1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/fscrypto.h> 26 #include <crypto/hash.h> 27 28 #ifdef CONFIG_F2FS_CHECK_FS 29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 30 #else 31 #define f2fs_bug_on(sbi, condition) \ 32 do { \ 33 if (unlikely(condition)) { \ 34 WARN_ON(1); \ 35 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 36 } \ 37 } while (0) 38 #endif 39 40 #ifdef CONFIG_F2FS_FAULT_INJECTION 41 enum { 42 FAULT_KMALLOC, 43 FAULT_PAGE_ALLOC, 44 FAULT_ALLOC_NID, 45 FAULT_ORPHAN, 46 FAULT_BLOCK, 47 FAULT_DIR_DEPTH, 48 FAULT_MAX, 49 }; 50 51 struct f2fs_fault_info { 52 atomic_t inject_ops; 53 unsigned int inject_rate; 54 unsigned int inject_type; 55 }; 56 57 extern struct f2fs_fault_info f2fs_fault; 58 extern char *fault_name[FAULT_MAX]; 59 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type))) 60 61 static inline bool time_to_inject(int type) 62 { 63 if (!f2fs_fault.inject_rate) 64 return false; 65 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type)) 66 return false; 67 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type)) 68 return false; 69 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type)) 70 return false; 71 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type)) 72 return false; 73 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type)) 74 return false; 75 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type)) 76 return false; 77 78 atomic_inc(&f2fs_fault.inject_ops); 79 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) { 80 atomic_set(&f2fs_fault.inject_ops, 0); 81 printk("%sF2FS-fs : inject %s in %pF\n", 82 KERN_INFO, 83 fault_name[type], 84 __builtin_return_address(0)); 85 return true; 86 } 87 return false; 88 } 89 #endif 90 91 /* 92 * For mount options 93 */ 94 #define F2FS_MOUNT_BG_GC 0x00000001 95 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 96 #define F2FS_MOUNT_DISCARD 0x00000004 97 #define F2FS_MOUNT_NOHEAP 0x00000008 98 #define F2FS_MOUNT_XATTR_USER 0x00000010 99 #define F2FS_MOUNT_POSIX_ACL 0x00000020 100 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 101 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 102 #define F2FS_MOUNT_INLINE_DATA 0x00000100 103 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 104 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 105 #define F2FS_MOUNT_NOBARRIER 0x00000800 106 #define F2FS_MOUNT_FASTBOOT 0x00001000 107 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 108 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 109 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 110 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 111 112 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 113 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 114 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 115 116 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 117 typecheck(unsigned long long, b) && \ 118 ((long long)((a) - (b)) > 0)) 119 120 typedef u32 block_t; /* 121 * should not change u32, since it is the on-disk block 122 * address format, __le32. 123 */ 124 typedef u32 nid_t; 125 126 struct f2fs_mount_info { 127 unsigned int opt; 128 }; 129 130 #define F2FS_FEATURE_ENCRYPT 0x0001 131 132 #define F2FS_HAS_FEATURE(sb, mask) \ 133 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 134 #define F2FS_SET_FEATURE(sb, mask) \ 135 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 136 #define F2FS_CLEAR_FEATURE(sb, mask) \ 137 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 138 139 /* 140 * For checkpoint manager 141 */ 142 enum { 143 NAT_BITMAP, 144 SIT_BITMAP 145 }; 146 147 enum { 148 CP_UMOUNT, 149 CP_FASTBOOT, 150 CP_SYNC, 151 CP_RECOVERY, 152 CP_DISCARD, 153 }; 154 155 #define DEF_BATCHED_TRIM_SECTIONS 32 156 #define BATCHED_TRIM_SEGMENTS(sbi) \ 157 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 158 #define BATCHED_TRIM_BLOCKS(sbi) \ 159 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 160 #define DEF_CP_INTERVAL 60 /* 60 secs */ 161 #define DEF_IDLE_INTERVAL 120 /* 2 mins */ 162 163 struct cp_control { 164 int reason; 165 __u64 trim_start; 166 __u64 trim_end; 167 __u64 trim_minlen; 168 __u64 trimmed; 169 }; 170 171 /* 172 * For CP/NAT/SIT/SSA readahead 173 */ 174 enum { 175 META_CP, 176 META_NAT, 177 META_SIT, 178 META_SSA, 179 META_POR, 180 }; 181 182 /* for the list of ino */ 183 enum { 184 ORPHAN_INO, /* for orphan ino list */ 185 APPEND_INO, /* for append ino list */ 186 UPDATE_INO, /* for update ino list */ 187 MAX_INO_ENTRY, /* max. list */ 188 }; 189 190 struct ino_entry { 191 struct list_head list; /* list head */ 192 nid_t ino; /* inode number */ 193 }; 194 195 /* for the list of inodes to be GCed */ 196 struct inode_entry { 197 struct list_head list; /* list head */ 198 struct inode *inode; /* vfs inode pointer */ 199 }; 200 201 /* for the list of blockaddresses to be discarded */ 202 struct discard_entry { 203 struct list_head list; /* list head */ 204 block_t blkaddr; /* block address to be discarded */ 205 int len; /* # of consecutive blocks of the discard */ 206 }; 207 208 /* for the list of fsync inodes, used only during recovery */ 209 struct fsync_inode_entry { 210 struct list_head list; /* list head */ 211 struct inode *inode; /* vfs inode pointer */ 212 block_t blkaddr; /* block address locating the last fsync */ 213 block_t last_dentry; /* block address locating the last dentry */ 214 }; 215 216 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 217 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 218 219 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 220 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 221 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 222 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 223 224 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 225 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 226 227 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 228 { 229 int before = nats_in_cursum(journal); 230 journal->n_nats = cpu_to_le16(before + i); 231 return before; 232 } 233 234 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 235 { 236 int before = sits_in_cursum(journal); 237 journal->n_sits = cpu_to_le16(before + i); 238 return before; 239 } 240 241 static inline bool __has_cursum_space(struct f2fs_journal *journal, 242 int size, int type) 243 { 244 if (type == NAT_JOURNAL) 245 return size <= MAX_NAT_JENTRIES(journal); 246 return size <= MAX_SIT_JENTRIES(journal); 247 } 248 249 /* 250 * ioctl commands 251 */ 252 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 253 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 254 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 255 256 #define F2FS_IOCTL_MAGIC 0xf5 257 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 258 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 259 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 260 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 261 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 262 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 263 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 264 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 265 266 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 267 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 268 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 269 270 /* 271 * should be same as XFS_IOC_GOINGDOWN. 272 * Flags for going down operation used by FS_IOC_GOINGDOWN 273 */ 274 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 275 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 276 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 277 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 278 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 279 280 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 281 /* 282 * ioctl commands in 32 bit emulation 283 */ 284 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 285 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 286 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 287 #endif 288 289 struct f2fs_defragment { 290 u64 start; 291 u64 len; 292 }; 293 294 /* 295 * For INODE and NODE manager 296 */ 297 /* for directory operations */ 298 struct f2fs_dentry_ptr { 299 struct inode *inode; 300 const void *bitmap; 301 struct f2fs_dir_entry *dentry; 302 __u8 (*filename)[F2FS_SLOT_LEN]; 303 int max; 304 }; 305 306 static inline void make_dentry_ptr(struct inode *inode, 307 struct f2fs_dentry_ptr *d, void *src, int type) 308 { 309 d->inode = inode; 310 311 if (type == 1) { 312 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 313 d->max = NR_DENTRY_IN_BLOCK; 314 d->bitmap = &t->dentry_bitmap; 315 d->dentry = t->dentry; 316 d->filename = t->filename; 317 } else { 318 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 319 d->max = NR_INLINE_DENTRY; 320 d->bitmap = &t->dentry_bitmap; 321 d->dentry = t->dentry; 322 d->filename = t->filename; 323 } 324 } 325 326 /* 327 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 328 * as its node offset to distinguish from index node blocks. 329 * But some bits are used to mark the node block. 330 */ 331 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 332 >> OFFSET_BIT_SHIFT) 333 enum { 334 ALLOC_NODE, /* allocate a new node page if needed */ 335 LOOKUP_NODE, /* look up a node without readahead */ 336 LOOKUP_NODE_RA, /* 337 * look up a node with readahead called 338 * by get_data_block. 339 */ 340 }; 341 342 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 343 344 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 345 346 /* vector size for gang look-up from extent cache that consists of radix tree */ 347 #define EXT_TREE_VEC_SIZE 64 348 349 /* for in-memory extent cache entry */ 350 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 351 352 /* number of extent info in extent cache we try to shrink */ 353 #define EXTENT_CACHE_SHRINK_NUMBER 128 354 355 struct extent_info { 356 unsigned int fofs; /* start offset in a file */ 357 u32 blk; /* start block address of the extent */ 358 unsigned int len; /* length of the extent */ 359 }; 360 361 struct extent_node { 362 struct rb_node rb_node; /* rb node located in rb-tree */ 363 struct list_head list; /* node in global extent list of sbi */ 364 struct extent_info ei; /* extent info */ 365 struct extent_tree *et; /* extent tree pointer */ 366 }; 367 368 struct extent_tree { 369 nid_t ino; /* inode number */ 370 struct rb_root root; /* root of extent info rb-tree */ 371 struct extent_node *cached_en; /* recently accessed extent node */ 372 struct extent_info largest; /* largested extent info */ 373 struct list_head list; /* to be used by sbi->zombie_list */ 374 rwlock_t lock; /* protect extent info rb-tree */ 375 atomic_t node_cnt; /* # of extent node in rb-tree*/ 376 }; 377 378 /* 379 * This structure is taken from ext4_map_blocks. 380 * 381 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 382 */ 383 #define F2FS_MAP_NEW (1 << BH_New) 384 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 385 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 386 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 387 F2FS_MAP_UNWRITTEN) 388 389 struct f2fs_map_blocks { 390 block_t m_pblk; 391 block_t m_lblk; 392 unsigned int m_len; 393 unsigned int m_flags; 394 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 395 }; 396 397 /* for flag in get_data_block */ 398 #define F2FS_GET_BLOCK_READ 0 399 #define F2FS_GET_BLOCK_DIO 1 400 #define F2FS_GET_BLOCK_FIEMAP 2 401 #define F2FS_GET_BLOCK_BMAP 3 402 #define F2FS_GET_BLOCK_PRE_DIO 4 403 #define F2FS_GET_BLOCK_PRE_AIO 5 404 405 /* 406 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 407 */ 408 #define FADVISE_COLD_BIT 0x01 409 #define FADVISE_LOST_PINO_BIT 0x02 410 #define FADVISE_ENCRYPT_BIT 0x04 411 #define FADVISE_ENC_NAME_BIT 0x08 412 413 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 414 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 415 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 416 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 417 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 418 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 419 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 420 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 421 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 422 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 423 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 424 425 #define DEF_DIR_LEVEL 0 426 427 struct f2fs_inode_info { 428 struct inode vfs_inode; /* serve a vfs inode */ 429 unsigned long i_flags; /* keep an inode flags for ioctl */ 430 unsigned char i_advise; /* use to give file attribute hints */ 431 unsigned char i_dir_level; /* use for dentry level for large dir */ 432 unsigned int i_current_depth; /* use only in directory structure */ 433 unsigned int i_pino; /* parent inode number */ 434 umode_t i_acl_mode; /* keep file acl mode temporarily */ 435 436 /* Use below internally in f2fs*/ 437 unsigned long flags; /* use to pass per-file flags */ 438 struct rw_semaphore i_sem; /* protect fi info */ 439 struct percpu_counter dirty_pages; /* # of dirty pages */ 440 f2fs_hash_t chash; /* hash value of given file name */ 441 unsigned int clevel; /* maximum level of given file name */ 442 nid_t i_xattr_nid; /* node id that contains xattrs */ 443 unsigned long long xattr_ver; /* cp version of xattr modification */ 444 445 struct list_head dirty_list; /* linked in global dirty list */ 446 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 447 struct mutex inmem_lock; /* lock for inmemory pages */ 448 struct extent_tree *extent_tree; /* cached extent_tree entry */ 449 }; 450 451 static inline void get_extent_info(struct extent_info *ext, 452 struct f2fs_extent *i_ext) 453 { 454 ext->fofs = le32_to_cpu(i_ext->fofs); 455 ext->blk = le32_to_cpu(i_ext->blk); 456 ext->len = le32_to_cpu(i_ext->len); 457 } 458 459 static inline void set_raw_extent(struct extent_info *ext, 460 struct f2fs_extent *i_ext) 461 { 462 i_ext->fofs = cpu_to_le32(ext->fofs); 463 i_ext->blk = cpu_to_le32(ext->blk); 464 i_ext->len = cpu_to_le32(ext->len); 465 } 466 467 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 468 u32 blk, unsigned int len) 469 { 470 ei->fofs = fofs; 471 ei->blk = blk; 472 ei->len = len; 473 } 474 475 static inline bool __is_extent_same(struct extent_info *ei1, 476 struct extent_info *ei2) 477 { 478 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 479 ei1->len == ei2->len); 480 } 481 482 static inline bool __is_extent_mergeable(struct extent_info *back, 483 struct extent_info *front) 484 { 485 return (back->fofs + back->len == front->fofs && 486 back->blk + back->len == front->blk); 487 } 488 489 static inline bool __is_back_mergeable(struct extent_info *cur, 490 struct extent_info *back) 491 { 492 return __is_extent_mergeable(back, cur); 493 } 494 495 static inline bool __is_front_mergeable(struct extent_info *cur, 496 struct extent_info *front) 497 { 498 return __is_extent_mergeable(cur, front); 499 } 500 501 static inline void __try_update_largest_extent(struct extent_tree *et, 502 struct extent_node *en) 503 { 504 if (en->ei.len > et->largest.len) 505 et->largest = en->ei; 506 } 507 508 struct f2fs_nm_info { 509 block_t nat_blkaddr; /* base disk address of NAT */ 510 nid_t max_nid; /* maximum possible node ids */ 511 nid_t available_nids; /* maximum available node ids */ 512 nid_t next_scan_nid; /* the next nid to be scanned */ 513 unsigned int ram_thresh; /* control the memory footprint */ 514 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 515 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 516 517 /* NAT cache management */ 518 struct radix_tree_root nat_root;/* root of the nat entry cache */ 519 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 520 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 521 struct list_head nat_entries; /* cached nat entry list (clean) */ 522 unsigned int nat_cnt; /* the # of cached nat entries */ 523 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 524 525 /* free node ids management */ 526 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 527 struct list_head free_nid_list; /* a list for free nids */ 528 spinlock_t free_nid_list_lock; /* protect free nid list */ 529 unsigned int fcnt; /* the number of free node id */ 530 struct mutex build_lock; /* lock for build free nids */ 531 532 /* for checkpoint */ 533 char *nat_bitmap; /* NAT bitmap pointer */ 534 int bitmap_size; /* bitmap size */ 535 }; 536 537 /* 538 * this structure is used as one of function parameters. 539 * all the information are dedicated to a given direct node block determined 540 * by the data offset in a file. 541 */ 542 struct dnode_of_data { 543 struct inode *inode; /* vfs inode pointer */ 544 struct page *inode_page; /* its inode page, NULL is possible */ 545 struct page *node_page; /* cached direct node page */ 546 nid_t nid; /* node id of the direct node block */ 547 unsigned int ofs_in_node; /* data offset in the node page */ 548 bool inode_page_locked; /* inode page is locked or not */ 549 bool node_changed; /* is node block changed */ 550 char cur_level; /* level of hole node page */ 551 char max_level; /* level of current page located */ 552 block_t data_blkaddr; /* block address of the node block */ 553 }; 554 555 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 556 struct page *ipage, struct page *npage, nid_t nid) 557 { 558 memset(dn, 0, sizeof(*dn)); 559 dn->inode = inode; 560 dn->inode_page = ipage; 561 dn->node_page = npage; 562 dn->nid = nid; 563 } 564 565 /* 566 * For SIT manager 567 * 568 * By default, there are 6 active log areas across the whole main area. 569 * When considering hot and cold data separation to reduce cleaning overhead, 570 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 571 * respectively. 572 * In the current design, you should not change the numbers intentionally. 573 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 574 * logs individually according to the underlying devices. (default: 6) 575 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 576 * data and 8 for node logs. 577 */ 578 #define NR_CURSEG_DATA_TYPE (3) 579 #define NR_CURSEG_NODE_TYPE (3) 580 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 581 582 enum { 583 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 584 CURSEG_WARM_DATA, /* data blocks */ 585 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 586 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 587 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 588 CURSEG_COLD_NODE, /* indirect node blocks */ 589 NO_CHECK_TYPE, 590 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 591 }; 592 593 struct flush_cmd { 594 struct completion wait; 595 struct llist_node llnode; 596 int ret; 597 }; 598 599 struct flush_cmd_control { 600 struct task_struct *f2fs_issue_flush; /* flush thread */ 601 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 602 struct llist_head issue_list; /* list for command issue */ 603 struct llist_node *dispatch_list; /* list for command dispatch */ 604 }; 605 606 struct f2fs_sm_info { 607 struct sit_info *sit_info; /* whole segment information */ 608 struct free_segmap_info *free_info; /* free segment information */ 609 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 610 struct curseg_info *curseg_array; /* active segment information */ 611 612 block_t seg0_blkaddr; /* block address of 0'th segment */ 613 block_t main_blkaddr; /* start block address of main area */ 614 block_t ssa_blkaddr; /* start block address of SSA area */ 615 616 unsigned int segment_count; /* total # of segments */ 617 unsigned int main_segments; /* # of segments in main area */ 618 unsigned int reserved_segments; /* # of reserved segments */ 619 unsigned int ovp_segments; /* # of overprovision segments */ 620 621 /* a threshold to reclaim prefree segments */ 622 unsigned int rec_prefree_segments; 623 624 /* for small discard management */ 625 struct list_head discard_list; /* 4KB discard list */ 626 int nr_discards; /* # of discards in the list */ 627 int max_discards; /* max. discards to be issued */ 628 629 /* for batched trimming */ 630 unsigned int trim_sections; /* # of sections to trim */ 631 632 struct list_head sit_entry_set; /* sit entry set list */ 633 634 unsigned int ipu_policy; /* in-place-update policy */ 635 unsigned int min_ipu_util; /* in-place-update threshold */ 636 unsigned int min_fsync_blocks; /* threshold for fsync */ 637 638 /* for flush command control */ 639 struct flush_cmd_control *cmd_control_info; 640 641 }; 642 643 /* 644 * For superblock 645 */ 646 /* 647 * COUNT_TYPE for monitoring 648 * 649 * f2fs monitors the number of several block types such as on-writeback, 650 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 651 */ 652 enum count_type { 653 F2FS_DIRTY_DENTS, 654 F2FS_DIRTY_DATA, 655 F2FS_DIRTY_NODES, 656 F2FS_DIRTY_META, 657 F2FS_INMEM_PAGES, 658 NR_COUNT_TYPE, 659 }; 660 661 /* 662 * The below are the page types of bios used in submit_bio(). 663 * The available types are: 664 * DATA User data pages. It operates as async mode. 665 * NODE Node pages. It operates as async mode. 666 * META FS metadata pages such as SIT, NAT, CP. 667 * NR_PAGE_TYPE The number of page types. 668 * META_FLUSH Make sure the previous pages are written 669 * with waiting the bio's completion 670 * ... Only can be used with META. 671 */ 672 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 673 enum page_type { 674 DATA, 675 NODE, 676 META, 677 NR_PAGE_TYPE, 678 META_FLUSH, 679 INMEM, /* the below types are used by tracepoints only. */ 680 INMEM_DROP, 681 INMEM_REVOKE, 682 IPU, 683 OPU, 684 }; 685 686 struct f2fs_io_info { 687 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 688 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 689 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 690 block_t new_blkaddr; /* new block address to be written */ 691 block_t old_blkaddr; /* old block address before Cow */ 692 struct page *page; /* page to be written */ 693 struct page *encrypted_page; /* encrypted page */ 694 }; 695 696 #define is_read_io(rw) (((rw) & 1) == READ) 697 struct f2fs_bio_info { 698 struct f2fs_sb_info *sbi; /* f2fs superblock */ 699 struct bio *bio; /* bios to merge */ 700 sector_t last_block_in_bio; /* last block number */ 701 struct f2fs_io_info fio; /* store buffered io info. */ 702 struct rw_semaphore io_rwsem; /* blocking op for bio */ 703 }; 704 705 enum inode_type { 706 DIR_INODE, /* for dirty dir inode */ 707 FILE_INODE, /* for dirty regular/symlink inode */ 708 NR_INODE_TYPE, 709 }; 710 711 /* for inner inode cache management */ 712 struct inode_management { 713 struct radix_tree_root ino_root; /* ino entry array */ 714 spinlock_t ino_lock; /* for ino entry lock */ 715 struct list_head ino_list; /* inode list head */ 716 unsigned long ino_num; /* number of entries */ 717 }; 718 719 /* For s_flag in struct f2fs_sb_info */ 720 enum { 721 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 722 SBI_IS_CLOSE, /* specify unmounting */ 723 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 724 SBI_POR_DOING, /* recovery is doing or not */ 725 SBI_NEED_SB_WRITE, /* need to recover superblock */ 726 }; 727 728 enum { 729 CP_TIME, 730 REQ_TIME, 731 MAX_TIME, 732 }; 733 734 #ifdef CONFIG_F2FS_FS_ENCRYPTION 735 #define F2FS_KEY_DESC_PREFIX "f2fs:" 736 #define F2FS_KEY_DESC_PREFIX_SIZE 5 737 #endif 738 struct f2fs_sb_info { 739 struct super_block *sb; /* pointer to VFS super block */ 740 struct proc_dir_entry *s_proc; /* proc entry */ 741 struct f2fs_super_block *raw_super; /* raw super block pointer */ 742 int valid_super_block; /* valid super block no */ 743 int s_flag; /* flags for sbi */ 744 745 #ifdef CONFIG_F2FS_FS_ENCRYPTION 746 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE]; 747 u8 key_prefix_size; 748 #endif 749 /* for node-related operations */ 750 struct f2fs_nm_info *nm_info; /* node manager */ 751 struct inode *node_inode; /* cache node blocks */ 752 753 /* for segment-related operations */ 754 struct f2fs_sm_info *sm_info; /* segment manager */ 755 756 /* for bio operations */ 757 struct f2fs_bio_info read_io; /* for read bios */ 758 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 759 760 /* for checkpoint */ 761 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 762 struct inode *meta_inode; /* cache meta blocks */ 763 struct mutex cp_mutex; /* checkpoint procedure lock */ 764 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 765 struct rw_semaphore node_write; /* locking node writes */ 766 struct mutex writepages; /* mutex for writepages() */ 767 wait_queue_head_t cp_wait; 768 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 769 long interval_time[MAX_TIME]; /* to store thresholds */ 770 771 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 772 773 /* for orphan inode, use 0'th array */ 774 unsigned int max_orphans; /* max orphan inodes */ 775 776 /* for inode management */ 777 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 778 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 779 780 /* for extent tree cache */ 781 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 782 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 783 struct list_head extent_list; /* lru list for shrinker */ 784 spinlock_t extent_lock; /* locking extent lru list */ 785 atomic_t total_ext_tree; /* extent tree count */ 786 struct list_head zombie_list; /* extent zombie tree list */ 787 atomic_t total_zombie_tree; /* extent zombie tree count */ 788 atomic_t total_ext_node; /* extent info count */ 789 790 /* basic filesystem units */ 791 unsigned int log_sectors_per_block; /* log2 sectors per block */ 792 unsigned int log_blocksize; /* log2 block size */ 793 unsigned int blocksize; /* block size */ 794 unsigned int root_ino_num; /* root inode number*/ 795 unsigned int node_ino_num; /* node inode number*/ 796 unsigned int meta_ino_num; /* meta inode number*/ 797 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 798 unsigned int blocks_per_seg; /* blocks per segment */ 799 unsigned int segs_per_sec; /* segments per section */ 800 unsigned int secs_per_zone; /* sections per zone */ 801 unsigned int total_sections; /* total section count */ 802 unsigned int total_node_count; /* total node block count */ 803 unsigned int total_valid_node_count; /* valid node block count */ 804 loff_t max_file_blocks; /* max block index of file */ 805 int active_logs; /* # of active logs */ 806 int dir_level; /* directory level */ 807 808 block_t user_block_count; /* # of user blocks */ 809 block_t total_valid_block_count; /* # of valid blocks */ 810 block_t discard_blks; /* discard command candidats */ 811 block_t last_valid_block_count; /* for recovery */ 812 u32 s_next_generation; /* for NFS support */ 813 atomic_t nr_wb_bios; /* # of writeback bios */ 814 815 /* # of pages, see count_type */ 816 struct percpu_counter nr_pages[NR_COUNT_TYPE]; 817 /* # of allocated blocks */ 818 struct percpu_counter alloc_valid_block_count; 819 820 /* valid inode count */ 821 struct percpu_counter total_valid_inode_count; 822 823 struct f2fs_mount_info mount_opt; /* mount options */ 824 825 /* for cleaning operations */ 826 struct mutex gc_mutex; /* mutex for GC */ 827 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 828 unsigned int cur_victim_sec; /* current victim section num */ 829 830 /* maximum # of trials to find a victim segment for SSR and GC */ 831 unsigned int max_victim_search; 832 833 /* 834 * for stat information. 835 * one is for the LFS mode, and the other is for the SSR mode. 836 */ 837 #ifdef CONFIG_F2FS_STAT_FS 838 struct f2fs_stat_info *stat_info; /* FS status information */ 839 unsigned int segment_count[2]; /* # of allocated segments */ 840 unsigned int block_count[2]; /* # of allocated blocks */ 841 atomic_t inplace_count; /* # of inplace update */ 842 atomic64_t total_hit_ext; /* # of lookup extent cache */ 843 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 844 atomic64_t read_hit_largest; /* # of hit largest extent node */ 845 atomic64_t read_hit_cached; /* # of hit cached extent node */ 846 atomic_t inline_xattr; /* # of inline_xattr inodes */ 847 atomic_t inline_inode; /* # of inline_data inodes */ 848 atomic_t inline_dir; /* # of inline_dentry inodes */ 849 int bg_gc; /* background gc calls */ 850 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 851 #endif 852 unsigned int last_victim[2]; /* last victim segment # */ 853 spinlock_t stat_lock; /* lock for stat operations */ 854 855 /* For sysfs suppport */ 856 struct kobject s_kobj; 857 struct completion s_kobj_unregister; 858 859 /* For shrinker support */ 860 struct list_head s_list; 861 struct mutex umount_mutex; 862 unsigned int shrinker_run_no; 863 864 /* For write statistics */ 865 u64 sectors_written_start; 866 u64 kbytes_written; 867 868 /* Reference to checksum algorithm driver via cryptoapi */ 869 struct crypto_shash *s_chksum_driver; 870 }; 871 872 /* For write statistics. Suppose sector size is 512 bytes, 873 * and the return value is in kbytes. s is of struct f2fs_sb_info. 874 */ 875 #define BD_PART_WRITTEN(s) \ 876 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 877 s->sectors_written_start) >> 1) 878 879 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 880 { 881 sbi->last_time[type] = jiffies; 882 } 883 884 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 885 { 886 struct timespec ts = {sbi->interval_time[type], 0}; 887 unsigned long interval = timespec_to_jiffies(&ts); 888 889 return time_after(jiffies, sbi->last_time[type] + interval); 890 } 891 892 static inline bool is_idle(struct f2fs_sb_info *sbi) 893 { 894 struct block_device *bdev = sbi->sb->s_bdev; 895 struct request_queue *q = bdev_get_queue(bdev); 896 struct request_list *rl = &q->root_rl; 897 898 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 899 return 0; 900 901 return f2fs_time_over(sbi, REQ_TIME); 902 } 903 904 /* 905 * Inline functions 906 */ 907 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 908 unsigned int length) 909 { 910 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 911 u32 *ctx = (u32 *)shash_desc_ctx(shash); 912 int err; 913 914 shash->tfm = sbi->s_chksum_driver; 915 shash->flags = 0; 916 *ctx = F2FS_SUPER_MAGIC; 917 918 err = crypto_shash_update(shash, address, length); 919 BUG_ON(err); 920 921 return *ctx; 922 } 923 924 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 925 void *buf, size_t buf_size) 926 { 927 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 928 } 929 930 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 931 { 932 return container_of(inode, struct f2fs_inode_info, vfs_inode); 933 } 934 935 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 936 { 937 return sb->s_fs_info; 938 } 939 940 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 941 { 942 return F2FS_SB(inode->i_sb); 943 } 944 945 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 946 { 947 return F2FS_I_SB(mapping->host); 948 } 949 950 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 951 { 952 return F2FS_M_SB(page->mapping); 953 } 954 955 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 956 { 957 return (struct f2fs_super_block *)(sbi->raw_super); 958 } 959 960 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 961 { 962 return (struct f2fs_checkpoint *)(sbi->ckpt); 963 } 964 965 static inline struct f2fs_node *F2FS_NODE(struct page *page) 966 { 967 return (struct f2fs_node *)page_address(page); 968 } 969 970 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 971 { 972 return &((struct f2fs_node *)page_address(page))->i; 973 } 974 975 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 976 { 977 return (struct f2fs_nm_info *)(sbi->nm_info); 978 } 979 980 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 981 { 982 return (struct f2fs_sm_info *)(sbi->sm_info); 983 } 984 985 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 986 { 987 return (struct sit_info *)(SM_I(sbi)->sit_info); 988 } 989 990 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 991 { 992 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 993 } 994 995 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 996 { 997 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 998 } 999 1000 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1001 { 1002 return sbi->meta_inode->i_mapping; 1003 } 1004 1005 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1006 { 1007 return sbi->node_inode->i_mapping; 1008 } 1009 1010 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1011 { 1012 return sbi->s_flag & (0x01 << type); 1013 } 1014 1015 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1016 { 1017 sbi->s_flag |= (0x01 << type); 1018 } 1019 1020 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1021 { 1022 sbi->s_flag &= ~(0x01 << type); 1023 } 1024 1025 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1026 { 1027 return le64_to_cpu(cp->checkpoint_ver); 1028 } 1029 1030 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1031 { 1032 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1033 return ckpt_flags & f; 1034 } 1035 1036 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1037 { 1038 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1039 ckpt_flags |= f; 1040 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1041 } 1042 1043 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1044 { 1045 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1046 ckpt_flags &= (~f); 1047 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1048 } 1049 1050 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1051 { 1052 down_read(&sbi->cp_rwsem); 1053 } 1054 1055 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1056 { 1057 up_read(&sbi->cp_rwsem); 1058 } 1059 1060 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1061 { 1062 down_write(&sbi->cp_rwsem); 1063 } 1064 1065 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1066 { 1067 up_write(&sbi->cp_rwsem); 1068 } 1069 1070 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1071 { 1072 int reason = CP_SYNC; 1073 1074 if (test_opt(sbi, FASTBOOT)) 1075 reason = CP_FASTBOOT; 1076 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1077 reason = CP_UMOUNT; 1078 return reason; 1079 } 1080 1081 static inline bool __remain_node_summaries(int reason) 1082 { 1083 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1084 } 1085 1086 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1087 { 1088 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 1089 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 1090 } 1091 1092 /* 1093 * Check whether the given nid is within node id range. 1094 */ 1095 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1096 { 1097 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1098 return -EINVAL; 1099 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1100 return -EINVAL; 1101 return 0; 1102 } 1103 1104 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1105 1106 /* 1107 * Check whether the inode has blocks or not 1108 */ 1109 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1110 { 1111 if (F2FS_I(inode)->i_xattr_nid) 1112 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1113 else 1114 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1115 } 1116 1117 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1118 { 1119 return ofs == XATTR_NODE_OFFSET; 1120 } 1121 1122 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1123 struct inode *inode, blkcnt_t *count) 1124 { 1125 block_t valid_block_count; 1126 1127 spin_lock(&sbi->stat_lock); 1128 #ifdef CONFIG_F2FS_FAULT_INJECTION 1129 if (time_to_inject(FAULT_BLOCK)) { 1130 spin_unlock(&sbi->stat_lock); 1131 return false; 1132 } 1133 #endif 1134 valid_block_count = 1135 sbi->total_valid_block_count + (block_t)(*count); 1136 if (unlikely(valid_block_count > sbi->user_block_count)) { 1137 *count = sbi->user_block_count - sbi->total_valid_block_count; 1138 if (!*count) { 1139 spin_unlock(&sbi->stat_lock); 1140 return false; 1141 } 1142 } 1143 /* *count can be recalculated */ 1144 inode->i_blocks += *count; 1145 sbi->total_valid_block_count = 1146 sbi->total_valid_block_count + (block_t)(*count); 1147 spin_unlock(&sbi->stat_lock); 1148 1149 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1150 return true; 1151 } 1152 1153 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1154 struct inode *inode, 1155 blkcnt_t count) 1156 { 1157 spin_lock(&sbi->stat_lock); 1158 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1159 f2fs_bug_on(sbi, inode->i_blocks < count); 1160 inode->i_blocks -= count; 1161 sbi->total_valid_block_count -= (block_t)count; 1162 spin_unlock(&sbi->stat_lock); 1163 } 1164 1165 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1166 { 1167 percpu_counter_inc(&sbi->nr_pages[count_type]); 1168 set_sbi_flag(sbi, SBI_IS_DIRTY); 1169 } 1170 1171 static inline void inode_inc_dirty_pages(struct inode *inode) 1172 { 1173 percpu_counter_inc(&F2FS_I(inode)->dirty_pages); 1174 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1175 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1176 } 1177 1178 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1179 { 1180 percpu_counter_dec(&sbi->nr_pages[count_type]); 1181 } 1182 1183 static inline void inode_dec_dirty_pages(struct inode *inode) 1184 { 1185 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1186 !S_ISLNK(inode->i_mode)) 1187 return; 1188 1189 percpu_counter_dec(&F2FS_I(inode)->dirty_pages); 1190 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1191 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1192 } 1193 1194 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1195 { 1196 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]); 1197 } 1198 1199 static inline s64 get_dirty_pages(struct inode *inode) 1200 { 1201 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages); 1202 } 1203 1204 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1205 { 1206 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1207 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1208 sbi->log_blocks_per_seg; 1209 1210 return segs / sbi->segs_per_sec; 1211 } 1212 1213 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1214 { 1215 return sbi->total_valid_block_count; 1216 } 1217 1218 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1219 { 1220 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1221 1222 /* return NAT or SIT bitmap */ 1223 if (flag == NAT_BITMAP) 1224 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1225 else if (flag == SIT_BITMAP) 1226 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1227 1228 return 0; 1229 } 1230 1231 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1232 { 1233 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1234 } 1235 1236 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1237 { 1238 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1239 int offset; 1240 1241 if (__cp_payload(sbi) > 0) { 1242 if (flag == NAT_BITMAP) 1243 return &ckpt->sit_nat_version_bitmap; 1244 else 1245 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1246 } else { 1247 offset = (flag == NAT_BITMAP) ? 1248 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1249 return &ckpt->sit_nat_version_bitmap + offset; 1250 } 1251 } 1252 1253 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1254 { 1255 block_t start_addr; 1256 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1257 unsigned long long ckpt_version = cur_cp_version(ckpt); 1258 1259 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1260 1261 /* 1262 * odd numbered checkpoint should at cp segment 0 1263 * and even segment must be at cp segment 1 1264 */ 1265 if (!(ckpt_version & 1)) 1266 start_addr += sbi->blocks_per_seg; 1267 1268 return start_addr; 1269 } 1270 1271 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1272 { 1273 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1274 } 1275 1276 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1277 struct inode *inode) 1278 { 1279 block_t valid_block_count; 1280 unsigned int valid_node_count; 1281 1282 spin_lock(&sbi->stat_lock); 1283 1284 valid_block_count = sbi->total_valid_block_count + 1; 1285 if (unlikely(valid_block_count > sbi->user_block_count)) { 1286 spin_unlock(&sbi->stat_lock); 1287 return false; 1288 } 1289 1290 valid_node_count = sbi->total_valid_node_count + 1; 1291 if (unlikely(valid_node_count > sbi->total_node_count)) { 1292 spin_unlock(&sbi->stat_lock); 1293 return false; 1294 } 1295 1296 if (inode) 1297 inode->i_blocks++; 1298 1299 sbi->total_valid_node_count++; 1300 sbi->total_valid_block_count++; 1301 spin_unlock(&sbi->stat_lock); 1302 1303 percpu_counter_inc(&sbi->alloc_valid_block_count); 1304 return true; 1305 } 1306 1307 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1308 struct inode *inode) 1309 { 1310 spin_lock(&sbi->stat_lock); 1311 1312 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1313 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1314 f2fs_bug_on(sbi, !inode->i_blocks); 1315 1316 inode->i_blocks--; 1317 sbi->total_valid_node_count--; 1318 sbi->total_valid_block_count--; 1319 1320 spin_unlock(&sbi->stat_lock); 1321 } 1322 1323 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1324 { 1325 return sbi->total_valid_node_count; 1326 } 1327 1328 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1329 { 1330 percpu_counter_inc(&sbi->total_valid_inode_count); 1331 } 1332 1333 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1334 { 1335 percpu_counter_dec(&sbi->total_valid_inode_count); 1336 } 1337 1338 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1339 { 1340 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1341 } 1342 1343 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1344 pgoff_t index, bool for_write) 1345 { 1346 #ifdef CONFIG_F2FS_FAULT_INJECTION 1347 struct page *page = find_lock_page(mapping, index); 1348 if (page) 1349 return page; 1350 1351 if (time_to_inject(FAULT_PAGE_ALLOC)) 1352 return NULL; 1353 #endif 1354 if (!for_write) 1355 return grab_cache_page(mapping, index); 1356 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1357 } 1358 1359 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1360 { 1361 char *src_kaddr = kmap(src); 1362 char *dst_kaddr = kmap(dst); 1363 1364 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1365 kunmap(dst); 1366 kunmap(src); 1367 } 1368 1369 static inline void f2fs_put_page(struct page *page, int unlock) 1370 { 1371 if (!page) 1372 return; 1373 1374 if (unlock) { 1375 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1376 unlock_page(page); 1377 } 1378 put_page(page); 1379 } 1380 1381 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1382 { 1383 if (dn->node_page) 1384 f2fs_put_page(dn->node_page, 1); 1385 if (dn->inode_page && dn->node_page != dn->inode_page) 1386 f2fs_put_page(dn->inode_page, 0); 1387 dn->node_page = NULL; 1388 dn->inode_page = NULL; 1389 } 1390 1391 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1392 size_t size) 1393 { 1394 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1395 } 1396 1397 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1398 gfp_t flags) 1399 { 1400 void *entry; 1401 1402 entry = kmem_cache_alloc(cachep, flags); 1403 if (!entry) 1404 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1405 return entry; 1406 } 1407 1408 static inline struct bio *f2fs_bio_alloc(int npages) 1409 { 1410 struct bio *bio; 1411 1412 /* No failure on bio allocation */ 1413 bio = bio_alloc(GFP_NOIO, npages); 1414 if (!bio) 1415 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1416 return bio; 1417 } 1418 1419 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1420 unsigned long index, void *item) 1421 { 1422 while (radix_tree_insert(root, index, item)) 1423 cond_resched(); 1424 } 1425 1426 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1427 1428 static inline bool IS_INODE(struct page *page) 1429 { 1430 struct f2fs_node *p = F2FS_NODE(page); 1431 return RAW_IS_INODE(p); 1432 } 1433 1434 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1435 { 1436 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1437 } 1438 1439 static inline block_t datablock_addr(struct page *node_page, 1440 unsigned int offset) 1441 { 1442 struct f2fs_node *raw_node; 1443 __le32 *addr_array; 1444 raw_node = F2FS_NODE(node_page); 1445 addr_array = blkaddr_in_node(raw_node); 1446 return le32_to_cpu(addr_array[offset]); 1447 } 1448 1449 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1450 { 1451 int mask; 1452 1453 addr += (nr >> 3); 1454 mask = 1 << (7 - (nr & 0x07)); 1455 return mask & *addr; 1456 } 1457 1458 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1459 { 1460 int mask; 1461 1462 addr += (nr >> 3); 1463 mask = 1 << (7 - (nr & 0x07)); 1464 *addr |= mask; 1465 } 1466 1467 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1468 { 1469 int mask; 1470 1471 addr += (nr >> 3); 1472 mask = 1 << (7 - (nr & 0x07)); 1473 *addr &= ~mask; 1474 } 1475 1476 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1477 { 1478 int mask; 1479 int ret; 1480 1481 addr += (nr >> 3); 1482 mask = 1 << (7 - (nr & 0x07)); 1483 ret = mask & *addr; 1484 *addr |= mask; 1485 return ret; 1486 } 1487 1488 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1489 { 1490 int mask; 1491 int ret; 1492 1493 addr += (nr >> 3); 1494 mask = 1 << (7 - (nr & 0x07)); 1495 ret = mask & *addr; 1496 *addr &= ~mask; 1497 return ret; 1498 } 1499 1500 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1501 { 1502 int mask; 1503 1504 addr += (nr >> 3); 1505 mask = 1 << (7 - (nr & 0x07)); 1506 *addr ^= mask; 1507 } 1508 1509 /* used for f2fs_inode_info->flags */ 1510 enum { 1511 FI_NEW_INODE, /* indicate newly allocated inode */ 1512 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1513 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1514 FI_INC_LINK, /* need to increment i_nlink */ 1515 FI_ACL_MODE, /* indicate acl mode */ 1516 FI_NO_ALLOC, /* should not allocate any blocks */ 1517 FI_FREE_NID, /* free allocated nide */ 1518 FI_UPDATE_DIR, /* should update inode block for consistency */ 1519 FI_NO_EXTENT, /* not to use the extent cache */ 1520 FI_INLINE_XATTR, /* used for inline xattr */ 1521 FI_INLINE_DATA, /* used for inline data*/ 1522 FI_INLINE_DENTRY, /* used for inline dentry */ 1523 FI_APPEND_WRITE, /* inode has appended data */ 1524 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1525 FI_NEED_IPU, /* used for ipu per file */ 1526 FI_ATOMIC_FILE, /* indicate atomic file */ 1527 FI_VOLATILE_FILE, /* indicate volatile file */ 1528 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1529 FI_DROP_CACHE, /* drop dirty page cache */ 1530 FI_DATA_EXIST, /* indicate data exists */ 1531 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1532 FI_DO_DEFRAG, /* indicate defragment is running */ 1533 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1534 }; 1535 1536 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 1537 { 1538 if (!test_bit(flag, &fi->flags)) 1539 set_bit(flag, &fi->flags); 1540 } 1541 1542 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 1543 { 1544 return test_bit(flag, &fi->flags); 1545 } 1546 1547 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1548 { 1549 if (test_bit(flag, &fi->flags)) 1550 clear_bit(flag, &fi->flags); 1551 } 1552 1553 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1554 { 1555 fi->i_acl_mode = mode; 1556 set_inode_flag(fi, FI_ACL_MODE); 1557 } 1558 1559 static inline void get_inline_info(struct f2fs_inode_info *fi, 1560 struct f2fs_inode *ri) 1561 { 1562 if (ri->i_inline & F2FS_INLINE_XATTR) 1563 set_inode_flag(fi, FI_INLINE_XATTR); 1564 if (ri->i_inline & F2FS_INLINE_DATA) 1565 set_inode_flag(fi, FI_INLINE_DATA); 1566 if (ri->i_inline & F2FS_INLINE_DENTRY) 1567 set_inode_flag(fi, FI_INLINE_DENTRY); 1568 if (ri->i_inline & F2FS_DATA_EXIST) 1569 set_inode_flag(fi, FI_DATA_EXIST); 1570 if (ri->i_inline & F2FS_INLINE_DOTS) 1571 set_inode_flag(fi, FI_INLINE_DOTS); 1572 } 1573 1574 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1575 struct f2fs_inode *ri) 1576 { 1577 ri->i_inline = 0; 1578 1579 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1580 ri->i_inline |= F2FS_INLINE_XATTR; 1581 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1582 ri->i_inline |= F2FS_INLINE_DATA; 1583 if (is_inode_flag_set(fi, FI_INLINE_DENTRY)) 1584 ri->i_inline |= F2FS_INLINE_DENTRY; 1585 if (is_inode_flag_set(fi, FI_DATA_EXIST)) 1586 ri->i_inline |= F2FS_DATA_EXIST; 1587 if (is_inode_flag_set(fi, FI_INLINE_DOTS)) 1588 ri->i_inline |= F2FS_INLINE_DOTS; 1589 } 1590 1591 static inline int f2fs_has_inline_xattr(struct inode *inode) 1592 { 1593 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1594 } 1595 1596 static inline unsigned int addrs_per_inode(struct inode *inode) 1597 { 1598 if (f2fs_has_inline_xattr(inode)) 1599 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1600 return DEF_ADDRS_PER_INODE; 1601 } 1602 1603 static inline void *inline_xattr_addr(struct page *page) 1604 { 1605 struct f2fs_inode *ri = F2FS_INODE(page); 1606 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1607 F2FS_INLINE_XATTR_ADDRS]); 1608 } 1609 1610 static inline int inline_xattr_size(struct inode *inode) 1611 { 1612 if (f2fs_has_inline_xattr(inode)) 1613 return F2FS_INLINE_XATTR_ADDRS << 2; 1614 else 1615 return 0; 1616 } 1617 1618 static inline int f2fs_has_inline_data(struct inode *inode) 1619 { 1620 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1621 } 1622 1623 static inline void f2fs_clear_inline_inode(struct inode *inode) 1624 { 1625 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 1626 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1627 } 1628 1629 static inline int f2fs_exist_data(struct inode *inode) 1630 { 1631 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST); 1632 } 1633 1634 static inline int f2fs_has_inline_dots(struct inode *inode) 1635 { 1636 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS); 1637 } 1638 1639 static inline bool f2fs_is_atomic_file(struct inode *inode) 1640 { 1641 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE); 1642 } 1643 1644 static inline bool f2fs_is_volatile_file(struct inode *inode) 1645 { 1646 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE); 1647 } 1648 1649 static inline bool f2fs_is_first_block_written(struct inode *inode) 1650 { 1651 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 1652 } 1653 1654 static inline bool f2fs_is_drop_cache(struct inode *inode) 1655 { 1656 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE); 1657 } 1658 1659 static inline void *inline_data_addr(struct page *page) 1660 { 1661 struct f2fs_inode *ri = F2FS_INODE(page); 1662 return (void *)&(ri->i_addr[1]); 1663 } 1664 1665 static inline int f2fs_has_inline_dentry(struct inode *inode) 1666 { 1667 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY); 1668 } 1669 1670 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1671 { 1672 if (!f2fs_has_inline_dentry(dir)) 1673 kunmap(page); 1674 } 1675 1676 static inline int is_file(struct inode *inode, int type) 1677 { 1678 return F2FS_I(inode)->i_advise & type; 1679 } 1680 1681 static inline void set_file(struct inode *inode, int type) 1682 { 1683 F2FS_I(inode)->i_advise |= type; 1684 } 1685 1686 static inline void clear_file(struct inode *inode, int type) 1687 { 1688 F2FS_I(inode)->i_advise &= ~type; 1689 } 1690 1691 static inline int f2fs_readonly(struct super_block *sb) 1692 { 1693 return sb->s_flags & MS_RDONLY; 1694 } 1695 1696 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1697 { 1698 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1699 } 1700 1701 static inline bool is_dot_dotdot(const struct qstr *str) 1702 { 1703 if (str->len == 1 && str->name[0] == '.') 1704 return true; 1705 1706 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1707 return true; 1708 1709 return false; 1710 } 1711 1712 static inline bool f2fs_may_extent_tree(struct inode *inode) 1713 { 1714 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1715 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) 1716 return false; 1717 1718 return S_ISREG(inode->i_mode); 1719 } 1720 1721 static inline void *f2fs_kmalloc(size_t size, gfp_t flags) 1722 { 1723 #ifdef CONFIG_F2FS_FAULT_INJECTION 1724 if (time_to_inject(FAULT_KMALLOC)) 1725 return NULL; 1726 #endif 1727 return kmalloc(size, flags); 1728 } 1729 1730 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 1731 { 1732 void *ret; 1733 1734 ret = kmalloc(size, flags | __GFP_NOWARN); 1735 if (!ret) 1736 ret = __vmalloc(size, flags, PAGE_KERNEL); 1737 return ret; 1738 } 1739 1740 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 1741 { 1742 void *ret; 1743 1744 ret = kzalloc(size, flags | __GFP_NOWARN); 1745 if (!ret) 1746 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 1747 return ret; 1748 } 1749 1750 #define get_inode_mode(i) \ 1751 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1752 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1753 1754 /* get offset of first page in next direct node */ 1755 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 1756 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 1757 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 1758 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 1759 1760 /* 1761 * file.c 1762 */ 1763 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1764 void truncate_data_blocks(struct dnode_of_data *); 1765 int truncate_blocks(struct inode *, u64, bool); 1766 int f2fs_truncate(struct inode *, bool); 1767 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1768 int f2fs_setattr(struct dentry *, struct iattr *); 1769 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1770 int truncate_data_blocks_range(struct dnode_of_data *, int); 1771 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1772 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1773 1774 /* 1775 * inode.c 1776 */ 1777 void f2fs_set_inode_flags(struct inode *); 1778 struct inode *f2fs_iget(struct super_block *, unsigned long); 1779 int try_to_free_nats(struct f2fs_sb_info *, int); 1780 int update_inode(struct inode *, struct page *); 1781 int update_inode_page(struct inode *); 1782 int f2fs_write_inode(struct inode *, struct writeback_control *); 1783 void f2fs_evict_inode(struct inode *); 1784 void handle_failed_inode(struct inode *); 1785 1786 /* 1787 * namei.c 1788 */ 1789 struct dentry *f2fs_get_parent(struct dentry *child); 1790 1791 /* 1792 * dir.c 1793 */ 1794 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX]; 1795 void set_de_type(struct f2fs_dir_entry *, umode_t); 1796 unsigned char get_de_type(struct f2fs_dir_entry *); 1797 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *, 1798 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1799 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1800 unsigned int, struct fscrypt_str *); 1801 void do_make_empty_dir(struct inode *, struct inode *, 1802 struct f2fs_dentry_ptr *); 1803 struct page *init_inode_metadata(struct inode *, struct inode *, 1804 const struct qstr *, struct page *); 1805 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1806 int room_for_filename(const void *, int, int); 1807 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *); 1808 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1809 struct page **); 1810 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1811 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1812 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1813 struct page *, struct inode *); 1814 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1815 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1816 const struct qstr *, f2fs_hash_t , unsigned int); 1817 int f2fs_add_regular_entry(struct inode *, const struct qstr *, 1818 struct inode *, nid_t, umode_t); 1819 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1820 umode_t); 1821 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1822 struct inode *); 1823 int f2fs_do_tmpfile(struct inode *, struct inode *); 1824 bool f2fs_empty_dir(struct inode *); 1825 1826 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1827 { 1828 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1829 inode, inode->i_ino, inode->i_mode); 1830 } 1831 1832 /* 1833 * super.c 1834 */ 1835 int f2fs_commit_super(struct f2fs_sb_info *, bool); 1836 int f2fs_sync_fs(struct super_block *, int); 1837 extern __printf(3, 4) 1838 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1839 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 1840 1841 /* 1842 * hash.c 1843 */ 1844 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1845 1846 /* 1847 * node.c 1848 */ 1849 struct dnode_of_data; 1850 struct node_info; 1851 1852 bool available_free_memory(struct f2fs_sb_info *, int); 1853 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 1854 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1855 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1856 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1857 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t); 1858 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1859 int truncate_inode_blocks(struct inode *, pgoff_t); 1860 int truncate_xattr_node(struct inode *, struct page *); 1861 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1862 int remove_inode_page(struct inode *); 1863 struct page *new_inode_page(struct inode *); 1864 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1865 void ra_node_page(struct f2fs_sb_info *, nid_t); 1866 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1867 struct page *get_node_page_ra(struct page *, int); 1868 void sync_inode_page(struct dnode_of_data *); 1869 void move_node_page(struct page *, int); 1870 int fsync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *, 1871 bool); 1872 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *); 1873 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1874 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1875 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1876 int try_to_free_nids(struct f2fs_sb_info *, int); 1877 void recover_inline_xattr(struct inode *, struct page *); 1878 void recover_xattr_data(struct inode *, struct page *, block_t); 1879 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1880 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1881 struct f2fs_summary_block *); 1882 void flush_nat_entries(struct f2fs_sb_info *); 1883 int build_node_manager(struct f2fs_sb_info *); 1884 void destroy_node_manager(struct f2fs_sb_info *); 1885 int __init create_node_manager_caches(void); 1886 void destroy_node_manager_caches(void); 1887 1888 /* 1889 * segment.c 1890 */ 1891 void register_inmem_page(struct inode *, struct page *); 1892 void drop_inmem_pages(struct inode *); 1893 int commit_inmem_pages(struct inode *); 1894 void f2fs_balance_fs(struct f2fs_sb_info *, bool); 1895 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1896 int f2fs_issue_flush(struct f2fs_sb_info *); 1897 int create_flush_cmd_control(struct f2fs_sb_info *); 1898 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1899 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1900 bool is_checkpointed_data(struct f2fs_sb_info *, block_t); 1901 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1902 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 1903 void release_discard_addrs(struct f2fs_sb_info *); 1904 bool discard_next_dnode(struct f2fs_sb_info *, block_t); 1905 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 1906 void allocate_new_segments(struct f2fs_sb_info *); 1907 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 1908 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1909 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 1910 void write_meta_page(struct f2fs_sb_info *, struct page *); 1911 void write_node_page(unsigned int, struct f2fs_io_info *); 1912 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 1913 void rewrite_data_page(struct f2fs_io_info *); 1914 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *, 1915 block_t, block_t, bool, bool); 1916 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 1917 block_t, block_t, unsigned char, bool, bool); 1918 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1919 block_t, block_t *, struct f2fs_summary *, int); 1920 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool); 1921 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t); 1922 void write_data_summaries(struct f2fs_sb_info *, block_t); 1923 void write_node_summaries(struct f2fs_sb_info *, block_t); 1924 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int); 1925 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 1926 int build_segment_manager(struct f2fs_sb_info *); 1927 void destroy_segment_manager(struct f2fs_sb_info *); 1928 int __init create_segment_manager_caches(void); 1929 void destroy_segment_manager_caches(void); 1930 1931 /* 1932 * checkpoint.c 1933 */ 1934 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool); 1935 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1936 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1937 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t); 1938 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 1939 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool); 1940 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 1941 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1942 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type); 1943 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type); 1944 void release_ino_entry(struct f2fs_sb_info *, bool); 1945 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 1946 int acquire_orphan_inode(struct f2fs_sb_info *); 1947 void release_orphan_inode(struct f2fs_sb_info *); 1948 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1949 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1950 int recover_orphan_inodes(struct f2fs_sb_info *); 1951 int get_valid_checkpoint(struct f2fs_sb_info *); 1952 void update_dirty_page(struct inode *, struct page *); 1953 void remove_dirty_inode(struct inode *); 1954 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type); 1955 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 1956 void init_ino_entry_info(struct f2fs_sb_info *); 1957 int __init create_checkpoint_caches(void); 1958 void destroy_checkpoint_caches(void); 1959 1960 /* 1961 * data.c 1962 */ 1963 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1964 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *, 1965 struct page *, nid_t, enum page_type, int); 1966 void f2fs_flush_merged_bios(struct f2fs_sb_info *); 1967 int f2fs_submit_page_bio(struct f2fs_io_info *); 1968 void f2fs_submit_page_mbio(struct f2fs_io_info *); 1969 void set_data_blkaddr(struct dnode_of_data *); 1970 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t); 1971 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t); 1972 int reserve_new_block(struct dnode_of_data *); 1973 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 1974 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *); 1975 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1976 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool); 1977 struct page *find_data_page(struct inode *, pgoff_t); 1978 struct page *get_lock_data_page(struct inode *, pgoff_t, bool); 1979 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1980 int do_write_data_page(struct f2fs_io_info *); 1981 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int); 1982 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1983 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 1984 int f2fs_release_page(struct page *, gfp_t); 1985 1986 /* 1987 * gc.c 1988 */ 1989 int start_gc_thread(struct f2fs_sb_info *); 1990 void stop_gc_thread(struct f2fs_sb_info *); 1991 block_t start_bidx_of_node(unsigned int, struct inode *); 1992 int f2fs_gc(struct f2fs_sb_info *, bool); 1993 void build_gc_manager(struct f2fs_sb_info *); 1994 1995 /* 1996 * recovery.c 1997 */ 1998 int recover_fsync_data(struct f2fs_sb_info *, bool); 1999 bool space_for_roll_forward(struct f2fs_sb_info *); 2000 2001 /* 2002 * debug.c 2003 */ 2004 #ifdef CONFIG_F2FS_STAT_FS 2005 struct f2fs_stat_info { 2006 struct list_head stat_list; 2007 struct f2fs_sb_info *sbi; 2008 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2009 int main_area_segs, main_area_sections, main_area_zones; 2010 unsigned long long hit_largest, hit_cached, hit_rbtree; 2011 unsigned long long hit_total, total_ext; 2012 int ext_tree, zombie_tree, ext_node; 2013 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages; 2014 unsigned int ndirty_dirs, ndirty_files; 2015 int nats, dirty_nats, sits, dirty_sits, fnids; 2016 int total_count, utilization; 2017 int bg_gc, wb_bios; 2018 int inline_xattr, inline_inode, inline_dir, orphans; 2019 unsigned int valid_count, valid_node_count, valid_inode_count; 2020 unsigned int bimodal, avg_vblocks; 2021 int util_free, util_valid, util_invalid; 2022 int rsvd_segs, overp_segs; 2023 int dirty_count, node_pages, meta_pages; 2024 int prefree_count, call_count, cp_count, bg_cp_count; 2025 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2026 int bg_node_segs, bg_data_segs; 2027 int tot_blks, data_blks, node_blks; 2028 int bg_data_blks, bg_node_blks; 2029 int curseg[NR_CURSEG_TYPE]; 2030 int cursec[NR_CURSEG_TYPE]; 2031 int curzone[NR_CURSEG_TYPE]; 2032 2033 unsigned int segment_count[2]; 2034 unsigned int block_count[2]; 2035 unsigned int inplace_count; 2036 unsigned long long base_mem, cache_mem, page_mem; 2037 }; 2038 2039 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2040 { 2041 return (struct f2fs_stat_info *)sbi->stat_info; 2042 } 2043 2044 #define stat_inc_cp_count(si) ((si)->cp_count++) 2045 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2046 #define stat_inc_call_count(si) ((si)->call_count++) 2047 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2048 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2049 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2050 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2051 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2052 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2053 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2054 #define stat_inc_inline_xattr(inode) \ 2055 do { \ 2056 if (f2fs_has_inline_xattr(inode)) \ 2057 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2058 } while (0) 2059 #define stat_dec_inline_xattr(inode) \ 2060 do { \ 2061 if (f2fs_has_inline_xattr(inode)) \ 2062 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2063 } while (0) 2064 #define stat_inc_inline_inode(inode) \ 2065 do { \ 2066 if (f2fs_has_inline_data(inode)) \ 2067 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2068 } while (0) 2069 #define stat_dec_inline_inode(inode) \ 2070 do { \ 2071 if (f2fs_has_inline_data(inode)) \ 2072 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2073 } while (0) 2074 #define stat_inc_inline_dir(inode) \ 2075 do { \ 2076 if (f2fs_has_inline_dentry(inode)) \ 2077 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2078 } while (0) 2079 #define stat_dec_inline_dir(inode) \ 2080 do { \ 2081 if (f2fs_has_inline_dentry(inode)) \ 2082 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2083 } while (0) 2084 #define stat_inc_seg_type(sbi, curseg) \ 2085 ((sbi)->segment_count[(curseg)->alloc_type]++) 2086 #define stat_inc_block_count(sbi, curseg) \ 2087 ((sbi)->block_count[(curseg)->alloc_type]++) 2088 #define stat_inc_inplace_blocks(sbi) \ 2089 (atomic_inc(&(sbi)->inplace_count)) 2090 #define stat_inc_seg_count(sbi, type, gc_type) \ 2091 do { \ 2092 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2093 (si)->tot_segs++; \ 2094 if (type == SUM_TYPE_DATA) { \ 2095 si->data_segs++; \ 2096 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2097 } else { \ 2098 si->node_segs++; \ 2099 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2100 } \ 2101 } while (0) 2102 2103 #define stat_inc_tot_blk_count(si, blks) \ 2104 (si->tot_blks += (blks)) 2105 2106 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2107 do { \ 2108 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2109 stat_inc_tot_blk_count(si, blks); \ 2110 si->data_blks += (blks); \ 2111 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2112 } while (0) 2113 2114 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2115 do { \ 2116 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2117 stat_inc_tot_blk_count(si, blks); \ 2118 si->node_blks += (blks); \ 2119 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2120 } while (0) 2121 2122 int f2fs_build_stats(struct f2fs_sb_info *); 2123 void f2fs_destroy_stats(struct f2fs_sb_info *); 2124 int __init f2fs_create_root_stats(void); 2125 void f2fs_destroy_root_stats(void); 2126 #else 2127 #define stat_inc_cp_count(si) 2128 #define stat_inc_bg_cp_count(si) 2129 #define stat_inc_call_count(si) 2130 #define stat_inc_bggc_count(si) 2131 #define stat_inc_dirty_inode(sbi, type) 2132 #define stat_dec_dirty_inode(sbi, type) 2133 #define stat_inc_total_hit(sb) 2134 #define stat_inc_rbtree_node_hit(sb) 2135 #define stat_inc_largest_node_hit(sbi) 2136 #define stat_inc_cached_node_hit(sbi) 2137 #define stat_inc_inline_xattr(inode) 2138 #define stat_dec_inline_xattr(inode) 2139 #define stat_inc_inline_inode(inode) 2140 #define stat_dec_inline_inode(inode) 2141 #define stat_inc_inline_dir(inode) 2142 #define stat_dec_inline_dir(inode) 2143 #define stat_inc_seg_type(sbi, curseg) 2144 #define stat_inc_block_count(sbi, curseg) 2145 #define stat_inc_inplace_blocks(sbi) 2146 #define stat_inc_seg_count(sbi, type, gc_type) 2147 #define stat_inc_tot_blk_count(si, blks) 2148 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2149 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2150 2151 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2152 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2153 static inline int __init f2fs_create_root_stats(void) { return 0; } 2154 static inline void f2fs_destroy_root_stats(void) { } 2155 #endif 2156 2157 extern const struct file_operations f2fs_dir_operations; 2158 extern const struct file_operations f2fs_file_operations; 2159 extern const struct inode_operations f2fs_file_inode_operations; 2160 extern const struct address_space_operations f2fs_dblock_aops; 2161 extern const struct address_space_operations f2fs_node_aops; 2162 extern const struct address_space_operations f2fs_meta_aops; 2163 extern const struct inode_operations f2fs_dir_inode_operations; 2164 extern const struct inode_operations f2fs_symlink_inode_operations; 2165 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2166 extern const struct inode_operations f2fs_special_inode_operations; 2167 extern struct kmem_cache *inode_entry_slab; 2168 2169 /* 2170 * inline.c 2171 */ 2172 bool f2fs_may_inline_data(struct inode *); 2173 bool f2fs_may_inline_dentry(struct inode *); 2174 void read_inline_data(struct page *, struct page *); 2175 bool truncate_inline_inode(struct page *, u64); 2176 int f2fs_read_inline_data(struct inode *, struct page *); 2177 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 2178 int f2fs_convert_inline_inode(struct inode *); 2179 int f2fs_write_inline_data(struct inode *, struct page *); 2180 bool recover_inline_data(struct inode *, struct page *); 2181 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 2182 struct fscrypt_name *, struct page **); 2183 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **); 2184 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 2185 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *, 2186 nid_t, umode_t); 2187 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 2188 struct inode *, struct inode *); 2189 bool f2fs_empty_inline_dir(struct inode *); 2190 int f2fs_read_inline_dir(struct file *, struct dir_context *, 2191 struct fscrypt_str *); 2192 int f2fs_inline_data_fiemap(struct inode *, 2193 struct fiemap_extent_info *, __u64, __u64); 2194 2195 /* 2196 * shrinker.c 2197 */ 2198 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2199 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2200 void f2fs_join_shrinker(struct f2fs_sb_info *); 2201 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2202 2203 /* 2204 * extent_cache.c 2205 */ 2206 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2207 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2208 unsigned int f2fs_destroy_extent_node(struct inode *); 2209 void f2fs_destroy_extent_tree(struct inode *); 2210 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2211 void f2fs_update_extent_cache(struct dnode_of_data *); 2212 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2213 pgoff_t, block_t, unsigned int); 2214 void init_extent_cache_info(struct f2fs_sb_info *); 2215 int __init create_extent_cache(void); 2216 void destroy_extent_cache(void); 2217 2218 /* 2219 * crypto support 2220 */ 2221 static inline bool f2fs_encrypted_inode(struct inode *inode) 2222 { 2223 return file_is_encrypt(inode); 2224 } 2225 2226 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2227 { 2228 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2229 file_set_encrypt(inode); 2230 #endif 2231 } 2232 2233 static inline bool f2fs_bio_encrypted(struct bio *bio) 2234 { 2235 return bio->bi_private != NULL; 2236 } 2237 2238 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2239 { 2240 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2241 } 2242 2243 static inline bool f2fs_may_encrypt(struct inode *inode) 2244 { 2245 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2246 umode_t mode = inode->i_mode; 2247 2248 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2249 #else 2250 return 0; 2251 #endif 2252 } 2253 2254 #ifndef CONFIG_F2FS_FS_ENCRYPTION 2255 #define fscrypt_set_d_op(i) 2256 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx 2257 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx 2258 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page 2259 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page 2260 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages 2261 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page 2262 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page 2263 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range 2264 #define fscrypt_process_policy fscrypt_notsupp_process_policy 2265 #define fscrypt_get_policy fscrypt_notsupp_get_policy 2266 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context 2267 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context 2268 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info 2269 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info 2270 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename 2271 #define fscrypt_free_filename fscrypt_notsupp_free_filename 2272 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size 2273 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer 2274 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer 2275 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr 2276 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk 2277 #endif 2278 #endif 2279