xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 6e10e219)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 struct pagevec;
32 
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition)					\
37 	do {								\
38 		if (WARN_ON(condition))					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_SLAB_ALLOC,
60 	FAULT_DQUOT_INIT,
61 	FAULT_MAX,
62 };
63 
64 #ifdef CONFIG_F2FS_FAULT_INJECTION
65 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
66 
67 struct f2fs_fault_info {
68 	atomic_t inject_ops;
69 	unsigned int inject_rate;
70 	unsigned int inject_type;
71 };
72 
73 extern const char *f2fs_fault_name[FAULT_MAX];
74 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
75 #endif
76 
77 /*
78  * For mount options
79  */
80 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
81 #define F2FS_MOUNT_DISCARD		0x00000004
82 #define F2FS_MOUNT_NOHEAP		0x00000008
83 #define F2FS_MOUNT_XATTR_USER		0x00000010
84 #define F2FS_MOUNT_POSIX_ACL		0x00000020
85 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
86 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
87 #define F2FS_MOUNT_INLINE_DATA		0x00000100
88 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
89 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
90 #define F2FS_MOUNT_NOBARRIER		0x00000800
91 #define F2FS_MOUNT_FASTBOOT		0x00001000
92 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
93 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
94 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
95 #define F2FS_MOUNT_USRQUOTA		0x00080000
96 #define F2FS_MOUNT_GRPQUOTA		0x00100000
97 #define F2FS_MOUNT_PRJQUOTA		0x00200000
98 #define F2FS_MOUNT_QUOTA		0x00400000
99 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
100 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
101 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
102 #define F2FS_MOUNT_NORECOVERY		0x04000000
103 #define F2FS_MOUNT_ATGC			0x08000000
104 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
105 #define	F2FS_MOUNT_GC_MERGE		0x20000000
106 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
107 
108 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
109 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
110 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
111 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
112 
113 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
114 		typecheck(unsigned long long, b) &&			\
115 		((long long)((a) - (b)) > 0))
116 
117 typedef u32 block_t;	/*
118 			 * should not change u32, since it is the on-disk block
119 			 * address format, __le32.
120 			 */
121 typedef u32 nid_t;
122 
123 #define COMPRESS_EXT_NUM		16
124 
125 struct f2fs_mount_info {
126 	unsigned int opt;
127 	int write_io_size_bits;		/* Write IO size bits */
128 	block_t root_reserved_blocks;	/* root reserved blocks */
129 	kuid_t s_resuid;		/* reserved blocks for uid */
130 	kgid_t s_resgid;		/* reserved blocks for gid */
131 	int active_logs;		/* # of active logs */
132 	int inline_xattr_size;		/* inline xattr size */
133 #ifdef CONFIG_F2FS_FAULT_INJECTION
134 	struct f2fs_fault_info fault_info;	/* For fault injection */
135 #endif
136 #ifdef CONFIG_QUOTA
137 	/* Names of quota files with journalled quota */
138 	char *s_qf_names[MAXQUOTAS];
139 	int s_jquota_fmt;			/* Format of quota to use */
140 #endif
141 	/* For which write hints are passed down to block layer */
142 	int whint_mode;
143 	int alloc_mode;			/* segment allocation policy */
144 	int fsync_mode;			/* fsync policy */
145 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
146 	int bggc_mode;			/* bggc mode: off, on or sync */
147 	int discard_unit;		/*
148 					 * discard command's offset/size should
149 					 * be aligned to this unit: block,
150 					 * segment or section
151 					 */
152 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
153 	block_t unusable_cap_perc;	/* percentage for cap */
154 	block_t unusable_cap;		/* Amount of space allowed to be
155 					 * unusable when disabling checkpoint
156 					 */
157 
158 	/* For compression */
159 	unsigned char compress_algorithm;	/* algorithm type */
160 	unsigned char compress_log_size;	/* cluster log size */
161 	unsigned char compress_level;		/* compress level */
162 	bool compress_chksum;			/* compressed data chksum */
163 	unsigned char compress_ext_cnt;		/* extension count */
164 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
165 	int compress_mode;			/* compression mode */
166 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
167 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
168 };
169 
170 #define F2FS_FEATURE_ENCRYPT		0x0001
171 #define F2FS_FEATURE_BLKZONED		0x0002
172 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
173 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
174 #define F2FS_FEATURE_PRJQUOTA		0x0010
175 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
176 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
177 #define F2FS_FEATURE_QUOTA_INO		0x0080
178 #define F2FS_FEATURE_INODE_CRTIME	0x0100
179 #define F2FS_FEATURE_LOST_FOUND		0x0200
180 #define F2FS_FEATURE_VERITY		0x0400
181 #define F2FS_FEATURE_SB_CHKSUM		0x0800
182 #define F2FS_FEATURE_CASEFOLD		0x1000
183 #define F2FS_FEATURE_COMPRESSION	0x2000
184 #define F2FS_FEATURE_RO			0x4000
185 
186 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
187 	((raw_super->feature & cpu_to_le32(mask)) != 0)
188 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
189 #define F2FS_SET_FEATURE(sbi, mask)					\
190 	(sbi->raw_super->feature |= cpu_to_le32(mask))
191 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
192 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
193 
194 /*
195  * Default values for user and/or group using reserved blocks
196  */
197 #define	F2FS_DEF_RESUID		0
198 #define	F2FS_DEF_RESGID		0
199 
200 /*
201  * For checkpoint manager
202  */
203 enum {
204 	NAT_BITMAP,
205 	SIT_BITMAP
206 };
207 
208 #define	CP_UMOUNT	0x00000001
209 #define	CP_FASTBOOT	0x00000002
210 #define	CP_SYNC		0x00000004
211 #define	CP_RECOVERY	0x00000008
212 #define	CP_DISCARD	0x00000010
213 #define CP_TRIMMED	0x00000020
214 #define CP_PAUSE	0x00000040
215 #define CP_RESIZE 	0x00000080
216 
217 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
218 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
219 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
220 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
221 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
222 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
223 #define DEF_CP_INTERVAL			60	/* 60 secs */
224 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
225 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
226 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
227 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
228 
229 struct cp_control {
230 	int reason;
231 	__u64 trim_start;
232 	__u64 trim_end;
233 	__u64 trim_minlen;
234 };
235 
236 /*
237  * indicate meta/data type
238  */
239 enum {
240 	META_CP,
241 	META_NAT,
242 	META_SIT,
243 	META_SSA,
244 	META_MAX,
245 	META_POR,
246 	DATA_GENERIC,		/* check range only */
247 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
248 	DATA_GENERIC_ENHANCE_READ,	/*
249 					 * strong check on range and segment
250 					 * bitmap but no warning due to race
251 					 * condition of read on truncated area
252 					 * by extent_cache
253 					 */
254 	META_GENERIC,
255 };
256 
257 /* for the list of ino */
258 enum {
259 	ORPHAN_INO,		/* for orphan ino list */
260 	APPEND_INO,		/* for append ino list */
261 	UPDATE_INO,		/* for update ino list */
262 	TRANS_DIR_INO,		/* for trasactions dir ino list */
263 	FLUSH_INO,		/* for multiple device flushing */
264 	MAX_INO_ENTRY,		/* max. list */
265 };
266 
267 struct ino_entry {
268 	struct list_head list;		/* list head */
269 	nid_t ino;			/* inode number */
270 	unsigned int dirty_device;	/* dirty device bitmap */
271 };
272 
273 /* for the list of inodes to be GCed */
274 struct inode_entry {
275 	struct list_head list;	/* list head */
276 	struct inode *inode;	/* vfs inode pointer */
277 };
278 
279 struct fsync_node_entry {
280 	struct list_head list;	/* list head */
281 	struct page *page;	/* warm node page pointer */
282 	unsigned int seq_id;	/* sequence id */
283 };
284 
285 struct ckpt_req {
286 	struct completion wait;		/* completion for checkpoint done */
287 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
288 	int ret;			/* return code of checkpoint */
289 	ktime_t queue_time;		/* request queued time */
290 };
291 
292 struct ckpt_req_control {
293 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
294 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
295 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
296 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
297 	atomic_t total_ckpt;		/* # of total ckpts */
298 	atomic_t queued_ckpt;		/* # of queued ckpts */
299 	struct llist_head issue_list;	/* list for command issue */
300 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
301 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
302 	unsigned int peak_time;		/* peak wait time in msec until now */
303 };
304 
305 /* for the bitmap indicate blocks to be discarded */
306 struct discard_entry {
307 	struct list_head list;	/* list head */
308 	block_t start_blkaddr;	/* start blockaddr of current segment */
309 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
310 };
311 
312 /* default discard granularity of inner discard thread, unit: block count */
313 #define DEFAULT_DISCARD_GRANULARITY		16
314 
315 /* max discard pend list number */
316 #define MAX_PLIST_NUM		512
317 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
318 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
319 
320 enum {
321 	D_PREP,			/* initial */
322 	D_PARTIAL,		/* partially submitted */
323 	D_SUBMIT,		/* all submitted */
324 	D_DONE,			/* finished */
325 };
326 
327 struct discard_info {
328 	block_t lstart;			/* logical start address */
329 	block_t len;			/* length */
330 	block_t start;			/* actual start address in dev */
331 };
332 
333 struct discard_cmd {
334 	struct rb_node rb_node;		/* rb node located in rb-tree */
335 	union {
336 		struct {
337 			block_t lstart;	/* logical start address */
338 			block_t len;	/* length */
339 			block_t start;	/* actual start address in dev */
340 		};
341 		struct discard_info di;	/* discard info */
342 
343 	};
344 	struct list_head list;		/* command list */
345 	struct completion wait;		/* compleation */
346 	struct block_device *bdev;	/* bdev */
347 	unsigned short ref;		/* reference count */
348 	unsigned char state;		/* state */
349 	unsigned char queued;		/* queued discard */
350 	int error;			/* bio error */
351 	spinlock_t lock;		/* for state/bio_ref updating */
352 	unsigned short bio_ref;		/* bio reference count */
353 };
354 
355 enum {
356 	DPOLICY_BG,
357 	DPOLICY_FORCE,
358 	DPOLICY_FSTRIM,
359 	DPOLICY_UMOUNT,
360 	MAX_DPOLICY,
361 };
362 
363 struct discard_policy {
364 	int type;			/* type of discard */
365 	unsigned int min_interval;	/* used for candidates exist */
366 	unsigned int mid_interval;	/* used for device busy */
367 	unsigned int max_interval;	/* used for candidates not exist */
368 	unsigned int max_requests;	/* # of discards issued per round */
369 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
370 	bool io_aware;			/* issue discard in idle time */
371 	bool sync;			/* submit discard with REQ_SYNC flag */
372 	bool ordered;			/* issue discard by lba order */
373 	bool timeout;			/* discard timeout for put_super */
374 	unsigned int granularity;	/* discard granularity */
375 };
376 
377 struct discard_cmd_control {
378 	struct task_struct *f2fs_issue_discard;	/* discard thread */
379 	struct list_head entry_list;		/* 4KB discard entry list */
380 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
381 	struct list_head wait_list;		/* store on-flushing entries */
382 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
383 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
384 	unsigned int discard_wake;		/* to wake up discard thread */
385 	struct mutex cmd_lock;
386 	unsigned int nr_discards;		/* # of discards in the list */
387 	unsigned int max_discards;		/* max. discards to be issued */
388 	unsigned int discard_granularity;	/* discard granularity */
389 	unsigned int undiscard_blks;		/* # of undiscard blocks */
390 	unsigned int next_pos;			/* next discard position */
391 	atomic_t issued_discard;		/* # of issued discard */
392 	atomic_t queued_discard;		/* # of queued discard */
393 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
394 	struct rb_root_cached root;		/* root of discard rb-tree */
395 	bool rbtree_check;			/* config for consistence check */
396 };
397 
398 /* for the list of fsync inodes, used only during recovery */
399 struct fsync_inode_entry {
400 	struct list_head list;	/* list head */
401 	struct inode *inode;	/* vfs inode pointer */
402 	block_t blkaddr;	/* block address locating the last fsync */
403 	block_t last_dentry;	/* block address locating the last dentry */
404 };
405 
406 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
407 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
408 
409 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
410 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
411 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
412 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
413 
414 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
415 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
416 
417 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
418 {
419 	int before = nats_in_cursum(journal);
420 
421 	journal->n_nats = cpu_to_le16(before + i);
422 	return before;
423 }
424 
425 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
426 {
427 	int before = sits_in_cursum(journal);
428 
429 	journal->n_sits = cpu_to_le16(before + i);
430 	return before;
431 }
432 
433 static inline bool __has_cursum_space(struct f2fs_journal *journal,
434 							int size, int type)
435 {
436 	if (type == NAT_JOURNAL)
437 		return size <= MAX_NAT_JENTRIES(journal);
438 	return size <= MAX_SIT_JENTRIES(journal);
439 }
440 
441 /* for inline stuff */
442 #define DEF_INLINE_RESERVED_SIZE	1
443 static inline int get_extra_isize(struct inode *inode);
444 static inline int get_inline_xattr_addrs(struct inode *inode);
445 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
446 				(CUR_ADDRS_PER_INODE(inode) -		\
447 				get_inline_xattr_addrs(inode) -	\
448 				DEF_INLINE_RESERVED_SIZE))
449 
450 /* for inline dir */
451 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
452 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
453 				BITS_PER_BYTE + 1))
454 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
455 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
456 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
457 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
458 				NR_INLINE_DENTRY(inode) + \
459 				INLINE_DENTRY_BITMAP_SIZE(inode)))
460 
461 /*
462  * For INODE and NODE manager
463  */
464 /* for directory operations */
465 
466 struct f2fs_filename {
467 	/*
468 	 * The filename the user specified.  This is NULL for some
469 	 * filesystem-internal operations, e.g. converting an inline directory
470 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
471 	 */
472 	const struct qstr *usr_fname;
473 
474 	/*
475 	 * The on-disk filename.  For encrypted directories, this is encrypted.
476 	 * This may be NULL for lookups in an encrypted dir without the key.
477 	 */
478 	struct fscrypt_str disk_name;
479 
480 	/* The dirhash of this filename */
481 	f2fs_hash_t hash;
482 
483 #ifdef CONFIG_FS_ENCRYPTION
484 	/*
485 	 * For lookups in encrypted directories: either the buffer backing
486 	 * disk_name, or a buffer that holds the decoded no-key name.
487 	 */
488 	struct fscrypt_str crypto_buf;
489 #endif
490 #ifdef CONFIG_UNICODE
491 	/*
492 	 * For casefolded directories: the casefolded name, but it's left NULL
493 	 * if the original name is not valid Unicode, if the directory is both
494 	 * casefolded and encrypted and its encryption key is unavailable, or if
495 	 * the filesystem is doing an internal operation where usr_fname is also
496 	 * NULL.  In all these cases we fall back to treating the name as an
497 	 * opaque byte sequence.
498 	 */
499 	struct fscrypt_str cf_name;
500 #endif
501 };
502 
503 struct f2fs_dentry_ptr {
504 	struct inode *inode;
505 	void *bitmap;
506 	struct f2fs_dir_entry *dentry;
507 	__u8 (*filename)[F2FS_SLOT_LEN];
508 	int max;
509 	int nr_bitmap;
510 };
511 
512 static inline void make_dentry_ptr_block(struct inode *inode,
513 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
514 {
515 	d->inode = inode;
516 	d->max = NR_DENTRY_IN_BLOCK;
517 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
518 	d->bitmap = t->dentry_bitmap;
519 	d->dentry = t->dentry;
520 	d->filename = t->filename;
521 }
522 
523 static inline void make_dentry_ptr_inline(struct inode *inode,
524 					struct f2fs_dentry_ptr *d, void *t)
525 {
526 	int entry_cnt = NR_INLINE_DENTRY(inode);
527 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
528 	int reserved_size = INLINE_RESERVED_SIZE(inode);
529 
530 	d->inode = inode;
531 	d->max = entry_cnt;
532 	d->nr_bitmap = bitmap_size;
533 	d->bitmap = t;
534 	d->dentry = t + bitmap_size + reserved_size;
535 	d->filename = t + bitmap_size + reserved_size +
536 					SIZE_OF_DIR_ENTRY * entry_cnt;
537 }
538 
539 /*
540  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
541  * as its node offset to distinguish from index node blocks.
542  * But some bits are used to mark the node block.
543  */
544 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
545 				>> OFFSET_BIT_SHIFT)
546 enum {
547 	ALLOC_NODE,			/* allocate a new node page if needed */
548 	LOOKUP_NODE,			/* look up a node without readahead */
549 	LOOKUP_NODE_RA,			/*
550 					 * look up a node with readahead called
551 					 * by get_data_block.
552 					 */
553 };
554 
555 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
556 
557 /* congestion wait timeout value, default: 20ms */
558 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
559 
560 /* maximum retry quota flush count */
561 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
562 
563 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
564 
565 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
566 
567 /* dirty segments threshold for triggering CP */
568 #define DEFAULT_DIRTY_THRESHOLD		4
569 
570 /* for in-memory extent cache entry */
571 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
572 
573 /* number of extent info in extent cache we try to shrink */
574 #define EXTENT_CACHE_SHRINK_NUMBER	128
575 
576 struct rb_entry {
577 	struct rb_node rb_node;		/* rb node located in rb-tree */
578 	union {
579 		struct {
580 			unsigned int ofs;	/* start offset of the entry */
581 			unsigned int len;	/* length of the entry */
582 		};
583 		unsigned long long key;		/* 64-bits key */
584 	} __packed;
585 };
586 
587 struct extent_info {
588 	unsigned int fofs;		/* start offset in a file */
589 	unsigned int len;		/* length of the extent */
590 	u32 blk;			/* start block address of the extent */
591 #ifdef CONFIG_F2FS_FS_COMPRESSION
592 	unsigned int c_len;		/* physical extent length of compressed blocks */
593 #endif
594 };
595 
596 struct extent_node {
597 	struct rb_node rb_node;		/* rb node located in rb-tree */
598 	struct extent_info ei;		/* extent info */
599 	struct list_head list;		/* node in global extent list of sbi */
600 	struct extent_tree *et;		/* extent tree pointer */
601 };
602 
603 struct extent_tree {
604 	nid_t ino;			/* inode number */
605 	struct rb_root_cached root;	/* root of extent info rb-tree */
606 	struct extent_node *cached_en;	/* recently accessed extent node */
607 	struct extent_info largest;	/* largested extent info */
608 	struct list_head list;		/* to be used by sbi->zombie_list */
609 	rwlock_t lock;			/* protect extent info rb-tree */
610 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
611 	bool largest_updated;		/* largest extent updated */
612 };
613 
614 /*
615  * This structure is taken from ext4_map_blocks.
616  *
617  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
618  */
619 #define F2FS_MAP_NEW		(1 << BH_New)
620 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
621 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
622 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
623 				F2FS_MAP_UNWRITTEN)
624 
625 struct f2fs_map_blocks {
626 	struct block_device *m_bdev;	/* for multi-device dio */
627 	block_t m_pblk;
628 	block_t m_lblk;
629 	unsigned int m_len;
630 	unsigned int m_flags;
631 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
632 	pgoff_t *m_next_extent;		/* point to next possible extent */
633 	int m_seg_type;
634 	bool m_may_create;		/* indicate it is from write path */
635 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
636 };
637 
638 /* for flag in get_data_block */
639 enum {
640 	F2FS_GET_BLOCK_DEFAULT,
641 	F2FS_GET_BLOCK_FIEMAP,
642 	F2FS_GET_BLOCK_BMAP,
643 	F2FS_GET_BLOCK_DIO,
644 	F2FS_GET_BLOCK_PRE_DIO,
645 	F2FS_GET_BLOCK_PRE_AIO,
646 	F2FS_GET_BLOCK_PRECACHE,
647 };
648 
649 /*
650  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
651  */
652 #define FADVISE_COLD_BIT	0x01
653 #define FADVISE_LOST_PINO_BIT	0x02
654 #define FADVISE_ENCRYPT_BIT	0x04
655 #define FADVISE_ENC_NAME_BIT	0x08
656 #define FADVISE_KEEP_SIZE_BIT	0x10
657 #define FADVISE_HOT_BIT		0x20
658 #define FADVISE_VERITY_BIT	0x40
659 
660 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
661 
662 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
663 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
664 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
665 
666 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
667 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
668 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
669 
670 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
671 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
672 
673 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
674 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
675 
676 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
677 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
678 
679 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
680 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
681 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
682 
683 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
684 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
685 
686 #define DEF_DIR_LEVEL		0
687 
688 enum {
689 	GC_FAILURE_PIN,
690 	GC_FAILURE_ATOMIC,
691 	MAX_GC_FAILURE
692 };
693 
694 /* used for f2fs_inode_info->flags */
695 enum {
696 	FI_NEW_INODE,		/* indicate newly allocated inode */
697 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
698 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
699 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
700 	FI_INC_LINK,		/* need to increment i_nlink */
701 	FI_ACL_MODE,		/* indicate acl mode */
702 	FI_NO_ALLOC,		/* should not allocate any blocks */
703 	FI_FREE_NID,		/* free allocated nide */
704 	FI_NO_EXTENT,		/* not to use the extent cache */
705 	FI_INLINE_XATTR,	/* used for inline xattr */
706 	FI_INLINE_DATA,		/* used for inline data*/
707 	FI_INLINE_DENTRY,	/* used for inline dentry */
708 	FI_APPEND_WRITE,	/* inode has appended data */
709 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
710 	FI_NEED_IPU,		/* used for ipu per file */
711 	FI_ATOMIC_FILE,		/* indicate atomic file */
712 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
713 	FI_VOLATILE_FILE,	/* indicate volatile file */
714 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
715 	FI_DROP_CACHE,		/* drop dirty page cache */
716 	FI_DATA_EXIST,		/* indicate data exists */
717 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
718 	FI_DO_DEFRAG,		/* indicate defragment is running */
719 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
720 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
721 	FI_HOT_DATA,		/* indicate file is hot */
722 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
723 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
724 	FI_PIN_FILE,		/* indicate file should not be gced */
725 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
726 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
727 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
728 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
729 	FI_MMAP_FILE,		/* indicate file was mmapped */
730 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
731 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
732 	FI_ALIGNED_WRITE,	/* enable aligned write */
733 	FI_MAX,			/* max flag, never be used */
734 };
735 
736 struct f2fs_inode_info {
737 	struct inode vfs_inode;		/* serve a vfs inode */
738 	unsigned long i_flags;		/* keep an inode flags for ioctl */
739 	unsigned char i_advise;		/* use to give file attribute hints */
740 	unsigned char i_dir_level;	/* use for dentry level for large dir */
741 	unsigned int i_current_depth;	/* only for directory depth */
742 	/* for gc failure statistic */
743 	unsigned int i_gc_failures[MAX_GC_FAILURE];
744 	unsigned int i_pino;		/* parent inode number */
745 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
746 
747 	/* Use below internally in f2fs*/
748 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
749 	struct rw_semaphore i_sem;	/* protect fi info */
750 	atomic_t dirty_pages;		/* # of dirty pages */
751 	f2fs_hash_t chash;		/* hash value of given file name */
752 	unsigned int clevel;		/* maximum level of given file name */
753 	struct task_struct *task;	/* lookup and create consistency */
754 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
755 	nid_t i_xattr_nid;		/* node id that contains xattrs */
756 	loff_t	last_disk_size;		/* lastly written file size */
757 	spinlock_t i_size_lock;		/* protect last_disk_size */
758 
759 #ifdef CONFIG_QUOTA
760 	struct dquot *i_dquot[MAXQUOTAS];
761 
762 	/* quota space reservation, managed internally by quota code */
763 	qsize_t i_reserved_quota;
764 #endif
765 	struct list_head dirty_list;	/* dirty list for dirs and files */
766 	struct list_head gdirty_list;	/* linked in global dirty list */
767 	struct list_head inmem_ilist;	/* list for inmem inodes */
768 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
769 	struct task_struct *inmem_task;	/* store inmemory task */
770 	struct mutex inmem_lock;	/* lock for inmemory pages */
771 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
772 
773 	/* avoid racing between foreground op and gc */
774 	struct rw_semaphore i_gc_rwsem[2];
775 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
776 
777 	int i_extra_isize;		/* size of extra space located in i_addr */
778 	kprojid_t i_projid;		/* id for project quota */
779 	int i_inline_xattr_size;	/* inline xattr size */
780 	struct timespec64 i_crtime;	/* inode creation time */
781 	struct timespec64 i_disk_time[4];/* inode disk times */
782 
783 	/* for file compress */
784 	atomic_t i_compr_blocks;		/* # of compressed blocks */
785 	unsigned char i_compress_algorithm;	/* algorithm type */
786 	unsigned char i_log_cluster_size;	/* log of cluster size */
787 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
788 	unsigned short i_compress_flag;		/* compress flag */
789 	unsigned int i_cluster_size;		/* cluster size */
790 };
791 
792 static inline void get_extent_info(struct extent_info *ext,
793 					struct f2fs_extent *i_ext)
794 {
795 	ext->fofs = le32_to_cpu(i_ext->fofs);
796 	ext->blk = le32_to_cpu(i_ext->blk);
797 	ext->len = le32_to_cpu(i_ext->len);
798 }
799 
800 static inline void set_raw_extent(struct extent_info *ext,
801 					struct f2fs_extent *i_ext)
802 {
803 	i_ext->fofs = cpu_to_le32(ext->fofs);
804 	i_ext->blk = cpu_to_le32(ext->blk);
805 	i_ext->len = cpu_to_le32(ext->len);
806 }
807 
808 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
809 						u32 blk, unsigned int len)
810 {
811 	ei->fofs = fofs;
812 	ei->blk = blk;
813 	ei->len = len;
814 #ifdef CONFIG_F2FS_FS_COMPRESSION
815 	ei->c_len = 0;
816 #endif
817 }
818 
819 static inline bool __is_discard_mergeable(struct discard_info *back,
820 			struct discard_info *front, unsigned int max_len)
821 {
822 	return (back->lstart + back->len == front->lstart) &&
823 		(back->len + front->len <= max_len);
824 }
825 
826 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
827 			struct discard_info *back, unsigned int max_len)
828 {
829 	return __is_discard_mergeable(back, cur, max_len);
830 }
831 
832 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
833 			struct discard_info *front, unsigned int max_len)
834 {
835 	return __is_discard_mergeable(cur, front, max_len);
836 }
837 
838 static inline bool __is_extent_mergeable(struct extent_info *back,
839 						struct extent_info *front)
840 {
841 #ifdef CONFIG_F2FS_FS_COMPRESSION
842 	if (back->c_len && back->len != back->c_len)
843 		return false;
844 	if (front->c_len && front->len != front->c_len)
845 		return false;
846 #endif
847 	return (back->fofs + back->len == front->fofs &&
848 			back->blk + back->len == front->blk);
849 }
850 
851 static inline bool __is_back_mergeable(struct extent_info *cur,
852 						struct extent_info *back)
853 {
854 	return __is_extent_mergeable(back, cur);
855 }
856 
857 static inline bool __is_front_mergeable(struct extent_info *cur,
858 						struct extent_info *front)
859 {
860 	return __is_extent_mergeable(cur, front);
861 }
862 
863 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
864 static inline void __try_update_largest_extent(struct extent_tree *et,
865 						struct extent_node *en)
866 {
867 	if (en->ei.len > et->largest.len) {
868 		et->largest = en->ei;
869 		et->largest_updated = true;
870 	}
871 }
872 
873 /*
874  * For free nid management
875  */
876 enum nid_state {
877 	FREE_NID,		/* newly added to free nid list */
878 	PREALLOC_NID,		/* it is preallocated */
879 	MAX_NID_STATE,
880 };
881 
882 enum nat_state {
883 	TOTAL_NAT,
884 	DIRTY_NAT,
885 	RECLAIMABLE_NAT,
886 	MAX_NAT_STATE,
887 };
888 
889 struct f2fs_nm_info {
890 	block_t nat_blkaddr;		/* base disk address of NAT */
891 	nid_t max_nid;			/* maximum possible node ids */
892 	nid_t available_nids;		/* # of available node ids */
893 	nid_t next_scan_nid;		/* the next nid to be scanned */
894 	unsigned int ram_thresh;	/* control the memory footprint */
895 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
896 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
897 
898 	/* NAT cache management */
899 	struct radix_tree_root nat_root;/* root of the nat entry cache */
900 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
901 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
902 	struct list_head nat_entries;	/* cached nat entry list (clean) */
903 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
904 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
905 	unsigned int nat_blocks;	/* # of nat blocks */
906 
907 	/* free node ids management */
908 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
909 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
910 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
911 	spinlock_t nid_list_lock;	/* protect nid lists ops */
912 	struct mutex build_lock;	/* lock for build free nids */
913 	unsigned char **free_nid_bitmap;
914 	unsigned char *nat_block_bitmap;
915 	unsigned short *free_nid_count;	/* free nid count of NAT block */
916 
917 	/* for checkpoint */
918 	char *nat_bitmap;		/* NAT bitmap pointer */
919 
920 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
921 	unsigned char *nat_bits;	/* NAT bits blocks */
922 	unsigned char *full_nat_bits;	/* full NAT pages */
923 	unsigned char *empty_nat_bits;	/* empty NAT pages */
924 #ifdef CONFIG_F2FS_CHECK_FS
925 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
926 #endif
927 	int bitmap_size;		/* bitmap size */
928 };
929 
930 /*
931  * this structure is used as one of function parameters.
932  * all the information are dedicated to a given direct node block determined
933  * by the data offset in a file.
934  */
935 struct dnode_of_data {
936 	struct inode *inode;		/* vfs inode pointer */
937 	struct page *inode_page;	/* its inode page, NULL is possible */
938 	struct page *node_page;		/* cached direct node page */
939 	nid_t nid;			/* node id of the direct node block */
940 	unsigned int ofs_in_node;	/* data offset in the node page */
941 	bool inode_page_locked;		/* inode page is locked or not */
942 	bool node_changed;		/* is node block changed */
943 	char cur_level;			/* level of hole node page */
944 	char max_level;			/* level of current page located */
945 	block_t	data_blkaddr;		/* block address of the node block */
946 };
947 
948 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
949 		struct page *ipage, struct page *npage, nid_t nid)
950 {
951 	memset(dn, 0, sizeof(*dn));
952 	dn->inode = inode;
953 	dn->inode_page = ipage;
954 	dn->node_page = npage;
955 	dn->nid = nid;
956 }
957 
958 /*
959  * For SIT manager
960  *
961  * By default, there are 6 active log areas across the whole main area.
962  * When considering hot and cold data separation to reduce cleaning overhead,
963  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
964  * respectively.
965  * In the current design, you should not change the numbers intentionally.
966  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
967  * logs individually according to the underlying devices. (default: 6)
968  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
969  * data and 8 for node logs.
970  */
971 #define	NR_CURSEG_DATA_TYPE	(3)
972 #define NR_CURSEG_NODE_TYPE	(3)
973 #define NR_CURSEG_INMEM_TYPE	(2)
974 #define NR_CURSEG_RO_TYPE	(2)
975 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
976 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
977 
978 enum {
979 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
980 	CURSEG_WARM_DATA,	/* data blocks */
981 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
982 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
983 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
984 	CURSEG_COLD_NODE,	/* indirect node blocks */
985 	NR_PERSISTENT_LOG,	/* number of persistent log */
986 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
987 				/* pinned file that needs consecutive block address */
988 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
989 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
990 };
991 
992 struct flush_cmd {
993 	struct completion wait;
994 	struct llist_node llnode;
995 	nid_t ino;
996 	int ret;
997 };
998 
999 struct flush_cmd_control {
1000 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1001 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1002 	atomic_t issued_flush;			/* # of issued flushes */
1003 	atomic_t queued_flush;			/* # of queued flushes */
1004 	struct llist_head issue_list;		/* list for command issue */
1005 	struct llist_node *dispatch_list;	/* list for command dispatch */
1006 };
1007 
1008 struct f2fs_sm_info {
1009 	struct sit_info *sit_info;		/* whole segment information */
1010 	struct free_segmap_info *free_info;	/* free segment information */
1011 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1012 	struct curseg_info *curseg_array;	/* active segment information */
1013 
1014 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
1015 
1016 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1017 	block_t main_blkaddr;		/* start block address of main area */
1018 	block_t ssa_blkaddr;		/* start block address of SSA area */
1019 
1020 	unsigned int segment_count;	/* total # of segments */
1021 	unsigned int main_segments;	/* # of segments in main area */
1022 	unsigned int reserved_segments;	/* # of reserved segments */
1023 	unsigned int ovp_segments;	/* # of overprovision segments */
1024 
1025 	/* a threshold to reclaim prefree segments */
1026 	unsigned int rec_prefree_segments;
1027 
1028 	/* for batched trimming */
1029 	unsigned int trim_sections;		/* # of sections to trim */
1030 
1031 	struct list_head sit_entry_set;	/* sit entry set list */
1032 
1033 	unsigned int ipu_policy;	/* in-place-update policy */
1034 	unsigned int min_ipu_util;	/* in-place-update threshold */
1035 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1036 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1037 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1038 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1039 
1040 	/* for flush command control */
1041 	struct flush_cmd_control *fcc_info;
1042 
1043 	/* for discard command control */
1044 	struct discard_cmd_control *dcc_info;
1045 };
1046 
1047 /*
1048  * For superblock
1049  */
1050 /*
1051  * COUNT_TYPE for monitoring
1052  *
1053  * f2fs monitors the number of several block types such as on-writeback,
1054  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1055  */
1056 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1057 enum count_type {
1058 	F2FS_DIRTY_DENTS,
1059 	F2FS_DIRTY_DATA,
1060 	F2FS_DIRTY_QDATA,
1061 	F2FS_DIRTY_NODES,
1062 	F2FS_DIRTY_META,
1063 	F2FS_INMEM_PAGES,
1064 	F2FS_DIRTY_IMETA,
1065 	F2FS_WB_CP_DATA,
1066 	F2FS_WB_DATA,
1067 	F2FS_RD_DATA,
1068 	F2FS_RD_NODE,
1069 	F2FS_RD_META,
1070 	F2FS_DIO_WRITE,
1071 	F2FS_DIO_READ,
1072 	NR_COUNT_TYPE,
1073 };
1074 
1075 /*
1076  * The below are the page types of bios used in submit_bio().
1077  * The available types are:
1078  * DATA			User data pages. It operates as async mode.
1079  * NODE			Node pages. It operates as async mode.
1080  * META			FS metadata pages such as SIT, NAT, CP.
1081  * NR_PAGE_TYPE		The number of page types.
1082  * META_FLUSH		Make sure the previous pages are written
1083  *			with waiting the bio's completion
1084  * ...			Only can be used with META.
1085  */
1086 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1087 enum page_type {
1088 	DATA,
1089 	NODE,
1090 	META,
1091 	NR_PAGE_TYPE,
1092 	META_FLUSH,
1093 	INMEM,		/* the below types are used by tracepoints only. */
1094 	INMEM_DROP,
1095 	INMEM_INVALIDATE,
1096 	INMEM_REVOKE,
1097 	IPU,
1098 	OPU,
1099 };
1100 
1101 enum temp_type {
1102 	HOT = 0,	/* must be zero for meta bio */
1103 	WARM,
1104 	COLD,
1105 	NR_TEMP_TYPE,
1106 };
1107 
1108 enum need_lock_type {
1109 	LOCK_REQ = 0,
1110 	LOCK_DONE,
1111 	LOCK_RETRY,
1112 };
1113 
1114 enum cp_reason_type {
1115 	CP_NO_NEEDED,
1116 	CP_NON_REGULAR,
1117 	CP_COMPRESSED,
1118 	CP_HARDLINK,
1119 	CP_SB_NEED_CP,
1120 	CP_WRONG_PINO,
1121 	CP_NO_SPC_ROLL,
1122 	CP_NODE_NEED_CP,
1123 	CP_FASTBOOT_MODE,
1124 	CP_SPEC_LOG_NUM,
1125 	CP_RECOVER_DIR,
1126 };
1127 
1128 enum iostat_type {
1129 	/* WRITE IO */
1130 	APP_DIRECT_IO,			/* app direct write IOs */
1131 	APP_BUFFERED_IO,		/* app buffered write IOs */
1132 	APP_WRITE_IO,			/* app write IOs */
1133 	APP_MAPPED_IO,			/* app mapped IOs */
1134 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1135 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1136 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1137 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1138 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1139 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1140 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1141 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1142 
1143 	/* READ IO */
1144 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1145 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1146 	APP_READ_IO,			/* app read IOs */
1147 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1148 	FS_DATA_READ_IO,		/* data read IOs */
1149 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1150 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1151 	FS_NODE_READ_IO,		/* node read IOs */
1152 	FS_META_READ_IO,		/* meta read IOs */
1153 
1154 	/* other */
1155 	FS_DISCARD,			/* discard */
1156 	NR_IO_TYPE,
1157 };
1158 
1159 struct f2fs_io_info {
1160 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1161 	nid_t ino;		/* inode number */
1162 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1163 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1164 	int op;			/* contains REQ_OP_ */
1165 	int op_flags;		/* req_flag_bits */
1166 	block_t new_blkaddr;	/* new block address to be written */
1167 	block_t old_blkaddr;	/* old block address before Cow */
1168 	struct page *page;	/* page to be written */
1169 	struct page *encrypted_page;	/* encrypted page */
1170 	struct page *compressed_page;	/* compressed page */
1171 	struct list_head list;		/* serialize IOs */
1172 	bool submitted;		/* indicate IO submission */
1173 	int need_lock;		/* indicate we need to lock cp_rwsem */
1174 	bool in_list;		/* indicate fio is in io_list */
1175 	bool is_por;		/* indicate IO is from recovery or not */
1176 	bool retry;		/* need to reallocate block address */
1177 	int compr_blocks;	/* # of compressed block addresses */
1178 	bool encrypted;		/* indicate file is encrypted */
1179 	enum iostat_type io_type;	/* io type */
1180 	struct writeback_control *io_wbc; /* writeback control */
1181 	struct bio **bio;		/* bio for ipu */
1182 	sector_t *last_block;		/* last block number in bio */
1183 	unsigned char version;		/* version of the node */
1184 };
1185 
1186 struct bio_entry {
1187 	struct bio *bio;
1188 	struct list_head list;
1189 };
1190 
1191 #define is_read_io(rw) ((rw) == READ)
1192 struct f2fs_bio_info {
1193 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1194 	struct bio *bio;		/* bios to merge */
1195 	sector_t last_block_in_bio;	/* last block number */
1196 	struct f2fs_io_info fio;	/* store buffered io info. */
1197 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1198 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1199 	struct list_head io_list;	/* track fios */
1200 	struct list_head bio_list;	/* bio entry list head */
1201 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1202 };
1203 
1204 #define FDEV(i)				(sbi->devs[i])
1205 #define RDEV(i)				(raw_super->devs[i])
1206 struct f2fs_dev_info {
1207 	struct block_device *bdev;
1208 	char path[MAX_PATH_LEN];
1209 	unsigned int total_segments;
1210 	block_t start_blk;
1211 	block_t end_blk;
1212 #ifdef CONFIG_BLK_DEV_ZONED
1213 	unsigned int nr_blkz;		/* Total number of zones */
1214 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1215 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1216 #endif
1217 };
1218 
1219 enum inode_type {
1220 	DIR_INODE,			/* for dirty dir inode */
1221 	FILE_INODE,			/* for dirty regular/symlink inode */
1222 	DIRTY_META,			/* for all dirtied inode metadata */
1223 	ATOMIC_FILE,			/* for all atomic files */
1224 	NR_INODE_TYPE,
1225 };
1226 
1227 /* for inner inode cache management */
1228 struct inode_management {
1229 	struct radix_tree_root ino_root;	/* ino entry array */
1230 	spinlock_t ino_lock;			/* for ino entry lock */
1231 	struct list_head ino_list;		/* inode list head */
1232 	unsigned long ino_num;			/* number of entries */
1233 };
1234 
1235 /* for GC_AT */
1236 struct atgc_management {
1237 	bool atgc_enabled;			/* ATGC is enabled or not */
1238 	struct rb_root_cached root;		/* root of victim rb-tree */
1239 	struct list_head victim_list;		/* linked with all victim entries */
1240 	unsigned int victim_count;		/* victim count in rb-tree */
1241 	unsigned int candidate_ratio;		/* candidate ratio */
1242 	unsigned int max_candidate_count;	/* max candidate count */
1243 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1244 	unsigned long long age_threshold;	/* age threshold */
1245 };
1246 
1247 /* For s_flag in struct f2fs_sb_info */
1248 enum {
1249 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1250 	SBI_IS_CLOSE,				/* specify unmounting */
1251 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1252 	SBI_POR_DOING,				/* recovery is doing or not */
1253 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1254 	SBI_NEED_CP,				/* need to checkpoint */
1255 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1256 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1257 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1258 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1259 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1260 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1261 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1262 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1263 };
1264 
1265 enum {
1266 	CP_TIME,
1267 	REQ_TIME,
1268 	DISCARD_TIME,
1269 	GC_TIME,
1270 	DISABLE_TIME,
1271 	UMOUNT_DISCARD_TIMEOUT,
1272 	MAX_TIME,
1273 };
1274 
1275 enum {
1276 	GC_NORMAL,
1277 	GC_IDLE_CB,
1278 	GC_IDLE_GREEDY,
1279 	GC_IDLE_AT,
1280 	GC_URGENT_HIGH,
1281 	GC_URGENT_LOW,
1282 	MAX_GC_MODE,
1283 };
1284 
1285 enum {
1286 	BGGC_MODE_ON,		/* background gc is on */
1287 	BGGC_MODE_OFF,		/* background gc is off */
1288 	BGGC_MODE_SYNC,		/*
1289 				 * background gc is on, migrating blocks
1290 				 * like foreground gc
1291 				 */
1292 };
1293 
1294 enum {
1295 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1296 	FS_MODE_LFS,			/* use lfs allocation only */
1297 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1298 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1299 };
1300 
1301 enum {
1302 	WHINT_MODE_OFF,		/* not pass down write hints */
1303 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1304 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1305 };
1306 
1307 enum {
1308 	ALLOC_MODE_DEFAULT,	/* stay default */
1309 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1310 };
1311 
1312 enum fsync_mode {
1313 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1314 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1315 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1316 };
1317 
1318 enum {
1319 	COMPR_MODE_FS,		/*
1320 				 * automatically compress compression
1321 				 * enabled files
1322 				 */
1323 	COMPR_MODE_USER,	/*
1324 				 * automatical compression is disabled.
1325 				 * user can control the file compression
1326 				 * using ioctls
1327 				 */
1328 };
1329 
1330 enum {
1331 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1332 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1333 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1334 };
1335 
1336 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1337 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1338 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1339 
1340 /*
1341  * Layout of f2fs page.private:
1342  *
1343  * Layout A: lowest bit should be 1
1344  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1345  * bit 0	PAGE_PRIVATE_NOT_POINTER
1346  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1347  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1348  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1349  * bit 4	PAGE_PRIVATE_INLINE_INODE
1350  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1351  * bit 6-	f2fs private data
1352  *
1353  * Layout B: lowest bit should be 0
1354  * page.private is a wrapped pointer.
1355  */
1356 enum {
1357 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1358 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1359 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1360 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1361 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1362 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1363 	PAGE_PRIVATE_MAX
1364 };
1365 
1366 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1367 static inline bool page_private_##name(struct page *page) \
1368 { \
1369 	return PagePrivate(page) && \
1370 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1371 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1372 }
1373 
1374 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1375 static inline void set_page_private_##name(struct page *page) \
1376 { \
1377 	if (!PagePrivate(page)) { \
1378 		get_page(page); \
1379 		SetPagePrivate(page); \
1380 		set_page_private(page, 0); \
1381 	} \
1382 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1383 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1384 }
1385 
1386 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1387 static inline void clear_page_private_##name(struct page *page) \
1388 { \
1389 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1390 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1391 		set_page_private(page, 0); \
1392 		if (PagePrivate(page)) { \
1393 			ClearPagePrivate(page); \
1394 			put_page(page); \
1395 		}\
1396 	} \
1397 }
1398 
1399 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1400 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1401 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1402 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1403 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1404 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1405 
1406 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1407 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1408 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1409 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1410 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1411 
1412 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1413 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1414 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1415 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1416 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1417 
1418 static inline unsigned long get_page_private_data(struct page *page)
1419 {
1420 	unsigned long data = page_private(page);
1421 
1422 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1423 		return 0;
1424 	return data >> PAGE_PRIVATE_MAX;
1425 }
1426 
1427 static inline void set_page_private_data(struct page *page, unsigned long data)
1428 {
1429 	if (!PagePrivate(page)) {
1430 		get_page(page);
1431 		SetPagePrivate(page);
1432 		set_page_private(page, 0);
1433 	}
1434 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1435 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1436 }
1437 
1438 static inline void clear_page_private_data(struct page *page)
1439 {
1440 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1441 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1442 		set_page_private(page, 0);
1443 		if (PagePrivate(page)) {
1444 			ClearPagePrivate(page);
1445 			put_page(page);
1446 		}
1447 	}
1448 }
1449 
1450 /* For compression */
1451 enum compress_algorithm_type {
1452 	COMPRESS_LZO,
1453 	COMPRESS_LZ4,
1454 	COMPRESS_ZSTD,
1455 	COMPRESS_LZORLE,
1456 	COMPRESS_MAX,
1457 };
1458 
1459 enum compress_flag {
1460 	COMPRESS_CHKSUM,
1461 	COMPRESS_MAX_FLAG,
1462 };
1463 
1464 #define	COMPRESS_WATERMARK			20
1465 #define	COMPRESS_PERCENT			20
1466 
1467 #define COMPRESS_DATA_RESERVED_SIZE		4
1468 struct compress_data {
1469 	__le32 clen;			/* compressed data size */
1470 	__le32 chksum;			/* compressed data chksum */
1471 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1472 	u8 cdata[];			/* compressed data */
1473 };
1474 
1475 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1476 
1477 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1478 
1479 #define	COMPRESS_LEVEL_OFFSET	8
1480 
1481 /* compress context */
1482 struct compress_ctx {
1483 	struct inode *inode;		/* inode the context belong to */
1484 	pgoff_t cluster_idx;		/* cluster index number */
1485 	unsigned int cluster_size;	/* page count in cluster */
1486 	unsigned int log_cluster_size;	/* log of cluster size */
1487 	struct page **rpages;		/* pages store raw data in cluster */
1488 	unsigned int nr_rpages;		/* total page number in rpages */
1489 	struct page **cpages;		/* pages store compressed data in cluster */
1490 	unsigned int nr_cpages;		/* total page number in cpages */
1491 	void *rbuf;			/* virtual mapped address on rpages */
1492 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1493 	size_t rlen;			/* valid data length in rbuf */
1494 	size_t clen;			/* valid data length in cbuf */
1495 	void *private;			/* payload buffer for specified compression algorithm */
1496 	void *private2;			/* extra payload buffer */
1497 };
1498 
1499 /* compress context for write IO path */
1500 struct compress_io_ctx {
1501 	u32 magic;			/* magic number to indicate page is compressed */
1502 	struct inode *inode;		/* inode the context belong to */
1503 	struct page **rpages;		/* pages store raw data in cluster */
1504 	unsigned int nr_rpages;		/* total page number in rpages */
1505 	atomic_t pending_pages;		/* in-flight compressed page count */
1506 };
1507 
1508 /* Context for decompressing one cluster on the read IO path */
1509 struct decompress_io_ctx {
1510 	u32 magic;			/* magic number to indicate page is compressed */
1511 	struct inode *inode;		/* inode the context belong to */
1512 	pgoff_t cluster_idx;		/* cluster index number */
1513 	unsigned int cluster_size;	/* page count in cluster */
1514 	unsigned int log_cluster_size;	/* log of cluster size */
1515 	struct page **rpages;		/* pages store raw data in cluster */
1516 	unsigned int nr_rpages;		/* total page number in rpages */
1517 	struct page **cpages;		/* pages store compressed data in cluster */
1518 	unsigned int nr_cpages;		/* total page number in cpages */
1519 	struct page **tpages;		/* temp pages to pad holes in cluster */
1520 	void *rbuf;			/* virtual mapped address on rpages */
1521 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1522 	size_t rlen;			/* valid data length in rbuf */
1523 	size_t clen;			/* valid data length in cbuf */
1524 
1525 	/*
1526 	 * The number of compressed pages remaining to be read in this cluster.
1527 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1528 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1529 	 * is decompressed (or an error is reported).
1530 	 *
1531 	 * If an error occurs before all the pages have been submitted for I/O,
1532 	 * then this will never reach 0.  In this case the I/O submitter is
1533 	 * responsible for calling f2fs_decompress_end_io() instead.
1534 	 */
1535 	atomic_t remaining_pages;
1536 
1537 	/*
1538 	 * Number of references to this decompress_io_ctx.
1539 	 *
1540 	 * One reference is held for I/O completion.  This reference is dropped
1541 	 * after the pagecache pages are updated and unlocked -- either after
1542 	 * decompression (and verity if enabled), or after an error.
1543 	 *
1544 	 * In addition, each compressed page holds a reference while it is in a
1545 	 * bio.  These references are necessary prevent compressed pages from
1546 	 * being freed while they are still in a bio.
1547 	 */
1548 	refcount_t refcnt;
1549 
1550 	bool failed;			/* IO error occurred before decompression? */
1551 	bool need_verity;		/* need fs-verity verification after decompression? */
1552 	void *private;			/* payload buffer for specified decompression algorithm */
1553 	void *private2;			/* extra payload buffer */
1554 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1555 };
1556 
1557 #define NULL_CLUSTER			((unsigned int)(~0))
1558 #define MIN_COMPRESS_LOG_SIZE		2
1559 #define MAX_COMPRESS_LOG_SIZE		8
1560 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1561 
1562 struct f2fs_sb_info {
1563 	struct super_block *sb;			/* pointer to VFS super block */
1564 	struct proc_dir_entry *s_proc;		/* proc entry */
1565 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1566 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1567 	int valid_super_block;			/* valid super block no */
1568 	unsigned long s_flag;				/* flags for sbi */
1569 	struct mutex writepages;		/* mutex for writepages() */
1570 
1571 #ifdef CONFIG_BLK_DEV_ZONED
1572 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1573 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1574 #endif
1575 
1576 	/* for node-related operations */
1577 	struct f2fs_nm_info *nm_info;		/* node manager */
1578 	struct inode *node_inode;		/* cache node blocks */
1579 
1580 	/* for segment-related operations */
1581 	struct f2fs_sm_info *sm_info;		/* segment manager */
1582 
1583 	/* for bio operations */
1584 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1585 	/* keep migration IO order for LFS mode */
1586 	struct rw_semaphore io_order_lock;
1587 	mempool_t *write_io_dummy;		/* Dummy pages */
1588 
1589 	/* for checkpoint */
1590 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1591 	int cur_cp_pack;			/* remain current cp pack */
1592 	spinlock_t cp_lock;			/* for flag in ckpt */
1593 	struct inode *meta_inode;		/* cache meta blocks */
1594 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1595 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1596 	struct rw_semaphore node_write;		/* locking node writes */
1597 	struct rw_semaphore node_change;	/* locking node change */
1598 	wait_queue_head_t cp_wait;
1599 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1600 	long interval_time[MAX_TIME];		/* to store thresholds */
1601 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1602 
1603 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1604 
1605 	spinlock_t fsync_node_lock;		/* for node entry lock */
1606 	struct list_head fsync_node_list;	/* node list head */
1607 	unsigned int fsync_seg_id;		/* sequence id */
1608 	unsigned int fsync_node_num;		/* number of node entries */
1609 
1610 	/* for orphan inode, use 0'th array */
1611 	unsigned int max_orphans;		/* max orphan inodes */
1612 
1613 	/* for inode management */
1614 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1615 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1616 	struct mutex flush_lock;		/* for flush exclusion */
1617 
1618 	/* for extent tree cache */
1619 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1620 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1621 	struct list_head extent_list;		/* lru list for shrinker */
1622 	spinlock_t extent_lock;			/* locking extent lru list */
1623 	atomic_t total_ext_tree;		/* extent tree count */
1624 	struct list_head zombie_list;		/* extent zombie tree list */
1625 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1626 	atomic_t total_ext_node;		/* extent info count */
1627 
1628 	/* basic filesystem units */
1629 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1630 	unsigned int log_blocksize;		/* log2 block size */
1631 	unsigned int blocksize;			/* block size */
1632 	unsigned int root_ino_num;		/* root inode number*/
1633 	unsigned int node_ino_num;		/* node inode number*/
1634 	unsigned int meta_ino_num;		/* meta inode number*/
1635 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1636 	unsigned int blocks_per_seg;		/* blocks per segment */
1637 	unsigned int segs_per_sec;		/* segments per section */
1638 	unsigned int secs_per_zone;		/* sections per zone */
1639 	unsigned int total_sections;		/* total section count */
1640 	unsigned int total_node_count;		/* total node block count */
1641 	unsigned int total_valid_node_count;	/* valid node block count */
1642 	int dir_level;				/* directory level */
1643 	int readdir_ra;				/* readahead inode in readdir */
1644 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1645 
1646 	block_t user_block_count;		/* # of user blocks */
1647 	block_t total_valid_block_count;	/* # of valid blocks */
1648 	block_t discard_blks;			/* discard command candidats */
1649 	block_t last_valid_block_count;		/* for recovery */
1650 	block_t reserved_blocks;		/* configurable reserved blocks */
1651 	block_t current_reserved_blocks;	/* current reserved blocks */
1652 
1653 	/* Additional tracking for no checkpoint mode */
1654 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1655 
1656 	unsigned int nquota_files;		/* # of quota sysfile */
1657 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1658 
1659 	/* # of pages, see count_type */
1660 	atomic_t nr_pages[NR_COUNT_TYPE];
1661 	/* # of allocated blocks */
1662 	struct percpu_counter alloc_valid_block_count;
1663 
1664 	/* writeback control */
1665 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1666 
1667 	/* valid inode count */
1668 	struct percpu_counter total_valid_inode_count;
1669 
1670 	struct f2fs_mount_info mount_opt;	/* mount options */
1671 
1672 	/* for cleaning operations */
1673 	struct rw_semaphore gc_lock;		/*
1674 						 * semaphore for GC, avoid
1675 						 * race between GC and GC or CP
1676 						 */
1677 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1678 	struct atgc_management am;		/* atgc management */
1679 	unsigned int cur_victim_sec;		/* current victim section num */
1680 	unsigned int gc_mode;			/* current GC state */
1681 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1682 
1683 	/* for skip statistic */
1684 	unsigned int atomic_files;		/* # of opened atomic file */
1685 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1686 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1687 
1688 	/* threshold for gc trials on pinned files */
1689 	u64 gc_pin_file_threshold;
1690 	struct rw_semaphore pin_sem;
1691 
1692 	/* maximum # of trials to find a victim segment for SSR and GC */
1693 	unsigned int max_victim_search;
1694 	/* migration granularity of garbage collection, unit: segment */
1695 	unsigned int migration_granularity;
1696 
1697 	/*
1698 	 * for stat information.
1699 	 * one is for the LFS mode, and the other is for the SSR mode.
1700 	 */
1701 #ifdef CONFIG_F2FS_STAT_FS
1702 	struct f2fs_stat_info *stat_info;	/* FS status information */
1703 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1704 	unsigned int segment_count[2];		/* # of allocated segments */
1705 	unsigned int block_count[2];		/* # of allocated blocks */
1706 	atomic_t inplace_count;		/* # of inplace update */
1707 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1708 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1709 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1710 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1711 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1712 	atomic_t inline_inode;			/* # of inline_data inodes */
1713 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1714 	atomic_t compr_inode;			/* # of compressed inodes */
1715 	atomic64_t compr_blocks;		/* # of compressed blocks */
1716 	atomic_t vw_cnt;			/* # of volatile writes */
1717 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1718 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1719 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1720 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1721 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1722 #endif
1723 	spinlock_t stat_lock;			/* lock for stat operations */
1724 
1725 	/* to attach REQ_META|REQ_FUA flags */
1726 	unsigned int data_io_flag;
1727 	unsigned int node_io_flag;
1728 
1729 	/* For sysfs suppport */
1730 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1731 	struct completion s_kobj_unregister;
1732 
1733 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1734 	struct completion s_stat_kobj_unregister;
1735 
1736 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1737 	struct completion s_feature_list_kobj_unregister;
1738 
1739 	/* For shrinker support */
1740 	struct list_head s_list;
1741 	struct mutex umount_mutex;
1742 	unsigned int shrinker_run_no;
1743 
1744 	/* For multi devices */
1745 	int s_ndevs;				/* number of devices */
1746 	struct f2fs_dev_info *devs;		/* for device list */
1747 	unsigned int dirty_device;		/* for checkpoint data flush */
1748 	spinlock_t dev_lock;			/* protect dirty_device */
1749 	bool aligned_blksize;			/* all devices has the same logical blksize */
1750 
1751 	/* For write statistics */
1752 	u64 sectors_written_start;
1753 	u64 kbytes_written;
1754 
1755 	/* Reference to checksum algorithm driver via cryptoapi */
1756 	struct crypto_shash *s_chksum_driver;
1757 
1758 	/* Precomputed FS UUID checksum for seeding other checksums */
1759 	__u32 s_chksum_seed;
1760 
1761 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1762 
1763 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1764 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1765 
1766 	/* For reclaimed segs statistics per each GC mode */
1767 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1768 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1769 
1770 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1771 
1772 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1773 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1774 
1775 #ifdef CONFIG_F2FS_FS_COMPRESSION
1776 	struct kmem_cache *page_array_slab;	/* page array entry */
1777 	unsigned int page_array_slab_size;	/* default page array slab size */
1778 
1779 	/* For runtime compression statistics */
1780 	u64 compr_written_block;
1781 	u64 compr_saved_block;
1782 	u32 compr_new_inode;
1783 
1784 	/* For compressed block cache */
1785 	struct inode *compress_inode;		/* cache compressed blocks */
1786 	unsigned int compress_percent;		/* cache page percentage */
1787 	unsigned int compress_watermark;	/* cache page watermark */
1788 	atomic_t compress_page_hit;		/* cache hit count */
1789 #endif
1790 
1791 #ifdef CONFIG_F2FS_IOSTAT
1792 	/* For app/fs IO statistics */
1793 	spinlock_t iostat_lock;
1794 	unsigned long long rw_iostat[NR_IO_TYPE];
1795 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1796 	bool iostat_enable;
1797 	unsigned long iostat_next_period;
1798 	unsigned int iostat_period_ms;
1799 
1800 	/* For io latency related statistics info in one iostat period */
1801 	spinlock_t iostat_lat_lock;
1802 	struct iostat_lat_info *iostat_io_lat;
1803 #endif
1804 };
1805 
1806 struct f2fs_private_dio {
1807 	struct inode *inode;
1808 	void *orig_private;
1809 	bio_end_io_t *orig_end_io;
1810 	bool write;
1811 };
1812 
1813 #ifdef CONFIG_F2FS_FAULT_INJECTION
1814 #define f2fs_show_injection_info(sbi, type)					\
1815 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1816 		KERN_INFO, sbi->sb->s_id,				\
1817 		f2fs_fault_name[type],					\
1818 		__func__, __builtin_return_address(0))
1819 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1820 {
1821 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1822 
1823 	if (!ffi->inject_rate)
1824 		return false;
1825 
1826 	if (!IS_FAULT_SET(ffi, type))
1827 		return false;
1828 
1829 	atomic_inc(&ffi->inject_ops);
1830 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1831 		atomic_set(&ffi->inject_ops, 0);
1832 		return true;
1833 	}
1834 	return false;
1835 }
1836 #else
1837 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1838 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1839 {
1840 	return false;
1841 }
1842 #endif
1843 
1844 /*
1845  * Test if the mounted volume is a multi-device volume.
1846  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1847  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1848  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1849  */
1850 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1851 {
1852 	return sbi->s_ndevs > 1;
1853 }
1854 
1855 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1856 {
1857 	unsigned long now = jiffies;
1858 
1859 	sbi->last_time[type] = now;
1860 
1861 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1862 	if (type == REQ_TIME) {
1863 		sbi->last_time[DISCARD_TIME] = now;
1864 		sbi->last_time[GC_TIME] = now;
1865 	}
1866 }
1867 
1868 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1869 {
1870 	unsigned long interval = sbi->interval_time[type] * HZ;
1871 
1872 	return time_after(jiffies, sbi->last_time[type] + interval);
1873 }
1874 
1875 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1876 						int type)
1877 {
1878 	unsigned long interval = sbi->interval_time[type] * HZ;
1879 	unsigned int wait_ms = 0;
1880 	long delta;
1881 
1882 	delta = (sbi->last_time[type] + interval) - jiffies;
1883 	if (delta > 0)
1884 		wait_ms = jiffies_to_msecs(delta);
1885 
1886 	return wait_ms;
1887 }
1888 
1889 /*
1890  * Inline functions
1891  */
1892 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1893 			      const void *address, unsigned int length)
1894 {
1895 	struct {
1896 		struct shash_desc shash;
1897 		char ctx[4];
1898 	} desc;
1899 	int err;
1900 
1901 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1902 
1903 	desc.shash.tfm = sbi->s_chksum_driver;
1904 	*(u32 *)desc.ctx = crc;
1905 
1906 	err = crypto_shash_update(&desc.shash, address, length);
1907 	BUG_ON(err);
1908 
1909 	return *(u32 *)desc.ctx;
1910 }
1911 
1912 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1913 			   unsigned int length)
1914 {
1915 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1916 }
1917 
1918 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1919 				  void *buf, size_t buf_size)
1920 {
1921 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1922 }
1923 
1924 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1925 			      const void *address, unsigned int length)
1926 {
1927 	return __f2fs_crc32(sbi, crc, address, length);
1928 }
1929 
1930 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1931 {
1932 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1933 }
1934 
1935 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1936 {
1937 	return sb->s_fs_info;
1938 }
1939 
1940 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1941 {
1942 	return F2FS_SB(inode->i_sb);
1943 }
1944 
1945 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1946 {
1947 	return F2FS_I_SB(mapping->host);
1948 }
1949 
1950 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1951 {
1952 	return F2FS_M_SB(page_file_mapping(page));
1953 }
1954 
1955 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1956 {
1957 	return (struct f2fs_super_block *)(sbi->raw_super);
1958 }
1959 
1960 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1961 {
1962 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1963 }
1964 
1965 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1966 {
1967 	return (struct f2fs_node *)page_address(page);
1968 }
1969 
1970 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1971 {
1972 	return &((struct f2fs_node *)page_address(page))->i;
1973 }
1974 
1975 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1976 {
1977 	return (struct f2fs_nm_info *)(sbi->nm_info);
1978 }
1979 
1980 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1981 {
1982 	return (struct f2fs_sm_info *)(sbi->sm_info);
1983 }
1984 
1985 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1986 {
1987 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1988 }
1989 
1990 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1991 {
1992 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1993 }
1994 
1995 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1996 {
1997 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1998 }
1999 
2000 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2001 {
2002 	return sbi->meta_inode->i_mapping;
2003 }
2004 
2005 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2006 {
2007 	return sbi->node_inode->i_mapping;
2008 }
2009 
2010 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2011 {
2012 	return test_bit(type, &sbi->s_flag);
2013 }
2014 
2015 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2016 {
2017 	set_bit(type, &sbi->s_flag);
2018 }
2019 
2020 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2021 {
2022 	clear_bit(type, &sbi->s_flag);
2023 }
2024 
2025 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2026 {
2027 	return le64_to_cpu(cp->checkpoint_ver);
2028 }
2029 
2030 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2031 {
2032 	if (type < F2FS_MAX_QUOTAS)
2033 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2034 	return 0;
2035 }
2036 
2037 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2038 {
2039 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2040 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2041 }
2042 
2043 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2044 {
2045 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2046 
2047 	return ckpt_flags & f;
2048 }
2049 
2050 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2051 {
2052 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2053 }
2054 
2055 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2056 {
2057 	unsigned int ckpt_flags;
2058 
2059 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2060 	ckpt_flags |= f;
2061 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2062 }
2063 
2064 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2065 {
2066 	unsigned long flags;
2067 
2068 	spin_lock_irqsave(&sbi->cp_lock, flags);
2069 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2070 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2071 }
2072 
2073 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2074 {
2075 	unsigned int ckpt_flags;
2076 
2077 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2078 	ckpt_flags &= (~f);
2079 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2080 }
2081 
2082 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2083 {
2084 	unsigned long flags;
2085 
2086 	spin_lock_irqsave(&sbi->cp_lock, flags);
2087 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2088 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2089 }
2090 
2091 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2092 {
2093 	down_read(&sbi->cp_rwsem);
2094 }
2095 
2096 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2097 {
2098 	return down_read_trylock(&sbi->cp_rwsem);
2099 }
2100 
2101 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2102 {
2103 	up_read(&sbi->cp_rwsem);
2104 }
2105 
2106 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2107 {
2108 	down_write(&sbi->cp_rwsem);
2109 }
2110 
2111 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2112 {
2113 	up_write(&sbi->cp_rwsem);
2114 }
2115 
2116 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2117 {
2118 	int reason = CP_SYNC;
2119 
2120 	if (test_opt(sbi, FASTBOOT))
2121 		reason = CP_FASTBOOT;
2122 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2123 		reason = CP_UMOUNT;
2124 	return reason;
2125 }
2126 
2127 static inline bool __remain_node_summaries(int reason)
2128 {
2129 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2130 }
2131 
2132 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2133 {
2134 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2135 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2136 }
2137 
2138 /*
2139  * Check whether the inode has blocks or not
2140  */
2141 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2142 {
2143 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2144 
2145 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2146 }
2147 
2148 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2149 {
2150 	return ofs == XATTR_NODE_OFFSET;
2151 }
2152 
2153 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2154 					struct inode *inode, bool cap)
2155 {
2156 	if (!inode)
2157 		return true;
2158 	if (!test_opt(sbi, RESERVE_ROOT))
2159 		return false;
2160 	if (IS_NOQUOTA(inode))
2161 		return true;
2162 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2163 		return true;
2164 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2165 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2166 		return true;
2167 	if (cap && capable(CAP_SYS_RESOURCE))
2168 		return true;
2169 	return false;
2170 }
2171 
2172 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2173 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2174 				 struct inode *inode, blkcnt_t *count)
2175 {
2176 	blkcnt_t diff = 0, release = 0;
2177 	block_t avail_user_block_count;
2178 	int ret;
2179 
2180 	ret = dquot_reserve_block(inode, *count);
2181 	if (ret)
2182 		return ret;
2183 
2184 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2185 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2186 		release = *count;
2187 		goto release_quota;
2188 	}
2189 
2190 	/*
2191 	 * let's increase this in prior to actual block count change in order
2192 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2193 	 */
2194 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2195 
2196 	spin_lock(&sbi->stat_lock);
2197 	sbi->total_valid_block_count += (block_t)(*count);
2198 	avail_user_block_count = sbi->user_block_count -
2199 					sbi->current_reserved_blocks;
2200 
2201 	if (!__allow_reserved_blocks(sbi, inode, true))
2202 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2203 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2204 		if (avail_user_block_count > sbi->unusable_block_count)
2205 			avail_user_block_count -= sbi->unusable_block_count;
2206 		else
2207 			avail_user_block_count = 0;
2208 	}
2209 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2210 		diff = sbi->total_valid_block_count - avail_user_block_count;
2211 		if (diff > *count)
2212 			diff = *count;
2213 		*count -= diff;
2214 		release = diff;
2215 		sbi->total_valid_block_count -= diff;
2216 		if (!*count) {
2217 			spin_unlock(&sbi->stat_lock);
2218 			goto enospc;
2219 		}
2220 	}
2221 	spin_unlock(&sbi->stat_lock);
2222 
2223 	if (unlikely(release)) {
2224 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2225 		dquot_release_reservation_block(inode, release);
2226 	}
2227 	f2fs_i_blocks_write(inode, *count, true, true);
2228 	return 0;
2229 
2230 enospc:
2231 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2232 release_quota:
2233 	dquot_release_reservation_block(inode, release);
2234 	return -ENOSPC;
2235 }
2236 
2237 __printf(2, 3)
2238 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2239 
2240 #define f2fs_err(sbi, fmt, ...)						\
2241 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2242 #define f2fs_warn(sbi, fmt, ...)					\
2243 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2244 #define f2fs_notice(sbi, fmt, ...)					\
2245 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2246 #define f2fs_info(sbi, fmt, ...)					\
2247 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2248 #define f2fs_debug(sbi, fmt, ...)					\
2249 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2250 
2251 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2252 						struct inode *inode,
2253 						block_t count)
2254 {
2255 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2256 
2257 	spin_lock(&sbi->stat_lock);
2258 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2259 	sbi->total_valid_block_count -= (block_t)count;
2260 	if (sbi->reserved_blocks &&
2261 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2262 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2263 					sbi->current_reserved_blocks + count);
2264 	spin_unlock(&sbi->stat_lock);
2265 	if (unlikely(inode->i_blocks < sectors)) {
2266 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2267 			  inode->i_ino,
2268 			  (unsigned long long)inode->i_blocks,
2269 			  (unsigned long long)sectors);
2270 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2271 		return;
2272 	}
2273 	f2fs_i_blocks_write(inode, count, false, true);
2274 }
2275 
2276 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2277 {
2278 	atomic_inc(&sbi->nr_pages[count_type]);
2279 
2280 	if (count_type == F2FS_DIRTY_DENTS ||
2281 			count_type == F2FS_DIRTY_NODES ||
2282 			count_type == F2FS_DIRTY_META ||
2283 			count_type == F2FS_DIRTY_QDATA ||
2284 			count_type == F2FS_DIRTY_IMETA)
2285 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2286 }
2287 
2288 static inline void inode_inc_dirty_pages(struct inode *inode)
2289 {
2290 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2291 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2292 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2293 	if (IS_NOQUOTA(inode))
2294 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2295 }
2296 
2297 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2298 {
2299 	atomic_dec(&sbi->nr_pages[count_type]);
2300 }
2301 
2302 static inline void inode_dec_dirty_pages(struct inode *inode)
2303 {
2304 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2305 			!S_ISLNK(inode->i_mode))
2306 		return;
2307 
2308 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2309 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2310 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2311 	if (IS_NOQUOTA(inode))
2312 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2313 }
2314 
2315 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2316 {
2317 	return atomic_read(&sbi->nr_pages[count_type]);
2318 }
2319 
2320 static inline int get_dirty_pages(struct inode *inode)
2321 {
2322 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2323 }
2324 
2325 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2326 {
2327 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2328 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2329 						sbi->log_blocks_per_seg;
2330 
2331 	return segs / sbi->segs_per_sec;
2332 }
2333 
2334 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2335 {
2336 	return sbi->total_valid_block_count;
2337 }
2338 
2339 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2340 {
2341 	return sbi->discard_blks;
2342 }
2343 
2344 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2345 {
2346 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2347 
2348 	/* return NAT or SIT bitmap */
2349 	if (flag == NAT_BITMAP)
2350 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2351 	else if (flag == SIT_BITMAP)
2352 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2353 
2354 	return 0;
2355 }
2356 
2357 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2358 {
2359 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2360 }
2361 
2362 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2363 {
2364 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2365 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2366 	int offset;
2367 
2368 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2369 		offset = (flag == SIT_BITMAP) ?
2370 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2371 		/*
2372 		 * if large_nat_bitmap feature is enabled, leave checksum
2373 		 * protection for all nat/sit bitmaps.
2374 		 */
2375 		return tmp_ptr + offset + sizeof(__le32);
2376 	}
2377 
2378 	if (__cp_payload(sbi) > 0) {
2379 		if (flag == NAT_BITMAP)
2380 			return &ckpt->sit_nat_version_bitmap;
2381 		else
2382 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2383 	} else {
2384 		offset = (flag == NAT_BITMAP) ?
2385 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2386 		return tmp_ptr + offset;
2387 	}
2388 }
2389 
2390 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2391 {
2392 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2393 
2394 	if (sbi->cur_cp_pack == 2)
2395 		start_addr += sbi->blocks_per_seg;
2396 	return start_addr;
2397 }
2398 
2399 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2400 {
2401 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2402 
2403 	if (sbi->cur_cp_pack == 1)
2404 		start_addr += sbi->blocks_per_seg;
2405 	return start_addr;
2406 }
2407 
2408 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2409 {
2410 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2411 }
2412 
2413 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2414 {
2415 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2416 }
2417 
2418 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2419 					struct inode *inode, bool is_inode)
2420 {
2421 	block_t	valid_block_count;
2422 	unsigned int valid_node_count, user_block_count;
2423 	int err;
2424 
2425 	if (is_inode) {
2426 		if (inode) {
2427 			err = dquot_alloc_inode(inode);
2428 			if (err)
2429 				return err;
2430 		}
2431 	} else {
2432 		err = dquot_reserve_block(inode, 1);
2433 		if (err)
2434 			return err;
2435 	}
2436 
2437 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2438 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2439 		goto enospc;
2440 	}
2441 
2442 	spin_lock(&sbi->stat_lock);
2443 
2444 	valid_block_count = sbi->total_valid_block_count +
2445 					sbi->current_reserved_blocks + 1;
2446 
2447 	if (!__allow_reserved_blocks(sbi, inode, false))
2448 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2449 	user_block_count = sbi->user_block_count;
2450 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2451 		user_block_count -= sbi->unusable_block_count;
2452 
2453 	if (unlikely(valid_block_count > user_block_count)) {
2454 		spin_unlock(&sbi->stat_lock);
2455 		goto enospc;
2456 	}
2457 
2458 	valid_node_count = sbi->total_valid_node_count + 1;
2459 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2460 		spin_unlock(&sbi->stat_lock);
2461 		goto enospc;
2462 	}
2463 
2464 	sbi->total_valid_node_count++;
2465 	sbi->total_valid_block_count++;
2466 	spin_unlock(&sbi->stat_lock);
2467 
2468 	if (inode) {
2469 		if (is_inode)
2470 			f2fs_mark_inode_dirty_sync(inode, true);
2471 		else
2472 			f2fs_i_blocks_write(inode, 1, true, true);
2473 	}
2474 
2475 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2476 	return 0;
2477 
2478 enospc:
2479 	if (is_inode) {
2480 		if (inode)
2481 			dquot_free_inode(inode);
2482 	} else {
2483 		dquot_release_reservation_block(inode, 1);
2484 	}
2485 	return -ENOSPC;
2486 }
2487 
2488 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2489 					struct inode *inode, bool is_inode)
2490 {
2491 	spin_lock(&sbi->stat_lock);
2492 
2493 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2494 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2495 
2496 	sbi->total_valid_node_count--;
2497 	sbi->total_valid_block_count--;
2498 	if (sbi->reserved_blocks &&
2499 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2500 		sbi->current_reserved_blocks++;
2501 
2502 	spin_unlock(&sbi->stat_lock);
2503 
2504 	if (is_inode) {
2505 		dquot_free_inode(inode);
2506 	} else {
2507 		if (unlikely(inode->i_blocks == 0)) {
2508 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2509 				  inode->i_ino,
2510 				  (unsigned long long)inode->i_blocks);
2511 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2512 			return;
2513 		}
2514 		f2fs_i_blocks_write(inode, 1, false, true);
2515 	}
2516 }
2517 
2518 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2519 {
2520 	return sbi->total_valid_node_count;
2521 }
2522 
2523 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2524 {
2525 	percpu_counter_inc(&sbi->total_valid_inode_count);
2526 }
2527 
2528 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2529 {
2530 	percpu_counter_dec(&sbi->total_valid_inode_count);
2531 }
2532 
2533 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2534 {
2535 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2536 }
2537 
2538 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2539 						pgoff_t index, bool for_write)
2540 {
2541 	struct page *page;
2542 
2543 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2544 		if (!for_write)
2545 			page = find_get_page_flags(mapping, index,
2546 							FGP_LOCK | FGP_ACCESSED);
2547 		else
2548 			page = find_lock_page(mapping, index);
2549 		if (page)
2550 			return page;
2551 
2552 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2553 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2554 							FAULT_PAGE_ALLOC);
2555 			return NULL;
2556 		}
2557 	}
2558 
2559 	if (!for_write)
2560 		return grab_cache_page(mapping, index);
2561 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2562 }
2563 
2564 static inline struct page *f2fs_pagecache_get_page(
2565 				struct address_space *mapping, pgoff_t index,
2566 				int fgp_flags, gfp_t gfp_mask)
2567 {
2568 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2569 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2570 		return NULL;
2571 	}
2572 
2573 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2574 }
2575 
2576 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2577 {
2578 	char *src_kaddr = kmap(src);
2579 	char *dst_kaddr = kmap(dst);
2580 
2581 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2582 	kunmap(dst);
2583 	kunmap(src);
2584 }
2585 
2586 static inline void f2fs_put_page(struct page *page, int unlock)
2587 {
2588 	if (!page)
2589 		return;
2590 
2591 	if (unlock) {
2592 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2593 		unlock_page(page);
2594 	}
2595 	put_page(page);
2596 }
2597 
2598 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2599 {
2600 	if (dn->node_page)
2601 		f2fs_put_page(dn->node_page, 1);
2602 	if (dn->inode_page && dn->node_page != dn->inode_page)
2603 		f2fs_put_page(dn->inode_page, 0);
2604 	dn->node_page = NULL;
2605 	dn->inode_page = NULL;
2606 }
2607 
2608 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2609 					size_t size)
2610 {
2611 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2612 }
2613 
2614 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2615 						gfp_t flags)
2616 {
2617 	void *entry;
2618 
2619 	entry = kmem_cache_alloc(cachep, flags);
2620 	if (!entry)
2621 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2622 	return entry;
2623 }
2624 
2625 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2626 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2627 {
2628 	if (nofail)
2629 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2630 
2631 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2632 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2633 		return NULL;
2634 	}
2635 
2636 	return kmem_cache_alloc(cachep, flags);
2637 }
2638 
2639 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2640 {
2641 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2642 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2643 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2644 		get_pages(sbi, F2FS_DIO_READ) ||
2645 		get_pages(sbi, F2FS_DIO_WRITE))
2646 		return true;
2647 
2648 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2649 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2650 		return true;
2651 
2652 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2653 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2654 		return true;
2655 	return false;
2656 }
2657 
2658 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2659 {
2660 	if (sbi->gc_mode == GC_URGENT_HIGH)
2661 		return true;
2662 
2663 	if (is_inflight_io(sbi, type))
2664 		return false;
2665 
2666 	if (sbi->gc_mode == GC_URGENT_LOW &&
2667 			(type == DISCARD_TIME || type == GC_TIME))
2668 		return true;
2669 
2670 	return f2fs_time_over(sbi, type);
2671 }
2672 
2673 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2674 				unsigned long index, void *item)
2675 {
2676 	while (radix_tree_insert(root, index, item))
2677 		cond_resched();
2678 }
2679 
2680 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2681 
2682 static inline bool IS_INODE(struct page *page)
2683 {
2684 	struct f2fs_node *p = F2FS_NODE(page);
2685 
2686 	return RAW_IS_INODE(p);
2687 }
2688 
2689 static inline int offset_in_addr(struct f2fs_inode *i)
2690 {
2691 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2692 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2693 }
2694 
2695 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2696 {
2697 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2698 }
2699 
2700 static inline int f2fs_has_extra_attr(struct inode *inode);
2701 static inline block_t data_blkaddr(struct inode *inode,
2702 			struct page *node_page, unsigned int offset)
2703 {
2704 	struct f2fs_node *raw_node;
2705 	__le32 *addr_array;
2706 	int base = 0;
2707 	bool is_inode = IS_INODE(node_page);
2708 
2709 	raw_node = F2FS_NODE(node_page);
2710 
2711 	if (is_inode) {
2712 		if (!inode)
2713 			/* from GC path only */
2714 			base = offset_in_addr(&raw_node->i);
2715 		else if (f2fs_has_extra_attr(inode))
2716 			base = get_extra_isize(inode);
2717 	}
2718 
2719 	addr_array = blkaddr_in_node(raw_node);
2720 	return le32_to_cpu(addr_array[base + offset]);
2721 }
2722 
2723 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2724 {
2725 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2726 }
2727 
2728 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2729 {
2730 	int mask;
2731 
2732 	addr += (nr >> 3);
2733 	mask = 1 << (7 - (nr & 0x07));
2734 	return mask & *addr;
2735 }
2736 
2737 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2738 {
2739 	int mask;
2740 
2741 	addr += (nr >> 3);
2742 	mask = 1 << (7 - (nr & 0x07));
2743 	*addr |= mask;
2744 }
2745 
2746 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2747 {
2748 	int mask;
2749 
2750 	addr += (nr >> 3);
2751 	mask = 1 << (7 - (nr & 0x07));
2752 	*addr &= ~mask;
2753 }
2754 
2755 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2756 {
2757 	int mask;
2758 	int ret;
2759 
2760 	addr += (nr >> 3);
2761 	mask = 1 << (7 - (nr & 0x07));
2762 	ret = mask & *addr;
2763 	*addr |= mask;
2764 	return ret;
2765 }
2766 
2767 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2768 {
2769 	int mask;
2770 	int ret;
2771 
2772 	addr += (nr >> 3);
2773 	mask = 1 << (7 - (nr & 0x07));
2774 	ret = mask & *addr;
2775 	*addr &= ~mask;
2776 	return ret;
2777 }
2778 
2779 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2780 {
2781 	int mask;
2782 
2783 	addr += (nr >> 3);
2784 	mask = 1 << (7 - (nr & 0x07));
2785 	*addr ^= mask;
2786 }
2787 
2788 /*
2789  * On-disk inode flags (f2fs_inode::i_flags)
2790  */
2791 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2792 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2793 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2794 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2795 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2796 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2797 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2798 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2799 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2800 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2801 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2802 
2803 /* Flags that should be inherited by new inodes from their parent. */
2804 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2805 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2806 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2807 
2808 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2809 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2810 				F2FS_CASEFOLD_FL))
2811 
2812 /* Flags that are appropriate for non-directories/regular files. */
2813 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2814 
2815 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2816 {
2817 	if (S_ISDIR(mode))
2818 		return flags;
2819 	else if (S_ISREG(mode))
2820 		return flags & F2FS_REG_FLMASK;
2821 	else
2822 		return flags & F2FS_OTHER_FLMASK;
2823 }
2824 
2825 static inline void __mark_inode_dirty_flag(struct inode *inode,
2826 						int flag, bool set)
2827 {
2828 	switch (flag) {
2829 	case FI_INLINE_XATTR:
2830 	case FI_INLINE_DATA:
2831 	case FI_INLINE_DENTRY:
2832 	case FI_NEW_INODE:
2833 		if (set)
2834 			return;
2835 		fallthrough;
2836 	case FI_DATA_EXIST:
2837 	case FI_INLINE_DOTS:
2838 	case FI_PIN_FILE:
2839 	case FI_COMPRESS_RELEASED:
2840 		f2fs_mark_inode_dirty_sync(inode, true);
2841 	}
2842 }
2843 
2844 static inline void set_inode_flag(struct inode *inode, int flag)
2845 {
2846 	set_bit(flag, F2FS_I(inode)->flags);
2847 	__mark_inode_dirty_flag(inode, flag, true);
2848 }
2849 
2850 static inline int is_inode_flag_set(struct inode *inode, int flag)
2851 {
2852 	return test_bit(flag, F2FS_I(inode)->flags);
2853 }
2854 
2855 static inline void clear_inode_flag(struct inode *inode, int flag)
2856 {
2857 	clear_bit(flag, F2FS_I(inode)->flags);
2858 	__mark_inode_dirty_flag(inode, flag, false);
2859 }
2860 
2861 static inline bool f2fs_verity_in_progress(struct inode *inode)
2862 {
2863 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2864 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2865 }
2866 
2867 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2868 {
2869 	F2FS_I(inode)->i_acl_mode = mode;
2870 	set_inode_flag(inode, FI_ACL_MODE);
2871 	f2fs_mark_inode_dirty_sync(inode, false);
2872 }
2873 
2874 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2875 {
2876 	if (inc)
2877 		inc_nlink(inode);
2878 	else
2879 		drop_nlink(inode);
2880 	f2fs_mark_inode_dirty_sync(inode, true);
2881 }
2882 
2883 static inline void f2fs_i_blocks_write(struct inode *inode,
2884 					block_t diff, bool add, bool claim)
2885 {
2886 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2887 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2888 
2889 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2890 	if (add) {
2891 		if (claim)
2892 			dquot_claim_block(inode, diff);
2893 		else
2894 			dquot_alloc_block_nofail(inode, diff);
2895 	} else {
2896 		dquot_free_block(inode, diff);
2897 	}
2898 
2899 	f2fs_mark_inode_dirty_sync(inode, true);
2900 	if (clean || recover)
2901 		set_inode_flag(inode, FI_AUTO_RECOVER);
2902 }
2903 
2904 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2905 {
2906 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2907 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2908 
2909 	if (i_size_read(inode) == i_size)
2910 		return;
2911 
2912 	i_size_write(inode, i_size);
2913 	f2fs_mark_inode_dirty_sync(inode, true);
2914 	if (clean || recover)
2915 		set_inode_flag(inode, FI_AUTO_RECOVER);
2916 }
2917 
2918 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2919 {
2920 	F2FS_I(inode)->i_current_depth = depth;
2921 	f2fs_mark_inode_dirty_sync(inode, true);
2922 }
2923 
2924 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2925 					unsigned int count)
2926 {
2927 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2928 	f2fs_mark_inode_dirty_sync(inode, true);
2929 }
2930 
2931 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2932 {
2933 	F2FS_I(inode)->i_xattr_nid = xnid;
2934 	f2fs_mark_inode_dirty_sync(inode, true);
2935 }
2936 
2937 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2938 {
2939 	F2FS_I(inode)->i_pino = pino;
2940 	f2fs_mark_inode_dirty_sync(inode, true);
2941 }
2942 
2943 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2944 {
2945 	struct f2fs_inode_info *fi = F2FS_I(inode);
2946 
2947 	if (ri->i_inline & F2FS_INLINE_XATTR)
2948 		set_bit(FI_INLINE_XATTR, fi->flags);
2949 	if (ri->i_inline & F2FS_INLINE_DATA)
2950 		set_bit(FI_INLINE_DATA, fi->flags);
2951 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2952 		set_bit(FI_INLINE_DENTRY, fi->flags);
2953 	if (ri->i_inline & F2FS_DATA_EXIST)
2954 		set_bit(FI_DATA_EXIST, fi->flags);
2955 	if (ri->i_inline & F2FS_INLINE_DOTS)
2956 		set_bit(FI_INLINE_DOTS, fi->flags);
2957 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2958 		set_bit(FI_EXTRA_ATTR, fi->flags);
2959 	if (ri->i_inline & F2FS_PIN_FILE)
2960 		set_bit(FI_PIN_FILE, fi->flags);
2961 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2962 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
2963 }
2964 
2965 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2966 {
2967 	ri->i_inline = 0;
2968 
2969 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2970 		ri->i_inline |= F2FS_INLINE_XATTR;
2971 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2972 		ri->i_inline |= F2FS_INLINE_DATA;
2973 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2974 		ri->i_inline |= F2FS_INLINE_DENTRY;
2975 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2976 		ri->i_inline |= F2FS_DATA_EXIST;
2977 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2978 		ri->i_inline |= F2FS_INLINE_DOTS;
2979 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2980 		ri->i_inline |= F2FS_EXTRA_ATTR;
2981 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2982 		ri->i_inline |= F2FS_PIN_FILE;
2983 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
2984 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
2985 }
2986 
2987 static inline int f2fs_has_extra_attr(struct inode *inode)
2988 {
2989 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2990 }
2991 
2992 static inline int f2fs_has_inline_xattr(struct inode *inode)
2993 {
2994 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2995 }
2996 
2997 static inline int f2fs_compressed_file(struct inode *inode)
2998 {
2999 	return S_ISREG(inode->i_mode) &&
3000 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3001 }
3002 
3003 static inline bool f2fs_need_compress_data(struct inode *inode)
3004 {
3005 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3006 
3007 	if (!f2fs_compressed_file(inode))
3008 		return false;
3009 
3010 	if (compress_mode == COMPR_MODE_FS)
3011 		return true;
3012 	else if (compress_mode == COMPR_MODE_USER &&
3013 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3014 		return true;
3015 
3016 	return false;
3017 }
3018 
3019 static inline unsigned int addrs_per_inode(struct inode *inode)
3020 {
3021 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3022 				get_inline_xattr_addrs(inode);
3023 
3024 	if (!f2fs_compressed_file(inode))
3025 		return addrs;
3026 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3027 }
3028 
3029 static inline unsigned int addrs_per_block(struct inode *inode)
3030 {
3031 	if (!f2fs_compressed_file(inode))
3032 		return DEF_ADDRS_PER_BLOCK;
3033 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3034 }
3035 
3036 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3037 {
3038 	struct f2fs_inode *ri = F2FS_INODE(page);
3039 
3040 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3041 					get_inline_xattr_addrs(inode)]);
3042 }
3043 
3044 static inline int inline_xattr_size(struct inode *inode)
3045 {
3046 	if (f2fs_has_inline_xattr(inode))
3047 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3048 	return 0;
3049 }
3050 
3051 static inline int f2fs_has_inline_data(struct inode *inode)
3052 {
3053 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3054 }
3055 
3056 static inline int f2fs_exist_data(struct inode *inode)
3057 {
3058 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3059 }
3060 
3061 static inline int f2fs_has_inline_dots(struct inode *inode)
3062 {
3063 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3064 }
3065 
3066 static inline int f2fs_is_mmap_file(struct inode *inode)
3067 {
3068 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3069 }
3070 
3071 static inline bool f2fs_is_pinned_file(struct inode *inode)
3072 {
3073 	return is_inode_flag_set(inode, FI_PIN_FILE);
3074 }
3075 
3076 static inline bool f2fs_is_atomic_file(struct inode *inode)
3077 {
3078 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3079 }
3080 
3081 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3082 {
3083 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3084 }
3085 
3086 static inline bool f2fs_is_volatile_file(struct inode *inode)
3087 {
3088 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3089 }
3090 
3091 static inline bool f2fs_is_first_block_written(struct inode *inode)
3092 {
3093 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3094 }
3095 
3096 static inline bool f2fs_is_drop_cache(struct inode *inode)
3097 {
3098 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3099 }
3100 
3101 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3102 {
3103 	struct f2fs_inode *ri = F2FS_INODE(page);
3104 	int extra_size = get_extra_isize(inode);
3105 
3106 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3107 }
3108 
3109 static inline int f2fs_has_inline_dentry(struct inode *inode)
3110 {
3111 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3112 }
3113 
3114 static inline int is_file(struct inode *inode, int type)
3115 {
3116 	return F2FS_I(inode)->i_advise & type;
3117 }
3118 
3119 static inline void set_file(struct inode *inode, int type)
3120 {
3121 	F2FS_I(inode)->i_advise |= type;
3122 	f2fs_mark_inode_dirty_sync(inode, true);
3123 }
3124 
3125 static inline void clear_file(struct inode *inode, int type)
3126 {
3127 	F2FS_I(inode)->i_advise &= ~type;
3128 	f2fs_mark_inode_dirty_sync(inode, true);
3129 }
3130 
3131 static inline bool f2fs_is_time_consistent(struct inode *inode)
3132 {
3133 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3134 		return false;
3135 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3136 		return false;
3137 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3138 		return false;
3139 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3140 						&F2FS_I(inode)->i_crtime))
3141 		return false;
3142 	return true;
3143 }
3144 
3145 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3146 {
3147 	bool ret;
3148 
3149 	if (dsync) {
3150 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3151 
3152 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3153 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3154 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3155 		return ret;
3156 	}
3157 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3158 			file_keep_isize(inode) ||
3159 			i_size_read(inode) & ~PAGE_MASK)
3160 		return false;
3161 
3162 	if (!f2fs_is_time_consistent(inode))
3163 		return false;
3164 
3165 	spin_lock(&F2FS_I(inode)->i_size_lock);
3166 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3167 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3168 
3169 	return ret;
3170 }
3171 
3172 static inline bool f2fs_readonly(struct super_block *sb)
3173 {
3174 	return sb_rdonly(sb);
3175 }
3176 
3177 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3178 {
3179 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3180 }
3181 
3182 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3183 {
3184 	if (len == 1 && name[0] == '.')
3185 		return true;
3186 
3187 	if (len == 2 && name[0] == '.' && name[1] == '.')
3188 		return true;
3189 
3190 	return false;
3191 }
3192 
3193 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3194 					size_t size, gfp_t flags)
3195 {
3196 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3197 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3198 		return NULL;
3199 	}
3200 
3201 	return kmalloc(size, flags);
3202 }
3203 
3204 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3205 					size_t size, gfp_t flags)
3206 {
3207 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3208 }
3209 
3210 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3211 					size_t size, gfp_t flags)
3212 {
3213 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3214 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3215 		return NULL;
3216 	}
3217 
3218 	return kvmalloc(size, flags);
3219 }
3220 
3221 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3222 					size_t size, gfp_t flags)
3223 {
3224 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3225 }
3226 
3227 static inline int get_extra_isize(struct inode *inode)
3228 {
3229 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3230 }
3231 
3232 static inline int get_inline_xattr_addrs(struct inode *inode)
3233 {
3234 	return F2FS_I(inode)->i_inline_xattr_size;
3235 }
3236 
3237 #define f2fs_get_inode_mode(i) \
3238 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3239 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3240 
3241 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3242 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3243 	offsetof(struct f2fs_inode, i_extra_isize))	\
3244 
3245 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3246 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3247 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3248 		sizeof((f2fs_inode)->field))			\
3249 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3250 
3251 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3252 
3253 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3254 
3255 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3256 					block_t blkaddr, int type);
3257 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3258 					block_t blkaddr, int type)
3259 {
3260 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3261 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3262 			 blkaddr, type);
3263 		f2fs_bug_on(sbi, 1);
3264 	}
3265 }
3266 
3267 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3268 {
3269 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3270 			blkaddr == COMPRESS_ADDR)
3271 		return false;
3272 	return true;
3273 }
3274 
3275 /*
3276  * file.c
3277  */
3278 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3279 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3280 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3281 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3282 int f2fs_truncate(struct inode *inode);
3283 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3284 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3285 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3286 		 struct iattr *attr);
3287 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3288 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3289 int f2fs_precache_extents(struct inode *inode);
3290 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3291 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3292 		      struct dentry *dentry, struct fileattr *fa);
3293 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3294 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3295 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3296 int f2fs_pin_file_control(struct inode *inode, bool inc);
3297 
3298 /*
3299  * inode.c
3300  */
3301 void f2fs_set_inode_flags(struct inode *inode);
3302 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3303 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3304 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3305 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3306 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3307 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3308 void f2fs_update_inode_page(struct inode *inode);
3309 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3310 void f2fs_evict_inode(struct inode *inode);
3311 void f2fs_handle_failed_inode(struct inode *inode);
3312 
3313 /*
3314  * namei.c
3315  */
3316 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3317 							bool hot, bool set);
3318 struct dentry *f2fs_get_parent(struct dentry *child);
3319 
3320 /*
3321  * dir.c
3322  */
3323 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3324 int f2fs_init_casefolded_name(const struct inode *dir,
3325 			      struct f2fs_filename *fname);
3326 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3327 			int lookup, struct f2fs_filename *fname);
3328 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3329 			struct f2fs_filename *fname);
3330 void f2fs_free_filename(struct f2fs_filename *fname);
3331 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3332 			const struct f2fs_filename *fname, int *max_slots);
3333 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3334 			unsigned int start_pos, struct fscrypt_str *fstr);
3335 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3336 			struct f2fs_dentry_ptr *d);
3337 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3338 			const struct f2fs_filename *fname, struct page *dpage);
3339 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3340 			unsigned int current_depth);
3341 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3342 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3343 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3344 					 const struct f2fs_filename *fname,
3345 					 struct page **res_page);
3346 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3347 			const struct qstr *child, struct page **res_page);
3348 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3349 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3350 			struct page **page);
3351 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3352 			struct page *page, struct inode *inode);
3353 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3354 			  const struct f2fs_filename *fname);
3355 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3356 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3357 			unsigned int bit_pos);
3358 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3359 			struct inode *inode, nid_t ino, umode_t mode);
3360 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3361 			struct inode *inode, nid_t ino, umode_t mode);
3362 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3363 			struct inode *inode, nid_t ino, umode_t mode);
3364 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3365 			struct inode *dir, struct inode *inode);
3366 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3367 bool f2fs_empty_dir(struct inode *dir);
3368 
3369 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3370 {
3371 	if (fscrypt_is_nokey_name(dentry))
3372 		return -ENOKEY;
3373 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3374 				inode, inode->i_ino, inode->i_mode);
3375 }
3376 
3377 /*
3378  * super.c
3379  */
3380 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3381 void f2fs_inode_synced(struct inode *inode);
3382 int f2fs_dquot_initialize(struct inode *inode);
3383 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3384 int f2fs_quota_sync(struct super_block *sb, int type);
3385 loff_t max_file_blocks(struct inode *inode);
3386 void f2fs_quota_off_umount(struct super_block *sb);
3387 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3388 int f2fs_sync_fs(struct super_block *sb, int sync);
3389 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3390 
3391 /*
3392  * hash.c
3393  */
3394 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3395 
3396 /*
3397  * node.c
3398  */
3399 struct node_info;
3400 
3401 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3402 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3403 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3404 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3405 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3406 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3407 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3408 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3409 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3410 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3411 						struct node_info *ni);
3412 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3413 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3414 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3415 int f2fs_truncate_xattr_node(struct inode *inode);
3416 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3417 					unsigned int seq_id);
3418 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3419 int f2fs_remove_inode_page(struct inode *inode);
3420 struct page *f2fs_new_inode_page(struct inode *inode);
3421 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3422 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3423 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3424 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3425 int f2fs_move_node_page(struct page *node_page, int gc_type);
3426 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3427 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3428 			struct writeback_control *wbc, bool atomic,
3429 			unsigned int *seq_id);
3430 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3431 			struct writeback_control *wbc,
3432 			bool do_balance, enum iostat_type io_type);
3433 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3434 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3435 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3436 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3437 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3438 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3439 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3440 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3441 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3442 			unsigned int segno, struct f2fs_summary_block *sum);
3443 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3444 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3445 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3446 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3447 int __init f2fs_create_node_manager_caches(void);
3448 void f2fs_destroy_node_manager_caches(void);
3449 
3450 /*
3451  * segment.c
3452  */
3453 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3454 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3455 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3456 void f2fs_drop_inmem_pages(struct inode *inode);
3457 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3458 int f2fs_commit_inmem_pages(struct inode *inode);
3459 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3460 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3461 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3462 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3463 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3464 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3465 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3466 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3467 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3468 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3469 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3470 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3471 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3472 					struct cp_control *cpc);
3473 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3474 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3475 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3476 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3477 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3478 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3479 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3480 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3481 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3482 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3483 			unsigned int *newseg, bool new_sec, int dir);
3484 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3485 					unsigned int start, unsigned int end);
3486 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3487 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3488 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3489 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3490 					struct cp_control *cpc);
3491 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3492 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3493 					block_t blk_addr);
3494 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3495 						enum iostat_type io_type);
3496 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3497 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3498 			struct f2fs_io_info *fio);
3499 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3500 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3501 			block_t old_blkaddr, block_t new_blkaddr,
3502 			bool recover_curseg, bool recover_newaddr,
3503 			bool from_gc);
3504 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3505 			block_t old_addr, block_t new_addr,
3506 			unsigned char version, bool recover_curseg,
3507 			bool recover_newaddr);
3508 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3509 			block_t old_blkaddr, block_t *new_blkaddr,
3510 			struct f2fs_summary *sum, int type,
3511 			struct f2fs_io_info *fio);
3512 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3513 					block_t blkaddr, unsigned int blkcnt);
3514 void f2fs_wait_on_page_writeback(struct page *page,
3515 			enum page_type type, bool ordered, bool locked);
3516 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3517 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3518 								block_t len);
3519 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3520 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3521 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3522 			unsigned int val, int alloc);
3523 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3524 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3525 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3526 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3527 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3528 int __init f2fs_create_segment_manager_caches(void);
3529 void f2fs_destroy_segment_manager_caches(void);
3530 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3531 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3532 			enum page_type type, enum temp_type temp);
3533 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3534 			unsigned int segno);
3535 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3536 			unsigned int segno);
3537 
3538 #define DEF_FRAGMENT_SIZE	4
3539 #define MIN_FRAGMENT_SIZE	1
3540 #define MAX_FRAGMENT_SIZE	512
3541 
3542 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3543 {
3544 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3545 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3546 }
3547 
3548 /*
3549  * checkpoint.c
3550  */
3551 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3552 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3553 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3554 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3555 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3556 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3557 					block_t blkaddr, int type);
3558 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3559 			int type, bool sync);
3560 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3561 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3562 			long nr_to_write, enum iostat_type io_type);
3563 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3564 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3565 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3566 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3567 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3568 					unsigned int devidx, int type);
3569 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3570 					unsigned int devidx, int type);
3571 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3572 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3573 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3574 void f2fs_add_orphan_inode(struct inode *inode);
3575 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3576 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3577 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3578 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3579 void f2fs_remove_dirty_inode(struct inode *inode);
3580 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3581 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3582 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3583 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3584 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3585 int __init f2fs_create_checkpoint_caches(void);
3586 void f2fs_destroy_checkpoint_caches(void);
3587 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3588 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3589 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3590 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3591 
3592 /*
3593  * data.c
3594  */
3595 int __init f2fs_init_bioset(void);
3596 void f2fs_destroy_bioset(void);
3597 int f2fs_init_bio_entry_cache(void);
3598 void f2fs_destroy_bio_entry_cache(void);
3599 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3600 				struct bio *bio, enum page_type type);
3601 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3602 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3603 				struct inode *inode, struct page *page,
3604 				nid_t ino, enum page_type type);
3605 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3606 					struct bio **bio, struct page *page);
3607 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3608 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3609 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3610 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3611 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3612 			block_t blk_addr, struct bio *bio);
3613 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3614 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3615 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3616 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3617 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3618 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3619 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3620 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3621 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3622 			int op_flags, bool for_write);
3623 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3624 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3625 			bool for_write);
3626 struct page *f2fs_get_new_data_page(struct inode *inode,
3627 			struct page *ipage, pgoff_t index, bool new_i_size);
3628 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3629 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3630 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3631 			int create, int flag);
3632 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3633 			u64 start, u64 len);
3634 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3635 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3636 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3637 int f2fs_write_single_data_page(struct page *page, int *submitted,
3638 				struct bio **bio, sector_t *last_block,
3639 				struct writeback_control *wbc,
3640 				enum iostat_type io_type,
3641 				int compr_blocks, bool allow_balance);
3642 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3643 			unsigned int length);
3644 int f2fs_release_page(struct page *page, gfp_t wait);
3645 #ifdef CONFIG_MIGRATION
3646 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3647 			struct page *page, enum migrate_mode mode);
3648 #endif
3649 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3650 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3651 int f2fs_init_post_read_processing(void);
3652 void f2fs_destroy_post_read_processing(void);
3653 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3654 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3655 
3656 /*
3657  * gc.c
3658  */
3659 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3660 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3661 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3662 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3663 			unsigned int segno);
3664 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3665 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3666 int __init f2fs_create_garbage_collection_cache(void);
3667 void f2fs_destroy_garbage_collection_cache(void);
3668 
3669 /*
3670  * recovery.c
3671  */
3672 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3673 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3674 int __init f2fs_create_recovery_cache(void);
3675 void f2fs_destroy_recovery_cache(void);
3676 
3677 /*
3678  * debug.c
3679  */
3680 #ifdef CONFIG_F2FS_STAT_FS
3681 struct f2fs_stat_info {
3682 	struct list_head stat_list;
3683 	struct f2fs_sb_info *sbi;
3684 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3685 	int main_area_segs, main_area_sections, main_area_zones;
3686 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3687 	unsigned long long hit_total, total_ext;
3688 	int ext_tree, zombie_tree, ext_node;
3689 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3690 	int ndirty_data, ndirty_qdata;
3691 	int inmem_pages;
3692 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3693 	int nats, dirty_nats, sits, dirty_sits;
3694 	int free_nids, avail_nids, alloc_nids;
3695 	int total_count, utilization;
3696 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3697 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3698 	int nr_dio_read, nr_dio_write;
3699 	unsigned int io_skip_bggc, other_skip_bggc;
3700 	int nr_flushing, nr_flushed, flush_list_empty;
3701 	int nr_discarding, nr_discarded;
3702 	int nr_discard_cmd;
3703 	unsigned int undiscard_blks;
3704 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3705 	unsigned int cur_ckpt_time, peak_ckpt_time;
3706 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3707 	int compr_inode;
3708 	unsigned long long compr_blocks;
3709 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3710 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3711 	unsigned int bimodal, avg_vblocks;
3712 	int util_free, util_valid, util_invalid;
3713 	int rsvd_segs, overp_segs;
3714 	int dirty_count, node_pages, meta_pages, compress_pages;
3715 	int compress_page_hit;
3716 	int prefree_count, call_count, cp_count, bg_cp_count;
3717 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3718 	int bg_node_segs, bg_data_segs;
3719 	int tot_blks, data_blks, node_blks;
3720 	int bg_data_blks, bg_node_blks;
3721 	unsigned long long skipped_atomic_files[2];
3722 	int curseg[NR_CURSEG_TYPE];
3723 	int cursec[NR_CURSEG_TYPE];
3724 	int curzone[NR_CURSEG_TYPE];
3725 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3726 	unsigned int full_seg[NR_CURSEG_TYPE];
3727 	unsigned int valid_blks[NR_CURSEG_TYPE];
3728 
3729 	unsigned int meta_count[META_MAX];
3730 	unsigned int segment_count[2];
3731 	unsigned int block_count[2];
3732 	unsigned int inplace_count;
3733 	unsigned long long base_mem, cache_mem, page_mem;
3734 };
3735 
3736 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3737 {
3738 	return (struct f2fs_stat_info *)sbi->stat_info;
3739 }
3740 
3741 #define stat_inc_cp_count(si)		((si)->cp_count++)
3742 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3743 #define stat_inc_call_count(si)		((si)->call_count++)
3744 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3745 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3746 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3747 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3748 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3749 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3750 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3751 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3752 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3753 #define stat_inc_inline_xattr(inode)					\
3754 	do {								\
3755 		if (f2fs_has_inline_xattr(inode))			\
3756 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3757 	} while (0)
3758 #define stat_dec_inline_xattr(inode)					\
3759 	do {								\
3760 		if (f2fs_has_inline_xattr(inode))			\
3761 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3762 	} while (0)
3763 #define stat_inc_inline_inode(inode)					\
3764 	do {								\
3765 		if (f2fs_has_inline_data(inode))			\
3766 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3767 	} while (0)
3768 #define stat_dec_inline_inode(inode)					\
3769 	do {								\
3770 		if (f2fs_has_inline_data(inode))			\
3771 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3772 	} while (0)
3773 #define stat_inc_inline_dir(inode)					\
3774 	do {								\
3775 		if (f2fs_has_inline_dentry(inode))			\
3776 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3777 	} while (0)
3778 #define stat_dec_inline_dir(inode)					\
3779 	do {								\
3780 		if (f2fs_has_inline_dentry(inode))			\
3781 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3782 	} while (0)
3783 #define stat_inc_compr_inode(inode)					\
3784 	do {								\
3785 		if (f2fs_compressed_file(inode))			\
3786 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3787 	} while (0)
3788 #define stat_dec_compr_inode(inode)					\
3789 	do {								\
3790 		if (f2fs_compressed_file(inode))			\
3791 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3792 	} while (0)
3793 #define stat_add_compr_blocks(inode, blocks)				\
3794 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3795 #define stat_sub_compr_blocks(inode, blocks)				\
3796 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3797 #define stat_inc_meta_count(sbi, blkaddr)				\
3798 	do {								\
3799 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3800 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3801 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3802 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3803 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3804 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3805 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3806 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3807 	} while (0)
3808 #define stat_inc_seg_type(sbi, curseg)					\
3809 		((sbi)->segment_count[(curseg)->alloc_type]++)
3810 #define stat_inc_block_count(sbi, curseg)				\
3811 		((sbi)->block_count[(curseg)->alloc_type]++)
3812 #define stat_inc_inplace_blocks(sbi)					\
3813 		(atomic_inc(&(sbi)->inplace_count))
3814 #define stat_update_max_atomic_write(inode)				\
3815 	do {								\
3816 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3817 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3818 		if (cur > max)						\
3819 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3820 	} while (0)
3821 #define stat_inc_volatile_write(inode)					\
3822 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3823 #define stat_dec_volatile_write(inode)					\
3824 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3825 #define stat_update_max_volatile_write(inode)				\
3826 	do {								\
3827 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3828 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3829 		if (cur > max)						\
3830 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3831 	} while (0)
3832 #define stat_inc_seg_count(sbi, type, gc_type)				\
3833 	do {								\
3834 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3835 		si->tot_segs++;						\
3836 		if ((type) == SUM_TYPE_DATA) {				\
3837 			si->data_segs++;				\
3838 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3839 		} else {						\
3840 			si->node_segs++;				\
3841 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3842 		}							\
3843 	} while (0)
3844 
3845 #define stat_inc_tot_blk_count(si, blks)				\
3846 	((si)->tot_blks += (blks))
3847 
3848 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3849 	do {								\
3850 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3851 		stat_inc_tot_blk_count(si, blks);			\
3852 		si->data_blks += (blks);				\
3853 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3854 	} while (0)
3855 
3856 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3857 	do {								\
3858 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3859 		stat_inc_tot_blk_count(si, blks);			\
3860 		si->node_blks += (blks);				\
3861 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3862 	} while (0)
3863 
3864 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3865 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3866 void __init f2fs_create_root_stats(void);
3867 void f2fs_destroy_root_stats(void);
3868 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3869 #else
3870 #define stat_inc_cp_count(si)				do { } while (0)
3871 #define stat_inc_bg_cp_count(si)			do { } while (0)
3872 #define stat_inc_call_count(si)				do { } while (0)
3873 #define stat_inc_bggc_count(si)				do { } while (0)
3874 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3875 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3876 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3877 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3878 #define stat_inc_total_hit(sbi)				do { } while (0)
3879 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3880 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3881 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3882 #define stat_inc_inline_xattr(inode)			do { } while (0)
3883 #define stat_dec_inline_xattr(inode)			do { } while (0)
3884 #define stat_inc_inline_inode(inode)			do { } while (0)
3885 #define stat_dec_inline_inode(inode)			do { } while (0)
3886 #define stat_inc_inline_dir(inode)			do { } while (0)
3887 #define stat_dec_inline_dir(inode)			do { } while (0)
3888 #define stat_inc_compr_inode(inode)			do { } while (0)
3889 #define stat_dec_compr_inode(inode)			do { } while (0)
3890 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3891 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3892 #define stat_update_max_atomic_write(inode)		do { } while (0)
3893 #define stat_inc_volatile_write(inode)			do { } while (0)
3894 #define stat_dec_volatile_write(inode)			do { } while (0)
3895 #define stat_update_max_volatile_write(inode)		do { } while (0)
3896 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3897 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3898 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3899 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3900 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3901 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3902 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3903 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3904 
3905 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3906 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3907 static inline void __init f2fs_create_root_stats(void) { }
3908 static inline void f2fs_destroy_root_stats(void) { }
3909 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3910 #endif
3911 
3912 extern const struct file_operations f2fs_dir_operations;
3913 extern const struct file_operations f2fs_file_operations;
3914 extern const struct inode_operations f2fs_file_inode_operations;
3915 extern const struct address_space_operations f2fs_dblock_aops;
3916 extern const struct address_space_operations f2fs_node_aops;
3917 extern const struct address_space_operations f2fs_meta_aops;
3918 extern const struct inode_operations f2fs_dir_inode_operations;
3919 extern const struct inode_operations f2fs_symlink_inode_operations;
3920 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3921 extern const struct inode_operations f2fs_special_inode_operations;
3922 extern struct kmem_cache *f2fs_inode_entry_slab;
3923 
3924 /*
3925  * inline.c
3926  */
3927 bool f2fs_may_inline_data(struct inode *inode);
3928 bool f2fs_may_inline_dentry(struct inode *inode);
3929 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3930 void f2fs_truncate_inline_inode(struct inode *inode,
3931 						struct page *ipage, u64 from);
3932 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3933 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3934 int f2fs_convert_inline_inode(struct inode *inode);
3935 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3936 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3937 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3938 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3939 					const struct f2fs_filename *fname,
3940 					struct page **res_page);
3941 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3942 			struct page *ipage);
3943 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3944 			struct inode *inode, nid_t ino, umode_t mode);
3945 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3946 				struct page *page, struct inode *dir,
3947 				struct inode *inode);
3948 bool f2fs_empty_inline_dir(struct inode *dir);
3949 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3950 			struct fscrypt_str *fstr);
3951 int f2fs_inline_data_fiemap(struct inode *inode,
3952 			struct fiemap_extent_info *fieinfo,
3953 			__u64 start, __u64 len);
3954 
3955 /*
3956  * shrinker.c
3957  */
3958 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3959 			struct shrink_control *sc);
3960 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3961 			struct shrink_control *sc);
3962 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3963 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3964 
3965 /*
3966  * extent_cache.c
3967  */
3968 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3969 				struct rb_entry *cached_re, unsigned int ofs);
3970 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3971 				struct rb_root_cached *root,
3972 				struct rb_node **parent,
3973 				unsigned long long key, bool *left_most);
3974 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3975 				struct rb_root_cached *root,
3976 				struct rb_node **parent,
3977 				unsigned int ofs, bool *leftmost);
3978 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3979 		struct rb_entry *cached_re, unsigned int ofs,
3980 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3981 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3982 		bool force, bool *leftmost);
3983 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3984 				struct rb_root_cached *root, bool check_key);
3985 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3986 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3987 void f2fs_drop_extent_tree(struct inode *inode);
3988 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3989 void f2fs_destroy_extent_tree(struct inode *inode);
3990 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3991 			struct extent_info *ei);
3992 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3993 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3994 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3995 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3996 int __init f2fs_create_extent_cache(void);
3997 void f2fs_destroy_extent_cache(void);
3998 
3999 /*
4000  * sysfs.c
4001  */
4002 #define MIN_RA_MUL	2
4003 #define MAX_RA_MUL	256
4004 
4005 int __init f2fs_init_sysfs(void);
4006 void f2fs_exit_sysfs(void);
4007 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4008 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4009 
4010 /* verity.c */
4011 extern const struct fsverity_operations f2fs_verityops;
4012 
4013 /*
4014  * crypto support
4015  */
4016 static inline bool f2fs_encrypted_file(struct inode *inode)
4017 {
4018 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4019 }
4020 
4021 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4022 {
4023 #ifdef CONFIG_FS_ENCRYPTION
4024 	file_set_encrypt(inode);
4025 	f2fs_set_inode_flags(inode);
4026 #endif
4027 }
4028 
4029 /*
4030  * Returns true if the reads of the inode's data need to undergo some
4031  * postprocessing step, like decryption or authenticity verification.
4032  */
4033 static inline bool f2fs_post_read_required(struct inode *inode)
4034 {
4035 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4036 		f2fs_compressed_file(inode);
4037 }
4038 
4039 /*
4040  * compress.c
4041  */
4042 #ifdef CONFIG_F2FS_FS_COMPRESSION
4043 bool f2fs_is_compressed_page(struct page *page);
4044 struct page *f2fs_compress_control_page(struct page *page);
4045 int f2fs_prepare_compress_overwrite(struct inode *inode,
4046 			struct page **pagep, pgoff_t index, void **fsdata);
4047 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4048 					pgoff_t index, unsigned copied);
4049 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4050 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4051 bool f2fs_is_compress_backend_ready(struct inode *inode);
4052 int f2fs_init_compress_mempool(void);
4053 void f2fs_destroy_compress_mempool(void);
4054 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4055 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4056 							block_t blkaddr);
4057 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4058 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4059 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4060 				int index, int nr_pages);
4061 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4062 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4063 int f2fs_write_multi_pages(struct compress_ctx *cc,
4064 						int *submitted,
4065 						struct writeback_control *wbc,
4066 						enum iostat_type io_type);
4067 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4068 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4069 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4070 				unsigned int c_len);
4071 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4072 				unsigned nr_pages, sector_t *last_block_in_bio,
4073 				bool is_readahead, bool for_write);
4074 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4075 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4076 void f2fs_put_page_dic(struct page *page);
4077 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4078 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4079 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4080 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4081 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4082 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4083 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4084 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4085 int __init f2fs_init_compress_cache(void);
4086 void f2fs_destroy_compress_cache(void);
4087 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4088 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4089 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4090 						nid_t ino, block_t blkaddr);
4091 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4092 								block_t blkaddr);
4093 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4094 #define inc_compr_inode_stat(inode)					\
4095 	do {								\
4096 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4097 		sbi->compr_new_inode++;					\
4098 	} while (0)
4099 #define add_compr_block_stat(inode, blocks)				\
4100 	do {								\
4101 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4102 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4103 		sbi->compr_written_block += blocks;			\
4104 		sbi->compr_saved_block += diff;				\
4105 	} while (0)
4106 #else
4107 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4108 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4109 {
4110 	if (!f2fs_compressed_file(inode))
4111 		return true;
4112 	/* not support compression */
4113 	return false;
4114 }
4115 static inline struct page *f2fs_compress_control_page(struct page *page)
4116 {
4117 	WARN_ON_ONCE(1);
4118 	return ERR_PTR(-EINVAL);
4119 }
4120 static inline int f2fs_init_compress_mempool(void) { return 0; }
4121 static inline void f2fs_destroy_compress_mempool(void) { }
4122 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4123 static inline void f2fs_end_read_compressed_page(struct page *page,
4124 						bool failed, block_t blkaddr)
4125 {
4126 	WARN_ON_ONCE(1);
4127 }
4128 static inline void f2fs_put_page_dic(struct page *page)
4129 {
4130 	WARN_ON_ONCE(1);
4131 }
4132 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4133 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4134 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4135 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4136 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4137 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4138 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4139 static inline void f2fs_destroy_compress_cache(void) { }
4140 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4141 				block_t blkaddr) { }
4142 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4143 				struct page *page, nid_t ino, block_t blkaddr) { }
4144 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4145 				struct page *page, block_t blkaddr) { return false; }
4146 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4147 							nid_t ino) { }
4148 #define inc_compr_inode_stat(inode)		do { } while (0)
4149 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4150 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4151 				unsigned int c_len) { }
4152 #endif
4153 
4154 static inline void set_compress_context(struct inode *inode)
4155 {
4156 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4157 
4158 	F2FS_I(inode)->i_compress_algorithm =
4159 			F2FS_OPTION(sbi).compress_algorithm;
4160 	F2FS_I(inode)->i_log_cluster_size =
4161 			F2FS_OPTION(sbi).compress_log_size;
4162 	F2FS_I(inode)->i_compress_flag =
4163 			F2FS_OPTION(sbi).compress_chksum ?
4164 				1 << COMPRESS_CHKSUM : 0;
4165 	F2FS_I(inode)->i_cluster_size =
4166 			1 << F2FS_I(inode)->i_log_cluster_size;
4167 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4168 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4169 			F2FS_OPTION(sbi).compress_level)
4170 		F2FS_I(inode)->i_compress_flag |=
4171 				F2FS_OPTION(sbi).compress_level <<
4172 				COMPRESS_LEVEL_OFFSET;
4173 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4174 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4175 	stat_inc_compr_inode(inode);
4176 	inc_compr_inode_stat(inode);
4177 	f2fs_mark_inode_dirty_sync(inode, true);
4178 }
4179 
4180 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4181 {
4182 	struct f2fs_inode_info *fi = F2FS_I(inode);
4183 
4184 	if (!f2fs_compressed_file(inode))
4185 		return true;
4186 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4187 		return false;
4188 
4189 	fi->i_flags &= ~F2FS_COMPR_FL;
4190 	stat_dec_compr_inode(inode);
4191 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4192 	f2fs_mark_inode_dirty_sync(inode, true);
4193 	return true;
4194 }
4195 
4196 #define F2FS_FEATURE_FUNCS(name, flagname) \
4197 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4198 { \
4199 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4200 }
4201 
4202 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4203 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4204 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4205 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4206 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4207 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4208 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4209 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4210 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4211 F2FS_FEATURE_FUNCS(verity, VERITY);
4212 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4213 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4214 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4215 F2FS_FEATURE_FUNCS(readonly, RO);
4216 
4217 static inline bool f2fs_may_extent_tree(struct inode *inode)
4218 {
4219 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4220 
4221 	if (!test_opt(sbi, EXTENT_CACHE) ||
4222 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4223 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4224 			 !f2fs_sb_has_readonly(sbi)))
4225 		return false;
4226 
4227 	/*
4228 	 * for recovered files during mount do not create extents
4229 	 * if shrinker is not registered.
4230 	 */
4231 	if (list_empty(&sbi->s_list))
4232 		return false;
4233 
4234 	return S_ISREG(inode->i_mode);
4235 }
4236 
4237 #ifdef CONFIG_BLK_DEV_ZONED
4238 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4239 				    block_t blkaddr)
4240 {
4241 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4242 
4243 	return test_bit(zno, FDEV(devi).blkz_seq);
4244 }
4245 #endif
4246 
4247 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4248 {
4249 	return f2fs_sb_has_blkzoned(sbi);
4250 }
4251 
4252 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4253 {
4254 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4255 	       bdev_is_zoned(bdev);
4256 }
4257 
4258 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4259 {
4260 	int i;
4261 
4262 	if (!f2fs_is_multi_device(sbi))
4263 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4264 
4265 	for (i = 0; i < sbi->s_ndevs; i++)
4266 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4267 			return true;
4268 	return false;
4269 }
4270 
4271 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4272 {
4273 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4274 					f2fs_hw_should_discard(sbi);
4275 }
4276 
4277 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4278 {
4279 	int i;
4280 
4281 	if (!f2fs_is_multi_device(sbi))
4282 		return bdev_read_only(sbi->sb->s_bdev);
4283 
4284 	for (i = 0; i < sbi->s_ndevs; i++)
4285 		if (bdev_read_only(FDEV(i).bdev))
4286 			return true;
4287 	return false;
4288 }
4289 
4290 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4291 {
4292 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4293 }
4294 
4295 static inline bool f2fs_may_compress(struct inode *inode)
4296 {
4297 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4298 				f2fs_is_atomic_file(inode) ||
4299 				f2fs_is_volatile_file(inode))
4300 		return false;
4301 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4302 }
4303 
4304 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4305 						u64 blocks, bool add)
4306 {
4307 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4308 	struct f2fs_inode_info *fi = F2FS_I(inode);
4309 
4310 	/* don't update i_compr_blocks if saved blocks were released */
4311 	if (!add && !atomic_read(&fi->i_compr_blocks))
4312 		return;
4313 
4314 	if (add) {
4315 		atomic_add(diff, &fi->i_compr_blocks);
4316 		stat_add_compr_blocks(inode, diff);
4317 	} else {
4318 		atomic_sub(diff, &fi->i_compr_blocks);
4319 		stat_sub_compr_blocks(inode, diff);
4320 	}
4321 	f2fs_mark_inode_dirty_sync(inode, true);
4322 }
4323 
4324 static inline int block_unaligned_IO(struct inode *inode,
4325 				struct kiocb *iocb, struct iov_iter *iter)
4326 {
4327 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4328 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4329 	loff_t offset = iocb->ki_pos;
4330 	unsigned long align = offset | iov_iter_alignment(iter);
4331 
4332 	return align & blocksize_mask;
4333 }
4334 
4335 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4336 								int flag)
4337 {
4338 	if (!f2fs_is_multi_device(sbi))
4339 		return false;
4340 	if (flag != F2FS_GET_BLOCK_DIO)
4341 		return false;
4342 	return sbi->aligned_blksize;
4343 }
4344 
4345 static inline bool f2fs_force_buffered_io(struct inode *inode,
4346 				struct kiocb *iocb, struct iov_iter *iter)
4347 {
4348 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4349 	int rw = iov_iter_rw(iter);
4350 
4351 	if (f2fs_post_read_required(inode))
4352 		return true;
4353 
4354 	/* disallow direct IO if any of devices has unaligned blksize */
4355 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4356 		return true;
4357 	/*
4358 	 * for blkzoned device, fallback direct IO to buffered IO, so
4359 	 * all IOs can be serialized by log-structured write.
4360 	 */
4361 	if (f2fs_sb_has_blkzoned(sbi))
4362 		return true;
4363 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4364 		if (block_unaligned_IO(inode, iocb, iter))
4365 			return true;
4366 		if (F2FS_IO_ALIGNED(sbi))
4367 			return true;
4368 	}
4369 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4370 		return true;
4371 
4372 	return false;
4373 }
4374 
4375 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4376 {
4377 	return fsverity_active(inode) &&
4378 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4379 }
4380 
4381 #ifdef CONFIG_F2FS_FAULT_INJECTION
4382 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4383 							unsigned int type);
4384 #else
4385 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4386 #endif
4387 
4388 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4389 {
4390 #ifdef CONFIG_QUOTA
4391 	if (f2fs_sb_has_quota_ino(sbi))
4392 		return true;
4393 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4394 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4395 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4396 		return true;
4397 #endif
4398 	return false;
4399 }
4400 
4401 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4402 {
4403 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4404 }
4405 
4406 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4407 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4408 
4409 #endif /* _LINUX_F2FS_H */
4410