1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #ifdef CONFIG_F2FS_FS_ENCRYPTION 26 #include <linux/fscrypt_supp.h> 27 #else 28 #include <linux/fscrypt_notsupp.h> 29 #endif 30 #include <crypto/hash.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_ALLOC_NID, 49 FAULT_ORPHAN, 50 FAULT_BLOCK, 51 FAULT_DIR_DEPTH, 52 FAULT_EVICT_INODE, 53 FAULT_IO, 54 FAULT_CHECKPOINT, 55 FAULT_MAX, 56 }; 57 58 struct f2fs_fault_info { 59 atomic_t inject_ops; 60 unsigned int inject_rate; 61 unsigned int inject_type; 62 }; 63 64 extern char *fault_name[FAULT_MAX]; 65 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type))) 66 #endif 67 68 /* 69 * For mount options 70 */ 71 #define F2FS_MOUNT_BG_GC 0x00000001 72 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 73 #define F2FS_MOUNT_DISCARD 0x00000004 74 #define F2FS_MOUNT_NOHEAP 0x00000008 75 #define F2FS_MOUNT_XATTR_USER 0x00000010 76 #define F2FS_MOUNT_POSIX_ACL 0x00000020 77 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 78 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 79 #define F2FS_MOUNT_INLINE_DATA 0x00000100 80 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 81 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 82 #define F2FS_MOUNT_NOBARRIER 0x00000800 83 #define F2FS_MOUNT_FASTBOOT 0x00001000 84 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 85 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 86 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 87 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 88 #define F2FS_MOUNT_ADAPTIVE 0x00020000 89 #define F2FS_MOUNT_LFS 0x00040000 90 91 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 92 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 93 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 94 95 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 96 typecheck(unsigned long long, b) && \ 97 ((long long)((a) - (b)) > 0)) 98 99 typedef u32 block_t; /* 100 * should not change u32, since it is the on-disk block 101 * address format, __le32. 102 */ 103 typedef u32 nid_t; 104 105 struct f2fs_mount_info { 106 unsigned int opt; 107 }; 108 109 #define F2FS_FEATURE_ENCRYPT 0x0001 110 #define F2FS_FEATURE_BLKZONED 0x0002 111 112 #define F2FS_HAS_FEATURE(sb, mask) \ 113 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 114 #define F2FS_SET_FEATURE(sb, mask) \ 115 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 116 #define F2FS_CLEAR_FEATURE(sb, mask) \ 117 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 118 119 /* 120 * For checkpoint manager 121 */ 122 enum { 123 NAT_BITMAP, 124 SIT_BITMAP 125 }; 126 127 enum { 128 CP_UMOUNT, 129 CP_FASTBOOT, 130 CP_SYNC, 131 CP_RECOVERY, 132 CP_DISCARD, 133 }; 134 135 #define DEF_BATCHED_TRIM_SECTIONS 2048 136 #define BATCHED_TRIM_SEGMENTS(sbi) \ 137 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 138 #define BATCHED_TRIM_BLOCKS(sbi) \ 139 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 140 #define MAX_DISCARD_BLOCKS(sbi) \ 141 ((1 << (sbi)->log_blocks_per_seg) * (sbi)->segs_per_sec) 142 #define DISCARD_ISSUE_RATE 8 143 #define DEF_CP_INTERVAL 60 /* 60 secs */ 144 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 145 146 struct cp_control { 147 int reason; 148 __u64 trim_start; 149 __u64 trim_end; 150 __u64 trim_minlen; 151 __u64 trimmed; 152 }; 153 154 /* 155 * For CP/NAT/SIT/SSA readahead 156 */ 157 enum { 158 META_CP, 159 META_NAT, 160 META_SIT, 161 META_SSA, 162 META_POR, 163 }; 164 165 /* for the list of ino */ 166 enum { 167 ORPHAN_INO, /* for orphan ino list */ 168 APPEND_INO, /* for append ino list */ 169 UPDATE_INO, /* for update ino list */ 170 MAX_INO_ENTRY, /* max. list */ 171 }; 172 173 struct ino_entry { 174 struct list_head list; /* list head */ 175 nid_t ino; /* inode number */ 176 }; 177 178 /* for the list of inodes to be GCed */ 179 struct inode_entry { 180 struct list_head list; /* list head */ 181 struct inode *inode; /* vfs inode pointer */ 182 }; 183 184 /* for the list of blockaddresses to be discarded */ 185 struct discard_entry { 186 struct list_head list; /* list head */ 187 block_t blkaddr; /* block address to be discarded */ 188 int len; /* # of consecutive blocks of the discard */ 189 }; 190 191 enum { 192 D_PREP, 193 D_SUBMIT, 194 D_DONE, 195 }; 196 197 struct discard_cmd { 198 struct list_head list; /* command list */ 199 struct completion wait; /* compleation */ 200 block_t lstart; /* logical start address */ 201 block_t len; /* length */ 202 struct bio *bio; /* bio */ 203 int state; /* state */ 204 }; 205 206 struct discard_cmd_control { 207 struct task_struct *f2fs_issue_discard; /* discard thread */ 208 struct list_head discard_entry_list; /* 4KB discard entry list */ 209 int nr_discards; /* # of discards in the list */ 210 struct list_head discard_cmd_list; /* discard cmd list */ 211 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 212 struct mutex cmd_lock; 213 int max_discards; /* max. discards to be issued */ 214 atomic_t submit_discard; /* # of issued discard */ 215 }; 216 217 /* for the list of fsync inodes, used only during recovery */ 218 struct fsync_inode_entry { 219 struct list_head list; /* list head */ 220 struct inode *inode; /* vfs inode pointer */ 221 block_t blkaddr; /* block address locating the last fsync */ 222 block_t last_dentry; /* block address locating the last dentry */ 223 }; 224 225 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 226 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 227 228 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 229 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 230 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 231 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 232 233 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 234 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 235 236 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 237 { 238 int before = nats_in_cursum(journal); 239 240 journal->n_nats = cpu_to_le16(before + i); 241 return before; 242 } 243 244 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 245 { 246 int before = sits_in_cursum(journal); 247 248 journal->n_sits = cpu_to_le16(before + i); 249 return before; 250 } 251 252 static inline bool __has_cursum_space(struct f2fs_journal *journal, 253 int size, int type) 254 { 255 if (type == NAT_JOURNAL) 256 return size <= MAX_NAT_JENTRIES(journal); 257 return size <= MAX_SIT_JENTRIES(journal); 258 } 259 260 /* 261 * ioctl commands 262 */ 263 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 264 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 265 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 266 267 #define F2FS_IOCTL_MAGIC 0xf5 268 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 269 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 270 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 271 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 272 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 273 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 274 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 275 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 276 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 277 struct f2fs_move_range) 278 279 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 280 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 281 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 282 283 /* 284 * should be same as XFS_IOC_GOINGDOWN. 285 * Flags for going down operation used by FS_IOC_GOINGDOWN 286 */ 287 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 288 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 289 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 290 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 291 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 292 293 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 294 /* 295 * ioctl commands in 32 bit emulation 296 */ 297 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 298 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 299 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 300 #endif 301 302 struct f2fs_defragment { 303 u64 start; 304 u64 len; 305 }; 306 307 struct f2fs_move_range { 308 u32 dst_fd; /* destination fd */ 309 u64 pos_in; /* start position in src_fd */ 310 u64 pos_out; /* start position in dst_fd */ 311 u64 len; /* size to move */ 312 }; 313 314 /* 315 * For INODE and NODE manager 316 */ 317 /* for directory operations */ 318 struct f2fs_dentry_ptr { 319 struct inode *inode; 320 const void *bitmap; 321 struct f2fs_dir_entry *dentry; 322 __u8 (*filename)[F2FS_SLOT_LEN]; 323 int max; 324 }; 325 326 static inline void make_dentry_ptr(struct inode *inode, 327 struct f2fs_dentry_ptr *d, void *src, int type) 328 { 329 d->inode = inode; 330 331 if (type == 1) { 332 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 333 334 d->max = NR_DENTRY_IN_BLOCK; 335 d->bitmap = &t->dentry_bitmap; 336 d->dentry = t->dentry; 337 d->filename = t->filename; 338 } else { 339 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 340 341 d->max = NR_INLINE_DENTRY; 342 d->bitmap = &t->dentry_bitmap; 343 d->dentry = t->dentry; 344 d->filename = t->filename; 345 } 346 } 347 348 /* 349 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 350 * as its node offset to distinguish from index node blocks. 351 * But some bits are used to mark the node block. 352 */ 353 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 354 >> OFFSET_BIT_SHIFT) 355 enum { 356 ALLOC_NODE, /* allocate a new node page if needed */ 357 LOOKUP_NODE, /* look up a node without readahead */ 358 LOOKUP_NODE_RA, /* 359 * look up a node with readahead called 360 * by get_data_block. 361 */ 362 }; 363 364 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 365 366 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 367 368 /* vector size for gang look-up from extent cache that consists of radix tree */ 369 #define EXT_TREE_VEC_SIZE 64 370 371 /* for in-memory extent cache entry */ 372 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 373 374 /* number of extent info in extent cache we try to shrink */ 375 #define EXTENT_CACHE_SHRINK_NUMBER 128 376 377 struct extent_info { 378 unsigned int fofs; /* start offset in a file */ 379 u32 blk; /* start block address of the extent */ 380 unsigned int len; /* length of the extent */ 381 }; 382 383 struct extent_node { 384 struct rb_node rb_node; /* rb node located in rb-tree */ 385 struct list_head list; /* node in global extent list of sbi */ 386 struct extent_info ei; /* extent info */ 387 struct extent_tree *et; /* extent tree pointer */ 388 }; 389 390 struct extent_tree { 391 nid_t ino; /* inode number */ 392 struct rb_root root; /* root of extent info rb-tree */ 393 struct extent_node *cached_en; /* recently accessed extent node */ 394 struct extent_info largest; /* largested extent info */ 395 struct list_head list; /* to be used by sbi->zombie_list */ 396 rwlock_t lock; /* protect extent info rb-tree */ 397 atomic_t node_cnt; /* # of extent node in rb-tree*/ 398 }; 399 400 /* 401 * This structure is taken from ext4_map_blocks. 402 * 403 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 404 */ 405 #define F2FS_MAP_NEW (1 << BH_New) 406 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 407 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 408 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 409 F2FS_MAP_UNWRITTEN) 410 411 struct f2fs_map_blocks { 412 block_t m_pblk; 413 block_t m_lblk; 414 unsigned int m_len; 415 unsigned int m_flags; 416 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 417 }; 418 419 /* for flag in get_data_block */ 420 #define F2FS_GET_BLOCK_READ 0 421 #define F2FS_GET_BLOCK_DIO 1 422 #define F2FS_GET_BLOCK_FIEMAP 2 423 #define F2FS_GET_BLOCK_BMAP 3 424 #define F2FS_GET_BLOCK_PRE_DIO 4 425 #define F2FS_GET_BLOCK_PRE_AIO 5 426 427 /* 428 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 429 */ 430 #define FADVISE_COLD_BIT 0x01 431 #define FADVISE_LOST_PINO_BIT 0x02 432 #define FADVISE_ENCRYPT_BIT 0x04 433 #define FADVISE_ENC_NAME_BIT 0x08 434 #define FADVISE_KEEP_SIZE_BIT 0x10 435 436 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 437 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 438 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 439 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 440 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 441 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 442 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 443 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 444 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 445 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 446 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 447 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 448 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 449 450 #define DEF_DIR_LEVEL 0 451 452 struct f2fs_inode_info { 453 struct inode vfs_inode; /* serve a vfs inode */ 454 unsigned long i_flags; /* keep an inode flags for ioctl */ 455 unsigned char i_advise; /* use to give file attribute hints */ 456 unsigned char i_dir_level; /* use for dentry level for large dir */ 457 unsigned int i_current_depth; /* use only in directory structure */ 458 unsigned int i_pino; /* parent inode number */ 459 umode_t i_acl_mode; /* keep file acl mode temporarily */ 460 461 /* Use below internally in f2fs*/ 462 unsigned long flags; /* use to pass per-file flags */ 463 struct rw_semaphore i_sem; /* protect fi info */ 464 atomic_t dirty_pages; /* # of dirty pages */ 465 f2fs_hash_t chash; /* hash value of given file name */ 466 unsigned int clevel; /* maximum level of given file name */ 467 struct task_struct *task; /* lookup and create consistency */ 468 nid_t i_xattr_nid; /* node id that contains xattrs */ 469 loff_t last_disk_size; /* lastly written file size */ 470 471 struct list_head dirty_list; /* dirty list for dirs and files */ 472 struct list_head gdirty_list; /* linked in global dirty list */ 473 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 474 struct mutex inmem_lock; /* lock for inmemory pages */ 475 struct extent_tree *extent_tree; /* cached extent_tree entry */ 476 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 477 }; 478 479 static inline void get_extent_info(struct extent_info *ext, 480 struct f2fs_extent *i_ext) 481 { 482 ext->fofs = le32_to_cpu(i_ext->fofs); 483 ext->blk = le32_to_cpu(i_ext->blk); 484 ext->len = le32_to_cpu(i_ext->len); 485 } 486 487 static inline void set_raw_extent(struct extent_info *ext, 488 struct f2fs_extent *i_ext) 489 { 490 i_ext->fofs = cpu_to_le32(ext->fofs); 491 i_ext->blk = cpu_to_le32(ext->blk); 492 i_ext->len = cpu_to_le32(ext->len); 493 } 494 495 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 496 u32 blk, unsigned int len) 497 { 498 ei->fofs = fofs; 499 ei->blk = blk; 500 ei->len = len; 501 } 502 503 static inline bool __is_extent_mergeable(struct extent_info *back, 504 struct extent_info *front) 505 { 506 return (back->fofs + back->len == front->fofs && 507 back->blk + back->len == front->blk); 508 } 509 510 static inline bool __is_back_mergeable(struct extent_info *cur, 511 struct extent_info *back) 512 { 513 return __is_extent_mergeable(back, cur); 514 } 515 516 static inline bool __is_front_mergeable(struct extent_info *cur, 517 struct extent_info *front) 518 { 519 return __is_extent_mergeable(cur, front); 520 } 521 522 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 523 static inline void __try_update_largest_extent(struct inode *inode, 524 struct extent_tree *et, struct extent_node *en) 525 { 526 if (en->ei.len > et->largest.len) { 527 et->largest = en->ei; 528 f2fs_mark_inode_dirty_sync(inode, true); 529 } 530 } 531 532 enum nid_list { 533 FREE_NID_LIST, 534 ALLOC_NID_LIST, 535 MAX_NID_LIST, 536 }; 537 538 struct f2fs_nm_info { 539 block_t nat_blkaddr; /* base disk address of NAT */ 540 nid_t max_nid; /* maximum possible node ids */ 541 nid_t available_nids; /* # of available node ids */ 542 nid_t next_scan_nid; /* the next nid to be scanned */ 543 unsigned int ram_thresh; /* control the memory footprint */ 544 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 545 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 546 547 /* NAT cache management */ 548 struct radix_tree_root nat_root;/* root of the nat entry cache */ 549 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 550 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 551 struct list_head nat_entries; /* cached nat entry list (clean) */ 552 unsigned int nat_cnt; /* the # of cached nat entries */ 553 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 554 unsigned int nat_blocks; /* # of nat blocks */ 555 556 /* free node ids management */ 557 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 558 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */ 559 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */ 560 spinlock_t nid_list_lock; /* protect nid lists ops */ 561 struct mutex build_lock; /* lock for build free nids */ 562 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 563 unsigned char *nat_block_bitmap; 564 565 /* for checkpoint */ 566 char *nat_bitmap; /* NAT bitmap pointer */ 567 568 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 569 unsigned char *nat_bits; /* NAT bits blocks */ 570 unsigned char *full_nat_bits; /* full NAT pages */ 571 unsigned char *empty_nat_bits; /* empty NAT pages */ 572 #ifdef CONFIG_F2FS_CHECK_FS 573 char *nat_bitmap_mir; /* NAT bitmap mirror */ 574 #endif 575 int bitmap_size; /* bitmap size */ 576 }; 577 578 /* 579 * this structure is used as one of function parameters. 580 * all the information are dedicated to a given direct node block determined 581 * by the data offset in a file. 582 */ 583 struct dnode_of_data { 584 struct inode *inode; /* vfs inode pointer */ 585 struct page *inode_page; /* its inode page, NULL is possible */ 586 struct page *node_page; /* cached direct node page */ 587 nid_t nid; /* node id of the direct node block */ 588 unsigned int ofs_in_node; /* data offset in the node page */ 589 bool inode_page_locked; /* inode page is locked or not */ 590 bool node_changed; /* is node block changed */ 591 char cur_level; /* level of hole node page */ 592 char max_level; /* level of current page located */ 593 block_t data_blkaddr; /* block address of the node block */ 594 }; 595 596 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 597 struct page *ipage, struct page *npage, nid_t nid) 598 { 599 memset(dn, 0, sizeof(*dn)); 600 dn->inode = inode; 601 dn->inode_page = ipage; 602 dn->node_page = npage; 603 dn->nid = nid; 604 } 605 606 /* 607 * For SIT manager 608 * 609 * By default, there are 6 active log areas across the whole main area. 610 * When considering hot and cold data separation to reduce cleaning overhead, 611 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 612 * respectively. 613 * In the current design, you should not change the numbers intentionally. 614 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 615 * logs individually according to the underlying devices. (default: 6) 616 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 617 * data and 8 for node logs. 618 */ 619 #define NR_CURSEG_DATA_TYPE (3) 620 #define NR_CURSEG_NODE_TYPE (3) 621 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 622 623 enum { 624 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 625 CURSEG_WARM_DATA, /* data blocks */ 626 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 627 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 628 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 629 CURSEG_COLD_NODE, /* indirect node blocks */ 630 NO_CHECK_TYPE, 631 }; 632 633 struct flush_cmd { 634 struct completion wait; 635 struct llist_node llnode; 636 int ret; 637 }; 638 639 struct flush_cmd_control { 640 struct task_struct *f2fs_issue_flush; /* flush thread */ 641 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 642 atomic_t submit_flush; /* # of issued flushes */ 643 struct llist_head issue_list; /* list for command issue */ 644 struct llist_node *dispatch_list; /* list for command dispatch */ 645 }; 646 647 struct f2fs_sm_info { 648 struct sit_info *sit_info; /* whole segment information */ 649 struct free_segmap_info *free_info; /* free segment information */ 650 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 651 struct curseg_info *curseg_array; /* active segment information */ 652 653 block_t seg0_blkaddr; /* block address of 0'th segment */ 654 block_t main_blkaddr; /* start block address of main area */ 655 block_t ssa_blkaddr; /* start block address of SSA area */ 656 657 unsigned int segment_count; /* total # of segments */ 658 unsigned int main_segments; /* # of segments in main area */ 659 unsigned int reserved_segments; /* # of reserved segments */ 660 unsigned int ovp_segments; /* # of overprovision segments */ 661 662 /* a threshold to reclaim prefree segments */ 663 unsigned int rec_prefree_segments; 664 665 /* for batched trimming */ 666 unsigned int trim_sections; /* # of sections to trim */ 667 668 struct list_head sit_entry_set; /* sit entry set list */ 669 670 unsigned int ipu_policy; /* in-place-update policy */ 671 unsigned int min_ipu_util; /* in-place-update threshold */ 672 unsigned int min_fsync_blocks; /* threshold for fsync */ 673 674 /* for flush command control */ 675 struct flush_cmd_control *fcc_info; 676 677 /* for discard command control */ 678 struct discard_cmd_control *dcc_info; 679 }; 680 681 /* 682 * For superblock 683 */ 684 /* 685 * COUNT_TYPE for monitoring 686 * 687 * f2fs monitors the number of several block types such as on-writeback, 688 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 689 */ 690 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 691 enum count_type { 692 F2FS_DIRTY_DENTS, 693 F2FS_DIRTY_DATA, 694 F2FS_DIRTY_NODES, 695 F2FS_DIRTY_META, 696 F2FS_INMEM_PAGES, 697 F2FS_DIRTY_IMETA, 698 F2FS_WB_CP_DATA, 699 F2FS_WB_DATA, 700 NR_COUNT_TYPE, 701 }; 702 703 /* 704 * The below are the page types of bios used in submit_bio(). 705 * The available types are: 706 * DATA User data pages. It operates as async mode. 707 * NODE Node pages. It operates as async mode. 708 * META FS metadata pages such as SIT, NAT, CP. 709 * NR_PAGE_TYPE The number of page types. 710 * META_FLUSH Make sure the previous pages are written 711 * with waiting the bio's completion 712 * ... Only can be used with META. 713 */ 714 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 715 enum page_type { 716 DATA, 717 NODE, 718 META, 719 NR_PAGE_TYPE, 720 META_FLUSH, 721 INMEM, /* the below types are used by tracepoints only. */ 722 INMEM_DROP, 723 INMEM_REVOKE, 724 IPU, 725 OPU, 726 }; 727 728 struct f2fs_io_info { 729 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 730 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 731 int op; /* contains REQ_OP_ */ 732 int op_flags; /* req_flag_bits */ 733 block_t new_blkaddr; /* new block address to be written */ 734 block_t old_blkaddr; /* old block address before Cow */ 735 struct page *page; /* page to be written */ 736 struct page *encrypted_page; /* encrypted page */ 737 bool submitted; /* indicate IO submission */ 738 }; 739 740 #define is_read_io(rw) (rw == READ) 741 struct f2fs_bio_info { 742 struct f2fs_sb_info *sbi; /* f2fs superblock */ 743 struct bio *bio; /* bios to merge */ 744 sector_t last_block_in_bio; /* last block number */ 745 struct f2fs_io_info fio; /* store buffered io info. */ 746 struct rw_semaphore io_rwsem; /* blocking op for bio */ 747 }; 748 749 #define FDEV(i) (sbi->devs[i]) 750 #define RDEV(i) (raw_super->devs[i]) 751 struct f2fs_dev_info { 752 struct block_device *bdev; 753 char path[MAX_PATH_LEN]; 754 unsigned int total_segments; 755 block_t start_blk; 756 block_t end_blk; 757 #ifdef CONFIG_BLK_DEV_ZONED 758 unsigned int nr_blkz; /* Total number of zones */ 759 u8 *blkz_type; /* Array of zones type */ 760 #endif 761 }; 762 763 enum inode_type { 764 DIR_INODE, /* for dirty dir inode */ 765 FILE_INODE, /* for dirty regular/symlink inode */ 766 DIRTY_META, /* for all dirtied inode metadata */ 767 NR_INODE_TYPE, 768 }; 769 770 /* for inner inode cache management */ 771 struct inode_management { 772 struct radix_tree_root ino_root; /* ino entry array */ 773 spinlock_t ino_lock; /* for ino entry lock */ 774 struct list_head ino_list; /* inode list head */ 775 unsigned long ino_num; /* number of entries */ 776 }; 777 778 /* For s_flag in struct f2fs_sb_info */ 779 enum { 780 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 781 SBI_IS_CLOSE, /* specify unmounting */ 782 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 783 SBI_POR_DOING, /* recovery is doing or not */ 784 SBI_NEED_SB_WRITE, /* need to recover superblock */ 785 SBI_NEED_CP, /* need to checkpoint */ 786 }; 787 788 enum { 789 CP_TIME, 790 REQ_TIME, 791 MAX_TIME, 792 }; 793 794 struct f2fs_sb_info { 795 struct super_block *sb; /* pointer to VFS super block */ 796 struct proc_dir_entry *s_proc; /* proc entry */ 797 struct f2fs_super_block *raw_super; /* raw super block pointer */ 798 int valid_super_block; /* valid super block no */ 799 unsigned long s_flag; /* flags for sbi */ 800 801 #ifdef CONFIG_BLK_DEV_ZONED 802 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 803 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 804 #endif 805 806 /* for node-related operations */ 807 struct f2fs_nm_info *nm_info; /* node manager */ 808 struct inode *node_inode; /* cache node blocks */ 809 810 /* for segment-related operations */ 811 struct f2fs_sm_info *sm_info; /* segment manager */ 812 813 /* for bio operations */ 814 struct f2fs_bio_info read_io; /* for read bios */ 815 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 816 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ 817 int write_io_size_bits; /* Write IO size bits */ 818 mempool_t *write_io_dummy; /* Dummy pages */ 819 820 /* for checkpoint */ 821 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 822 int cur_cp_pack; /* remain current cp pack */ 823 spinlock_t cp_lock; /* for flag in ckpt */ 824 struct inode *meta_inode; /* cache meta blocks */ 825 struct mutex cp_mutex; /* checkpoint procedure lock */ 826 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 827 struct rw_semaphore node_write; /* locking node writes */ 828 wait_queue_head_t cp_wait; 829 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 830 long interval_time[MAX_TIME]; /* to store thresholds */ 831 832 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 833 834 /* for orphan inode, use 0'th array */ 835 unsigned int max_orphans; /* max orphan inodes */ 836 837 /* for inode management */ 838 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 839 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 840 841 /* for extent tree cache */ 842 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 843 struct mutex extent_tree_lock; /* locking extent radix tree */ 844 struct list_head extent_list; /* lru list for shrinker */ 845 spinlock_t extent_lock; /* locking extent lru list */ 846 atomic_t total_ext_tree; /* extent tree count */ 847 struct list_head zombie_list; /* extent zombie tree list */ 848 atomic_t total_zombie_tree; /* extent zombie tree count */ 849 atomic_t total_ext_node; /* extent info count */ 850 851 /* basic filesystem units */ 852 unsigned int log_sectors_per_block; /* log2 sectors per block */ 853 unsigned int log_blocksize; /* log2 block size */ 854 unsigned int blocksize; /* block size */ 855 unsigned int root_ino_num; /* root inode number*/ 856 unsigned int node_ino_num; /* node inode number*/ 857 unsigned int meta_ino_num; /* meta inode number*/ 858 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 859 unsigned int blocks_per_seg; /* blocks per segment */ 860 unsigned int segs_per_sec; /* segments per section */ 861 unsigned int secs_per_zone; /* sections per zone */ 862 unsigned int total_sections; /* total section count */ 863 unsigned int total_node_count; /* total node block count */ 864 unsigned int total_valid_node_count; /* valid node block count */ 865 loff_t max_file_blocks; /* max block index of file */ 866 int active_logs; /* # of active logs */ 867 int dir_level; /* directory level */ 868 869 block_t user_block_count; /* # of user blocks */ 870 block_t total_valid_block_count; /* # of valid blocks */ 871 block_t discard_blks; /* discard command candidats */ 872 block_t last_valid_block_count; /* for recovery */ 873 u32 s_next_generation; /* for NFS support */ 874 875 /* # of pages, see count_type */ 876 atomic_t nr_pages[NR_COUNT_TYPE]; 877 /* # of allocated blocks */ 878 struct percpu_counter alloc_valid_block_count; 879 880 /* valid inode count */ 881 struct percpu_counter total_valid_inode_count; 882 883 struct f2fs_mount_info mount_opt; /* mount options */ 884 885 /* for cleaning operations */ 886 struct mutex gc_mutex; /* mutex for GC */ 887 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 888 unsigned int cur_victim_sec; /* current victim section num */ 889 890 /* threshold for converting bg victims for fg */ 891 u64 fggc_threshold; 892 893 /* maximum # of trials to find a victim segment for SSR and GC */ 894 unsigned int max_victim_search; 895 896 /* 897 * for stat information. 898 * one is for the LFS mode, and the other is for the SSR mode. 899 */ 900 #ifdef CONFIG_F2FS_STAT_FS 901 struct f2fs_stat_info *stat_info; /* FS status information */ 902 unsigned int segment_count[2]; /* # of allocated segments */ 903 unsigned int block_count[2]; /* # of allocated blocks */ 904 atomic_t inplace_count; /* # of inplace update */ 905 atomic64_t total_hit_ext; /* # of lookup extent cache */ 906 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 907 atomic64_t read_hit_largest; /* # of hit largest extent node */ 908 atomic64_t read_hit_cached; /* # of hit cached extent node */ 909 atomic_t inline_xattr; /* # of inline_xattr inodes */ 910 atomic_t inline_inode; /* # of inline_data inodes */ 911 atomic_t inline_dir; /* # of inline_dentry inodes */ 912 atomic_t aw_cnt; /* # of atomic writes */ 913 atomic_t max_aw_cnt; /* max # of atomic writes */ 914 int bg_gc; /* background gc calls */ 915 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 916 #endif 917 unsigned int last_victim[2]; /* last victim segment # */ 918 spinlock_t stat_lock; /* lock for stat operations */ 919 920 /* For sysfs suppport */ 921 struct kobject s_kobj; 922 struct completion s_kobj_unregister; 923 924 /* For shrinker support */ 925 struct list_head s_list; 926 int s_ndevs; /* number of devices */ 927 struct f2fs_dev_info *devs; /* for device list */ 928 struct mutex umount_mutex; 929 unsigned int shrinker_run_no; 930 931 /* For write statistics */ 932 u64 sectors_written_start; 933 u64 kbytes_written; 934 935 /* Reference to checksum algorithm driver via cryptoapi */ 936 struct crypto_shash *s_chksum_driver; 937 938 /* For fault injection */ 939 #ifdef CONFIG_F2FS_FAULT_INJECTION 940 struct f2fs_fault_info fault_info; 941 #endif 942 }; 943 944 #ifdef CONFIG_F2FS_FAULT_INJECTION 945 #define f2fs_show_injection_info(type) \ 946 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 947 KERN_INFO, fault_name[type], \ 948 __func__, __builtin_return_address(0)) 949 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 950 { 951 struct f2fs_fault_info *ffi = &sbi->fault_info; 952 953 if (!ffi->inject_rate) 954 return false; 955 956 if (!IS_FAULT_SET(ffi, type)) 957 return false; 958 959 atomic_inc(&ffi->inject_ops); 960 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 961 atomic_set(&ffi->inject_ops, 0); 962 return true; 963 } 964 return false; 965 } 966 #endif 967 968 /* For write statistics. Suppose sector size is 512 bytes, 969 * and the return value is in kbytes. s is of struct f2fs_sb_info. 970 */ 971 #define BD_PART_WRITTEN(s) \ 972 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 973 s->sectors_written_start) >> 1) 974 975 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 976 { 977 sbi->last_time[type] = jiffies; 978 } 979 980 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 981 { 982 struct timespec ts = {sbi->interval_time[type], 0}; 983 unsigned long interval = timespec_to_jiffies(&ts); 984 985 return time_after(jiffies, sbi->last_time[type] + interval); 986 } 987 988 static inline bool is_idle(struct f2fs_sb_info *sbi) 989 { 990 struct block_device *bdev = sbi->sb->s_bdev; 991 struct request_queue *q = bdev_get_queue(bdev); 992 struct request_list *rl = &q->root_rl; 993 994 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 995 return 0; 996 997 return f2fs_time_over(sbi, REQ_TIME); 998 } 999 1000 /* 1001 * Inline functions 1002 */ 1003 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1004 unsigned int length) 1005 { 1006 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 1007 u32 *ctx = (u32 *)shash_desc_ctx(shash); 1008 int err; 1009 1010 shash->tfm = sbi->s_chksum_driver; 1011 shash->flags = 0; 1012 *ctx = F2FS_SUPER_MAGIC; 1013 1014 err = crypto_shash_update(shash, address, length); 1015 BUG_ON(err); 1016 1017 return *ctx; 1018 } 1019 1020 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1021 void *buf, size_t buf_size) 1022 { 1023 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1024 } 1025 1026 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1027 { 1028 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1029 } 1030 1031 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1032 { 1033 return sb->s_fs_info; 1034 } 1035 1036 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1037 { 1038 return F2FS_SB(inode->i_sb); 1039 } 1040 1041 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1042 { 1043 return F2FS_I_SB(mapping->host); 1044 } 1045 1046 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1047 { 1048 return F2FS_M_SB(page->mapping); 1049 } 1050 1051 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1052 { 1053 return (struct f2fs_super_block *)(sbi->raw_super); 1054 } 1055 1056 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1057 { 1058 return (struct f2fs_checkpoint *)(sbi->ckpt); 1059 } 1060 1061 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1062 { 1063 return (struct f2fs_node *)page_address(page); 1064 } 1065 1066 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1067 { 1068 return &((struct f2fs_node *)page_address(page))->i; 1069 } 1070 1071 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1072 { 1073 return (struct f2fs_nm_info *)(sbi->nm_info); 1074 } 1075 1076 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1077 { 1078 return (struct f2fs_sm_info *)(sbi->sm_info); 1079 } 1080 1081 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1082 { 1083 return (struct sit_info *)(SM_I(sbi)->sit_info); 1084 } 1085 1086 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1087 { 1088 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1089 } 1090 1091 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1092 { 1093 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1094 } 1095 1096 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1097 { 1098 return sbi->meta_inode->i_mapping; 1099 } 1100 1101 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1102 { 1103 return sbi->node_inode->i_mapping; 1104 } 1105 1106 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1107 { 1108 return test_bit(type, &sbi->s_flag); 1109 } 1110 1111 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1112 { 1113 set_bit(type, &sbi->s_flag); 1114 } 1115 1116 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1117 { 1118 clear_bit(type, &sbi->s_flag); 1119 } 1120 1121 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1122 { 1123 return le64_to_cpu(cp->checkpoint_ver); 1124 } 1125 1126 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1127 { 1128 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1129 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1130 } 1131 1132 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1133 { 1134 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1135 1136 return ckpt_flags & f; 1137 } 1138 1139 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1140 { 1141 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1142 } 1143 1144 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1145 { 1146 unsigned int ckpt_flags; 1147 1148 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1149 ckpt_flags |= f; 1150 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1151 } 1152 1153 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1154 { 1155 spin_lock(&sbi->cp_lock); 1156 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1157 spin_unlock(&sbi->cp_lock); 1158 } 1159 1160 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1161 { 1162 unsigned int ckpt_flags; 1163 1164 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1165 ckpt_flags &= (~f); 1166 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1167 } 1168 1169 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1170 { 1171 spin_lock(&sbi->cp_lock); 1172 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1173 spin_unlock(&sbi->cp_lock); 1174 } 1175 1176 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1177 { 1178 set_sbi_flag(sbi, SBI_NEED_FSCK); 1179 1180 if (lock) 1181 spin_lock(&sbi->cp_lock); 1182 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1183 kfree(NM_I(sbi)->nat_bits); 1184 NM_I(sbi)->nat_bits = NULL; 1185 if (lock) 1186 spin_unlock(&sbi->cp_lock); 1187 } 1188 1189 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1190 struct cp_control *cpc) 1191 { 1192 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1193 1194 return (cpc) ? (cpc->reason == CP_UMOUNT) && set : set; 1195 } 1196 1197 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1198 { 1199 down_read(&sbi->cp_rwsem); 1200 } 1201 1202 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1203 { 1204 up_read(&sbi->cp_rwsem); 1205 } 1206 1207 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1208 { 1209 down_write(&sbi->cp_rwsem); 1210 } 1211 1212 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1213 { 1214 up_write(&sbi->cp_rwsem); 1215 } 1216 1217 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1218 { 1219 int reason = CP_SYNC; 1220 1221 if (test_opt(sbi, FASTBOOT)) 1222 reason = CP_FASTBOOT; 1223 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1224 reason = CP_UMOUNT; 1225 return reason; 1226 } 1227 1228 static inline bool __remain_node_summaries(int reason) 1229 { 1230 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1231 } 1232 1233 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1234 { 1235 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1236 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1237 } 1238 1239 /* 1240 * Check whether the given nid is within node id range. 1241 */ 1242 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1243 { 1244 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1245 return -EINVAL; 1246 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1247 return -EINVAL; 1248 return 0; 1249 } 1250 1251 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1252 1253 /* 1254 * Check whether the inode has blocks or not 1255 */ 1256 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1257 { 1258 if (F2FS_I(inode)->i_xattr_nid) 1259 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1260 else 1261 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1262 } 1263 1264 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1265 { 1266 return ofs == XATTR_NODE_OFFSET; 1267 } 1268 1269 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); 1270 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1271 struct inode *inode, blkcnt_t *count) 1272 { 1273 blkcnt_t diff; 1274 1275 #ifdef CONFIG_F2FS_FAULT_INJECTION 1276 if (time_to_inject(sbi, FAULT_BLOCK)) { 1277 f2fs_show_injection_info(FAULT_BLOCK); 1278 return false; 1279 } 1280 #endif 1281 /* 1282 * let's increase this in prior to actual block count change in order 1283 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1284 */ 1285 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1286 1287 spin_lock(&sbi->stat_lock); 1288 sbi->total_valid_block_count += (block_t)(*count); 1289 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { 1290 diff = sbi->total_valid_block_count - sbi->user_block_count; 1291 *count -= diff; 1292 sbi->total_valid_block_count = sbi->user_block_count; 1293 if (!*count) { 1294 spin_unlock(&sbi->stat_lock); 1295 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1296 return false; 1297 } 1298 } 1299 spin_unlock(&sbi->stat_lock); 1300 1301 f2fs_i_blocks_write(inode, *count, true); 1302 return true; 1303 } 1304 1305 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1306 struct inode *inode, 1307 blkcnt_t count) 1308 { 1309 spin_lock(&sbi->stat_lock); 1310 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1311 f2fs_bug_on(sbi, inode->i_blocks < count); 1312 sbi->total_valid_block_count -= (block_t)count; 1313 spin_unlock(&sbi->stat_lock); 1314 f2fs_i_blocks_write(inode, count, false); 1315 } 1316 1317 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1318 { 1319 atomic_inc(&sbi->nr_pages[count_type]); 1320 1321 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1322 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1323 return; 1324 1325 set_sbi_flag(sbi, SBI_IS_DIRTY); 1326 } 1327 1328 static inline void inode_inc_dirty_pages(struct inode *inode) 1329 { 1330 atomic_inc(&F2FS_I(inode)->dirty_pages); 1331 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1332 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1333 } 1334 1335 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1336 { 1337 atomic_dec(&sbi->nr_pages[count_type]); 1338 } 1339 1340 static inline void inode_dec_dirty_pages(struct inode *inode) 1341 { 1342 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1343 !S_ISLNK(inode->i_mode)) 1344 return; 1345 1346 atomic_dec(&F2FS_I(inode)->dirty_pages); 1347 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1348 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1349 } 1350 1351 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1352 { 1353 return atomic_read(&sbi->nr_pages[count_type]); 1354 } 1355 1356 static inline int get_dirty_pages(struct inode *inode) 1357 { 1358 return atomic_read(&F2FS_I(inode)->dirty_pages); 1359 } 1360 1361 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1362 { 1363 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1364 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1365 sbi->log_blocks_per_seg; 1366 1367 return segs / sbi->segs_per_sec; 1368 } 1369 1370 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1371 { 1372 return sbi->total_valid_block_count; 1373 } 1374 1375 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1376 { 1377 return sbi->discard_blks; 1378 } 1379 1380 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1381 { 1382 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1383 1384 /* return NAT or SIT bitmap */ 1385 if (flag == NAT_BITMAP) 1386 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1387 else if (flag == SIT_BITMAP) 1388 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1389 1390 return 0; 1391 } 1392 1393 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1394 { 1395 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1396 } 1397 1398 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1399 { 1400 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1401 int offset; 1402 1403 if (__cp_payload(sbi) > 0) { 1404 if (flag == NAT_BITMAP) 1405 return &ckpt->sit_nat_version_bitmap; 1406 else 1407 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1408 } else { 1409 offset = (flag == NAT_BITMAP) ? 1410 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1411 return &ckpt->sit_nat_version_bitmap + offset; 1412 } 1413 } 1414 1415 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1416 { 1417 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1418 1419 if (sbi->cur_cp_pack == 2) 1420 start_addr += sbi->blocks_per_seg; 1421 return start_addr; 1422 } 1423 1424 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1425 { 1426 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1427 1428 if (sbi->cur_cp_pack == 1) 1429 start_addr += sbi->blocks_per_seg; 1430 return start_addr; 1431 } 1432 1433 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1434 { 1435 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1436 } 1437 1438 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1439 { 1440 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1441 } 1442 1443 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1444 struct inode *inode) 1445 { 1446 block_t valid_block_count; 1447 unsigned int valid_node_count; 1448 1449 spin_lock(&sbi->stat_lock); 1450 1451 valid_block_count = sbi->total_valid_block_count + 1; 1452 if (unlikely(valid_block_count > sbi->user_block_count)) { 1453 spin_unlock(&sbi->stat_lock); 1454 return false; 1455 } 1456 1457 valid_node_count = sbi->total_valid_node_count + 1; 1458 if (unlikely(valid_node_count > sbi->total_node_count)) { 1459 spin_unlock(&sbi->stat_lock); 1460 return false; 1461 } 1462 1463 if (inode) 1464 f2fs_i_blocks_write(inode, 1, true); 1465 1466 sbi->total_valid_node_count++; 1467 sbi->total_valid_block_count++; 1468 spin_unlock(&sbi->stat_lock); 1469 1470 percpu_counter_inc(&sbi->alloc_valid_block_count); 1471 return true; 1472 } 1473 1474 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1475 struct inode *inode) 1476 { 1477 spin_lock(&sbi->stat_lock); 1478 1479 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1480 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1481 f2fs_bug_on(sbi, !inode->i_blocks); 1482 1483 f2fs_i_blocks_write(inode, 1, false); 1484 sbi->total_valid_node_count--; 1485 sbi->total_valid_block_count--; 1486 1487 spin_unlock(&sbi->stat_lock); 1488 } 1489 1490 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1491 { 1492 return sbi->total_valid_node_count; 1493 } 1494 1495 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1496 { 1497 percpu_counter_inc(&sbi->total_valid_inode_count); 1498 } 1499 1500 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1501 { 1502 percpu_counter_dec(&sbi->total_valid_inode_count); 1503 } 1504 1505 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1506 { 1507 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1508 } 1509 1510 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1511 pgoff_t index, bool for_write) 1512 { 1513 #ifdef CONFIG_F2FS_FAULT_INJECTION 1514 struct page *page = find_lock_page(mapping, index); 1515 1516 if (page) 1517 return page; 1518 1519 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1520 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1521 return NULL; 1522 } 1523 #endif 1524 if (!for_write) 1525 return grab_cache_page(mapping, index); 1526 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1527 } 1528 1529 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1530 { 1531 char *src_kaddr = kmap(src); 1532 char *dst_kaddr = kmap(dst); 1533 1534 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1535 kunmap(dst); 1536 kunmap(src); 1537 } 1538 1539 static inline void f2fs_put_page(struct page *page, int unlock) 1540 { 1541 if (!page) 1542 return; 1543 1544 if (unlock) { 1545 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1546 unlock_page(page); 1547 } 1548 put_page(page); 1549 } 1550 1551 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1552 { 1553 if (dn->node_page) 1554 f2fs_put_page(dn->node_page, 1); 1555 if (dn->inode_page && dn->node_page != dn->inode_page) 1556 f2fs_put_page(dn->inode_page, 0); 1557 dn->node_page = NULL; 1558 dn->inode_page = NULL; 1559 } 1560 1561 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1562 size_t size) 1563 { 1564 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1565 } 1566 1567 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1568 gfp_t flags) 1569 { 1570 void *entry; 1571 1572 entry = kmem_cache_alloc(cachep, flags); 1573 if (!entry) 1574 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1575 return entry; 1576 } 1577 1578 static inline struct bio *f2fs_bio_alloc(int npages) 1579 { 1580 struct bio *bio; 1581 1582 /* No failure on bio allocation */ 1583 bio = bio_alloc(GFP_NOIO, npages); 1584 if (!bio) 1585 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1586 return bio; 1587 } 1588 1589 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1590 unsigned long index, void *item) 1591 { 1592 while (radix_tree_insert(root, index, item)) 1593 cond_resched(); 1594 } 1595 1596 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1597 1598 static inline bool IS_INODE(struct page *page) 1599 { 1600 struct f2fs_node *p = F2FS_NODE(page); 1601 1602 return RAW_IS_INODE(p); 1603 } 1604 1605 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1606 { 1607 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1608 } 1609 1610 static inline block_t datablock_addr(struct page *node_page, 1611 unsigned int offset) 1612 { 1613 struct f2fs_node *raw_node; 1614 __le32 *addr_array; 1615 1616 raw_node = F2FS_NODE(node_page); 1617 addr_array = blkaddr_in_node(raw_node); 1618 return le32_to_cpu(addr_array[offset]); 1619 } 1620 1621 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1622 { 1623 int mask; 1624 1625 addr += (nr >> 3); 1626 mask = 1 << (7 - (nr & 0x07)); 1627 return mask & *addr; 1628 } 1629 1630 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1631 { 1632 int mask; 1633 1634 addr += (nr >> 3); 1635 mask = 1 << (7 - (nr & 0x07)); 1636 *addr |= mask; 1637 } 1638 1639 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1640 { 1641 int mask; 1642 1643 addr += (nr >> 3); 1644 mask = 1 << (7 - (nr & 0x07)); 1645 *addr &= ~mask; 1646 } 1647 1648 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1649 { 1650 int mask; 1651 int ret; 1652 1653 addr += (nr >> 3); 1654 mask = 1 << (7 - (nr & 0x07)); 1655 ret = mask & *addr; 1656 *addr |= mask; 1657 return ret; 1658 } 1659 1660 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1661 { 1662 int mask; 1663 int ret; 1664 1665 addr += (nr >> 3); 1666 mask = 1 << (7 - (nr & 0x07)); 1667 ret = mask & *addr; 1668 *addr &= ~mask; 1669 return ret; 1670 } 1671 1672 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1673 { 1674 int mask; 1675 1676 addr += (nr >> 3); 1677 mask = 1 << (7 - (nr & 0x07)); 1678 *addr ^= mask; 1679 } 1680 1681 /* used for f2fs_inode_info->flags */ 1682 enum { 1683 FI_NEW_INODE, /* indicate newly allocated inode */ 1684 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1685 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1686 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1687 FI_INC_LINK, /* need to increment i_nlink */ 1688 FI_ACL_MODE, /* indicate acl mode */ 1689 FI_NO_ALLOC, /* should not allocate any blocks */ 1690 FI_FREE_NID, /* free allocated nide */ 1691 FI_NO_EXTENT, /* not to use the extent cache */ 1692 FI_INLINE_XATTR, /* used for inline xattr */ 1693 FI_INLINE_DATA, /* used for inline data*/ 1694 FI_INLINE_DENTRY, /* used for inline dentry */ 1695 FI_APPEND_WRITE, /* inode has appended data */ 1696 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1697 FI_NEED_IPU, /* used for ipu per file */ 1698 FI_ATOMIC_FILE, /* indicate atomic file */ 1699 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 1700 FI_VOLATILE_FILE, /* indicate volatile file */ 1701 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1702 FI_DROP_CACHE, /* drop dirty page cache */ 1703 FI_DATA_EXIST, /* indicate data exists */ 1704 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1705 FI_DO_DEFRAG, /* indicate defragment is running */ 1706 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1707 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 1708 }; 1709 1710 static inline void __mark_inode_dirty_flag(struct inode *inode, 1711 int flag, bool set) 1712 { 1713 switch (flag) { 1714 case FI_INLINE_XATTR: 1715 case FI_INLINE_DATA: 1716 case FI_INLINE_DENTRY: 1717 if (set) 1718 return; 1719 case FI_DATA_EXIST: 1720 case FI_INLINE_DOTS: 1721 f2fs_mark_inode_dirty_sync(inode, true); 1722 } 1723 } 1724 1725 static inline void set_inode_flag(struct inode *inode, int flag) 1726 { 1727 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1728 set_bit(flag, &F2FS_I(inode)->flags); 1729 __mark_inode_dirty_flag(inode, flag, true); 1730 } 1731 1732 static inline int is_inode_flag_set(struct inode *inode, int flag) 1733 { 1734 return test_bit(flag, &F2FS_I(inode)->flags); 1735 } 1736 1737 static inline void clear_inode_flag(struct inode *inode, int flag) 1738 { 1739 if (test_bit(flag, &F2FS_I(inode)->flags)) 1740 clear_bit(flag, &F2FS_I(inode)->flags); 1741 __mark_inode_dirty_flag(inode, flag, false); 1742 } 1743 1744 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1745 { 1746 F2FS_I(inode)->i_acl_mode = mode; 1747 set_inode_flag(inode, FI_ACL_MODE); 1748 f2fs_mark_inode_dirty_sync(inode, false); 1749 } 1750 1751 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1752 { 1753 if (inc) 1754 inc_nlink(inode); 1755 else 1756 drop_nlink(inode); 1757 f2fs_mark_inode_dirty_sync(inode, true); 1758 } 1759 1760 static inline void f2fs_i_blocks_write(struct inode *inode, 1761 blkcnt_t diff, bool add) 1762 { 1763 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1764 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1765 1766 inode->i_blocks = add ? inode->i_blocks + diff : 1767 inode->i_blocks - diff; 1768 f2fs_mark_inode_dirty_sync(inode, true); 1769 if (clean || recover) 1770 set_inode_flag(inode, FI_AUTO_RECOVER); 1771 } 1772 1773 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1774 { 1775 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1776 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1777 1778 if (i_size_read(inode) == i_size) 1779 return; 1780 1781 i_size_write(inode, i_size); 1782 f2fs_mark_inode_dirty_sync(inode, true); 1783 if (clean || recover) 1784 set_inode_flag(inode, FI_AUTO_RECOVER); 1785 } 1786 1787 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1788 { 1789 F2FS_I(inode)->i_current_depth = depth; 1790 f2fs_mark_inode_dirty_sync(inode, true); 1791 } 1792 1793 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1794 { 1795 F2FS_I(inode)->i_xattr_nid = xnid; 1796 f2fs_mark_inode_dirty_sync(inode, true); 1797 } 1798 1799 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1800 { 1801 F2FS_I(inode)->i_pino = pino; 1802 f2fs_mark_inode_dirty_sync(inode, true); 1803 } 1804 1805 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1806 { 1807 struct f2fs_inode_info *fi = F2FS_I(inode); 1808 1809 if (ri->i_inline & F2FS_INLINE_XATTR) 1810 set_bit(FI_INLINE_XATTR, &fi->flags); 1811 if (ri->i_inline & F2FS_INLINE_DATA) 1812 set_bit(FI_INLINE_DATA, &fi->flags); 1813 if (ri->i_inline & F2FS_INLINE_DENTRY) 1814 set_bit(FI_INLINE_DENTRY, &fi->flags); 1815 if (ri->i_inline & F2FS_DATA_EXIST) 1816 set_bit(FI_DATA_EXIST, &fi->flags); 1817 if (ri->i_inline & F2FS_INLINE_DOTS) 1818 set_bit(FI_INLINE_DOTS, &fi->flags); 1819 } 1820 1821 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1822 { 1823 ri->i_inline = 0; 1824 1825 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1826 ri->i_inline |= F2FS_INLINE_XATTR; 1827 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1828 ri->i_inline |= F2FS_INLINE_DATA; 1829 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1830 ri->i_inline |= F2FS_INLINE_DENTRY; 1831 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1832 ri->i_inline |= F2FS_DATA_EXIST; 1833 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 1834 ri->i_inline |= F2FS_INLINE_DOTS; 1835 } 1836 1837 static inline int f2fs_has_inline_xattr(struct inode *inode) 1838 { 1839 return is_inode_flag_set(inode, FI_INLINE_XATTR); 1840 } 1841 1842 static inline unsigned int addrs_per_inode(struct inode *inode) 1843 { 1844 if (f2fs_has_inline_xattr(inode)) 1845 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1846 return DEF_ADDRS_PER_INODE; 1847 } 1848 1849 static inline void *inline_xattr_addr(struct page *page) 1850 { 1851 struct f2fs_inode *ri = F2FS_INODE(page); 1852 1853 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1854 F2FS_INLINE_XATTR_ADDRS]); 1855 } 1856 1857 static inline int inline_xattr_size(struct inode *inode) 1858 { 1859 if (f2fs_has_inline_xattr(inode)) 1860 return F2FS_INLINE_XATTR_ADDRS << 2; 1861 else 1862 return 0; 1863 } 1864 1865 static inline int f2fs_has_inline_data(struct inode *inode) 1866 { 1867 return is_inode_flag_set(inode, FI_INLINE_DATA); 1868 } 1869 1870 static inline void f2fs_clear_inline_inode(struct inode *inode) 1871 { 1872 clear_inode_flag(inode, FI_INLINE_DATA); 1873 clear_inode_flag(inode, FI_DATA_EXIST); 1874 } 1875 1876 static inline int f2fs_exist_data(struct inode *inode) 1877 { 1878 return is_inode_flag_set(inode, FI_DATA_EXIST); 1879 } 1880 1881 static inline int f2fs_has_inline_dots(struct inode *inode) 1882 { 1883 return is_inode_flag_set(inode, FI_INLINE_DOTS); 1884 } 1885 1886 static inline bool f2fs_is_atomic_file(struct inode *inode) 1887 { 1888 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 1889 } 1890 1891 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 1892 { 1893 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 1894 } 1895 1896 static inline bool f2fs_is_volatile_file(struct inode *inode) 1897 { 1898 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 1899 } 1900 1901 static inline bool f2fs_is_first_block_written(struct inode *inode) 1902 { 1903 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 1904 } 1905 1906 static inline bool f2fs_is_drop_cache(struct inode *inode) 1907 { 1908 return is_inode_flag_set(inode, FI_DROP_CACHE); 1909 } 1910 1911 static inline void *inline_data_addr(struct page *page) 1912 { 1913 struct f2fs_inode *ri = F2FS_INODE(page); 1914 1915 return (void *)&(ri->i_addr[1]); 1916 } 1917 1918 static inline int f2fs_has_inline_dentry(struct inode *inode) 1919 { 1920 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 1921 } 1922 1923 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1924 { 1925 if (!f2fs_has_inline_dentry(dir)) 1926 kunmap(page); 1927 } 1928 1929 static inline int is_file(struct inode *inode, int type) 1930 { 1931 return F2FS_I(inode)->i_advise & type; 1932 } 1933 1934 static inline void set_file(struct inode *inode, int type) 1935 { 1936 F2FS_I(inode)->i_advise |= type; 1937 f2fs_mark_inode_dirty_sync(inode, true); 1938 } 1939 1940 static inline void clear_file(struct inode *inode, int type) 1941 { 1942 F2FS_I(inode)->i_advise &= ~type; 1943 f2fs_mark_inode_dirty_sync(inode, true); 1944 } 1945 1946 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 1947 { 1948 if (dsync) { 1949 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1950 bool ret; 1951 1952 spin_lock(&sbi->inode_lock[DIRTY_META]); 1953 ret = list_empty(&F2FS_I(inode)->gdirty_list); 1954 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1955 return ret; 1956 } 1957 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 1958 file_keep_isize(inode) || 1959 i_size_read(inode) & PAGE_MASK) 1960 return false; 1961 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 1962 } 1963 1964 static inline int f2fs_readonly(struct super_block *sb) 1965 { 1966 return sb->s_flags & MS_RDONLY; 1967 } 1968 1969 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1970 { 1971 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 1972 } 1973 1974 static inline bool is_dot_dotdot(const struct qstr *str) 1975 { 1976 if (str->len == 1 && str->name[0] == '.') 1977 return true; 1978 1979 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1980 return true; 1981 1982 return false; 1983 } 1984 1985 static inline bool f2fs_may_extent_tree(struct inode *inode) 1986 { 1987 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1988 is_inode_flag_set(inode, FI_NO_EXTENT)) 1989 return false; 1990 1991 return S_ISREG(inode->i_mode); 1992 } 1993 1994 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 1995 size_t size, gfp_t flags) 1996 { 1997 #ifdef CONFIG_F2FS_FAULT_INJECTION 1998 if (time_to_inject(sbi, FAULT_KMALLOC)) { 1999 f2fs_show_injection_info(FAULT_KMALLOC); 2000 return NULL; 2001 } 2002 #endif 2003 return kmalloc(size, flags); 2004 } 2005 2006 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 2007 { 2008 void *ret; 2009 2010 ret = kmalloc(size, flags | __GFP_NOWARN); 2011 if (!ret) 2012 ret = __vmalloc(size, flags, PAGE_KERNEL); 2013 return ret; 2014 } 2015 2016 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 2017 { 2018 void *ret; 2019 2020 ret = kzalloc(size, flags | __GFP_NOWARN); 2021 if (!ret) 2022 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 2023 return ret; 2024 } 2025 2026 #define get_inode_mode(i) \ 2027 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2028 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2029 2030 /* get offset of first page in next direct node */ 2031 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 2032 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 2033 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 2034 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 2035 2036 /* 2037 * file.c 2038 */ 2039 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2040 void truncate_data_blocks(struct dnode_of_data *dn); 2041 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2042 int f2fs_truncate(struct inode *inode); 2043 int f2fs_getattr(const struct path *path, struct kstat *stat, 2044 u32 request_mask, unsigned int flags); 2045 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2046 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2047 int truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2048 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2049 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2050 2051 /* 2052 * inode.c 2053 */ 2054 void f2fs_set_inode_flags(struct inode *inode); 2055 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2056 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2057 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2058 int update_inode(struct inode *inode, struct page *node_page); 2059 int update_inode_page(struct inode *inode); 2060 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2061 void f2fs_evict_inode(struct inode *inode); 2062 void handle_failed_inode(struct inode *inode); 2063 2064 /* 2065 * namei.c 2066 */ 2067 struct dentry *f2fs_get_parent(struct dentry *child); 2068 2069 /* 2070 * dir.c 2071 */ 2072 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2073 unsigned char get_de_type(struct f2fs_dir_entry *de); 2074 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2075 f2fs_hash_t namehash, int *max_slots, 2076 struct f2fs_dentry_ptr *d); 2077 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2078 unsigned int start_pos, struct fscrypt_str *fstr); 2079 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2080 struct f2fs_dentry_ptr *d); 2081 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2082 const struct qstr *new_name, 2083 const struct qstr *orig_name, struct page *dpage); 2084 void update_parent_metadata(struct inode *dir, struct inode *inode, 2085 unsigned int current_depth); 2086 int room_for_filename(const void *bitmap, int slots, int max_slots); 2087 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2088 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2089 struct fscrypt_name *fname, struct page **res_page); 2090 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2091 const struct qstr *child, struct page **res_page); 2092 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2093 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2094 struct page **page); 2095 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2096 struct page *page, struct inode *inode); 2097 int update_dent_inode(struct inode *inode, struct inode *to, 2098 const struct qstr *name); 2099 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2100 const struct qstr *name, f2fs_hash_t name_hash, 2101 unsigned int bit_pos); 2102 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2103 const struct qstr *orig_name, 2104 struct inode *inode, nid_t ino, umode_t mode); 2105 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2106 struct inode *inode, nid_t ino, umode_t mode); 2107 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2108 struct inode *inode, nid_t ino, umode_t mode); 2109 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2110 struct inode *dir, struct inode *inode); 2111 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2112 bool f2fs_empty_dir(struct inode *dir); 2113 2114 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2115 { 2116 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2117 inode, inode->i_ino, inode->i_mode); 2118 } 2119 2120 /* 2121 * super.c 2122 */ 2123 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2124 void f2fs_inode_synced(struct inode *inode); 2125 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2126 int f2fs_sync_fs(struct super_block *sb, int sync); 2127 extern __printf(3, 4) 2128 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2129 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2130 2131 /* 2132 * hash.c 2133 */ 2134 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info); 2135 2136 /* 2137 * node.c 2138 */ 2139 struct dnode_of_data; 2140 struct node_info; 2141 2142 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2143 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2144 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2145 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2146 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2147 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2148 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2149 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2150 int truncate_xattr_node(struct inode *inode, struct page *page); 2151 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2152 int remove_inode_page(struct inode *inode); 2153 struct page *new_inode_page(struct inode *inode); 2154 struct page *new_node_page(struct dnode_of_data *dn, 2155 unsigned int ofs, struct page *ipage); 2156 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2157 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2158 struct page *get_node_page_ra(struct page *parent, int start); 2159 void move_node_page(struct page *node_page, int gc_type); 2160 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2161 struct writeback_control *wbc, bool atomic); 2162 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc); 2163 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2164 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2165 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2166 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2167 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2168 void recover_inline_xattr(struct inode *inode, struct page *page); 2169 int recover_xattr_data(struct inode *inode, struct page *page, 2170 block_t blkaddr); 2171 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2172 int restore_node_summary(struct f2fs_sb_info *sbi, 2173 unsigned int segno, struct f2fs_summary_block *sum); 2174 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2175 int build_node_manager(struct f2fs_sb_info *sbi); 2176 void destroy_node_manager(struct f2fs_sb_info *sbi); 2177 int __init create_node_manager_caches(void); 2178 void destroy_node_manager_caches(void); 2179 2180 /* 2181 * segment.c 2182 */ 2183 void register_inmem_page(struct inode *inode, struct page *page); 2184 void drop_inmem_pages(struct inode *inode); 2185 int commit_inmem_pages(struct inode *inode); 2186 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2187 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2188 int f2fs_issue_flush(struct f2fs_sb_info *sbi); 2189 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2190 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2191 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2192 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2193 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new); 2194 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr); 2195 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2196 void release_discard_addrs(struct f2fs_sb_info *sbi); 2197 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2198 void allocate_new_segments(struct f2fs_sb_info *sbi); 2199 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2200 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2201 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2202 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2203 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page); 2204 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2205 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2206 void rewrite_data_page(struct f2fs_io_info *fio); 2207 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2208 block_t old_blkaddr, block_t new_blkaddr, 2209 bool recover_curseg, bool recover_newaddr); 2210 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2211 block_t old_addr, block_t new_addr, 2212 unsigned char version, bool recover_curseg, 2213 bool recover_newaddr); 2214 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2215 block_t old_blkaddr, block_t *new_blkaddr, 2216 struct f2fs_summary *sum, int type); 2217 void f2fs_wait_on_page_writeback(struct page *page, 2218 enum page_type type, bool ordered); 2219 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 2220 block_t blkaddr); 2221 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2222 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2223 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2224 unsigned int val, int alloc); 2225 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2226 int build_segment_manager(struct f2fs_sb_info *sbi); 2227 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2228 int __init create_segment_manager_caches(void); 2229 void destroy_segment_manager_caches(void); 2230 2231 /* 2232 * checkpoint.c 2233 */ 2234 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2235 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2236 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2237 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2238 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2239 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2240 int type, bool sync); 2241 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2242 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2243 long nr_to_write); 2244 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2245 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2246 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2247 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2248 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2249 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2250 void release_orphan_inode(struct f2fs_sb_info *sbi); 2251 void add_orphan_inode(struct inode *inode); 2252 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2253 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2254 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2255 void update_dirty_page(struct inode *inode, struct page *page); 2256 void remove_dirty_inode(struct inode *inode); 2257 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2258 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2259 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2260 int __init create_checkpoint_caches(void); 2261 void destroy_checkpoint_caches(void); 2262 2263 /* 2264 * data.c 2265 */ 2266 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 2267 int rw); 2268 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 2269 struct inode *inode, nid_t ino, pgoff_t idx, 2270 enum page_type type, int rw); 2271 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi); 2272 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2273 int f2fs_submit_page_mbio(struct f2fs_io_info *fio); 2274 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2275 block_t blk_addr, struct bio *bio); 2276 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2277 void set_data_blkaddr(struct dnode_of_data *dn); 2278 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2279 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2280 int reserve_new_block(struct dnode_of_data *dn); 2281 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2282 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2283 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2284 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2285 int op_flags, bool for_write); 2286 struct page *find_data_page(struct inode *inode, pgoff_t index); 2287 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2288 bool for_write); 2289 struct page *get_new_data_page(struct inode *inode, 2290 struct page *ipage, pgoff_t index, bool new_i_size); 2291 int do_write_data_page(struct f2fs_io_info *fio); 2292 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2293 int create, int flag); 2294 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2295 u64 start, u64 len); 2296 void f2fs_set_page_dirty_nobuffers(struct page *page); 2297 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2298 unsigned int length); 2299 int f2fs_release_page(struct page *page, gfp_t wait); 2300 #ifdef CONFIG_MIGRATION 2301 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2302 struct page *page, enum migrate_mode mode); 2303 #endif 2304 2305 /* 2306 * gc.c 2307 */ 2308 int start_gc_thread(struct f2fs_sb_info *sbi); 2309 void stop_gc_thread(struct f2fs_sb_info *sbi); 2310 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2311 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background); 2312 void build_gc_manager(struct f2fs_sb_info *sbi); 2313 2314 /* 2315 * recovery.c 2316 */ 2317 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2318 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2319 2320 /* 2321 * debug.c 2322 */ 2323 #ifdef CONFIG_F2FS_STAT_FS 2324 struct f2fs_stat_info { 2325 struct list_head stat_list; 2326 struct f2fs_sb_info *sbi; 2327 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2328 int main_area_segs, main_area_sections, main_area_zones; 2329 unsigned long long hit_largest, hit_cached, hit_rbtree; 2330 unsigned long long hit_total, total_ext; 2331 int ext_tree, zombie_tree, ext_node; 2332 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2333 int inmem_pages; 2334 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2335 int nats, dirty_nats, sits, dirty_sits, free_nids, alloc_nids; 2336 int total_count, utilization; 2337 int bg_gc, nr_wb_cp_data, nr_wb_data, nr_flush, nr_discard; 2338 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2339 int aw_cnt, max_aw_cnt; 2340 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2341 unsigned int bimodal, avg_vblocks; 2342 int util_free, util_valid, util_invalid; 2343 int rsvd_segs, overp_segs; 2344 int dirty_count, node_pages, meta_pages; 2345 int prefree_count, call_count, cp_count, bg_cp_count; 2346 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2347 int bg_node_segs, bg_data_segs; 2348 int tot_blks, data_blks, node_blks; 2349 int bg_data_blks, bg_node_blks; 2350 int curseg[NR_CURSEG_TYPE]; 2351 int cursec[NR_CURSEG_TYPE]; 2352 int curzone[NR_CURSEG_TYPE]; 2353 2354 unsigned int segment_count[2]; 2355 unsigned int block_count[2]; 2356 unsigned int inplace_count; 2357 unsigned long long base_mem, cache_mem, page_mem; 2358 }; 2359 2360 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2361 { 2362 return (struct f2fs_stat_info *)sbi->stat_info; 2363 } 2364 2365 #define stat_inc_cp_count(si) ((si)->cp_count++) 2366 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2367 #define stat_inc_call_count(si) ((si)->call_count++) 2368 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2369 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2370 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2371 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2372 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2373 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2374 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2375 #define stat_inc_inline_xattr(inode) \ 2376 do { \ 2377 if (f2fs_has_inline_xattr(inode)) \ 2378 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2379 } while (0) 2380 #define stat_dec_inline_xattr(inode) \ 2381 do { \ 2382 if (f2fs_has_inline_xattr(inode)) \ 2383 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2384 } while (0) 2385 #define stat_inc_inline_inode(inode) \ 2386 do { \ 2387 if (f2fs_has_inline_data(inode)) \ 2388 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2389 } while (0) 2390 #define stat_dec_inline_inode(inode) \ 2391 do { \ 2392 if (f2fs_has_inline_data(inode)) \ 2393 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2394 } while (0) 2395 #define stat_inc_inline_dir(inode) \ 2396 do { \ 2397 if (f2fs_has_inline_dentry(inode)) \ 2398 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2399 } while (0) 2400 #define stat_dec_inline_dir(inode) \ 2401 do { \ 2402 if (f2fs_has_inline_dentry(inode)) \ 2403 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2404 } while (0) 2405 #define stat_inc_seg_type(sbi, curseg) \ 2406 ((sbi)->segment_count[(curseg)->alloc_type]++) 2407 #define stat_inc_block_count(sbi, curseg) \ 2408 ((sbi)->block_count[(curseg)->alloc_type]++) 2409 #define stat_inc_inplace_blocks(sbi) \ 2410 (atomic_inc(&(sbi)->inplace_count)) 2411 #define stat_inc_atomic_write(inode) \ 2412 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2413 #define stat_dec_atomic_write(inode) \ 2414 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2415 #define stat_update_max_atomic_write(inode) \ 2416 do { \ 2417 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2418 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2419 if (cur > max) \ 2420 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2421 } while (0) 2422 #define stat_inc_seg_count(sbi, type, gc_type) \ 2423 do { \ 2424 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2425 (si)->tot_segs++; \ 2426 if (type == SUM_TYPE_DATA) { \ 2427 si->data_segs++; \ 2428 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2429 } else { \ 2430 si->node_segs++; \ 2431 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2432 } \ 2433 } while (0) 2434 2435 #define stat_inc_tot_blk_count(si, blks) \ 2436 (si->tot_blks += (blks)) 2437 2438 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2439 do { \ 2440 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2441 stat_inc_tot_blk_count(si, blks); \ 2442 si->data_blks += (blks); \ 2443 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2444 } while (0) 2445 2446 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2447 do { \ 2448 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2449 stat_inc_tot_blk_count(si, blks); \ 2450 si->node_blks += (blks); \ 2451 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2452 } while (0) 2453 2454 int f2fs_build_stats(struct f2fs_sb_info *sbi); 2455 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 2456 int __init f2fs_create_root_stats(void); 2457 void f2fs_destroy_root_stats(void); 2458 #else 2459 #define stat_inc_cp_count(si) 2460 #define stat_inc_bg_cp_count(si) 2461 #define stat_inc_call_count(si) 2462 #define stat_inc_bggc_count(si) 2463 #define stat_inc_dirty_inode(sbi, type) 2464 #define stat_dec_dirty_inode(sbi, type) 2465 #define stat_inc_total_hit(sb) 2466 #define stat_inc_rbtree_node_hit(sb) 2467 #define stat_inc_largest_node_hit(sbi) 2468 #define stat_inc_cached_node_hit(sbi) 2469 #define stat_inc_inline_xattr(inode) 2470 #define stat_dec_inline_xattr(inode) 2471 #define stat_inc_inline_inode(inode) 2472 #define stat_dec_inline_inode(inode) 2473 #define stat_inc_inline_dir(inode) 2474 #define stat_dec_inline_dir(inode) 2475 #define stat_inc_atomic_write(inode) 2476 #define stat_dec_atomic_write(inode) 2477 #define stat_update_max_atomic_write(inode) 2478 #define stat_inc_seg_type(sbi, curseg) 2479 #define stat_inc_block_count(sbi, curseg) 2480 #define stat_inc_inplace_blocks(sbi) 2481 #define stat_inc_seg_count(sbi, type, gc_type) 2482 #define stat_inc_tot_blk_count(si, blks) 2483 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2484 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2485 2486 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2487 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2488 static inline int __init f2fs_create_root_stats(void) { return 0; } 2489 static inline void f2fs_destroy_root_stats(void) { } 2490 #endif 2491 2492 extern const struct file_operations f2fs_dir_operations; 2493 extern const struct file_operations f2fs_file_operations; 2494 extern const struct inode_operations f2fs_file_inode_operations; 2495 extern const struct address_space_operations f2fs_dblock_aops; 2496 extern const struct address_space_operations f2fs_node_aops; 2497 extern const struct address_space_operations f2fs_meta_aops; 2498 extern const struct inode_operations f2fs_dir_inode_operations; 2499 extern const struct inode_operations f2fs_symlink_inode_operations; 2500 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2501 extern const struct inode_operations f2fs_special_inode_operations; 2502 extern struct kmem_cache *inode_entry_slab; 2503 2504 /* 2505 * inline.c 2506 */ 2507 bool f2fs_may_inline_data(struct inode *inode); 2508 bool f2fs_may_inline_dentry(struct inode *inode); 2509 void read_inline_data(struct page *page, struct page *ipage); 2510 bool truncate_inline_inode(struct page *ipage, u64 from); 2511 int f2fs_read_inline_data(struct inode *inode, struct page *page); 2512 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 2513 int f2fs_convert_inline_inode(struct inode *inode); 2514 int f2fs_write_inline_data(struct inode *inode, struct page *page); 2515 bool recover_inline_data(struct inode *inode, struct page *npage); 2516 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 2517 struct fscrypt_name *fname, struct page **res_page); 2518 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 2519 struct page *ipage); 2520 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 2521 const struct qstr *orig_name, 2522 struct inode *inode, nid_t ino, umode_t mode); 2523 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 2524 struct inode *dir, struct inode *inode); 2525 bool f2fs_empty_inline_dir(struct inode *dir); 2526 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 2527 struct fscrypt_str *fstr); 2528 int f2fs_inline_data_fiemap(struct inode *inode, 2529 struct fiemap_extent_info *fieinfo, 2530 __u64 start, __u64 len); 2531 2532 /* 2533 * shrinker.c 2534 */ 2535 unsigned long f2fs_shrink_count(struct shrinker *shrink, 2536 struct shrink_control *sc); 2537 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 2538 struct shrink_control *sc); 2539 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 2540 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 2541 2542 /* 2543 * extent_cache.c 2544 */ 2545 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 2546 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 2547 void f2fs_drop_extent_tree(struct inode *inode); 2548 unsigned int f2fs_destroy_extent_node(struct inode *inode); 2549 void f2fs_destroy_extent_tree(struct inode *inode); 2550 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 2551 struct extent_info *ei); 2552 void f2fs_update_extent_cache(struct dnode_of_data *dn); 2553 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2554 pgoff_t fofs, block_t blkaddr, unsigned int len); 2555 void init_extent_cache_info(struct f2fs_sb_info *sbi); 2556 int __init create_extent_cache(void); 2557 void destroy_extent_cache(void); 2558 2559 /* 2560 * crypto support 2561 */ 2562 static inline bool f2fs_encrypted_inode(struct inode *inode) 2563 { 2564 return file_is_encrypt(inode); 2565 } 2566 2567 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2568 { 2569 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2570 file_set_encrypt(inode); 2571 #endif 2572 } 2573 2574 static inline bool f2fs_bio_encrypted(struct bio *bio) 2575 { 2576 return bio->bi_private != NULL; 2577 } 2578 2579 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2580 { 2581 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2582 } 2583 2584 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 2585 { 2586 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 2587 } 2588 2589 #ifdef CONFIG_BLK_DEV_ZONED 2590 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 2591 struct block_device *bdev, block_t blkaddr) 2592 { 2593 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 2594 int i; 2595 2596 for (i = 0; i < sbi->s_ndevs; i++) 2597 if (FDEV(i).bdev == bdev) 2598 return FDEV(i).blkz_type[zno]; 2599 return -EINVAL; 2600 } 2601 #endif 2602 2603 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 2604 { 2605 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 2606 2607 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 2608 } 2609 2610 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2611 { 2612 clear_opt(sbi, ADAPTIVE); 2613 clear_opt(sbi, LFS); 2614 2615 switch (mt) { 2616 case F2FS_MOUNT_ADAPTIVE: 2617 set_opt(sbi, ADAPTIVE); 2618 break; 2619 case F2FS_MOUNT_LFS: 2620 set_opt(sbi, LFS); 2621 break; 2622 } 2623 } 2624 2625 static inline bool f2fs_may_encrypt(struct inode *inode) 2626 { 2627 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2628 umode_t mode = inode->i_mode; 2629 2630 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2631 #else 2632 return 0; 2633 #endif 2634 } 2635 2636 #endif 2637