1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/fscrypto.h> 26 #include <crypto/hash.h> 27 28 #ifdef CONFIG_F2FS_CHECK_FS 29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 30 #else 31 #define f2fs_bug_on(sbi, condition) \ 32 do { \ 33 if (unlikely(condition)) { \ 34 WARN_ON(1); \ 35 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 36 } \ 37 } while (0) 38 #endif 39 40 #ifdef CONFIG_F2FS_FAULT_INJECTION 41 enum { 42 FAULT_KMALLOC, 43 FAULT_PAGE_ALLOC, 44 FAULT_ALLOC_NID, 45 FAULT_ORPHAN, 46 FAULT_BLOCK, 47 FAULT_DIR_DEPTH, 48 FAULT_EVICT_INODE, 49 FAULT_IO, 50 FAULT_CHECKPOINT, 51 FAULT_MAX, 52 }; 53 54 struct f2fs_fault_info { 55 atomic_t inject_ops; 56 unsigned int inject_rate; 57 unsigned int inject_type; 58 }; 59 60 extern char *fault_name[FAULT_MAX]; 61 #define IS_FAULT_SET(fi, type) (fi->inject_type & (1 << (type))) 62 #endif 63 64 /* 65 * For mount options 66 */ 67 #define F2FS_MOUNT_BG_GC 0x00000001 68 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 69 #define F2FS_MOUNT_DISCARD 0x00000004 70 #define F2FS_MOUNT_NOHEAP 0x00000008 71 #define F2FS_MOUNT_XATTR_USER 0x00000010 72 #define F2FS_MOUNT_POSIX_ACL 0x00000020 73 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 74 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 75 #define F2FS_MOUNT_INLINE_DATA 0x00000100 76 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 77 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 78 #define F2FS_MOUNT_NOBARRIER 0x00000800 79 #define F2FS_MOUNT_FASTBOOT 0x00001000 80 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 81 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 82 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 83 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 84 #define F2FS_MOUNT_ADAPTIVE 0x00020000 85 #define F2FS_MOUNT_LFS 0x00040000 86 87 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 88 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 89 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 90 91 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 92 typecheck(unsigned long long, b) && \ 93 ((long long)((a) - (b)) > 0)) 94 95 typedef u32 block_t; /* 96 * should not change u32, since it is the on-disk block 97 * address format, __le32. 98 */ 99 typedef u32 nid_t; 100 101 struct f2fs_mount_info { 102 unsigned int opt; 103 }; 104 105 #define F2FS_FEATURE_ENCRYPT 0x0001 106 #define F2FS_FEATURE_HMSMR 0x0002 107 108 #define F2FS_HAS_FEATURE(sb, mask) \ 109 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 110 #define F2FS_SET_FEATURE(sb, mask) \ 111 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 112 #define F2FS_CLEAR_FEATURE(sb, mask) \ 113 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 114 115 /* 116 * For checkpoint manager 117 */ 118 enum { 119 NAT_BITMAP, 120 SIT_BITMAP 121 }; 122 123 enum { 124 CP_UMOUNT, 125 CP_FASTBOOT, 126 CP_SYNC, 127 CP_RECOVERY, 128 CP_DISCARD, 129 }; 130 131 #define DEF_BATCHED_TRIM_SECTIONS 2 132 #define BATCHED_TRIM_SEGMENTS(sbi) \ 133 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 134 #define BATCHED_TRIM_BLOCKS(sbi) \ 135 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 136 #define DEF_CP_INTERVAL 60 /* 60 secs */ 137 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 138 139 struct cp_control { 140 int reason; 141 __u64 trim_start; 142 __u64 trim_end; 143 __u64 trim_minlen; 144 __u64 trimmed; 145 }; 146 147 /* 148 * For CP/NAT/SIT/SSA readahead 149 */ 150 enum { 151 META_CP, 152 META_NAT, 153 META_SIT, 154 META_SSA, 155 META_POR, 156 }; 157 158 /* for the list of ino */ 159 enum { 160 ORPHAN_INO, /* for orphan ino list */ 161 APPEND_INO, /* for append ino list */ 162 UPDATE_INO, /* for update ino list */ 163 MAX_INO_ENTRY, /* max. list */ 164 }; 165 166 struct ino_entry { 167 struct list_head list; /* list head */ 168 nid_t ino; /* inode number */ 169 }; 170 171 /* for the list of inodes to be GCed */ 172 struct inode_entry { 173 struct list_head list; /* list head */ 174 struct inode *inode; /* vfs inode pointer */ 175 }; 176 177 /* for the list of blockaddresses to be discarded */ 178 struct discard_entry { 179 struct list_head list; /* list head */ 180 block_t blkaddr; /* block address to be discarded */ 181 int len; /* # of consecutive blocks of the discard */ 182 }; 183 184 struct bio_entry { 185 struct list_head list; 186 struct bio *bio; 187 struct completion event; 188 int error; 189 }; 190 191 /* for the list of fsync inodes, used only during recovery */ 192 struct fsync_inode_entry { 193 struct list_head list; /* list head */ 194 struct inode *inode; /* vfs inode pointer */ 195 block_t blkaddr; /* block address locating the last fsync */ 196 block_t last_dentry; /* block address locating the last dentry */ 197 }; 198 199 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats)) 200 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits)) 201 202 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne) 203 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid) 204 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se) 205 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno) 206 207 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 208 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 209 210 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 211 { 212 int before = nats_in_cursum(journal); 213 journal->n_nats = cpu_to_le16(before + i); 214 return before; 215 } 216 217 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 218 { 219 int before = sits_in_cursum(journal); 220 journal->n_sits = cpu_to_le16(before + i); 221 return before; 222 } 223 224 static inline bool __has_cursum_space(struct f2fs_journal *journal, 225 int size, int type) 226 { 227 if (type == NAT_JOURNAL) 228 return size <= MAX_NAT_JENTRIES(journal); 229 return size <= MAX_SIT_JENTRIES(journal); 230 } 231 232 /* 233 * ioctl commands 234 */ 235 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 236 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 237 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 238 239 #define F2FS_IOCTL_MAGIC 0xf5 240 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 241 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 242 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 243 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 244 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 245 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 246 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 247 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 248 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 249 struct f2fs_move_range) 250 251 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 252 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 253 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 254 255 /* 256 * should be same as XFS_IOC_GOINGDOWN. 257 * Flags for going down operation used by FS_IOC_GOINGDOWN 258 */ 259 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 260 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 261 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 262 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 263 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 264 265 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 266 /* 267 * ioctl commands in 32 bit emulation 268 */ 269 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 270 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 271 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 272 #endif 273 274 struct f2fs_defragment { 275 u64 start; 276 u64 len; 277 }; 278 279 struct f2fs_move_range { 280 u32 dst_fd; /* destination fd */ 281 u64 pos_in; /* start position in src_fd */ 282 u64 pos_out; /* start position in dst_fd */ 283 u64 len; /* size to move */ 284 }; 285 286 /* 287 * For INODE and NODE manager 288 */ 289 /* for directory operations */ 290 struct f2fs_dentry_ptr { 291 struct inode *inode; 292 const void *bitmap; 293 struct f2fs_dir_entry *dentry; 294 __u8 (*filename)[F2FS_SLOT_LEN]; 295 int max; 296 }; 297 298 static inline void make_dentry_ptr(struct inode *inode, 299 struct f2fs_dentry_ptr *d, void *src, int type) 300 { 301 d->inode = inode; 302 303 if (type == 1) { 304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 305 d->max = NR_DENTRY_IN_BLOCK; 306 d->bitmap = &t->dentry_bitmap; 307 d->dentry = t->dentry; 308 d->filename = t->filename; 309 } else { 310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 311 d->max = NR_INLINE_DENTRY; 312 d->bitmap = &t->dentry_bitmap; 313 d->dentry = t->dentry; 314 d->filename = t->filename; 315 } 316 } 317 318 /* 319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 320 * as its node offset to distinguish from index node blocks. 321 * But some bits are used to mark the node block. 322 */ 323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 324 >> OFFSET_BIT_SHIFT) 325 enum { 326 ALLOC_NODE, /* allocate a new node page if needed */ 327 LOOKUP_NODE, /* look up a node without readahead */ 328 LOOKUP_NODE_RA, /* 329 * look up a node with readahead called 330 * by get_data_block. 331 */ 332 }; 333 334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 335 336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 337 338 /* vector size for gang look-up from extent cache that consists of radix tree */ 339 #define EXT_TREE_VEC_SIZE 64 340 341 /* for in-memory extent cache entry */ 342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 343 344 /* number of extent info in extent cache we try to shrink */ 345 #define EXTENT_CACHE_SHRINK_NUMBER 128 346 347 struct extent_info { 348 unsigned int fofs; /* start offset in a file */ 349 u32 blk; /* start block address of the extent */ 350 unsigned int len; /* length of the extent */ 351 }; 352 353 struct extent_node { 354 struct rb_node rb_node; /* rb node located in rb-tree */ 355 struct list_head list; /* node in global extent list of sbi */ 356 struct extent_info ei; /* extent info */ 357 struct extent_tree *et; /* extent tree pointer */ 358 }; 359 360 struct extent_tree { 361 nid_t ino; /* inode number */ 362 struct rb_root root; /* root of extent info rb-tree */ 363 struct extent_node *cached_en; /* recently accessed extent node */ 364 struct extent_info largest; /* largested extent info */ 365 struct list_head list; /* to be used by sbi->zombie_list */ 366 rwlock_t lock; /* protect extent info rb-tree */ 367 atomic_t node_cnt; /* # of extent node in rb-tree*/ 368 }; 369 370 /* 371 * This structure is taken from ext4_map_blocks. 372 * 373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 374 */ 375 #define F2FS_MAP_NEW (1 << BH_New) 376 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 379 F2FS_MAP_UNWRITTEN) 380 381 struct f2fs_map_blocks { 382 block_t m_pblk; 383 block_t m_lblk; 384 unsigned int m_len; 385 unsigned int m_flags; 386 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 387 }; 388 389 /* for flag in get_data_block */ 390 #define F2FS_GET_BLOCK_READ 0 391 #define F2FS_GET_BLOCK_DIO 1 392 #define F2FS_GET_BLOCK_FIEMAP 2 393 #define F2FS_GET_BLOCK_BMAP 3 394 #define F2FS_GET_BLOCK_PRE_DIO 4 395 #define F2FS_GET_BLOCK_PRE_AIO 5 396 397 /* 398 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 399 */ 400 #define FADVISE_COLD_BIT 0x01 401 #define FADVISE_LOST_PINO_BIT 0x02 402 #define FADVISE_ENCRYPT_BIT 0x04 403 #define FADVISE_ENC_NAME_BIT 0x08 404 405 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 406 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 407 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 408 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 409 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 410 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 411 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 412 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 413 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 414 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 415 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 416 417 #define DEF_DIR_LEVEL 0 418 419 struct f2fs_inode_info { 420 struct inode vfs_inode; /* serve a vfs inode */ 421 unsigned long i_flags; /* keep an inode flags for ioctl */ 422 unsigned char i_advise; /* use to give file attribute hints */ 423 unsigned char i_dir_level; /* use for dentry level for large dir */ 424 unsigned int i_current_depth; /* use only in directory structure */ 425 unsigned int i_pino; /* parent inode number */ 426 umode_t i_acl_mode; /* keep file acl mode temporarily */ 427 428 /* Use below internally in f2fs*/ 429 unsigned long flags; /* use to pass per-file flags */ 430 struct rw_semaphore i_sem; /* protect fi info */ 431 struct percpu_counter dirty_pages; /* # of dirty pages */ 432 f2fs_hash_t chash; /* hash value of given file name */ 433 unsigned int clevel; /* maximum level of given file name */ 434 nid_t i_xattr_nid; /* node id that contains xattrs */ 435 unsigned long long xattr_ver; /* cp version of xattr modification */ 436 loff_t last_disk_size; /* lastly written file size */ 437 438 struct list_head dirty_list; /* dirty list for dirs and files */ 439 struct list_head gdirty_list; /* linked in global dirty list */ 440 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 441 struct mutex inmem_lock; /* lock for inmemory pages */ 442 struct extent_tree *extent_tree; /* cached extent_tree entry */ 443 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 444 }; 445 446 static inline void get_extent_info(struct extent_info *ext, 447 struct f2fs_extent *i_ext) 448 { 449 ext->fofs = le32_to_cpu(i_ext->fofs); 450 ext->blk = le32_to_cpu(i_ext->blk); 451 ext->len = le32_to_cpu(i_ext->len); 452 } 453 454 static inline void set_raw_extent(struct extent_info *ext, 455 struct f2fs_extent *i_ext) 456 { 457 i_ext->fofs = cpu_to_le32(ext->fofs); 458 i_ext->blk = cpu_to_le32(ext->blk); 459 i_ext->len = cpu_to_le32(ext->len); 460 } 461 462 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 463 u32 blk, unsigned int len) 464 { 465 ei->fofs = fofs; 466 ei->blk = blk; 467 ei->len = len; 468 } 469 470 static inline bool __is_extent_same(struct extent_info *ei1, 471 struct extent_info *ei2) 472 { 473 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 474 ei1->len == ei2->len); 475 } 476 477 static inline bool __is_extent_mergeable(struct extent_info *back, 478 struct extent_info *front) 479 { 480 return (back->fofs + back->len == front->fofs && 481 back->blk + back->len == front->blk); 482 } 483 484 static inline bool __is_back_mergeable(struct extent_info *cur, 485 struct extent_info *back) 486 { 487 return __is_extent_mergeable(back, cur); 488 } 489 490 static inline bool __is_front_mergeable(struct extent_info *cur, 491 struct extent_info *front) 492 { 493 return __is_extent_mergeable(cur, front); 494 } 495 496 extern void f2fs_mark_inode_dirty_sync(struct inode *); 497 static inline void __try_update_largest_extent(struct inode *inode, 498 struct extent_tree *et, struct extent_node *en) 499 { 500 if (en->ei.len > et->largest.len) { 501 et->largest = en->ei; 502 f2fs_mark_inode_dirty_sync(inode); 503 } 504 } 505 506 struct f2fs_nm_info { 507 block_t nat_blkaddr; /* base disk address of NAT */ 508 nid_t max_nid; /* maximum possible node ids */ 509 nid_t available_nids; /* maximum available node ids */ 510 nid_t next_scan_nid; /* the next nid to be scanned */ 511 unsigned int ram_thresh; /* control the memory footprint */ 512 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 513 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 514 515 /* NAT cache management */ 516 struct radix_tree_root nat_root;/* root of the nat entry cache */ 517 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 518 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 519 struct list_head nat_entries; /* cached nat entry list (clean) */ 520 unsigned int nat_cnt; /* the # of cached nat entries */ 521 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 522 523 /* free node ids management */ 524 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 525 struct list_head free_nid_list; /* a list for free nids */ 526 spinlock_t free_nid_list_lock; /* protect free nid list */ 527 unsigned int fcnt; /* the number of free node id */ 528 struct mutex build_lock; /* lock for build free nids */ 529 530 /* for checkpoint */ 531 char *nat_bitmap; /* NAT bitmap pointer */ 532 int bitmap_size; /* bitmap size */ 533 }; 534 535 /* 536 * this structure is used as one of function parameters. 537 * all the information are dedicated to a given direct node block determined 538 * by the data offset in a file. 539 */ 540 struct dnode_of_data { 541 struct inode *inode; /* vfs inode pointer */ 542 struct page *inode_page; /* its inode page, NULL is possible */ 543 struct page *node_page; /* cached direct node page */ 544 nid_t nid; /* node id of the direct node block */ 545 unsigned int ofs_in_node; /* data offset in the node page */ 546 bool inode_page_locked; /* inode page is locked or not */ 547 bool node_changed; /* is node block changed */ 548 char cur_level; /* level of hole node page */ 549 char max_level; /* level of current page located */ 550 block_t data_blkaddr; /* block address of the node block */ 551 }; 552 553 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 554 struct page *ipage, struct page *npage, nid_t nid) 555 { 556 memset(dn, 0, sizeof(*dn)); 557 dn->inode = inode; 558 dn->inode_page = ipage; 559 dn->node_page = npage; 560 dn->nid = nid; 561 } 562 563 /* 564 * For SIT manager 565 * 566 * By default, there are 6 active log areas across the whole main area. 567 * When considering hot and cold data separation to reduce cleaning overhead, 568 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 569 * respectively. 570 * In the current design, you should not change the numbers intentionally. 571 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 572 * logs individually according to the underlying devices. (default: 6) 573 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 574 * data and 8 for node logs. 575 */ 576 #define NR_CURSEG_DATA_TYPE (3) 577 #define NR_CURSEG_NODE_TYPE (3) 578 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 579 580 enum { 581 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 582 CURSEG_WARM_DATA, /* data blocks */ 583 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 584 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 585 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 586 CURSEG_COLD_NODE, /* indirect node blocks */ 587 NO_CHECK_TYPE, 588 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 589 }; 590 591 struct flush_cmd { 592 struct completion wait; 593 struct llist_node llnode; 594 int ret; 595 }; 596 597 struct flush_cmd_control { 598 struct task_struct *f2fs_issue_flush; /* flush thread */ 599 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 600 atomic_t submit_flush; /* # of issued flushes */ 601 struct llist_head issue_list; /* list for command issue */ 602 struct llist_node *dispatch_list; /* list for command dispatch */ 603 }; 604 605 struct f2fs_sm_info { 606 struct sit_info *sit_info; /* whole segment information */ 607 struct free_segmap_info *free_info; /* free segment information */ 608 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 609 struct curseg_info *curseg_array; /* active segment information */ 610 611 block_t seg0_blkaddr; /* block address of 0'th segment */ 612 block_t main_blkaddr; /* start block address of main area */ 613 block_t ssa_blkaddr; /* start block address of SSA area */ 614 615 unsigned int segment_count; /* total # of segments */ 616 unsigned int main_segments; /* # of segments in main area */ 617 unsigned int reserved_segments; /* # of reserved segments */ 618 unsigned int ovp_segments; /* # of overprovision segments */ 619 620 /* a threshold to reclaim prefree segments */ 621 unsigned int rec_prefree_segments; 622 623 /* for small discard management */ 624 struct list_head discard_list; /* 4KB discard list */ 625 struct list_head wait_list; /* linked with issued discard bio */ 626 int nr_discards; /* # of discards in the list */ 627 int max_discards; /* max. discards to be issued */ 628 629 /* for batched trimming */ 630 unsigned int trim_sections; /* # of sections to trim */ 631 632 struct list_head sit_entry_set; /* sit entry set list */ 633 634 unsigned int ipu_policy; /* in-place-update policy */ 635 unsigned int min_ipu_util; /* in-place-update threshold */ 636 unsigned int min_fsync_blocks; /* threshold for fsync */ 637 638 /* for flush command control */ 639 struct flush_cmd_control *cmd_control_info; 640 641 }; 642 643 /* 644 * For superblock 645 */ 646 /* 647 * COUNT_TYPE for monitoring 648 * 649 * f2fs monitors the number of several block types such as on-writeback, 650 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 651 */ 652 enum count_type { 653 F2FS_DIRTY_DENTS, 654 F2FS_DIRTY_DATA, 655 F2FS_DIRTY_NODES, 656 F2FS_DIRTY_META, 657 F2FS_INMEM_PAGES, 658 F2FS_DIRTY_IMETA, 659 NR_COUNT_TYPE, 660 }; 661 662 /* 663 * The below are the page types of bios used in submit_bio(). 664 * The available types are: 665 * DATA User data pages. It operates as async mode. 666 * NODE Node pages. It operates as async mode. 667 * META FS metadata pages such as SIT, NAT, CP. 668 * NR_PAGE_TYPE The number of page types. 669 * META_FLUSH Make sure the previous pages are written 670 * with waiting the bio's completion 671 * ... Only can be used with META. 672 */ 673 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 674 enum page_type { 675 DATA, 676 NODE, 677 META, 678 NR_PAGE_TYPE, 679 META_FLUSH, 680 INMEM, /* the below types are used by tracepoints only. */ 681 INMEM_DROP, 682 INMEM_REVOKE, 683 IPU, 684 OPU, 685 }; 686 687 struct f2fs_io_info { 688 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 689 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 690 int op; /* contains REQ_OP_ */ 691 int op_flags; /* rq_flag_bits */ 692 block_t new_blkaddr; /* new block address to be written */ 693 block_t old_blkaddr; /* old block address before Cow */ 694 struct page *page; /* page to be written */ 695 struct page *encrypted_page; /* encrypted page */ 696 }; 697 698 #define is_read_io(rw) (rw == READ) 699 struct f2fs_bio_info { 700 struct f2fs_sb_info *sbi; /* f2fs superblock */ 701 struct bio *bio; /* bios to merge */ 702 sector_t last_block_in_bio; /* last block number */ 703 struct f2fs_io_info fio; /* store buffered io info. */ 704 struct rw_semaphore io_rwsem; /* blocking op for bio */ 705 }; 706 707 enum inode_type { 708 DIR_INODE, /* for dirty dir inode */ 709 FILE_INODE, /* for dirty regular/symlink inode */ 710 DIRTY_META, /* for all dirtied inode metadata */ 711 NR_INODE_TYPE, 712 }; 713 714 /* for inner inode cache management */ 715 struct inode_management { 716 struct radix_tree_root ino_root; /* ino entry array */ 717 spinlock_t ino_lock; /* for ino entry lock */ 718 struct list_head ino_list; /* inode list head */ 719 unsigned long ino_num; /* number of entries */ 720 }; 721 722 /* For s_flag in struct f2fs_sb_info */ 723 enum { 724 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 725 SBI_IS_CLOSE, /* specify unmounting */ 726 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 727 SBI_POR_DOING, /* recovery is doing or not */ 728 SBI_NEED_SB_WRITE, /* need to recover superblock */ 729 SBI_NEED_CP, /* need to checkpoint */ 730 }; 731 732 enum { 733 CP_TIME, 734 REQ_TIME, 735 MAX_TIME, 736 }; 737 738 #ifdef CONFIG_F2FS_FS_ENCRYPTION 739 #define F2FS_KEY_DESC_PREFIX "f2fs:" 740 #define F2FS_KEY_DESC_PREFIX_SIZE 5 741 #endif 742 struct f2fs_sb_info { 743 struct super_block *sb; /* pointer to VFS super block */ 744 struct proc_dir_entry *s_proc; /* proc entry */ 745 struct f2fs_super_block *raw_super; /* raw super block pointer */ 746 int valid_super_block; /* valid super block no */ 747 unsigned long s_flag; /* flags for sbi */ 748 749 #ifdef CONFIG_F2FS_FS_ENCRYPTION 750 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE]; 751 u8 key_prefix_size; 752 #endif 753 /* for node-related operations */ 754 struct f2fs_nm_info *nm_info; /* node manager */ 755 struct inode *node_inode; /* cache node blocks */ 756 757 /* for segment-related operations */ 758 struct f2fs_sm_info *sm_info; /* segment manager */ 759 760 /* for bio operations */ 761 struct f2fs_bio_info read_io; /* for read bios */ 762 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 763 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */ 764 765 /* for checkpoint */ 766 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 767 spinlock_t cp_lock; /* for flag in ckpt */ 768 struct inode *meta_inode; /* cache meta blocks */ 769 struct mutex cp_mutex; /* checkpoint procedure lock */ 770 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 771 struct rw_semaphore node_write; /* locking node writes */ 772 wait_queue_head_t cp_wait; 773 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 774 long interval_time[MAX_TIME]; /* to store thresholds */ 775 776 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 777 778 /* for orphan inode, use 0'th array */ 779 unsigned int max_orphans; /* max orphan inodes */ 780 781 /* for inode management */ 782 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 783 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 784 785 /* for extent tree cache */ 786 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 787 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 788 struct list_head extent_list; /* lru list for shrinker */ 789 spinlock_t extent_lock; /* locking extent lru list */ 790 atomic_t total_ext_tree; /* extent tree count */ 791 struct list_head zombie_list; /* extent zombie tree list */ 792 atomic_t total_zombie_tree; /* extent zombie tree count */ 793 atomic_t total_ext_node; /* extent info count */ 794 795 /* basic filesystem units */ 796 unsigned int log_sectors_per_block; /* log2 sectors per block */ 797 unsigned int log_blocksize; /* log2 block size */ 798 unsigned int blocksize; /* block size */ 799 unsigned int root_ino_num; /* root inode number*/ 800 unsigned int node_ino_num; /* node inode number*/ 801 unsigned int meta_ino_num; /* meta inode number*/ 802 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 803 unsigned int blocks_per_seg; /* blocks per segment */ 804 unsigned int segs_per_sec; /* segments per section */ 805 unsigned int secs_per_zone; /* sections per zone */ 806 unsigned int total_sections; /* total section count */ 807 unsigned int total_node_count; /* total node block count */ 808 unsigned int total_valid_node_count; /* valid node block count */ 809 loff_t max_file_blocks; /* max block index of file */ 810 int active_logs; /* # of active logs */ 811 int dir_level; /* directory level */ 812 813 block_t user_block_count; /* # of user blocks */ 814 block_t total_valid_block_count; /* # of valid blocks */ 815 block_t discard_blks; /* discard command candidats */ 816 block_t last_valid_block_count; /* for recovery */ 817 u32 s_next_generation; /* for NFS support */ 818 atomic_t nr_wb_bios; /* # of writeback bios */ 819 820 /* # of pages, see count_type */ 821 struct percpu_counter nr_pages[NR_COUNT_TYPE]; 822 /* # of allocated blocks */ 823 struct percpu_counter alloc_valid_block_count; 824 825 /* valid inode count */ 826 struct percpu_counter total_valid_inode_count; 827 828 struct f2fs_mount_info mount_opt; /* mount options */ 829 830 /* for cleaning operations */ 831 struct mutex gc_mutex; /* mutex for GC */ 832 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 833 unsigned int cur_victim_sec; /* current victim section num */ 834 835 /* maximum # of trials to find a victim segment for SSR and GC */ 836 unsigned int max_victim_search; 837 838 /* 839 * for stat information. 840 * one is for the LFS mode, and the other is for the SSR mode. 841 */ 842 #ifdef CONFIG_F2FS_STAT_FS 843 struct f2fs_stat_info *stat_info; /* FS status information */ 844 unsigned int segment_count[2]; /* # of allocated segments */ 845 unsigned int block_count[2]; /* # of allocated blocks */ 846 atomic_t inplace_count; /* # of inplace update */ 847 atomic64_t total_hit_ext; /* # of lookup extent cache */ 848 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 849 atomic64_t read_hit_largest; /* # of hit largest extent node */ 850 atomic64_t read_hit_cached; /* # of hit cached extent node */ 851 atomic_t inline_xattr; /* # of inline_xattr inodes */ 852 atomic_t inline_inode; /* # of inline_data inodes */ 853 atomic_t inline_dir; /* # of inline_dentry inodes */ 854 int bg_gc; /* background gc calls */ 855 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 856 #endif 857 unsigned int last_victim[2]; /* last victim segment # */ 858 spinlock_t stat_lock; /* lock for stat operations */ 859 860 /* For sysfs suppport */ 861 struct kobject s_kobj; 862 struct completion s_kobj_unregister; 863 864 /* For shrinker support */ 865 struct list_head s_list; 866 struct mutex umount_mutex; 867 unsigned int shrinker_run_no; 868 869 /* For write statistics */ 870 u64 sectors_written_start; 871 u64 kbytes_written; 872 873 /* Reference to checksum algorithm driver via cryptoapi */ 874 struct crypto_shash *s_chksum_driver; 875 876 /* For fault injection */ 877 #ifdef CONFIG_F2FS_FAULT_INJECTION 878 struct f2fs_fault_info fault_info; 879 #endif 880 }; 881 882 #ifdef CONFIG_F2FS_FAULT_INJECTION 883 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 884 { 885 struct f2fs_fault_info *ffi = &sbi->fault_info; 886 887 if (!ffi->inject_rate) 888 return false; 889 890 if (!IS_FAULT_SET(ffi, type)) 891 return false; 892 893 atomic_inc(&ffi->inject_ops); 894 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 895 atomic_set(&ffi->inject_ops, 0); 896 printk("%sF2FS-fs : inject %s in %pF\n", 897 KERN_INFO, 898 fault_name[type], 899 __builtin_return_address(0)); 900 return true; 901 } 902 return false; 903 } 904 #endif 905 906 /* For write statistics. Suppose sector size is 512 bytes, 907 * and the return value is in kbytes. s is of struct f2fs_sb_info. 908 */ 909 #define BD_PART_WRITTEN(s) \ 910 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \ 911 s->sectors_written_start) >> 1) 912 913 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 914 { 915 sbi->last_time[type] = jiffies; 916 } 917 918 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 919 { 920 struct timespec ts = {sbi->interval_time[type], 0}; 921 unsigned long interval = timespec_to_jiffies(&ts); 922 923 return time_after(jiffies, sbi->last_time[type] + interval); 924 } 925 926 static inline bool is_idle(struct f2fs_sb_info *sbi) 927 { 928 struct block_device *bdev = sbi->sb->s_bdev; 929 struct request_queue *q = bdev_get_queue(bdev); 930 struct request_list *rl = &q->root_rl; 931 932 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 933 return 0; 934 935 return f2fs_time_over(sbi, REQ_TIME); 936 } 937 938 /* 939 * Inline functions 940 */ 941 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 942 unsigned int length) 943 { 944 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver); 945 u32 *ctx = (u32 *)shash_desc_ctx(shash); 946 int err; 947 948 shash->tfm = sbi->s_chksum_driver; 949 shash->flags = 0; 950 *ctx = F2FS_SUPER_MAGIC; 951 952 err = crypto_shash_update(shash, address, length); 953 BUG_ON(err); 954 955 return *ctx; 956 } 957 958 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 959 void *buf, size_t buf_size) 960 { 961 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 962 } 963 964 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 965 { 966 return container_of(inode, struct f2fs_inode_info, vfs_inode); 967 } 968 969 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 970 { 971 return sb->s_fs_info; 972 } 973 974 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 975 { 976 return F2FS_SB(inode->i_sb); 977 } 978 979 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 980 { 981 return F2FS_I_SB(mapping->host); 982 } 983 984 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 985 { 986 return F2FS_M_SB(page->mapping); 987 } 988 989 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 990 { 991 return (struct f2fs_super_block *)(sbi->raw_super); 992 } 993 994 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 995 { 996 return (struct f2fs_checkpoint *)(sbi->ckpt); 997 } 998 999 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1000 { 1001 return (struct f2fs_node *)page_address(page); 1002 } 1003 1004 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1005 { 1006 return &((struct f2fs_node *)page_address(page))->i; 1007 } 1008 1009 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1010 { 1011 return (struct f2fs_nm_info *)(sbi->nm_info); 1012 } 1013 1014 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1015 { 1016 return (struct f2fs_sm_info *)(sbi->sm_info); 1017 } 1018 1019 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1020 { 1021 return (struct sit_info *)(SM_I(sbi)->sit_info); 1022 } 1023 1024 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1025 { 1026 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1027 } 1028 1029 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1030 { 1031 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1032 } 1033 1034 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1035 { 1036 return sbi->meta_inode->i_mapping; 1037 } 1038 1039 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1040 { 1041 return sbi->node_inode->i_mapping; 1042 } 1043 1044 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1045 { 1046 return test_bit(type, &sbi->s_flag); 1047 } 1048 1049 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1050 { 1051 set_bit(type, &sbi->s_flag); 1052 } 1053 1054 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1055 { 1056 clear_bit(type, &sbi->s_flag); 1057 } 1058 1059 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1060 { 1061 return le64_to_cpu(cp->checkpoint_ver); 1062 } 1063 1064 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1065 { 1066 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1067 1068 return ckpt_flags & f; 1069 } 1070 1071 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1072 { 1073 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1074 } 1075 1076 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1077 { 1078 unsigned int ckpt_flags; 1079 1080 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1081 ckpt_flags |= f; 1082 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1083 } 1084 1085 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1086 { 1087 spin_lock(&sbi->cp_lock); 1088 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1089 spin_unlock(&sbi->cp_lock); 1090 } 1091 1092 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1093 { 1094 unsigned int ckpt_flags; 1095 1096 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1097 ckpt_flags &= (~f); 1098 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1099 } 1100 1101 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1102 { 1103 spin_lock(&sbi->cp_lock); 1104 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1105 spin_unlock(&sbi->cp_lock); 1106 } 1107 1108 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 1109 { 1110 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 1111 1112 return blk_queue_discard(q); 1113 } 1114 1115 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1116 { 1117 down_read(&sbi->cp_rwsem); 1118 } 1119 1120 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1121 { 1122 up_read(&sbi->cp_rwsem); 1123 } 1124 1125 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1126 { 1127 down_write(&sbi->cp_rwsem); 1128 } 1129 1130 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1131 { 1132 up_write(&sbi->cp_rwsem); 1133 } 1134 1135 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1136 { 1137 int reason = CP_SYNC; 1138 1139 if (test_opt(sbi, FASTBOOT)) 1140 reason = CP_FASTBOOT; 1141 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1142 reason = CP_UMOUNT; 1143 return reason; 1144 } 1145 1146 static inline bool __remain_node_summaries(int reason) 1147 { 1148 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1149 } 1150 1151 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1152 { 1153 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1154 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1155 } 1156 1157 /* 1158 * Check whether the given nid is within node id range. 1159 */ 1160 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1161 { 1162 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1163 return -EINVAL; 1164 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1165 return -EINVAL; 1166 return 0; 1167 } 1168 1169 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1170 1171 /* 1172 * Check whether the inode has blocks or not 1173 */ 1174 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1175 { 1176 if (F2FS_I(inode)->i_xattr_nid) 1177 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1178 else 1179 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1180 } 1181 1182 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1183 { 1184 return ofs == XATTR_NODE_OFFSET; 1185 } 1186 1187 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool); 1188 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1189 struct inode *inode, blkcnt_t *count) 1190 { 1191 blkcnt_t diff; 1192 1193 #ifdef CONFIG_F2FS_FAULT_INJECTION 1194 if (time_to_inject(sbi, FAULT_BLOCK)) 1195 return false; 1196 #endif 1197 /* 1198 * let's increase this in prior to actual block count change in order 1199 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1200 */ 1201 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1202 1203 spin_lock(&sbi->stat_lock); 1204 sbi->total_valid_block_count += (block_t)(*count); 1205 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) { 1206 diff = sbi->total_valid_block_count - sbi->user_block_count; 1207 *count -= diff; 1208 sbi->total_valid_block_count = sbi->user_block_count; 1209 if (!*count) { 1210 spin_unlock(&sbi->stat_lock); 1211 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1212 return false; 1213 } 1214 } 1215 spin_unlock(&sbi->stat_lock); 1216 1217 f2fs_i_blocks_write(inode, *count, true); 1218 return true; 1219 } 1220 1221 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1222 struct inode *inode, 1223 blkcnt_t count) 1224 { 1225 spin_lock(&sbi->stat_lock); 1226 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1227 f2fs_bug_on(sbi, inode->i_blocks < count); 1228 sbi->total_valid_block_count -= (block_t)count; 1229 spin_unlock(&sbi->stat_lock); 1230 f2fs_i_blocks_write(inode, count, false); 1231 } 1232 1233 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1234 { 1235 percpu_counter_inc(&sbi->nr_pages[count_type]); 1236 1237 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES) 1238 return; 1239 1240 set_sbi_flag(sbi, SBI_IS_DIRTY); 1241 } 1242 1243 static inline void inode_inc_dirty_pages(struct inode *inode) 1244 { 1245 percpu_counter_inc(&F2FS_I(inode)->dirty_pages); 1246 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1247 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1248 } 1249 1250 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1251 { 1252 percpu_counter_dec(&sbi->nr_pages[count_type]); 1253 } 1254 1255 static inline void inode_dec_dirty_pages(struct inode *inode) 1256 { 1257 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1258 !S_ISLNK(inode->i_mode)) 1259 return; 1260 1261 percpu_counter_dec(&F2FS_I(inode)->dirty_pages); 1262 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1263 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1264 } 1265 1266 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1267 { 1268 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]); 1269 } 1270 1271 static inline s64 get_dirty_pages(struct inode *inode) 1272 { 1273 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages); 1274 } 1275 1276 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1277 { 1278 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1279 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1280 sbi->log_blocks_per_seg; 1281 1282 return segs / sbi->segs_per_sec; 1283 } 1284 1285 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1286 { 1287 return sbi->total_valid_block_count; 1288 } 1289 1290 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1291 { 1292 return sbi->discard_blks; 1293 } 1294 1295 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1296 { 1297 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1298 1299 /* return NAT or SIT bitmap */ 1300 if (flag == NAT_BITMAP) 1301 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1302 else if (flag == SIT_BITMAP) 1303 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1304 1305 return 0; 1306 } 1307 1308 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1309 { 1310 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1311 } 1312 1313 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1314 { 1315 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1316 int offset; 1317 1318 if (__cp_payload(sbi) > 0) { 1319 if (flag == NAT_BITMAP) 1320 return &ckpt->sit_nat_version_bitmap; 1321 else 1322 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1323 } else { 1324 offset = (flag == NAT_BITMAP) ? 1325 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1326 return &ckpt->sit_nat_version_bitmap + offset; 1327 } 1328 } 1329 1330 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1331 { 1332 block_t start_addr; 1333 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1334 unsigned long long ckpt_version = cur_cp_version(ckpt); 1335 1336 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1337 1338 /* 1339 * odd numbered checkpoint should at cp segment 0 1340 * and even segment must be at cp segment 1 1341 */ 1342 if (!(ckpt_version & 1)) 1343 start_addr += sbi->blocks_per_seg; 1344 1345 return start_addr; 1346 } 1347 1348 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1349 { 1350 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1351 } 1352 1353 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1354 struct inode *inode) 1355 { 1356 block_t valid_block_count; 1357 unsigned int valid_node_count; 1358 1359 spin_lock(&sbi->stat_lock); 1360 1361 valid_block_count = sbi->total_valid_block_count + 1; 1362 if (unlikely(valid_block_count > sbi->user_block_count)) { 1363 spin_unlock(&sbi->stat_lock); 1364 return false; 1365 } 1366 1367 valid_node_count = sbi->total_valid_node_count + 1; 1368 if (unlikely(valid_node_count > sbi->total_node_count)) { 1369 spin_unlock(&sbi->stat_lock); 1370 return false; 1371 } 1372 1373 if (inode) 1374 f2fs_i_blocks_write(inode, 1, true); 1375 1376 sbi->total_valid_node_count++; 1377 sbi->total_valid_block_count++; 1378 spin_unlock(&sbi->stat_lock); 1379 1380 percpu_counter_inc(&sbi->alloc_valid_block_count); 1381 return true; 1382 } 1383 1384 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1385 struct inode *inode) 1386 { 1387 spin_lock(&sbi->stat_lock); 1388 1389 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1390 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1391 f2fs_bug_on(sbi, !inode->i_blocks); 1392 1393 f2fs_i_blocks_write(inode, 1, false); 1394 sbi->total_valid_node_count--; 1395 sbi->total_valid_block_count--; 1396 1397 spin_unlock(&sbi->stat_lock); 1398 } 1399 1400 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1401 { 1402 return sbi->total_valid_node_count; 1403 } 1404 1405 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1406 { 1407 percpu_counter_inc(&sbi->total_valid_inode_count); 1408 } 1409 1410 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1411 { 1412 percpu_counter_dec(&sbi->total_valid_inode_count); 1413 } 1414 1415 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1416 { 1417 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1418 } 1419 1420 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1421 pgoff_t index, bool for_write) 1422 { 1423 #ifdef CONFIG_F2FS_FAULT_INJECTION 1424 struct page *page = find_lock_page(mapping, index); 1425 if (page) 1426 return page; 1427 1428 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 1429 return NULL; 1430 #endif 1431 if (!for_write) 1432 return grab_cache_page(mapping, index); 1433 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1434 } 1435 1436 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1437 { 1438 char *src_kaddr = kmap(src); 1439 char *dst_kaddr = kmap(dst); 1440 1441 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1442 kunmap(dst); 1443 kunmap(src); 1444 } 1445 1446 static inline void f2fs_put_page(struct page *page, int unlock) 1447 { 1448 if (!page) 1449 return; 1450 1451 if (unlock) { 1452 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1453 unlock_page(page); 1454 } 1455 put_page(page); 1456 } 1457 1458 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1459 { 1460 if (dn->node_page) 1461 f2fs_put_page(dn->node_page, 1); 1462 if (dn->inode_page && dn->node_page != dn->inode_page) 1463 f2fs_put_page(dn->inode_page, 0); 1464 dn->node_page = NULL; 1465 dn->inode_page = NULL; 1466 } 1467 1468 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1469 size_t size) 1470 { 1471 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1472 } 1473 1474 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1475 gfp_t flags) 1476 { 1477 void *entry; 1478 1479 entry = kmem_cache_alloc(cachep, flags); 1480 if (!entry) 1481 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1482 return entry; 1483 } 1484 1485 static inline struct bio *f2fs_bio_alloc(int npages) 1486 { 1487 struct bio *bio; 1488 1489 /* No failure on bio allocation */ 1490 bio = bio_alloc(GFP_NOIO, npages); 1491 if (!bio) 1492 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1493 return bio; 1494 } 1495 1496 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1497 unsigned long index, void *item) 1498 { 1499 while (radix_tree_insert(root, index, item)) 1500 cond_resched(); 1501 } 1502 1503 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1504 1505 static inline bool IS_INODE(struct page *page) 1506 { 1507 struct f2fs_node *p = F2FS_NODE(page); 1508 return RAW_IS_INODE(p); 1509 } 1510 1511 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1512 { 1513 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1514 } 1515 1516 static inline block_t datablock_addr(struct page *node_page, 1517 unsigned int offset) 1518 { 1519 struct f2fs_node *raw_node; 1520 __le32 *addr_array; 1521 raw_node = F2FS_NODE(node_page); 1522 addr_array = blkaddr_in_node(raw_node); 1523 return le32_to_cpu(addr_array[offset]); 1524 } 1525 1526 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1527 { 1528 int mask; 1529 1530 addr += (nr >> 3); 1531 mask = 1 << (7 - (nr & 0x07)); 1532 return mask & *addr; 1533 } 1534 1535 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1536 { 1537 int mask; 1538 1539 addr += (nr >> 3); 1540 mask = 1 << (7 - (nr & 0x07)); 1541 *addr |= mask; 1542 } 1543 1544 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1545 { 1546 int mask; 1547 1548 addr += (nr >> 3); 1549 mask = 1 << (7 - (nr & 0x07)); 1550 *addr &= ~mask; 1551 } 1552 1553 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1554 { 1555 int mask; 1556 int ret; 1557 1558 addr += (nr >> 3); 1559 mask = 1 << (7 - (nr & 0x07)); 1560 ret = mask & *addr; 1561 *addr |= mask; 1562 return ret; 1563 } 1564 1565 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1566 { 1567 int mask; 1568 int ret; 1569 1570 addr += (nr >> 3); 1571 mask = 1 << (7 - (nr & 0x07)); 1572 ret = mask & *addr; 1573 *addr &= ~mask; 1574 return ret; 1575 } 1576 1577 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1578 { 1579 int mask; 1580 1581 addr += (nr >> 3); 1582 mask = 1 << (7 - (nr & 0x07)); 1583 *addr ^= mask; 1584 } 1585 1586 /* used for f2fs_inode_info->flags */ 1587 enum { 1588 FI_NEW_INODE, /* indicate newly allocated inode */ 1589 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1590 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 1591 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1592 FI_INC_LINK, /* need to increment i_nlink */ 1593 FI_ACL_MODE, /* indicate acl mode */ 1594 FI_NO_ALLOC, /* should not allocate any blocks */ 1595 FI_FREE_NID, /* free allocated nide */ 1596 FI_NO_EXTENT, /* not to use the extent cache */ 1597 FI_INLINE_XATTR, /* used for inline xattr */ 1598 FI_INLINE_DATA, /* used for inline data*/ 1599 FI_INLINE_DENTRY, /* used for inline dentry */ 1600 FI_APPEND_WRITE, /* inode has appended data */ 1601 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1602 FI_NEED_IPU, /* used for ipu per file */ 1603 FI_ATOMIC_FILE, /* indicate atomic file */ 1604 FI_VOLATILE_FILE, /* indicate volatile file */ 1605 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1606 FI_DROP_CACHE, /* drop dirty page cache */ 1607 FI_DATA_EXIST, /* indicate data exists */ 1608 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1609 FI_DO_DEFRAG, /* indicate defragment is running */ 1610 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1611 }; 1612 1613 static inline void __mark_inode_dirty_flag(struct inode *inode, 1614 int flag, bool set) 1615 { 1616 switch (flag) { 1617 case FI_INLINE_XATTR: 1618 case FI_INLINE_DATA: 1619 case FI_INLINE_DENTRY: 1620 if (set) 1621 return; 1622 case FI_DATA_EXIST: 1623 case FI_INLINE_DOTS: 1624 f2fs_mark_inode_dirty_sync(inode); 1625 } 1626 } 1627 1628 static inline void set_inode_flag(struct inode *inode, int flag) 1629 { 1630 if (!test_bit(flag, &F2FS_I(inode)->flags)) 1631 set_bit(flag, &F2FS_I(inode)->flags); 1632 __mark_inode_dirty_flag(inode, flag, true); 1633 } 1634 1635 static inline int is_inode_flag_set(struct inode *inode, int flag) 1636 { 1637 return test_bit(flag, &F2FS_I(inode)->flags); 1638 } 1639 1640 static inline void clear_inode_flag(struct inode *inode, int flag) 1641 { 1642 if (test_bit(flag, &F2FS_I(inode)->flags)) 1643 clear_bit(flag, &F2FS_I(inode)->flags); 1644 __mark_inode_dirty_flag(inode, flag, false); 1645 } 1646 1647 static inline void set_acl_inode(struct inode *inode, umode_t mode) 1648 { 1649 F2FS_I(inode)->i_acl_mode = mode; 1650 set_inode_flag(inode, FI_ACL_MODE); 1651 f2fs_mark_inode_dirty_sync(inode); 1652 } 1653 1654 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 1655 { 1656 if (inc) 1657 inc_nlink(inode); 1658 else 1659 drop_nlink(inode); 1660 f2fs_mark_inode_dirty_sync(inode); 1661 } 1662 1663 static inline void f2fs_i_blocks_write(struct inode *inode, 1664 blkcnt_t diff, bool add) 1665 { 1666 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1667 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1668 1669 inode->i_blocks = add ? inode->i_blocks + diff : 1670 inode->i_blocks - diff; 1671 f2fs_mark_inode_dirty_sync(inode); 1672 if (clean || recover) 1673 set_inode_flag(inode, FI_AUTO_RECOVER); 1674 } 1675 1676 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 1677 { 1678 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 1679 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 1680 1681 if (i_size_read(inode) == i_size) 1682 return; 1683 1684 i_size_write(inode, i_size); 1685 f2fs_mark_inode_dirty_sync(inode); 1686 if (clean || recover) 1687 set_inode_flag(inode, FI_AUTO_RECOVER); 1688 } 1689 1690 static inline bool f2fs_skip_inode_update(struct inode *inode) 1691 { 1692 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1693 return false; 1694 return F2FS_I(inode)->last_disk_size == i_size_read(inode); 1695 } 1696 1697 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 1698 { 1699 F2FS_I(inode)->i_current_depth = depth; 1700 f2fs_mark_inode_dirty_sync(inode); 1701 } 1702 1703 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 1704 { 1705 F2FS_I(inode)->i_xattr_nid = xnid; 1706 f2fs_mark_inode_dirty_sync(inode); 1707 } 1708 1709 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 1710 { 1711 F2FS_I(inode)->i_pino = pino; 1712 f2fs_mark_inode_dirty_sync(inode); 1713 } 1714 1715 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 1716 { 1717 struct f2fs_inode_info *fi = F2FS_I(inode); 1718 1719 if (ri->i_inline & F2FS_INLINE_XATTR) 1720 set_bit(FI_INLINE_XATTR, &fi->flags); 1721 if (ri->i_inline & F2FS_INLINE_DATA) 1722 set_bit(FI_INLINE_DATA, &fi->flags); 1723 if (ri->i_inline & F2FS_INLINE_DENTRY) 1724 set_bit(FI_INLINE_DENTRY, &fi->flags); 1725 if (ri->i_inline & F2FS_DATA_EXIST) 1726 set_bit(FI_DATA_EXIST, &fi->flags); 1727 if (ri->i_inline & F2FS_INLINE_DOTS) 1728 set_bit(FI_INLINE_DOTS, &fi->flags); 1729 } 1730 1731 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 1732 { 1733 ri->i_inline = 0; 1734 1735 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 1736 ri->i_inline |= F2FS_INLINE_XATTR; 1737 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 1738 ri->i_inline |= F2FS_INLINE_DATA; 1739 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 1740 ri->i_inline |= F2FS_INLINE_DENTRY; 1741 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 1742 ri->i_inline |= F2FS_DATA_EXIST; 1743 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 1744 ri->i_inline |= F2FS_INLINE_DOTS; 1745 } 1746 1747 static inline int f2fs_has_inline_xattr(struct inode *inode) 1748 { 1749 return is_inode_flag_set(inode, FI_INLINE_XATTR); 1750 } 1751 1752 static inline unsigned int addrs_per_inode(struct inode *inode) 1753 { 1754 if (f2fs_has_inline_xattr(inode)) 1755 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1756 return DEF_ADDRS_PER_INODE; 1757 } 1758 1759 static inline void *inline_xattr_addr(struct page *page) 1760 { 1761 struct f2fs_inode *ri = F2FS_INODE(page); 1762 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1763 F2FS_INLINE_XATTR_ADDRS]); 1764 } 1765 1766 static inline int inline_xattr_size(struct inode *inode) 1767 { 1768 if (f2fs_has_inline_xattr(inode)) 1769 return F2FS_INLINE_XATTR_ADDRS << 2; 1770 else 1771 return 0; 1772 } 1773 1774 static inline int f2fs_has_inline_data(struct inode *inode) 1775 { 1776 return is_inode_flag_set(inode, FI_INLINE_DATA); 1777 } 1778 1779 static inline void f2fs_clear_inline_inode(struct inode *inode) 1780 { 1781 clear_inode_flag(inode, FI_INLINE_DATA); 1782 clear_inode_flag(inode, FI_DATA_EXIST); 1783 } 1784 1785 static inline int f2fs_exist_data(struct inode *inode) 1786 { 1787 return is_inode_flag_set(inode, FI_DATA_EXIST); 1788 } 1789 1790 static inline int f2fs_has_inline_dots(struct inode *inode) 1791 { 1792 return is_inode_flag_set(inode, FI_INLINE_DOTS); 1793 } 1794 1795 static inline bool f2fs_is_atomic_file(struct inode *inode) 1796 { 1797 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 1798 } 1799 1800 static inline bool f2fs_is_volatile_file(struct inode *inode) 1801 { 1802 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 1803 } 1804 1805 static inline bool f2fs_is_first_block_written(struct inode *inode) 1806 { 1807 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 1808 } 1809 1810 static inline bool f2fs_is_drop_cache(struct inode *inode) 1811 { 1812 return is_inode_flag_set(inode, FI_DROP_CACHE); 1813 } 1814 1815 static inline void *inline_data_addr(struct page *page) 1816 { 1817 struct f2fs_inode *ri = F2FS_INODE(page); 1818 return (void *)&(ri->i_addr[1]); 1819 } 1820 1821 static inline int f2fs_has_inline_dentry(struct inode *inode) 1822 { 1823 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 1824 } 1825 1826 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1827 { 1828 if (!f2fs_has_inline_dentry(dir)) 1829 kunmap(page); 1830 } 1831 1832 static inline int is_file(struct inode *inode, int type) 1833 { 1834 return F2FS_I(inode)->i_advise & type; 1835 } 1836 1837 static inline void set_file(struct inode *inode, int type) 1838 { 1839 F2FS_I(inode)->i_advise |= type; 1840 f2fs_mark_inode_dirty_sync(inode); 1841 } 1842 1843 static inline void clear_file(struct inode *inode, int type) 1844 { 1845 F2FS_I(inode)->i_advise &= ~type; 1846 f2fs_mark_inode_dirty_sync(inode); 1847 } 1848 1849 static inline int f2fs_readonly(struct super_block *sb) 1850 { 1851 return sb->s_flags & MS_RDONLY; 1852 } 1853 1854 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1855 { 1856 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 1857 } 1858 1859 static inline bool is_dot_dotdot(const struct qstr *str) 1860 { 1861 if (str->len == 1 && str->name[0] == '.') 1862 return true; 1863 1864 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1865 return true; 1866 1867 return false; 1868 } 1869 1870 static inline bool f2fs_may_extent_tree(struct inode *inode) 1871 { 1872 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1873 is_inode_flag_set(inode, FI_NO_EXTENT)) 1874 return false; 1875 1876 return S_ISREG(inode->i_mode); 1877 } 1878 1879 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 1880 size_t size, gfp_t flags) 1881 { 1882 #ifdef CONFIG_F2FS_FAULT_INJECTION 1883 if (time_to_inject(sbi, FAULT_KMALLOC)) 1884 return NULL; 1885 #endif 1886 return kmalloc(size, flags); 1887 } 1888 1889 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 1890 { 1891 void *ret; 1892 1893 ret = kmalloc(size, flags | __GFP_NOWARN); 1894 if (!ret) 1895 ret = __vmalloc(size, flags, PAGE_KERNEL); 1896 return ret; 1897 } 1898 1899 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 1900 { 1901 void *ret; 1902 1903 ret = kzalloc(size, flags | __GFP_NOWARN); 1904 if (!ret) 1905 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 1906 return ret; 1907 } 1908 1909 #define get_inode_mode(i) \ 1910 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 1911 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1912 1913 /* get offset of first page in next direct node */ 1914 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \ 1915 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \ 1916 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \ 1917 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode)) 1918 1919 /* 1920 * file.c 1921 */ 1922 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1923 void truncate_data_blocks(struct dnode_of_data *); 1924 int truncate_blocks(struct inode *, u64, bool); 1925 int f2fs_truncate(struct inode *); 1926 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1927 int f2fs_setattr(struct dentry *, struct iattr *); 1928 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1929 int truncate_data_blocks_range(struct dnode_of_data *, int); 1930 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1931 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1932 1933 /* 1934 * inode.c 1935 */ 1936 void f2fs_set_inode_flags(struct inode *); 1937 struct inode *f2fs_iget(struct super_block *, unsigned long); 1938 struct inode *f2fs_iget_retry(struct super_block *, unsigned long); 1939 int try_to_free_nats(struct f2fs_sb_info *, int); 1940 int update_inode(struct inode *, struct page *); 1941 int update_inode_page(struct inode *); 1942 int f2fs_write_inode(struct inode *, struct writeback_control *); 1943 void f2fs_evict_inode(struct inode *); 1944 void handle_failed_inode(struct inode *); 1945 1946 /* 1947 * namei.c 1948 */ 1949 struct dentry *f2fs_get_parent(struct dentry *child); 1950 1951 /* 1952 * dir.c 1953 */ 1954 void set_de_type(struct f2fs_dir_entry *, umode_t); 1955 unsigned char get_de_type(struct f2fs_dir_entry *); 1956 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *, 1957 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1958 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1959 unsigned int, struct fscrypt_str *); 1960 void do_make_empty_dir(struct inode *, struct inode *, 1961 struct f2fs_dentry_ptr *); 1962 struct page *init_inode_metadata(struct inode *, struct inode *, 1963 const struct qstr *, const struct qstr *, struct page *); 1964 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1965 int room_for_filename(const void *, int, int); 1966 void f2fs_drop_nlink(struct inode *, struct inode *); 1967 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *, struct fscrypt_name *, 1968 struct page **); 1969 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, const struct qstr *, 1970 struct page **); 1971 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1972 ino_t f2fs_inode_by_name(struct inode *, const struct qstr *, struct page **); 1973 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1974 struct page *, struct inode *); 1975 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1976 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1977 const struct qstr *, f2fs_hash_t , unsigned int); 1978 int f2fs_add_regular_entry(struct inode *, const struct qstr *, 1979 const struct qstr *, struct inode *, nid_t, umode_t); 1980 int __f2fs_do_add_link(struct inode *, struct fscrypt_name*, struct inode *, 1981 nid_t, umode_t); 1982 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1983 umode_t); 1984 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1985 struct inode *); 1986 int f2fs_do_tmpfile(struct inode *, struct inode *); 1987 bool f2fs_empty_dir(struct inode *); 1988 1989 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1990 { 1991 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1992 inode, inode->i_ino, inode->i_mode); 1993 } 1994 1995 /* 1996 * super.c 1997 */ 1998 int f2fs_inode_dirtied(struct inode *); 1999 void f2fs_inode_synced(struct inode *); 2000 int f2fs_commit_super(struct f2fs_sb_info *, bool); 2001 int f2fs_sync_fs(struct super_block *, int); 2002 extern __printf(3, 4) 2003 void f2fs_msg(struct super_block *, const char *, const char *, ...); 2004 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2005 2006 /* 2007 * hash.c 2008 */ 2009 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 2010 2011 /* 2012 * node.c 2013 */ 2014 struct dnode_of_data; 2015 struct node_info; 2016 2017 bool available_free_memory(struct f2fs_sb_info *, int); 2018 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 2019 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 2020 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 2021 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 2022 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t); 2023 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 2024 int truncate_inode_blocks(struct inode *, pgoff_t); 2025 int truncate_xattr_node(struct inode *, struct page *); 2026 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 2027 int remove_inode_page(struct inode *); 2028 struct page *new_inode_page(struct inode *); 2029 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 2030 void ra_node_page(struct f2fs_sb_info *, nid_t); 2031 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 2032 struct page *get_node_page_ra(struct page *, int); 2033 void move_node_page(struct page *, int); 2034 int fsync_node_pages(struct f2fs_sb_info *, struct inode *, 2035 struct writeback_control *, bool); 2036 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *); 2037 void build_free_nids(struct f2fs_sb_info *); 2038 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 2039 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 2040 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 2041 int try_to_free_nids(struct f2fs_sb_info *, int); 2042 void recover_inline_xattr(struct inode *, struct page *); 2043 void recover_xattr_data(struct inode *, struct page *, block_t); 2044 int recover_inode_page(struct f2fs_sb_info *, struct page *); 2045 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 2046 struct f2fs_summary_block *); 2047 void flush_nat_entries(struct f2fs_sb_info *); 2048 int build_node_manager(struct f2fs_sb_info *); 2049 void destroy_node_manager(struct f2fs_sb_info *); 2050 int __init create_node_manager_caches(void); 2051 void destroy_node_manager_caches(void); 2052 2053 /* 2054 * segment.c 2055 */ 2056 void register_inmem_page(struct inode *, struct page *); 2057 void drop_inmem_pages(struct inode *); 2058 int commit_inmem_pages(struct inode *); 2059 void f2fs_balance_fs(struct f2fs_sb_info *, bool); 2060 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 2061 int f2fs_issue_flush(struct f2fs_sb_info *); 2062 int create_flush_cmd_control(struct f2fs_sb_info *); 2063 void destroy_flush_cmd_control(struct f2fs_sb_info *); 2064 void invalidate_blocks(struct f2fs_sb_info *, block_t); 2065 bool is_checkpointed_data(struct f2fs_sb_info *, block_t); 2066 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 2067 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *); 2068 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 2069 void release_discard_addrs(struct f2fs_sb_info *); 2070 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 2071 void allocate_new_segments(struct f2fs_sb_info *); 2072 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 2073 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 2074 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 2075 void write_meta_page(struct f2fs_sb_info *, struct page *); 2076 void write_node_page(unsigned int, struct f2fs_io_info *); 2077 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 2078 void rewrite_data_page(struct f2fs_io_info *); 2079 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *, 2080 block_t, block_t, bool, bool); 2081 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 2082 block_t, block_t, unsigned char, bool, bool); 2083 void allocate_data_block(struct f2fs_sb_info *, struct page *, 2084 block_t, block_t *, struct f2fs_summary *, int); 2085 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool); 2086 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t); 2087 void write_data_summaries(struct f2fs_sb_info *, block_t); 2088 void write_node_summaries(struct f2fs_sb_info *, block_t); 2089 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int); 2090 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 2091 int build_segment_manager(struct f2fs_sb_info *); 2092 void destroy_segment_manager(struct f2fs_sb_info *); 2093 int __init create_segment_manager_caches(void); 2094 void destroy_segment_manager_caches(void); 2095 2096 /* 2097 * checkpoint.c 2098 */ 2099 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool); 2100 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 2101 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 2102 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t); 2103 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 2104 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool); 2105 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 2106 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 2107 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2108 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type); 2109 void release_ino_entry(struct f2fs_sb_info *, bool); 2110 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 2111 int f2fs_sync_inode_meta(struct f2fs_sb_info *); 2112 int acquire_orphan_inode(struct f2fs_sb_info *); 2113 void release_orphan_inode(struct f2fs_sb_info *); 2114 void add_orphan_inode(struct inode *); 2115 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 2116 int recover_orphan_inodes(struct f2fs_sb_info *); 2117 int get_valid_checkpoint(struct f2fs_sb_info *); 2118 void update_dirty_page(struct inode *, struct page *); 2119 void remove_dirty_inode(struct inode *); 2120 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type); 2121 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 2122 void init_ino_entry_info(struct f2fs_sb_info *); 2123 int __init create_checkpoint_caches(void); 2124 void destroy_checkpoint_caches(void); 2125 2126 /* 2127 * data.c 2128 */ 2129 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 2130 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *, 2131 struct page *, nid_t, enum page_type, int); 2132 void f2fs_flush_merged_bios(struct f2fs_sb_info *); 2133 int f2fs_submit_page_bio(struct f2fs_io_info *); 2134 void f2fs_submit_page_mbio(struct f2fs_io_info *); 2135 void set_data_blkaddr(struct dnode_of_data *); 2136 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t); 2137 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t); 2138 int reserve_new_block(struct dnode_of_data *); 2139 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 2140 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *); 2141 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 2142 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool); 2143 struct page *find_data_page(struct inode *, pgoff_t); 2144 struct page *get_lock_data_page(struct inode *, pgoff_t, bool); 2145 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 2146 int do_write_data_page(struct f2fs_io_info *); 2147 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int); 2148 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 2149 void f2fs_set_page_dirty_nobuffers(struct page *); 2150 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 2151 int f2fs_release_page(struct page *, gfp_t); 2152 #ifdef CONFIG_MIGRATION 2153 int f2fs_migrate_page(struct address_space *, struct page *, struct page *, 2154 enum migrate_mode); 2155 #endif 2156 2157 /* 2158 * gc.c 2159 */ 2160 int start_gc_thread(struct f2fs_sb_info *); 2161 void stop_gc_thread(struct f2fs_sb_info *); 2162 block_t start_bidx_of_node(unsigned int, struct inode *); 2163 int f2fs_gc(struct f2fs_sb_info *, bool); 2164 void build_gc_manager(struct f2fs_sb_info *); 2165 2166 /* 2167 * recovery.c 2168 */ 2169 int recover_fsync_data(struct f2fs_sb_info *, bool); 2170 bool space_for_roll_forward(struct f2fs_sb_info *); 2171 2172 /* 2173 * debug.c 2174 */ 2175 #ifdef CONFIG_F2FS_STAT_FS 2176 struct f2fs_stat_info { 2177 struct list_head stat_list; 2178 struct f2fs_sb_info *sbi; 2179 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2180 int main_area_segs, main_area_sections, main_area_zones; 2181 unsigned long long hit_largest, hit_cached, hit_rbtree; 2182 unsigned long long hit_total, total_ext; 2183 int ext_tree, zombie_tree, ext_node; 2184 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta; 2185 s64 inmem_pages; 2186 unsigned int ndirty_dirs, ndirty_files, ndirty_all; 2187 int nats, dirty_nats, sits, dirty_sits, fnids; 2188 int total_count, utilization; 2189 int bg_gc, wb_bios; 2190 int inline_xattr, inline_inode, inline_dir, orphans; 2191 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2192 unsigned int bimodal, avg_vblocks; 2193 int util_free, util_valid, util_invalid; 2194 int rsvd_segs, overp_segs; 2195 int dirty_count, node_pages, meta_pages; 2196 int prefree_count, call_count, cp_count, bg_cp_count; 2197 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2198 int bg_node_segs, bg_data_segs; 2199 int tot_blks, data_blks, node_blks; 2200 int bg_data_blks, bg_node_blks; 2201 int curseg[NR_CURSEG_TYPE]; 2202 int cursec[NR_CURSEG_TYPE]; 2203 int curzone[NR_CURSEG_TYPE]; 2204 2205 unsigned int segment_count[2]; 2206 unsigned int block_count[2]; 2207 unsigned int inplace_count; 2208 unsigned long long base_mem, cache_mem, page_mem; 2209 }; 2210 2211 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2212 { 2213 return (struct f2fs_stat_info *)sbi->stat_info; 2214 } 2215 2216 #define stat_inc_cp_count(si) ((si)->cp_count++) 2217 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2218 #define stat_inc_call_count(si) ((si)->call_count++) 2219 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2220 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2221 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2222 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2223 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2224 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2225 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2226 #define stat_inc_inline_xattr(inode) \ 2227 do { \ 2228 if (f2fs_has_inline_xattr(inode)) \ 2229 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2230 } while (0) 2231 #define stat_dec_inline_xattr(inode) \ 2232 do { \ 2233 if (f2fs_has_inline_xattr(inode)) \ 2234 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2235 } while (0) 2236 #define stat_inc_inline_inode(inode) \ 2237 do { \ 2238 if (f2fs_has_inline_data(inode)) \ 2239 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2240 } while (0) 2241 #define stat_dec_inline_inode(inode) \ 2242 do { \ 2243 if (f2fs_has_inline_data(inode)) \ 2244 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2245 } while (0) 2246 #define stat_inc_inline_dir(inode) \ 2247 do { \ 2248 if (f2fs_has_inline_dentry(inode)) \ 2249 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2250 } while (0) 2251 #define stat_dec_inline_dir(inode) \ 2252 do { \ 2253 if (f2fs_has_inline_dentry(inode)) \ 2254 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2255 } while (0) 2256 #define stat_inc_seg_type(sbi, curseg) \ 2257 ((sbi)->segment_count[(curseg)->alloc_type]++) 2258 #define stat_inc_block_count(sbi, curseg) \ 2259 ((sbi)->block_count[(curseg)->alloc_type]++) 2260 #define stat_inc_inplace_blocks(sbi) \ 2261 (atomic_inc(&(sbi)->inplace_count)) 2262 #define stat_inc_seg_count(sbi, type, gc_type) \ 2263 do { \ 2264 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2265 (si)->tot_segs++; \ 2266 if (type == SUM_TYPE_DATA) { \ 2267 si->data_segs++; \ 2268 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2269 } else { \ 2270 si->node_segs++; \ 2271 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2272 } \ 2273 } while (0) 2274 2275 #define stat_inc_tot_blk_count(si, blks) \ 2276 (si->tot_blks += (blks)) 2277 2278 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2279 do { \ 2280 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2281 stat_inc_tot_blk_count(si, blks); \ 2282 si->data_blks += (blks); \ 2283 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2284 } while (0) 2285 2286 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2287 do { \ 2288 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2289 stat_inc_tot_blk_count(si, blks); \ 2290 si->node_blks += (blks); \ 2291 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2292 } while (0) 2293 2294 int f2fs_build_stats(struct f2fs_sb_info *); 2295 void f2fs_destroy_stats(struct f2fs_sb_info *); 2296 int __init f2fs_create_root_stats(void); 2297 void f2fs_destroy_root_stats(void); 2298 #else 2299 #define stat_inc_cp_count(si) 2300 #define stat_inc_bg_cp_count(si) 2301 #define stat_inc_call_count(si) 2302 #define stat_inc_bggc_count(si) 2303 #define stat_inc_dirty_inode(sbi, type) 2304 #define stat_dec_dirty_inode(sbi, type) 2305 #define stat_inc_total_hit(sb) 2306 #define stat_inc_rbtree_node_hit(sb) 2307 #define stat_inc_largest_node_hit(sbi) 2308 #define stat_inc_cached_node_hit(sbi) 2309 #define stat_inc_inline_xattr(inode) 2310 #define stat_dec_inline_xattr(inode) 2311 #define stat_inc_inline_inode(inode) 2312 #define stat_dec_inline_inode(inode) 2313 #define stat_inc_inline_dir(inode) 2314 #define stat_dec_inline_dir(inode) 2315 #define stat_inc_seg_type(sbi, curseg) 2316 #define stat_inc_block_count(sbi, curseg) 2317 #define stat_inc_inplace_blocks(sbi) 2318 #define stat_inc_seg_count(sbi, type, gc_type) 2319 #define stat_inc_tot_blk_count(si, blks) 2320 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2321 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2322 2323 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2324 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2325 static inline int __init f2fs_create_root_stats(void) { return 0; } 2326 static inline void f2fs_destroy_root_stats(void) { } 2327 #endif 2328 2329 extern const struct file_operations f2fs_dir_operations; 2330 extern const struct file_operations f2fs_file_operations; 2331 extern const struct inode_operations f2fs_file_inode_operations; 2332 extern const struct address_space_operations f2fs_dblock_aops; 2333 extern const struct address_space_operations f2fs_node_aops; 2334 extern const struct address_space_operations f2fs_meta_aops; 2335 extern const struct inode_operations f2fs_dir_inode_operations; 2336 extern const struct inode_operations f2fs_symlink_inode_operations; 2337 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2338 extern const struct inode_operations f2fs_special_inode_operations; 2339 extern struct kmem_cache *inode_entry_slab; 2340 2341 /* 2342 * inline.c 2343 */ 2344 bool f2fs_may_inline_data(struct inode *); 2345 bool f2fs_may_inline_dentry(struct inode *); 2346 void read_inline_data(struct page *, struct page *); 2347 bool truncate_inline_inode(struct page *, u64); 2348 int f2fs_read_inline_data(struct inode *, struct page *); 2349 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 2350 int f2fs_convert_inline_inode(struct inode *); 2351 int f2fs_write_inline_data(struct inode *, struct page *); 2352 bool recover_inline_data(struct inode *, struct page *); 2353 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 2354 struct fscrypt_name *, struct page **); 2355 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 2356 int f2fs_add_inline_entry(struct inode *, const struct qstr *, 2357 const struct qstr *, struct inode *, nid_t, umode_t); 2358 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 2359 struct inode *, struct inode *); 2360 bool f2fs_empty_inline_dir(struct inode *); 2361 int f2fs_read_inline_dir(struct file *, struct dir_context *, 2362 struct fscrypt_str *); 2363 int f2fs_inline_data_fiemap(struct inode *, 2364 struct fiemap_extent_info *, __u64, __u64); 2365 2366 /* 2367 * shrinker.c 2368 */ 2369 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2370 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2371 void f2fs_join_shrinker(struct f2fs_sb_info *); 2372 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2373 2374 /* 2375 * extent_cache.c 2376 */ 2377 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2378 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2379 void f2fs_drop_extent_tree(struct inode *); 2380 unsigned int f2fs_destroy_extent_node(struct inode *); 2381 void f2fs_destroy_extent_tree(struct inode *); 2382 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2383 void f2fs_update_extent_cache(struct dnode_of_data *); 2384 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2385 pgoff_t, block_t, unsigned int); 2386 void init_extent_cache_info(struct f2fs_sb_info *); 2387 int __init create_extent_cache(void); 2388 void destroy_extent_cache(void); 2389 2390 /* 2391 * crypto support 2392 */ 2393 static inline bool f2fs_encrypted_inode(struct inode *inode) 2394 { 2395 return file_is_encrypt(inode); 2396 } 2397 2398 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2399 { 2400 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2401 file_set_encrypt(inode); 2402 #endif 2403 } 2404 2405 static inline bool f2fs_bio_encrypted(struct bio *bio) 2406 { 2407 return bio->bi_private != NULL; 2408 } 2409 2410 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2411 { 2412 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2413 } 2414 2415 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb) 2416 { 2417 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR); 2418 } 2419 2420 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 2421 { 2422 clear_opt(sbi, ADAPTIVE); 2423 clear_opt(sbi, LFS); 2424 2425 switch (mt) { 2426 case F2FS_MOUNT_ADAPTIVE: 2427 set_opt(sbi, ADAPTIVE); 2428 break; 2429 case F2FS_MOUNT_LFS: 2430 set_opt(sbi, LFS); 2431 break; 2432 } 2433 } 2434 2435 static inline bool f2fs_may_encrypt(struct inode *inode) 2436 { 2437 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2438 umode_t mode = inode->i_mode; 2439 2440 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2441 #else 2442 return 0; 2443 #endif 2444 } 2445 2446 #ifndef CONFIG_F2FS_FS_ENCRYPTION 2447 #define fscrypt_set_d_op(i) 2448 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx 2449 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx 2450 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page 2451 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page 2452 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages 2453 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page 2454 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page 2455 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range 2456 #define fscrypt_process_policy fscrypt_notsupp_process_policy 2457 #define fscrypt_get_policy fscrypt_notsupp_get_policy 2458 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context 2459 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context 2460 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info 2461 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info 2462 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename 2463 #define fscrypt_free_filename fscrypt_notsupp_free_filename 2464 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size 2465 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer 2466 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer 2467 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr 2468 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk 2469 #endif 2470 #endif 2471