xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 726bd223)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #ifdef CONFIG_F2FS_FS_ENCRYPTION
26 #include <linux/fscrypt_supp.h>
27 #else
28 #include <linux/fscrypt_notsupp.h>
29 #endif
30 #include <crypto/hash.h>
31 
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
34 #else
35 #define f2fs_bug_on(sbi, condition)					\
36 	do {								\
37 		if (unlikely(condition)) {				\
38 			WARN_ON(1);					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 		}							\
41 	} while (0)
42 #endif
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 enum {
46 	FAULT_KMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_MAX,
56 };
57 
58 struct f2fs_fault_info {
59 	atomic_t inject_ops;
60 	unsigned int inject_rate;
61 	unsigned int inject_type;
62 };
63 
64 extern char *fault_name[FAULT_MAX];
65 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type)))
66 #endif
67 
68 /*
69  * For mount options
70  */
71 #define F2FS_MOUNT_BG_GC		0x00000001
72 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
73 #define F2FS_MOUNT_DISCARD		0x00000004
74 #define F2FS_MOUNT_NOHEAP		0x00000008
75 #define F2FS_MOUNT_XATTR_USER		0x00000010
76 #define F2FS_MOUNT_POSIX_ACL		0x00000020
77 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
78 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
79 #define F2FS_MOUNT_INLINE_DATA		0x00000100
80 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
81 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
82 #define F2FS_MOUNT_NOBARRIER		0x00000800
83 #define F2FS_MOUNT_FASTBOOT		0x00001000
84 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
85 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
86 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
87 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
88 #define F2FS_MOUNT_ADAPTIVE		0x00020000
89 #define F2FS_MOUNT_LFS			0x00040000
90 
91 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
92 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
93 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
94 
95 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
96 		typecheck(unsigned long long, b) &&			\
97 		((long long)((a) - (b)) > 0))
98 
99 typedef u32 block_t;	/*
100 			 * should not change u32, since it is the on-disk block
101 			 * address format, __le32.
102 			 */
103 typedef u32 nid_t;
104 
105 struct f2fs_mount_info {
106 	unsigned int	opt;
107 };
108 
109 #define F2FS_FEATURE_ENCRYPT	0x0001
110 #define F2FS_FEATURE_BLKZONED	0x0002
111 
112 #define F2FS_HAS_FEATURE(sb, mask)					\
113 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
114 #define F2FS_SET_FEATURE(sb, mask)					\
115 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
116 #define F2FS_CLEAR_FEATURE(sb, mask)					\
117 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
118 
119 /*
120  * For checkpoint manager
121  */
122 enum {
123 	NAT_BITMAP,
124 	SIT_BITMAP
125 };
126 
127 enum {
128 	CP_UMOUNT,
129 	CP_FASTBOOT,
130 	CP_SYNC,
131 	CP_RECOVERY,
132 	CP_DISCARD,
133 };
134 
135 #define DEF_BATCHED_TRIM_SECTIONS	2048
136 #define BATCHED_TRIM_SEGMENTS(sbi)	\
137 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
138 #define BATCHED_TRIM_BLOCKS(sbi)	\
139 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
140 #define MAX_DISCARD_BLOCKS(sbi)						\
141 		((1 << (sbi)->log_blocks_per_seg) * (sbi)->segs_per_sec)
142 #define DISCARD_ISSUE_RATE	8
143 #define DEF_CP_INTERVAL			60	/* 60 secs */
144 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
145 
146 struct cp_control {
147 	int reason;
148 	__u64 trim_start;
149 	__u64 trim_end;
150 	__u64 trim_minlen;
151 	__u64 trimmed;
152 };
153 
154 /*
155  * For CP/NAT/SIT/SSA readahead
156  */
157 enum {
158 	META_CP,
159 	META_NAT,
160 	META_SIT,
161 	META_SSA,
162 	META_POR,
163 };
164 
165 /* for the list of ino */
166 enum {
167 	ORPHAN_INO,		/* for orphan ino list */
168 	APPEND_INO,		/* for append ino list */
169 	UPDATE_INO,		/* for update ino list */
170 	MAX_INO_ENTRY,		/* max. list */
171 };
172 
173 struct ino_entry {
174 	struct list_head list;	/* list head */
175 	nid_t ino;		/* inode number */
176 };
177 
178 /* for the list of inodes to be GCed */
179 struct inode_entry {
180 	struct list_head list;	/* list head */
181 	struct inode *inode;	/* vfs inode pointer */
182 };
183 
184 /* for the list of blockaddresses to be discarded */
185 struct discard_entry {
186 	struct list_head list;	/* list head */
187 	block_t blkaddr;	/* block address to be discarded */
188 	int len;		/* # of consecutive blocks of the discard */
189 };
190 
191 enum {
192 	D_PREP,
193 	D_SUBMIT,
194 	D_DONE,
195 };
196 
197 struct discard_cmd {
198 	struct list_head list;		/* command list */
199 	struct completion wait;		/* compleation */
200 	block_t lstart;			/* logical start address */
201 	block_t len;			/* length */
202 	struct bio *bio;		/* bio */
203 	int state;			/* state */
204 };
205 
206 struct discard_cmd_control {
207 	struct task_struct *f2fs_issue_discard;	/* discard thread */
208 	struct list_head discard_entry_list;	/* 4KB discard entry list */
209 	int nr_discards;			/* # of discards in the list */
210 	struct list_head discard_cmd_list;	/* discard cmd list */
211 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
212 	struct mutex cmd_lock;
213 	int max_discards;			/* max. discards to be issued */
214 	atomic_t submit_discard;		/* # of issued discard */
215 };
216 
217 /* for the list of fsync inodes, used only during recovery */
218 struct fsync_inode_entry {
219 	struct list_head list;	/* list head */
220 	struct inode *inode;	/* vfs inode pointer */
221 	block_t blkaddr;	/* block address locating the last fsync */
222 	block_t last_dentry;	/* block address locating the last dentry */
223 };
224 
225 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
226 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
227 
228 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
229 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
230 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
231 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
232 
233 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
234 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
235 
236 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
237 {
238 	int before = nats_in_cursum(journal);
239 
240 	journal->n_nats = cpu_to_le16(before + i);
241 	return before;
242 }
243 
244 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
245 {
246 	int before = sits_in_cursum(journal);
247 
248 	journal->n_sits = cpu_to_le16(before + i);
249 	return before;
250 }
251 
252 static inline bool __has_cursum_space(struct f2fs_journal *journal,
253 							int size, int type)
254 {
255 	if (type == NAT_JOURNAL)
256 		return size <= MAX_NAT_JENTRIES(journal);
257 	return size <= MAX_SIT_JENTRIES(journal);
258 }
259 
260 /*
261  * ioctl commands
262  */
263 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
264 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
265 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
266 
267 #define F2FS_IOCTL_MAGIC		0xf5
268 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
269 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
270 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
271 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
272 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
273 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
274 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
275 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
276 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
277 						struct f2fs_move_range)
278 
279 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
280 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
281 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
282 
283 /*
284  * should be same as XFS_IOC_GOINGDOWN.
285  * Flags for going down operation used by FS_IOC_GOINGDOWN
286  */
287 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
288 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
289 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
290 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
291 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
292 
293 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
294 /*
295  * ioctl commands in 32 bit emulation
296  */
297 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
298 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
299 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
300 #endif
301 
302 struct f2fs_defragment {
303 	u64 start;
304 	u64 len;
305 };
306 
307 struct f2fs_move_range {
308 	u32 dst_fd;		/* destination fd */
309 	u64 pos_in;		/* start position in src_fd */
310 	u64 pos_out;		/* start position in dst_fd */
311 	u64 len;		/* size to move */
312 };
313 
314 /*
315  * For INODE and NODE manager
316  */
317 /* for directory operations */
318 struct f2fs_dentry_ptr {
319 	struct inode *inode;
320 	const void *bitmap;
321 	struct f2fs_dir_entry *dentry;
322 	__u8 (*filename)[F2FS_SLOT_LEN];
323 	int max;
324 };
325 
326 static inline void make_dentry_ptr(struct inode *inode,
327 		struct f2fs_dentry_ptr *d, void *src, int type)
328 {
329 	d->inode = inode;
330 
331 	if (type == 1) {
332 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
333 
334 		d->max = NR_DENTRY_IN_BLOCK;
335 		d->bitmap = &t->dentry_bitmap;
336 		d->dentry = t->dentry;
337 		d->filename = t->filename;
338 	} else {
339 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
340 
341 		d->max = NR_INLINE_DENTRY;
342 		d->bitmap = &t->dentry_bitmap;
343 		d->dentry = t->dentry;
344 		d->filename = t->filename;
345 	}
346 }
347 
348 /*
349  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
350  * as its node offset to distinguish from index node blocks.
351  * But some bits are used to mark the node block.
352  */
353 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
354 				>> OFFSET_BIT_SHIFT)
355 enum {
356 	ALLOC_NODE,			/* allocate a new node page if needed */
357 	LOOKUP_NODE,			/* look up a node without readahead */
358 	LOOKUP_NODE_RA,			/*
359 					 * look up a node with readahead called
360 					 * by get_data_block.
361 					 */
362 };
363 
364 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
365 
366 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
367 
368 /* vector size for gang look-up from extent cache that consists of radix tree */
369 #define EXT_TREE_VEC_SIZE	64
370 
371 /* for in-memory extent cache entry */
372 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
373 
374 /* number of extent info in extent cache we try to shrink */
375 #define EXTENT_CACHE_SHRINK_NUMBER	128
376 
377 struct extent_info {
378 	unsigned int fofs;		/* start offset in a file */
379 	u32 blk;			/* start block address of the extent */
380 	unsigned int len;		/* length of the extent */
381 };
382 
383 struct extent_node {
384 	struct rb_node rb_node;		/* rb node located in rb-tree */
385 	struct list_head list;		/* node in global extent list of sbi */
386 	struct extent_info ei;		/* extent info */
387 	struct extent_tree *et;		/* extent tree pointer */
388 };
389 
390 struct extent_tree {
391 	nid_t ino;			/* inode number */
392 	struct rb_root root;		/* root of extent info rb-tree */
393 	struct extent_node *cached_en;	/* recently accessed extent node */
394 	struct extent_info largest;	/* largested extent info */
395 	struct list_head list;		/* to be used by sbi->zombie_list */
396 	rwlock_t lock;			/* protect extent info rb-tree */
397 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
398 };
399 
400 /*
401  * This structure is taken from ext4_map_blocks.
402  *
403  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
404  */
405 #define F2FS_MAP_NEW		(1 << BH_New)
406 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
407 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
408 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
409 				F2FS_MAP_UNWRITTEN)
410 
411 struct f2fs_map_blocks {
412 	block_t m_pblk;
413 	block_t m_lblk;
414 	unsigned int m_len;
415 	unsigned int m_flags;
416 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
417 };
418 
419 /* for flag in get_data_block */
420 #define F2FS_GET_BLOCK_READ		0
421 #define F2FS_GET_BLOCK_DIO		1
422 #define F2FS_GET_BLOCK_FIEMAP		2
423 #define F2FS_GET_BLOCK_BMAP		3
424 #define F2FS_GET_BLOCK_PRE_DIO		4
425 #define F2FS_GET_BLOCK_PRE_AIO		5
426 
427 /*
428  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
429  */
430 #define FADVISE_COLD_BIT	0x01
431 #define FADVISE_LOST_PINO_BIT	0x02
432 #define FADVISE_ENCRYPT_BIT	0x04
433 #define FADVISE_ENC_NAME_BIT	0x08
434 #define FADVISE_KEEP_SIZE_BIT	0x10
435 
436 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
437 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
438 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
439 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
440 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
441 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
442 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
443 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
444 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
445 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
446 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
447 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
448 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
449 
450 #define DEF_DIR_LEVEL		0
451 
452 struct f2fs_inode_info {
453 	struct inode vfs_inode;		/* serve a vfs inode */
454 	unsigned long i_flags;		/* keep an inode flags for ioctl */
455 	unsigned char i_advise;		/* use to give file attribute hints */
456 	unsigned char i_dir_level;	/* use for dentry level for large dir */
457 	unsigned int i_current_depth;	/* use only in directory structure */
458 	unsigned int i_pino;		/* parent inode number */
459 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
460 
461 	/* Use below internally in f2fs*/
462 	unsigned long flags;		/* use to pass per-file flags */
463 	struct rw_semaphore i_sem;	/* protect fi info */
464 	atomic_t dirty_pages;		/* # of dirty pages */
465 	f2fs_hash_t chash;		/* hash value of given file name */
466 	unsigned int clevel;		/* maximum level of given file name */
467 	struct task_struct *task;	/* lookup and create consistency */
468 	nid_t i_xattr_nid;		/* node id that contains xattrs */
469 	loff_t	last_disk_size;		/* lastly written file size */
470 
471 	struct list_head dirty_list;	/* dirty list for dirs and files */
472 	struct list_head gdirty_list;	/* linked in global dirty list */
473 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
474 	struct mutex inmem_lock;	/* lock for inmemory pages */
475 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
476 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
477 };
478 
479 static inline void get_extent_info(struct extent_info *ext,
480 					struct f2fs_extent *i_ext)
481 {
482 	ext->fofs = le32_to_cpu(i_ext->fofs);
483 	ext->blk = le32_to_cpu(i_ext->blk);
484 	ext->len = le32_to_cpu(i_ext->len);
485 }
486 
487 static inline void set_raw_extent(struct extent_info *ext,
488 					struct f2fs_extent *i_ext)
489 {
490 	i_ext->fofs = cpu_to_le32(ext->fofs);
491 	i_ext->blk = cpu_to_le32(ext->blk);
492 	i_ext->len = cpu_to_le32(ext->len);
493 }
494 
495 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
496 						u32 blk, unsigned int len)
497 {
498 	ei->fofs = fofs;
499 	ei->blk = blk;
500 	ei->len = len;
501 }
502 
503 static inline bool __is_extent_mergeable(struct extent_info *back,
504 						struct extent_info *front)
505 {
506 	return (back->fofs + back->len == front->fofs &&
507 			back->blk + back->len == front->blk);
508 }
509 
510 static inline bool __is_back_mergeable(struct extent_info *cur,
511 						struct extent_info *back)
512 {
513 	return __is_extent_mergeable(back, cur);
514 }
515 
516 static inline bool __is_front_mergeable(struct extent_info *cur,
517 						struct extent_info *front)
518 {
519 	return __is_extent_mergeable(cur, front);
520 }
521 
522 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
523 static inline void __try_update_largest_extent(struct inode *inode,
524 			struct extent_tree *et, struct extent_node *en)
525 {
526 	if (en->ei.len > et->largest.len) {
527 		et->largest = en->ei;
528 		f2fs_mark_inode_dirty_sync(inode, true);
529 	}
530 }
531 
532 enum nid_list {
533 	FREE_NID_LIST,
534 	ALLOC_NID_LIST,
535 	MAX_NID_LIST,
536 };
537 
538 struct f2fs_nm_info {
539 	block_t nat_blkaddr;		/* base disk address of NAT */
540 	nid_t max_nid;			/* maximum possible node ids */
541 	nid_t available_nids;		/* # of available node ids */
542 	nid_t next_scan_nid;		/* the next nid to be scanned */
543 	unsigned int ram_thresh;	/* control the memory footprint */
544 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
545 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
546 
547 	/* NAT cache management */
548 	struct radix_tree_root nat_root;/* root of the nat entry cache */
549 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
550 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
551 	struct list_head nat_entries;	/* cached nat entry list (clean) */
552 	unsigned int nat_cnt;		/* the # of cached nat entries */
553 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
554 	unsigned int nat_blocks;	/* # of nat blocks */
555 
556 	/* free node ids management */
557 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
558 	struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
559 	unsigned int nid_cnt[MAX_NID_LIST];	/* the number of free node id */
560 	spinlock_t nid_list_lock;	/* protect nid lists ops */
561 	struct mutex build_lock;	/* lock for build free nids */
562 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
563 	unsigned char *nat_block_bitmap;
564 
565 	/* for checkpoint */
566 	char *nat_bitmap;		/* NAT bitmap pointer */
567 
568 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
569 	unsigned char *nat_bits;	/* NAT bits blocks */
570 	unsigned char *full_nat_bits;	/* full NAT pages */
571 	unsigned char *empty_nat_bits;	/* empty NAT pages */
572 #ifdef CONFIG_F2FS_CHECK_FS
573 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
574 #endif
575 	int bitmap_size;		/* bitmap size */
576 };
577 
578 /*
579  * this structure is used as one of function parameters.
580  * all the information are dedicated to a given direct node block determined
581  * by the data offset in a file.
582  */
583 struct dnode_of_data {
584 	struct inode *inode;		/* vfs inode pointer */
585 	struct page *inode_page;	/* its inode page, NULL is possible */
586 	struct page *node_page;		/* cached direct node page */
587 	nid_t nid;			/* node id of the direct node block */
588 	unsigned int ofs_in_node;	/* data offset in the node page */
589 	bool inode_page_locked;		/* inode page is locked or not */
590 	bool node_changed;		/* is node block changed */
591 	char cur_level;			/* level of hole node page */
592 	char max_level;			/* level of current page located */
593 	block_t	data_blkaddr;		/* block address of the node block */
594 };
595 
596 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
597 		struct page *ipage, struct page *npage, nid_t nid)
598 {
599 	memset(dn, 0, sizeof(*dn));
600 	dn->inode = inode;
601 	dn->inode_page = ipage;
602 	dn->node_page = npage;
603 	dn->nid = nid;
604 }
605 
606 /*
607  * For SIT manager
608  *
609  * By default, there are 6 active log areas across the whole main area.
610  * When considering hot and cold data separation to reduce cleaning overhead,
611  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
612  * respectively.
613  * In the current design, you should not change the numbers intentionally.
614  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
615  * logs individually according to the underlying devices. (default: 6)
616  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
617  * data and 8 for node logs.
618  */
619 #define	NR_CURSEG_DATA_TYPE	(3)
620 #define NR_CURSEG_NODE_TYPE	(3)
621 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
622 
623 enum {
624 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
625 	CURSEG_WARM_DATA,	/* data blocks */
626 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
627 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
628 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
629 	CURSEG_COLD_NODE,	/* indirect node blocks */
630 	NO_CHECK_TYPE,
631 };
632 
633 struct flush_cmd {
634 	struct completion wait;
635 	struct llist_node llnode;
636 	int ret;
637 };
638 
639 struct flush_cmd_control {
640 	struct task_struct *f2fs_issue_flush;	/* flush thread */
641 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
642 	atomic_t submit_flush;			/* # of issued flushes */
643 	struct llist_head issue_list;		/* list for command issue */
644 	struct llist_node *dispatch_list;	/* list for command dispatch */
645 };
646 
647 struct f2fs_sm_info {
648 	struct sit_info *sit_info;		/* whole segment information */
649 	struct free_segmap_info *free_info;	/* free segment information */
650 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
651 	struct curseg_info *curseg_array;	/* active segment information */
652 
653 	block_t seg0_blkaddr;		/* block address of 0'th segment */
654 	block_t main_blkaddr;		/* start block address of main area */
655 	block_t ssa_blkaddr;		/* start block address of SSA area */
656 
657 	unsigned int segment_count;	/* total # of segments */
658 	unsigned int main_segments;	/* # of segments in main area */
659 	unsigned int reserved_segments;	/* # of reserved segments */
660 	unsigned int ovp_segments;	/* # of overprovision segments */
661 
662 	/* a threshold to reclaim prefree segments */
663 	unsigned int rec_prefree_segments;
664 
665 	/* for batched trimming */
666 	unsigned int trim_sections;		/* # of sections to trim */
667 
668 	struct list_head sit_entry_set;	/* sit entry set list */
669 
670 	unsigned int ipu_policy;	/* in-place-update policy */
671 	unsigned int min_ipu_util;	/* in-place-update threshold */
672 	unsigned int min_fsync_blocks;	/* threshold for fsync */
673 
674 	/* for flush command control */
675 	struct flush_cmd_control *fcc_info;
676 
677 	/* for discard command control */
678 	struct discard_cmd_control *dcc_info;
679 };
680 
681 /*
682  * For superblock
683  */
684 /*
685  * COUNT_TYPE for monitoring
686  *
687  * f2fs monitors the number of several block types such as on-writeback,
688  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
689  */
690 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
691 enum count_type {
692 	F2FS_DIRTY_DENTS,
693 	F2FS_DIRTY_DATA,
694 	F2FS_DIRTY_NODES,
695 	F2FS_DIRTY_META,
696 	F2FS_INMEM_PAGES,
697 	F2FS_DIRTY_IMETA,
698 	F2FS_WB_CP_DATA,
699 	F2FS_WB_DATA,
700 	NR_COUNT_TYPE,
701 };
702 
703 /*
704  * The below are the page types of bios used in submit_bio().
705  * The available types are:
706  * DATA			User data pages. It operates as async mode.
707  * NODE			Node pages. It operates as async mode.
708  * META			FS metadata pages such as SIT, NAT, CP.
709  * NR_PAGE_TYPE		The number of page types.
710  * META_FLUSH		Make sure the previous pages are written
711  *			with waiting the bio's completion
712  * ...			Only can be used with META.
713  */
714 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
715 enum page_type {
716 	DATA,
717 	NODE,
718 	META,
719 	NR_PAGE_TYPE,
720 	META_FLUSH,
721 	INMEM,		/* the below types are used by tracepoints only. */
722 	INMEM_DROP,
723 	INMEM_REVOKE,
724 	IPU,
725 	OPU,
726 };
727 
728 struct f2fs_io_info {
729 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
730 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
731 	int op;			/* contains REQ_OP_ */
732 	int op_flags;		/* req_flag_bits */
733 	block_t new_blkaddr;	/* new block address to be written */
734 	block_t old_blkaddr;	/* old block address before Cow */
735 	struct page *page;	/* page to be written */
736 	struct page *encrypted_page;	/* encrypted page */
737 	bool submitted;		/* indicate IO submission */
738 };
739 
740 #define is_read_io(rw) (rw == READ)
741 struct f2fs_bio_info {
742 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
743 	struct bio *bio;		/* bios to merge */
744 	sector_t last_block_in_bio;	/* last block number */
745 	struct f2fs_io_info fio;	/* store buffered io info. */
746 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
747 };
748 
749 #define FDEV(i)				(sbi->devs[i])
750 #define RDEV(i)				(raw_super->devs[i])
751 struct f2fs_dev_info {
752 	struct block_device *bdev;
753 	char path[MAX_PATH_LEN];
754 	unsigned int total_segments;
755 	block_t start_blk;
756 	block_t end_blk;
757 #ifdef CONFIG_BLK_DEV_ZONED
758 	unsigned int nr_blkz;			/* Total number of zones */
759 	u8 *blkz_type;				/* Array of zones type */
760 #endif
761 };
762 
763 enum inode_type {
764 	DIR_INODE,			/* for dirty dir inode */
765 	FILE_INODE,			/* for dirty regular/symlink inode */
766 	DIRTY_META,			/* for all dirtied inode metadata */
767 	NR_INODE_TYPE,
768 };
769 
770 /* for inner inode cache management */
771 struct inode_management {
772 	struct radix_tree_root ino_root;	/* ino entry array */
773 	spinlock_t ino_lock;			/* for ino entry lock */
774 	struct list_head ino_list;		/* inode list head */
775 	unsigned long ino_num;			/* number of entries */
776 };
777 
778 /* For s_flag in struct f2fs_sb_info */
779 enum {
780 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
781 	SBI_IS_CLOSE,				/* specify unmounting */
782 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
783 	SBI_POR_DOING,				/* recovery is doing or not */
784 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
785 	SBI_NEED_CP,				/* need to checkpoint */
786 };
787 
788 enum {
789 	CP_TIME,
790 	REQ_TIME,
791 	MAX_TIME,
792 };
793 
794 struct f2fs_sb_info {
795 	struct super_block *sb;			/* pointer to VFS super block */
796 	struct proc_dir_entry *s_proc;		/* proc entry */
797 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
798 	int valid_super_block;			/* valid super block no */
799 	unsigned long s_flag;				/* flags for sbi */
800 
801 #ifdef CONFIG_BLK_DEV_ZONED
802 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
803 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
804 #endif
805 
806 	/* for node-related operations */
807 	struct f2fs_nm_info *nm_info;		/* node manager */
808 	struct inode *node_inode;		/* cache node blocks */
809 
810 	/* for segment-related operations */
811 	struct f2fs_sm_info *sm_info;		/* segment manager */
812 
813 	/* for bio operations */
814 	struct f2fs_bio_info read_io;			/* for read bios */
815 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
816 	struct mutex wio_mutex[NODE + 1];	/* bio ordering for NODE/DATA */
817 	int write_io_size_bits;			/* Write IO size bits */
818 	mempool_t *write_io_dummy;		/* Dummy pages */
819 
820 	/* for checkpoint */
821 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
822 	int cur_cp_pack;			/* remain current cp pack */
823 	spinlock_t cp_lock;			/* for flag in ckpt */
824 	struct inode *meta_inode;		/* cache meta blocks */
825 	struct mutex cp_mutex;			/* checkpoint procedure lock */
826 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
827 	struct rw_semaphore node_write;		/* locking node writes */
828 	wait_queue_head_t cp_wait;
829 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
830 	long interval_time[MAX_TIME];		/* to store thresholds */
831 
832 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
833 
834 	/* for orphan inode, use 0'th array */
835 	unsigned int max_orphans;		/* max orphan inodes */
836 
837 	/* for inode management */
838 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
839 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
840 
841 	/* for extent tree cache */
842 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
843 	struct mutex extent_tree_lock;	/* locking extent radix tree */
844 	struct list_head extent_list;		/* lru list for shrinker */
845 	spinlock_t extent_lock;			/* locking extent lru list */
846 	atomic_t total_ext_tree;		/* extent tree count */
847 	struct list_head zombie_list;		/* extent zombie tree list */
848 	atomic_t total_zombie_tree;		/* extent zombie tree count */
849 	atomic_t total_ext_node;		/* extent info count */
850 
851 	/* basic filesystem units */
852 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
853 	unsigned int log_blocksize;		/* log2 block size */
854 	unsigned int blocksize;			/* block size */
855 	unsigned int root_ino_num;		/* root inode number*/
856 	unsigned int node_ino_num;		/* node inode number*/
857 	unsigned int meta_ino_num;		/* meta inode number*/
858 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
859 	unsigned int blocks_per_seg;		/* blocks per segment */
860 	unsigned int segs_per_sec;		/* segments per section */
861 	unsigned int secs_per_zone;		/* sections per zone */
862 	unsigned int total_sections;		/* total section count */
863 	unsigned int total_node_count;		/* total node block count */
864 	unsigned int total_valid_node_count;	/* valid node block count */
865 	loff_t max_file_blocks;			/* max block index of file */
866 	int active_logs;			/* # of active logs */
867 	int dir_level;				/* directory level */
868 
869 	block_t user_block_count;		/* # of user blocks */
870 	block_t total_valid_block_count;	/* # of valid blocks */
871 	block_t discard_blks;			/* discard command candidats */
872 	block_t last_valid_block_count;		/* for recovery */
873 	u32 s_next_generation;			/* for NFS support */
874 
875 	/* # of pages, see count_type */
876 	atomic_t nr_pages[NR_COUNT_TYPE];
877 	/* # of allocated blocks */
878 	struct percpu_counter alloc_valid_block_count;
879 
880 	/* valid inode count */
881 	struct percpu_counter total_valid_inode_count;
882 
883 	struct f2fs_mount_info mount_opt;	/* mount options */
884 
885 	/* for cleaning operations */
886 	struct mutex gc_mutex;			/* mutex for GC */
887 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
888 	unsigned int cur_victim_sec;		/* current victim section num */
889 
890 	/* threshold for converting bg victims for fg */
891 	u64 fggc_threshold;
892 
893 	/* maximum # of trials to find a victim segment for SSR and GC */
894 	unsigned int max_victim_search;
895 
896 	/*
897 	 * for stat information.
898 	 * one is for the LFS mode, and the other is for the SSR mode.
899 	 */
900 #ifdef CONFIG_F2FS_STAT_FS
901 	struct f2fs_stat_info *stat_info;	/* FS status information */
902 	unsigned int segment_count[2];		/* # of allocated segments */
903 	unsigned int block_count[2];		/* # of allocated blocks */
904 	atomic_t inplace_count;		/* # of inplace update */
905 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
906 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
907 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
908 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
909 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
910 	atomic_t inline_inode;			/* # of inline_data inodes */
911 	atomic_t inline_dir;			/* # of inline_dentry inodes */
912 	atomic_t aw_cnt;			/* # of atomic writes */
913 	atomic_t max_aw_cnt;			/* max # of atomic writes */
914 	int bg_gc;				/* background gc calls */
915 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
916 #endif
917 	unsigned int last_victim[2];		/* last victim segment # */
918 	spinlock_t stat_lock;			/* lock for stat operations */
919 
920 	/* For sysfs suppport */
921 	struct kobject s_kobj;
922 	struct completion s_kobj_unregister;
923 
924 	/* For shrinker support */
925 	struct list_head s_list;
926 	int s_ndevs;				/* number of devices */
927 	struct f2fs_dev_info *devs;		/* for device list */
928 	struct mutex umount_mutex;
929 	unsigned int shrinker_run_no;
930 
931 	/* For write statistics */
932 	u64 sectors_written_start;
933 	u64 kbytes_written;
934 
935 	/* Reference to checksum algorithm driver via cryptoapi */
936 	struct crypto_shash *s_chksum_driver;
937 
938 	/* For fault injection */
939 #ifdef CONFIG_F2FS_FAULT_INJECTION
940 	struct f2fs_fault_info fault_info;
941 #endif
942 };
943 
944 #ifdef CONFIG_F2FS_FAULT_INJECTION
945 #define f2fs_show_injection_info(type)				\
946 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
947 		KERN_INFO, fault_name[type],			\
948 		__func__, __builtin_return_address(0))
949 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
950 {
951 	struct f2fs_fault_info *ffi = &sbi->fault_info;
952 
953 	if (!ffi->inject_rate)
954 		return false;
955 
956 	if (!IS_FAULT_SET(ffi, type))
957 		return false;
958 
959 	atomic_inc(&ffi->inject_ops);
960 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
961 		atomic_set(&ffi->inject_ops, 0);
962 		return true;
963 	}
964 	return false;
965 }
966 #endif
967 
968 /* For write statistics. Suppose sector size is 512 bytes,
969  * and the return value is in kbytes. s is of struct f2fs_sb_info.
970  */
971 #define BD_PART_WRITTEN(s)						 \
972 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
973 		s->sectors_written_start) >> 1)
974 
975 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
976 {
977 	sbi->last_time[type] = jiffies;
978 }
979 
980 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
981 {
982 	struct timespec ts = {sbi->interval_time[type], 0};
983 	unsigned long interval = timespec_to_jiffies(&ts);
984 
985 	return time_after(jiffies, sbi->last_time[type] + interval);
986 }
987 
988 static inline bool is_idle(struct f2fs_sb_info *sbi)
989 {
990 	struct block_device *bdev = sbi->sb->s_bdev;
991 	struct request_queue *q = bdev_get_queue(bdev);
992 	struct request_list *rl = &q->root_rl;
993 
994 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
995 		return 0;
996 
997 	return f2fs_time_over(sbi, REQ_TIME);
998 }
999 
1000 /*
1001  * Inline functions
1002  */
1003 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1004 			   unsigned int length)
1005 {
1006 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1007 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
1008 	int err;
1009 
1010 	shash->tfm = sbi->s_chksum_driver;
1011 	shash->flags = 0;
1012 	*ctx = F2FS_SUPER_MAGIC;
1013 
1014 	err = crypto_shash_update(shash, address, length);
1015 	BUG_ON(err);
1016 
1017 	return *ctx;
1018 }
1019 
1020 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1021 				  void *buf, size_t buf_size)
1022 {
1023 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1024 }
1025 
1026 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1027 {
1028 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1029 }
1030 
1031 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1032 {
1033 	return sb->s_fs_info;
1034 }
1035 
1036 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1037 {
1038 	return F2FS_SB(inode->i_sb);
1039 }
1040 
1041 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1042 {
1043 	return F2FS_I_SB(mapping->host);
1044 }
1045 
1046 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1047 {
1048 	return F2FS_M_SB(page->mapping);
1049 }
1050 
1051 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1052 {
1053 	return (struct f2fs_super_block *)(sbi->raw_super);
1054 }
1055 
1056 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1057 {
1058 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1059 }
1060 
1061 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1062 {
1063 	return (struct f2fs_node *)page_address(page);
1064 }
1065 
1066 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1067 {
1068 	return &((struct f2fs_node *)page_address(page))->i;
1069 }
1070 
1071 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1072 {
1073 	return (struct f2fs_nm_info *)(sbi->nm_info);
1074 }
1075 
1076 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1077 {
1078 	return (struct f2fs_sm_info *)(sbi->sm_info);
1079 }
1080 
1081 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1082 {
1083 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1084 }
1085 
1086 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1087 {
1088 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1089 }
1090 
1091 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1092 {
1093 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1094 }
1095 
1096 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1097 {
1098 	return sbi->meta_inode->i_mapping;
1099 }
1100 
1101 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1102 {
1103 	return sbi->node_inode->i_mapping;
1104 }
1105 
1106 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1107 {
1108 	return test_bit(type, &sbi->s_flag);
1109 }
1110 
1111 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1112 {
1113 	set_bit(type, &sbi->s_flag);
1114 }
1115 
1116 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1117 {
1118 	clear_bit(type, &sbi->s_flag);
1119 }
1120 
1121 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1122 {
1123 	return le64_to_cpu(cp->checkpoint_ver);
1124 }
1125 
1126 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1127 {
1128 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1129 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1130 }
1131 
1132 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1133 {
1134 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1135 
1136 	return ckpt_flags & f;
1137 }
1138 
1139 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1140 {
1141 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1142 }
1143 
1144 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1145 {
1146 	unsigned int ckpt_flags;
1147 
1148 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1149 	ckpt_flags |= f;
1150 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1151 }
1152 
1153 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1154 {
1155 	spin_lock(&sbi->cp_lock);
1156 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1157 	spin_unlock(&sbi->cp_lock);
1158 }
1159 
1160 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1161 {
1162 	unsigned int ckpt_flags;
1163 
1164 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1165 	ckpt_flags &= (~f);
1166 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1167 }
1168 
1169 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1170 {
1171 	spin_lock(&sbi->cp_lock);
1172 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1173 	spin_unlock(&sbi->cp_lock);
1174 }
1175 
1176 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1177 {
1178 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1179 
1180 	if (lock)
1181 		spin_lock(&sbi->cp_lock);
1182 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1183 	kfree(NM_I(sbi)->nat_bits);
1184 	NM_I(sbi)->nat_bits = NULL;
1185 	if (lock)
1186 		spin_unlock(&sbi->cp_lock);
1187 }
1188 
1189 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1190 					struct cp_control *cpc)
1191 {
1192 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1193 
1194 	return (cpc) ? (cpc->reason == CP_UMOUNT) && set : set;
1195 }
1196 
1197 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1198 {
1199 	down_read(&sbi->cp_rwsem);
1200 }
1201 
1202 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1203 {
1204 	up_read(&sbi->cp_rwsem);
1205 }
1206 
1207 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1208 {
1209 	down_write(&sbi->cp_rwsem);
1210 }
1211 
1212 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1213 {
1214 	up_write(&sbi->cp_rwsem);
1215 }
1216 
1217 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1218 {
1219 	int reason = CP_SYNC;
1220 
1221 	if (test_opt(sbi, FASTBOOT))
1222 		reason = CP_FASTBOOT;
1223 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1224 		reason = CP_UMOUNT;
1225 	return reason;
1226 }
1227 
1228 static inline bool __remain_node_summaries(int reason)
1229 {
1230 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1231 }
1232 
1233 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1234 {
1235 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1236 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1237 }
1238 
1239 /*
1240  * Check whether the given nid is within node id range.
1241  */
1242 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1243 {
1244 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1245 		return -EINVAL;
1246 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1247 		return -EINVAL;
1248 	return 0;
1249 }
1250 
1251 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1252 
1253 /*
1254  * Check whether the inode has blocks or not
1255  */
1256 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1257 {
1258 	if (F2FS_I(inode)->i_xattr_nid)
1259 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1260 	else
1261 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1262 }
1263 
1264 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1265 {
1266 	return ofs == XATTR_NODE_OFFSET;
1267 }
1268 
1269 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1270 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1271 				 struct inode *inode, blkcnt_t *count)
1272 {
1273 	blkcnt_t diff;
1274 
1275 #ifdef CONFIG_F2FS_FAULT_INJECTION
1276 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1277 		f2fs_show_injection_info(FAULT_BLOCK);
1278 		return false;
1279 	}
1280 #endif
1281 	/*
1282 	 * let's increase this in prior to actual block count change in order
1283 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1284 	 */
1285 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1286 
1287 	spin_lock(&sbi->stat_lock);
1288 	sbi->total_valid_block_count += (block_t)(*count);
1289 	if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1290 		diff = sbi->total_valid_block_count - sbi->user_block_count;
1291 		*count -= diff;
1292 		sbi->total_valid_block_count = sbi->user_block_count;
1293 		if (!*count) {
1294 			spin_unlock(&sbi->stat_lock);
1295 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1296 			return false;
1297 		}
1298 	}
1299 	spin_unlock(&sbi->stat_lock);
1300 
1301 	f2fs_i_blocks_write(inode, *count, true);
1302 	return true;
1303 }
1304 
1305 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1306 						struct inode *inode,
1307 						blkcnt_t count)
1308 {
1309 	spin_lock(&sbi->stat_lock);
1310 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1311 	f2fs_bug_on(sbi, inode->i_blocks < count);
1312 	sbi->total_valid_block_count -= (block_t)count;
1313 	spin_unlock(&sbi->stat_lock);
1314 	f2fs_i_blocks_write(inode, count, false);
1315 }
1316 
1317 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1318 {
1319 	atomic_inc(&sbi->nr_pages[count_type]);
1320 
1321 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1322 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1323 		return;
1324 
1325 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1326 }
1327 
1328 static inline void inode_inc_dirty_pages(struct inode *inode)
1329 {
1330 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1331 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1332 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1333 }
1334 
1335 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1336 {
1337 	atomic_dec(&sbi->nr_pages[count_type]);
1338 }
1339 
1340 static inline void inode_dec_dirty_pages(struct inode *inode)
1341 {
1342 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1343 			!S_ISLNK(inode->i_mode))
1344 		return;
1345 
1346 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1347 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1348 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1349 }
1350 
1351 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1352 {
1353 	return atomic_read(&sbi->nr_pages[count_type]);
1354 }
1355 
1356 static inline int get_dirty_pages(struct inode *inode)
1357 {
1358 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1359 }
1360 
1361 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1362 {
1363 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1364 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1365 						sbi->log_blocks_per_seg;
1366 
1367 	return segs / sbi->segs_per_sec;
1368 }
1369 
1370 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1371 {
1372 	return sbi->total_valid_block_count;
1373 }
1374 
1375 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1376 {
1377 	return sbi->discard_blks;
1378 }
1379 
1380 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1381 {
1382 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1383 
1384 	/* return NAT or SIT bitmap */
1385 	if (flag == NAT_BITMAP)
1386 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1387 	else if (flag == SIT_BITMAP)
1388 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1389 
1390 	return 0;
1391 }
1392 
1393 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1394 {
1395 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1396 }
1397 
1398 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1399 {
1400 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1401 	int offset;
1402 
1403 	if (__cp_payload(sbi) > 0) {
1404 		if (flag == NAT_BITMAP)
1405 			return &ckpt->sit_nat_version_bitmap;
1406 		else
1407 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1408 	} else {
1409 		offset = (flag == NAT_BITMAP) ?
1410 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1411 		return &ckpt->sit_nat_version_bitmap + offset;
1412 	}
1413 }
1414 
1415 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1416 {
1417 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1418 
1419 	if (sbi->cur_cp_pack == 2)
1420 		start_addr += sbi->blocks_per_seg;
1421 	return start_addr;
1422 }
1423 
1424 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1425 {
1426 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1427 
1428 	if (sbi->cur_cp_pack == 1)
1429 		start_addr += sbi->blocks_per_seg;
1430 	return start_addr;
1431 }
1432 
1433 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1434 {
1435 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1436 }
1437 
1438 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1439 {
1440 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1441 }
1442 
1443 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1444 						struct inode *inode)
1445 {
1446 	block_t	valid_block_count;
1447 	unsigned int valid_node_count;
1448 
1449 	spin_lock(&sbi->stat_lock);
1450 
1451 	valid_block_count = sbi->total_valid_block_count + 1;
1452 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1453 		spin_unlock(&sbi->stat_lock);
1454 		return false;
1455 	}
1456 
1457 	valid_node_count = sbi->total_valid_node_count + 1;
1458 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1459 		spin_unlock(&sbi->stat_lock);
1460 		return false;
1461 	}
1462 
1463 	if (inode)
1464 		f2fs_i_blocks_write(inode, 1, true);
1465 
1466 	sbi->total_valid_node_count++;
1467 	sbi->total_valid_block_count++;
1468 	spin_unlock(&sbi->stat_lock);
1469 
1470 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1471 	return true;
1472 }
1473 
1474 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1475 						struct inode *inode)
1476 {
1477 	spin_lock(&sbi->stat_lock);
1478 
1479 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1480 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1481 	f2fs_bug_on(sbi, !inode->i_blocks);
1482 
1483 	f2fs_i_blocks_write(inode, 1, false);
1484 	sbi->total_valid_node_count--;
1485 	sbi->total_valid_block_count--;
1486 
1487 	spin_unlock(&sbi->stat_lock);
1488 }
1489 
1490 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1491 {
1492 	return sbi->total_valid_node_count;
1493 }
1494 
1495 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1496 {
1497 	percpu_counter_inc(&sbi->total_valid_inode_count);
1498 }
1499 
1500 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1501 {
1502 	percpu_counter_dec(&sbi->total_valid_inode_count);
1503 }
1504 
1505 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1506 {
1507 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1508 }
1509 
1510 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1511 						pgoff_t index, bool for_write)
1512 {
1513 #ifdef CONFIG_F2FS_FAULT_INJECTION
1514 	struct page *page = find_lock_page(mapping, index);
1515 
1516 	if (page)
1517 		return page;
1518 
1519 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1520 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1521 		return NULL;
1522 	}
1523 #endif
1524 	if (!for_write)
1525 		return grab_cache_page(mapping, index);
1526 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1527 }
1528 
1529 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1530 {
1531 	char *src_kaddr = kmap(src);
1532 	char *dst_kaddr = kmap(dst);
1533 
1534 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1535 	kunmap(dst);
1536 	kunmap(src);
1537 }
1538 
1539 static inline void f2fs_put_page(struct page *page, int unlock)
1540 {
1541 	if (!page)
1542 		return;
1543 
1544 	if (unlock) {
1545 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1546 		unlock_page(page);
1547 	}
1548 	put_page(page);
1549 }
1550 
1551 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1552 {
1553 	if (dn->node_page)
1554 		f2fs_put_page(dn->node_page, 1);
1555 	if (dn->inode_page && dn->node_page != dn->inode_page)
1556 		f2fs_put_page(dn->inode_page, 0);
1557 	dn->node_page = NULL;
1558 	dn->inode_page = NULL;
1559 }
1560 
1561 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1562 					size_t size)
1563 {
1564 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1565 }
1566 
1567 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1568 						gfp_t flags)
1569 {
1570 	void *entry;
1571 
1572 	entry = kmem_cache_alloc(cachep, flags);
1573 	if (!entry)
1574 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1575 	return entry;
1576 }
1577 
1578 static inline struct bio *f2fs_bio_alloc(int npages)
1579 {
1580 	struct bio *bio;
1581 
1582 	/* No failure on bio allocation */
1583 	bio = bio_alloc(GFP_NOIO, npages);
1584 	if (!bio)
1585 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1586 	return bio;
1587 }
1588 
1589 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1590 				unsigned long index, void *item)
1591 {
1592 	while (radix_tree_insert(root, index, item))
1593 		cond_resched();
1594 }
1595 
1596 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1597 
1598 static inline bool IS_INODE(struct page *page)
1599 {
1600 	struct f2fs_node *p = F2FS_NODE(page);
1601 
1602 	return RAW_IS_INODE(p);
1603 }
1604 
1605 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1606 {
1607 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1608 }
1609 
1610 static inline block_t datablock_addr(struct page *node_page,
1611 		unsigned int offset)
1612 {
1613 	struct f2fs_node *raw_node;
1614 	__le32 *addr_array;
1615 
1616 	raw_node = F2FS_NODE(node_page);
1617 	addr_array = blkaddr_in_node(raw_node);
1618 	return le32_to_cpu(addr_array[offset]);
1619 }
1620 
1621 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1622 {
1623 	int mask;
1624 
1625 	addr += (nr >> 3);
1626 	mask = 1 << (7 - (nr & 0x07));
1627 	return mask & *addr;
1628 }
1629 
1630 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1631 {
1632 	int mask;
1633 
1634 	addr += (nr >> 3);
1635 	mask = 1 << (7 - (nr & 0x07));
1636 	*addr |= mask;
1637 }
1638 
1639 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1640 {
1641 	int mask;
1642 
1643 	addr += (nr >> 3);
1644 	mask = 1 << (7 - (nr & 0x07));
1645 	*addr &= ~mask;
1646 }
1647 
1648 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1649 {
1650 	int mask;
1651 	int ret;
1652 
1653 	addr += (nr >> 3);
1654 	mask = 1 << (7 - (nr & 0x07));
1655 	ret = mask & *addr;
1656 	*addr |= mask;
1657 	return ret;
1658 }
1659 
1660 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1661 {
1662 	int mask;
1663 	int ret;
1664 
1665 	addr += (nr >> 3);
1666 	mask = 1 << (7 - (nr & 0x07));
1667 	ret = mask & *addr;
1668 	*addr &= ~mask;
1669 	return ret;
1670 }
1671 
1672 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1673 {
1674 	int mask;
1675 
1676 	addr += (nr >> 3);
1677 	mask = 1 << (7 - (nr & 0x07));
1678 	*addr ^= mask;
1679 }
1680 
1681 /* used for f2fs_inode_info->flags */
1682 enum {
1683 	FI_NEW_INODE,		/* indicate newly allocated inode */
1684 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1685 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1686 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1687 	FI_INC_LINK,		/* need to increment i_nlink */
1688 	FI_ACL_MODE,		/* indicate acl mode */
1689 	FI_NO_ALLOC,		/* should not allocate any blocks */
1690 	FI_FREE_NID,		/* free allocated nide */
1691 	FI_NO_EXTENT,		/* not to use the extent cache */
1692 	FI_INLINE_XATTR,	/* used for inline xattr */
1693 	FI_INLINE_DATA,		/* used for inline data*/
1694 	FI_INLINE_DENTRY,	/* used for inline dentry */
1695 	FI_APPEND_WRITE,	/* inode has appended data */
1696 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1697 	FI_NEED_IPU,		/* used for ipu per file */
1698 	FI_ATOMIC_FILE,		/* indicate atomic file */
1699 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
1700 	FI_VOLATILE_FILE,	/* indicate volatile file */
1701 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1702 	FI_DROP_CACHE,		/* drop dirty page cache */
1703 	FI_DATA_EXIST,		/* indicate data exists */
1704 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1705 	FI_DO_DEFRAG,		/* indicate defragment is running */
1706 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1707 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
1708 };
1709 
1710 static inline void __mark_inode_dirty_flag(struct inode *inode,
1711 						int flag, bool set)
1712 {
1713 	switch (flag) {
1714 	case FI_INLINE_XATTR:
1715 	case FI_INLINE_DATA:
1716 	case FI_INLINE_DENTRY:
1717 		if (set)
1718 			return;
1719 	case FI_DATA_EXIST:
1720 	case FI_INLINE_DOTS:
1721 		f2fs_mark_inode_dirty_sync(inode, true);
1722 	}
1723 }
1724 
1725 static inline void set_inode_flag(struct inode *inode, int flag)
1726 {
1727 	if (!test_bit(flag, &F2FS_I(inode)->flags))
1728 		set_bit(flag, &F2FS_I(inode)->flags);
1729 	__mark_inode_dirty_flag(inode, flag, true);
1730 }
1731 
1732 static inline int is_inode_flag_set(struct inode *inode, int flag)
1733 {
1734 	return test_bit(flag, &F2FS_I(inode)->flags);
1735 }
1736 
1737 static inline void clear_inode_flag(struct inode *inode, int flag)
1738 {
1739 	if (test_bit(flag, &F2FS_I(inode)->flags))
1740 		clear_bit(flag, &F2FS_I(inode)->flags);
1741 	__mark_inode_dirty_flag(inode, flag, false);
1742 }
1743 
1744 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1745 {
1746 	F2FS_I(inode)->i_acl_mode = mode;
1747 	set_inode_flag(inode, FI_ACL_MODE);
1748 	f2fs_mark_inode_dirty_sync(inode, false);
1749 }
1750 
1751 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1752 {
1753 	if (inc)
1754 		inc_nlink(inode);
1755 	else
1756 		drop_nlink(inode);
1757 	f2fs_mark_inode_dirty_sync(inode, true);
1758 }
1759 
1760 static inline void f2fs_i_blocks_write(struct inode *inode,
1761 					blkcnt_t diff, bool add)
1762 {
1763 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1764 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1765 
1766 	inode->i_blocks = add ? inode->i_blocks + diff :
1767 				inode->i_blocks - diff;
1768 	f2fs_mark_inode_dirty_sync(inode, true);
1769 	if (clean || recover)
1770 		set_inode_flag(inode, FI_AUTO_RECOVER);
1771 }
1772 
1773 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1774 {
1775 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1776 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1777 
1778 	if (i_size_read(inode) == i_size)
1779 		return;
1780 
1781 	i_size_write(inode, i_size);
1782 	f2fs_mark_inode_dirty_sync(inode, true);
1783 	if (clean || recover)
1784 		set_inode_flag(inode, FI_AUTO_RECOVER);
1785 }
1786 
1787 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1788 {
1789 	F2FS_I(inode)->i_current_depth = depth;
1790 	f2fs_mark_inode_dirty_sync(inode, true);
1791 }
1792 
1793 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1794 {
1795 	F2FS_I(inode)->i_xattr_nid = xnid;
1796 	f2fs_mark_inode_dirty_sync(inode, true);
1797 }
1798 
1799 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1800 {
1801 	F2FS_I(inode)->i_pino = pino;
1802 	f2fs_mark_inode_dirty_sync(inode, true);
1803 }
1804 
1805 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1806 {
1807 	struct f2fs_inode_info *fi = F2FS_I(inode);
1808 
1809 	if (ri->i_inline & F2FS_INLINE_XATTR)
1810 		set_bit(FI_INLINE_XATTR, &fi->flags);
1811 	if (ri->i_inline & F2FS_INLINE_DATA)
1812 		set_bit(FI_INLINE_DATA, &fi->flags);
1813 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1814 		set_bit(FI_INLINE_DENTRY, &fi->flags);
1815 	if (ri->i_inline & F2FS_DATA_EXIST)
1816 		set_bit(FI_DATA_EXIST, &fi->flags);
1817 	if (ri->i_inline & F2FS_INLINE_DOTS)
1818 		set_bit(FI_INLINE_DOTS, &fi->flags);
1819 }
1820 
1821 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1822 {
1823 	ri->i_inline = 0;
1824 
1825 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1826 		ri->i_inline |= F2FS_INLINE_XATTR;
1827 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
1828 		ri->i_inline |= F2FS_INLINE_DATA;
1829 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1830 		ri->i_inline |= F2FS_INLINE_DENTRY;
1831 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
1832 		ri->i_inline |= F2FS_DATA_EXIST;
1833 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1834 		ri->i_inline |= F2FS_INLINE_DOTS;
1835 }
1836 
1837 static inline int f2fs_has_inline_xattr(struct inode *inode)
1838 {
1839 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
1840 }
1841 
1842 static inline unsigned int addrs_per_inode(struct inode *inode)
1843 {
1844 	if (f2fs_has_inline_xattr(inode))
1845 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1846 	return DEF_ADDRS_PER_INODE;
1847 }
1848 
1849 static inline void *inline_xattr_addr(struct page *page)
1850 {
1851 	struct f2fs_inode *ri = F2FS_INODE(page);
1852 
1853 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1854 					F2FS_INLINE_XATTR_ADDRS]);
1855 }
1856 
1857 static inline int inline_xattr_size(struct inode *inode)
1858 {
1859 	if (f2fs_has_inline_xattr(inode))
1860 		return F2FS_INLINE_XATTR_ADDRS << 2;
1861 	else
1862 		return 0;
1863 }
1864 
1865 static inline int f2fs_has_inline_data(struct inode *inode)
1866 {
1867 	return is_inode_flag_set(inode, FI_INLINE_DATA);
1868 }
1869 
1870 static inline void f2fs_clear_inline_inode(struct inode *inode)
1871 {
1872 	clear_inode_flag(inode, FI_INLINE_DATA);
1873 	clear_inode_flag(inode, FI_DATA_EXIST);
1874 }
1875 
1876 static inline int f2fs_exist_data(struct inode *inode)
1877 {
1878 	return is_inode_flag_set(inode, FI_DATA_EXIST);
1879 }
1880 
1881 static inline int f2fs_has_inline_dots(struct inode *inode)
1882 {
1883 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
1884 }
1885 
1886 static inline bool f2fs_is_atomic_file(struct inode *inode)
1887 {
1888 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1889 }
1890 
1891 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
1892 {
1893 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
1894 }
1895 
1896 static inline bool f2fs_is_volatile_file(struct inode *inode)
1897 {
1898 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1899 }
1900 
1901 static inline bool f2fs_is_first_block_written(struct inode *inode)
1902 {
1903 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1904 }
1905 
1906 static inline bool f2fs_is_drop_cache(struct inode *inode)
1907 {
1908 	return is_inode_flag_set(inode, FI_DROP_CACHE);
1909 }
1910 
1911 static inline void *inline_data_addr(struct page *page)
1912 {
1913 	struct f2fs_inode *ri = F2FS_INODE(page);
1914 
1915 	return (void *)&(ri->i_addr[1]);
1916 }
1917 
1918 static inline int f2fs_has_inline_dentry(struct inode *inode)
1919 {
1920 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1921 }
1922 
1923 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1924 {
1925 	if (!f2fs_has_inline_dentry(dir))
1926 		kunmap(page);
1927 }
1928 
1929 static inline int is_file(struct inode *inode, int type)
1930 {
1931 	return F2FS_I(inode)->i_advise & type;
1932 }
1933 
1934 static inline void set_file(struct inode *inode, int type)
1935 {
1936 	F2FS_I(inode)->i_advise |= type;
1937 	f2fs_mark_inode_dirty_sync(inode, true);
1938 }
1939 
1940 static inline void clear_file(struct inode *inode, int type)
1941 {
1942 	F2FS_I(inode)->i_advise &= ~type;
1943 	f2fs_mark_inode_dirty_sync(inode, true);
1944 }
1945 
1946 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
1947 {
1948 	if (dsync) {
1949 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1950 		bool ret;
1951 
1952 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1953 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
1954 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1955 		return ret;
1956 	}
1957 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
1958 			file_keep_isize(inode) ||
1959 			i_size_read(inode) & PAGE_MASK)
1960 		return false;
1961 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1962 }
1963 
1964 static inline int f2fs_readonly(struct super_block *sb)
1965 {
1966 	return sb->s_flags & MS_RDONLY;
1967 }
1968 
1969 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1970 {
1971 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
1972 }
1973 
1974 static inline bool is_dot_dotdot(const struct qstr *str)
1975 {
1976 	if (str->len == 1 && str->name[0] == '.')
1977 		return true;
1978 
1979 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1980 		return true;
1981 
1982 	return false;
1983 }
1984 
1985 static inline bool f2fs_may_extent_tree(struct inode *inode)
1986 {
1987 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1988 			is_inode_flag_set(inode, FI_NO_EXTENT))
1989 		return false;
1990 
1991 	return S_ISREG(inode->i_mode);
1992 }
1993 
1994 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
1995 					size_t size, gfp_t flags)
1996 {
1997 #ifdef CONFIG_F2FS_FAULT_INJECTION
1998 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
1999 		f2fs_show_injection_info(FAULT_KMALLOC);
2000 		return NULL;
2001 	}
2002 #endif
2003 	return kmalloc(size, flags);
2004 }
2005 
2006 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
2007 {
2008 	void *ret;
2009 
2010 	ret = kmalloc(size, flags | __GFP_NOWARN);
2011 	if (!ret)
2012 		ret = __vmalloc(size, flags, PAGE_KERNEL);
2013 	return ret;
2014 }
2015 
2016 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
2017 {
2018 	void *ret;
2019 
2020 	ret = kzalloc(size, flags | __GFP_NOWARN);
2021 	if (!ret)
2022 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2023 	return ret;
2024 }
2025 
2026 #define get_inode_mode(i) \
2027 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2028 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2029 
2030 /* get offset of first page in next direct node */
2031 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
2032 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
2033 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
2034 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
2035 
2036 /*
2037  * file.c
2038  */
2039 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2040 void truncate_data_blocks(struct dnode_of_data *dn);
2041 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2042 int f2fs_truncate(struct inode *inode);
2043 int f2fs_getattr(const struct path *path, struct kstat *stat,
2044 			u32 request_mask, unsigned int flags);
2045 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2046 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2047 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2048 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2049 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2050 
2051 /*
2052  * inode.c
2053  */
2054 void f2fs_set_inode_flags(struct inode *inode);
2055 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2056 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2057 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2058 int update_inode(struct inode *inode, struct page *node_page);
2059 int update_inode_page(struct inode *inode);
2060 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2061 void f2fs_evict_inode(struct inode *inode);
2062 void handle_failed_inode(struct inode *inode);
2063 
2064 /*
2065  * namei.c
2066  */
2067 struct dentry *f2fs_get_parent(struct dentry *child);
2068 
2069 /*
2070  * dir.c
2071  */
2072 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2073 unsigned char get_de_type(struct f2fs_dir_entry *de);
2074 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2075 			f2fs_hash_t namehash, int *max_slots,
2076 			struct f2fs_dentry_ptr *d);
2077 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2078 			unsigned int start_pos, struct fscrypt_str *fstr);
2079 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2080 			struct f2fs_dentry_ptr *d);
2081 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2082 			const struct qstr *new_name,
2083 			const struct qstr *orig_name, struct page *dpage);
2084 void update_parent_metadata(struct inode *dir, struct inode *inode,
2085 			unsigned int current_depth);
2086 int room_for_filename(const void *bitmap, int slots, int max_slots);
2087 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2088 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2089 			struct fscrypt_name *fname, struct page **res_page);
2090 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2091 			const struct qstr *child, struct page **res_page);
2092 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2093 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2094 			struct page **page);
2095 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2096 			struct page *page, struct inode *inode);
2097 int update_dent_inode(struct inode *inode, struct inode *to,
2098 			const struct qstr *name);
2099 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2100 			const struct qstr *name, f2fs_hash_t name_hash,
2101 			unsigned int bit_pos);
2102 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2103 			const struct qstr *orig_name,
2104 			struct inode *inode, nid_t ino, umode_t mode);
2105 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2106 			struct inode *inode, nid_t ino, umode_t mode);
2107 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2108 			struct inode *inode, nid_t ino, umode_t mode);
2109 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2110 			struct inode *dir, struct inode *inode);
2111 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2112 bool f2fs_empty_dir(struct inode *dir);
2113 
2114 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2115 {
2116 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2117 				inode, inode->i_ino, inode->i_mode);
2118 }
2119 
2120 /*
2121  * super.c
2122  */
2123 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2124 void f2fs_inode_synced(struct inode *inode);
2125 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2126 int f2fs_sync_fs(struct super_block *sb, int sync);
2127 extern __printf(3, 4)
2128 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2129 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2130 
2131 /*
2132  * hash.c
2133  */
2134 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info);
2135 
2136 /*
2137  * node.c
2138  */
2139 struct dnode_of_data;
2140 struct node_info;
2141 
2142 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2143 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2144 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2145 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2146 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2147 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2148 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2149 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2150 int truncate_xattr_node(struct inode *inode, struct page *page);
2151 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2152 int remove_inode_page(struct inode *inode);
2153 struct page *new_inode_page(struct inode *inode);
2154 struct page *new_node_page(struct dnode_of_data *dn,
2155 			unsigned int ofs, struct page *ipage);
2156 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2157 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2158 struct page *get_node_page_ra(struct page *parent, int start);
2159 void move_node_page(struct page *node_page, int gc_type);
2160 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2161 			struct writeback_control *wbc, bool atomic);
2162 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc);
2163 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2164 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2165 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2166 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2167 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2168 void recover_inline_xattr(struct inode *inode, struct page *page);
2169 int recover_xattr_data(struct inode *inode, struct page *page,
2170 			block_t blkaddr);
2171 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2172 int restore_node_summary(struct f2fs_sb_info *sbi,
2173 			unsigned int segno, struct f2fs_summary_block *sum);
2174 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2175 int build_node_manager(struct f2fs_sb_info *sbi);
2176 void destroy_node_manager(struct f2fs_sb_info *sbi);
2177 int __init create_node_manager_caches(void);
2178 void destroy_node_manager_caches(void);
2179 
2180 /*
2181  * segment.c
2182  */
2183 void register_inmem_page(struct inode *inode, struct page *page);
2184 void drop_inmem_pages(struct inode *inode);
2185 int commit_inmem_pages(struct inode *inode);
2186 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2187 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2188 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2189 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2190 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2191 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2192 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2193 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2194 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr);
2195 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2196 void release_discard_addrs(struct f2fs_sb_info *sbi);
2197 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2198 void allocate_new_segments(struct f2fs_sb_info *sbi);
2199 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2200 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2201 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2202 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2203 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page);
2204 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2205 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2206 void rewrite_data_page(struct f2fs_io_info *fio);
2207 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2208 			block_t old_blkaddr, block_t new_blkaddr,
2209 			bool recover_curseg, bool recover_newaddr);
2210 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2211 			block_t old_addr, block_t new_addr,
2212 			unsigned char version, bool recover_curseg,
2213 			bool recover_newaddr);
2214 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2215 			block_t old_blkaddr, block_t *new_blkaddr,
2216 			struct f2fs_summary *sum, int type);
2217 void f2fs_wait_on_page_writeback(struct page *page,
2218 			enum page_type type, bool ordered);
2219 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2220 			block_t blkaddr);
2221 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2222 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2223 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2224 			unsigned int val, int alloc);
2225 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2226 int build_segment_manager(struct f2fs_sb_info *sbi);
2227 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2228 int __init create_segment_manager_caches(void);
2229 void destroy_segment_manager_caches(void);
2230 
2231 /*
2232  * checkpoint.c
2233  */
2234 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2235 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2236 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2237 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2238 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2239 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2240 			int type, bool sync);
2241 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2242 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2243 			long nr_to_write);
2244 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2245 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2246 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2247 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2248 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2249 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2250 void release_orphan_inode(struct f2fs_sb_info *sbi);
2251 void add_orphan_inode(struct inode *inode);
2252 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2253 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2254 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2255 void update_dirty_page(struct inode *inode, struct page *page);
2256 void remove_dirty_inode(struct inode *inode);
2257 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2258 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2259 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2260 int __init create_checkpoint_caches(void);
2261 void destroy_checkpoint_caches(void);
2262 
2263 /*
2264  * data.c
2265  */
2266 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
2267 			int rw);
2268 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
2269 				struct inode *inode, nid_t ino, pgoff_t idx,
2270 				enum page_type type, int rw);
2271 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi);
2272 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2273 int f2fs_submit_page_mbio(struct f2fs_io_info *fio);
2274 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2275 			block_t blk_addr, struct bio *bio);
2276 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2277 void set_data_blkaddr(struct dnode_of_data *dn);
2278 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2279 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2280 int reserve_new_block(struct dnode_of_data *dn);
2281 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2282 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2283 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2284 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2285 			int op_flags, bool for_write);
2286 struct page *find_data_page(struct inode *inode, pgoff_t index);
2287 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2288 			bool for_write);
2289 struct page *get_new_data_page(struct inode *inode,
2290 			struct page *ipage, pgoff_t index, bool new_i_size);
2291 int do_write_data_page(struct f2fs_io_info *fio);
2292 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2293 			int create, int flag);
2294 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2295 			u64 start, u64 len);
2296 void f2fs_set_page_dirty_nobuffers(struct page *page);
2297 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2298 			unsigned int length);
2299 int f2fs_release_page(struct page *page, gfp_t wait);
2300 #ifdef CONFIG_MIGRATION
2301 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2302 			struct page *page, enum migrate_mode mode);
2303 #endif
2304 
2305 /*
2306  * gc.c
2307  */
2308 int start_gc_thread(struct f2fs_sb_info *sbi);
2309 void stop_gc_thread(struct f2fs_sb_info *sbi);
2310 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2311 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background);
2312 void build_gc_manager(struct f2fs_sb_info *sbi);
2313 
2314 /*
2315  * recovery.c
2316  */
2317 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2318 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2319 
2320 /*
2321  * debug.c
2322  */
2323 #ifdef CONFIG_F2FS_STAT_FS
2324 struct f2fs_stat_info {
2325 	struct list_head stat_list;
2326 	struct f2fs_sb_info *sbi;
2327 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2328 	int main_area_segs, main_area_sections, main_area_zones;
2329 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2330 	unsigned long long hit_total, total_ext;
2331 	int ext_tree, zombie_tree, ext_node;
2332 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2333 	int inmem_pages;
2334 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2335 	int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids;
2336 	int total_count, utilization;
2337 	int bg_gc, nr_wb_cp_data, nr_wb_data, nr_flush, nr_discard;
2338 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2339 	int aw_cnt, max_aw_cnt;
2340 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2341 	unsigned int bimodal, avg_vblocks;
2342 	int util_free, util_valid, util_invalid;
2343 	int rsvd_segs, overp_segs;
2344 	int dirty_count, node_pages, meta_pages;
2345 	int prefree_count, call_count, cp_count, bg_cp_count;
2346 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2347 	int bg_node_segs, bg_data_segs;
2348 	int tot_blks, data_blks, node_blks;
2349 	int bg_data_blks, bg_node_blks;
2350 	int curseg[NR_CURSEG_TYPE];
2351 	int cursec[NR_CURSEG_TYPE];
2352 	int curzone[NR_CURSEG_TYPE];
2353 
2354 	unsigned int segment_count[2];
2355 	unsigned int block_count[2];
2356 	unsigned int inplace_count;
2357 	unsigned long long base_mem, cache_mem, page_mem;
2358 };
2359 
2360 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2361 {
2362 	return (struct f2fs_stat_info *)sbi->stat_info;
2363 }
2364 
2365 #define stat_inc_cp_count(si)		((si)->cp_count++)
2366 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2367 #define stat_inc_call_count(si)		((si)->call_count++)
2368 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2369 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2370 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2371 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2372 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2373 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2374 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2375 #define stat_inc_inline_xattr(inode)					\
2376 	do {								\
2377 		if (f2fs_has_inline_xattr(inode))			\
2378 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2379 	} while (0)
2380 #define stat_dec_inline_xattr(inode)					\
2381 	do {								\
2382 		if (f2fs_has_inline_xattr(inode))			\
2383 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2384 	} while (0)
2385 #define stat_inc_inline_inode(inode)					\
2386 	do {								\
2387 		if (f2fs_has_inline_data(inode))			\
2388 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2389 	} while (0)
2390 #define stat_dec_inline_inode(inode)					\
2391 	do {								\
2392 		if (f2fs_has_inline_data(inode))			\
2393 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2394 	} while (0)
2395 #define stat_inc_inline_dir(inode)					\
2396 	do {								\
2397 		if (f2fs_has_inline_dentry(inode))			\
2398 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2399 	} while (0)
2400 #define stat_dec_inline_dir(inode)					\
2401 	do {								\
2402 		if (f2fs_has_inline_dentry(inode))			\
2403 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2404 	} while (0)
2405 #define stat_inc_seg_type(sbi, curseg)					\
2406 		((sbi)->segment_count[(curseg)->alloc_type]++)
2407 #define stat_inc_block_count(sbi, curseg)				\
2408 		((sbi)->block_count[(curseg)->alloc_type]++)
2409 #define stat_inc_inplace_blocks(sbi)					\
2410 		(atomic_inc(&(sbi)->inplace_count))
2411 #define stat_inc_atomic_write(inode)					\
2412 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2413 #define stat_dec_atomic_write(inode)					\
2414 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2415 #define stat_update_max_atomic_write(inode)				\
2416 	do {								\
2417 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2418 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2419 		if (cur > max)						\
2420 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2421 	} while (0)
2422 #define stat_inc_seg_count(sbi, type, gc_type)				\
2423 	do {								\
2424 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2425 		(si)->tot_segs++;					\
2426 		if (type == SUM_TYPE_DATA) {				\
2427 			si->data_segs++;				\
2428 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2429 		} else {						\
2430 			si->node_segs++;				\
2431 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2432 		}							\
2433 	} while (0)
2434 
2435 #define stat_inc_tot_blk_count(si, blks)				\
2436 	(si->tot_blks += (blks))
2437 
2438 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2439 	do {								\
2440 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2441 		stat_inc_tot_blk_count(si, blks);			\
2442 		si->data_blks += (blks);				\
2443 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2444 	} while (0)
2445 
2446 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2447 	do {								\
2448 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2449 		stat_inc_tot_blk_count(si, blks);			\
2450 		si->node_blks += (blks);				\
2451 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2452 	} while (0)
2453 
2454 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2455 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2456 int __init f2fs_create_root_stats(void);
2457 void f2fs_destroy_root_stats(void);
2458 #else
2459 #define stat_inc_cp_count(si)
2460 #define stat_inc_bg_cp_count(si)
2461 #define stat_inc_call_count(si)
2462 #define stat_inc_bggc_count(si)
2463 #define stat_inc_dirty_inode(sbi, type)
2464 #define stat_dec_dirty_inode(sbi, type)
2465 #define stat_inc_total_hit(sb)
2466 #define stat_inc_rbtree_node_hit(sb)
2467 #define stat_inc_largest_node_hit(sbi)
2468 #define stat_inc_cached_node_hit(sbi)
2469 #define stat_inc_inline_xattr(inode)
2470 #define stat_dec_inline_xattr(inode)
2471 #define stat_inc_inline_inode(inode)
2472 #define stat_dec_inline_inode(inode)
2473 #define stat_inc_inline_dir(inode)
2474 #define stat_dec_inline_dir(inode)
2475 #define stat_inc_atomic_write(inode)
2476 #define stat_dec_atomic_write(inode)
2477 #define stat_update_max_atomic_write(inode)
2478 #define stat_inc_seg_type(sbi, curseg)
2479 #define stat_inc_block_count(sbi, curseg)
2480 #define stat_inc_inplace_blocks(sbi)
2481 #define stat_inc_seg_count(sbi, type, gc_type)
2482 #define stat_inc_tot_blk_count(si, blks)
2483 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2484 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2485 
2486 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2487 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2488 static inline int __init f2fs_create_root_stats(void) { return 0; }
2489 static inline void f2fs_destroy_root_stats(void) { }
2490 #endif
2491 
2492 extern const struct file_operations f2fs_dir_operations;
2493 extern const struct file_operations f2fs_file_operations;
2494 extern const struct inode_operations f2fs_file_inode_operations;
2495 extern const struct address_space_operations f2fs_dblock_aops;
2496 extern const struct address_space_operations f2fs_node_aops;
2497 extern const struct address_space_operations f2fs_meta_aops;
2498 extern const struct inode_operations f2fs_dir_inode_operations;
2499 extern const struct inode_operations f2fs_symlink_inode_operations;
2500 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2501 extern const struct inode_operations f2fs_special_inode_operations;
2502 extern struct kmem_cache *inode_entry_slab;
2503 
2504 /*
2505  * inline.c
2506  */
2507 bool f2fs_may_inline_data(struct inode *inode);
2508 bool f2fs_may_inline_dentry(struct inode *inode);
2509 void read_inline_data(struct page *page, struct page *ipage);
2510 bool truncate_inline_inode(struct page *ipage, u64 from);
2511 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2512 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2513 int f2fs_convert_inline_inode(struct inode *inode);
2514 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2515 bool recover_inline_data(struct inode *inode, struct page *npage);
2516 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2517 			struct fscrypt_name *fname, struct page **res_page);
2518 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2519 			struct page *ipage);
2520 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2521 			const struct qstr *orig_name,
2522 			struct inode *inode, nid_t ino, umode_t mode);
2523 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2524 			struct inode *dir, struct inode *inode);
2525 bool f2fs_empty_inline_dir(struct inode *dir);
2526 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2527 			struct fscrypt_str *fstr);
2528 int f2fs_inline_data_fiemap(struct inode *inode,
2529 			struct fiemap_extent_info *fieinfo,
2530 			__u64 start, __u64 len);
2531 
2532 /*
2533  * shrinker.c
2534  */
2535 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2536 			struct shrink_control *sc);
2537 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2538 			struct shrink_control *sc);
2539 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2540 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2541 
2542 /*
2543  * extent_cache.c
2544  */
2545 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2546 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2547 void f2fs_drop_extent_tree(struct inode *inode);
2548 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2549 void f2fs_destroy_extent_tree(struct inode *inode);
2550 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2551 			struct extent_info *ei);
2552 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2553 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2554 			pgoff_t fofs, block_t blkaddr, unsigned int len);
2555 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2556 int __init create_extent_cache(void);
2557 void destroy_extent_cache(void);
2558 
2559 /*
2560  * crypto support
2561  */
2562 static inline bool f2fs_encrypted_inode(struct inode *inode)
2563 {
2564 	return file_is_encrypt(inode);
2565 }
2566 
2567 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2568 {
2569 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2570 	file_set_encrypt(inode);
2571 #endif
2572 }
2573 
2574 static inline bool f2fs_bio_encrypted(struct bio *bio)
2575 {
2576 	return bio->bi_private != NULL;
2577 }
2578 
2579 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2580 {
2581 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2582 }
2583 
2584 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2585 {
2586 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2587 }
2588 
2589 #ifdef CONFIG_BLK_DEV_ZONED
2590 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2591 			struct block_device *bdev, block_t blkaddr)
2592 {
2593 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2594 	int i;
2595 
2596 	for (i = 0; i < sbi->s_ndevs; i++)
2597 		if (FDEV(i).bdev == bdev)
2598 			return FDEV(i).blkz_type[zno];
2599 	return -EINVAL;
2600 }
2601 #endif
2602 
2603 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
2604 {
2605 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
2606 
2607 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
2608 }
2609 
2610 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2611 {
2612 	clear_opt(sbi, ADAPTIVE);
2613 	clear_opt(sbi, LFS);
2614 
2615 	switch (mt) {
2616 	case F2FS_MOUNT_ADAPTIVE:
2617 		set_opt(sbi, ADAPTIVE);
2618 		break;
2619 	case F2FS_MOUNT_LFS:
2620 		set_opt(sbi, LFS);
2621 		break;
2622 	}
2623 }
2624 
2625 static inline bool f2fs_may_encrypt(struct inode *inode)
2626 {
2627 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2628 	umode_t mode = inode->i_mode;
2629 
2630 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2631 #else
2632 	return 0;
2633 #endif
2634 }
2635 
2636 #endif
2637