writes */
1375 	struct rw_semaphore node_change;	/* locking node change */
1376 	wait_queue_head_t cp_wait;
1377 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1378 	long interval_time[MAX_TIME];		/* to store thresholds */
1379 
1380 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1381 
1382 	spinlock_t fsync_node_lock;		/* for node entry lock */
1383 	struct list_head fsync_node_list;	/* node list head */
1384 	unsigned int fsync_seg_id;		/* sequence id */
1385 	unsigned int fsync_node_num;		/* number of node entries */
1386 
1387 	/* for orphan inode, use 0'th array */
1388 	unsigned int max_orphans;		/* max orphan inodes */
1389 
1390 	/* for inode management */
1391 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1392 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1393 	struct mutex flush_lock;		/* for flush exclusion */
1394 
1395 	/* for extent tree cache */
1396 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1397 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1398 	struct list_head extent_list;		/* lru list for shrinker */
1399 	spinlock_t extent_lock;			/* locking extent lru list */
1400 	atomic_t total_ext_tree;		/* extent tree count */
1401 	struct list_head zombie_list;		/* extent zombie tree list */
1402 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1403 	atomic_t total_ext_node;		/* extent info count */
1404 
1405 	/* basic filesystem units */
1406 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1407 	unsigned int log_blocksize;		/* log2 block size */
1408 	unsigned int blocksize;			/* block size */
1409 	unsigned int root_ino_num;		/* root inode number*/
1410 	unsigned int node_ino_num;		/* node inode number*/
1411 	unsigned int meta_ino_num;		/* meta inode number*/
1412 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1413 	unsigned int blocks_per_seg;		/* blocks per segment */
1414 	unsigned int segs_per_sec;		/* segments per section */
1415 	unsigned int secs_per_zone;		/* sections per zone */
1416 	unsigned int total_sections;		/* total section count */
1417 	unsigned int total_node_count;		/* total node block count */
1418 	unsigned int total_valid_node_count;	/* valid node block count */
1419 	loff_t max_file_blocks;			/* max block index of file */
1420 	int dir_level;				/* directory level */
1421 	int readdir_ra;				/* readahead inode in readdir */
1422 
1423 	block_t user_block_count;		/* # of user blocks */
1424 	block_t total_valid_block_count;	/* # of valid blocks */
1425 	block_t discard_blks;			/* discard command candidats */
1426 	block_t last_valid_block_count;		/* for recovery */
1427 	block_t reserved_blocks;		/* configurable reserved blocks */
1428 	block_t current_reserved_blocks;	/* current reserved blocks */
1429 
1430 	/* Additional tracking for no checkpoint mode */
1431 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1432 
1433 	unsigned int nquota_files;		/* # of quota sysfile */
1434 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1435 
1436 	/* # of pages, see count_type */
1437 	atomic_t nr_pages[NR_COUNT_TYPE];
1438 	/* # of allocated blocks */
1439 	struct percpu_counter alloc_valid_block_count;
1440 
1441 	/* writeback control */
1442 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1443 
1444 	/* valid inode count */
1445 	struct percpu_counter total_valid_inode_count;
1446 
1447 	struct f2fs_mount_info mount_opt;	/* mount options */
1448 
1449 	/* for cleaning operations */
1450 	struct rw_semaphore gc_lock;		/*
1451 						 * semaphore for GC, avoid
1452 						 * race between GC and GC or CP
1453 						 */
1454 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1455 	struct atgc_management am;		/* atgc management */
1456 	unsigned int cur_victim_sec;		/* current victim section num */
1457 	unsigned int gc_mode;			/* current GC state */
1458 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1459 
1460 	/* for skip statistic */
1461 	unsigned int atomic_files;		/* # of opened atomic file */
1462 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1463 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1464 
1465 	/* threshold for gc trials on pinned files */
1466 	u64 gc_pin_file_threshold;
1467 	struct rw_semaphore pin_sem;
1468 
1469 	/* maximum # of trials to find a victim segment for SSR and GC */
1470 	unsigned int max_victim_search;
1471 	/* migration granularity of garbage collection, unit: segment */
1472 	unsigned int migration_granularity;
1473 
1474 	/*
1475 	 * for stat information.
1476 	 * one is for the LFS mode, and the other is for the SSR mode.
1477 	 */
1478 #ifdef CONFIG_F2FS_STAT_FS
1479 	struct f2fs_stat_info *stat_info;	/* FS status information */
1480 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1481 	unsigned int segment_count[2];		/* # of allocated segments */
1482 	unsigned int block_count[2];		/* # of allocated blocks */
1483 	atomic_t inplace_count;		/* # of inplace update */
1484 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1485 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1486 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1487 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1488 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1489 	atomic_t inline_inode;			/* # of inline_data inodes */
1490 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1491 	atomic_t compr_inode;			/* # of compressed inodes */
1492 	atomic64_t compr_blocks;		/* # of compressed blocks */
1493 	atomic_t vw_cnt;			/* # of volatile writes */
1494 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1495 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1496 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1497 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1498 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1499 #endif
1500 	spinlock_t stat_lock;			/* lock for stat operations */
1501 
1502 	/* For app/fs IO statistics */
1503 	spinlock_t iostat_lock;
1504 	unsigned long long rw_iostat[NR_IO_TYPE];
1505 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1506 	bool iostat_enable;
1507 	unsigned long iostat_next_period;
1508 	unsigned int iostat_period_ms;
1509 
1510 	/* to attach REQ_META|REQ_FUA flags */
1511 	unsigned int data_io_flag;
1512 	unsigned int node_io_flag;
1513 
1514 	/* For sysfs suppport */
1515 	struct kobject s_kobj;
1516 	struct completion s_kobj_unregister;
1517 
1518 	/* For shrinker support */
1519 	struct list_head s_list;
1520 	int s_ndevs;				/* number of devices */
1521 	struct f2fs_dev_info *devs;		/* for device list */
1522 	unsigned int dirty_device;		/* for checkpoint data flush */
1523 	spinlock_t dev_lock;			/* protect dirty_device */
1524 	struct mutex umount_mutex;
1525 	unsigned int shrinker_run_no;
1526 
1527 	/* For write statistics */
1528 	u64 sectors_written_start;
1529 	u64 kbytes_written;
1530 
1531 	/* Reference to checksum algorithm driver via cryptoapi */
1532 	struct crypto_shash *s_chksum_driver;
1533 
1534 	/* Precomputed FS UUID checksum for seeding other checksums */
1535 	__u32 s_chksum_seed;
1536 
1537 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1538 
1539 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1540 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1541 
1542 #ifdef CONFIG_F2FS_FS_COMPRESSION
1543 	struct kmem_cache *page_array_slab;	/* page array entry */
1544 	unsigned int page_array_slab_size;	/* default page array slab size */
1545 #endif
1546 };
1547 
1548 struct f2fs_private_dio {
1549 	struct inode *inode;
1550 	void *orig_private;
1551 	bio_end_io_t *orig_end_io;
1552 	bool write;
1553 };
1554 
1555 #ifdef CONFIG_F2FS_FAULT_INJECTION
1556 #define f2fs_show_injection_info(sbi, type)					\
1557 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1558 		KERN_INFO, sbi->sb->s_id,				\
1559 		f2fs_fault_name[type],					\
1560 		__func__, __builtin_return_address(0))
1561 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1562 {
1563 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1564 
1565 	if (!ffi->inject_rate)
1566 		return false;
1567 
1568 	if (!IS_FAULT_SET(ffi, type))
1569 		return false;
1570 
1571 	atomic_inc(&ffi->inject_ops);
1572 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1573 		atomic_set(&ffi->inject_ops, 0);
1574 		return true;
1575 	}
1576 	return false;
1577 }
1578 #else
1579 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1580 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1581 {
1582 	return false;
1583 }
1584 #endif
1585 
1586 /*
1587  * Test if the mounted volume is a multi-device volume.
1588  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1589  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1590  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1591  */
1592 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1593 {
1594 	return sbi->s_ndevs > 1;
1595 }
1596 
1597 /* For write statistics. Suppose sector size is 512 bytes,
1598  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1599  */
1600 #define BD_PART_WRITTEN(s)						 \
1601 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1602 		(s)->sectors_written_start) >> 1)
1603 
1604 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1605 {
1606 	unsigned long now = jiffies;
1607 
1608 	sbi->last_time[type] = now;
1609 
1610 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1611 	if (type == REQ_TIME) {
1612 		sbi->last_time[DISCARD_TIME] = now;
1613 		sbi->last_time[GC_TIME] = now;
1614 	}
1615 }
1616 
1617 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1618 {
1619 	unsigned long interval = sbi->interval_time[type] * HZ;
1620 
1621 	return time_after(jiffies, sbi->last_time[type] + interval);
1622 }
1623 
1624 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1625 						int type)
1626 {
1627 	unsigned long interval = sbi->interval_time[type] * HZ;
1628 	unsigned int wait_ms = 0;
1629 	long delta;
1630 
1631 	delta = (sbi->last_time[type] + interval) - jiffies;
1632 	if (delta > 0)
1633 		wait_ms = jiffies_to_msecs(delta);
1634 
1635 	return wait_ms;
1636 }
1637 
1638 /*
1639  * Inline functions
1640  */
1641 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1642 			      const void *address, unsigned int length)
1643 {
1644 	struct {
1645 		struct shash_desc shash;
1646 		char ctx[4];
1647 	} desc;
1648 	int err;
1649 
1650 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1651 
1652 	desc.shash.tfm = sbi->s_chksum_driver;
1653 	*(u32 *)desc.ctx = crc;
1654 
1655 	err = crypto_shash_update(&desc.shash, address, length);
1656 	BUG_ON(err);
1657 
1658 	return *(u32 *)desc.ctx;
1659 }
1660 
1661 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1662 			   unsigned int length)
1663 {
1664 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1665 }
1666 
1667 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1668 				  void *buf, size_t buf_size)
1669 {
1670 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1671 }
1672 
1673 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1674 			      const void *address, unsigned int length)
1675 {
1676 	return __f2fs_crc32(sbi, crc, address, length);
1677 }
1678 
1679 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1680 {
1681 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1682 }
1683 
1684 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1685 {
1686 	return sb->s_fs_info;
1687 }
1688 
1689 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1690 {
1691 	return F2FS_SB(inode->i_sb);
1692 }
1693 
1694 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1695 {
1696 	return F2FS_I_SB(mapping->host);
1697 }
1698 
1699 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1700 {
1701 	return F2FS_M_SB(page_file_mapping(page));
1702 }
1703 
1704 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1705 {
1706 	return (struct f2fs_super_block *)(sbi->raw_super);
1707 }
1708 
1709 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1710 {
1711 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1712 }
1713 
1714 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1715 {
1716 	return (struct f2fs_node *)page_address(page);
1717 }
1718 
1719 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1720 {
1721 	return &((struct f2fs_node *)page_address(page))->i;
1722 }
1723 
1724 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1725 {
1726 	return (struct f2fs_nm_info *)(sbi->nm_info);
1727 }
1728 
1729 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1730 {
1731 	return (struct f2fs_sm_info *)(sbi->sm_info);
1732 }
1733 
1734 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1735 {
1736 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1737 }
1738 
1739 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1740 {
1741 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1742 }
1743 
1744 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1745 {
1746 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1747 }
1748 
1749 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1750 {
1751 	return sbi->meta_inode->i_mapping;
1752 }
1753 
1754 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1755 {
1756 	return sbi->node_inode->i_mapping;
1757 }
1758 
1759 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1760 {
1761 	return test_bit(type, &sbi->s_flag);
1762 }
1763 
1764 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1765 {
1766 	set_bit(type, &sbi->s_flag);
1767 }
1768 
1769 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1770 {
1771 	clear_bit(type, &sbi->s_flag);
1772 }
1773 
1774 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1775 {
1776 	return le64_to_cpu(cp->checkpoint_ver);
1777 }
1778 
1779 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1780 {
1781 	if (type < F2FS_MAX_QUOTAS)
1782 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1783 	return 0;
1784 }
1785 
1786 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1787 {
1788 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1789 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1790 }
1791 
1792 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1793 {
1794 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1795 
1796 	return ckpt_flags & f;
1797 }
1798 
1799 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1800 {
1801 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1802 }
1803 
1804 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1805 {
1806 	unsigned int ckpt_flags;
1807 
1808 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1809 	ckpt_flags |= f;
1810 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1811 }
1812 
1813 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1814 {
1815 	unsigned long flags;
1816 
1817 	spin_lock_irqsave(&sbi->cp_lock, flags);
1818 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1819 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1820 }
1821 
1822 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1823 {
1824 	unsigned int ckpt_flags;
1825 
1826 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1827 	ckpt_flags &= (~f);
1828 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1829 }
1830 
1831 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1832 {
1833 	unsigned long flags;
1834 
1835 	spin_lock_irqsave(&sbi->cp_lock, flags);
1836 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1837 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1838 }
1839 
1840 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1841 {
1842 	unsigned long flags;
1843 	unsigned char *nat_bits;
1844 
1845 	/*
1846 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1847 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1848 	 * so let's rely on regular fsck or unclean shutdown.
1849 	 */
1850 
1851 	if (lock)
1852 		spin_lock_irqsave(&sbi->cp_lock, flags);
1853 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1854 	nat_bits = NM_I(sbi)->nat_bits;
1855 	NM_I(sbi)->nat_bits = NULL;
1856 	if (lock)
1857 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1858 
1859 	kvfree(nat_bits);
1860 }
1861 
1862 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1863 					struct cp_control *cpc)
1864 {
1865 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1866 
1867 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1868 }
1869 
1870 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1871 {
1872 	down_read(&sbi->cp_rwsem);
1873 }
1874 
1875 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1876 {
1877 	return down_read_trylock(&sbi->cp_rwsem);
1878 }
1879 
1880 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1881 {
1882 	up_read(&sbi->cp_rwsem);
1883 }
1884 
1885 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1886 {
1887 	down_write(&sbi->cp_rwsem);
1888 }
1889 
1890 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1891 {
1892 	up_write(&sbi->cp_rwsem);
1893 }
1894 
1895 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1896 {
1897 	int reason = CP_SYNC;
1898 
1899 	if (test_opt(sbi, FASTBOOT))
1900 		reason = CP_FASTBOOT;
1901 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1902 		reason = CP_UMOUNT;
1903 	return reason;
1904 }
1905 
1906 static inline bool __remain_node_summaries(int reason)
1907 {
1908 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1909 }
1910 
1911 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1912 {
1913 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1914 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1915 }
1916 
1917 /*
1918  * Check whether the inode has blocks or not
1919  */
1920 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1921 {
1922 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1923 
1924 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1925 }
1926 
1927 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1928 {
1929 	return ofs == XATTR_NODE_OFFSET;
1930 }
1931 
1932 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1933 					struct inode *inode, bool cap)
1934 {
1935 	if (!inode)
1936 		return true;
1937 	if (!test_opt(sbi, RESERVE_ROOT))
1938 		return false;
1939 	if (IS_NOQUOTA(inode))
1940 		return true;
1941 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1942 		return true;
1943 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1944 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1945 		return true;
1946 	if (cap && capable(CAP_SYS_RESOURCE))
1947 		return true;
1948 	return false;
1949 }
1950 
1951 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1952 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1953 				 struct inode *inode, blkcnt_t *count)
1954 {
1955 	blkcnt_t diff = 0, release = 0;
1956 	block_t avail_user_block_count;
1957 	int ret;
1958 
1959 	ret = dquot_reserve_block(inode, *count);
1960 	if (ret)
1961 		return ret;
1962 
1963 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1964 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1965 		release = *count;
1966 		goto release_quota;
1967 	}
1968 
1969 	/*
1970 	 * let's increase this in prior to actual block count change in order
1971 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1972 	 */
1973 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1974 
1975 	spin_lock(&sbi->stat_lock);
1976 	sbi->total_valid_block_count += (block_t)(*count);
1977 	avail_user_block_count = sbi->user_block_count -
1978 					sbi->current_reserved_blocks;
1979 
1980 	if (!__allow_reserved_blocks(sbi, inode, true))
1981 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1982 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1983 		if (avail_user_block_count > sbi->unusable_block_count)
1984 			avail_user_block_count -= sbi->unusable_block_count;
1985 		else
1986 			avail_user_block_count = 0;
1987 	}
1988 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1989 		diff = sbi->total_valid_block_count - avail_user_block_count;
1990 		if (diff > *count)
1991 			diff = *count;
1992 		*count -= diff;
1993 		release = diff;
1994 		sbi->total_valid_block_count -= diff;
1995 		if (!*count) {
1996 			spin_unlock(&sbi->stat_lock);
1997 			goto enospc;
1998 		}
1999 	}
2000 	spin_unlock(&sbi->stat_lock);
2001 
2002 	if (unlikely(release)) {
2003 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2004 		dquot_release_reservation_block(inode, release);
2005 	}
2006 	f2fs_i_blocks_write(inode, *count, true, true);
2007 	return 0;
2008 
2009 enospc:
2010 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2011 release_quota:
2012 	dquot_release_reservation_block(inode, release);
2013 	return -ENOSPC;
2014 }
2015 
2016 __printf(2, 3)
2017 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2018 
2019 #define f2fs_err(sbi, fmt, ...)						\
2020 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2021 #define f2fs_warn(sbi, fmt, ...)					\
2022 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2023 #define f2fs_notice(sbi, fmt, ...)					\
2024 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2025 #define f2fs_info(sbi, fmt, ...)					\
2026 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2027 #define f2fs_debug(sbi, fmt, ...)					\
2028 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2029 
2030 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2031 						struct inode *inode,
2032 						block_t count)
2033 {
2034 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2035 
2036 	spin_lock(&sbi->stat_lock);
2037 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2038 	sbi->total_valid_block_count -= (block_t)count;
2039 	if (sbi->reserved_blocks &&
2040 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2041 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2042 					sbi->current_reserved_blocks + count);
2043 	spin_unlock(&sbi->stat_lock);
2044 	if (unlikely(inode->i_blocks < sectors)) {
2045 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2046 			  inode->i_ino,
2047 			  (unsigned long long)inode->i_blocks,
2048 			  (unsigned long long)sectors);
2049 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2050 		return;
2051 	}
2052 	f2fs_i_blocks_write(inode, count, false, true);
2053 }
2054 
2055 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2056 {
2057 	atomic_inc(&sbi->nr_pages[count_type]);
2058 
2059 	if (count_type == F2FS_DIRTY_DENTS ||
2060 			count_type == F2FS_DIRTY_NODES ||
2061 			count_type == F2FS_DIRTY_META ||
2062 			count_type == F2FS_DIRTY_QDATA ||
2063 			count_type == F2FS_DIRTY_IMETA)
2064 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2065 }
2066 
2067 static inline void inode_inc_dirty_pages(struct inode *inode)
2068 {
2069 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2070 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2071 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2072 	if (IS_NOQUOTA(inode))
2073 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2074 }
2075 
2076 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2077 {
2078 	atomic_dec(&sbi->nr_pages[count_type]);
2079 }
2080 
2081 static inline void inode_dec_dirty_pages(struct inode *inode)
2082 {
2083 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2084 			!S_ISLNK(inode->i_mode))
2085 		return;
2086 
2087 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2088 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2089 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2090 	if (IS_NOQUOTA(inode))
2091 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2092 }
2093 
2094 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2095 {
2096 	return atomic_read(&sbi->nr_pages[count_type]);
2097 }
2098 
2099 static inline int get_dirty_pages(struct inode *inode)
2100 {
2101 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2102 }
2103 
2104 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2105 {
2106 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2107 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2108 						sbi->log_blocks_per_seg;
2109 
2110 	return segs / sbi->segs_per_sec;
2111 }
2112 
2113 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2114 {
2115 	return sbi->total_valid_block_count;
2116 }
2117 
2118 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2119 {
2120 	return sbi->discard_blks;
2121 }
2122 
2123 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2124 {
2125 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2126 
2127 	/* return NAT or SIT bitmap */
2128 	if (flag == NAT_BITMAP)
2129 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2130 	else if (flag == SIT_BITMAP)
2131 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2132 
2133 	return 0;
2134 }
2135 
2136 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2137 {
2138 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2139 }
2140 
2141 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2142 {
2143 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2144 	int offset;
2145 
2146 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2147 		offset = (flag == SIT_BITMAP) ?
2148 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2149 		/*
2150 		 * if large_nat_bitmap feature is enabled, leave checksum
2151 		 * protection for all nat/sit bitmaps.
2152 		 */
2153 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2154 	}
2155 
2156 	if (__cp_payload(sbi) > 0) {
2157 		if (flag == NAT_BITMAP)
2158 			return &ckpt->sit_nat_version_bitmap;
2159 		else
2160 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2161 	} else {
2162 		offset = (flag == NAT_BITMAP) ?
2163 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2164 		return &ckpt->sit_nat_version_bitmap + offset;
2165 	}
2166 }
2167 
2168 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2169 {
2170 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2171 
2172 	if (sbi->cur_cp_pack == 2)
2173 		start_addr += sbi->blocks_per_seg;
2174 	return start_addr;
2175 }
2176 
2177 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2178 {
2179 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2180 
2181 	if (sbi->cur_cp_pack == 1)
2182 		start_addr += sbi->blocks_per_seg;
2183 	return start_addr;
2184 }
2185 
2186 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2187 {
2188 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2189 }
2190 
2191 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2192 {
2193 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2194 }
2195 
2196 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2197 					struct inode *inode, bool is_inode)
2198 {
2199 	block_t	valid_block_count;
2200 	unsigned int valid_node_count, user_block_count;
2201 	int err;
2202 
2203 	if (is_inode) {
2204 		if (inode) {
2205 			err = dquot_alloc_inode(inode);
2206 			if (err)
2207 				return err;
2208 		}
2209 	} else {
2210 		err = dquot_reserve_block(inode, 1);
2211 		if (err)
2212 			return err;
2213 	}
2214 
2215 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2216 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2217 		goto enospc;
2218 	}
2219 
2220 	spin_lock(&sbi->stat_lock);
2221 
2222 	valid_block_count = sbi->total_valid_block_count +
2223 					sbi->current_reserved_blocks + 1;
2224 
2225 	if (!__allow_reserved_blocks(sbi, inode, false))
2226 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2227 	user_block_count = sbi->user_block_count;
2228 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2229 		user_block_count -= sbi->unusable_block_count;
2230 
2231 	if (unlikely(valid_block_count > user_block_count)) {
2232 		spin_unlock(&sbi->stat_lock);
2233 		goto enospc;
2234 	}
2235 
2236 	valid_node_count = sbi->total_valid_node_count + 1;
2237 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2238 		spin_unlock(&sbi->stat_lock);
2239 		goto enospc;
2240 	}
2241 
2242 	sbi->total_valid_node_count++;
2243 	sbi->total_valid_block_count++;
2244 	spin_unlock(&sbi->stat_lock);
2245 
2246 	if (inode) {
2247 		if (is_inode)
2248 			f2fs_mark_inode_dirty_sync(inode, true);
2249 		else
2250 			f2fs_i_blocks_write(inode, 1, true, true);
2251 	}
2252 
2253 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2254 	return 0;
2255 
2256 enospc:
2257 	if (is_inode) {
2258 		if (inode)
2259 			dquot_free_inode(inode);
2260 	} else {
2261 		dquot_release_reservation_block(inode, 1);
2262 	}
2263 	return -ENOSPC;
2264 }
2265 
2266 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2267 					struct inode *inode, bool is_inode)
2268 {
2269 	spin_lock(&sbi->stat_lock);
2270 
2271 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2272 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2273 
2274 	sbi->total_valid_node_count--;
2275 	sbi->total_valid_block_count--;
2276 	if (sbi->reserved_blocks &&
2277 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2278 		sbi->current_reserved_blocks++;
2279 
2280 	spin_unlock(&sbi->stat_lock);
2281 
2282 	if (is_inode) {
2283 		dquot_free_inode(inode);
2284 	} else {
2285 		if (unlikely(inode->i_blocks == 0)) {
2286 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2287 				  inode->i_ino,
2288 				  (unsigned long long)inode->i_blocks);
2289 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2290 			return;
2291 		}
2292 		f2fs_i_blocks_write(inode, 1, false, true);
2293 	}
2294 }
2295 
2296 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2297 {
2298 	return sbi->total_valid_node_count;
2299 }
2300 
2301 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2302 {
2303 	percpu_counter_inc(&sbi->total_valid_inode_count);
2304 }
2305 
2306 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2307 {
2308 	percpu_counter_dec(&sbi->total_valid_inode_count);
2309 }
2310 
2311 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2312 {
2313 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2314 }
2315 
2316 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2317 						pgoff_t index, bool for_write)
2318 {
2319 	struct page *page;
2320 
2321 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2322 		if (!for_write)
2323 			page = find_get_page_flags(mapping, index,
2324 							FGP_LOCK | FGP_ACCESSED);
2325 		else
2326 			page = find_lock_page(mapping, index);
2327 		if (page)
2328 			return page;
2329 
2330 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2331 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2332 							FAULT_PAGE_ALLOC);
2333 			return NULL;
2334 		}
2335 	}
2336 
2337 	if (!for_write)
2338 		return grab_cache_page(mapping, index);
2339 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2340 }
2341 
2342 static inline struct page *f2fs_pagecache_get_page(
2343 				struct address_space *mapping, pgoff_t index,
2344 				int fgp_flags, gfp_t gfp_mask)
2345 {
2346 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2347 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2348 		return NULL;
2349 	}
2350 
2351 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2352 }
2353 
2354 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2355 {
2356 	char *src_kaddr = kmap(src);
2357 	char *dst_kaddr = kmap(dst);
2358 
2359 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2360 	kunmap(dst);
2361 	kunmap(src);
2362 }
2363 
2364 static inline void f2fs_put_page(struct page *page, int unlock)
2365 {
2366 	if (!page)
2367 		return;
2368 
2369 	if (unlock) {
2370 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2371 		unlock_page(page);
2372 	}
2373 	put_page(page);
2374 }
2375 
2376 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2377 {
2378 	if (dn->node_page)
2379 		f2fs_put_page(dn->node_page, 1);
2380 	if (dn->inode_page && dn->node_page != dn->inode_page)
2381 		f2fs_put_page(dn->inode_page, 0);
2382 	dn->node_page = NULL;
2383 	dn->inode_page = NULL;
2384 }
2385 
2386 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2387 					size_t size)
2388 {
2389 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2390 }
2391 
2392 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2393 						gfp_t flags)
2394 {
2395 	void *entry;
2396 
2397 	entry = kmem_cache_alloc(cachep, flags);
2398 	if (!entry)
2399 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2400 	return entry;
2401 }
2402 
2403 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2404 {
2405 	if (sbi->gc_mode == GC_URGENT_HIGH)
2406 		return true;
2407 
2408 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2409 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2410 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2411 		get_pages(sbi, F2FS_DIO_READ) ||
2412 		get_pages(sbi, F2FS_DIO_WRITE))
2413 		return false;
2414 
2415 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2416 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2417 		return false;
2418 
2419 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2420 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2421 		return false;
2422 
2423 	if (sbi->gc_mode == GC_URGENT_LOW &&
2424 			(type == DISCARD_TIME || type == GC_TIME))
2425 		return true;
2426 
2427 	return f2fs_time_over(sbi, type);
2428 }
2429 
2430 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2431 				unsigned long index, void *item)
2432 {
2433 	while (radix_tree_insert(root, index, item))
2434 		cond_resched();
2435 }
2436 
2437 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2438 
2439 static inline bool IS_INODE(struct page *page)
2440 {
2441 	struct f2fs_node *p = F2FS_NODE(page);
2442 
2443 	return RAW_IS_INODE(p);
2444 }
2445 
2446 static inline int offset_in_addr(struct f2fs_inode *i)
2447 {
2448 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2449 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2450 }
2451 
2452 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2453 {
2454 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2455 }
2456 
2457 static inline int f2fs_has_extra_attr(struct inode *inode);
2458 static inline block_t data_blkaddr(struct inode *inode,
2459 			struct page *node_page, unsigned int offset)
2460 {
2461 	struct f2fs_node *raw_node;
2462 	__le32 *addr_array;
2463 	int base = 0;
2464 	bool is_inode = IS_INODE(node_page);
2465 
2466 	raw_node = F2FS_NODE(node_page);
2467 
2468 	if (is_inode) {
2469 		if (!inode)
2470 			/* from GC path only */
2471 			base = offset_in_addr(&raw_node->i);
2472 		else if (f2fs_has_extra_attr(inode))
2473 			base = get_extra_isize(inode);
2474 	}
2475 
2476 	addr_array = blkaddr_in_node(raw_node);
2477 	return le32_to_cpu(addr_array[base + offset]);
2478 }
2479 
2480 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2481 {
2482 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2483 }
2484 
2485 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2486 {
2487 	int mask;
2488 
2489 	addr += (nr >> 3);
2490 	mask = 1 << (7 - (nr & 0x07));
2491 	return mask & *addr;
2492 }
2493 
2494 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2495 {
2496 	int mask;
2497 
2498 	addr += (nr >> 3);
2499 	mask = 1 << (7 - (nr & 0x07));
2500 	*addr |= mask;
2501 }
2502 
2503 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2504 {
2505 	int mask;
2506 
2507 	addr += (nr >> 3);
2508 	mask = 1 << (7 - (nr & 0x07));
2509 	*addr &= ~mask;
2510 }
2511 
2512 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2513 {
2514 	int mask;
2515 	int ret;
2516 
2517 	addr += (nr >> 3);
2518 	mask = 1 << (7 - (nr & 0x07));
2519 	ret = mask & *addr;
2520 	*addr |= mask;
2521 	return ret;
2522 }
2523 
2524 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2525 {
2526 	int mask;
2527 	int ret;
2528 
2529 	addr += (nr >> 3);
2530 	mask = 1 << (7 - (nr & 0x07));
2531 	ret = mask & *addr;
2532 	*addr &= ~mask;
2533 	return ret;
2534 }
2535 
2536 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2537 {
2538 	int mask;
2539 
2540 	addr += (nr >> 3);
2541 	mask = 1 << (7 - (nr & 0x07));
2542 	*addr ^= mask;
2543 }
2544 
2545 /*
2546  * On-disk inode flags (f2fs_inode::i_flags)
2547  */
2548 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2549 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2550 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2551 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2552 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2553 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2554 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2555 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2556 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2557 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2558 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2559 
2560 /* Flags that should be inherited by new inodes from their parent. */
2561 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2562 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2563 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2564 
2565 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2566 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2567 				F2FS_CASEFOLD_FL))
2568 
2569 /* Flags that are appropriate for non-directories/regular files. */
2570 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2571 
2572 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2573 {
2574 	if (S_ISDIR(mode))
2575 		return flags;
2576 	else if (S_ISREG(mode))
2577 		return flags & F2FS_REG_FLMASK;
2578 	else
2579 		return flags & F2FS_OTHER_FLMASK;
2580 }
2581 
2582 static inline void __mark_inode_dirty_flag(struct inode *inode,
2583 						int flag, bool set)
2584 {
2585 	switch (flag) {
2586 	case FI_INLINE_XATTR:
2587 	case FI_INLINE_DATA:
2588 	case FI_INLINE_DENTRY:
2589 	case FI_NEW_INODE:
2590 		if (set)
2591 			return;
2592 		fallthrough;
2593 	case FI_DATA_EXIST:
2594 	case FI_INLINE_DOTS:
2595 	case FI_PIN_FILE:
2596 		f2fs_mark_inode_dirty_sync(inode, true);
2597 	}
2598 }
2599 
2600 static inline void set_inode_flag(struct inode *inode, int flag)
2601 {
2602 	set_bit(flag, F2FS_I(inode)->flags);
2603 	__mark_inode_dirty_flag(inode, flag, true);
2604 }
2605 
2606 static inline int is_inode_flag_set(struct inode *inode, int flag)
2607 {
2608 	return test_bit(flag, F2FS_I(inode)->flags);
2609 }
2610 
2611 static inline void clear_inode_flag(struct inode *inode, int flag)
2612 {
2613 	clear_bit(flag, F2FS_I(inode)->flags);
2614 	__mark_inode_dirty_flag(inode, flag, false);
2615 }
2616 
2617 static inline bool f2fs_verity_in_progress(struct inode *inode)
2618 {
2619 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2620 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2621 }
2622 
2623 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2624 {
2625 	F2FS_I(inode)->i_acl_mode = mode;
2626 	set_inode_flag(inode, FI_ACL_MODE);
2627 	f2fs_mark_inode_dirty_sync(inode, false);
2628 }
2629 
2630 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2631 {
2632 	if (inc)
2633 		inc_nlink(inode);
2634 	else
2635 		drop_nlink(inode);
2636 	f2fs_mark_inode_dirty_sync(inode, true);
2637 }
2638 
2639 static inline void f2fs_i_blocks_write(struct inode *inode,
2640 					block_t diff, bool add, bool claim)
2641 {
2642 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2643 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2644 
2645 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2646 	if (add) {
2647 		if (claim)
2648 			dquot_claim_block(inode, diff);
2649 		else
2650 			dquot_alloc_block_nofail(inode, diff);
2651 	} else {
2652 		dquot_free_block(inode, diff);
2653 	}
2654 
2655 	f2fs_mark_inode_dirty_sync(inode, true);
2656 	if (clean || recover)
2657 		set_inode_flag(inode, FI_AUTO_RECOVER);
2658 }
2659 
2660 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2661 {
2662 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2663 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2664 
2665 	if (i_size_read(inode) == i_size)
2666 		return;
2667 
2668 	i_size_write(inode, i_size);
2669 	f2fs_mark_inode_dirty_sync(inode, true);
2670 	if (clean || recover)
2671 		set_inode_flag(inode, FI_AUTO_RECOVER);
2672 }
2673 
2674 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2675 {
2676 	F2FS_I(inode)->i_current_depth = depth;
2677 	f2fs_mark_inode_dirty_sync(inode, true);
2678 }
2679 
2680 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2681 					unsigned int count)
2682 {
2683 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2684 	f2fs_mark_inode_dirty_sync(inode, true);
2685 }
2686 
2687 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2688 {
2689 	F2FS_I(inode)->i_xattr_nid = xnid;
2690 	f2fs_mark_inode_dirty_sync(inode, true);
2691 }
2692 
2693 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2694 {
2695 	F2FS_I(inode)->i_pino = pino;
2696 	f2fs_mark_inode_dirty_sync(inode, true);
2697 }
2698 
2699 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2700 {
2701 	struct f2fs_inode_info *fi = F2FS_I(inode);
2702 
2703 	if (ri->i_inline & F2FS_INLINE_XATTR)
2704 		set_bit(FI_INLINE_XATTR, fi->flags);
2705 	if (ri->i_inline & F2FS_INLINE_DATA)
2706 		set_bit(FI_INLINE_DATA, fi->flags);
2707 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2708 		set_bit(FI_INLINE_DENTRY, fi->flags);
2709 	if (ri->i_inline & F2FS_DATA_EXIST)
2710 		set_bit(FI_DATA_EXIST, fi->flags);
2711 	if (ri->i_inline & F2FS_INLINE_DOTS)
2712 		set_bit(FI_INLINE_DOTS, fi->flags);
2713 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2714 		set_bit(FI_EXTRA_ATTR, fi->flags);
2715 	if (ri->i_inline & F2FS_PIN_FILE)
2716 		set_bit(FI_PIN_FILE, fi->flags);
2717 }
2718 
2719 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2720 {
2721 	ri->i_inline = 0;
2722 
2723 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2724 		ri->i_inline |= F2FS_INLINE_XATTR;
2725 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2726 		ri->i_inline |= F2FS_INLINE_DATA;
2727 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2728 		ri->i_inline |= F2FS_INLINE_DENTRY;
2729 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2730 		ri->i_inline |= F2FS_DATA_EXIST;
2731 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2732 		ri->i_inline |= F2FS_INLINE_DOTS;
2733 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2734 		ri->i_inline |= F2FS_EXTRA_ATTR;
2735 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2736 		ri->i_inline |= F2FS_PIN_FILE;
2737 }
2738 
2739 static inline int f2fs_has_extra_attr(struct inode *inode)
2740 {
2741 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2742 }
2743 
2744 static inline int f2fs_has_inline_xattr(struct inode *inode)
2745 {
2746 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2747 }
2748 
2749 static inline int f2fs_compressed_file(struct inode *inode)
2750 {
2751 	return S_ISREG(inode->i_mode) &&
2752 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2753 }
2754 
2755 static inline unsigned int addrs_per_inode(struct inode *inode)
2756 {
2757 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2758 				get_inline_xattr_addrs(inode);
2759 
2760 	if (!f2fs_compressed_file(inode))
2761 		return addrs;
2762 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2763 }
2764 
2765 static inline unsigned int addrs_per_block(struct inode *inode)
2766 {
2767 	if (!f2fs_compressed_file(inode))
2768 		return DEF_ADDRS_PER_BLOCK;
2769 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2770 }
2771 
2772 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2773 {
2774 	struct f2fs_inode *ri = F2FS_INODE(page);
2775 
2776 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2777 					get_inline_xattr_addrs(inode)]);
2778 }
2779 
2780 static inline int inline_xattr_size(struct inode *inode)
2781 {
2782 	if (f2fs_has_inline_xattr(inode))
2783 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2784 	return 0;
2785 }
2786 
2787 static inline int f2fs_has_inline_data(struct inode *inode)
2788 {
2789 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2790 }
2791 
2792 static inline int f2fs_exist_data(struct inode *inode)
2793 {
2794 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2795 }
2796 
2797 static inline int f2fs_has_inline_dots(struct inode *inode)
2798 {
2799 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2800 }
2801 
2802 static inline int f2fs_is_mmap_file(struct inode *inode)
2803 {
2804 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2805 }
2806 
2807 static inline bool f2fs_is_pinned_file(struct inode *inode)
2808 {
2809 	return is_inode_flag_set(inode, FI_PIN_FILE);
2810 }
2811 
2812 static inline bool f2fs_is_atomic_file(struct inode *inode)
2813 {
2814 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2815 }
2816 
2817 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2818 {
2819 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2820 }
2821 
2822 static inline bool f2fs_is_volatile_file(struct inode *inode)
2823 {
2824 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2825 }
2826 
2827 static inline bool f2fs_is_first_block_written(struct inode *inode)
2828 {
2829 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2830 }
2831 
2832 static inline bool f2fs_is_drop_cache(struct inode *inode)
2833 {
2834 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2835 }
2836 
2837 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2838 {
2839 	struct f2fs_inode *ri = F2FS_INODE(page);
2840 	int extra_size = get_extra_isize(inode);
2841 
2842 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2843 }
2844 
2845 static inline int f2fs_has_inline_dentry(struct inode *inode)
2846 {
2847 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2848 }
2849 
2850 static inline int is_file(struct inode *inode, int type)
2851 {
2852 	return F2FS_I(inode)->i_advise & type;
2853 }
2854 
2855 static inline void set_file(struct inode *inode, int type)
2856 {
2857 	F2FS_I(inode)->i_advise |= type;
2858 	f2fs_mark_inode_dirty_sync(inode, true);
2859 }
2860 
2861 static inline void clear_file(struct inode *inode, int type)
2862 {
2863 	F2FS_I(inode)->i_advise &= ~type;
2864 	f2fs_mark_inode_dirty_sync(inode, true);
2865 }
2866 
2867 static inline bool f2fs_is_time_consistent(struct inode *inode)
2868 {
2869 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2870 		return false;
2871 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2872 		return false;
2873 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2874 		return false;
2875 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2876 						&F2FS_I(inode)->i_crtime))
2877 		return false;
2878 	return true;
2879 }
2880 
2881 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2882 {
2883 	bool ret;
2884 
2885 	if (dsync) {
2886 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2887 
2888 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2889 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2890 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2891 		return ret;
2892 	}
2893 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2894 			file_keep_isize(inode) ||
2895 			i_size_read(inode) & ~PAGE_MASK)
2896 		return false;
2897 
2898 	if (!f2fs_is_time_consistent(inode))
2899 		return false;
2900 
2901 	spin_lock(&F2FS_I(inode)->i_size_lock);
2902 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2903 	spin_unlock(&F2FS_I(inode)->i_size_lock);
2904 
2905 	return ret;
2906 }
2907 
2908 static inline bool f2fs_readonly(struct super_block *sb)
2909 {
2910 	return sb_rdonly(sb);
2911 }
2912 
2913 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2914 {
2915 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2916 }
2917 
2918 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2919 {
2920 	if (len == 1 && name[0] == '.')
2921 		return true;
2922 
2923 	if (len == 2 && name[0] == '.' && name[1] == '.')
2924 		return true;
2925 
2926 	return false;
2927 }
2928 
2929 static inline bool f2fs_may_extent_tree(struct inode *inode)
2930 {
2931 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2932 
2933 	if (!test_opt(sbi, EXTENT_CACHE) ||
2934 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2935 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2936 		return false;
2937 
2938 	/*
2939 	 * for recovered files during mount do not create extents
2940 	 * if shrinker is not registered.
2941 	 */
2942 	if (list_empty(&sbi->s_list))
2943 		return false;
2944 
2945 	return S_ISREG(inode->i_mode);
2946 }
2947 
2948 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2949 					size_t size, gfp_t flags)
2950 {
2951 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2952 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2953 		return NULL;
2954 	}
2955 
2956 	return kmalloc(size, flags);
2957 }
2958 
2959 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2960 					size_t size, gfp_t flags)
2961 {
2962 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2963 }
2964 
2965 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2966 					size_t size, gfp_t flags)
2967 {
2968 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2969 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
2970 		return NULL;
2971 	}
2972 
2973 	return kvmalloc(size, flags);
2974 }
2975 
2976 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2977 					size_t size, gfp_t flags)
2978 {
2979 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2980 }
2981 
2982 static inline int get_extra_isize(struct inode *inode)
2983 {
2984 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2985 }
2986 
2987 static inline int get_inline_xattr_addrs(struct inode *inode)
2988 {
2989 	return F2FS_I(inode)->i_inline_xattr_size;
2990 }
2991 
2992 #define f2fs_get_inode_mode(i) \
2993 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2994 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2995 
2996 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2997 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2998 	offsetof(struct f2fs_inode, i_extra_isize))	\
2999 
3000 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3001 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3002 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3003 		sizeof((f2fs_inode)->field))			\
3004 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3005 
3006 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3007 #define MIN_IOSTAT_PERIOD_MS		100
3008 /* maximum period of iostat tracing is 1 day */
3009 #define MAX_IOSTAT_PERIOD_MS		8640000
3010 
3011 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3012 {
3013 	int i;
3014 
3015 	spin_lock(&sbi->iostat_lock);
3016 	for (i = 0; i < NR_IO_TYPE; i++) {
3017 		sbi->rw_iostat[i] = 0;
3018 		sbi->prev_rw_iostat[i] = 0;
3019 	}
3020 	spin_unlock(&sbi->iostat_lock);
3021 }
3022 
3023 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3024 
3025 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3026 			enum iostat_type type, unsigned long long io_bytes)
3027 {
3028 	if (!sbi->iostat_enable)
3029 		return;
3030 	spin_lock(&sbi->iostat_lock);
3031 	sbi->rw_iostat[type] += io_bytes;
3032 
3033 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3034 		sbi->rw_iostat[APP_BUFFERED_IO] =
3035 			sbi->rw_iostat[APP_WRITE_IO] -
3036 			sbi->rw_iostat[APP_DIRECT_IO];
3037 
3038 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3039 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3040 			sbi->rw_iostat[APP_READ_IO] -
3041 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3042 	spin_unlock(&sbi->iostat_lock);
3043 
3044 	f2fs_record_iostat(sbi);
3045 }
3046 
3047 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3048 
3049 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3050 
3051 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3052 					block_t blkaddr, int type);
3053 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3054 					block_t blkaddr, int type)
3055 {
3056 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3057 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3058 			 blkaddr, type);
3059 		f2fs_bug_on(sbi, 1);
3060 	}
3061 }
3062 
3063 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3064 {
3065 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3066 			blkaddr == COMPRESS_ADDR)
3067 		return false;
3068 	return true;
3069 }
3070 
3071 static inline void f2fs_set_page_private(struct page *page,
3072 						unsigned long data)
3073 {
3074 	if (PagePrivate(page))
3075 		return;
3076 
3077 	attach_page_private(page, (void *)data);
3078 }
3079 
3080 static inline void f2fs_clear_page_private(struct page *page)
3081 {
3082 	detach_page_private(page);
3083 }
3084 
3085 /*
3086  * file.c
3087  */
3088 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3089 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3090 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3091 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3092 int f2fs_truncate(struct inode *inode);
3093 int f2fs_getattr(const struct path *path, struct kstat *stat,
3094 			u32 request_mask, unsigned int flags);
3095 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3096 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3097 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3098 int f2fs_precache_extents(struct inode *inode);
3099 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3100 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3101 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3102 int f2fs_pin_file_control(struct inode *inode, bool inc);
3103 
3104 /*
3105  * inode.c
3106  */
3107 void f2fs_set_inode_flags(struct inode *inode);
3108 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3109 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3110 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3111 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3112 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3113 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3114 void f2fs_update_inode_page(struct inode *inode);
3115 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3116 void f2fs_evict_inode(struct inode *inode);
3117 void f2fs_handle_failed_inode(struct inode *inode);
3118 
3119 /*
3120  * namei.c
3121  */
3122 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3123 							bool hot, bool set);
3124 struct dentry *f2fs_get_parent(struct dentry *child);
3125 
3126 /*
3127  * dir.c
3128  */
3129 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3130 int f2fs_init_casefolded_name(const struct inode *dir,
3131 			      struct f2fs_filename *fname);
3132 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3133 			int lookup, struct f2fs_filename *fname);
3134 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3135 			struct f2fs_filename *fname);
3136 void f2fs_free_filename(struct f2fs_filename *fname);
3137 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3138 			const struct f2fs_filename *fname, int *max_slots);
3139 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3140 			unsigned int start_pos, struct fscrypt_str *fstr);
3141 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3142 			struct f2fs_dentry_ptr *d);
3143 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3144 			const struct f2fs_filename *fname, struct page *dpage);
3145 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3146 			unsigned int current_depth);
3147 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3148 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3149 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3150 					 const struct f2fs_filename *fname,
3151 					 struct page **res_page);
3152 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3153 			const struct qstr *child, struct page **res_page);
3154 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3155 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3156 			struct page **page);
3157 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3158 			struct page *page, struct inode *inode);
3159 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3160 			  const struct f2fs_filename *fname);
3161 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3162 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3163 			unsigned int bit_pos);
3164 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3165 			struct inode *inode, nid_t ino, umode_t mode);
3166 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3167 			struct inode *inode, nid_t ino, umode_t mode);
3168 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3169 			struct inode *inode, nid_t ino, umode_t mode);
3170 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3171 			struct inode *dir, struct inode *inode);
3172 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3173 bool f2fs_empty_dir(struct inode *dir);
3174 
3175 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3176 {
3177 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3178 				inode, inode->i_ino, inode->i_mode);
3179 }
3180 
3181 /*
3182  * super.c
3183  */
3184 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3185 void f2fs_inode_synced(struct inode *inode);
3186 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3187 int f2fs_quota_sync(struct super_block *sb, int type);
3188 void f2fs_quota_off_umount(struct super_block *sb);
3189 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3190 int f2fs_sync_fs(struct super_block *sb, int sync);
3191 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3192 
3193 /*
3194  * hash.c
3195  */
3196 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3197 
3198 /*
3199  * node.c
3200  */
3201 struct dnode_of_data;
3202 struct node_info;
3203 
3204 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3205 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3206 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3207 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3208 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3209 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3210 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3211 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3212 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3213 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3214 						struct node_info *ni);
3215 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3216 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3217 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3218 int f2fs_truncate_xattr_node(struct inode *inode);
3219 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3220 					unsigned int seq_id);
3221 int f2fs_remove_inode_page(struct inode *inode);
3222 struct page *f2fs_new_inode_page(struct inode *inode);
3223 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3224 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3225 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3226 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3227 int f2fs_move_node_page(struct page *node_page, int gc_type);
3228 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3229 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3230 			struct writeback_control *wbc, bool atomic,
3231 			unsigned int *seq_id);
3232 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3233 			struct writeback_control *wbc,
3234 			bool do_balance, enum iostat_type io_type);
3235 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3236 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3237 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3238 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3239 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3240 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3241 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3242 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3243 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3244 			unsigned int segno, struct f2fs_summary_block *sum);
3245 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3246 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3247 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3248 int __init f2fs_create_node_manager_caches(void);
3249 void f2fs_destroy_node_manager_caches(void);
3250 
3251 /*
3252  * segment.c
3253  */
3254 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3255 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3256 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3257 void f2fs_drop_inmem_pages(struct inode *inode);
3258 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3259 int f2fs_commit_inmem_pages(struct inode *inode);
3260 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3261 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3262 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3263 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3264 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3265 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3266 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3267 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3268 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3269 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3270 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3271 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3272 					struct cp_control *cpc);
3273 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3274 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3275 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3276 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3277 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3278 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3279 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3280 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3281 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3282 			unsigned int *newseg, bool new_sec, int dir);
3283 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3284 					unsigned int start, unsigned int end);
3285 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3286 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3287 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3288 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3289 					struct cp_control *cpc);
3290 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3291 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3292 					block_t blk_addr);
3293 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3294 						enum iostat_type io_type);
3295 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3296 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3297 			struct f2fs_io_info *fio);
3298 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3299 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3300 			block_t old_blkaddr, block_t new_blkaddr,
3301 			bool recover_curseg, bool recover_newaddr,
3302 			bool from_gc);
3303 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3304 			block_t old_addr, block_t new_addr,
3305 			unsigned char version, bool recover_curseg,
3306 			bool recover_newaddr);
3307 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3308 			block_t old_blkaddr, block_t *new_blkaddr,
3309 			struct f2fs_summary *sum, int type,
3310 			struct f2fs_io_info *fio);
3311 void f2fs_wait_on_page_writeback(struct page *page,
3312 			enum page_type type, bool ordered, bool locked);
3313 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3314 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3315 								block_t len);
3316 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3317 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3318 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3319 			unsigned int val, int alloc);
3320 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3321 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3322 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3323 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3324 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3325 int __init f2fs_create_segment_manager_caches(void);
3326 void f2fs_destroy_segment_manager_caches(void);
3327 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3328 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3329 			enum page_type type, enum temp_type temp);
3330 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3331 			unsigned int segno);
3332 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3333 			unsigned int segno);
3334 
3335 /*
3336  * checkpoint.c
3337  */
3338 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3339 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3340 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3341 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3342 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3343 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3344 					block_t blkaddr, int type);
3345 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3346 			int type, bool sync);
3347 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3348 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3349 			long nr_to_write, enum iostat_type io_type);
3350 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3351 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3352 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3353 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3354 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3355 					unsigned int devidx, int type);
3356 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3357 					unsigned int devidx, int type);
3358 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3359 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3360 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3361 void f2fs_add_orphan_inode(struct inode *inode);
3362 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3363 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3364 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3365 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3366 void f2fs_remove_dirty_inode(struct inode *inode);
3367 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3368 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3369 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3370 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3371 int __init f2fs_create_checkpoint_caches(void);
3372 void f2fs_destroy_checkpoint_caches(void);
3373 
3374 /*
3375  * data.c
3376  */
3377 int __init f2fs_init_bioset(void);
3378 void f2fs_destroy_bioset(void);
3379 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3380 int f2fs_init_bio_entry_cache(void);
3381 void f2fs_destroy_bio_entry_cache(void);
3382 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3383 				struct bio *bio, enum page_type type);
3384 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3385 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3386 				struct inode *inode, struct page *page,
3387 				nid_t ino, enum page_type type);
3388 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3389 					struct bio **bio, struct page *page);
3390 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3391 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3392 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3393 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3394 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3395 			block_t blk_addr, struct bio *bio);
3396 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3397 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3398 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3399 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3400 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3401 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3402 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3403 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3404 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3405 			int op_flags, bool for_write);
3406 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3407 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3408 			bool for_write);
3409 struct page *f2fs_get_new_data_page(struct inode *inode,
3410 			struct page *ipage, pgoff_t index, bool new_i_size);
3411 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3412 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3413 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3414 			int create, int flag);
3415 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3416 			u64 start, u64 len);
3417 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3418 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3419 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3420 int f2fs_write_single_data_page(struct page *page, int *submitted,
3421 				struct bio **bio, sector_t *last_block,
3422 				struct writeback_control *wbc,
3423 				enum iostat_type io_type,
3424 				int compr_blocks);
3425 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3426 			unsigned int length);
3427 int f2fs_release_page(struct page *page, gfp_t wait);
3428 #ifdef CONFIG_MIGRATION
3429 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3430 			struct page *page, enum migrate_mode mode);
3431 #endif
3432 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3433 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3434 int f2fs_init_post_read_processing(void);
3435 void f2fs_destroy_post_read_processing(void);
3436 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3437 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3438 
3439 /*
3440  * gc.c
3441  */
3442 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3443 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3444 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3445 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3446 			unsigned int segno);
3447 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3448 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3449 int __init f2fs_create_garbage_collection_cache(void);
3450 void f2fs_destroy_garbage_collection_cache(void);
3451 
3452 /*
3453  * recovery.c
3454  */
3455 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3456 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3457 
3458 /*
3459  * debug.c
3460  */
3461 #ifdef CONFIG_F2FS_STAT_FS
3462 struct f2fs_stat_info {
3463 	struct list_head stat_list;
3464 	struct f2fs_sb_info *sbi;
3465 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3466 	int main_area_segs, main_area_sections, main_area_zones;
3467 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3468 	unsigned long long hit_total, total_ext;
3469 	int ext_tree, zombie_tree, ext_node;
3470 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3471 	int ndirty_data, ndirty_qdata;
3472 	int inmem_pages;
3473 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3474 	int nats, dirty_nats, sits, dirty_sits;
3475 	int free_nids, avail_nids, alloc_nids;
3476 	int total_count, utilization;
3477 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3478 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3479 	int nr_dio_read, nr_dio_write;
3480 	unsigned int io_skip_bggc, other_skip_bggc;
3481 	int nr_flushing, nr_flushed, flush_list_empty;
3482 	int nr_discarding, nr_discarded;
3483 	int nr_discard_cmd;
3484 	unsigned int undiscard_blks;
3485 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3486 	int compr_inode;
3487 	unsigned long long compr_blocks;
3488 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3489 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3490 	unsigned int bimodal, avg_vblocks;
3491 	int util_free, util_valid, util_invalid;
3492 	int rsvd_segs, overp_segs;
3493 	int dirty_count, node_pages, meta_pages;
3494 	int prefree_count, call_count, cp_count, bg_cp_count;
3495 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3496 	int bg_node_segs, bg_data_segs;
3497 	int tot_blks, data_blks, node_blks;
3498 	int bg_data_blks, bg_node_blks;
3499 	unsigned long long skipped_atomic_files[2];
3500 	int curseg[NR_CURSEG_TYPE];
3501 	int cursec[NR_CURSEG_TYPE];
3502 	int curzone[NR_CURSEG_TYPE];
3503 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3504 	unsigned int full_seg[NR_CURSEG_TYPE];
3505 	unsigned int valid_blks[NR_CURSEG_TYPE];
3506 
3507 	unsigned int meta_count[META_MAX];
3508 	unsigned int segment_count[2];
3509 	unsigned int block_count[2];
3510 	unsigned int inplace_count;
3511 	unsigned long long base_mem, cache_mem, page_mem;
3512 };
3513 
3514 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3515 {
3516 	return (struct f2fs_stat_info *)sbi->stat_info;
3517 }
3518 
3519 #define stat_inc_cp_count(si)		((si)->cp_count++)
3520 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3521 #define stat_inc_call_count(si)		((si)->call_count++)
3522 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3523 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3524 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3525 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3526 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3527 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3528 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3529 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3530 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3531 #define stat_inc_inline_xattr(inode)					\
3532 	do {								\
3533 		if (f2fs_has_inline_xattr(inode))			\
3534 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3535 	} while (0)
3536 #define stat_dec_inline_xattr(inode)					\
3537 	do {								\
3538 		if (f2fs_has_inline_xattr(inode))			\
3539 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3540 	} while (0)
3541 #define stat_inc_inline_inode(inode)					\
3542 	do {								\
3543 		if (f2fs_has_inline_data(inode))			\
3544 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3545 	} while (0)
3546 #define stat_dec_inline_inode(inode)					\
3547 	do {								\
3548 		if (f2fs_has_inline_data(inode))			\
3549 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3550 	} while (0)
3551 #define stat_inc_inline_dir(inode)					\
3552 	do {								\
3553 		if (f2fs_has_inline_dentry(inode))			\
3554 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3555 	} while (0)
3556 #define stat_dec_inline_dir(inode)					\
3557 	do {								\
3558 		if (f2fs_has_inline_dentry(inode))			\
3559 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3560 	} while (0)
3561 #define stat_inc_compr_inode(inode)					\
3562 	do {								\
3563 		if (f2fs_compressed_file(inode))			\
3564 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3565 	} while (0)
3566 #define stat_dec_compr_inode(inode)					\
3567 	do {								\
3568 		if (f2fs_compressed_file(inode))			\
3569 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3570 	} while (0)
3571 #define stat_add_compr_blocks(inode, blocks)				\
3572 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3573 #define stat_sub_compr_blocks(inode, blocks)				\
3574 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3575 #define stat_inc_meta_count(sbi, blkaddr)				\
3576 	do {								\
3577 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3578 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3579 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3580 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3581 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3582 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3583 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3584 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3585 	} while (0)
3586 #define stat_inc_seg_type(sbi, curseg)					\
3587 		((sbi)->segment_count[(curseg)->alloc_type]++)
3588 #define stat_inc_block_count(sbi, curseg)				\
3589 		((sbi)->block_count[(curseg)->alloc_type]++)
3590 #define stat_inc_inplace_blocks(sbi)					\
3591 		(atomic_inc(&(sbi)->inplace_count))
3592 #define stat_update_max_atomic_write(inode)				\
3593 	do {								\
3594 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3595 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3596 		if (cur > max)						\
3597 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3598 	} while (0)
3599 #define stat_inc_volatile_write(inode)					\
3600 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3601 #define stat_dec_volatile_write(inode)					\
3602 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3603 #define stat_update_max_volatile_write(inode)				\
3604 	do {								\
3605 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3606 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3607 		if (cur > max)						\
3608 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3609 	} while (0)
3610 #define stat_inc_seg_count(sbi, type, gc_type)				\
3611 	do {								\
3612 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3613 		si->tot_segs++;						\
3614 		if ((type) == SUM_TYPE_DATA) {				\
3615 			si->data_segs++;				\
3616 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3617 		} else {						\
3618 			si->node_segs++;				\
3619 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3620 		}							\
3621 	} while (0)
3622 
3623 #define stat_inc_tot_blk_count(si, blks)				\
3624 	((si)->tot_blks += (blks))
3625 
3626 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3627 	do {								\
3628 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3629 		stat_inc_tot_blk_count(si, blks);			\
3630 		si->data_blks += (blks);				\
3631 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3632 	} while (0)
3633 
3634 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3635 	do {								\
3636 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3637 		stat_inc_tot_blk_count(si, blks);			\
3638 		si->node_blks += (blks);				\
3639 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3640 	} while (0)
3641 
3642 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3643 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3644 void __init f2fs_create_root_stats(void);
3645 void f2fs_destroy_root_stats(void);
3646 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3647 #else
3648 #define stat_inc_cp_count(si)				do { } while (0)
3649 #define stat_inc_bg_cp_count(si)			do { } while (0)
3650 #define stat_inc_call_count(si)				do { } while (0)
3651 #define stat_inc_bggc_count(si)				do { } while (0)
3652 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3653 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3654 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3655 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3656 #define stat_inc_total_hit(sbi)				do { } while (0)
3657 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3658 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3659 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3660 #define stat_inc_inline_xattr(inode)			do { } while (0)
3661 #define stat_dec_inline_xattr(inode)			do { } while (0)
3662 #define stat_inc_inline_inode(inode)			do { } while (0)
3663 #define stat_dec_inline_inode(inode)			do { } while (0)
3664 #define stat_inc_inline_dir(inode)			do { } while (0)
3665 #define stat_dec_inline_dir(inode)			do { } while (0)
3666 #define stat_inc_compr_inode(inode)			do { } while (0)
3667 #define stat_dec_compr_inode(inode)			do { } while (0)
3668 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3669 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3670 #define stat_inc_atomic_write(inode)			do { } while (0)
3671 #define stat_dec_atomic_write(inode)			do { } while (0)
3672 #define stat_update_max_atomic_write(inode)		do { } while (0)
3673 #define stat_inc_volatile_write(inode)			do { } while (0)
3674 #define stat_dec_volatile_write(inode)			do { } while (0)
3675 #define stat_update_max_volatile_write(inode)		do { } while (0)
3676 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3677 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3678 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3679 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3680 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3681 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3682 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3683 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3684 
3685 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3686 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3687 static inline void __init f2fs_create_root_stats(void) { }
3688 static inline void f2fs_destroy_root_stats(void) { }
3689 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3690 #endif
3691 
3692 extern const struct file_operations f2fs_dir_operations;
3693 extern const struct file_operations f2fs_file_operations;
3694 extern const struct inode_operations f2fs_file_inode_operations;
3695 extern const struct address_space_operations f2fs_dblock_aops;
3696 extern const struct address_space_operations f2fs_node_aops;
3697 extern const struct address_space_operations f2fs_meta_aops;
3698 extern const struct inode_operations f2fs_dir_inode_operations;
3699 extern const struct inode_operations f2fs_symlink_inode_operations;
3700 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3701 extern const struct inode_operations f2fs_special_inode_operations;
3702 extern struct kmem_cache *f2fs_inode_entry_slab;
3703 
3704 /*
3705  * inline.c
3706  */
3707 bool f2fs_may_inline_data(struct inode *inode);
3708 bool f2fs_may_inline_dentry(struct inode *inode);
3709 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3710 void f2fs_truncate_inline_inode(struct inode *inode,
3711 						struct page *ipage, u64 from);
3712 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3713 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3714 int f2fs_convert_inline_inode(struct inode *inode);
3715 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3716 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3717 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3718 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3719 					const struct f2fs_filename *fname,
3720 					struct page **res_page);
3721 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3722 			struct page *ipage);
3723 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3724 			struct inode *inode, nid_t ino, umode_t mode);
3725 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3726 				struct page *page, struct inode *dir,
3727 				struct inode *inode);
3728 bool f2fs_empty_inline_dir(struct inode *dir);
3729 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3730 			struct fscrypt_str *fstr);
3731 int f2fs_inline_data_fiemap(struct inode *inode,
3732 			struct fiemap_extent_info *fieinfo,
3733 			__u64 start, __u64 len);
3734 
3735 /*
3736  * shrinker.c
3737  */
3738 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3739 			struct shrink_control *sc);
3740 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3741 			struct shrink_control *sc);
3742 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3743 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3744 
3745 /*
3746  * extent_cache.c
3747  */
3748 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3749 				struct rb_entry *cached_re, unsigned int ofs);
3750 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3751 				struct rb_root_cached *root,
3752 				struct rb_node **parent,
3753 				unsigned long long key, bool *left_most);
3754 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3755 				struct rb_root_cached *root,
3756 				struct rb_node **parent,
3757 				unsigned int ofs, bool *leftmost);
3758 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3759 		struct rb_entry *cached_re, unsigned int ofs,
3760 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3761 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3762 		bool force, bool *leftmost);
3763 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3764 				struct rb_root_cached *root, bool check_key);
3765 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3766 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3767 void f2fs_drop_extent_tree(struct inode *inode);
3768 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3769 void f2fs_destroy_extent_tree(struct inode *inode);
3770 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3771 			struct extent_info *ei);
3772 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3773 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3774 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3775 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3776 int __init f2fs_create_extent_cache(void);
3777 void f2fs_destroy_extent_cache(void);
3778 
3779 /*
3780  * sysfs.c
3781  */
3782 int __init f2fs_init_sysfs(void);
3783 void f2fs_exit_sysfs(void);
3784 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3785 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3786 
3787 /* verity.c */
3788 extern const struct fsverity_operations f2fs_verityops;
3789 
3790 /*
3791  * crypto support
3792  */
3793 static inline bool f2fs_encrypted_file(struct inode *inode)
3794 {
3795 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3796 }
3797 
3798 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3799 {
3800 #ifdef CONFIG_FS_ENCRYPTION
3801 	file_set_encrypt(inode);
3802 	f2fs_set_inode_flags(inode);
3803 #endif
3804 }
3805 
3806 /*
3807  * Returns true if the reads of the inode's data need to undergo some
3808  * postprocessing step, like decryption or authenticity verification.
3809  */
3810 static inline bool f2fs_post_read_required(struct inode *inode)
3811 {
3812 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3813 		f2fs_compressed_file(inode);
3814 }
3815 
3816 /*
3817  * compress.c
3818  */
3819 #ifdef CONFIG_F2FS_FS_COMPRESSION
3820 bool f2fs_is_compressed_page(struct page *page);
3821 struct page *f2fs_compress_control_page(struct page *page);
3822 int f2fs_prepare_compress_overwrite(struct inode *inode,
3823 			struct page **pagep, pgoff_t index, void **fsdata);
3824 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3825 					pgoff_t index, unsigned copied);
3826 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3827 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3828 bool f2fs_is_compress_backend_ready(struct inode *inode);
3829 int f2fs_init_compress_mempool(void);
3830 void f2fs_destroy_compress_mempool(void);
3831 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3832 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3833 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3834 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3835 int f2fs_write_multi_pages(struct compress_ctx *cc,
3836 						int *submitted,
3837 						struct writeback_control *wbc,
3838 						enum iostat_type io_type);
3839 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3840 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3841 				unsigned nr_pages, sector_t *last_block_in_bio,
3842 				bool is_readahead, bool for_write);
3843 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3844 void f2fs_free_dic(struct decompress_io_ctx *dic);
3845 void f2fs_decompress_end_io(struct page **rpages,
3846 			unsigned int cluster_size, bool err, bool verity);
3847 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3848 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3849 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3850 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3851 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3852 int __init f2fs_init_compress_cache(void);
3853 void f2fs_destroy_compress_cache(void);
3854 #else
3855 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3856 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3857 {
3858 	if (!f2fs_compressed_file(inode))
3859 		return true;
3860 	/* not support compression */
3861 	return false;
3862 }
3863 static inline struct page *f2fs_compress_control_page(struct page *page)
3864 {
3865 	WARN_ON_ONCE(1);
3866 	return ERR_PTR(-EINVAL);
3867 }
3868 static inline int f2fs_init_compress_mempool(void) { return 0; }
3869 static inline void f2fs_destroy_compress_mempool(void) { }
3870 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
3871 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
3872 static inline int __init f2fs_init_compress_cache(void) { return 0; }
3873 static inline void f2fs_destroy_compress_cache(void) { }
3874 #endif
3875 
3876 static inline void set_compress_context(struct inode *inode)
3877 {
3878 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3879 
3880 	F2FS_I(inode)->i_compress_algorithm =
3881 			F2FS_OPTION(sbi).compress_algorithm;
3882 	F2FS_I(inode)->i_log_cluster_size =
3883 			F2FS_OPTION(sbi).compress_log_size;
3884 	F2FS_I(inode)->i_cluster_size =
3885 			1 << F2FS_I(inode)->i_log_cluster_size;
3886 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3887 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3888 	stat_inc_compr_inode(inode);
3889 	f2fs_mark_inode_dirty_sync(inode, true);
3890 }
3891 
3892 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3893 {
3894 	struct f2fs_inode_info *fi = F2FS_I(inode);
3895 
3896 	if (!f2fs_compressed_file(inode))
3897 		return true;
3898 	if (S_ISREG(inode->i_mode) &&
3899 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
3900 		return false;
3901 
3902 	fi->i_flags &= ~F2FS_COMPR_FL;
3903 	stat_dec_compr_inode(inode);
3904 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3905 	f2fs_mark_inode_dirty_sync(inode, true);
3906 	return true;
3907 }
3908 
3909 #define F2FS_FEATURE_FUNCS(name, flagname) \
3910 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3911 { \
3912 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3913 }
3914 
3915 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3916 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3917 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3918 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3919 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3920 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3921 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3922 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3923 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3924 F2FS_FEATURE_FUNCS(verity, VERITY);
3925 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3926 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3927 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3928 
3929 #ifdef CONFIG_BLK_DEV_ZONED
3930 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3931 				    block_t blkaddr)
3932 {
3933 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3934 
3935 	return test_bit(zno, FDEV(devi).blkz_seq);
3936 }
3937 #endif
3938 
3939 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3940 {
3941 	return f2fs_sb_has_blkzoned(sbi);
3942 }
3943 
3944 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3945 {
3946 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3947 	       bdev_is_zoned(bdev);
3948 }
3949 
3950 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3951 {
3952 	int i;
3953 
3954 	if (!f2fs_is_multi_device(sbi))
3955 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3956 
3957 	for (i = 0; i < sbi->s_ndevs; i++)
3958 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3959 			return true;
3960 	return false;
3961 }
3962 
3963 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3964 {
3965 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3966 					f2fs_hw_should_discard(sbi);
3967 }
3968 
3969 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3970 {
3971 	int i;
3972 
3973 	if (!f2fs_is_multi_device(sbi))
3974 		return bdev_read_only(sbi->sb->s_bdev);
3975 
3976 	for (i = 0; i < sbi->s_ndevs; i++)
3977 		if (bdev_read_only(FDEV(i).bdev))
3978 			return true;
3979 	return false;
3980 }
3981 
3982 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
3983 {
3984 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
3985 }
3986 
3987 static inline bool f2fs_may_compress(struct inode *inode)
3988 {
3989 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
3990 				f2fs_is_atomic_file(inode) ||
3991 				f2fs_is_volatile_file(inode))
3992 		return false;
3993 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
3994 }
3995 
3996 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
3997 						u64 blocks, bool add)
3998 {
3999 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4000 	struct f2fs_inode_info *fi = F2FS_I(inode);
4001 
4002 	/* don't update i_compr_blocks if saved blocks were released */
4003 	if (!add && !atomic_read(&fi->i_compr_blocks))
4004 		return;
4005 
4006 	if (add) {
4007 		atomic_add(diff, &fi->i_compr_blocks);
4008 		stat_add_compr_blocks(inode, diff);
4009 	} else {
4010 		atomic_sub(diff, &fi->i_compr_blocks);
4011 		stat_sub_compr_blocks(inode, diff);
4012 	}
4013 	f2fs_mark_inode_dirty_sync(inode, true);
4014 }
4015 
4016 static inline int block_unaligned_IO(struct inode *inode,
4017 				struct kiocb *iocb, struct iov_iter *iter)
4018 {
4019 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4020 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4021 	loff_t offset = iocb->ki_pos;
4022 	unsigned long align = offset | iov_iter_alignment(iter);
4023 
4024 	return align & blocksize_mask;
4025 }
4026 
4027 static inline int allow_outplace_dio(struct inode *inode,
4028 				struct kiocb *iocb, struct iov_iter *iter)
4029 {
4030 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4031 	int rw = iov_iter_rw(iter);
4032 
4033 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4034 				!block_unaligned_IO(inode, iocb, iter));
4035 }
4036 
4037 static inline bool f2fs_force_buffered_io(struct inode *inode,
4038 				struct kiocb *iocb, struct iov_iter *iter)
4039 {
4040 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4041 	int rw = iov_iter_rw(iter);
4042 
4043 	if (f2fs_post_read_required(inode))
4044 		return true;
4045 	if (f2fs_is_multi_device(sbi))
4046 		return true;
4047 	/*
4048 	 * for blkzoned device, fallback direct IO to buffered IO, so
4049 	 * all IOs can be serialized by log-structured write.
4050 	 */
4051 	if (f2fs_sb_has_blkzoned(sbi))
4052 		return true;
4053 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4054 		if (block_unaligned_IO(inode, iocb, iter))
4055 			return true;
4056 		if (F2FS_IO_ALIGNED(sbi))
4057 			return true;
4058 	}
4059 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4060 					!IS_SWAPFILE(inode))
4061 		return true;
4062 
4063 	return false;
4064 }
4065 
4066 #ifdef CONFIG_F2FS_FAULT_INJECTION
4067 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4068 							unsigned int type);
4069 #else
4070 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4071 #endif
4072 
4073 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4074 {
4075 #ifdef CONFIG_QUOTA
4076 	if (f2fs_sb_has_quota_ino(sbi))
4077 		return true;
4078 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4079 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4080 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4081 		return true;
4082 #endif
4083 	return false;
4084 }
4085 
4086 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4087 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4088 
4089 #endif /* _LINUX_F2FS_H */
4090