xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 744602cf)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(condition)	BUG_ON(condition)
25 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(condition)
28 #define f2fs_down_write(x, y)	down_write(x)
29 #endif
30 
31 /*
32  * For mount options
33  */
34 #define F2FS_MOUNT_BG_GC		0x00000001
35 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
36 #define F2FS_MOUNT_DISCARD		0x00000004
37 #define F2FS_MOUNT_NOHEAP		0x00000008
38 #define F2FS_MOUNT_XATTR_USER		0x00000010
39 #define F2FS_MOUNT_POSIX_ACL		0x00000020
40 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
41 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
42 #define F2FS_MOUNT_INLINE_DATA		0x00000100
43 
44 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
45 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
46 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
47 
48 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
49 		typecheck(unsigned long long, b) &&			\
50 		((long long)((a) - (b)) > 0))
51 
52 typedef u32 block_t;	/*
53 			 * should not change u32, since it is the on-disk block
54 			 * address format, __le32.
55 			 */
56 typedef u32 nid_t;
57 
58 struct f2fs_mount_info {
59 	unsigned int	opt;
60 };
61 
62 #define CRCPOLY_LE 0xedb88320
63 
64 static inline __u32 f2fs_crc32(void *buf, size_t len)
65 {
66 	unsigned char *p = (unsigned char *)buf;
67 	__u32 crc = F2FS_SUPER_MAGIC;
68 	int i;
69 
70 	while (len--) {
71 		crc ^= *p++;
72 		for (i = 0; i < 8; i++)
73 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
74 	}
75 	return crc;
76 }
77 
78 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
79 {
80 	return f2fs_crc32(buf, buf_size) == blk_crc;
81 }
82 
83 /*
84  * For checkpoint manager
85  */
86 enum {
87 	NAT_BITMAP,
88 	SIT_BITMAP
89 };
90 
91 /* for the list of orphan inodes */
92 struct orphan_inode_entry {
93 	struct list_head list;	/* list head */
94 	nid_t ino;		/* inode number */
95 };
96 
97 /* for the list of directory inodes */
98 struct dir_inode_entry {
99 	struct list_head list;	/* list head */
100 	struct inode *inode;	/* vfs inode pointer */
101 };
102 
103 /* for the list of blockaddresses to be discarded */
104 struct discard_entry {
105 	struct list_head list;	/* list head */
106 	block_t blkaddr;	/* block address to be discarded */
107 	int len;		/* # of consecutive blocks of the discard */
108 };
109 
110 /* for the list of fsync inodes, used only during recovery */
111 struct fsync_inode_entry {
112 	struct list_head list;	/* list head */
113 	struct inode *inode;	/* vfs inode pointer */
114 	block_t blkaddr;	/* block address locating the last inode */
115 };
116 
117 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
118 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
119 
120 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
121 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
122 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
123 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
124 
125 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
126 {
127 	int before = nats_in_cursum(rs);
128 	rs->n_nats = cpu_to_le16(before + i);
129 	return before;
130 }
131 
132 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
133 {
134 	int before = sits_in_cursum(rs);
135 	rs->n_sits = cpu_to_le16(before + i);
136 	return before;
137 }
138 
139 /*
140  * ioctl commands
141  */
142 #define F2FS_IOC_GETFLAGS               FS_IOC_GETFLAGS
143 #define F2FS_IOC_SETFLAGS               FS_IOC_SETFLAGS
144 
145 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
146 /*
147  * ioctl commands in 32 bit emulation
148  */
149 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
150 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
151 #endif
152 
153 /*
154  * For INODE and NODE manager
155  */
156 /*
157  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
158  * as its node offset to distinguish from index node blocks.
159  * But some bits are used to mark the node block.
160  */
161 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
162 				>> OFFSET_BIT_SHIFT)
163 enum {
164 	ALLOC_NODE,			/* allocate a new node page if needed */
165 	LOOKUP_NODE,			/* look up a node without readahead */
166 	LOOKUP_NODE_RA,			/*
167 					 * look up a node with readahead called
168 					 * by get_data_block.
169 					 */
170 };
171 
172 #define F2FS_LINK_MAX		32000	/* maximum link count per file */
173 
174 /* for in-memory extent cache entry */
175 #define F2FS_MIN_EXTENT_LEN	16	/* minimum extent length */
176 
177 struct extent_info {
178 	rwlock_t ext_lock;	/* rwlock for consistency */
179 	unsigned int fofs;	/* start offset in a file */
180 	u32 blk_addr;		/* start block address of the extent */
181 	unsigned int len;	/* length of the extent */
182 };
183 
184 /*
185  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
186  */
187 #define FADVISE_COLD_BIT	0x01
188 #define FADVISE_LOST_PINO_BIT	0x02
189 
190 struct f2fs_inode_info {
191 	struct inode vfs_inode;		/* serve a vfs inode */
192 	unsigned long i_flags;		/* keep an inode flags for ioctl */
193 	unsigned char i_advise;		/* use to give file attribute hints */
194 	unsigned int i_current_depth;	/* use only in directory structure */
195 	unsigned int i_pino;		/* parent inode number */
196 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
197 
198 	/* Use below internally in f2fs*/
199 	unsigned long flags;		/* use to pass per-file flags */
200 	atomic_t dirty_dents;		/* # of dirty dentry pages */
201 	f2fs_hash_t chash;		/* hash value of given file name */
202 	unsigned int clevel;		/* maximum level of given file name */
203 	nid_t i_xattr_nid;		/* node id that contains xattrs */
204 	unsigned long long xattr_ver;	/* cp version of xattr modification */
205 	struct extent_info ext;		/* in-memory extent cache entry */
206 };
207 
208 static inline void get_extent_info(struct extent_info *ext,
209 					struct f2fs_extent i_ext)
210 {
211 	write_lock(&ext->ext_lock);
212 	ext->fofs = le32_to_cpu(i_ext.fofs);
213 	ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
214 	ext->len = le32_to_cpu(i_ext.len);
215 	write_unlock(&ext->ext_lock);
216 }
217 
218 static inline void set_raw_extent(struct extent_info *ext,
219 					struct f2fs_extent *i_ext)
220 {
221 	read_lock(&ext->ext_lock);
222 	i_ext->fofs = cpu_to_le32(ext->fofs);
223 	i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
224 	i_ext->len = cpu_to_le32(ext->len);
225 	read_unlock(&ext->ext_lock);
226 }
227 
228 struct f2fs_nm_info {
229 	block_t nat_blkaddr;		/* base disk address of NAT */
230 	nid_t max_nid;			/* maximum possible node ids */
231 	nid_t next_scan_nid;		/* the next nid to be scanned */
232 
233 	/* NAT cache management */
234 	struct radix_tree_root nat_root;/* root of the nat entry cache */
235 	rwlock_t nat_tree_lock;		/* protect nat_tree_lock */
236 	unsigned int nat_cnt;		/* the # of cached nat entries */
237 	struct list_head nat_entries;	/* cached nat entry list (clean) */
238 	struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */
239 
240 	/* free node ids management */
241 	struct list_head free_nid_list;	/* a list for free nids */
242 	spinlock_t free_nid_list_lock;	/* protect free nid list */
243 	unsigned int fcnt;		/* the number of free node id */
244 	struct mutex build_lock;	/* lock for build free nids */
245 
246 	/* for checkpoint */
247 	char *nat_bitmap;		/* NAT bitmap pointer */
248 	int bitmap_size;		/* bitmap size */
249 };
250 
251 /*
252  * this structure is used as one of function parameters.
253  * all the information are dedicated to a given direct node block determined
254  * by the data offset in a file.
255  */
256 struct dnode_of_data {
257 	struct inode *inode;		/* vfs inode pointer */
258 	struct page *inode_page;	/* its inode page, NULL is possible */
259 	struct page *node_page;		/* cached direct node page */
260 	nid_t nid;			/* node id of the direct node block */
261 	unsigned int ofs_in_node;	/* data offset in the node page */
262 	bool inode_page_locked;		/* inode page is locked or not */
263 	block_t	data_blkaddr;		/* block address of the node block */
264 };
265 
266 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
267 		struct page *ipage, struct page *npage, nid_t nid)
268 {
269 	memset(dn, 0, sizeof(*dn));
270 	dn->inode = inode;
271 	dn->inode_page = ipage;
272 	dn->node_page = npage;
273 	dn->nid = nid;
274 }
275 
276 /*
277  * For SIT manager
278  *
279  * By default, there are 6 active log areas across the whole main area.
280  * When considering hot and cold data separation to reduce cleaning overhead,
281  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
282  * respectively.
283  * In the current design, you should not change the numbers intentionally.
284  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
285  * logs individually according to the underlying devices. (default: 6)
286  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
287  * data and 8 for node logs.
288  */
289 #define	NR_CURSEG_DATA_TYPE	(3)
290 #define NR_CURSEG_NODE_TYPE	(3)
291 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
292 
293 enum {
294 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
295 	CURSEG_WARM_DATA,	/* data blocks */
296 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
297 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
298 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
299 	CURSEG_COLD_NODE,	/* indirect node blocks */
300 	NO_CHECK_TYPE
301 };
302 
303 struct f2fs_sm_info {
304 	struct sit_info *sit_info;		/* whole segment information */
305 	struct free_segmap_info *free_info;	/* free segment information */
306 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
307 	struct curseg_info *curseg_array;	/* active segment information */
308 
309 	struct list_head wblist_head;	/* list of under-writeback pages */
310 	spinlock_t wblist_lock;		/* lock for checkpoint */
311 
312 	block_t seg0_blkaddr;		/* block address of 0'th segment */
313 	block_t main_blkaddr;		/* start block address of main area */
314 	block_t ssa_blkaddr;		/* start block address of SSA area */
315 
316 	unsigned int segment_count;	/* total # of segments */
317 	unsigned int main_segments;	/* # of segments in main area */
318 	unsigned int reserved_segments;	/* # of reserved segments */
319 	unsigned int ovp_segments;	/* # of overprovision segments */
320 
321 	/* a threshold to reclaim prefree segments */
322 	unsigned int rec_prefree_segments;
323 
324 	/* for small discard management */
325 	struct list_head discard_list;		/* 4KB discard list */
326 	int nr_discards;			/* # of discards in the list */
327 	int max_discards;			/* max. discards to be issued */
328 
329 	unsigned int ipu_policy;	/* in-place-update policy */
330 	unsigned int min_ipu_util;	/* in-place-update threshold */
331 };
332 
333 /*
334  * For superblock
335  */
336 /*
337  * COUNT_TYPE for monitoring
338  *
339  * f2fs monitors the number of several block types such as on-writeback,
340  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
341  */
342 enum count_type {
343 	F2FS_WRITEBACK,
344 	F2FS_DIRTY_DENTS,
345 	F2FS_DIRTY_NODES,
346 	F2FS_DIRTY_META,
347 	NR_COUNT_TYPE,
348 };
349 
350 /*
351  * The below are the page types of bios used in submti_bio().
352  * The available types are:
353  * DATA			User data pages. It operates as async mode.
354  * NODE			Node pages. It operates as async mode.
355  * META			FS metadata pages such as SIT, NAT, CP.
356  * NR_PAGE_TYPE		The number of page types.
357  * META_FLUSH		Make sure the previous pages are written
358  *			with waiting the bio's completion
359  * ...			Only can be used with META.
360  */
361 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
362 enum page_type {
363 	DATA,
364 	NODE,
365 	META,
366 	NR_PAGE_TYPE,
367 	META_FLUSH,
368 };
369 
370 struct f2fs_io_info {
371 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
372 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
373 };
374 
375 #define is_read_io(rw)	(((rw) & 1) == READ)
376 struct f2fs_bio_info {
377 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
378 	struct bio *bio;		/* bios to merge */
379 	sector_t last_block_in_bio;	/* last block number */
380 	struct f2fs_io_info fio;	/* store buffered io info. */
381 	struct mutex io_mutex;		/* mutex for bio */
382 };
383 
384 struct f2fs_sb_info {
385 	struct super_block *sb;			/* pointer to VFS super block */
386 	struct proc_dir_entry *s_proc;		/* proc entry */
387 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
388 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
389 	int s_dirty;				/* dirty flag for checkpoint */
390 
391 	/* for node-related operations */
392 	struct f2fs_nm_info *nm_info;		/* node manager */
393 	struct inode *node_inode;		/* cache node blocks */
394 
395 	/* for segment-related operations */
396 	struct f2fs_sm_info *sm_info;		/* segment manager */
397 
398 	/* for bio operations */
399 	struct f2fs_bio_info read_io;			/* for read bios */
400 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
401 
402 	/* for checkpoint */
403 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
404 	struct inode *meta_inode;		/* cache meta blocks */
405 	struct mutex cp_mutex;			/* checkpoint procedure lock */
406 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
407 	struct mutex node_write;		/* locking node writes */
408 	struct mutex writepages;		/* mutex for writepages() */
409 	bool por_doing;				/* recovery is doing or not */
410 	bool on_build_free_nids;		/* build_free_nids is doing */
411 	wait_queue_head_t cp_wait;
412 
413 	/* for orphan inode management */
414 	struct list_head orphan_inode_list;	/* orphan inode list */
415 	spinlock_t orphan_inode_lock;		/* for orphan inode list */
416 	unsigned int n_orphans;			/* # of orphan inodes */
417 	unsigned int max_orphans;		/* max orphan inodes */
418 
419 	/* for directory inode management */
420 	struct list_head dir_inode_list;	/* dir inode list */
421 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
422 
423 	/* basic file system units */
424 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
425 	unsigned int log_blocksize;		/* log2 block size */
426 	unsigned int blocksize;			/* block size */
427 	unsigned int root_ino_num;		/* root inode number*/
428 	unsigned int node_ino_num;		/* node inode number*/
429 	unsigned int meta_ino_num;		/* meta inode number*/
430 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
431 	unsigned int blocks_per_seg;		/* blocks per segment */
432 	unsigned int segs_per_sec;		/* segments per section */
433 	unsigned int secs_per_zone;		/* sections per zone */
434 	unsigned int total_sections;		/* total section count */
435 	unsigned int total_node_count;		/* total node block count */
436 	unsigned int total_valid_node_count;	/* valid node block count */
437 	unsigned int total_valid_inode_count;	/* valid inode count */
438 	int active_logs;			/* # of active logs */
439 
440 	block_t user_block_count;		/* # of user blocks */
441 	block_t total_valid_block_count;	/* # of valid blocks */
442 	block_t alloc_valid_block_count;	/* # of allocated blocks */
443 	block_t last_valid_block_count;		/* for recovery */
444 	u32 s_next_generation;			/* for NFS support */
445 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
446 
447 	struct f2fs_mount_info mount_opt;	/* mount options */
448 
449 	/* for cleaning operations */
450 	struct mutex gc_mutex;			/* mutex for GC */
451 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
452 	unsigned int cur_victim_sec;		/* current victim section num */
453 
454 	/* maximum # of trials to find a victim segment for SSR and GC */
455 	unsigned int max_victim_search;
456 
457 	/*
458 	 * for stat information.
459 	 * one is for the LFS mode, and the other is for the SSR mode.
460 	 */
461 #ifdef CONFIG_F2FS_STAT_FS
462 	struct f2fs_stat_info *stat_info;	/* FS status information */
463 	unsigned int segment_count[2];		/* # of allocated segments */
464 	unsigned int block_count[2];		/* # of allocated blocks */
465 	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
466 	int inline_inode;			/* # of inline_data inodes */
467 	int bg_gc;				/* background gc calls */
468 	unsigned int n_dirty_dirs;		/* # of dir inodes */
469 #endif
470 	unsigned int last_victim[2];		/* last victim segment # */
471 	spinlock_t stat_lock;			/* lock for stat operations */
472 
473 	/* For sysfs suppport */
474 	struct kobject s_kobj;
475 	struct completion s_kobj_unregister;
476 };
477 
478 /*
479  * Inline functions
480  */
481 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
482 {
483 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
484 }
485 
486 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
487 {
488 	return sb->s_fs_info;
489 }
490 
491 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
492 {
493 	return (struct f2fs_super_block *)(sbi->raw_super);
494 }
495 
496 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
497 {
498 	return (struct f2fs_checkpoint *)(sbi->ckpt);
499 }
500 
501 static inline struct f2fs_node *F2FS_NODE(struct page *page)
502 {
503 	return (struct f2fs_node *)page_address(page);
504 }
505 
506 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
507 {
508 	return &((struct f2fs_node *)page_address(page))->i;
509 }
510 
511 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
512 {
513 	return (struct f2fs_nm_info *)(sbi->nm_info);
514 }
515 
516 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
517 {
518 	return (struct f2fs_sm_info *)(sbi->sm_info);
519 }
520 
521 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
522 {
523 	return (struct sit_info *)(SM_I(sbi)->sit_info);
524 }
525 
526 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
527 {
528 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
529 }
530 
531 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
532 {
533 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
534 }
535 
536 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
537 {
538 	return sbi->meta_inode->i_mapping;
539 }
540 
541 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
542 {
543 	return sbi->node_inode->i_mapping;
544 }
545 
546 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
547 {
548 	sbi->s_dirty = 1;
549 }
550 
551 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
552 {
553 	sbi->s_dirty = 0;
554 }
555 
556 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
557 {
558 	return le64_to_cpu(cp->checkpoint_ver);
559 }
560 
561 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
562 {
563 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
564 	return ckpt_flags & f;
565 }
566 
567 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
568 {
569 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
570 	ckpt_flags |= f;
571 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
572 }
573 
574 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
575 {
576 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
577 	ckpt_flags &= (~f);
578 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
579 }
580 
581 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
582 {
583 	down_read(&sbi->cp_rwsem);
584 }
585 
586 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
587 {
588 	up_read(&sbi->cp_rwsem);
589 }
590 
591 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
592 {
593 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
594 }
595 
596 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
597 {
598 	up_write(&sbi->cp_rwsem);
599 }
600 
601 /*
602  * Check whether the given nid is within node id range.
603  */
604 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
605 {
606 	WARN_ON((nid >= NM_I(sbi)->max_nid));
607 	if (unlikely(nid >= NM_I(sbi)->max_nid))
608 		return -EINVAL;
609 	return 0;
610 }
611 
612 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
613 
614 /*
615  * Check whether the inode has blocks or not
616  */
617 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
618 {
619 	if (F2FS_I(inode)->i_xattr_nid)
620 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
621 	else
622 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
623 }
624 
625 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
626 				 struct inode *inode, blkcnt_t count)
627 {
628 	block_t	valid_block_count;
629 
630 	spin_lock(&sbi->stat_lock);
631 	valid_block_count =
632 		sbi->total_valid_block_count + (block_t)count;
633 	if (unlikely(valid_block_count > sbi->user_block_count)) {
634 		spin_unlock(&sbi->stat_lock);
635 		return false;
636 	}
637 	inode->i_blocks += count;
638 	sbi->total_valid_block_count = valid_block_count;
639 	sbi->alloc_valid_block_count += (block_t)count;
640 	spin_unlock(&sbi->stat_lock);
641 	return true;
642 }
643 
644 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
645 						struct inode *inode,
646 						blkcnt_t count)
647 {
648 	spin_lock(&sbi->stat_lock);
649 	f2fs_bug_on(sbi->total_valid_block_count < (block_t) count);
650 	f2fs_bug_on(inode->i_blocks < count);
651 	inode->i_blocks -= count;
652 	sbi->total_valid_block_count -= (block_t)count;
653 	spin_unlock(&sbi->stat_lock);
654 }
655 
656 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
657 {
658 	atomic_inc(&sbi->nr_pages[count_type]);
659 	F2FS_SET_SB_DIRT(sbi);
660 }
661 
662 static inline void inode_inc_dirty_dents(struct inode *inode)
663 {
664 	atomic_inc(&F2FS_I(inode)->dirty_dents);
665 }
666 
667 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
668 {
669 	atomic_dec(&sbi->nr_pages[count_type]);
670 }
671 
672 static inline void inode_dec_dirty_dents(struct inode *inode)
673 {
674 	atomic_dec(&F2FS_I(inode)->dirty_dents);
675 }
676 
677 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
678 {
679 	return atomic_read(&sbi->nr_pages[count_type]);
680 }
681 
682 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
683 {
684 	unsigned int pages_per_sec = sbi->segs_per_sec *
685 					(1 << sbi->log_blocks_per_seg);
686 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
687 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
688 }
689 
690 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
691 {
692 	block_t ret;
693 	spin_lock(&sbi->stat_lock);
694 	ret = sbi->total_valid_block_count;
695 	spin_unlock(&sbi->stat_lock);
696 	return ret;
697 }
698 
699 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
700 {
701 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
702 
703 	/* return NAT or SIT bitmap */
704 	if (flag == NAT_BITMAP)
705 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
706 	else if (flag == SIT_BITMAP)
707 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
708 
709 	return 0;
710 }
711 
712 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
713 {
714 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
715 	int offset = (flag == NAT_BITMAP) ?
716 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
717 	return &ckpt->sit_nat_version_bitmap + offset;
718 }
719 
720 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
721 {
722 	block_t start_addr;
723 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
724 	unsigned long long ckpt_version = cur_cp_version(ckpt);
725 
726 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
727 
728 	/*
729 	 * odd numbered checkpoint should at cp segment 0
730 	 * and even segent must be at cp segment 1
731 	 */
732 	if (!(ckpt_version & 1))
733 		start_addr += sbi->blocks_per_seg;
734 
735 	return start_addr;
736 }
737 
738 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
739 {
740 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
741 }
742 
743 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
744 						struct inode *inode)
745 {
746 	block_t	valid_block_count;
747 	unsigned int valid_node_count;
748 
749 	spin_lock(&sbi->stat_lock);
750 
751 	valid_block_count = sbi->total_valid_block_count + 1;
752 	if (unlikely(valid_block_count > sbi->user_block_count)) {
753 		spin_unlock(&sbi->stat_lock);
754 		return false;
755 	}
756 
757 	valid_node_count = sbi->total_valid_node_count + 1;
758 	if (unlikely(valid_node_count > sbi->total_node_count)) {
759 		spin_unlock(&sbi->stat_lock);
760 		return false;
761 	}
762 
763 	if (inode)
764 		inode->i_blocks++;
765 
766 	sbi->alloc_valid_block_count++;
767 	sbi->total_valid_node_count++;
768 	sbi->total_valid_block_count++;
769 	spin_unlock(&sbi->stat_lock);
770 
771 	return true;
772 }
773 
774 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
775 						struct inode *inode)
776 {
777 	spin_lock(&sbi->stat_lock);
778 
779 	f2fs_bug_on(!sbi->total_valid_block_count);
780 	f2fs_bug_on(!sbi->total_valid_node_count);
781 	f2fs_bug_on(!inode->i_blocks);
782 
783 	inode->i_blocks--;
784 	sbi->total_valid_node_count--;
785 	sbi->total_valid_block_count--;
786 
787 	spin_unlock(&sbi->stat_lock);
788 }
789 
790 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
791 {
792 	unsigned int ret;
793 	spin_lock(&sbi->stat_lock);
794 	ret = sbi->total_valid_node_count;
795 	spin_unlock(&sbi->stat_lock);
796 	return ret;
797 }
798 
799 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
800 {
801 	spin_lock(&sbi->stat_lock);
802 	f2fs_bug_on(sbi->total_valid_inode_count == sbi->total_node_count);
803 	sbi->total_valid_inode_count++;
804 	spin_unlock(&sbi->stat_lock);
805 }
806 
807 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
808 {
809 	spin_lock(&sbi->stat_lock);
810 	f2fs_bug_on(!sbi->total_valid_inode_count);
811 	sbi->total_valid_inode_count--;
812 	spin_unlock(&sbi->stat_lock);
813 }
814 
815 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
816 {
817 	unsigned int ret;
818 	spin_lock(&sbi->stat_lock);
819 	ret = sbi->total_valid_inode_count;
820 	spin_unlock(&sbi->stat_lock);
821 	return ret;
822 }
823 
824 static inline void f2fs_put_page(struct page *page, int unlock)
825 {
826 	if (!page)
827 		return;
828 
829 	if (unlock) {
830 		f2fs_bug_on(!PageLocked(page));
831 		unlock_page(page);
832 	}
833 	page_cache_release(page);
834 }
835 
836 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
837 {
838 	if (dn->node_page)
839 		f2fs_put_page(dn->node_page, 1);
840 	if (dn->inode_page && dn->node_page != dn->inode_page)
841 		f2fs_put_page(dn->inode_page, 0);
842 	dn->node_page = NULL;
843 	dn->inode_page = NULL;
844 }
845 
846 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
847 					size_t size, void (*ctor)(void *))
848 {
849 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor);
850 }
851 
852 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
853 						gfp_t flags)
854 {
855 	void *entry;
856 retry:
857 	entry = kmem_cache_alloc(cachep, flags);
858 	if (!entry) {
859 		cond_resched();
860 		goto retry;
861 	}
862 
863 	return entry;
864 }
865 
866 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
867 
868 static inline bool IS_INODE(struct page *page)
869 {
870 	struct f2fs_node *p = F2FS_NODE(page);
871 	return RAW_IS_INODE(p);
872 }
873 
874 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
875 {
876 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
877 }
878 
879 static inline block_t datablock_addr(struct page *node_page,
880 		unsigned int offset)
881 {
882 	struct f2fs_node *raw_node;
883 	__le32 *addr_array;
884 	raw_node = F2FS_NODE(node_page);
885 	addr_array = blkaddr_in_node(raw_node);
886 	return le32_to_cpu(addr_array[offset]);
887 }
888 
889 static inline int f2fs_test_bit(unsigned int nr, char *addr)
890 {
891 	int mask;
892 
893 	addr += (nr >> 3);
894 	mask = 1 << (7 - (nr & 0x07));
895 	return mask & *addr;
896 }
897 
898 static inline int f2fs_set_bit(unsigned int nr, char *addr)
899 {
900 	int mask;
901 	int ret;
902 
903 	addr += (nr >> 3);
904 	mask = 1 << (7 - (nr & 0x07));
905 	ret = mask & *addr;
906 	*addr |= mask;
907 	return ret;
908 }
909 
910 static inline int f2fs_clear_bit(unsigned int nr, char *addr)
911 {
912 	int mask;
913 	int ret;
914 
915 	addr += (nr >> 3);
916 	mask = 1 << (7 - (nr & 0x07));
917 	ret = mask & *addr;
918 	*addr &= ~mask;
919 	return ret;
920 }
921 
922 /* used for f2fs_inode_info->flags */
923 enum {
924 	FI_NEW_INODE,		/* indicate newly allocated inode */
925 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
926 	FI_INC_LINK,		/* need to increment i_nlink */
927 	FI_ACL_MODE,		/* indicate acl mode */
928 	FI_NO_ALLOC,		/* should not allocate any blocks */
929 	FI_UPDATE_DIR,		/* should update inode block for consistency */
930 	FI_DELAY_IPUT,		/* used for the recovery */
931 	FI_NO_EXTENT,		/* not to use the extent cache */
932 	FI_INLINE_XATTR,	/* used for inline xattr */
933 	FI_INLINE_DATA,		/* used for inline data*/
934 };
935 
936 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
937 {
938 	set_bit(flag, &fi->flags);
939 }
940 
941 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
942 {
943 	return test_bit(flag, &fi->flags);
944 }
945 
946 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
947 {
948 	clear_bit(flag, &fi->flags);
949 }
950 
951 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
952 {
953 	fi->i_acl_mode = mode;
954 	set_inode_flag(fi, FI_ACL_MODE);
955 }
956 
957 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
958 {
959 	if (is_inode_flag_set(fi, FI_ACL_MODE)) {
960 		clear_inode_flag(fi, FI_ACL_MODE);
961 		return 1;
962 	}
963 	return 0;
964 }
965 
966 static inline void get_inline_info(struct f2fs_inode_info *fi,
967 					struct f2fs_inode *ri)
968 {
969 	if (ri->i_inline & F2FS_INLINE_XATTR)
970 		set_inode_flag(fi, FI_INLINE_XATTR);
971 	if (ri->i_inline & F2FS_INLINE_DATA)
972 		set_inode_flag(fi, FI_INLINE_DATA);
973 }
974 
975 static inline void set_raw_inline(struct f2fs_inode_info *fi,
976 					struct f2fs_inode *ri)
977 {
978 	ri->i_inline = 0;
979 
980 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
981 		ri->i_inline |= F2FS_INLINE_XATTR;
982 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
983 		ri->i_inline |= F2FS_INLINE_DATA;
984 }
985 
986 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
987 {
988 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
989 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
990 	return DEF_ADDRS_PER_INODE;
991 }
992 
993 static inline void *inline_xattr_addr(struct page *page)
994 {
995 	struct f2fs_inode *ri;
996 	ri = (struct f2fs_inode *)page_address(page);
997 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
998 					F2FS_INLINE_XATTR_ADDRS]);
999 }
1000 
1001 static inline int inline_xattr_size(struct inode *inode)
1002 {
1003 	if (is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR))
1004 		return F2FS_INLINE_XATTR_ADDRS << 2;
1005 	else
1006 		return 0;
1007 }
1008 
1009 static inline int f2fs_has_inline_data(struct inode *inode)
1010 {
1011 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1012 }
1013 
1014 static inline void *inline_data_addr(struct page *page)
1015 {
1016 	struct f2fs_inode *ri;
1017 	ri = (struct f2fs_inode *)page_address(page);
1018 	return (void *)&(ri->i_addr[1]);
1019 }
1020 
1021 static inline int f2fs_readonly(struct super_block *sb)
1022 {
1023 	return sb->s_flags & MS_RDONLY;
1024 }
1025 
1026 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1027 {
1028 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1029 	sbi->sb->s_flags |= MS_RDONLY;
1030 }
1031 
1032 #define get_inode_mode(i) \
1033 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1034 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1035 
1036 /*
1037  * file.c
1038  */
1039 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1040 void truncate_data_blocks(struct dnode_of_data *);
1041 int truncate_blocks(struct inode *, u64);
1042 void f2fs_truncate(struct inode *);
1043 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1044 int f2fs_setattr(struct dentry *, struct iattr *);
1045 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1046 int truncate_data_blocks_range(struct dnode_of_data *, int);
1047 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1048 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1049 
1050 /*
1051  * inode.c
1052  */
1053 void f2fs_set_inode_flags(struct inode *);
1054 struct inode *f2fs_iget(struct super_block *, unsigned long);
1055 int try_to_free_nats(struct f2fs_sb_info *, int);
1056 void update_inode(struct inode *, struct page *);
1057 void update_inode_page(struct inode *);
1058 int f2fs_write_inode(struct inode *, struct writeback_control *);
1059 void f2fs_evict_inode(struct inode *);
1060 
1061 /*
1062  * namei.c
1063  */
1064 struct dentry *f2fs_get_parent(struct dentry *child);
1065 
1066 /*
1067  * dir.c
1068  */
1069 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1070 							struct page **);
1071 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1072 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1073 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1074 				struct page *, struct inode *);
1075 int update_dent_inode(struct inode *, const struct qstr *);
1076 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1077 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
1078 int f2fs_make_empty(struct inode *, struct inode *);
1079 bool f2fs_empty_dir(struct inode *);
1080 
1081 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1082 {
1083 	return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1084 				inode);
1085 }
1086 
1087 /*
1088  * super.c
1089  */
1090 int f2fs_sync_fs(struct super_block *, int);
1091 extern __printf(3, 4)
1092 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1093 
1094 /*
1095  * hash.c
1096  */
1097 f2fs_hash_t f2fs_dentry_hash(const char *, size_t);
1098 
1099 /*
1100  * node.c
1101  */
1102 struct dnode_of_data;
1103 struct node_info;
1104 
1105 int is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1106 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1107 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1108 int truncate_inode_blocks(struct inode *, pgoff_t);
1109 int truncate_xattr_node(struct inode *, struct page *);
1110 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1111 void remove_inode_page(struct inode *);
1112 struct page *new_inode_page(struct inode *, const struct qstr *);
1113 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1114 void ra_node_page(struct f2fs_sb_info *, nid_t);
1115 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1116 struct page *get_node_page_ra(struct page *, int);
1117 void sync_inode_page(struct dnode_of_data *);
1118 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1119 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1120 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1121 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1122 void recover_node_page(struct f2fs_sb_info *, struct page *,
1123 		struct f2fs_summary *, struct node_info *, block_t);
1124 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1125 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1126 				struct f2fs_summary_block *);
1127 void flush_nat_entries(struct f2fs_sb_info *);
1128 int build_node_manager(struct f2fs_sb_info *);
1129 void destroy_node_manager(struct f2fs_sb_info *);
1130 int __init create_node_manager_caches(void);
1131 void destroy_node_manager_caches(void);
1132 
1133 /*
1134  * segment.c
1135  */
1136 void f2fs_balance_fs(struct f2fs_sb_info *);
1137 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1138 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1139 void clear_prefree_segments(struct f2fs_sb_info *);
1140 int npages_for_summary_flush(struct f2fs_sb_info *);
1141 void allocate_new_segments(struct f2fs_sb_info *);
1142 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1143 void write_meta_page(struct f2fs_sb_info *, struct page *);
1144 void write_node_page(struct f2fs_sb_info *, struct page *,
1145 		struct f2fs_io_info *, unsigned int, block_t, block_t *);
1146 void write_data_page(struct page *, struct dnode_of_data *, block_t *,
1147 					struct f2fs_io_info *);
1148 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *);
1149 void recover_data_page(struct f2fs_sb_info *, struct page *,
1150 				struct f2fs_summary *, block_t, block_t);
1151 void rewrite_node_page(struct f2fs_sb_info *, struct page *,
1152 				struct f2fs_summary *, block_t, block_t);
1153 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1154 		block_t, block_t *, struct f2fs_summary *, int);
1155 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1156 void write_data_summaries(struct f2fs_sb_info *, block_t);
1157 void write_node_summaries(struct f2fs_sb_info *, block_t);
1158 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1159 					int, unsigned int, int);
1160 void flush_sit_entries(struct f2fs_sb_info *);
1161 int build_segment_manager(struct f2fs_sb_info *);
1162 void destroy_segment_manager(struct f2fs_sb_info *);
1163 int __init create_segment_manager_caches(void);
1164 void destroy_segment_manager_caches(void);
1165 
1166 /*
1167  * checkpoint.c
1168  */
1169 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1170 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1171 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1172 int acquire_orphan_inode(struct f2fs_sb_info *);
1173 void release_orphan_inode(struct f2fs_sb_info *);
1174 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1175 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1176 void recover_orphan_inodes(struct f2fs_sb_info *);
1177 int get_valid_checkpoint(struct f2fs_sb_info *);
1178 void set_dirty_dir_page(struct inode *, struct page *);
1179 void add_dirty_dir_inode(struct inode *);
1180 void remove_dirty_dir_inode(struct inode *);
1181 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *, nid_t);
1182 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1183 void write_checkpoint(struct f2fs_sb_info *, bool);
1184 void init_orphan_info(struct f2fs_sb_info *);
1185 int __init create_checkpoint_caches(void);
1186 void destroy_checkpoint_caches(void);
1187 
1188 /*
1189  * data.c
1190  */
1191 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1192 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int);
1193 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t,
1194 						struct f2fs_io_info *);
1195 int reserve_new_block(struct dnode_of_data *);
1196 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1197 void update_extent_cache(block_t, struct dnode_of_data *);
1198 struct page *find_data_page(struct inode *, pgoff_t, bool);
1199 struct page *get_lock_data_page(struct inode *, pgoff_t);
1200 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1201 int do_write_data_page(struct page *, struct f2fs_io_info *);
1202 
1203 /*
1204  * gc.c
1205  */
1206 int start_gc_thread(struct f2fs_sb_info *);
1207 void stop_gc_thread(struct f2fs_sb_info *);
1208 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1209 int f2fs_gc(struct f2fs_sb_info *);
1210 void build_gc_manager(struct f2fs_sb_info *);
1211 int __init create_gc_caches(void);
1212 void destroy_gc_caches(void);
1213 
1214 /*
1215  * recovery.c
1216  */
1217 int recover_fsync_data(struct f2fs_sb_info *);
1218 bool space_for_roll_forward(struct f2fs_sb_info *);
1219 
1220 /*
1221  * debug.c
1222  */
1223 #ifdef CONFIG_F2FS_STAT_FS
1224 struct f2fs_stat_info {
1225 	struct list_head stat_list;
1226 	struct f2fs_sb_info *sbi;
1227 	struct mutex stat_lock;
1228 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1229 	int main_area_segs, main_area_sections, main_area_zones;
1230 	int hit_ext, total_ext;
1231 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1232 	int nats, sits, fnids;
1233 	int total_count, utilization;
1234 	int bg_gc, inline_inode;
1235 	unsigned int valid_count, valid_node_count, valid_inode_count;
1236 	unsigned int bimodal, avg_vblocks;
1237 	int util_free, util_valid, util_invalid;
1238 	int rsvd_segs, overp_segs;
1239 	int dirty_count, node_pages, meta_pages;
1240 	int prefree_count, call_count;
1241 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1242 	int tot_blks, data_blks, node_blks;
1243 	int curseg[NR_CURSEG_TYPE];
1244 	int cursec[NR_CURSEG_TYPE];
1245 	int curzone[NR_CURSEG_TYPE];
1246 
1247 	unsigned int segment_count[2];
1248 	unsigned int block_count[2];
1249 	unsigned base_mem, cache_mem;
1250 };
1251 
1252 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1253 {
1254 	return (struct f2fs_stat_info *)sbi->stat_info;
1255 }
1256 
1257 #define stat_inc_call_count(si)		((si)->call_count++)
1258 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1259 #define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1260 #define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1261 #define stat_inc_total_hit(sb)		((F2FS_SB(sb))->total_hit_ext++)
1262 #define stat_inc_read_hit(sb)		((F2FS_SB(sb))->read_hit_ext++)
1263 #define stat_inc_inline_inode(inode)					\
1264 	do {								\
1265 		if (f2fs_has_inline_data(inode))			\
1266 			((F2FS_SB(inode->i_sb))->inline_inode++);	\
1267 	} while (0)
1268 #define stat_dec_inline_inode(inode)					\
1269 	do {								\
1270 		if (f2fs_has_inline_data(inode))			\
1271 			((F2FS_SB(inode->i_sb))->inline_inode--);	\
1272 	} while (0)
1273 
1274 #define stat_inc_seg_type(sbi, curseg)					\
1275 		((sbi)->segment_count[(curseg)->alloc_type]++)
1276 #define stat_inc_block_count(sbi, curseg)				\
1277 		((sbi)->block_count[(curseg)->alloc_type]++)
1278 
1279 #define stat_inc_seg_count(sbi, type)					\
1280 	do {								\
1281 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1282 		(si)->tot_segs++;					\
1283 		if (type == SUM_TYPE_DATA)				\
1284 			si->data_segs++;				\
1285 		else							\
1286 			si->node_segs++;				\
1287 	} while (0)
1288 
1289 #define stat_inc_tot_blk_count(si, blks)				\
1290 	(si->tot_blks += (blks))
1291 
1292 #define stat_inc_data_blk_count(sbi, blks)				\
1293 	do {								\
1294 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1295 		stat_inc_tot_blk_count(si, blks);			\
1296 		si->data_blks += (blks);				\
1297 	} while (0)
1298 
1299 #define stat_inc_node_blk_count(sbi, blks)				\
1300 	do {								\
1301 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1302 		stat_inc_tot_blk_count(si, blks);			\
1303 		si->node_blks += (blks);				\
1304 	} while (0)
1305 
1306 int f2fs_build_stats(struct f2fs_sb_info *);
1307 void f2fs_destroy_stats(struct f2fs_sb_info *);
1308 void __init f2fs_create_root_stats(void);
1309 void f2fs_destroy_root_stats(void);
1310 #else
1311 #define stat_inc_call_count(si)
1312 #define stat_inc_bggc_count(si)
1313 #define stat_inc_dirty_dir(sbi)
1314 #define stat_dec_dirty_dir(sbi)
1315 #define stat_inc_total_hit(sb)
1316 #define stat_inc_read_hit(sb)
1317 #define stat_inc_inline_inode(inode)
1318 #define stat_dec_inline_inode(inode)
1319 #define stat_inc_seg_type(sbi, curseg)
1320 #define stat_inc_block_count(sbi, curseg)
1321 #define stat_inc_seg_count(si, type)
1322 #define stat_inc_tot_blk_count(si, blks)
1323 #define stat_inc_data_blk_count(si, blks)
1324 #define stat_inc_node_blk_count(sbi, blks)
1325 
1326 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1327 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1328 static inline void __init f2fs_create_root_stats(void) { }
1329 static inline void f2fs_destroy_root_stats(void) { }
1330 #endif
1331 
1332 extern const struct file_operations f2fs_dir_operations;
1333 extern const struct file_operations f2fs_file_operations;
1334 extern const struct inode_operations f2fs_file_inode_operations;
1335 extern const struct address_space_operations f2fs_dblock_aops;
1336 extern const struct address_space_operations f2fs_node_aops;
1337 extern const struct address_space_operations f2fs_meta_aops;
1338 extern const struct inode_operations f2fs_dir_inode_operations;
1339 extern const struct inode_operations f2fs_symlink_inode_operations;
1340 extern const struct inode_operations f2fs_special_inode_operations;
1341 
1342 /*
1343  * inline.c
1344  */
1345 bool f2fs_may_inline(struct inode *);
1346 int f2fs_read_inline_data(struct inode *, struct page *);
1347 int f2fs_convert_inline_data(struct inode *, pgoff_t);
1348 int f2fs_write_inline_data(struct inode *, struct page *, unsigned int);
1349 int recover_inline_data(struct inode *, struct page *);
1350 #endif
1351