xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 759820c9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 struct pagevec;
32 
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition)					\
37 	do {								\
38 		if (WARN_ON(condition))					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_SLAB_ALLOC,
60 	FAULT_DQUOT_INIT,
61 	FAULT_LOCK_OP,
62 	FAULT_MAX,
63 };
64 
65 #ifdef CONFIG_F2FS_FAULT_INJECTION
66 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
67 
68 struct f2fs_fault_info {
69 	atomic_t inject_ops;
70 	unsigned int inject_rate;
71 	unsigned int inject_type;
72 };
73 
74 extern const char *f2fs_fault_name[FAULT_MAX];
75 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
76 #endif
77 
78 /*
79  * For mount options
80  */
81 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
82 #define F2FS_MOUNT_DISCARD		0x00000004
83 #define F2FS_MOUNT_NOHEAP		0x00000008
84 #define F2FS_MOUNT_XATTR_USER		0x00000010
85 #define F2FS_MOUNT_POSIX_ACL		0x00000020
86 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
87 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
88 #define F2FS_MOUNT_INLINE_DATA		0x00000100
89 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
90 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
91 #define F2FS_MOUNT_NOBARRIER		0x00000800
92 #define F2FS_MOUNT_FASTBOOT		0x00001000
93 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
94 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
95 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 #define F2FS_MOUNT_NORECOVERY		0x04000000
104 #define F2FS_MOUNT_ATGC			0x08000000
105 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
106 #define	F2FS_MOUNT_GC_MERGE		0x20000000
107 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
108 
109 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
110 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
111 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
112 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
113 
114 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
115 		typecheck(unsigned long long, b) &&			\
116 		((long long)((a) - (b)) > 0))
117 
118 typedef u32 block_t;	/*
119 			 * should not change u32, since it is the on-disk block
120 			 * address format, __le32.
121 			 */
122 typedef u32 nid_t;
123 
124 #define COMPRESS_EXT_NUM		16
125 
126 /*
127  * An implementation of an rwsem that is explicitly unfair to readers. This
128  * prevents priority inversion when a low-priority reader acquires the read lock
129  * while sleeping on the write lock but the write lock is needed by
130  * higher-priority clients.
131  */
132 
133 struct f2fs_rwsem {
134         struct rw_semaphore internal_rwsem;
135 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
136         wait_queue_head_t read_waiters;
137 #endif
138 };
139 
140 struct f2fs_mount_info {
141 	unsigned int opt;
142 	int write_io_size_bits;		/* Write IO size bits */
143 	block_t root_reserved_blocks;	/* root reserved blocks */
144 	kuid_t s_resuid;		/* reserved blocks for uid */
145 	kgid_t s_resgid;		/* reserved blocks for gid */
146 	int active_logs;		/* # of active logs */
147 	int inline_xattr_size;		/* inline xattr size */
148 #ifdef CONFIG_F2FS_FAULT_INJECTION
149 	struct f2fs_fault_info fault_info;	/* For fault injection */
150 #endif
151 #ifdef CONFIG_QUOTA
152 	/* Names of quota files with journalled quota */
153 	char *s_qf_names[MAXQUOTAS];
154 	int s_jquota_fmt;			/* Format of quota to use */
155 #endif
156 	/* For which write hints are passed down to block layer */
157 	int alloc_mode;			/* segment allocation policy */
158 	int fsync_mode;			/* fsync policy */
159 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
160 	int bggc_mode;			/* bggc mode: off, on or sync */
161 	int discard_unit;		/*
162 					 * discard command's offset/size should
163 					 * be aligned to this unit: block,
164 					 * segment or section
165 					 */
166 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
167 	block_t unusable_cap_perc;	/* percentage for cap */
168 	block_t unusable_cap;		/* Amount of space allowed to be
169 					 * unusable when disabling checkpoint
170 					 */
171 
172 	/* For compression */
173 	unsigned char compress_algorithm;	/* algorithm type */
174 	unsigned char compress_log_size;	/* cluster log size */
175 	unsigned char compress_level;		/* compress level */
176 	bool compress_chksum;			/* compressed data chksum */
177 	unsigned char compress_ext_cnt;		/* extension count */
178 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
179 	int compress_mode;			/* compression mode */
180 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
181 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
182 };
183 
184 #define F2FS_FEATURE_ENCRYPT		0x0001
185 #define F2FS_FEATURE_BLKZONED		0x0002
186 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
187 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
188 #define F2FS_FEATURE_PRJQUOTA		0x0010
189 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
190 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
191 #define F2FS_FEATURE_QUOTA_INO		0x0080
192 #define F2FS_FEATURE_INODE_CRTIME	0x0100
193 #define F2FS_FEATURE_LOST_FOUND		0x0200
194 #define F2FS_FEATURE_VERITY		0x0400
195 #define F2FS_FEATURE_SB_CHKSUM		0x0800
196 #define F2FS_FEATURE_CASEFOLD		0x1000
197 #define F2FS_FEATURE_COMPRESSION	0x2000
198 #define F2FS_FEATURE_RO			0x4000
199 
200 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
201 	((raw_super->feature & cpu_to_le32(mask)) != 0)
202 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
203 #define F2FS_SET_FEATURE(sbi, mask)					\
204 	(sbi->raw_super->feature |= cpu_to_le32(mask))
205 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
206 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
207 
208 /*
209  * Default values for user and/or group using reserved blocks
210  */
211 #define	F2FS_DEF_RESUID		0
212 #define	F2FS_DEF_RESGID		0
213 
214 /*
215  * For checkpoint manager
216  */
217 enum {
218 	NAT_BITMAP,
219 	SIT_BITMAP
220 };
221 
222 #define	CP_UMOUNT	0x00000001
223 #define	CP_FASTBOOT	0x00000002
224 #define	CP_SYNC		0x00000004
225 #define	CP_RECOVERY	0x00000008
226 #define	CP_DISCARD	0x00000010
227 #define CP_TRIMMED	0x00000020
228 #define CP_PAUSE	0x00000040
229 #define CP_RESIZE 	0x00000080
230 
231 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
232 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
233 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
234 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
235 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
236 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
237 #define DEF_CP_INTERVAL			60	/* 60 secs */
238 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
239 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
240 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
241 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
242 
243 struct cp_control {
244 	int reason;
245 	__u64 trim_start;
246 	__u64 trim_end;
247 	__u64 trim_minlen;
248 };
249 
250 /*
251  * indicate meta/data type
252  */
253 enum {
254 	META_CP,
255 	META_NAT,
256 	META_SIT,
257 	META_SSA,
258 	META_MAX,
259 	META_POR,
260 	DATA_GENERIC,		/* check range only */
261 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
262 	DATA_GENERIC_ENHANCE_READ,	/*
263 					 * strong check on range and segment
264 					 * bitmap but no warning due to race
265 					 * condition of read on truncated area
266 					 * by extent_cache
267 					 */
268 	META_GENERIC,
269 };
270 
271 /* for the list of ino */
272 enum {
273 	ORPHAN_INO,		/* for orphan ino list */
274 	APPEND_INO,		/* for append ino list */
275 	UPDATE_INO,		/* for update ino list */
276 	TRANS_DIR_INO,		/* for trasactions dir ino list */
277 	FLUSH_INO,		/* for multiple device flushing */
278 	MAX_INO_ENTRY,		/* max. list */
279 };
280 
281 struct ino_entry {
282 	struct list_head list;		/* list head */
283 	nid_t ino;			/* inode number */
284 	unsigned int dirty_device;	/* dirty device bitmap */
285 };
286 
287 /* for the list of inodes to be GCed */
288 struct inode_entry {
289 	struct list_head list;	/* list head */
290 	struct inode *inode;	/* vfs inode pointer */
291 };
292 
293 struct fsync_node_entry {
294 	struct list_head list;	/* list head */
295 	struct page *page;	/* warm node page pointer */
296 	unsigned int seq_id;	/* sequence id */
297 };
298 
299 struct ckpt_req {
300 	struct completion wait;		/* completion for checkpoint done */
301 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
302 	int ret;			/* return code of checkpoint */
303 	ktime_t queue_time;		/* request queued time */
304 };
305 
306 struct ckpt_req_control {
307 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
308 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
309 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
310 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
311 	atomic_t total_ckpt;		/* # of total ckpts */
312 	atomic_t queued_ckpt;		/* # of queued ckpts */
313 	struct llist_head issue_list;	/* list for command issue */
314 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
315 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
316 	unsigned int peak_time;		/* peak wait time in msec until now */
317 };
318 
319 /* for the bitmap indicate blocks to be discarded */
320 struct discard_entry {
321 	struct list_head list;	/* list head */
322 	block_t start_blkaddr;	/* start blockaddr of current segment */
323 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
324 };
325 
326 /* default discard granularity of inner discard thread, unit: block count */
327 #define DEFAULT_DISCARD_GRANULARITY		16
328 
329 /* max discard pend list number */
330 #define MAX_PLIST_NUM		512
331 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
332 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
333 
334 enum {
335 	D_PREP,			/* initial */
336 	D_PARTIAL,		/* partially submitted */
337 	D_SUBMIT,		/* all submitted */
338 	D_DONE,			/* finished */
339 };
340 
341 struct discard_info {
342 	block_t lstart;			/* logical start address */
343 	block_t len;			/* length */
344 	block_t start;			/* actual start address in dev */
345 };
346 
347 struct discard_cmd {
348 	struct rb_node rb_node;		/* rb node located in rb-tree */
349 	union {
350 		struct {
351 			block_t lstart;	/* logical start address */
352 			block_t len;	/* length */
353 			block_t start;	/* actual start address in dev */
354 		};
355 		struct discard_info di;	/* discard info */
356 
357 	};
358 	struct list_head list;		/* command list */
359 	struct completion wait;		/* compleation */
360 	struct block_device *bdev;	/* bdev */
361 	unsigned short ref;		/* reference count */
362 	unsigned char state;		/* state */
363 	unsigned char queued;		/* queued discard */
364 	int error;			/* bio error */
365 	spinlock_t lock;		/* for state/bio_ref updating */
366 	unsigned short bio_ref;		/* bio reference count */
367 };
368 
369 enum {
370 	DPOLICY_BG,
371 	DPOLICY_FORCE,
372 	DPOLICY_FSTRIM,
373 	DPOLICY_UMOUNT,
374 	MAX_DPOLICY,
375 };
376 
377 struct discard_policy {
378 	int type;			/* type of discard */
379 	unsigned int min_interval;	/* used for candidates exist */
380 	unsigned int mid_interval;	/* used for device busy */
381 	unsigned int max_interval;	/* used for candidates not exist */
382 	unsigned int max_requests;	/* # of discards issued per round */
383 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
384 	bool io_aware;			/* issue discard in idle time */
385 	bool sync;			/* submit discard with REQ_SYNC flag */
386 	bool ordered;			/* issue discard by lba order */
387 	bool timeout;			/* discard timeout for put_super */
388 	unsigned int granularity;	/* discard granularity */
389 };
390 
391 struct discard_cmd_control {
392 	struct task_struct *f2fs_issue_discard;	/* discard thread */
393 	struct list_head entry_list;		/* 4KB discard entry list */
394 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
395 	struct list_head wait_list;		/* store on-flushing entries */
396 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
397 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
398 	unsigned int discard_wake;		/* to wake up discard thread */
399 	struct mutex cmd_lock;
400 	unsigned int nr_discards;		/* # of discards in the list */
401 	unsigned int max_discards;		/* max. discards to be issued */
402 	unsigned int max_discard_request;	/* max. discard request per round */
403 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
404 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
405 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
406 	unsigned int discard_granularity;	/* discard granularity */
407 	unsigned int undiscard_blks;		/* # of undiscard blocks */
408 	unsigned int next_pos;			/* next discard position */
409 	atomic_t issued_discard;		/* # of issued discard */
410 	atomic_t queued_discard;		/* # of queued discard */
411 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
412 	struct rb_root_cached root;		/* root of discard rb-tree */
413 	bool rbtree_check;			/* config for consistence check */
414 };
415 
416 /* for the list of fsync inodes, used only during recovery */
417 struct fsync_inode_entry {
418 	struct list_head list;	/* list head */
419 	struct inode *inode;	/* vfs inode pointer */
420 	block_t blkaddr;	/* block address locating the last fsync */
421 	block_t last_dentry;	/* block address locating the last dentry */
422 };
423 
424 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
425 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
426 
427 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
428 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
429 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
430 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
431 
432 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
433 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
434 
435 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
436 {
437 	int before = nats_in_cursum(journal);
438 
439 	journal->n_nats = cpu_to_le16(before + i);
440 	return before;
441 }
442 
443 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
444 {
445 	int before = sits_in_cursum(journal);
446 
447 	journal->n_sits = cpu_to_le16(before + i);
448 	return before;
449 }
450 
451 static inline bool __has_cursum_space(struct f2fs_journal *journal,
452 							int size, int type)
453 {
454 	if (type == NAT_JOURNAL)
455 		return size <= MAX_NAT_JENTRIES(journal);
456 	return size <= MAX_SIT_JENTRIES(journal);
457 }
458 
459 /* for inline stuff */
460 #define DEF_INLINE_RESERVED_SIZE	1
461 static inline int get_extra_isize(struct inode *inode);
462 static inline int get_inline_xattr_addrs(struct inode *inode);
463 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
464 				(CUR_ADDRS_PER_INODE(inode) -		\
465 				get_inline_xattr_addrs(inode) -	\
466 				DEF_INLINE_RESERVED_SIZE))
467 
468 /* for inline dir */
469 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
470 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
471 				BITS_PER_BYTE + 1))
472 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
473 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
474 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
475 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
476 				NR_INLINE_DENTRY(inode) + \
477 				INLINE_DENTRY_BITMAP_SIZE(inode)))
478 
479 /*
480  * For INODE and NODE manager
481  */
482 /* for directory operations */
483 
484 struct f2fs_filename {
485 	/*
486 	 * The filename the user specified.  This is NULL for some
487 	 * filesystem-internal operations, e.g. converting an inline directory
488 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
489 	 */
490 	const struct qstr *usr_fname;
491 
492 	/*
493 	 * The on-disk filename.  For encrypted directories, this is encrypted.
494 	 * This may be NULL for lookups in an encrypted dir without the key.
495 	 */
496 	struct fscrypt_str disk_name;
497 
498 	/* The dirhash of this filename */
499 	f2fs_hash_t hash;
500 
501 #ifdef CONFIG_FS_ENCRYPTION
502 	/*
503 	 * For lookups in encrypted directories: either the buffer backing
504 	 * disk_name, or a buffer that holds the decoded no-key name.
505 	 */
506 	struct fscrypt_str crypto_buf;
507 #endif
508 #if IS_ENABLED(CONFIG_UNICODE)
509 	/*
510 	 * For casefolded directories: the casefolded name, but it's left NULL
511 	 * if the original name is not valid Unicode, if the original name is
512 	 * "." or "..", if the directory is both casefolded and encrypted and
513 	 * its encryption key is unavailable, or if the filesystem is doing an
514 	 * internal operation where usr_fname is also NULL.  In all these cases
515 	 * we fall back to treating the name as an opaque byte sequence.
516 	 */
517 	struct fscrypt_str cf_name;
518 #endif
519 };
520 
521 struct f2fs_dentry_ptr {
522 	struct inode *inode;
523 	void *bitmap;
524 	struct f2fs_dir_entry *dentry;
525 	__u8 (*filename)[F2FS_SLOT_LEN];
526 	int max;
527 	int nr_bitmap;
528 };
529 
530 static inline void make_dentry_ptr_block(struct inode *inode,
531 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
532 {
533 	d->inode = inode;
534 	d->max = NR_DENTRY_IN_BLOCK;
535 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
536 	d->bitmap = t->dentry_bitmap;
537 	d->dentry = t->dentry;
538 	d->filename = t->filename;
539 }
540 
541 static inline void make_dentry_ptr_inline(struct inode *inode,
542 					struct f2fs_dentry_ptr *d, void *t)
543 {
544 	int entry_cnt = NR_INLINE_DENTRY(inode);
545 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
546 	int reserved_size = INLINE_RESERVED_SIZE(inode);
547 
548 	d->inode = inode;
549 	d->max = entry_cnt;
550 	d->nr_bitmap = bitmap_size;
551 	d->bitmap = t;
552 	d->dentry = t + bitmap_size + reserved_size;
553 	d->filename = t + bitmap_size + reserved_size +
554 					SIZE_OF_DIR_ENTRY * entry_cnt;
555 }
556 
557 /*
558  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
559  * as its node offset to distinguish from index node blocks.
560  * But some bits are used to mark the node block.
561  */
562 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
563 				>> OFFSET_BIT_SHIFT)
564 enum {
565 	ALLOC_NODE,			/* allocate a new node page if needed */
566 	LOOKUP_NODE,			/* look up a node without readahead */
567 	LOOKUP_NODE_RA,			/*
568 					 * look up a node with readahead called
569 					 * by get_data_block.
570 					 */
571 };
572 
573 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
574 
575 /* congestion wait timeout value, default: 20ms */
576 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
577 
578 /* maximum retry quota flush count */
579 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
580 
581 /* maximum retry of EIO'ed page */
582 #define MAX_RETRY_PAGE_EIO			100
583 
584 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
585 
586 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
587 
588 /* dirty segments threshold for triggering CP */
589 #define DEFAULT_DIRTY_THRESHOLD		4
590 
591 /* for in-memory extent cache entry */
592 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
593 
594 /* number of extent info in extent cache we try to shrink */
595 #define EXTENT_CACHE_SHRINK_NUMBER	128
596 
597 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
598 #define RECOVERY_MIN_RA_BLOCKS		1
599 
600 struct rb_entry {
601 	struct rb_node rb_node;		/* rb node located in rb-tree */
602 	union {
603 		struct {
604 			unsigned int ofs;	/* start offset of the entry */
605 			unsigned int len;	/* length of the entry */
606 		};
607 		unsigned long long key;		/* 64-bits key */
608 	} __packed;
609 };
610 
611 struct extent_info {
612 	unsigned int fofs;		/* start offset in a file */
613 	unsigned int len;		/* length of the extent */
614 	u32 blk;			/* start block address of the extent */
615 #ifdef CONFIG_F2FS_FS_COMPRESSION
616 	unsigned int c_len;		/* physical extent length of compressed blocks */
617 #endif
618 };
619 
620 struct extent_node {
621 	struct rb_node rb_node;		/* rb node located in rb-tree */
622 	struct extent_info ei;		/* extent info */
623 	struct list_head list;		/* node in global extent list of sbi */
624 	struct extent_tree *et;		/* extent tree pointer */
625 };
626 
627 struct extent_tree {
628 	nid_t ino;			/* inode number */
629 	struct rb_root_cached root;	/* root of extent info rb-tree */
630 	struct extent_node *cached_en;	/* recently accessed extent node */
631 	struct extent_info largest;	/* largested extent info */
632 	struct list_head list;		/* to be used by sbi->zombie_list */
633 	rwlock_t lock;			/* protect extent info rb-tree */
634 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
635 	bool largest_updated;		/* largest extent updated */
636 };
637 
638 /*
639  * This structure is taken from ext4_map_blocks.
640  *
641  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
642  */
643 #define F2FS_MAP_NEW		(1 << BH_New)
644 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
645 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
646 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
647 				F2FS_MAP_UNWRITTEN)
648 
649 struct f2fs_map_blocks {
650 	struct block_device *m_bdev;	/* for multi-device dio */
651 	block_t m_pblk;
652 	block_t m_lblk;
653 	unsigned int m_len;
654 	unsigned int m_flags;
655 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
656 	pgoff_t *m_next_extent;		/* point to next possible extent */
657 	int m_seg_type;
658 	bool m_may_create;		/* indicate it is from write path */
659 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
660 };
661 
662 /* for flag in get_data_block */
663 enum {
664 	F2FS_GET_BLOCK_DEFAULT,
665 	F2FS_GET_BLOCK_FIEMAP,
666 	F2FS_GET_BLOCK_BMAP,
667 	F2FS_GET_BLOCK_DIO,
668 	F2FS_GET_BLOCK_PRE_DIO,
669 	F2FS_GET_BLOCK_PRE_AIO,
670 	F2FS_GET_BLOCK_PRECACHE,
671 };
672 
673 /*
674  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
675  */
676 #define FADVISE_COLD_BIT	0x01
677 #define FADVISE_LOST_PINO_BIT	0x02
678 #define FADVISE_ENCRYPT_BIT	0x04
679 #define FADVISE_ENC_NAME_BIT	0x08
680 #define FADVISE_KEEP_SIZE_BIT	0x10
681 #define FADVISE_HOT_BIT		0x20
682 #define FADVISE_VERITY_BIT	0x40
683 #define FADVISE_TRUNC_BIT	0x80
684 
685 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
686 
687 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
688 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
689 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
690 
691 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
692 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
693 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
694 
695 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
696 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
697 
698 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
699 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
700 
701 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
702 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
703 
704 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
705 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
706 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
707 
708 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
709 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
710 
711 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
712 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
713 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
714 
715 #define DEF_DIR_LEVEL		0
716 
717 enum {
718 	GC_FAILURE_PIN,
719 	MAX_GC_FAILURE
720 };
721 
722 /* used for f2fs_inode_info->flags */
723 enum {
724 	FI_NEW_INODE,		/* indicate newly allocated inode */
725 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
726 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
727 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
728 	FI_INC_LINK,		/* need to increment i_nlink */
729 	FI_ACL_MODE,		/* indicate acl mode */
730 	FI_NO_ALLOC,		/* should not allocate any blocks */
731 	FI_FREE_NID,		/* free allocated nide */
732 	FI_NO_EXTENT,		/* not to use the extent cache */
733 	FI_INLINE_XATTR,	/* used for inline xattr */
734 	FI_INLINE_DATA,		/* used for inline data*/
735 	FI_INLINE_DENTRY,	/* used for inline dentry */
736 	FI_APPEND_WRITE,	/* inode has appended data */
737 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
738 	FI_NEED_IPU,		/* used for ipu per file */
739 	FI_ATOMIC_FILE,		/* indicate atomic file */
740 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
741 	FI_DROP_CACHE,		/* drop dirty page cache */
742 	FI_DATA_EXIST,		/* indicate data exists */
743 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
744 	FI_SKIP_WRITES,		/* should skip data page writeback */
745 	FI_OPU_WRITE,		/* used for opu per file */
746 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
747 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
748 	FI_HOT_DATA,		/* indicate file is hot */
749 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
750 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
751 	FI_PIN_FILE,		/* indicate file should not be gced */
752 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
753 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
754 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
755 	FI_MMAP_FILE,		/* indicate file was mmapped */
756 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
757 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
758 	FI_ALIGNED_WRITE,	/* enable aligned write */
759 	FI_MAX,			/* max flag, never be used */
760 };
761 
762 struct f2fs_inode_info {
763 	struct inode vfs_inode;		/* serve a vfs inode */
764 	unsigned long i_flags;		/* keep an inode flags for ioctl */
765 	unsigned char i_advise;		/* use to give file attribute hints */
766 	unsigned char i_dir_level;	/* use for dentry level for large dir */
767 	unsigned int i_current_depth;	/* only for directory depth */
768 	/* for gc failure statistic */
769 	unsigned int i_gc_failures[MAX_GC_FAILURE];
770 	unsigned int i_pino;		/* parent inode number */
771 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
772 
773 	/* Use below internally in f2fs*/
774 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
775 	struct f2fs_rwsem i_sem;	/* protect fi info */
776 	atomic_t dirty_pages;		/* # of dirty pages */
777 	f2fs_hash_t chash;		/* hash value of given file name */
778 	unsigned int clevel;		/* maximum level of given file name */
779 	struct task_struct *task;	/* lookup and create consistency */
780 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
781 	nid_t i_xattr_nid;		/* node id that contains xattrs */
782 	loff_t	last_disk_size;		/* lastly written file size */
783 	spinlock_t i_size_lock;		/* protect last_disk_size */
784 
785 #ifdef CONFIG_QUOTA
786 	struct dquot *i_dquot[MAXQUOTAS];
787 
788 	/* quota space reservation, managed internally by quota code */
789 	qsize_t i_reserved_quota;
790 #endif
791 	struct list_head dirty_list;	/* dirty list for dirs and files */
792 	struct list_head gdirty_list;	/* linked in global dirty list */
793 	struct task_struct *atomic_write_task;	/* store atomic write task */
794 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
795 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
796 
797 	/* avoid racing between foreground op and gc */
798 	struct f2fs_rwsem i_gc_rwsem[2];
799 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
800 
801 	int i_extra_isize;		/* size of extra space located in i_addr */
802 	kprojid_t i_projid;		/* id for project quota */
803 	int i_inline_xattr_size;	/* inline xattr size */
804 	struct timespec64 i_crtime;	/* inode creation time */
805 	struct timespec64 i_disk_time[4];/* inode disk times */
806 
807 	/* for file compress */
808 	atomic_t i_compr_blocks;		/* # of compressed blocks */
809 	unsigned char i_compress_algorithm;	/* algorithm type */
810 	unsigned char i_log_cluster_size;	/* log of cluster size */
811 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
812 	unsigned short i_compress_flag;		/* compress flag */
813 	unsigned int i_cluster_size;		/* cluster size */
814 };
815 
816 static inline void get_extent_info(struct extent_info *ext,
817 					struct f2fs_extent *i_ext)
818 {
819 	ext->fofs = le32_to_cpu(i_ext->fofs);
820 	ext->blk = le32_to_cpu(i_ext->blk);
821 	ext->len = le32_to_cpu(i_ext->len);
822 }
823 
824 static inline void set_raw_extent(struct extent_info *ext,
825 					struct f2fs_extent *i_ext)
826 {
827 	i_ext->fofs = cpu_to_le32(ext->fofs);
828 	i_ext->blk = cpu_to_le32(ext->blk);
829 	i_ext->len = cpu_to_le32(ext->len);
830 }
831 
832 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
833 						u32 blk, unsigned int len)
834 {
835 	ei->fofs = fofs;
836 	ei->blk = blk;
837 	ei->len = len;
838 #ifdef CONFIG_F2FS_FS_COMPRESSION
839 	ei->c_len = 0;
840 #endif
841 }
842 
843 static inline bool __is_discard_mergeable(struct discard_info *back,
844 			struct discard_info *front, unsigned int max_len)
845 {
846 	return (back->lstart + back->len == front->lstart) &&
847 		(back->len + front->len <= max_len);
848 }
849 
850 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
851 			struct discard_info *back, unsigned int max_len)
852 {
853 	return __is_discard_mergeable(back, cur, max_len);
854 }
855 
856 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
857 			struct discard_info *front, unsigned int max_len)
858 {
859 	return __is_discard_mergeable(cur, front, max_len);
860 }
861 
862 static inline bool __is_extent_mergeable(struct extent_info *back,
863 						struct extent_info *front)
864 {
865 #ifdef CONFIG_F2FS_FS_COMPRESSION
866 	if (back->c_len && back->len != back->c_len)
867 		return false;
868 	if (front->c_len && front->len != front->c_len)
869 		return false;
870 #endif
871 	return (back->fofs + back->len == front->fofs &&
872 			back->blk + back->len == front->blk);
873 }
874 
875 static inline bool __is_back_mergeable(struct extent_info *cur,
876 						struct extent_info *back)
877 {
878 	return __is_extent_mergeable(back, cur);
879 }
880 
881 static inline bool __is_front_mergeable(struct extent_info *cur,
882 						struct extent_info *front)
883 {
884 	return __is_extent_mergeable(cur, front);
885 }
886 
887 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
888 static inline void __try_update_largest_extent(struct extent_tree *et,
889 						struct extent_node *en)
890 {
891 	if (en->ei.len > et->largest.len) {
892 		et->largest = en->ei;
893 		et->largest_updated = true;
894 	}
895 }
896 
897 /*
898  * For free nid management
899  */
900 enum nid_state {
901 	FREE_NID,		/* newly added to free nid list */
902 	PREALLOC_NID,		/* it is preallocated */
903 	MAX_NID_STATE,
904 };
905 
906 enum nat_state {
907 	TOTAL_NAT,
908 	DIRTY_NAT,
909 	RECLAIMABLE_NAT,
910 	MAX_NAT_STATE,
911 };
912 
913 struct f2fs_nm_info {
914 	block_t nat_blkaddr;		/* base disk address of NAT */
915 	nid_t max_nid;			/* maximum possible node ids */
916 	nid_t available_nids;		/* # of available node ids */
917 	nid_t next_scan_nid;		/* the next nid to be scanned */
918 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
919 	unsigned int ram_thresh;	/* control the memory footprint */
920 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
921 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
922 
923 	/* NAT cache management */
924 	struct radix_tree_root nat_root;/* root of the nat entry cache */
925 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
926 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
927 	struct list_head nat_entries;	/* cached nat entry list (clean) */
928 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
929 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
930 	unsigned int nat_blocks;	/* # of nat blocks */
931 
932 	/* free node ids management */
933 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
934 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
935 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
936 	spinlock_t nid_list_lock;	/* protect nid lists ops */
937 	struct mutex build_lock;	/* lock for build free nids */
938 	unsigned char **free_nid_bitmap;
939 	unsigned char *nat_block_bitmap;
940 	unsigned short *free_nid_count;	/* free nid count of NAT block */
941 
942 	/* for checkpoint */
943 	char *nat_bitmap;		/* NAT bitmap pointer */
944 
945 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
946 	unsigned char *nat_bits;	/* NAT bits blocks */
947 	unsigned char *full_nat_bits;	/* full NAT pages */
948 	unsigned char *empty_nat_bits;	/* empty NAT pages */
949 #ifdef CONFIG_F2FS_CHECK_FS
950 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
951 #endif
952 	int bitmap_size;		/* bitmap size */
953 };
954 
955 /*
956  * this structure is used as one of function parameters.
957  * all the information are dedicated to a given direct node block determined
958  * by the data offset in a file.
959  */
960 struct dnode_of_data {
961 	struct inode *inode;		/* vfs inode pointer */
962 	struct page *inode_page;	/* its inode page, NULL is possible */
963 	struct page *node_page;		/* cached direct node page */
964 	nid_t nid;			/* node id of the direct node block */
965 	unsigned int ofs_in_node;	/* data offset in the node page */
966 	bool inode_page_locked;		/* inode page is locked or not */
967 	bool node_changed;		/* is node block changed */
968 	char cur_level;			/* level of hole node page */
969 	char max_level;			/* level of current page located */
970 	block_t	data_blkaddr;		/* block address of the node block */
971 };
972 
973 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
974 		struct page *ipage, struct page *npage, nid_t nid)
975 {
976 	memset(dn, 0, sizeof(*dn));
977 	dn->inode = inode;
978 	dn->inode_page = ipage;
979 	dn->node_page = npage;
980 	dn->nid = nid;
981 }
982 
983 /*
984  * For SIT manager
985  *
986  * By default, there are 6 active log areas across the whole main area.
987  * When considering hot and cold data separation to reduce cleaning overhead,
988  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
989  * respectively.
990  * In the current design, you should not change the numbers intentionally.
991  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
992  * logs individually according to the underlying devices. (default: 6)
993  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
994  * data and 8 for node logs.
995  */
996 #define	NR_CURSEG_DATA_TYPE	(3)
997 #define NR_CURSEG_NODE_TYPE	(3)
998 #define NR_CURSEG_INMEM_TYPE	(2)
999 #define NR_CURSEG_RO_TYPE	(2)
1000 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1001 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1002 
1003 enum {
1004 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1005 	CURSEG_WARM_DATA,	/* data blocks */
1006 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1007 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1008 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1009 	CURSEG_COLD_NODE,	/* indirect node blocks */
1010 	NR_PERSISTENT_LOG,	/* number of persistent log */
1011 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1012 				/* pinned file that needs consecutive block address */
1013 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1014 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1015 };
1016 
1017 struct flush_cmd {
1018 	struct completion wait;
1019 	struct llist_node llnode;
1020 	nid_t ino;
1021 	int ret;
1022 };
1023 
1024 struct flush_cmd_control {
1025 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1026 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1027 	atomic_t issued_flush;			/* # of issued flushes */
1028 	atomic_t queued_flush;			/* # of queued flushes */
1029 	struct llist_head issue_list;		/* list for command issue */
1030 	struct llist_node *dispatch_list;	/* list for command dispatch */
1031 };
1032 
1033 struct f2fs_sm_info {
1034 	struct sit_info *sit_info;		/* whole segment information */
1035 	struct free_segmap_info *free_info;	/* free segment information */
1036 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1037 	struct curseg_info *curseg_array;	/* active segment information */
1038 
1039 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1040 
1041 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1042 	block_t main_blkaddr;		/* start block address of main area */
1043 	block_t ssa_blkaddr;		/* start block address of SSA area */
1044 
1045 	unsigned int segment_count;	/* total # of segments */
1046 	unsigned int main_segments;	/* # of segments in main area */
1047 	unsigned int reserved_segments;	/* # of reserved segments */
1048 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1049 	unsigned int ovp_segments;	/* # of overprovision segments */
1050 
1051 	/* a threshold to reclaim prefree segments */
1052 	unsigned int rec_prefree_segments;
1053 
1054 	/* for batched trimming */
1055 	unsigned int trim_sections;		/* # of sections to trim */
1056 
1057 	struct list_head sit_entry_set;	/* sit entry set list */
1058 
1059 	unsigned int ipu_policy;	/* in-place-update policy */
1060 	unsigned int min_ipu_util;	/* in-place-update threshold */
1061 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1062 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1063 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1064 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1065 
1066 	/* for flush command control */
1067 	struct flush_cmd_control *fcc_info;
1068 
1069 	/* for discard command control */
1070 	struct discard_cmd_control *dcc_info;
1071 };
1072 
1073 /*
1074  * For superblock
1075  */
1076 /*
1077  * COUNT_TYPE for monitoring
1078  *
1079  * f2fs monitors the number of several block types such as on-writeback,
1080  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1081  */
1082 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1083 enum count_type {
1084 	F2FS_DIRTY_DENTS,
1085 	F2FS_DIRTY_DATA,
1086 	F2FS_DIRTY_QDATA,
1087 	F2FS_DIRTY_NODES,
1088 	F2FS_DIRTY_META,
1089 	F2FS_DIRTY_IMETA,
1090 	F2FS_WB_CP_DATA,
1091 	F2FS_WB_DATA,
1092 	F2FS_RD_DATA,
1093 	F2FS_RD_NODE,
1094 	F2FS_RD_META,
1095 	F2FS_DIO_WRITE,
1096 	F2FS_DIO_READ,
1097 	NR_COUNT_TYPE,
1098 };
1099 
1100 /*
1101  * The below are the page types of bios used in submit_bio().
1102  * The available types are:
1103  * DATA			User data pages. It operates as async mode.
1104  * NODE			Node pages. It operates as async mode.
1105  * META			FS metadata pages such as SIT, NAT, CP.
1106  * NR_PAGE_TYPE		The number of page types.
1107  * META_FLUSH		Make sure the previous pages are written
1108  *			with waiting the bio's completion
1109  * ...			Only can be used with META.
1110  */
1111 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1112 enum page_type {
1113 	DATA = 0,
1114 	NODE = 1,	/* should not change this */
1115 	META,
1116 	NR_PAGE_TYPE,
1117 	META_FLUSH,
1118 	IPU,		/* the below types are used by tracepoints only. */
1119 	OPU,
1120 };
1121 
1122 enum temp_type {
1123 	HOT = 0,	/* must be zero for meta bio */
1124 	WARM,
1125 	COLD,
1126 	NR_TEMP_TYPE,
1127 };
1128 
1129 enum need_lock_type {
1130 	LOCK_REQ = 0,
1131 	LOCK_DONE,
1132 	LOCK_RETRY,
1133 };
1134 
1135 enum cp_reason_type {
1136 	CP_NO_NEEDED,
1137 	CP_NON_REGULAR,
1138 	CP_COMPRESSED,
1139 	CP_HARDLINK,
1140 	CP_SB_NEED_CP,
1141 	CP_WRONG_PINO,
1142 	CP_NO_SPC_ROLL,
1143 	CP_NODE_NEED_CP,
1144 	CP_FASTBOOT_MODE,
1145 	CP_SPEC_LOG_NUM,
1146 	CP_RECOVER_DIR,
1147 };
1148 
1149 enum iostat_type {
1150 	/* WRITE IO */
1151 	APP_DIRECT_IO,			/* app direct write IOs */
1152 	APP_BUFFERED_IO,		/* app buffered write IOs */
1153 	APP_WRITE_IO,			/* app write IOs */
1154 	APP_MAPPED_IO,			/* app mapped IOs */
1155 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1156 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1157 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1158 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1159 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1160 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1161 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1162 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1163 
1164 	/* READ IO */
1165 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1166 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1167 	APP_READ_IO,			/* app read IOs */
1168 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1169 	FS_DATA_READ_IO,		/* data read IOs */
1170 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1171 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1172 	FS_NODE_READ_IO,		/* node read IOs */
1173 	FS_META_READ_IO,		/* meta read IOs */
1174 
1175 	/* other */
1176 	FS_DISCARD,			/* discard */
1177 	NR_IO_TYPE,
1178 };
1179 
1180 struct f2fs_io_info {
1181 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1182 	nid_t ino;		/* inode number */
1183 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1184 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1185 	int op;			/* contains REQ_OP_ */
1186 	int op_flags;		/* req_flag_bits */
1187 	block_t new_blkaddr;	/* new block address to be written */
1188 	block_t old_blkaddr;	/* old block address before Cow */
1189 	struct page *page;	/* page to be written */
1190 	struct page *encrypted_page;	/* encrypted page */
1191 	struct page *compressed_page;	/* compressed page */
1192 	struct list_head list;		/* serialize IOs */
1193 	bool submitted;		/* indicate IO submission */
1194 	int need_lock;		/* indicate we need to lock cp_rwsem */
1195 	bool in_list;		/* indicate fio is in io_list */
1196 	bool is_por;		/* indicate IO is from recovery or not */
1197 	bool retry;		/* need to reallocate block address */
1198 	int compr_blocks;	/* # of compressed block addresses */
1199 	bool encrypted;		/* indicate file is encrypted */
1200 	enum iostat_type io_type;	/* io type */
1201 	struct writeback_control *io_wbc; /* writeback control */
1202 	struct bio **bio;		/* bio for ipu */
1203 	sector_t *last_block;		/* last block number in bio */
1204 	unsigned char version;		/* version of the node */
1205 };
1206 
1207 struct bio_entry {
1208 	struct bio *bio;
1209 	struct list_head list;
1210 };
1211 
1212 #define is_read_io(rw) ((rw) == READ)
1213 struct f2fs_bio_info {
1214 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1215 	struct bio *bio;		/* bios to merge */
1216 	sector_t last_block_in_bio;	/* last block number */
1217 	struct f2fs_io_info fio;	/* store buffered io info. */
1218 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1219 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1220 	struct list_head io_list;	/* track fios */
1221 	struct list_head bio_list;	/* bio entry list head */
1222 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1223 };
1224 
1225 #define FDEV(i)				(sbi->devs[i])
1226 #define RDEV(i)				(raw_super->devs[i])
1227 struct f2fs_dev_info {
1228 	struct block_device *bdev;
1229 	char path[MAX_PATH_LEN];
1230 	unsigned int total_segments;
1231 	block_t start_blk;
1232 	block_t end_blk;
1233 #ifdef CONFIG_BLK_DEV_ZONED
1234 	unsigned int nr_blkz;		/* Total number of zones */
1235 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1236 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1237 #endif
1238 };
1239 
1240 enum inode_type {
1241 	DIR_INODE,			/* for dirty dir inode */
1242 	FILE_INODE,			/* for dirty regular/symlink inode */
1243 	DIRTY_META,			/* for all dirtied inode metadata */
1244 	ATOMIC_FILE,			/* for all atomic files */
1245 	NR_INODE_TYPE,
1246 };
1247 
1248 /* for inner inode cache management */
1249 struct inode_management {
1250 	struct radix_tree_root ino_root;	/* ino entry array */
1251 	spinlock_t ino_lock;			/* for ino entry lock */
1252 	struct list_head ino_list;		/* inode list head */
1253 	unsigned long ino_num;			/* number of entries */
1254 };
1255 
1256 /* for GC_AT */
1257 struct atgc_management {
1258 	bool atgc_enabled;			/* ATGC is enabled or not */
1259 	struct rb_root_cached root;		/* root of victim rb-tree */
1260 	struct list_head victim_list;		/* linked with all victim entries */
1261 	unsigned int victim_count;		/* victim count in rb-tree */
1262 	unsigned int candidate_ratio;		/* candidate ratio */
1263 	unsigned int max_candidate_count;	/* max candidate count */
1264 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1265 	unsigned long long age_threshold;	/* age threshold */
1266 };
1267 
1268 struct f2fs_gc_control {
1269 	unsigned int victim_segno;	/* target victim segment number */
1270 	int init_gc_type;		/* FG_GC or BG_GC */
1271 	bool no_bg_gc;			/* check the space and stop bg_gc */
1272 	bool should_migrate_blocks;	/* should migrate blocks */
1273 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1274 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1275 };
1276 
1277 /* For s_flag in struct f2fs_sb_info */
1278 enum {
1279 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1280 	SBI_IS_CLOSE,				/* specify unmounting */
1281 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1282 	SBI_POR_DOING,				/* recovery is doing or not */
1283 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1284 	SBI_NEED_CP,				/* need to checkpoint */
1285 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1286 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1287 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1288 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1289 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1290 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1291 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1292 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1293 	SBI_IS_FREEZING,			/* freezefs is in process */
1294 };
1295 
1296 enum {
1297 	CP_TIME,
1298 	REQ_TIME,
1299 	DISCARD_TIME,
1300 	GC_TIME,
1301 	DISABLE_TIME,
1302 	UMOUNT_DISCARD_TIMEOUT,
1303 	MAX_TIME,
1304 };
1305 
1306 enum {
1307 	GC_NORMAL,
1308 	GC_IDLE_CB,
1309 	GC_IDLE_GREEDY,
1310 	GC_IDLE_AT,
1311 	GC_URGENT_HIGH,
1312 	GC_URGENT_LOW,
1313 	GC_URGENT_MID,
1314 	MAX_GC_MODE,
1315 };
1316 
1317 enum {
1318 	BGGC_MODE_ON,		/* background gc is on */
1319 	BGGC_MODE_OFF,		/* background gc is off */
1320 	BGGC_MODE_SYNC,		/*
1321 				 * background gc is on, migrating blocks
1322 				 * like foreground gc
1323 				 */
1324 };
1325 
1326 enum {
1327 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1328 	FS_MODE_LFS,			/* use lfs allocation only */
1329 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1330 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1331 };
1332 
1333 enum {
1334 	ALLOC_MODE_DEFAULT,	/* stay default */
1335 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1336 };
1337 
1338 enum fsync_mode {
1339 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1340 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1341 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1342 };
1343 
1344 enum {
1345 	COMPR_MODE_FS,		/*
1346 				 * automatically compress compression
1347 				 * enabled files
1348 				 */
1349 	COMPR_MODE_USER,	/*
1350 				 * automatical compression is disabled.
1351 				 * user can control the file compression
1352 				 * using ioctls
1353 				 */
1354 };
1355 
1356 enum {
1357 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1358 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1359 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1360 };
1361 
1362 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1363 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1364 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1365 
1366 /*
1367  * Layout of f2fs page.private:
1368  *
1369  * Layout A: lowest bit should be 1
1370  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1371  * bit 0	PAGE_PRIVATE_NOT_POINTER
1372  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1373  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1374  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1375  * bit 4	PAGE_PRIVATE_INLINE_INODE
1376  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1377  * bit 6-	f2fs private data
1378  *
1379  * Layout B: lowest bit should be 0
1380  * page.private is a wrapped pointer.
1381  */
1382 enum {
1383 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1384 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1385 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1386 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1387 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1388 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1389 	PAGE_PRIVATE_MAX
1390 };
1391 
1392 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1393 static inline bool page_private_##name(struct page *page) \
1394 { \
1395 	return PagePrivate(page) && \
1396 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1397 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1398 }
1399 
1400 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1401 static inline void set_page_private_##name(struct page *page) \
1402 { \
1403 	if (!PagePrivate(page)) { \
1404 		get_page(page); \
1405 		SetPagePrivate(page); \
1406 		set_page_private(page, 0); \
1407 	} \
1408 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1409 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1410 }
1411 
1412 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1413 static inline void clear_page_private_##name(struct page *page) \
1414 { \
1415 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1416 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1417 		set_page_private(page, 0); \
1418 		if (PagePrivate(page)) { \
1419 			ClearPagePrivate(page); \
1420 			put_page(page); \
1421 		}\
1422 	} \
1423 }
1424 
1425 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1426 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1427 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1428 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1429 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1430 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1431 
1432 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1433 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1434 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1435 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1436 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1437 
1438 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1439 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1440 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1441 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1442 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1443 
1444 static inline unsigned long get_page_private_data(struct page *page)
1445 {
1446 	unsigned long data = page_private(page);
1447 
1448 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1449 		return 0;
1450 	return data >> PAGE_PRIVATE_MAX;
1451 }
1452 
1453 static inline void set_page_private_data(struct page *page, unsigned long data)
1454 {
1455 	if (!PagePrivate(page)) {
1456 		get_page(page);
1457 		SetPagePrivate(page);
1458 		set_page_private(page, 0);
1459 	}
1460 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1461 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1462 }
1463 
1464 static inline void clear_page_private_data(struct page *page)
1465 {
1466 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1467 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1468 		set_page_private(page, 0);
1469 		if (PagePrivate(page)) {
1470 			ClearPagePrivate(page);
1471 			put_page(page);
1472 		}
1473 	}
1474 }
1475 
1476 /* For compression */
1477 enum compress_algorithm_type {
1478 	COMPRESS_LZO,
1479 	COMPRESS_LZ4,
1480 	COMPRESS_ZSTD,
1481 	COMPRESS_LZORLE,
1482 	COMPRESS_MAX,
1483 };
1484 
1485 enum compress_flag {
1486 	COMPRESS_CHKSUM,
1487 	COMPRESS_MAX_FLAG,
1488 };
1489 
1490 #define	COMPRESS_WATERMARK			20
1491 #define	COMPRESS_PERCENT			20
1492 
1493 #define COMPRESS_DATA_RESERVED_SIZE		4
1494 struct compress_data {
1495 	__le32 clen;			/* compressed data size */
1496 	__le32 chksum;			/* compressed data chksum */
1497 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1498 	u8 cdata[];			/* compressed data */
1499 };
1500 
1501 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1502 
1503 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1504 
1505 #define	COMPRESS_LEVEL_OFFSET	8
1506 
1507 /* compress context */
1508 struct compress_ctx {
1509 	struct inode *inode;		/* inode the context belong to */
1510 	pgoff_t cluster_idx;		/* cluster index number */
1511 	unsigned int cluster_size;	/* page count in cluster */
1512 	unsigned int log_cluster_size;	/* log of cluster size */
1513 	struct page **rpages;		/* pages store raw data in cluster */
1514 	unsigned int nr_rpages;		/* total page number in rpages */
1515 	struct page **cpages;		/* pages store compressed data in cluster */
1516 	unsigned int nr_cpages;		/* total page number in cpages */
1517 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1518 	void *rbuf;			/* virtual mapped address on rpages */
1519 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1520 	size_t rlen;			/* valid data length in rbuf */
1521 	size_t clen;			/* valid data length in cbuf */
1522 	void *private;			/* payload buffer for specified compression algorithm */
1523 	void *private2;			/* extra payload buffer */
1524 };
1525 
1526 /* compress context for write IO path */
1527 struct compress_io_ctx {
1528 	u32 magic;			/* magic number to indicate page is compressed */
1529 	struct inode *inode;		/* inode the context belong to */
1530 	struct page **rpages;		/* pages store raw data in cluster */
1531 	unsigned int nr_rpages;		/* total page number in rpages */
1532 	atomic_t pending_pages;		/* in-flight compressed page count */
1533 };
1534 
1535 /* Context for decompressing one cluster on the read IO path */
1536 struct decompress_io_ctx {
1537 	u32 magic;			/* magic number to indicate page is compressed */
1538 	struct inode *inode;		/* inode the context belong to */
1539 	pgoff_t cluster_idx;		/* cluster index number */
1540 	unsigned int cluster_size;	/* page count in cluster */
1541 	unsigned int log_cluster_size;	/* log of cluster size */
1542 	struct page **rpages;		/* pages store raw data in cluster */
1543 	unsigned int nr_rpages;		/* total page number in rpages */
1544 	struct page **cpages;		/* pages store compressed data in cluster */
1545 	unsigned int nr_cpages;		/* total page number in cpages */
1546 	struct page **tpages;		/* temp pages to pad holes in cluster */
1547 	void *rbuf;			/* virtual mapped address on rpages */
1548 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1549 	size_t rlen;			/* valid data length in rbuf */
1550 	size_t clen;			/* valid data length in cbuf */
1551 
1552 	/*
1553 	 * The number of compressed pages remaining to be read in this cluster.
1554 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1555 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1556 	 * is decompressed (or an error is reported).
1557 	 *
1558 	 * If an error occurs before all the pages have been submitted for I/O,
1559 	 * then this will never reach 0.  In this case the I/O submitter is
1560 	 * responsible for calling f2fs_decompress_end_io() instead.
1561 	 */
1562 	atomic_t remaining_pages;
1563 
1564 	/*
1565 	 * Number of references to this decompress_io_ctx.
1566 	 *
1567 	 * One reference is held for I/O completion.  This reference is dropped
1568 	 * after the pagecache pages are updated and unlocked -- either after
1569 	 * decompression (and verity if enabled), or after an error.
1570 	 *
1571 	 * In addition, each compressed page holds a reference while it is in a
1572 	 * bio.  These references are necessary prevent compressed pages from
1573 	 * being freed while they are still in a bio.
1574 	 */
1575 	refcount_t refcnt;
1576 
1577 	bool failed;			/* IO error occurred before decompression? */
1578 	bool need_verity;		/* need fs-verity verification after decompression? */
1579 	void *private;			/* payload buffer for specified decompression algorithm */
1580 	void *private2;			/* extra payload buffer */
1581 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1582 };
1583 
1584 #define NULL_CLUSTER			((unsigned int)(~0))
1585 #define MIN_COMPRESS_LOG_SIZE		2
1586 #define MAX_COMPRESS_LOG_SIZE		8
1587 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1588 
1589 struct f2fs_sb_info {
1590 	struct super_block *sb;			/* pointer to VFS super block */
1591 	struct proc_dir_entry *s_proc;		/* proc entry */
1592 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1593 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1594 	int valid_super_block;			/* valid super block no */
1595 	unsigned long s_flag;				/* flags for sbi */
1596 	struct mutex writepages;		/* mutex for writepages() */
1597 
1598 #ifdef CONFIG_BLK_DEV_ZONED
1599 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1600 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1601 #endif
1602 
1603 	/* for node-related operations */
1604 	struct f2fs_nm_info *nm_info;		/* node manager */
1605 	struct inode *node_inode;		/* cache node blocks */
1606 
1607 	/* for segment-related operations */
1608 	struct f2fs_sm_info *sm_info;		/* segment manager */
1609 
1610 	/* for bio operations */
1611 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1612 	/* keep migration IO order for LFS mode */
1613 	struct f2fs_rwsem io_order_lock;
1614 	mempool_t *write_io_dummy;		/* Dummy pages */
1615 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1616 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1617 
1618 	/* for checkpoint */
1619 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1620 	int cur_cp_pack;			/* remain current cp pack */
1621 	spinlock_t cp_lock;			/* for flag in ckpt */
1622 	struct inode *meta_inode;		/* cache meta blocks */
1623 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1624 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1625 	struct f2fs_rwsem node_write;		/* locking node writes */
1626 	struct f2fs_rwsem node_change;	/* locking node change */
1627 	wait_queue_head_t cp_wait;
1628 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1629 	long interval_time[MAX_TIME];		/* to store thresholds */
1630 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1631 
1632 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1633 
1634 	spinlock_t fsync_node_lock;		/* for node entry lock */
1635 	struct list_head fsync_node_list;	/* node list head */
1636 	unsigned int fsync_seg_id;		/* sequence id */
1637 	unsigned int fsync_node_num;		/* number of node entries */
1638 
1639 	/* for orphan inode, use 0'th array */
1640 	unsigned int max_orphans;		/* max orphan inodes */
1641 
1642 	/* for inode management */
1643 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1644 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1645 	struct mutex flush_lock;		/* for flush exclusion */
1646 
1647 	/* for extent tree cache */
1648 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1649 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1650 	struct list_head extent_list;		/* lru list for shrinker */
1651 	spinlock_t extent_lock;			/* locking extent lru list */
1652 	atomic_t total_ext_tree;		/* extent tree count */
1653 	struct list_head zombie_list;		/* extent zombie tree list */
1654 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1655 	atomic_t total_ext_node;		/* extent info count */
1656 
1657 	/* basic filesystem units */
1658 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1659 	unsigned int log_blocksize;		/* log2 block size */
1660 	unsigned int blocksize;			/* block size */
1661 	unsigned int root_ino_num;		/* root inode number*/
1662 	unsigned int node_ino_num;		/* node inode number*/
1663 	unsigned int meta_ino_num;		/* meta inode number*/
1664 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1665 	unsigned int blocks_per_seg;		/* blocks per segment */
1666 	unsigned int segs_per_sec;		/* segments per section */
1667 	unsigned int secs_per_zone;		/* sections per zone */
1668 	unsigned int total_sections;		/* total section count */
1669 	unsigned int total_node_count;		/* total node block count */
1670 	unsigned int total_valid_node_count;	/* valid node block count */
1671 	int dir_level;				/* directory level */
1672 	int readdir_ra;				/* readahead inode in readdir */
1673 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1674 
1675 	block_t user_block_count;		/* # of user blocks */
1676 	block_t total_valid_block_count;	/* # of valid blocks */
1677 	block_t discard_blks;			/* discard command candidats */
1678 	block_t last_valid_block_count;		/* for recovery */
1679 	block_t reserved_blocks;		/* configurable reserved blocks */
1680 	block_t current_reserved_blocks;	/* current reserved blocks */
1681 
1682 	/* Additional tracking for no checkpoint mode */
1683 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1684 
1685 	unsigned int nquota_files;		/* # of quota sysfile */
1686 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1687 
1688 	/* # of pages, see count_type */
1689 	atomic_t nr_pages[NR_COUNT_TYPE];
1690 	/* # of allocated blocks */
1691 	struct percpu_counter alloc_valid_block_count;
1692 	/* # of node block writes as roll forward recovery */
1693 	struct percpu_counter rf_node_block_count;
1694 
1695 	/* writeback control */
1696 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1697 
1698 	/* valid inode count */
1699 	struct percpu_counter total_valid_inode_count;
1700 
1701 	struct f2fs_mount_info mount_opt;	/* mount options */
1702 
1703 	/* for cleaning operations */
1704 	struct f2fs_rwsem gc_lock;		/*
1705 						 * semaphore for GC, avoid
1706 						 * race between GC and GC or CP
1707 						 */
1708 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1709 	struct atgc_management am;		/* atgc management */
1710 	unsigned int cur_victim_sec;		/* current victim section num */
1711 	unsigned int gc_mode;			/* current GC state */
1712 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1713 	spinlock_t gc_urgent_high_lock;
1714 	bool gc_urgent_high_limited;		/* indicates having limited trial count */
1715 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1716 
1717 	/* for skip statistic */
1718 	unsigned int atomic_files;		/* # of opened atomic file */
1719 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1720 
1721 	/* threshold for gc trials on pinned files */
1722 	u64 gc_pin_file_threshold;
1723 	struct f2fs_rwsem pin_sem;
1724 
1725 	/* maximum # of trials to find a victim segment for SSR and GC */
1726 	unsigned int max_victim_search;
1727 	/* migration granularity of garbage collection, unit: segment */
1728 	unsigned int migration_granularity;
1729 
1730 	/*
1731 	 * for stat information.
1732 	 * one is for the LFS mode, and the other is for the SSR mode.
1733 	 */
1734 #ifdef CONFIG_F2FS_STAT_FS
1735 	struct f2fs_stat_info *stat_info;	/* FS status information */
1736 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1737 	unsigned int segment_count[2];		/* # of allocated segments */
1738 	unsigned int block_count[2];		/* # of allocated blocks */
1739 	atomic_t inplace_count;		/* # of inplace update */
1740 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1741 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1742 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1743 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1744 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1745 	atomic_t inline_inode;			/* # of inline_data inodes */
1746 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1747 	atomic_t compr_inode;			/* # of compressed inodes */
1748 	atomic64_t compr_blocks;		/* # of compressed blocks */
1749 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1750 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1751 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1752 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1753 #endif
1754 	spinlock_t stat_lock;			/* lock for stat operations */
1755 
1756 	/* to attach REQ_META|REQ_FUA flags */
1757 	unsigned int data_io_flag;
1758 	unsigned int node_io_flag;
1759 
1760 	/* For sysfs support */
1761 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1762 	struct completion s_kobj_unregister;
1763 
1764 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1765 	struct completion s_stat_kobj_unregister;
1766 
1767 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1768 	struct completion s_feature_list_kobj_unregister;
1769 
1770 	/* For shrinker support */
1771 	struct list_head s_list;
1772 	struct mutex umount_mutex;
1773 	unsigned int shrinker_run_no;
1774 
1775 	/* For multi devices */
1776 	int s_ndevs;				/* number of devices */
1777 	struct f2fs_dev_info *devs;		/* for device list */
1778 	unsigned int dirty_device;		/* for checkpoint data flush */
1779 	spinlock_t dev_lock;			/* protect dirty_device */
1780 	bool aligned_blksize;			/* all devices has the same logical blksize */
1781 
1782 	/* For write statistics */
1783 	u64 sectors_written_start;
1784 	u64 kbytes_written;
1785 
1786 	/* Reference to checksum algorithm driver via cryptoapi */
1787 	struct crypto_shash *s_chksum_driver;
1788 
1789 	/* Precomputed FS UUID checksum for seeding other checksums */
1790 	__u32 s_chksum_seed;
1791 
1792 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1793 
1794 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1795 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1796 
1797 	/* For reclaimed segs statistics per each GC mode */
1798 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1799 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1800 
1801 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1802 
1803 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1804 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1805 
1806 #ifdef CONFIG_F2FS_FS_COMPRESSION
1807 	struct kmem_cache *page_array_slab;	/* page array entry */
1808 	unsigned int page_array_slab_size;	/* default page array slab size */
1809 
1810 	/* For runtime compression statistics */
1811 	u64 compr_written_block;
1812 	u64 compr_saved_block;
1813 	u32 compr_new_inode;
1814 
1815 	/* For compressed block cache */
1816 	struct inode *compress_inode;		/* cache compressed blocks */
1817 	unsigned int compress_percent;		/* cache page percentage */
1818 	unsigned int compress_watermark;	/* cache page watermark */
1819 	atomic_t compress_page_hit;		/* cache hit count */
1820 #endif
1821 
1822 #ifdef CONFIG_F2FS_IOSTAT
1823 	/* For app/fs IO statistics */
1824 	spinlock_t iostat_lock;
1825 	unsigned long long rw_iostat[NR_IO_TYPE];
1826 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1827 	bool iostat_enable;
1828 	unsigned long iostat_next_period;
1829 	unsigned int iostat_period_ms;
1830 
1831 	/* For io latency related statistics info in one iostat period */
1832 	spinlock_t iostat_lat_lock;
1833 	struct iostat_lat_info *iostat_io_lat;
1834 #endif
1835 };
1836 
1837 #ifdef CONFIG_F2FS_FAULT_INJECTION
1838 #define f2fs_show_injection_info(sbi, type)					\
1839 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1840 		KERN_INFO, sbi->sb->s_id,				\
1841 		f2fs_fault_name[type],					\
1842 		__func__, __builtin_return_address(0))
1843 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1844 {
1845 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1846 
1847 	if (!ffi->inject_rate)
1848 		return false;
1849 
1850 	if (!IS_FAULT_SET(ffi, type))
1851 		return false;
1852 
1853 	atomic_inc(&ffi->inject_ops);
1854 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1855 		atomic_set(&ffi->inject_ops, 0);
1856 		return true;
1857 	}
1858 	return false;
1859 }
1860 #else
1861 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1862 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1863 {
1864 	return false;
1865 }
1866 #endif
1867 
1868 /*
1869  * Test if the mounted volume is a multi-device volume.
1870  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1871  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1872  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1873  */
1874 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1875 {
1876 	return sbi->s_ndevs > 1;
1877 }
1878 
1879 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1880 {
1881 	unsigned long now = jiffies;
1882 
1883 	sbi->last_time[type] = now;
1884 
1885 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1886 	if (type == REQ_TIME) {
1887 		sbi->last_time[DISCARD_TIME] = now;
1888 		sbi->last_time[GC_TIME] = now;
1889 	}
1890 }
1891 
1892 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1893 {
1894 	unsigned long interval = sbi->interval_time[type] * HZ;
1895 
1896 	return time_after(jiffies, sbi->last_time[type] + interval);
1897 }
1898 
1899 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1900 						int type)
1901 {
1902 	unsigned long interval = sbi->interval_time[type] * HZ;
1903 	unsigned int wait_ms = 0;
1904 	long delta;
1905 
1906 	delta = (sbi->last_time[type] + interval) - jiffies;
1907 	if (delta > 0)
1908 		wait_ms = jiffies_to_msecs(delta);
1909 
1910 	return wait_ms;
1911 }
1912 
1913 /*
1914  * Inline functions
1915  */
1916 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1917 			      const void *address, unsigned int length)
1918 {
1919 	struct {
1920 		struct shash_desc shash;
1921 		char ctx[4];
1922 	} desc;
1923 	int err;
1924 
1925 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1926 
1927 	desc.shash.tfm = sbi->s_chksum_driver;
1928 	*(u32 *)desc.ctx = crc;
1929 
1930 	err = crypto_shash_update(&desc.shash, address, length);
1931 	BUG_ON(err);
1932 
1933 	return *(u32 *)desc.ctx;
1934 }
1935 
1936 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1937 			   unsigned int length)
1938 {
1939 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1940 }
1941 
1942 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1943 				  void *buf, size_t buf_size)
1944 {
1945 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1946 }
1947 
1948 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1949 			      const void *address, unsigned int length)
1950 {
1951 	return __f2fs_crc32(sbi, crc, address, length);
1952 }
1953 
1954 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1955 {
1956 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1957 }
1958 
1959 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1960 {
1961 	return sb->s_fs_info;
1962 }
1963 
1964 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1965 {
1966 	return F2FS_SB(inode->i_sb);
1967 }
1968 
1969 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1970 {
1971 	return F2FS_I_SB(mapping->host);
1972 }
1973 
1974 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1975 {
1976 	return F2FS_M_SB(page_file_mapping(page));
1977 }
1978 
1979 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1980 {
1981 	return (struct f2fs_super_block *)(sbi->raw_super);
1982 }
1983 
1984 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1985 {
1986 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1987 }
1988 
1989 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1990 {
1991 	return (struct f2fs_node *)page_address(page);
1992 }
1993 
1994 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1995 {
1996 	return &((struct f2fs_node *)page_address(page))->i;
1997 }
1998 
1999 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2000 {
2001 	return (struct f2fs_nm_info *)(sbi->nm_info);
2002 }
2003 
2004 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2005 {
2006 	return (struct f2fs_sm_info *)(sbi->sm_info);
2007 }
2008 
2009 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2010 {
2011 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2012 }
2013 
2014 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2015 {
2016 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2017 }
2018 
2019 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2020 {
2021 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2022 }
2023 
2024 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2025 {
2026 	return sbi->meta_inode->i_mapping;
2027 }
2028 
2029 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2030 {
2031 	return sbi->node_inode->i_mapping;
2032 }
2033 
2034 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2035 {
2036 	return test_bit(type, &sbi->s_flag);
2037 }
2038 
2039 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2040 {
2041 	set_bit(type, &sbi->s_flag);
2042 }
2043 
2044 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2045 {
2046 	clear_bit(type, &sbi->s_flag);
2047 }
2048 
2049 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2050 {
2051 	return le64_to_cpu(cp->checkpoint_ver);
2052 }
2053 
2054 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2055 {
2056 	if (type < F2FS_MAX_QUOTAS)
2057 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2058 	return 0;
2059 }
2060 
2061 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2062 {
2063 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2064 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2065 }
2066 
2067 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2068 {
2069 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2070 
2071 	return ckpt_flags & f;
2072 }
2073 
2074 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2075 {
2076 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2077 }
2078 
2079 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2080 {
2081 	unsigned int ckpt_flags;
2082 
2083 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2084 	ckpt_flags |= f;
2085 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2086 }
2087 
2088 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2089 {
2090 	unsigned long flags;
2091 
2092 	spin_lock_irqsave(&sbi->cp_lock, flags);
2093 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2094 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2095 }
2096 
2097 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2098 {
2099 	unsigned int ckpt_flags;
2100 
2101 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2102 	ckpt_flags &= (~f);
2103 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2104 }
2105 
2106 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2107 {
2108 	unsigned long flags;
2109 
2110 	spin_lock_irqsave(&sbi->cp_lock, flags);
2111 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2112 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2113 }
2114 
2115 #define init_f2fs_rwsem(sem)					\
2116 do {								\
2117 	static struct lock_class_key __key;			\
2118 								\
2119 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2120 } while (0)
2121 
2122 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2123 		const char *sem_name, struct lock_class_key *key)
2124 {
2125 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2126 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2127 	init_waitqueue_head(&sem->read_waiters);
2128 #endif
2129 }
2130 
2131 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2132 {
2133 	return rwsem_is_locked(&sem->internal_rwsem);
2134 }
2135 
2136 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2137 {
2138 	return rwsem_is_contended(&sem->internal_rwsem);
2139 }
2140 
2141 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2142 {
2143 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2144 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2145 #else
2146 	down_read(&sem->internal_rwsem);
2147 #endif
2148 }
2149 
2150 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2151 {
2152 	return down_read_trylock(&sem->internal_rwsem);
2153 }
2154 
2155 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2156 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2157 {
2158 	down_read_nested(&sem->internal_rwsem, subclass);
2159 }
2160 #else
2161 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2162 #endif
2163 
2164 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2165 {
2166 	up_read(&sem->internal_rwsem);
2167 }
2168 
2169 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2170 {
2171 	down_write(&sem->internal_rwsem);
2172 }
2173 
2174 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2175 {
2176 	return down_write_trylock(&sem->internal_rwsem);
2177 }
2178 
2179 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2180 {
2181 	up_write(&sem->internal_rwsem);
2182 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2183 	wake_up_all(&sem->read_waiters);
2184 #endif
2185 }
2186 
2187 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2188 {
2189 	f2fs_down_read(&sbi->cp_rwsem);
2190 }
2191 
2192 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2193 {
2194 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2195 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2196 		return 0;
2197 	}
2198 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2199 }
2200 
2201 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2202 {
2203 	f2fs_up_read(&sbi->cp_rwsem);
2204 }
2205 
2206 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2207 {
2208 	f2fs_down_write(&sbi->cp_rwsem);
2209 }
2210 
2211 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2212 {
2213 	f2fs_up_write(&sbi->cp_rwsem);
2214 }
2215 
2216 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2217 {
2218 	int reason = CP_SYNC;
2219 
2220 	if (test_opt(sbi, FASTBOOT))
2221 		reason = CP_FASTBOOT;
2222 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2223 		reason = CP_UMOUNT;
2224 	return reason;
2225 }
2226 
2227 static inline bool __remain_node_summaries(int reason)
2228 {
2229 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2230 }
2231 
2232 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2233 {
2234 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2235 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2236 }
2237 
2238 /*
2239  * Check whether the inode has blocks or not
2240  */
2241 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2242 {
2243 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2244 
2245 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2246 }
2247 
2248 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2249 {
2250 	return ofs == XATTR_NODE_OFFSET;
2251 }
2252 
2253 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2254 					struct inode *inode, bool cap)
2255 {
2256 	if (!inode)
2257 		return true;
2258 	if (!test_opt(sbi, RESERVE_ROOT))
2259 		return false;
2260 	if (IS_NOQUOTA(inode))
2261 		return true;
2262 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2263 		return true;
2264 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2265 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2266 		return true;
2267 	if (cap && capable(CAP_SYS_RESOURCE))
2268 		return true;
2269 	return false;
2270 }
2271 
2272 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2273 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2274 				 struct inode *inode, blkcnt_t *count)
2275 {
2276 	blkcnt_t diff = 0, release = 0;
2277 	block_t avail_user_block_count;
2278 	int ret;
2279 
2280 	ret = dquot_reserve_block(inode, *count);
2281 	if (ret)
2282 		return ret;
2283 
2284 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2285 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2286 		release = *count;
2287 		goto release_quota;
2288 	}
2289 
2290 	/*
2291 	 * let's increase this in prior to actual block count change in order
2292 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2293 	 */
2294 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2295 
2296 	spin_lock(&sbi->stat_lock);
2297 	sbi->total_valid_block_count += (block_t)(*count);
2298 	avail_user_block_count = sbi->user_block_count -
2299 					sbi->current_reserved_blocks;
2300 
2301 	if (!__allow_reserved_blocks(sbi, inode, true))
2302 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2303 
2304 	if (F2FS_IO_ALIGNED(sbi))
2305 		avail_user_block_count -= sbi->blocks_per_seg *
2306 				SM_I(sbi)->additional_reserved_segments;
2307 
2308 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2309 		if (avail_user_block_count > sbi->unusable_block_count)
2310 			avail_user_block_count -= sbi->unusable_block_count;
2311 		else
2312 			avail_user_block_count = 0;
2313 	}
2314 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2315 		diff = sbi->total_valid_block_count - avail_user_block_count;
2316 		if (diff > *count)
2317 			diff = *count;
2318 		*count -= diff;
2319 		release = diff;
2320 		sbi->total_valid_block_count -= diff;
2321 		if (!*count) {
2322 			spin_unlock(&sbi->stat_lock);
2323 			goto enospc;
2324 		}
2325 	}
2326 	spin_unlock(&sbi->stat_lock);
2327 
2328 	if (unlikely(release)) {
2329 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2330 		dquot_release_reservation_block(inode, release);
2331 	}
2332 	f2fs_i_blocks_write(inode, *count, true, true);
2333 	return 0;
2334 
2335 enospc:
2336 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2337 release_quota:
2338 	dquot_release_reservation_block(inode, release);
2339 	return -ENOSPC;
2340 }
2341 
2342 __printf(2, 3)
2343 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2344 
2345 #define f2fs_err(sbi, fmt, ...)						\
2346 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2347 #define f2fs_warn(sbi, fmt, ...)					\
2348 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2349 #define f2fs_notice(sbi, fmt, ...)					\
2350 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2351 #define f2fs_info(sbi, fmt, ...)					\
2352 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2353 #define f2fs_debug(sbi, fmt, ...)					\
2354 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2355 
2356 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2357 						struct inode *inode,
2358 						block_t count)
2359 {
2360 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2361 
2362 	spin_lock(&sbi->stat_lock);
2363 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2364 	sbi->total_valid_block_count -= (block_t)count;
2365 	if (sbi->reserved_blocks &&
2366 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2367 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2368 					sbi->current_reserved_blocks + count);
2369 	spin_unlock(&sbi->stat_lock);
2370 	if (unlikely(inode->i_blocks < sectors)) {
2371 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2372 			  inode->i_ino,
2373 			  (unsigned long long)inode->i_blocks,
2374 			  (unsigned long long)sectors);
2375 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2376 		return;
2377 	}
2378 	f2fs_i_blocks_write(inode, count, false, true);
2379 }
2380 
2381 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2382 {
2383 	atomic_inc(&sbi->nr_pages[count_type]);
2384 
2385 	if (count_type == F2FS_DIRTY_DENTS ||
2386 			count_type == F2FS_DIRTY_NODES ||
2387 			count_type == F2FS_DIRTY_META ||
2388 			count_type == F2FS_DIRTY_QDATA ||
2389 			count_type == F2FS_DIRTY_IMETA)
2390 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2391 }
2392 
2393 static inline void inode_inc_dirty_pages(struct inode *inode)
2394 {
2395 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2396 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2397 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2398 	if (IS_NOQUOTA(inode))
2399 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2400 }
2401 
2402 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2403 {
2404 	atomic_dec(&sbi->nr_pages[count_type]);
2405 }
2406 
2407 static inline void inode_dec_dirty_pages(struct inode *inode)
2408 {
2409 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2410 			!S_ISLNK(inode->i_mode))
2411 		return;
2412 
2413 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2414 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2415 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2416 	if (IS_NOQUOTA(inode))
2417 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2418 }
2419 
2420 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2421 {
2422 	return atomic_read(&sbi->nr_pages[count_type]);
2423 }
2424 
2425 static inline int get_dirty_pages(struct inode *inode)
2426 {
2427 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2428 }
2429 
2430 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2431 {
2432 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2433 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2434 						sbi->log_blocks_per_seg;
2435 
2436 	return segs / sbi->segs_per_sec;
2437 }
2438 
2439 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2440 {
2441 	return sbi->total_valid_block_count;
2442 }
2443 
2444 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2445 {
2446 	return sbi->discard_blks;
2447 }
2448 
2449 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2450 {
2451 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2452 
2453 	/* return NAT or SIT bitmap */
2454 	if (flag == NAT_BITMAP)
2455 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2456 	else if (flag == SIT_BITMAP)
2457 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2458 
2459 	return 0;
2460 }
2461 
2462 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2463 {
2464 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2465 }
2466 
2467 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2468 {
2469 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2470 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2471 	int offset;
2472 
2473 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2474 		offset = (flag == SIT_BITMAP) ?
2475 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2476 		/*
2477 		 * if large_nat_bitmap feature is enabled, leave checksum
2478 		 * protection for all nat/sit bitmaps.
2479 		 */
2480 		return tmp_ptr + offset + sizeof(__le32);
2481 	}
2482 
2483 	if (__cp_payload(sbi) > 0) {
2484 		if (flag == NAT_BITMAP)
2485 			return &ckpt->sit_nat_version_bitmap;
2486 		else
2487 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2488 	} else {
2489 		offset = (flag == NAT_BITMAP) ?
2490 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2491 		return tmp_ptr + offset;
2492 	}
2493 }
2494 
2495 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2496 {
2497 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2498 
2499 	if (sbi->cur_cp_pack == 2)
2500 		start_addr += sbi->blocks_per_seg;
2501 	return start_addr;
2502 }
2503 
2504 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2505 {
2506 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2507 
2508 	if (sbi->cur_cp_pack == 1)
2509 		start_addr += sbi->blocks_per_seg;
2510 	return start_addr;
2511 }
2512 
2513 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2514 {
2515 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2516 }
2517 
2518 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2519 {
2520 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2521 }
2522 
2523 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2524 					struct inode *inode, bool is_inode)
2525 {
2526 	block_t	valid_block_count;
2527 	unsigned int valid_node_count, user_block_count;
2528 	int err;
2529 
2530 	if (is_inode) {
2531 		if (inode) {
2532 			err = dquot_alloc_inode(inode);
2533 			if (err)
2534 				return err;
2535 		}
2536 	} else {
2537 		err = dquot_reserve_block(inode, 1);
2538 		if (err)
2539 			return err;
2540 	}
2541 
2542 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2543 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2544 		goto enospc;
2545 	}
2546 
2547 	spin_lock(&sbi->stat_lock);
2548 
2549 	valid_block_count = sbi->total_valid_block_count +
2550 					sbi->current_reserved_blocks + 1;
2551 
2552 	if (!__allow_reserved_blocks(sbi, inode, false))
2553 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2554 
2555 	if (F2FS_IO_ALIGNED(sbi))
2556 		valid_block_count += sbi->blocks_per_seg *
2557 				SM_I(sbi)->additional_reserved_segments;
2558 
2559 	user_block_count = sbi->user_block_count;
2560 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2561 		user_block_count -= sbi->unusable_block_count;
2562 
2563 	if (unlikely(valid_block_count > user_block_count)) {
2564 		spin_unlock(&sbi->stat_lock);
2565 		goto enospc;
2566 	}
2567 
2568 	valid_node_count = sbi->total_valid_node_count + 1;
2569 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2570 		spin_unlock(&sbi->stat_lock);
2571 		goto enospc;
2572 	}
2573 
2574 	sbi->total_valid_node_count++;
2575 	sbi->total_valid_block_count++;
2576 	spin_unlock(&sbi->stat_lock);
2577 
2578 	if (inode) {
2579 		if (is_inode)
2580 			f2fs_mark_inode_dirty_sync(inode, true);
2581 		else
2582 			f2fs_i_blocks_write(inode, 1, true, true);
2583 	}
2584 
2585 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2586 	return 0;
2587 
2588 enospc:
2589 	if (is_inode) {
2590 		if (inode)
2591 			dquot_free_inode(inode);
2592 	} else {
2593 		dquot_release_reservation_block(inode, 1);
2594 	}
2595 	return -ENOSPC;
2596 }
2597 
2598 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2599 					struct inode *inode, bool is_inode)
2600 {
2601 	spin_lock(&sbi->stat_lock);
2602 
2603 	if (unlikely(!sbi->total_valid_block_count ||
2604 			!sbi->total_valid_node_count)) {
2605 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2606 			  sbi->total_valid_block_count,
2607 			  sbi->total_valid_node_count);
2608 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2609 	} else {
2610 		sbi->total_valid_block_count--;
2611 		sbi->total_valid_node_count--;
2612 	}
2613 
2614 	if (sbi->reserved_blocks &&
2615 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2616 		sbi->current_reserved_blocks++;
2617 
2618 	spin_unlock(&sbi->stat_lock);
2619 
2620 	if (is_inode) {
2621 		dquot_free_inode(inode);
2622 	} else {
2623 		if (unlikely(inode->i_blocks == 0)) {
2624 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2625 				  inode->i_ino,
2626 				  (unsigned long long)inode->i_blocks);
2627 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2628 			return;
2629 		}
2630 		f2fs_i_blocks_write(inode, 1, false, true);
2631 	}
2632 }
2633 
2634 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2635 {
2636 	return sbi->total_valid_node_count;
2637 }
2638 
2639 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2640 {
2641 	percpu_counter_inc(&sbi->total_valid_inode_count);
2642 }
2643 
2644 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2645 {
2646 	percpu_counter_dec(&sbi->total_valid_inode_count);
2647 }
2648 
2649 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2650 {
2651 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2652 }
2653 
2654 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2655 						pgoff_t index, bool for_write)
2656 {
2657 	struct page *page;
2658 
2659 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2660 		if (!for_write)
2661 			page = find_get_page_flags(mapping, index,
2662 							FGP_LOCK | FGP_ACCESSED);
2663 		else
2664 			page = find_lock_page(mapping, index);
2665 		if (page)
2666 			return page;
2667 
2668 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2669 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2670 							FAULT_PAGE_ALLOC);
2671 			return NULL;
2672 		}
2673 	}
2674 
2675 	if (!for_write)
2676 		return grab_cache_page(mapping, index);
2677 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2678 }
2679 
2680 static inline struct page *f2fs_pagecache_get_page(
2681 				struct address_space *mapping, pgoff_t index,
2682 				int fgp_flags, gfp_t gfp_mask)
2683 {
2684 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2685 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2686 		return NULL;
2687 	}
2688 
2689 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2690 }
2691 
2692 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2693 {
2694 	char *src_kaddr = kmap(src);
2695 	char *dst_kaddr = kmap(dst);
2696 
2697 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2698 	kunmap(dst);
2699 	kunmap(src);
2700 }
2701 
2702 static inline void f2fs_put_page(struct page *page, int unlock)
2703 {
2704 	if (!page)
2705 		return;
2706 
2707 	if (unlock) {
2708 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2709 		unlock_page(page);
2710 	}
2711 	put_page(page);
2712 }
2713 
2714 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2715 {
2716 	if (dn->node_page)
2717 		f2fs_put_page(dn->node_page, 1);
2718 	if (dn->inode_page && dn->node_page != dn->inode_page)
2719 		f2fs_put_page(dn->inode_page, 0);
2720 	dn->node_page = NULL;
2721 	dn->inode_page = NULL;
2722 }
2723 
2724 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2725 					size_t size)
2726 {
2727 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2728 }
2729 
2730 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2731 						gfp_t flags)
2732 {
2733 	void *entry;
2734 
2735 	entry = kmem_cache_alloc(cachep, flags);
2736 	if (!entry)
2737 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2738 	return entry;
2739 }
2740 
2741 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2742 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2743 {
2744 	if (nofail)
2745 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2746 
2747 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2748 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2749 		return NULL;
2750 	}
2751 
2752 	return kmem_cache_alloc(cachep, flags);
2753 }
2754 
2755 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2756 {
2757 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2758 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2759 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2760 		get_pages(sbi, F2FS_DIO_READ) ||
2761 		get_pages(sbi, F2FS_DIO_WRITE))
2762 		return true;
2763 
2764 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2765 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2766 		return true;
2767 
2768 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2769 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2770 		return true;
2771 	return false;
2772 }
2773 
2774 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2775 {
2776 	if (sbi->gc_mode == GC_URGENT_HIGH)
2777 		return true;
2778 
2779 	if (is_inflight_io(sbi, type))
2780 		return false;
2781 
2782 	if (sbi->gc_mode == GC_URGENT_MID)
2783 		return true;
2784 
2785 	if (sbi->gc_mode == GC_URGENT_LOW &&
2786 			(type == DISCARD_TIME || type == GC_TIME))
2787 		return true;
2788 
2789 	return f2fs_time_over(sbi, type);
2790 }
2791 
2792 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2793 				unsigned long index, void *item)
2794 {
2795 	while (radix_tree_insert(root, index, item))
2796 		cond_resched();
2797 }
2798 
2799 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2800 
2801 static inline bool IS_INODE(struct page *page)
2802 {
2803 	struct f2fs_node *p = F2FS_NODE(page);
2804 
2805 	return RAW_IS_INODE(p);
2806 }
2807 
2808 static inline int offset_in_addr(struct f2fs_inode *i)
2809 {
2810 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2811 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2812 }
2813 
2814 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2815 {
2816 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2817 }
2818 
2819 static inline int f2fs_has_extra_attr(struct inode *inode);
2820 static inline block_t data_blkaddr(struct inode *inode,
2821 			struct page *node_page, unsigned int offset)
2822 {
2823 	struct f2fs_node *raw_node;
2824 	__le32 *addr_array;
2825 	int base = 0;
2826 	bool is_inode = IS_INODE(node_page);
2827 
2828 	raw_node = F2FS_NODE(node_page);
2829 
2830 	if (is_inode) {
2831 		if (!inode)
2832 			/* from GC path only */
2833 			base = offset_in_addr(&raw_node->i);
2834 		else if (f2fs_has_extra_attr(inode))
2835 			base = get_extra_isize(inode);
2836 	}
2837 
2838 	addr_array = blkaddr_in_node(raw_node);
2839 	return le32_to_cpu(addr_array[base + offset]);
2840 }
2841 
2842 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2843 {
2844 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2845 }
2846 
2847 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2848 {
2849 	int mask;
2850 
2851 	addr += (nr >> 3);
2852 	mask = 1 << (7 - (nr & 0x07));
2853 	return mask & *addr;
2854 }
2855 
2856 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2857 {
2858 	int mask;
2859 
2860 	addr += (nr >> 3);
2861 	mask = 1 << (7 - (nr & 0x07));
2862 	*addr |= mask;
2863 }
2864 
2865 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2866 {
2867 	int mask;
2868 
2869 	addr += (nr >> 3);
2870 	mask = 1 << (7 - (nr & 0x07));
2871 	*addr &= ~mask;
2872 }
2873 
2874 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2875 {
2876 	int mask;
2877 	int ret;
2878 
2879 	addr += (nr >> 3);
2880 	mask = 1 << (7 - (nr & 0x07));
2881 	ret = mask & *addr;
2882 	*addr |= mask;
2883 	return ret;
2884 }
2885 
2886 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2887 {
2888 	int mask;
2889 	int ret;
2890 
2891 	addr += (nr >> 3);
2892 	mask = 1 << (7 - (nr & 0x07));
2893 	ret = mask & *addr;
2894 	*addr &= ~mask;
2895 	return ret;
2896 }
2897 
2898 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2899 {
2900 	int mask;
2901 
2902 	addr += (nr >> 3);
2903 	mask = 1 << (7 - (nr & 0x07));
2904 	*addr ^= mask;
2905 }
2906 
2907 /*
2908  * On-disk inode flags (f2fs_inode::i_flags)
2909  */
2910 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2911 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2912 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2913 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2914 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2915 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2916 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2917 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2918 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2919 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2920 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2921 
2922 /* Flags that should be inherited by new inodes from their parent. */
2923 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2924 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2925 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2926 
2927 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2928 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2929 				F2FS_CASEFOLD_FL))
2930 
2931 /* Flags that are appropriate for non-directories/regular files. */
2932 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2933 
2934 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2935 {
2936 	if (S_ISDIR(mode))
2937 		return flags;
2938 	else if (S_ISREG(mode))
2939 		return flags & F2FS_REG_FLMASK;
2940 	else
2941 		return flags & F2FS_OTHER_FLMASK;
2942 }
2943 
2944 static inline void __mark_inode_dirty_flag(struct inode *inode,
2945 						int flag, bool set)
2946 {
2947 	switch (flag) {
2948 	case FI_INLINE_XATTR:
2949 	case FI_INLINE_DATA:
2950 	case FI_INLINE_DENTRY:
2951 	case FI_NEW_INODE:
2952 		if (set)
2953 			return;
2954 		fallthrough;
2955 	case FI_DATA_EXIST:
2956 	case FI_INLINE_DOTS:
2957 	case FI_PIN_FILE:
2958 	case FI_COMPRESS_RELEASED:
2959 		f2fs_mark_inode_dirty_sync(inode, true);
2960 	}
2961 }
2962 
2963 static inline void set_inode_flag(struct inode *inode, int flag)
2964 {
2965 	set_bit(flag, F2FS_I(inode)->flags);
2966 	__mark_inode_dirty_flag(inode, flag, true);
2967 }
2968 
2969 static inline int is_inode_flag_set(struct inode *inode, int flag)
2970 {
2971 	return test_bit(flag, F2FS_I(inode)->flags);
2972 }
2973 
2974 static inline void clear_inode_flag(struct inode *inode, int flag)
2975 {
2976 	clear_bit(flag, F2FS_I(inode)->flags);
2977 	__mark_inode_dirty_flag(inode, flag, false);
2978 }
2979 
2980 static inline bool f2fs_verity_in_progress(struct inode *inode)
2981 {
2982 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2983 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2984 }
2985 
2986 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2987 {
2988 	F2FS_I(inode)->i_acl_mode = mode;
2989 	set_inode_flag(inode, FI_ACL_MODE);
2990 	f2fs_mark_inode_dirty_sync(inode, false);
2991 }
2992 
2993 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2994 {
2995 	if (inc)
2996 		inc_nlink(inode);
2997 	else
2998 		drop_nlink(inode);
2999 	f2fs_mark_inode_dirty_sync(inode, true);
3000 }
3001 
3002 static inline void f2fs_i_blocks_write(struct inode *inode,
3003 					block_t diff, bool add, bool claim)
3004 {
3005 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3006 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3007 
3008 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3009 	if (add) {
3010 		if (claim)
3011 			dquot_claim_block(inode, diff);
3012 		else
3013 			dquot_alloc_block_nofail(inode, diff);
3014 	} else {
3015 		dquot_free_block(inode, diff);
3016 	}
3017 
3018 	f2fs_mark_inode_dirty_sync(inode, true);
3019 	if (clean || recover)
3020 		set_inode_flag(inode, FI_AUTO_RECOVER);
3021 }
3022 
3023 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3024 {
3025 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3026 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3027 
3028 	if (i_size_read(inode) == i_size)
3029 		return;
3030 
3031 	i_size_write(inode, i_size);
3032 	f2fs_mark_inode_dirty_sync(inode, true);
3033 	if (clean || recover)
3034 		set_inode_flag(inode, FI_AUTO_RECOVER);
3035 }
3036 
3037 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3038 {
3039 	F2FS_I(inode)->i_current_depth = depth;
3040 	f2fs_mark_inode_dirty_sync(inode, true);
3041 }
3042 
3043 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3044 					unsigned int count)
3045 {
3046 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3047 	f2fs_mark_inode_dirty_sync(inode, true);
3048 }
3049 
3050 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3051 {
3052 	F2FS_I(inode)->i_xattr_nid = xnid;
3053 	f2fs_mark_inode_dirty_sync(inode, true);
3054 }
3055 
3056 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3057 {
3058 	F2FS_I(inode)->i_pino = pino;
3059 	f2fs_mark_inode_dirty_sync(inode, true);
3060 }
3061 
3062 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3063 {
3064 	struct f2fs_inode_info *fi = F2FS_I(inode);
3065 
3066 	if (ri->i_inline & F2FS_INLINE_XATTR)
3067 		set_bit(FI_INLINE_XATTR, fi->flags);
3068 	if (ri->i_inline & F2FS_INLINE_DATA)
3069 		set_bit(FI_INLINE_DATA, fi->flags);
3070 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3071 		set_bit(FI_INLINE_DENTRY, fi->flags);
3072 	if (ri->i_inline & F2FS_DATA_EXIST)
3073 		set_bit(FI_DATA_EXIST, fi->flags);
3074 	if (ri->i_inline & F2FS_INLINE_DOTS)
3075 		set_bit(FI_INLINE_DOTS, fi->flags);
3076 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3077 		set_bit(FI_EXTRA_ATTR, fi->flags);
3078 	if (ri->i_inline & F2FS_PIN_FILE)
3079 		set_bit(FI_PIN_FILE, fi->flags);
3080 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3081 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3082 }
3083 
3084 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3085 {
3086 	ri->i_inline = 0;
3087 
3088 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3089 		ri->i_inline |= F2FS_INLINE_XATTR;
3090 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3091 		ri->i_inline |= F2FS_INLINE_DATA;
3092 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3093 		ri->i_inline |= F2FS_INLINE_DENTRY;
3094 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3095 		ri->i_inline |= F2FS_DATA_EXIST;
3096 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3097 		ri->i_inline |= F2FS_INLINE_DOTS;
3098 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3099 		ri->i_inline |= F2FS_EXTRA_ATTR;
3100 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3101 		ri->i_inline |= F2FS_PIN_FILE;
3102 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3103 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3104 }
3105 
3106 static inline int f2fs_has_extra_attr(struct inode *inode)
3107 {
3108 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3109 }
3110 
3111 static inline int f2fs_has_inline_xattr(struct inode *inode)
3112 {
3113 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3114 }
3115 
3116 static inline int f2fs_compressed_file(struct inode *inode)
3117 {
3118 	return S_ISREG(inode->i_mode) &&
3119 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3120 }
3121 
3122 static inline bool f2fs_need_compress_data(struct inode *inode)
3123 {
3124 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3125 
3126 	if (!f2fs_compressed_file(inode))
3127 		return false;
3128 
3129 	if (compress_mode == COMPR_MODE_FS)
3130 		return true;
3131 	else if (compress_mode == COMPR_MODE_USER &&
3132 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3133 		return true;
3134 
3135 	return false;
3136 }
3137 
3138 static inline unsigned int addrs_per_inode(struct inode *inode)
3139 {
3140 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3141 				get_inline_xattr_addrs(inode);
3142 
3143 	if (!f2fs_compressed_file(inode))
3144 		return addrs;
3145 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3146 }
3147 
3148 static inline unsigned int addrs_per_block(struct inode *inode)
3149 {
3150 	if (!f2fs_compressed_file(inode))
3151 		return DEF_ADDRS_PER_BLOCK;
3152 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3153 }
3154 
3155 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3156 {
3157 	struct f2fs_inode *ri = F2FS_INODE(page);
3158 
3159 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3160 					get_inline_xattr_addrs(inode)]);
3161 }
3162 
3163 static inline int inline_xattr_size(struct inode *inode)
3164 {
3165 	if (f2fs_has_inline_xattr(inode))
3166 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3167 	return 0;
3168 }
3169 
3170 /*
3171  * Notice: check inline_data flag without inode page lock is unsafe.
3172  * It could change at any time by f2fs_convert_inline_page().
3173  */
3174 static inline int f2fs_has_inline_data(struct inode *inode)
3175 {
3176 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3177 }
3178 
3179 static inline int f2fs_exist_data(struct inode *inode)
3180 {
3181 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3182 }
3183 
3184 static inline int f2fs_has_inline_dots(struct inode *inode)
3185 {
3186 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3187 }
3188 
3189 static inline int f2fs_is_mmap_file(struct inode *inode)
3190 {
3191 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3192 }
3193 
3194 static inline bool f2fs_is_pinned_file(struct inode *inode)
3195 {
3196 	return is_inode_flag_set(inode, FI_PIN_FILE);
3197 }
3198 
3199 static inline bool f2fs_is_atomic_file(struct inode *inode)
3200 {
3201 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3202 }
3203 
3204 static inline bool f2fs_is_first_block_written(struct inode *inode)
3205 {
3206 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3207 }
3208 
3209 static inline bool f2fs_is_drop_cache(struct inode *inode)
3210 {
3211 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3212 }
3213 
3214 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3215 {
3216 	struct f2fs_inode *ri = F2FS_INODE(page);
3217 	int extra_size = get_extra_isize(inode);
3218 
3219 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3220 }
3221 
3222 static inline int f2fs_has_inline_dentry(struct inode *inode)
3223 {
3224 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3225 }
3226 
3227 static inline int is_file(struct inode *inode, int type)
3228 {
3229 	return F2FS_I(inode)->i_advise & type;
3230 }
3231 
3232 static inline void set_file(struct inode *inode, int type)
3233 {
3234 	if (is_file(inode, type))
3235 		return;
3236 	F2FS_I(inode)->i_advise |= type;
3237 	f2fs_mark_inode_dirty_sync(inode, true);
3238 }
3239 
3240 static inline void clear_file(struct inode *inode, int type)
3241 {
3242 	if (!is_file(inode, type))
3243 		return;
3244 	F2FS_I(inode)->i_advise &= ~type;
3245 	f2fs_mark_inode_dirty_sync(inode, true);
3246 }
3247 
3248 static inline bool f2fs_is_time_consistent(struct inode *inode)
3249 {
3250 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3251 		return false;
3252 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3253 		return false;
3254 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3255 		return false;
3256 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3257 						&F2FS_I(inode)->i_crtime))
3258 		return false;
3259 	return true;
3260 }
3261 
3262 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3263 {
3264 	bool ret;
3265 
3266 	if (dsync) {
3267 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3268 
3269 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3270 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3271 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3272 		return ret;
3273 	}
3274 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3275 			file_keep_isize(inode) ||
3276 			i_size_read(inode) & ~PAGE_MASK)
3277 		return false;
3278 
3279 	if (!f2fs_is_time_consistent(inode))
3280 		return false;
3281 
3282 	spin_lock(&F2FS_I(inode)->i_size_lock);
3283 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3284 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3285 
3286 	return ret;
3287 }
3288 
3289 static inline bool f2fs_readonly(struct super_block *sb)
3290 {
3291 	return sb_rdonly(sb);
3292 }
3293 
3294 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3295 {
3296 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3297 }
3298 
3299 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3300 {
3301 	if (len == 1 && name[0] == '.')
3302 		return true;
3303 
3304 	if (len == 2 && name[0] == '.' && name[1] == '.')
3305 		return true;
3306 
3307 	return false;
3308 }
3309 
3310 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3311 					size_t size, gfp_t flags)
3312 {
3313 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3314 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3315 		return NULL;
3316 	}
3317 
3318 	return kmalloc(size, flags);
3319 }
3320 
3321 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3322 					size_t size, gfp_t flags)
3323 {
3324 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3325 }
3326 
3327 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3328 					size_t size, gfp_t flags)
3329 {
3330 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3331 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3332 		return NULL;
3333 	}
3334 
3335 	return kvmalloc(size, flags);
3336 }
3337 
3338 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3339 					size_t size, gfp_t flags)
3340 {
3341 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3342 }
3343 
3344 static inline int get_extra_isize(struct inode *inode)
3345 {
3346 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3347 }
3348 
3349 static inline int get_inline_xattr_addrs(struct inode *inode)
3350 {
3351 	return F2FS_I(inode)->i_inline_xattr_size;
3352 }
3353 
3354 #define f2fs_get_inode_mode(i) \
3355 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3356 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3357 
3358 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3359 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3360 	offsetof(struct f2fs_inode, i_extra_isize))	\
3361 
3362 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3363 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3364 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3365 		sizeof((f2fs_inode)->field))			\
3366 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3367 
3368 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3369 
3370 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3371 
3372 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3373 					block_t blkaddr, int type);
3374 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3375 					block_t blkaddr, int type)
3376 {
3377 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3378 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3379 			 blkaddr, type);
3380 		f2fs_bug_on(sbi, 1);
3381 	}
3382 }
3383 
3384 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3385 {
3386 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3387 			blkaddr == COMPRESS_ADDR)
3388 		return false;
3389 	return true;
3390 }
3391 
3392 /*
3393  * file.c
3394  */
3395 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3396 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3397 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3398 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3399 int f2fs_truncate(struct inode *inode);
3400 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3401 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3402 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3403 		 struct iattr *attr);
3404 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3405 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3406 int f2fs_precache_extents(struct inode *inode);
3407 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3408 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3409 		      struct dentry *dentry, struct fileattr *fa);
3410 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3411 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3412 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3413 int f2fs_pin_file_control(struct inode *inode, bool inc);
3414 
3415 /*
3416  * inode.c
3417  */
3418 void f2fs_set_inode_flags(struct inode *inode);
3419 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3420 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3421 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3422 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3423 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3424 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3425 void f2fs_update_inode_page(struct inode *inode);
3426 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3427 void f2fs_evict_inode(struct inode *inode);
3428 void f2fs_handle_failed_inode(struct inode *inode);
3429 
3430 /*
3431  * namei.c
3432  */
3433 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3434 							bool hot, bool set);
3435 struct dentry *f2fs_get_parent(struct dentry *child);
3436 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3437 		     struct inode **new_inode);
3438 
3439 /*
3440  * dir.c
3441  */
3442 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3443 int f2fs_init_casefolded_name(const struct inode *dir,
3444 			      struct f2fs_filename *fname);
3445 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3446 			int lookup, struct f2fs_filename *fname);
3447 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3448 			struct f2fs_filename *fname);
3449 void f2fs_free_filename(struct f2fs_filename *fname);
3450 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3451 			const struct f2fs_filename *fname, int *max_slots);
3452 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3453 			unsigned int start_pos, struct fscrypt_str *fstr);
3454 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3455 			struct f2fs_dentry_ptr *d);
3456 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3457 			const struct f2fs_filename *fname, struct page *dpage);
3458 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3459 			unsigned int current_depth);
3460 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3461 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3462 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3463 					 const struct f2fs_filename *fname,
3464 					 struct page **res_page);
3465 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3466 			const struct qstr *child, struct page **res_page);
3467 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3468 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3469 			struct page **page);
3470 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3471 			struct page *page, struct inode *inode);
3472 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3473 			  const struct f2fs_filename *fname);
3474 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3475 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3476 			unsigned int bit_pos);
3477 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3478 			struct inode *inode, nid_t ino, umode_t mode);
3479 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3480 			struct inode *inode, nid_t ino, umode_t mode);
3481 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3482 			struct inode *inode, nid_t ino, umode_t mode);
3483 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3484 			struct inode *dir, struct inode *inode);
3485 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3486 bool f2fs_empty_dir(struct inode *dir);
3487 
3488 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3489 {
3490 	if (fscrypt_is_nokey_name(dentry))
3491 		return -ENOKEY;
3492 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3493 				inode, inode->i_ino, inode->i_mode);
3494 }
3495 
3496 /*
3497  * super.c
3498  */
3499 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3500 void f2fs_inode_synced(struct inode *inode);
3501 int f2fs_dquot_initialize(struct inode *inode);
3502 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3503 int f2fs_quota_sync(struct super_block *sb, int type);
3504 loff_t max_file_blocks(struct inode *inode);
3505 void f2fs_quota_off_umount(struct super_block *sb);
3506 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3507 int f2fs_sync_fs(struct super_block *sb, int sync);
3508 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3509 
3510 /*
3511  * hash.c
3512  */
3513 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3514 
3515 /*
3516  * node.c
3517  */
3518 struct node_info;
3519 
3520 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3521 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3522 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3523 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3524 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3525 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3526 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3527 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3528 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3529 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3530 				struct node_info *ni, bool checkpoint_context);
3531 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3532 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3533 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3534 int f2fs_truncate_xattr_node(struct inode *inode);
3535 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3536 					unsigned int seq_id);
3537 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3538 int f2fs_remove_inode_page(struct inode *inode);
3539 struct page *f2fs_new_inode_page(struct inode *inode);
3540 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3541 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3542 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3543 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3544 int f2fs_move_node_page(struct page *node_page, int gc_type);
3545 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3546 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3547 			struct writeback_control *wbc, bool atomic,
3548 			unsigned int *seq_id);
3549 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3550 			struct writeback_control *wbc,
3551 			bool do_balance, enum iostat_type io_type);
3552 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3553 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3554 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3555 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3556 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3557 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3558 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3559 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3560 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3561 			unsigned int segno, struct f2fs_summary_block *sum);
3562 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3563 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3564 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3565 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3566 int __init f2fs_create_node_manager_caches(void);
3567 void f2fs_destroy_node_manager_caches(void);
3568 
3569 /*
3570  * segment.c
3571  */
3572 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3573 int f2fs_commit_atomic_write(struct inode *inode);
3574 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3575 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3576 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3577 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3578 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3579 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3580 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3581 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3582 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3583 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3584 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3585 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3586 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3587 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3588 					struct cp_control *cpc);
3589 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3590 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3591 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3592 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3593 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3594 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3595 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3596 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3597 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3598 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3599 			unsigned int *newseg, bool new_sec, int dir);
3600 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3601 					unsigned int start, unsigned int end);
3602 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3603 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3604 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3605 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3606 					struct cp_control *cpc);
3607 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3608 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3609 					block_t blk_addr);
3610 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3611 						enum iostat_type io_type);
3612 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3613 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3614 			struct f2fs_io_info *fio);
3615 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3616 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3617 			block_t old_blkaddr, block_t new_blkaddr,
3618 			bool recover_curseg, bool recover_newaddr,
3619 			bool from_gc);
3620 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3621 			block_t old_addr, block_t new_addr,
3622 			unsigned char version, bool recover_curseg,
3623 			bool recover_newaddr);
3624 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3625 			block_t old_blkaddr, block_t *new_blkaddr,
3626 			struct f2fs_summary *sum, int type,
3627 			struct f2fs_io_info *fio);
3628 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3629 					block_t blkaddr, unsigned int blkcnt);
3630 void f2fs_wait_on_page_writeback(struct page *page,
3631 			enum page_type type, bool ordered, bool locked);
3632 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3633 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3634 								block_t len);
3635 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3636 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3637 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3638 			unsigned int val, int alloc);
3639 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3640 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3641 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3642 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3643 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3644 int __init f2fs_create_segment_manager_caches(void);
3645 void f2fs_destroy_segment_manager_caches(void);
3646 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3647 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3648 			unsigned int segno);
3649 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3650 			unsigned int segno);
3651 
3652 #define DEF_FRAGMENT_SIZE	4
3653 #define MIN_FRAGMENT_SIZE	1
3654 #define MAX_FRAGMENT_SIZE	512
3655 
3656 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3657 {
3658 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3659 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3660 }
3661 
3662 /*
3663  * checkpoint.c
3664  */
3665 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3666 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3667 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3668 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3669 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3670 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3671 					block_t blkaddr, int type);
3672 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3673 			int type, bool sync);
3674 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3675 							unsigned int ra_blocks);
3676 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3677 			long nr_to_write, enum iostat_type io_type);
3678 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3679 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3680 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3681 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3682 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3683 					unsigned int devidx, int type);
3684 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3685 					unsigned int devidx, int type);
3686 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3687 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3688 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3689 void f2fs_add_orphan_inode(struct inode *inode);
3690 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3691 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3692 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3693 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3694 void f2fs_remove_dirty_inode(struct inode *inode);
3695 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3696 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3697 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3698 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3699 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3700 int __init f2fs_create_checkpoint_caches(void);
3701 void f2fs_destroy_checkpoint_caches(void);
3702 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3703 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3704 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3705 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3706 
3707 /*
3708  * data.c
3709  */
3710 int __init f2fs_init_bioset(void);
3711 void f2fs_destroy_bioset(void);
3712 int f2fs_init_bio_entry_cache(void);
3713 void f2fs_destroy_bio_entry_cache(void);
3714 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3715 				struct bio *bio, enum page_type type);
3716 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3717 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3718 				struct inode *inode, struct page *page,
3719 				nid_t ino, enum page_type type);
3720 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3721 					struct bio **bio, struct page *page);
3722 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3723 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3724 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3725 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3726 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3727 		block_t blk_addr, sector_t *sector);
3728 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3729 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3730 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3731 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3732 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3733 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3734 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3735 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3736 			int op_flags, bool for_write);
3737 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3738 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3739 			bool for_write);
3740 struct page *f2fs_get_new_data_page(struct inode *inode,
3741 			struct page *ipage, pgoff_t index, bool new_i_size);
3742 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3743 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3744 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3745 			int create, int flag);
3746 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3747 			u64 start, u64 len);
3748 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3749 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3750 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3751 int f2fs_write_single_data_page(struct page *page, int *submitted,
3752 				struct bio **bio, sector_t *last_block,
3753 				struct writeback_control *wbc,
3754 				enum iostat_type io_type,
3755 				int compr_blocks, bool allow_balance);
3756 void f2fs_write_failed(struct inode *inode, loff_t to);
3757 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3758 int f2fs_release_page(struct page *page, gfp_t wait);
3759 #ifdef CONFIG_MIGRATION
3760 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3761 			struct page *page, enum migrate_mode mode);
3762 #endif
3763 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3764 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3765 int f2fs_init_post_read_processing(void);
3766 void f2fs_destroy_post_read_processing(void);
3767 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3768 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3769 extern const struct iomap_ops f2fs_iomap_ops;
3770 
3771 /*
3772  * gc.c
3773  */
3774 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3775 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3776 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3777 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3778 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3779 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3780 int __init f2fs_create_garbage_collection_cache(void);
3781 void f2fs_destroy_garbage_collection_cache(void);
3782 
3783 /*
3784  * recovery.c
3785  */
3786 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3787 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3788 int __init f2fs_create_recovery_cache(void);
3789 void f2fs_destroy_recovery_cache(void);
3790 
3791 /*
3792  * debug.c
3793  */
3794 #ifdef CONFIG_F2FS_STAT_FS
3795 struct f2fs_stat_info {
3796 	struct list_head stat_list;
3797 	struct f2fs_sb_info *sbi;
3798 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3799 	int main_area_segs, main_area_sections, main_area_zones;
3800 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3801 	unsigned long long hit_total, total_ext;
3802 	int ext_tree, zombie_tree, ext_node;
3803 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3804 	int ndirty_data, ndirty_qdata;
3805 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3806 	int nats, dirty_nats, sits, dirty_sits;
3807 	int free_nids, avail_nids, alloc_nids;
3808 	int total_count, utilization;
3809 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3810 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3811 	int nr_dio_read, nr_dio_write;
3812 	unsigned int io_skip_bggc, other_skip_bggc;
3813 	int nr_flushing, nr_flushed, flush_list_empty;
3814 	int nr_discarding, nr_discarded;
3815 	int nr_discard_cmd;
3816 	unsigned int undiscard_blks;
3817 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3818 	unsigned int cur_ckpt_time, peak_ckpt_time;
3819 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3820 	int compr_inode;
3821 	unsigned long long compr_blocks;
3822 	int aw_cnt, max_aw_cnt;
3823 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3824 	unsigned int bimodal, avg_vblocks;
3825 	int util_free, util_valid, util_invalid;
3826 	int rsvd_segs, overp_segs;
3827 	int dirty_count, node_pages, meta_pages, compress_pages;
3828 	int compress_page_hit;
3829 	int prefree_count, call_count, cp_count, bg_cp_count;
3830 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3831 	int bg_node_segs, bg_data_segs;
3832 	int tot_blks, data_blks, node_blks;
3833 	int bg_data_blks, bg_node_blks;
3834 	int curseg[NR_CURSEG_TYPE];
3835 	int cursec[NR_CURSEG_TYPE];
3836 	int curzone[NR_CURSEG_TYPE];
3837 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3838 	unsigned int full_seg[NR_CURSEG_TYPE];
3839 	unsigned int valid_blks[NR_CURSEG_TYPE];
3840 
3841 	unsigned int meta_count[META_MAX];
3842 	unsigned int segment_count[2];
3843 	unsigned int block_count[2];
3844 	unsigned int inplace_count;
3845 	unsigned long long base_mem, cache_mem, page_mem;
3846 };
3847 
3848 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3849 {
3850 	return (struct f2fs_stat_info *)sbi->stat_info;
3851 }
3852 
3853 #define stat_inc_cp_count(si)		((si)->cp_count++)
3854 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3855 #define stat_inc_call_count(si)		((si)->call_count++)
3856 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3857 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3858 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3859 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3860 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3861 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3862 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3863 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3864 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3865 #define stat_inc_inline_xattr(inode)					\
3866 	do {								\
3867 		if (f2fs_has_inline_xattr(inode))			\
3868 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3869 	} while (0)
3870 #define stat_dec_inline_xattr(inode)					\
3871 	do {								\
3872 		if (f2fs_has_inline_xattr(inode))			\
3873 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3874 	} while (0)
3875 #define stat_inc_inline_inode(inode)					\
3876 	do {								\
3877 		if (f2fs_has_inline_data(inode))			\
3878 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3879 	} while (0)
3880 #define stat_dec_inline_inode(inode)					\
3881 	do {								\
3882 		if (f2fs_has_inline_data(inode))			\
3883 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3884 	} while (0)
3885 #define stat_inc_inline_dir(inode)					\
3886 	do {								\
3887 		if (f2fs_has_inline_dentry(inode))			\
3888 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3889 	} while (0)
3890 #define stat_dec_inline_dir(inode)					\
3891 	do {								\
3892 		if (f2fs_has_inline_dentry(inode))			\
3893 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3894 	} while (0)
3895 #define stat_inc_compr_inode(inode)					\
3896 	do {								\
3897 		if (f2fs_compressed_file(inode))			\
3898 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3899 	} while (0)
3900 #define stat_dec_compr_inode(inode)					\
3901 	do {								\
3902 		if (f2fs_compressed_file(inode))			\
3903 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3904 	} while (0)
3905 #define stat_add_compr_blocks(inode, blocks)				\
3906 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3907 #define stat_sub_compr_blocks(inode, blocks)				\
3908 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3909 #define stat_inc_meta_count(sbi, blkaddr)				\
3910 	do {								\
3911 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3912 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3913 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3914 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3915 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3916 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3917 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3918 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3919 	} while (0)
3920 #define stat_inc_seg_type(sbi, curseg)					\
3921 		((sbi)->segment_count[(curseg)->alloc_type]++)
3922 #define stat_inc_block_count(sbi, curseg)				\
3923 		((sbi)->block_count[(curseg)->alloc_type]++)
3924 #define stat_inc_inplace_blocks(sbi)					\
3925 		(atomic_inc(&(sbi)->inplace_count))
3926 #define stat_update_max_atomic_write(inode)				\
3927 	do {								\
3928 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3929 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3930 		if (cur > max)						\
3931 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3932 	} while (0)
3933 #define stat_inc_seg_count(sbi, type, gc_type)				\
3934 	do {								\
3935 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3936 		si->tot_segs++;						\
3937 		if ((type) == SUM_TYPE_DATA) {				\
3938 			si->data_segs++;				\
3939 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3940 		} else {						\
3941 			si->node_segs++;				\
3942 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3943 		}							\
3944 	} while (0)
3945 
3946 #define stat_inc_tot_blk_count(si, blks)				\
3947 	((si)->tot_blks += (blks))
3948 
3949 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3950 	do {								\
3951 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3952 		stat_inc_tot_blk_count(si, blks);			\
3953 		si->data_blks += (blks);				\
3954 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3955 	} while (0)
3956 
3957 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3958 	do {								\
3959 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3960 		stat_inc_tot_blk_count(si, blks);			\
3961 		si->node_blks += (blks);				\
3962 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3963 	} while (0)
3964 
3965 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3966 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3967 void __init f2fs_create_root_stats(void);
3968 void f2fs_destroy_root_stats(void);
3969 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3970 #else
3971 #define stat_inc_cp_count(si)				do { } while (0)
3972 #define stat_inc_bg_cp_count(si)			do { } while (0)
3973 #define stat_inc_call_count(si)				do { } while (0)
3974 #define stat_inc_bggc_count(si)				do { } while (0)
3975 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3976 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3977 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3978 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3979 #define stat_inc_total_hit(sbi)				do { } while (0)
3980 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3981 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3982 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3983 #define stat_inc_inline_xattr(inode)			do { } while (0)
3984 #define stat_dec_inline_xattr(inode)			do { } while (0)
3985 #define stat_inc_inline_inode(inode)			do { } while (0)
3986 #define stat_dec_inline_inode(inode)			do { } while (0)
3987 #define stat_inc_inline_dir(inode)			do { } while (0)
3988 #define stat_dec_inline_dir(inode)			do { } while (0)
3989 #define stat_inc_compr_inode(inode)			do { } while (0)
3990 #define stat_dec_compr_inode(inode)			do { } while (0)
3991 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3992 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3993 #define stat_update_max_atomic_write(inode)		do { } while (0)
3994 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3995 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3996 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3997 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3998 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3999 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4000 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4001 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4002 
4003 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4004 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4005 static inline void __init f2fs_create_root_stats(void) { }
4006 static inline void f2fs_destroy_root_stats(void) { }
4007 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4008 #endif
4009 
4010 extern const struct file_operations f2fs_dir_operations;
4011 extern const struct file_operations f2fs_file_operations;
4012 extern const struct inode_operations f2fs_file_inode_operations;
4013 extern const struct address_space_operations f2fs_dblock_aops;
4014 extern const struct address_space_operations f2fs_node_aops;
4015 extern const struct address_space_operations f2fs_meta_aops;
4016 extern const struct inode_operations f2fs_dir_inode_operations;
4017 extern const struct inode_operations f2fs_symlink_inode_operations;
4018 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4019 extern const struct inode_operations f2fs_special_inode_operations;
4020 extern struct kmem_cache *f2fs_inode_entry_slab;
4021 
4022 /*
4023  * inline.c
4024  */
4025 bool f2fs_may_inline_data(struct inode *inode);
4026 bool f2fs_sanity_check_inline_data(struct inode *inode);
4027 bool f2fs_may_inline_dentry(struct inode *inode);
4028 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4029 void f2fs_truncate_inline_inode(struct inode *inode,
4030 						struct page *ipage, u64 from);
4031 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4032 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4033 int f2fs_convert_inline_inode(struct inode *inode);
4034 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4035 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4036 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4037 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4038 					const struct f2fs_filename *fname,
4039 					struct page **res_page);
4040 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4041 			struct page *ipage);
4042 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4043 			struct inode *inode, nid_t ino, umode_t mode);
4044 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4045 				struct page *page, struct inode *dir,
4046 				struct inode *inode);
4047 bool f2fs_empty_inline_dir(struct inode *dir);
4048 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4049 			struct fscrypt_str *fstr);
4050 int f2fs_inline_data_fiemap(struct inode *inode,
4051 			struct fiemap_extent_info *fieinfo,
4052 			__u64 start, __u64 len);
4053 
4054 /*
4055  * shrinker.c
4056  */
4057 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4058 			struct shrink_control *sc);
4059 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4060 			struct shrink_control *sc);
4061 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4062 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4063 
4064 /*
4065  * extent_cache.c
4066  */
4067 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4068 				struct rb_entry *cached_re, unsigned int ofs);
4069 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4070 				struct rb_root_cached *root,
4071 				struct rb_node **parent,
4072 				unsigned long long key, bool *left_most);
4073 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4074 				struct rb_root_cached *root,
4075 				struct rb_node **parent,
4076 				unsigned int ofs, bool *leftmost);
4077 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4078 		struct rb_entry *cached_re, unsigned int ofs,
4079 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4080 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4081 		bool force, bool *leftmost);
4082 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4083 				struct rb_root_cached *root, bool check_key);
4084 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4085 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4086 void f2fs_drop_extent_tree(struct inode *inode);
4087 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4088 void f2fs_destroy_extent_tree(struct inode *inode);
4089 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4090 			struct extent_info *ei);
4091 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4092 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4093 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4094 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4095 int __init f2fs_create_extent_cache(void);
4096 void f2fs_destroy_extent_cache(void);
4097 
4098 /*
4099  * sysfs.c
4100  */
4101 #define MIN_RA_MUL	2
4102 #define MAX_RA_MUL	256
4103 
4104 int __init f2fs_init_sysfs(void);
4105 void f2fs_exit_sysfs(void);
4106 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4107 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4108 
4109 /* verity.c */
4110 extern const struct fsverity_operations f2fs_verityops;
4111 
4112 /*
4113  * crypto support
4114  */
4115 static inline bool f2fs_encrypted_file(struct inode *inode)
4116 {
4117 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4118 }
4119 
4120 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4121 {
4122 #ifdef CONFIG_FS_ENCRYPTION
4123 	file_set_encrypt(inode);
4124 	f2fs_set_inode_flags(inode);
4125 #endif
4126 }
4127 
4128 /*
4129  * Returns true if the reads of the inode's data need to undergo some
4130  * postprocessing step, like decryption or authenticity verification.
4131  */
4132 static inline bool f2fs_post_read_required(struct inode *inode)
4133 {
4134 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4135 		f2fs_compressed_file(inode);
4136 }
4137 
4138 /*
4139  * compress.c
4140  */
4141 #ifdef CONFIG_F2FS_FS_COMPRESSION
4142 bool f2fs_is_compressed_page(struct page *page);
4143 struct page *f2fs_compress_control_page(struct page *page);
4144 int f2fs_prepare_compress_overwrite(struct inode *inode,
4145 			struct page **pagep, pgoff_t index, void **fsdata);
4146 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4147 					pgoff_t index, unsigned copied);
4148 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4149 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4150 bool f2fs_is_compress_backend_ready(struct inode *inode);
4151 int f2fs_init_compress_mempool(void);
4152 void f2fs_destroy_compress_mempool(void);
4153 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4154 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4155 							block_t blkaddr);
4156 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4157 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4158 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4159 				int index, int nr_pages);
4160 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4161 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4162 int f2fs_write_multi_pages(struct compress_ctx *cc,
4163 						int *submitted,
4164 						struct writeback_control *wbc,
4165 						enum iostat_type io_type);
4166 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4167 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4168 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4169 				unsigned int c_len);
4170 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4171 				unsigned nr_pages, sector_t *last_block_in_bio,
4172 				bool is_readahead, bool for_write);
4173 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4174 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4175 void f2fs_put_page_dic(struct page *page);
4176 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4177 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4178 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4179 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4180 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4181 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4182 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4183 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4184 int __init f2fs_init_compress_cache(void);
4185 void f2fs_destroy_compress_cache(void);
4186 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4187 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4188 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4189 						nid_t ino, block_t blkaddr);
4190 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4191 								block_t blkaddr);
4192 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4193 #define inc_compr_inode_stat(inode)					\
4194 	do {								\
4195 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4196 		sbi->compr_new_inode++;					\
4197 	} while (0)
4198 #define add_compr_block_stat(inode, blocks)				\
4199 	do {								\
4200 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4201 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4202 		sbi->compr_written_block += blocks;			\
4203 		sbi->compr_saved_block += diff;				\
4204 	} while (0)
4205 #else
4206 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4207 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4208 {
4209 	if (!f2fs_compressed_file(inode))
4210 		return true;
4211 	/* not support compression */
4212 	return false;
4213 }
4214 static inline struct page *f2fs_compress_control_page(struct page *page)
4215 {
4216 	WARN_ON_ONCE(1);
4217 	return ERR_PTR(-EINVAL);
4218 }
4219 static inline int f2fs_init_compress_mempool(void) { return 0; }
4220 static inline void f2fs_destroy_compress_mempool(void) { }
4221 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4222 static inline void f2fs_end_read_compressed_page(struct page *page,
4223 						bool failed, block_t blkaddr)
4224 {
4225 	WARN_ON_ONCE(1);
4226 }
4227 static inline void f2fs_put_page_dic(struct page *page)
4228 {
4229 	WARN_ON_ONCE(1);
4230 }
4231 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4232 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4233 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4234 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4235 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4236 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4237 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4238 static inline void f2fs_destroy_compress_cache(void) { }
4239 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4240 				block_t blkaddr) { }
4241 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4242 				struct page *page, nid_t ino, block_t blkaddr) { }
4243 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4244 				struct page *page, block_t blkaddr) { return false; }
4245 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4246 							nid_t ino) { }
4247 #define inc_compr_inode_stat(inode)		do { } while (0)
4248 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4249 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4250 				unsigned int c_len) { }
4251 #endif
4252 
4253 static inline void set_compress_context(struct inode *inode)
4254 {
4255 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4256 
4257 	F2FS_I(inode)->i_compress_algorithm =
4258 			F2FS_OPTION(sbi).compress_algorithm;
4259 	F2FS_I(inode)->i_log_cluster_size =
4260 			F2FS_OPTION(sbi).compress_log_size;
4261 	F2FS_I(inode)->i_compress_flag =
4262 			F2FS_OPTION(sbi).compress_chksum ?
4263 				1 << COMPRESS_CHKSUM : 0;
4264 	F2FS_I(inode)->i_cluster_size =
4265 			1 << F2FS_I(inode)->i_log_cluster_size;
4266 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4267 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4268 			F2FS_OPTION(sbi).compress_level)
4269 		F2FS_I(inode)->i_compress_flag |=
4270 				F2FS_OPTION(sbi).compress_level <<
4271 				COMPRESS_LEVEL_OFFSET;
4272 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4273 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4274 	stat_inc_compr_inode(inode);
4275 	inc_compr_inode_stat(inode);
4276 	f2fs_mark_inode_dirty_sync(inode, true);
4277 }
4278 
4279 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4280 {
4281 	struct f2fs_inode_info *fi = F2FS_I(inode);
4282 
4283 	if (!f2fs_compressed_file(inode))
4284 		return true;
4285 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4286 		return false;
4287 
4288 	fi->i_flags &= ~F2FS_COMPR_FL;
4289 	stat_dec_compr_inode(inode);
4290 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4291 	f2fs_mark_inode_dirty_sync(inode, true);
4292 	return true;
4293 }
4294 
4295 #define F2FS_FEATURE_FUNCS(name, flagname) \
4296 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4297 { \
4298 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4299 }
4300 
4301 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4302 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4303 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4304 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4305 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4306 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4307 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4308 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4309 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4310 F2FS_FEATURE_FUNCS(verity, VERITY);
4311 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4312 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4313 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4314 F2FS_FEATURE_FUNCS(readonly, RO);
4315 
4316 static inline bool f2fs_may_extent_tree(struct inode *inode)
4317 {
4318 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4319 
4320 	if (!test_opt(sbi, EXTENT_CACHE) ||
4321 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4322 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4323 			 !f2fs_sb_has_readonly(sbi)))
4324 		return false;
4325 
4326 	/*
4327 	 * for recovered files during mount do not create extents
4328 	 * if shrinker is not registered.
4329 	 */
4330 	if (list_empty(&sbi->s_list))
4331 		return false;
4332 
4333 	return S_ISREG(inode->i_mode);
4334 }
4335 
4336 #ifdef CONFIG_BLK_DEV_ZONED
4337 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4338 				    block_t blkaddr)
4339 {
4340 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4341 
4342 	return test_bit(zno, FDEV(devi).blkz_seq);
4343 }
4344 #endif
4345 
4346 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4347 {
4348 	return f2fs_sb_has_blkzoned(sbi);
4349 }
4350 
4351 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4352 {
4353 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4354 	       bdev_is_zoned(bdev);
4355 }
4356 
4357 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4358 {
4359 	int i;
4360 
4361 	if (!f2fs_is_multi_device(sbi))
4362 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4363 
4364 	for (i = 0; i < sbi->s_ndevs; i++)
4365 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4366 			return true;
4367 	return false;
4368 }
4369 
4370 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4371 {
4372 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4373 					f2fs_hw_should_discard(sbi);
4374 }
4375 
4376 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4377 {
4378 	int i;
4379 
4380 	if (!f2fs_is_multi_device(sbi))
4381 		return bdev_read_only(sbi->sb->s_bdev);
4382 
4383 	for (i = 0; i < sbi->s_ndevs; i++)
4384 		if (bdev_read_only(FDEV(i).bdev))
4385 			return true;
4386 	return false;
4387 }
4388 
4389 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4390 {
4391 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4392 }
4393 
4394 static inline bool f2fs_may_compress(struct inode *inode)
4395 {
4396 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4397 				f2fs_is_atomic_file(inode))
4398 		return false;
4399 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4400 }
4401 
4402 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4403 						u64 blocks, bool add)
4404 {
4405 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4406 	struct f2fs_inode_info *fi = F2FS_I(inode);
4407 
4408 	/* don't update i_compr_blocks if saved blocks were released */
4409 	if (!add && !atomic_read(&fi->i_compr_blocks))
4410 		return;
4411 
4412 	if (add) {
4413 		atomic_add(diff, &fi->i_compr_blocks);
4414 		stat_add_compr_blocks(inode, diff);
4415 	} else {
4416 		atomic_sub(diff, &fi->i_compr_blocks);
4417 		stat_sub_compr_blocks(inode, diff);
4418 	}
4419 	f2fs_mark_inode_dirty_sync(inode, true);
4420 }
4421 
4422 static inline int block_unaligned_IO(struct inode *inode,
4423 				struct kiocb *iocb, struct iov_iter *iter)
4424 {
4425 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4426 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4427 	loff_t offset = iocb->ki_pos;
4428 	unsigned long align = offset | iov_iter_alignment(iter);
4429 
4430 	return align & blocksize_mask;
4431 }
4432 
4433 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4434 								int flag)
4435 {
4436 	if (!f2fs_is_multi_device(sbi))
4437 		return false;
4438 	if (flag != F2FS_GET_BLOCK_DIO)
4439 		return false;
4440 	return sbi->aligned_blksize;
4441 }
4442 
4443 static inline bool f2fs_force_buffered_io(struct inode *inode,
4444 				struct kiocb *iocb, struct iov_iter *iter)
4445 {
4446 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4447 	int rw = iov_iter_rw(iter);
4448 
4449 	if (!fscrypt_dio_supported(iocb, iter))
4450 		return true;
4451 	if (fsverity_active(inode))
4452 		return true;
4453 	if (f2fs_compressed_file(inode))
4454 		return true;
4455 
4456 	/* disallow direct IO if any of devices has unaligned blksize */
4457 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4458 		return true;
4459 	/*
4460 	 * for blkzoned device, fallback direct IO to buffered IO, so
4461 	 * all IOs can be serialized by log-structured write.
4462 	 */
4463 	if (f2fs_sb_has_blkzoned(sbi))
4464 		return true;
4465 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4466 		if (block_unaligned_IO(inode, iocb, iter))
4467 			return true;
4468 		if (F2FS_IO_ALIGNED(sbi))
4469 			return true;
4470 	}
4471 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4472 		return true;
4473 
4474 	return false;
4475 }
4476 
4477 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4478 {
4479 	return fsverity_active(inode) &&
4480 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4481 }
4482 
4483 #ifdef CONFIG_F2FS_FAULT_INJECTION
4484 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4485 							unsigned int type);
4486 #else
4487 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4488 #endif
4489 
4490 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4491 {
4492 #ifdef CONFIG_QUOTA
4493 	if (f2fs_sb_has_quota_ino(sbi))
4494 		return true;
4495 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4496 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4497 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4498 		return true;
4499 #endif
4500 	return false;
4501 }
4502 
4503 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4504 {
4505 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4506 }
4507 
4508 static inline void f2fs_io_schedule_timeout(long timeout)
4509 {
4510 	set_current_state(TASK_UNINTERRUPTIBLE);
4511 	io_schedule_timeout(timeout);
4512 }
4513 
4514 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4515 					enum page_type type)
4516 {
4517 	if (unlikely(f2fs_cp_error(sbi)))
4518 		return;
4519 
4520 	if (ofs == sbi->page_eio_ofs[type]) {
4521 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4522 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4523 	} else {
4524 		sbi->page_eio_ofs[type] = ofs;
4525 		sbi->page_eio_cnt[type] = 0;
4526 	}
4527 }
4528 
4529 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4530 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4531 
4532 #endif /* _LINUX_F2FS_H */
4533