1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <crypto/hash.h> 26 27 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 28 #include <linux/fscrypt.h> 29 30 #ifdef CONFIG_F2FS_CHECK_FS 31 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 32 #else 33 #define f2fs_bug_on(sbi, condition) \ 34 do { \ 35 if (unlikely(condition)) { \ 36 WARN_ON(1); \ 37 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 38 } \ 39 } while (0) 40 #endif 41 42 enum { 43 FAULT_KMALLOC, 44 FAULT_KVMALLOC, 45 FAULT_PAGE_ALLOC, 46 FAULT_PAGE_GET, 47 FAULT_ALLOC_BIO, 48 FAULT_ALLOC_NID, 49 FAULT_ORPHAN, 50 FAULT_BLOCK, 51 FAULT_DIR_DEPTH, 52 FAULT_EVICT_INODE, 53 FAULT_TRUNCATE, 54 FAULT_READ_IO, 55 FAULT_CHECKPOINT, 56 FAULT_DISCARD, 57 FAULT_WRITE_IO, 58 FAULT_MAX, 59 }; 60 61 #ifdef CONFIG_F2FS_FAULT_INJECTION 62 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 63 64 struct f2fs_fault_info { 65 atomic_t inject_ops; 66 unsigned int inject_rate; 67 unsigned int inject_type; 68 }; 69 70 extern char *f2fs_fault_name[FAULT_MAX]; 71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 72 #endif 73 74 /* 75 * For mount options 76 */ 77 #define F2FS_MOUNT_BG_GC 0x00000001 78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 79 #define F2FS_MOUNT_DISCARD 0x00000004 80 #define F2FS_MOUNT_NOHEAP 0x00000008 81 #define F2FS_MOUNT_XATTR_USER 0x00000010 82 #define F2FS_MOUNT_POSIX_ACL 0x00000020 83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 85 #define F2FS_MOUNT_INLINE_DATA 0x00000100 86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 88 #define F2FS_MOUNT_NOBARRIER 0x00000800 89 #define F2FS_MOUNT_FASTBOOT 0x00001000 90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 91 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 92 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 93 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 94 #define F2FS_MOUNT_ADAPTIVE 0x00020000 95 #define F2FS_MOUNT_LFS 0x00040000 96 #define F2FS_MOUNT_USRQUOTA 0x00080000 97 #define F2FS_MOUNT_GRPQUOTA 0x00100000 98 #define F2FS_MOUNT_PRJQUOTA 0x00200000 99 #define F2FS_MOUNT_QUOTA 0x00400000 100 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 101 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 102 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 103 104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 108 109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 110 typecheck(unsigned long long, b) && \ 111 ((long long)((a) - (b)) > 0)) 112 113 typedef u32 block_t; /* 114 * should not change u32, since it is the on-disk block 115 * address format, __le32. 116 */ 117 typedef u32 nid_t; 118 119 struct f2fs_mount_info { 120 unsigned int opt; 121 int write_io_size_bits; /* Write IO size bits */ 122 block_t root_reserved_blocks; /* root reserved blocks */ 123 kuid_t s_resuid; /* reserved blocks for uid */ 124 kgid_t s_resgid; /* reserved blocks for gid */ 125 int active_logs; /* # of active logs */ 126 int inline_xattr_size; /* inline xattr size */ 127 #ifdef CONFIG_F2FS_FAULT_INJECTION 128 struct f2fs_fault_info fault_info; /* For fault injection */ 129 #endif 130 #ifdef CONFIG_QUOTA 131 /* Names of quota files with journalled quota */ 132 char *s_qf_names[MAXQUOTAS]; 133 int s_jquota_fmt; /* Format of quota to use */ 134 #endif 135 /* For which write hints are passed down to block layer */ 136 int whint_mode; 137 int alloc_mode; /* segment allocation policy */ 138 int fsync_mode; /* fsync policy */ 139 bool test_dummy_encryption; /* test dummy encryption */ 140 }; 141 142 #define F2FS_FEATURE_ENCRYPT 0x0001 143 #define F2FS_FEATURE_BLKZONED 0x0002 144 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 145 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 146 #define F2FS_FEATURE_PRJQUOTA 0x0010 147 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 149 #define F2FS_FEATURE_QUOTA_INO 0x0080 150 #define F2FS_FEATURE_INODE_CRTIME 0x0100 151 #define F2FS_FEATURE_LOST_FOUND 0x0200 152 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */ 153 #define F2FS_FEATURE_SB_CHKSUM 0x0800 154 155 #define F2FS_HAS_FEATURE(sb, mask) \ 156 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 157 #define F2FS_SET_FEATURE(sb, mask) \ 158 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 159 #define F2FS_CLEAR_FEATURE(sb, mask) \ 160 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 161 162 /* 163 * Default values for user and/or group using reserved blocks 164 */ 165 #define F2FS_DEF_RESUID 0 166 #define F2FS_DEF_RESGID 0 167 168 /* 169 * For checkpoint manager 170 */ 171 enum { 172 NAT_BITMAP, 173 SIT_BITMAP 174 }; 175 176 #define CP_UMOUNT 0x00000001 177 #define CP_FASTBOOT 0x00000002 178 #define CP_SYNC 0x00000004 179 #define CP_RECOVERY 0x00000008 180 #define CP_DISCARD 0x00000010 181 #define CP_TRIMMED 0x00000020 182 #define CP_PAUSE 0x00000040 183 184 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 185 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 186 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 187 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 188 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 189 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 190 #define DEF_CP_INTERVAL 60 /* 60 secs */ 191 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 192 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 193 194 struct cp_control { 195 int reason; 196 __u64 trim_start; 197 __u64 trim_end; 198 __u64 trim_minlen; 199 }; 200 201 /* 202 * indicate meta/data type 203 */ 204 enum { 205 META_CP, 206 META_NAT, 207 META_SIT, 208 META_SSA, 209 META_MAX, 210 META_POR, 211 DATA_GENERIC, 212 META_GENERIC, 213 }; 214 215 /* for the list of ino */ 216 enum { 217 ORPHAN_INO, /* for orphan ino list */ 218 APPEND_INO, /* for append ino list */ 219 UPDATE_INO, /* for update ino list */ 220 TRANS_DIR_INO, /* for trasactions dir ino list */ 221 FLUSH_INO, /* for multiple device flushing */ 222 MAX_INO_ENTRY, /* max. list */ 223 }; 224 225 struct ino_entry { 226 struct list_head list; /* list head */ 227 nid_t ino; /* inode number */ 228 unsigned int dirty_device; /* dirty device bitmap */ 229 }; 230 231 /* for the list of inodes to be GCed */ 232 struct inode_entry { 233 struct list_head list; /* list head */ 234 struct inode *inode; /* vfs inode pointer */ 235 }; 236 237 struct fsync_node_entry { 238 struct list_head list; /* list head */ 239 struct page *page; /* warm node page pointer */ 240 unsigned int seq_id; /* sequence id */ 241 }; 242 243 /* for the bitmap indicate blocks to be discarded */ 244 struct discard_entry { 245 struct list_head list; /* list head */ 246 block_t start_blkaddr; /* start blockaddr of current segment */ 247 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 248 }; 249 250 /* default discard granularity of inner discard thread, unit: block count */ 251 #define DEFAULT_DISCARD_GRANULARITY 16 252 253 /* max discard pend list number */ 254 #define MAX_PLIST_NUM 512 255 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 256 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 257 258 enum { 259 D_PREP, /* initial */ 260 D_PARTIAL, /* partially submitted */ 261 D_SUBMIT, /* all submitted */ 262 D_DONE, /* finished */ 263 }; 264 265 struct discard_info { 266 block_t lstart; /* logical start address */ 267 block_t len; /* length */ 268 block_t start; /* actual start address in dev */ 269 }; 270 271 struct discard_cmd { 272 struct rb_node rb_node; /* rb node located in rb-tree */ 273 union { 274 struct { 275 block_t lstart; /* logical start address */ 276 block_t len; /* length */ 277 block_t start; /* actual start address in dev */ 278 }; 279 struct discard_info di; /* discard info */ 280 281 }; 282 struct list_head list; /* command list */ 283 struct completion wait; /* compleation */ 284 struct block_device *bdev; /* bdev */ 285 unsigned short ref; /* reference count */ 286 unsigned char state; /* state */ 287 unsigned char issuing; /* issuing discard */ 288 int error; /* bio error */ 289 spinlock_t lock; /* for state/bio_ref updating */ 290 unsigned short bio_ref; /* bio reference count */ 291 }; 292 293 enum { 294 DPOLICY_BG, 295 DPOLICY_FORCE, 296 DPOLICY_FSTRIM, 297 DPOLICY_UMOUNT, 298 MAX_DPOLICY, 299 }; 300 301 struct discard_policy { 302 int type; /* type of discard */ 303 unsigned int min_interval; /* used for candidates exist */ 304 unsigned int mid_interval; /* used for device busy */ 305 unsigned int max_interval; /* used for candidates not exist */ 306 unsigned int max_requests; /* # of discards issued per round */ 307 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 308 bool io_aware; /* issue discard in idle time */ 309 bool sync; /* submit discard with REQ_SYNC flag */ 310 bool ordered; /* issue discard by lba order */ 311 unsigned int granularity; /* discard granularity */ 312 }; 313 314 struct discard_cmd_control { 315 struct task_struct *f2fs_issue_discard; /* discard thread */ 316 struct list_head entry_list; /* 4KB discard entry list */ 317 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 318 struct list_head wait_list; /* store on-flushing entries */ 319 struct list_head fstrim_list; /* in-flight discard from fstrim */ 320 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 321 unsigned int discard_wake; /* to wake up discard thread */ 322 struct mutex cmd_lock; 323 unsigned int nr_discards; /* # of discards in the list */ 324 unsigned int max_discards; /* max. discards to be issued */ 325 unsigned int discard_granularity; /* discard granularity */ 326 unsigned int undiscard_blks; /* # of undiscard blocks */ 327 unsigned int next_pos; /* next discard position */ 328 atomic_t issued_discard; /* # of issued discard */ 329 atomic_t issing_discard; /* # of issing discard */ 330 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 331 struct rb_root_cached root; /* root of discard rb-tree */ 332 bool rbtree_check; /* config for consistence check */ 333 }; 334 335 /* for the list of fsync inodes, used only during recovery */ 336 struct fsync_inode_entry { 337 struct list_head list; /* list head */ 338 struct inode *inode; /* vfs inode pointer */ 339 block_t blkaddr; /* block address locating the last fsync */ 340 block_t last_dentry; /* block address locating the last dentry */ 341 }; 342 343 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 344 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 345 346 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 347 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 348 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 349 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 350 351 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 352 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 353 354 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 355 { 356 int before = nats_in_cursum(journal); 357 358 journal->n_nats = cpu_to_le16(before + i); 359 return before; 360 } 361 362 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 363 { 364 int before = sits_in_cursum(journal); 365 366 journal->n_sits = cpu_to_le16(before + i); 367 return before; 368 } 369 370 static inline bool __has_cursum_space(struct f2fs_journal *journal, 371 int size, int type) 372 { 373 if (type == NAT_JOURNAL) 374 return size <= MAX_NAT_JENTRIES(journal); 375 return size <= MAX_SIT_JENTRIES(journal); 376 } 377 378 /* 379 * ioctl commands 380 */ 381 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 382 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 383 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 384 385 #define F2FS_IOCTL_MAGIC 0xf5 386 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 387 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 388 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 389 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 390 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 391 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 392 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 393 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 394 struct f2fs_defragment) 395 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 396 struct f2fs_move_range) 397 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 398 struct f2fs_flush_device) 399 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 400 struct f2fs_gc_range) 401 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 402 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 403 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 404 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 405 406 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 407 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 408 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 409 410 /* 411 * should be same as XFS_IOC_GOINGDOWN. 412 * Flags for going down operation used by FS_IOC_GOINGDOWN 413 */ 414 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 415 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 416 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 417 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 418 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 419 420 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 421 /* 422 * ioctl commands in 32 bit emulation 423 */ 424 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 425 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 426 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 427 #endif 428 429 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 430 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 431 432 struct f2fs_gc_range { 433 u32 sync; 434 u64 start; 435 u64 len; 436 }; 437 438 struct f2fs_defragment { 439 u64 start; 440 u64 len; 441 }; 442 443 struct f2fs_move_range { 444 u32 dst_fd; /* destination fd */ 445 u64 pos_in; /* start position in src_fd */ 446 u64 pos_out; /* start position in dst_fd */ 447 u64 len; /* size to move */ 448 }; 449 450 struct f2fs_flush_device { 451 u32 dev_num; /* device number to flush */ 452 u32 segments; /* # of segments to flush */ 453 }; 454 455 /* for inline stuff */ 456 #define DEF_INLINE_RESERVED_SIZE 1 457 #define DEF_MIN_INLINE_SIZE 1 458 static inline int get_extra_isize(struct inode *inode); 459 static inline int get_inline_xattr_addrs(struct inode *inode); 460 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 461 (CUR_ADDRS_PER_INODE(inode) - \ 462 get_inline_xattr_addrs(inode) - \ 463 DEF_INLINE_RESERVED_SIZE)) 464 465 /* for inline dir */ 466 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 467 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 468 BITS_PER_BYTE + 1)) 469 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 470 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 471 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 472 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 473 NR_INLINE_DENTRY(inode) + \ 474 INLINE_DENTRY_BITMAP_SIZE(inode))) 475 476 /* 477 * For INODE and NODE manager 478 */ 479 /* for directory operations */ 480 struct f2fs_dentry_ptr { 481 struct inode *inode; 482 void *bitmap; 483 struct f2fs_dir_entry *dentry; 484 __u8 (*filename)[F2FS_SLOT_LEN]; 485 int max; 486 int nr_bitmap; 487 }; 488 489 static inline void make_dentry_ptr_block(struct inode *inode, 490 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 491 { 492 d->inode = inode; 493 d->max = NR_DENTRY_IN_BLOCK; 494 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 495 d->bitmap = t->dentry_bitmap; 496 d->dentry = t->dentry; 497 d->filename = t->filename; 498 } 499 500 static inline void make_dentry_ptr_inline(struct inode *inode, 501 struct f2fs_dentry_ptr *d, void *t) 502 { 503 int entry_cnt = NR_INLINE_DENTRY(inode); 504 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 505 int reserved_size = INLINE_RESERVED_SIZE(inode); 506 507 d->inode = inode; 508 d->max = entry_cnt; 509 d->nr_bitmap = bitmap_size; 510 d->bitmap = t; 511 d->dentry = t + bitmap_size + reserved_size; 512 d->filename = t + bitmap_size + reserved_size + 513 SIZE_OF_DIR_ENTRY * entry_cnt; 514 } 515 516 /* 517 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 518 * as its node offset to distinguish from index node blocks. 519 * But some bits are used to mark the node block. 520 */ 521 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 522 >> OFFSET_BIT_SHIFT) 523 enum { 524 ALLOC_NODE, /* allocate a new node page if needed */ 525 LOOKUP_NODE, /* look up a node without readahead */ 526 LOOKUP_NODE_RA, /* 527 * look up a node with readahead called 528 * by get_data_block. 529 */ 530 }; 531 532 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */ 533 534 /* maximum retry quota flush count */ 535 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 536 537 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 538 539 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 540 541 /* for in-memory extent cache entry */ 542 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 543 544 /* number of extent info in extent cache we try to shrink */ 545 #define EXTENT_CACHE_SHRINK_NUMBER 128 546 547 struct rb_entry { 548 struct rb_node rb_node; /* rb node located in rb-tree */ 549 unsigned int ofs; /* start offset of the entry */ 550 unsigned int len; /* length of the entry */ 551 }; 552 553 struct extent_info { 554 unsigned int fofs; /* start offset in a file */ 555 unsigned int len; /* length of the extent */ 556 u32 blk; /* start block address of the extent */ 557 }; 558 559 struct extent_node { 560 struct rb_node rb_node; 561 union { 562 struct { 563 unsigned int fofs; 564 unsigned int len; 565 u32 blk; 566 }; 567 struct extent_info ei; /* extent info */ 568 569 }; 570 struct list_head list; /* node in global extent list of sbi */ 571 struct extent_tree *et; /* extent tree pointer */ 572 }; 573 574 struct extent_tree { 575 nid_t ino; /* inode number */ 576 struct rb_root_cached root; /* root of extent info rb-tree */ 577 struct extent_node *cached_en; /* recently accessed extent node */ 578 struct extent_info largest; /* largested extent info */ 579 struct list_head list; /* to be used by sbi->zombie_list */ 580 rwlock_t lock; /* protect extent info rb-tree */ 581 atomic_t node_cnt; /* # of extent node in rb-tree*/ 582 bool largest_updated; /* largest extent updated */ 583 }; 584 585 /* 586 * This structure is taken from ext4_map_blocks. 587 * 588 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 589 */ 590 #define F2FS_MAP_NEW (1 << BH_New) 591 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 592 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 593 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 594 F2FS_MAP_UNWRITTEN) 595 596 struct f2fs_map_blocks { 597 block_t m_pblk; 598 block_t m_lblk; 599 unsigned int m_len; 600 unsigned int m_flags; 601 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 602 pgoff_t *m_next_extent; /* point to next possible extent */ 603 int m_seg_type; 604 }; 605 606 /* for flag in get_data_block */ 607 enum { 608 F2FS_GET_BLOCK_DEFAULT, 609 F2FS_GET_BLOCK_FIEMAP, 610 F2FS_GET_BLOCK_BMAP, 611 F2FS_GET_BLOCK_DIO, 612 F2FS_GET_BLOCK_PRE_DIO, 613 F2FS_GET_BLOCK_PRE_AIO, 614 F2FS_GET_BLOCK_PRECACHE, 615 }; 616 617 /* 618 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 619 */ 620 #define FADVISE_COLD_BIT 0x01 621 #define FADVISE_LOST_PINO_BIT 0x02 622 #define FADVISE_ENCRYPT_BIT 0x04 623 #define FADVISE_ENC_NAME_BIT 0x08 624 #define FADVISE_KEEP_SIZE_BIT 0x10 625 #define FADVISE_HOT_BIT 0x20 626 #define FADVISE_VERITY_BIT 0x40 /* reserved */ 627 628 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 629 630 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 631 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 632 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 633 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 634 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 635 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 636 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 637 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 638 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 639 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 640 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 641 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 642 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 643 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 644 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 645 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 646 647 #define DEF_DIR_LEVEL 0 648 649 enum { 650 GC_FAILURE_PIN, 651 GC_FAILURE_ATOMIC, 652 MAX_GC_FAILURE 653 }; 654 655 struct f2fs_inode_info { 656 struct inode vfs_inode; /* serve a vfs inode */ 657 unsigned long i_flags; /* keep an inode flags for ioctl */ 658 unsigned char i_advise; /* use to give file attribute hints */ 659 unsigned char i_dir_level; /* use for dentry level for large dir */ 660 unsigned int i_current_depth; /* only for directory depth */ 661 /* for gc failure statistic */ 662 unsigned int i_gc_failures[MAX_GC_FAILURE]; 663 unsigned int i_pino; /* parent inode number */ 664 umode_t i_acl_mode; /* keep file acl mode temporarily */ 665 666 /* Use below internally in f2fs*/ 667 unsigned long flags; /* use to pass per-file flags */ 668 struct rw_semaphore i_sem; /* protect fi info */ 669 atomic_t dirty_pages; /* # of dirty pages */ 670 f2fs_hash_t chash; /* hash value of given file name */ 671 unsigned int clevel; /* maximum level of given file name */ 672 struct task_struct *task; /* lookup and create consistency */ 673 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 674 nid_t i_xattr_nid; /* node id that contains xattrs */ 675 loff_t last_disk_size; /* lastly written file size */ 676 677 #ifdef CONFIG_QUOTA 678 struct dquot *i_dquot[MAXQUOTAS]; 679 680 /* quota space reservation, managed internally by quota code */ 681 qsize_t i_reserved_quota; 682 #endif 683 struct list_head dirty_list; /* dirty list for dirs and files */ 684 struct list_head gdirty_list; /* linked in global dirty list */ 685 struct list_head inmem_ilist; /* list for inmem inodes */ 686 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 687 struct task_struct *inmem_task; /* store inmemory task */ 688 struct mutex inmem_lock; /* lock for inmemory pages */ 689 struct extent_tree *extent_tree; /* cached extent_tree entry */ 690 691 /* avoid racing between foreground op and gc */ 692 struct rw_semaphore i_gc_rwsem[2]; 693 struct rw_semaphore i_mmap_sem; 694 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 695 696 int i_extra_isize; /* size of extra space located in i_addr */ 697 kprojid_t i_projid; /* id for project quota */ 698 int i_inline_xattr_size; /* inline xattr size */ 699 struct timespec64 i_crtime; /* inode creation time */ 700 struct timespec64 i_disk_time[4];/* inode disk times */ 701 }; 702 703 static inline void get_extent_info(struct extent_info *ext, 704 struct f2fs_extent *i_ext) 705 { 706 ext->fofs = le32_to_cpu(i_ext->fofs); 707 ext->blk = le32_to_cpu(i_ext->blk); 708 ext->len = le32_to_cpu(i_ext->len); 709 } 710 711 static inline void set_raw_extent(struct extent_info *ext, 712 struct f2fs_extent *i_ext) 713 { 714 i_ext->fofs = cpu_to_le32(ext->fofs); 715 i_ext->blk = cpu_to_le32(ext->blk); 716 i_ext->len = cpu_to_le32(ext->len); 717 } 718 719 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 720 u32 blk, unsigned int len) 721 { 722 ei->fofs = fofs; 723 ei->blk = blk; 724 ei->len = len; 725 } 726 727 static inline bool __is_discard_mergeable(struct discard_info *back, 728 struct discard_info *front, unsigned int max_len) 729 { 730 return (back->lstart + back->len == front->lstart) && 731 (back->len + front->len <= max_len); 732 } 733 734 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 735 struct discard_info *back, unsigned int max_len) 736 { 737 return __is_discard_mergeable(back, cur, max_len); 738 } 739 740 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 741 struct discard_info *front, unsigned int max_len) 742 { 743 return __is_discard_mergeable(cur, front, max_len); 744 } 745 746 static inline bool __is_extent_mergeable(struct extent_info *back, 747 struct extent_info *front) 748 { 749 return (back->fofs + back->len == front->fofs && 750 back->blk + back->len == front->blk); 751 } 752 753 static inline bool __is_back_mergeable(struct extent_info *cur, 754 struct extent_info *back) 755 { 756 return __is_extent_mergeable(back, cur); 757 } 758 759 static inline bool __is_front_mergeable(struct extent_info *cur, 760 struct extent_info *front) 761 { 762 return __is_extent_mergeable(cur, front); 763 } 764 765 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 766 static inline void __try_update_largest_extent(struct extent_tree *et, 767 struct extent_node *en) 768 { 769 if (en->ei.len > et->largest.len) { 770 et->largest = en->ei; 771 et->largest_updated = true; 772 } 773 } 774 775 /* 776 * For free nid management 777 */ 778 enum nid_state { 779 FREE_NID, /* newly added to free nid list */ 780 PREALLOC_NID, /* it is preallocated */ 781 MAX_NID_STATE, 782 }; 783 784 struct f2fs_nm_info { 785 block_t nat_blkaddr; /* base disk address of NAT */ 786 nid_t max_nid; /* maximum possible node ids */ 787 nid_t available_nids; /* # of available node ids */ 788 nid_t next_scan_nid; /* the next nid to be scanned */ 789 unsigned int ram_thresh; /* control the memory footprint */ 790 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 791 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 792 793 /* NAT cache management */ 794 struct radix_tree_root nat_root;/* root of the nat entry cache */ 795 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 796 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 797 struct list_head nat_entries; /* cached nat entry list (clean) */ 798 spinlock_t nat_list_lock; /* protect clean nat entry list */ 799 unsigned int nat_cnt; /* the # of cached nat entries */ 800 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 801 unsigned int nat_blocks; /* # of nat blocks */ 802 803 /* free node ids management */ 804 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 805 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 806 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 807 spinlock_t nid_list_lock; /* protect nid lists ops */ 808 struct mutex build_lock; /* lock for build free nids */ 809 unsigned char **free_nid_bitmap; 810 unsigned char *nat_block_bitmap; 811 unsigned short *free_nid_count; /* free nid count of NAT block */ 812 813 /* for checkpoint */ 814 char *nat_bitmap; /* NAT bitmap pointer */ 815 816 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 817 unsigned char *nat_bits; /* NAT bits blocks */ 818 unsigned char *full_nat_bits; /* full NAT pages */ 819 unsigned char *empty_nat_bits; /* empty NAT pages */ 820 #ifdef CONFIG_F2FS_CHECK_FS 821 char *nat_bitmap_mir; /* NAT bitmap mirror */ 822 #endif 823 int bitmap_size; /* bitmap size */ 824 }; 825 826 /* 827 * this structure is used as one of function parameters. 828 * all the information are dedicated to a given direct node block determined 829 * by the data offset in a file. 830 */ 831 struct dnode_of_data { 832 struct inode *inode; /* vfs inode pointer */ 833 struct page *inode_page; /* its inode page, NULL is possible */ 834 struct page *node_page; /* cached direct node page */ 835 nid_t nid; /* node id of the direct node block */ 836 unsigned int ofs_in_node; /* data offset in the node page */ 837 bool inode_page_locked; /* inode page is locked or not */ 838 bool node_changed; /* is node block changed */ 839 char cur_level; /* level of hole node page */ 840 char max_level; /* level of current page located */ 841 block_t data_blkaddr; /* block address of the node block */ 842 }; 843 844 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 845 struct page *ipage, struct page *npage, nid_t nid) 846 { 847 memset(dn, 0, sizeof(*dn)); 848 dn->inode = inode; 849 dn->inode_page = ipage; 850 dn->node_page = npage; 851 dn->nid = nid; 852 } 853 854 /* 855 * For SIT manager 856 * 857 * By default, there are 6 active log areas across the whole main area. 858 * When considering hot and cold data separation to reduce cleaning overhead, 859 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 860 * respectively. 861 * In the current design, you should not change the numbers intentionally. 862 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 863 * logs individually according to the underlying devices. (default: 6) 864 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 865 * data and 8 for node logs. 866 */ 867 #define NR_CURSEG_DATA_TYPE (3) 868 #define NR_CURSEG_NODE_TYPE (3) 869 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 870 871 enum { 872 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 873 CURSEG_WARM_DATA, /* data blocks */ 874 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 875 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 876 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 877 CURSEG_COLD_NODE, /* indirect node blocks */ 878 NO_CHECK_TYPE, 879 }; 880 881 struct flush_cmd { 882 struct completion wait; 883 struct llist_node llnode; 884 nid_t ino; 885 int ret; 886 }; 887 888 struct flush_cmd_control { 889 struct task_struct *f2fs_issue_flush; /* flush thread */ 890 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 891 atomic_t issued_flush; /* # of issued flushes */ 892 atomic_t issing_flush; /* # of issing flushes */ 893 struct llist_head issue_list; /* list for command issue */ 894 struct llist_node *dispatch_list; /* list for command dispatch */ 895 }; 896 897 struct f2fs_sm_info { 898 struct sit_info *sit_info; /* whole segment information */ 899 struct free_segmap_info *free_info; /* free segment information */ 900 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 901 struct curseg_info *curseg_array; /* active segment information */ 902 903 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 904 905 block_t seg0_blkaddr; /* block address of 0'th segment */ 906 block_t main_blkaddr; /* start block address of main area */ 907 block_t ssa_blkaddr; /* start block address of SSA area */ 908 909 unsigned int segment_count; /* total # of segments */ 910 unsigned int main_segments; /* # of segments in main area */ 911 unsigned int reserved_segments; /* # of reserved segments */ 912 unsigned int ovp_segments; /* # of overprovision segments */ 913 914 /* a threshold to reclaim prefree segments */ 915 unsigned int rec_prefree_segments; 916 917 /* for batched trimming */ 918 unsigned int trim_sections; /* # of sections to trim */ 919 920 struct list_head sit_entry_set; /* sit entry set list */ 921 922 unsigned int ipu_policy; /* in-place-update policy */ 923 unsigned int min_ipu_util; /* in-place-update threshold */ 924 unsigned int min_fsync_blocks; /* threshold for fsync */ 925 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 926 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 927 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 928 929 /* for flush command control */ 930 struct flush_cmd_control *fcc_info; 931 932 /* for discard command control */ 933 struct discard_cmd_control *dcc_info; 934 }; 935 936 /* 937 * For superblock 938 */ 939 /* 940 * COUNT_TYPE for monitoring 941 * 942 * f2fs monitors the number of several block types such as on-writeback, 943 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 944 */ 945 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 946 enum count_type { 947 F2FS_DIRTY_DENTS, 948 F2FS_DIRTY_DATA, 949 F2FS_DIRTY_QDATA, 950 F2FS_DIRTY_NODES, 951 F2FS_DIRTY_META, 952 F2FS_INMEM_PAGES, 953 F2FS_DIRTY_IMETA, 954 F2FS_WB_CP_DATA, 955 F2FS_WB_DATA, 956 F2FS_RD_DATA, 957 F2FS_RD_NODE, 958 F2FS_RD_META, 959 NR_COUNT_TYPE, 960 }; 961 962 /* 963 * The below are the page types of bios used in submit_bio(). 964 * The available types are: 965 * DATA User data pages. It operates as async mode. 966 * NODE Node pages. It operates as async mode. 967 * META FS metadata pages such as SIT, NAT, CP. 968 * NR_PAGE_TYPE The number of page types. 969 * META_FLUSH Make sure the previous pages are written 970 * with waiting the bio's completion 971 * ... Only can be used with META. 972 */ 973 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 974 enum page_type { 975 DATA, 976 NODE, 977 META, 978 NR_PAGE_TYPE, 979 META_FLUSH, 980 INMEM, /* the below types are used by tracepoints only. */ 981 INMEM_DROP, 982 INMEM_INVALIDATE, 983 INMEM_REVOKE, 984 IPU, 985 OPU, 986 }; 987 988 enum temp_type { 989 HOT = 0, /* must be zero for meta bio */ 990 WARM, 991 COLD, 992 NR_TEMP_TYPE, 993 }; 994 995 enum need_lock_type { 996 LOCK_REQ = 0, 997 LOCK_DONE, 998 LOCK_RETRY, 999 }; 1000 1001 enum cp_reason_type { 1002 CP_NO_NEEDED, 1003 CP_NON_REGULAR, 1004 CP_HARDLINK, 1005 CP_SB_NEED_CP, 1006 CP_WRONG_PINO, 1007 CP_NO_SPC_ROLL, 1008 CP_NODE_NEED_CP, 1009 CP_FASTBOOT_MODE, 1010 CP_SPEC_LOG_NUM, 1011 CP_RECOVER_DIR, 1012 }; 1013 1014 enum iostat_type { 1015 APP_DIRECT_IO, /* app direct IOs */ 1016 APP_BUFFERED_IO, /* app buffered IOs */ 1017 APP_WRITE_IO, /* app write IOs */ 1018 APP_MAPPED_IO, /* app mapped IOs */ 1019 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1020 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1021 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1022 FS_GC_DATA_IO, /* data IOs from forground gc */ 1023 FS_GC_NODE_IO, /* node IOs from forground gc */ 1024 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1025 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1026 FS_CP_META_IO, /* meta IOs from checkpoint */ 1027 FS_DISCARD, /* discard */ 1028 NR_IO_TYPE, 1029 }; 1030 1031 struct f2fs_io_info { 1032 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1033 nid_t ino; /* inode number */ 1034 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1035 enum temp_type temp; /* contains HOT/WARM/COLD */ 1036 int op; /* contains REQ_OP_ */ 1037 int op_flags; /* req_flag_bits */ 1038 block_t new_blkaddr; /* new block address to be written */ 1039 block_t old_blkaddr; /* old block address before Cow */ 1040 struct page *page; /* page to be written */ 1041 struct page *encrypted_page; /* encrypted page */ 1042 struct list_head list; /* serialize IOs */ 1043 bool submitted; /* indicate IO submission */ 1044 int need_lock; /* indicate we need to lock cp_rwsem */ 1045 bool in_list; /* indicate fio is in io_list */ 1046 bool is_meta; /* indicate borrow meta inode mapping or not */ 1047 bool retry; /* need to reallocate block address */ 1048 enum iostat_type io_type; /* io type */ 1049 struct writeback_control *io_wbc; /* writeback control */ 1050 unsigned char version; /* version of the node */ 1051 }; 1052 1053 #define is_read_io(rw) ((rw) == READ) 1054 struct f2fs_bio_info { 1055 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1056 struct bio *bio; /* bios to merge */ 1057 sector_t last_block_in_bio; /* last block number */ 1058 struct f2fs_io_info fio; /* store buffered io info. */ 1059 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1060 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1061 struct list_head io_list; /* track fios */ 1062 }; 1063 1064 #define FDEV(i) (sbi->devs[i]) 1065 #define RDEV(i) (raw_super->devs[i]) 1066 struct f2fs_dev_info { 1067 struct block_device *bdev; 1068 char path[MAX_PATH_LEN]; 1069 unsigned int total_segments; 1070 block_t start_blk; 1071 block_t end_blk; 1072 #ifdef CONFIG_BLK_DEV_ZONED 1073 unsigned int nr_blkz; /* Total number of zones */ 1074 u8 *blkz_type; /* Array of zones type */ 1075 #endif 1076 }; 1077 1078 enum inode_type { 1079 DIR_INODE, /* for dirty dir inode */ 1080 FILE_INODE, /* for dirty regular/symlink inode */ 1081 DIRTY_META, /* for all dirtied inode metadata */ 1082 ATOMIC_FILE, /* for all atomic files */ 1083 NR_INODE_TYPE, 1084 }; 1085 1086 /* for inner inode cache management */ 1087 struct inode_management { 1088 struct radix_tree_root ino_root; /* ino entry array */ 1089 spinlock_t ino_lock; /* for ino entry lock */ 1090 struct list_head ino_list; /* inode list head */ 1091 unsigned long ino_num; /* number of entries */ 1092 }; 1093 1094 /* For s_flag in struct f2fs_sb_info */ 1095 enum { 1096 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1097 SBI_IS_CLOSE, /* specify unmounting */ 1098 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1099 SBI_POR_DOING, /* recovery is doing or not */ 1100 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1101 SBI_NEED_CP, /* need to checkpoint */ 1102 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1103 SBI_IS_RECOVERED, /* recovered orphan/data */ 1104 SBI_CP_DISABLED, /* CP was disabled last mount */ 1105 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1106 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1107 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1108 }; 1109 1110 enum { 1111 CP_TIME, 1112 REQ_TIME, 1113 DISCARD_TIME, 1114 GC_TIME, 1115 DISABLE_TIME, 1116 MAX_TIME, 1117 }; 1118 1119 enum { 1120 GC_NORMAL, 1121 GC_IDLE_CB, 1122 GC_IDLE_GREEDY, 1123 GC_URGENT, 1124 }; 1125 1126 enum { 1127 WHINT_MODE_OFF, /* not pass down write hints */ 1128 WHINT_MODE_USER, /* try to pass down hints given by users */ 1129 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1130 }; 1131 1132 enum { 1133 ALLOC_MODE_DEFAULT, /* stay default */ 1134 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1135 }; 1136 1137 enum fsync_mode { 1138 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1139 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1140 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1141 }; 1142 1143 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1144 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1145 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1146 #else 1147 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1148 #endif 1149 1150 struct f2fs_sb_info { 1151 struct super_block *sb; /* pointer to VFS super block */ 1152 struct proc_dir_entry *s_proc; /* proc entry */ 1153 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1154 struct rw_semaphore sb_lock; /* lock for raw super block */ 1155 int valid_super_block; /* valid super block no */ 1156 unsigned long s_flag; /* flags for sbi */ 1157 struct mutex writepages; /* mutex for writepages() */ 1158 1159 #ifdef CONFIG_BLK_DEV_ZONED 1160 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1161 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1162 #endif 1163 1164 /* for node-related operations */ 1165 struct f2fs_nm_info *nm_info; /* node manager */ 1166 struct inode *node_inode; /* cache node blocks */ 1167 1168 /* for segment-related operations */ 1169 struct f2fs_sm_info *sm_info; /* segment manager */ 1170 1171 /* for bio operations */ 1172 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1173 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1174 /* bio ordering for NODE/DATA */ 1175 /* keep migration IO order for LFS mode */ 1176 struct rw_semaphore io_order_lock; 1177 mempool_t *write_io_dummy; /* Dummy pages */ 1178 1179 /* for checkpoint */ 1180 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1181 int cur_cp_pack; /* remain current cp pack */ 1182 spinlock_t cp_lock; /* for flag in ckpt */ 1183 struct inode *meta_inode; /* cache meta blocks */ 1184 struct mutex cp_mutex; /* checkpoint procedure lock */ 1185 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1186 struct rw_semaphore node_write; /* locking node writes */ 1187 struct rw_semaphore node_change; /* locking node change */ 1188 wait_queue_head_t cp_wait; 1189 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1190 long interval_time[MAX_TIME]; /* to store thresholds */ 1191 1192 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1193 1194 spinlock_t fsync_node_lock; /* for node entry lock */ 1195 struct list_head fsync_node_list; /* node list head */ 1196 unsigned int fsync_seg_id; /* sequence id */ 1197 unsigned int fsync_node_num; /* number of node entries */ 1198 1199 /* for orphan inode, use 0'th array */ 1200 unsigned int max_orphans; /* max orphan inodes */ 1201 1202 /* for inode management */ 1203 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1204 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1205 1206 /* for extent tree cache */ 1207 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1208 struct mutex extent_tree_lock; /* locking extent radix tree */ 1209 struct list_head extent_list; /* lru list for shrinker */ 1210 spinlock_t extent_lock; /* locking extent lru list */ 1211 atomic_t total_ext_tree; /* extent tree count */ 1212 struct list_head zombie_list; /* extent zombie tree list */ 1213 atomic_t total_zombie_tree; /* extent zombie tree count */ 1214 atomic_t total_ext_node; /* extent info count */ 1215 1216 /* basic filesystem units */ 1217 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1218 unsigned int log_blocksize; /* log2 block size */ 1219 unsigned int blocksize; /* block size */ 1220 unsigned int root_ino_num; /* root inode number*/ 1221 unsigned int node_ino_num; /* node inode number*/ 1222 unsigned int meta_ino_num; /* meta inode number*/ 1223 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1224 unsigned int blocks_per_seg; /* blocks per segment */ 1225 unsigned int segs_per_sec; /* segments per section */ 1226 unsigned int secs_per_zone; /* sections per zone */ 1227 unsigned int total_sections; /* total section count */ 1228 unsigned int total_node_count; /* total node block count */ 1229 unsigned int total_valid_node_count; /* valid node block count */ 1230 loff_t max_file_blocks; /* max block index of file */ 1231 int dir_level; /* directory level */ 1232 int readdir_ra; /* readahead inode in readdir */ 1233 1234 block_t user_block_count; /* # of user blocks */ 1235 block_t total_valid_block_count; /* # of valid blocks */ 1236 block_t discard_blks; /* discard command candidats */ 1237 block_t last_valid_block_count; /* for recovery */ 1238 block_t reserved_blocks; /* configurable reserved blocks */ 1239 block_t current_reserved_blocks; /* current reserved blocks */ 1240 1241 /* Additional tracking for no checkpoint mode */ 1242 block_t unusable_block_count; /* # of blocks saved by last cp */ 1243 1244 unsigned int nquota_files; /* # of quota sysfile */ 1245 1246 u32 s_next_generation; /* for NFS support */ 1247 1248 /* # of pages, see count_type */ 1249 atomic_t nr_pages[NR_COUNT_TYPE]; 1250 /* # of allocated blocks */ 1251 struct percpu_counter alloc_valid_block_count; 1252 1253 /* writeback control */ 1254 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1255 1256 /* valid inode count */ 1257 struct percpu_counter total_valid_inode_count; 1258 1259 struct f2fs_mount_info mount_opt; /* mount options */ 1260 1261 /* for cleaning operations */ 1262 struct mutex gc_mutex; /* mutex for GC */ 1263 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1264 unsigned int cur_victim_sec; /* current victim section num */ 1265 unsigned int gc_mode; /* current GC state */ 1266 /* for skip statistic */ 1267 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1268 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1269 1270 /* threshold for gc trials on pinned files */ 1271 u64 gc_pin_file_threshold; 1272 1273 /* maximum # of trials to find a victim segment for SSR and GC */ 1274 unsigned int max_victim_search; 1275 1276 /* 1277 * for stat information. 1278 * one is for the LFS mode, and the other is for the SSR mode. 1279 */ 1280 #ifdef CONFIG_F2FS_STAT_FS 1281 struct f2fs_stat_info *stat_info; /* FS status information */ 1282 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1283 unsigned int segment_count[2]; /* # of allocated segments */ 1284 unsigned int block_count[2]; /* # of allocated blocks */ 1285 atomic_t inplace_count; /* # of inplace update */ 1286 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1287 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1288 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1289 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1290 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1291 atomic_t inline_inode; /* # of inline_data inodes */ 1292 atomic_t inline_dir; /* # of inline_dentry inodes */ 1293 atomic_t aw_cnt; /* # of atomic writes */ 1294 atomic_t vw_cnt; /* # of volatile writes */ 1295 atomic_t max_aw_cnt; /* max # of atomic writes */ 1296 atomic_t max_vw_cnt; /* max # of volatile writes */ 1297 int bg_gc; /* background gc calls */ 1298 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1299 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1300 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1301 #endif 1302 spinlock_t stat_lock; /* lock for stat operations */ 1303 1304 /* For app/fs IO statistics */ 1305 spinlock_t iostat_lock; 1306 unsigned long long write_iostat[NR_IO_TYPE]; 1307 bool iostat_enable; 1308 1309 /* For sysfs suppport */ 1310 struct kobject s_kobj; 1311 struct completion s_kobj_unregister; 1312 1313 /* For shrinker support */ 1314 struct list_head s_list; 1315 int s_ndevs; /* number of devices */ 1316 struct f2fs_dev_info *devs; /* for device list */ 1317 unsigned int dirty_device; /* for checkpoint data flush */ 1318 spinlock_t dev_lock; /* protect dirty_device */ 1319 struct mutex umount_mutex; 1320 unsigned int shrinker_run_no; 1321 1322 /* For write statistics */ 1323 u64 sectors_written_start; 1324 u64 kbytes_written; 1325 1326 /* Reference to checksum algorithm driver via cryptoapi */ 1327 struct crypto_shash *s_chksum_driver; 1328 1329 /* Precomputed FS UUID checksum for seeding other checksums */ 1330 __u32 s_chksum_seed; 1331 }; 1332 1333 #ifdef CONFIG_F2FS_FAULT_INJECTION 1334 #define f2fs_show_injection_info(type) \ 1335 printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n", \ 1336 KERN_INFO, f2fs_fault_name[type], \ 1337 __func__, __builtin_return_address(0)) 1338 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1339 { 1340 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1341 1342 if (!ffi->inject_rate) 1343 return false; 1344 1345 if (!IS_FAULT_SET(ffi, type)) 1346 return false; 1347 1348 atomic_inc(&ffi->inject_ops); 1349 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1350 atomic_set(&ffi->inject_ops, 0); 1351 return true; 1352 } 1353 return false; 1354 } 1355 #else 1356 #define f2fs_show_injection_info(type) do { } while (0) 1357 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1358 { 1359 return false; 1360 } 1361 #endif 1362 1363 /* For write statistics. Suppose sector size is 512 bytes, 1364 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1365 */ 1366 #define BD_PART_WRITTEN(s) \ 1367 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \ 1368 (s)->sectors_written_start) >> 1) 1369 1370 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1371 { 1372 unsigned long now = jiffies; 1373 1374 sbi->last_time[type] = now; 1375 1376 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1377 if (type == REQ_TIME) { 1378 sbi->last_time[DISCARD_TIME] = now; 1379 sbi->last_time[GC_TIME] = now; 1380 } 1381 } 1382 1383 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1384 { 1385 unsigned long interval = sbi->interval_time[type] * HZ; 1386 1387 return time_after(jiffies, sbi->last_time[type] + interval); 1388 } 1389 1390 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1391 int type) 1392 { 1393 unsigned long interval = sbi->interval_time[type] * HZ; 1394 unsigned int wait_ms = 0; 1395 long delta; 1396 1397 delta = (sbi->last_time[type] + interval) - jiffies; 1398 if (delta > 0) 1399 wait_ms = jiffies_to_msecs(delta); 1400 1401 return wait_ms; 1402 } 1403 1404 /* 1405 * Inline functions 1406 */ 1407 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1408 const void *address, unsigned int length) 1409 { 1410 struct { 1411 struct shash_desc shash; 1412 char ctx[4]; 1413 } desc; 1414 int err; 1415 1416 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1417 1418 desc.shash.tfm = sbi->s_chksum_driver; 1419 desc.shash.flags = 0; 1420 *(u32 *)desc.ctx = crc; 1421 1422 err = crypto_shash_update(&desc.shash, address, length); 1423 BUG_ON(err); 1424 1425 return *(u32 *)desc.ctx; 1426 } 1427 1428 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1429 unsigned int length) 1430 { 1431 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1432 } 1433 1434 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1435 void *buf, size_t buf_size) 1436 { 1437 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1438 } 1439 1440 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1441 const void *address, unsigned int length) 1442 { 1443 return __f2fs_crc32(sbi, crc, address, length); 1444 } 1445 1446 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1447 { 1448 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1449 } 1450 1451 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1452 { 1453 return sb->s_fs_info; 1454 } 1455 1456 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1457 { 1458 return F2FS_SB(inode->i_sb); 1459 } 1460 1461 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1462 { 1463 return F2FS_I_SB(mapping->host); 1464 } 1465 1466 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1467 { 1468 return F2FS_M_SB(page->mapping); 1469 } 1470 1471 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1472 { 1473 return (struct f2fs_super_block *)(sbi->raw_super); 1474 } 1475 1476 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1477 { 1478 return (struct f2fs_checkpoint *)(sbi->ckpt); 1479 } 1480 1481 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1482 { 1483 return (struct f2fs_node *)page_address(page); 1484 } 1485 1486 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1487 { 1488 return &((struct f2fs_node *)page_address(page))->i; 1489 } 1490 1491 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1492 { 1493 return (struct f2fs_nm_info *)(sbi->nm_info); 1494 } 1495 1496 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1497 { 1498 return (struct f2fs_sm_info *)(sbi->sm_info); 1499 } 1500 1501 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1502 { 1503 return (struct sit_info *)(SM_I(sbi)->sit_info); 1504 } 1505 1506 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1507 { 1508 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1509 } 1510 1511 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1512 { 1513 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1514 } 1515 1516 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1517 { 1518 return sbi->meta_inode->i_mapping; 1519 } 1520 1521 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1522 { 1523 return sbi->node_inode->i_mapping; 1524 } 1525 1526 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1527 { 1528 return test_bit(type, &sbi->s_flag); 1529 } 1530 1531 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1532 { 1533 set_bit(type, &sbi->s_flag); 1534 } 1535 1536 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1537 { 1538 clear_bit(type, &sbi->s_flag); 1539 } 1540 1541 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1542 { 1543 return le64_to_cpu(cp->checkpoint_ver); 1544 } 1545 1546 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1547 { 1548 if (type < F2FS_MAX_QUOTAS) 1549 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1550 return 0; 1551 } 1552 1553 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1554 { 1555 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1556 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1557 } 1558 1559 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1560 { 1561 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1562 1563 return ckpt_flags & f; 1564 } 1565 1566 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1567 { 1568 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1569 } 1570 1571 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1572 { 1573 unsigned int ckpt_flags; 1574 1575 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1576 ckpt_flags |= f; 1577 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1578 } 1579 1580 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1581 { 1582 unsigned long flags; 1583 1584 spin_lock_irqsave(&sbi->cp_lock, flags); 1585 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1586 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1587 } 1588 1589 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1590 { 1591 unsigned int ckpt_flags; 1592 1593 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1594 ckpt_flags &= (~f); 1595 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1596 } 1597 1598 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1599 { 1600 unsigned long flags; 1601 1602 spin_lock_irqsave(&sbi->cp_lock, flags); 1603 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1604 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1605 } 1606 1607 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1608 { 1609 unsigned long flags; 1610 1611 set_sbi_flag(sbi, SBI_NEED_FSCK); 1612 1613 if (lock) 1614 spin_lock_irqsave(&sbi->cp_lock, flags); 1615 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1616 kfree(NM_I(sbi)->nat_bits); 1617 NM_I(sbi)->nat_bits = NULL; 1618 if (lock) 1619 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1620 } 1621 1622 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1623 struct cp_control *cpc) 1624 { 1625 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1626 1627 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1628 } 1629 1630 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1631 { 1632 down_read(&sbi->cp_rwsem); 1633 } 1634 1635 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1636 { 1637 return down_read_trylock(&sbi->cp_rwsem); 1638 } 1639 1640 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1641 { 1642 up_read(&sbi->cp_rwsem); 1643 } 1644 1645 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1646 { 1647 down_write(&sbi->cp_rwsem); 1648 } 1649 1650 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1651 { 1652 up_write(&sbi->cp_rwsem); 1653 } 1654 1655 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1656 { 1657 int reason = CP_SYNC; 1658 1659 if (test_opt(sbi, FASTBOOT)) 1660 reason = CP_FASTBOOT; 1661 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1662 reason = CP_UMOUNT; 1663 return reason; 1664 } 1665 1666 static inline bool __remain_node_summaries(int reason) 1667 { 1668 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1669 } 1670 1671 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1672 { 1673 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1674 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1675 } 1676 1677 /* 1678 * Check whether the inode has blocks or not 1679 */ 1680 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1681 { 1682 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1683 1684 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1685 } 1686 1687 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1688 { 1689 return ofs == XATTR_NODE_OFFSET; 1690 } 1691 1692 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1693 struct inode *inode, bool cap) 1694 { 1695 if (!inode) 1696 return true; 1697 if (!test_opt(sbi, RESERVE_ROOT)) 1698 return false; 1699 if (IS_NOQUOTA(inode)) 1700 return true; 1701 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1702 return true; 1703 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1704 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1705 return true; 1706 if (cap && capable(CAP_SYS_RESOURCE)) 1707 return true; 1708 return false; 1709 } 1710 1711 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1712 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1713 struct inode *inode, blkcnt_t *count) 1714 { 1715 blkcnt_t diff = 0, release = 0; 1716 block_t avail_user_block_count; 1717 int ret; 1718 1719 ret = dquot_reserve_block(inode, *count); 1720 if (ret) 1721 return ret; 1722 1723 if (time_to_inject(sbi, FAULT_BLOCK)) { 1724 f2fs_show_injection_info(FAULT_BLOCK); 1725 release = *count; 1726 goto enospc; 1727 } 1728 1729 /* 1730 * let's increase this in prior to actual block count change in order 1731 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1732 */ 1733 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1734 1735 spin_lock(&sbi->stat_lock); 1736 sbi->total_valid_block_count += (block_t)(*count); 1737 avail_user_block_count = sbi->user_block_count - 1738 sbi->current_reserved_blocks; 1739 1740 if (!__allow_reserved_blocks(sbi, inode, true)) 1741 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1742 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1743 avail_user_block_count -= sbi->unusable_block_count; 1744 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1745 diff = sbi->total_valid_block_count - avail_user_block_count; 1746 if (diff > *count) 1747 diff = *count; 1748 *count -= diff; 1749 release = diff; 1750 sbi->total_valid_block_count -= diff; 1751 if (!*count) { 1752 spin_unlock(&sbi->stat_lock); 1753 goto enospc; 1754 } 1755 } 1756 spin_unlock(&sbi->stat_lock); 1757 1758 if (unlikely(release)) { 1759 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1760 dquot_release_reservation_block(inode, release); 1761 } 1762 f2fs_i_blocks_write(inode, *count, true, true); 1763 return 0; 1764 1765 enospc: 1766 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1767 dquot_release_reservation_block(inode, release); 1768 return -ENOSPC; 1769 } 1770 1771 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1772 struct inode *inode, 1773 block_t count) 1774 { 1775 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1776 1777 spin_lock(&sbi->stat_lock); 1778 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1779 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1780 sbi->total_valid_block_count -= (block_t)count; 1781 if (sbi->reserved_blocks && 1782 sbi->current_reserved_blocks < sbi->reserved_blocks) 1783 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1784 sbi->current_reserved_blocks + count); 1785 spin_unlock(&sbi->stat_lock); 1786 f2fs_i_blocks_write(inode, count, false, true); 1787 } 1788 1789 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1790 { 1791 atomic_inc(&sbi->nr_pages[count_type]); 1792 1793 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1794 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA || 1795 count_type == F2FS_RD_DATA || count_type == F2FS_RD_NODE || 1796 count_type == F2FS_RD_META) 1797 return; 1798 1799 set_sbi_flag(sbi, SBI_IS_DIRTY); 1800 } 1801 1802 static inline void inode_inc_dirty_pages(struct inode *inode) 1803 { 1804 atomic_inc(&F2FS_I(inode)->dirty_pages); 1805 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1806 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1807 if (IS_NOQUOTA(inode)) 1808 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1809 } 1810 1811 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1812 { 1813 atomic_dec(&sbi->nr_pages[count_type]); 1814 } 1815 1816 static inline void inode_dec_dirty_pages(struct inode *inode) 1817 { 1818 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1819 !S_ISLNK(inode->i_mode)) 1820 return; 1821 1822 atomic_dec(&F2FS_I(inode)->dirty_pages); 1823 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1824 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1825 if (IS_NOQUOTA(inode)) 1826 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1827 } 1828 1829 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1830 { 1831 return atomic_read(&sbi->nr_pages[count_type]); 1832 } 1833 1834 static inline int get_dirty_pages(struct inode *inode) 1835 { 1836 return atomic_read(&F2FS_I(inode)->dirty_pages); 1837 } 1838 1839 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1840 { 1841 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1842 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1843 sbi->log_blocks_per_seg; 1844 1845 return segs / sbi->segs_per_sec; 1846 } 1847 1848 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1849 { 1850 return sbi->total_valid_block_count; 1851 } 1852 1853 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1854 { 1855 return sbi->discard_blks; 1856 } 1857 1858 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1859 { 1860 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1861 1862 /* return NAT or SIT bitmap */ 1863 if (flag == NAT_BITMAP) 1864 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1865 else if (flag == SIT_BITMAP) 1866 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1867 1868 return 0; 1869 } 1870 1871 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1872 { 1873 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1874 } 1875 1876 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1877 { 1878 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1879 int offset; 1880 1881 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1882 offset = (flag == SIT_BITMAP) ? 1883 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1884 return &ckpt->sit_nat_version_bitmap + offset; 1885 } 1886 1887 if (__cp_payload(sbi) > 0) { 1888 if (flag == NAT_BITMAP) 1889 return &ckpt->sit_nat_version_bitmap; 1890 else 1891 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1892 } else { 1893 offset = (flag == NAT_BITMAP) ? 1894 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1895 return &ckpt->sit_nat_version_bitmap + offset; 1896 } 1897 } 1898 1899 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1900 { 1901 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1902 1903 if (sbi->cur_cp_pack == 2) 1904 start_addr += sbi->blocks_per_seg; 1905 return start_addr; 1906 } 1907 1908 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1909 { 1910 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1911 1912 if (sbi->cur_cp_pack == 1) 1913 start_addr += sbi->blocks_per_seg; 1914 return start_addr; 1915 } 1916 1917 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1918 { 1919 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1920 } 1921 1922 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1923 { 1924 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1925 } 1926 1927 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1928 struct inode *inode, bool is_inode) 1929 { 1930 block_t valid_block_count; 1931 unsigned int valid_node_count; 1932 int err; 1933 1934 if (is_inode) { 1935 if (inode) { 1936 err = dquot_alloc_inode(inode); 1937 if (err) 1938 return err; 1939 } 1940 } else { 1941 err = dquot_reserve_block(inode, 1); 1942 if (err) 1943 return err; 1944 } 1945 1946 if (time_to_inject(sbi, FAULT_BLOCK)) { 1947 f2fs_show_injection_info(FAULT_BLOCK); 1948 goto enospc; 1949 } 1950 1951 spin_lock(&sbi->stat_lock); 1952 1953 valid_block_count = sbi->total_valid_block_count + 1954 sbi->current_reserved_blocks + 1; 1955 1956 if (!__allow_reserved_blocks(sbi, inode, false)) 1957 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 1958 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1959 valid_block_count += sbi->unusable_block_count; 1960 1961 if (unlikely(valid_block_count > sbi->user_block_count)) { 1962 spin_unlock(&sbi->stat_lock); 1963 goto enospc; 1964 } 1965 1966 valid_node_count = sbi->total_valid_node_count + 1; 1967 if (unlikely(valid_node_count > sbi->total_node_count)) { 1968 spin_unlock(&sbi->stat_lock); 1969 goto enospc; 1970 } 1971 1972 sbi->total_valid_node_count++; 1973 sbi->total_valid_block_count++; 1974 spin_unlock(&sbi->stat_lock); 1975 1976 if (inode) { 1977 if (is_inode) 1978 f2fs_mark_inode_dirty_sync(inode, true); 1979 else 1980 f2fs_i_blocks_write(inode, 1, true, true); 1981 } 1982 1983 percpu_counter_inc(&sbi->alloc_valid_block_count); 1984 return 0; 1985 1986 enospc: 1987 if (is_inode) { 1988 if (inode) 1989 dquot_free_inode(inode); 1990 } else { 1991 dquot_release_reservation_block(inode, 1); 1992 } 1993 return -ENOSPC; 1994 } 1995 1996 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1997 struct inode *inode, bool is_inode) 1998 { 1999 spin_lock(&sbi->stat_lock); 2000 2001 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 2002 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 2003 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 2004 2005 sbi->total_valid_node_count--; 2006 sbi->total_valid_block_count--; 2007 if (sbi->reserved_blocks && 2008 sbi->current_reserved_blocks < sbi->reserved_blocks) 2009 sbi->current_reserved_blocks++; 2010 2011 spin_unlock(&sbi->stat_lock); 2012 2013 if (is_inode) 2014 dquot_free_inode(inode); 2015 else 2016 f2fs_i_blocks_write(inode, 1, false, true); 2017 } 2018 2019 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2020 { 2021 return sbi->total_valid_node_count; 2022 } 2023 2024 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2025 { 2026 percpu_counter_inc(&sbi->total_valid_inode_count); 2027 } 2028 2029 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2030 { 2031 percpu_counter_dec(&sbi->total_valid_inode_count); 2032 } 2033 2034 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2035 { 2036 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2037 } 2038 2039 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2040 pgoff_t index, bool for_write) 2041 { 2042 struct page *page; 2043 2044 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2045 if (!for_write) 2046 page = find_get_page_flags(mapping, index, 2047 FGP_LOCK | FGP_ACCESSED); 2048 else 2049 page = find_lock_page(mapping, index); 2050 if (page) 2051 return page; 2052 2053 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2054 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 2055 return NULL; 2056 } 2057 } 2058 2059 if (!for_write) 2060 return grab_cache_page(mapping, index); 2061 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2062 } 2063 2064 static inline struct page *f2fs_pagecache_get_page( 2065 struct address_space *mapping, pgoff_t index, 2066 int fgp_flags, gfp_t gfp_mask) 2067 { 2068 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2069 f2fs_show_injection_info(FAULT_PAGE_GET); 2070 return NULL; 2071 } 2072 2073 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2074 } 2075 2076 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2077 { 2078 char *src_kaddr = kmap(src); 2079 char *dst_kaddr = kmap(dst); 2080 2081 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2082 kunmap(dst); 2083 kunmap(src); 2084 } 2085 2086 static inline void f2fs_put_page(struct page *page, int unlock) 2087 { 2088 if (!page) 2089 return; 2090 2091 if (unlock) { 2092 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2093 unlock_page(page); 2094 } 2095 put_page(page); 2096 } 2097 2098 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2099 { 2100 if (dn->node_page) 2101 f2fs_put_page(dn->node_page, 1); 2102 if (dn->inode_page && dn->node_page != dn->inode_page) 2103 f2fs_put_page(dn->inode_page, 0); 2104 dn->node_page = NULL; 2105 dn->inode_page = NULL; 2106 } 2107 2108 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2109 size_t size) 2110 { 2111 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2112 } 2113 2114 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2115 gfp_t flags) 2116 { 2117 void *entry; 2118 2119 entry = kmem_cache_alloc(cachep, flags); 2120 if (!entry) 2121 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2122 return entry; 2123 } 2124 2125 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2126 int npages, bool no_fail) 2127 { 2128 struct bio *bio; 2129 2130 if (no_fail) { 2131 /* No failure on bio allocation */ 2132 bio = bio_alloc(GFP_NOIO, npages); 2133 if (!bio) 2134 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2135 return bio; 2136 } 2137 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2138 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2139 return NULL; 2140 } 2141 2142 return bio_alloc(GFP_KERNEL, npages); 2143 } 2144 2145 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2146 { 2147 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2148 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2149 get_pages(sbi, F2FS_WB_CP_DATA)) 2150 return false; 2151 return f2fs_time_over(sbi, type); 2152 } 2153 2154 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2155 unsigned long index, void *item) 2156 { 2157 while (radix_tree_insert(root, index, item)) 2158 cond_resched(); 2159 } 2160 2161 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2162 2163 static inline bool IS_INODE(struct page *page) 2164 { 2165 struct f2fs_node *p = F2FS_NODE(page); 2166 2167 return RAW_IS_INODE(p); 2168 } 2169 2170 static inline int offset_in_addr(struct f2fs_inode *i) 2171 { 2172 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2173 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2174 } 2175 2176 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2177 { 2178 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2179 } 2180 2181 static inline int f2fs_has_extra_attr(struct inode *inode); 2182 static inline block_t datablock_addr(struct inode *inode, 2183 struct page *node_page, unsigned int offset) 2184 { 2185 struct f2fs_node *raw_node; 2186 __le32 *addr_array; 2187 int base = 0; 2188 bool is_inode = IS_INODE(node_page); 2189 2190 raw_node = F2FS_NODE(node_page); 2191 2192 /* from GC path only */ 2193 if (is_inode) { 2194 if (!inode) 2195 base = offset_in_addr(&raw_node->i); 2196 else if (f2fs_has_extra_attr(inode)) 2197 base = get_extra_isize(inode); 2198 } 2199 2200 addr_array = blkaddr_in_node(raw_node); 2201 return le32_to_cpu(addr_array[base + offset]); 2202 } 2203 2204 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2205 { 2206 int mask; 2207 2208 addr += (nr >> 3); 2209 mask = 1 << (7 - (nr & 0x07)); 2210 return mask & *addr; 2211 } 2212 2213 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2214 { 2215 int mask; 2216 2217 addr += (nr >> 3); 2218 mask = 1 << (7 - (nr & 0x07)); 2219 *addr |= mask; 2220 } 2221 2222 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2223 { 2224 int mask; 2225 2226 addr += (nr >> 3); 2227 mask = 1 << (7 - (nr & 0x07)); 2228 *addr &= ~mask; 2229 } 2230 2231 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2232 { 2233 int mask; 2234 int ret; 2235 2236 addr += (nr >> 3); 2237 mask = 1 << (7 - (nr & 0x07)); 2238 ret = mask & *addr; 2239 *addr |= mask; 2240 return ret; 2241 } 2242 2243 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2244 { 2245 int mask; 2246 int ret; 2247 2248 addr += (nr >> 3); 2249 mask = 1 << (7 - (nr & 0x07)); 2250 ret = mask & *addr; 2251 *addr &= ~mask; 2252 return ret; 2253 } 2254 2255 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2256 { 2257 int mask; 2258 2259 addr += (nr >> 3); 2260 mask = 1 << (7 - (nr & 0x07)); 2261 *addr ^= mask; 2262 } 2263 2264 /* 2265 * Inode flags 2266 */ 2267 #define F2FS_SECRM_FL 0x00000001 /* Secure deletion */ 2268 #define F2FS_UNRM_FL 0x00000002 /* Undelete */ 2269 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2270 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2271 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2272 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2273 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2274 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2275 /* Reserved for compression usage... */ 2276 #define F2FS_DIRTY_FL 0x00000100 2277 #define F2FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */ 2278 #define F2FS_NOCOMPR_FL 0x00000400 /* Don't compress */ 2279 #define F2FS_ENCRYPT_FL 0x00000800 /* encrypted file */ 2280 /* End compression flags --- maybe not all used */ 2281 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2282 #define F2FS_IMAGIC_FL 0x00002000 /* AFS directory */ 2283 #define F2FS_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */ 2284 #define F2FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */ 2285 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2286 #define F2FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/ 2287 #define F2FS_HUGE_FILE_FL 0x00040000 /* Set to each huge file */ 2288 #define F2FS_EXTENTS_FL 0x00080000 /* Inode uses extents */ 2289 #define F2FS_EA_INODE_FL 0x00200000 /* Inode used for large EA */ 2290 #define F2FS_EOFBLOCKS_FL 0x00400000 /* Blocks allocated beyond EOF */ 2291 #define F2FS_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */ 2292 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2293 #define F2FS_RESERVED_FL 0x80000000 /* reserved for ext4 lib */ 2294 2295 #define F2FS_FL_USER_VISIBLE 0x304BDFFF /* User visible flags */ 2296 #define F2FS_FL_USER_MODIFIABLE 0x204BC0FF /* User modifiable flags */ 2297 2298 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */ 2299 #define F2FS_FL_XFLAG_VISIBLE (F2FS_SYNC_FL | \ 2300 F2FS_IMMUTABLE_FL | \ 2301 F2FS_APPEND_FL | \ 2302 F2FS_NODUMP_FL | \ 2303 F2FS_NOATIME_FL | \ 2304 F2FS_PROJINHERIT_FL) 2305 2306 /* Flags that should be inherited by new inodes from their parent. */ 2307 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\ 2308 F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\ 2309 F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\ 2310 F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\ 2311 F2FS_PROJINHERIT_FL) 2312 2313 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2314 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL)) 2315 2316 /* Flags that are appropriate for non-directories/regular files. */ 2317 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2318 2319 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2320 { 2321 if (S_ISDIR(mode)) 2322 return flags; 2323 else if (S_ISREG(mode)) 2324 return flags & F2FS_REG_FLMASK; 2325 else 2326 return flags & F2FS_OTHER_FLMASK; 2327 } 2328 2329 /* used for f2fs_inode_info->flags */ 2330 enum { 2331 FI_NEW_INODE, /* indicate newly allocated inode */ 2332 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2333 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2334 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2335 FI_INC_LINK, /* need to increment i_nlink */ 2336 FI_ACL_MODE, /* indicate acl mode */ 2337 FI_NO_ALLOC, /* should not allocate any blocks */ 2338 FI_FREE_NID, /* free allocated nide */ 2339 FI_NO_EXTENT, /* not to use the extent cache */ 2340 FI_INLINE_XATTR, /* used for inline xattr */ 2341 FI_INLINE_DATA, /* used for inline data*/ 2342 FI_INLINE_DENTRY, /* used for inline dentry */ 2343 FI_APPEND_WRITE, /* inode has appended data */ 2344 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2345 FI_NEED_IPU, /* used for ipu per file */ 2346 FI_ATOMIC_FILE, /* indicate atomic file */ 2347 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2348 FI_VOLATILE_FILE, /* indicate volatile file */ 2349 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2350 FI_DROP_CACHE, /* drop dirty page cache */ 2351 FI_DATA_EXIST, /* indicate data exists */ 2352 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2353 FI_DO_DEFRAG, /* indicate defragment is running */ 2354 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2355 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2356 FI_HOT_DATA, /* indicate file is hot */ 2357 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2358 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2359 FI_PIN_FILE, /* indicate file should not be gced */ 2360 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 2361 }; 2362 2363 static inline void __mark_inode_dirty_flag(struct inode *inode, 2364 int flag, bool set) 2365 { 2366 switch (flag) { 2367 case FI_INLINE_XATTR: 2368 case FI_INLINE_DATA: 2369 case FI_INLINE_DENTRY: 2370 case FI_NEW_INODE: 2371 if (set) 2372 return; 2373 case FI_DATA_EXIST: 2374 case FI_INLINE_DOTS: 2375 case FI_PIN_FILE: 2376 f2fs_mark_inode_dirty_sync(inode, true); 2377 } 2378 } 2379 2380 static inline void set_inode_flag(struct inode *inode, int flag) 2381 { 2382 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2383 set_bit(flag, &F2FS_I(inode)->flags); 2384 __mark_inode_dirty_flag(inode, flag, true); 2385 } 2386 2387 static inline int is_inode_flag_set(struct inode *inode, int flag) 2388 { 2389 return test_bit(flag, &F2FS_I(inode)->flags); 2390 } 2391 2392 static inline void clear_inode_flag(struct inode *inode, int flag) 2393 { 2394 if (test_bit(flag, &F2FS_I(inode)->flags)) 2395 clear_bit(flag, &F2FS_I(inode)->flags); 2396 __mark_inode_dirty_flag(inode, flag, false); 2397 } 2398 2399 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2400 { 2401 F2FS_I(inode)->i_acl_mode = mode; 2402 set_inode_flag(inode, FI_ACL_MODE); 2403 f2fs_mark_inode_dirty_sync(inode, false); 2404 } 2405 2406 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2407 { 2408 if (inc) 2409 inc_nlink(inode); 2410 else 2411 drop_nlink(inode); 2412 f2fs_mark_inode_dirty_sync(inode, true); 2413 } 2414 2415 static inline void f2fs_i_blocks_write(struct inode *inode, 2416 block_t diff, bool add, bool claim) 2417 { 2418 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2419 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2420 2421 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2422 if (add) { 2423 if (claim) 2424 dquot_claim_block(inode, diff); 2425 else 2426 dquot_alloc_block_nofail(inode, diff); 2427 } else { 2428 dquot_free_block(inode, diff); 2429 } 2430 2431 f2fs_mark_inode_dirty_sync(inode, true); 2432 if (clean || recover) 2433 set_inode_flag(inode, FI_AUTO_RECOVER); 2434 } 2435 2436 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2437 { 2438 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2439 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2440 2441 if (i_size_read(inode) == i_size) 2442 return; 2443 2444 i_size_write(inode, i_size); 2445 f2fs_mark_inode_dirty_sync(inode, true); 2446 if (clean || recover) 2447 set_inode_flag(inode, FI_AUTO_RECOVER); 2448 } 2449 2450 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2451 { 2452 F2FS_I(inode)->i_current_depth = depth; 2453 f2fs_mark_inode_dirty_sync(inode, true); 2454 } 2455 2456 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2457 unsigned int count) 2458 { 2459 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2460 f2fs_mark_inode_dirty_sync(inode, true); 2461 } 2462 2463 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2464 { 2465 F2FS_I(inode)->i_xattr_nid = xnid; 2466 f2fs_mark_inode_dirty_sync(inode, true); 2467 } 2468 2469 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2470 { 2471 F2FS_I(inode)->i_pino = pino; 2472 f2fs_mark_inode_dirty_sync(inode, true); 2473 } 2474 2475 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2476 { 2477 struct f2fs_inode_info *fi = F2FS_I(inode); 2478 2479 if (ri->i_inline & F2FS_INLINE_XATTR) 2480 set_bit(FI_INLINE_XATTR, &fi->flags); 2481 if (ri->i_inline & F2FS_INLINE_DATA) 2482 set_bit(FI_INLINE_DATA, &fi->flags); 2483 if (ri->i_inline & F2FS_INLINE_DENTRY) 2484 set_bit(FI_INLINE_DENTRY, &fi->flags); 2485 if (ri->i_inline & F2FS_DATA_EXIST) 2486 set_bit(FI_DATA_EXIST, &fi->flags); 2487 if (ri->i_inline & F2FS_INLINE_DOTS) 2488 set_bit(FI_INLINE_DOTS, &fi->flags); 2489 if (ri->i_inline & F2FS_EXTRA_ATTR) 2490 set_bit(FI_EXTRA_ATTR, &fi->flags); 2491 if (ri->i_inline & F2FS_PIN_FILE) 2492 set_bit(FI_PIN_FILE, &fi->flags); 2493 } 2494 2495 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2496 { 2497 ri->i_inline = 0; 2498 2499 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2500 ri->i_inline |= F2FS_INLINE_XATTR; 2501 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2502 ri->i_inline |= F2FS_INLINE_DATA; 2503 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2504 ri->i_inline |= F2FS_INLINE_DENTRY; 2505 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2506 ri->i_inline |= F2FS_DATA_EXIST; 2507 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2508 ri->i_inline |= F2FS_INLINE_DOTS; 2509 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2510 ri->i_inline |= F2FS_EXTRA_ATTR; 2511 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2512 ri->i_inline |= F2FS_PIN_FILE; 2513 } 2514 2515 static inline int f2fs_has_extra_attr(struct inode *inode) 2516 { 2517 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2518 } 2519 2520 static inline int f2fs_has_inline_xattr(struct inode *inode) 2521 { 2522 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2523 } 2524 2525 static inline unsigned int addrs_per_inode(struct inode *inode) 2526 { 2527 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode); 2528 } 2529 2530 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2531 { 2532 struct f2fs_inode *ri = F2FS_INODE(page); 2533 2534 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2535 get_inline_xattr_addrs(inode)]); 2536 } 2537 2538 static inline int inline_xattr_size(struct inode *inode) 2539 { 2540 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2541 } 2542 2543 static inline int f2fs_has_inline_data(struct inode *inode) 2544 { 2545 return is_inode_flag_set(inode, FI_INLINE_DATA); 2546 } 2547 2548 static inline int f2fs_exist_data(struct inode *inode) 2549 { 2550 return is_inode_flag_set(inode, FI_DATA_EXIST); 2551 } 2552 2553 static inline int f2fs_has_inline_dots(struct inode *inode) 2554 { 2555 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2556 } 2557 2558 static inline bool f2fs_is_pinned_file(struct inode *inode) 2559 { 2560 return is_inode_flag_set(inode, FI_PIN_FILE); 2561 } 2562 2563 static inline bool f2fs_is_atomic_file(struct inode *inode) 2564 { 2565 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2566 } 2567 2568 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2569 { 2570 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2571 } 2572 2573 static inline bool f2fs_is_volatile_file(struct inode *inode) 2574 { 2575 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2576 } 2577 2578 static inline bool f2fs_is_first_block_written(struct inode *inode) 2579 { 2580 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2581 } 2582 2583 static inline bool f2fs_is_drop_cache(struct inode *inode) 2584 { 2585 return is_inode_flag_set(inode, FI_DROP_CACHE); 2586 } 2587 2588 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2589 { 2590 struct f2fs_inode *ri = F2FS_INODE(page); 2591 int extra_size = get_extra_isize(inode); 2592 2593 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2594 } 2595 2596 static inline int f2fs_has_inline_dentry(struct inode *inode) 2597 { 2598 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2599 } 2600 2601 static inline int is_file(struct inode *inode, int type) 2602 { 2603 return F2FS_I(inode)->i_advise & type; 2604 } 2605 2606 static inline void set_file(struct inode *inode, int type) 2607 { 2608 F2FS_I(inode)->i_advise |= type; 2609 f2fs_mark_inode_dirty_sync(inode, true); 2610 } 2611 2612 static inline void clear_file(struct inode *inode, int type) 2613 { 2614 F2FS_I(inode)->i_advise &= ~type; 2615 f2fs_mark_inode_dirty_sync(inode, true); 2616 } 2617 2618 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2619 { 2620 bool ret; 2621 2622 if (dsync) { 2623 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2624 2625 spin_lock(&sbi->inode_lock[DIRTY_META]); 2626 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2627 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2628 return ret; 2629 } 2630 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2631 file_keep_isize(inode) || 2632 i_size_read(inode) & ~PAGE_MASK) 2633 return false; 2634 2635 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 2636 return false; 2637 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 2638 return false; 2639 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 2640 return false; 2641 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 2642 &F2FS_I(inode)->i_crtime)) 2643 return false; 2644 2645 down_read(&F2FS_I(inode)->i_sem); 2646 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2647 up_read(&F2FS_I(inode)->i_sem); 2648 2649 return ret; 2650 } 2651 2652 static inline bool f2fs_readonly(struct super_block *sb) 2653 { 2654 return sb_rdonly(sb); 2655 } 2656 2657 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2658 { 2659 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2660 } 2661 2662 static inline bool is_dot_dotdot(const struct qstr *str) 2663 { 2664 if (str->len == 1 && str->name[0] == '.') 2665 return true; 2666 2667 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2668 return true; 2669 2670 return false; 2671 } 2672 2673 static inline bool f2fs_may_extent_tree(struct inode *inode) 2674 { 2675 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2676 is_inode_flag_set(inode, FI_NO_EXTENT)) 2677 return false; 2678 2679 return S_ISREG(inode->i_mode); 2680 } 2681 2682 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2683 size_t size, gfp_t flags) 2684 { 2685 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2686 f2fs_show_injection_info(FAULT_KMALLOC); 2687 return NULL; 2688 } 2689 2690 return kmalloc(size, flags); 2691 } 2692 2693 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2694 size_t size, gfp_t flags) 2695 { 2696 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2697 } 2698 2699 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2700 size_t size, gfp_t flags) 2701 { 2702 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2703 f2fs_show_injection_info(FAULT_KVMALLOC); 2704 return NULL; 2705 } 2706 2707 return kvmalloc(size, flags); 2708 } 2709 2710 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2711 size_t size, gfp_t flags) 2712 { 2713 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2714 } 2715 2716 static inline int get_extra_isize(struct inode *inode) 2717 { 2718 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2719 } 2720 2721 static inline int get_inline_xattr_addrs(struct inode *inode) 2722 { 2723 return F2FS_I(inode)->i_inline_xattr_size; 2724 } 2725 2726 #define f2fs_get_inode_mode(i) \ 2727 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2728 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2729 2730 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2731 (offsetof(struct f2fs_inode, i_extra_end) - \ 2732 offsetof(struct f2fs_inode, i_extra_isize)) \ 2733 2734 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2735 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2736 ((offsetof(typeof(*f2fs_inode), field) + \ 2737 sizeof((f2fs_inode)->field)) \ 2738 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2739 2740 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2741 { 2742 int i; 2743 2744 spin_lock(&sbi->iostat_lock); 2745 for (i = 0; i < NR_IO_TYPE; i++) 2746 sbi->write_iostat[i] = 0; 2747 spin_unlock(&sbi->iostat_lock); 2748 } 2749 2750 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2751 enum iostat_type type, unsigned long long io_bytes) 2752 { 2753 if (!sbi->iostat_enable) 2754 return; 2755 spin_lock(&sbi->iostat_lock); 2756 sbi->write_iostat[type] += io_bytes; 2757 2758 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2759 sbi->write_iostat[APP_BUFFERED_IO] = 2760 sbi->write_iostat[APP_WRITE_IO] - 2761 sbi->write_iostat[APP_DIRECT_IO]; 2762 spin_unlock(&sbi->iostat_lock); 2763 } 2764 2765 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META && \ 2766 (!is_read_io(fio->op) || fio->is_meta)) 2767 2768 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 2769 block_t blkaddr, int type); 2770 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2771 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 2772 block_t blkaddr, int type) 2773 { 2774 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 2775 f2fs_msg(sbi->sb, KERN_ERR, 2776 "invalid blkaddr: %u, type: %d, run fsck to fix.", 2777 blkaddr, type); 2778 f2fs_bug_on(sbi, 1); 2779 } 2780 } 2781 2782 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 2783 { 2784 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2785 return false; 2786 return true; 2787 } 2788 2789 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi, 2790 block_t blkaddr) 2791 { 2792 if (!__is_valid_data_blkaddr(blkaddr)) 2793 return false; 2794 verify_blkaddr(sbi, blkaddr, DATA_GENERIC); 2795 return true; 2796 } 2797 2798 /* 2799 * file.c 2800 */ 2801 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2802 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 2803 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock, 2804 bool buf_write); 2805 int f2fs_truncate(struct inode *inode); 2806 int f2fs_getattr(const struct path *path, struct kstat *stat, 2807 u32 request_mask, unsigned int flags); 2808 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2809 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2810 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2811 int f2fs_precache_extents(struct inode *inode); 2812 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2813 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2814 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 2815 int f2fs_pin_file_control(struct inode *inode, bool inc); 2816 2817 /* 2818 * inode.c 2819 */ 2820 void f2fs_set_inode_flags(struct inode *inode); 2821 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2822 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2823 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2824 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2825 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2826 void f2fs_update_inode(struct inode *inode, struct page *node_page); 2827 void f2fs_update_inode_page(struct inode *inode); 2828 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2829 void f2fs_evict_inode(struct inode *inode); 2830 void f2fs_handle_failed_inode(struct inode *inode); 2831 2832 /* 2833 * namei.c 2834 */ 2835 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2836 bool hot, bool set); 2837 struct dentry *f2fs_get_parent(struct dentry *child); 2838 2839 /* 2840 * dir.c 2841 */ 2842 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 2843 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname, 2844 f2fs_hash_t namehash, int *max_slots, 2845 struct f2fs_dentry_ptr *d); 2846 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2847 unsigned int start_pos, struct fscrypt_str *fstr); 2848 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 2849 struct f2fs_dentry_ptr *d); 2850 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 2851 const struct qstr *new_name, 2852 const struct qstr *orig_name, struct page *dpage); 2853 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 2854 unsigned int current_depth); 2855 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 2856 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2857 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2858 struct fscrypt_name *fname, struct page **res_page); 2859 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2860 const struct qstr *child, struct page **res_page); 2861 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2862 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2863 struct page **page); 2864 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2865 struct page *page, struct inode *inode); 2866 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2867 const struct qstr *name, f2fs_hash_t name_hash, 2868 unsigned int bit_pos); 2869 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2870 const struct qstr *orig_name, 2871 struct inode *inode, nid_t ino, umode_t mode); 2872 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname, 2873 struct inode *inode, nid_t ino, umode_t mode); 2874 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 2875 struct inode *inode, nid_t ino, umode_t mode); 2876 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2877 struct inode *dir, struct inode *inode); 2878 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2879 bool f2fs_empty_dir(struct inode *dir); 2880 2881 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2882 { 2883 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2884 inode, inode->i_ino, inode->i_mode); 2885 } 2886 2887 /* 2888 * super.c 2889 */ 2890 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2891 void f2fs_inode_synced(struct inode *inode); 2892 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2893 int f2fs_quota_sync(struct super_block *sb, int type); 2894 void f2fs_quota_off_umount(struct super_block *sb); 2895 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2896 int f2fs_sync_fs(struct super_block *sb, int sync); 2897 extern __printf(3, 4) 2898 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2899 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 2900 2901 /* 2902 * hash.c 2903 */ 2904 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2905 struct fscrypt_name *fname); 2906 2907 /* 2908 * node.c 2909 */ 2910 struct dnode_of_data; 2911 struct node_info; 2912 2913 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 2914 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 2915 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 2916 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 2917 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 2918 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 2919 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2920 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2921 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2922 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 2923 struct node_info *ni); 2924 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2925 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2926 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 2927 int f2fs_truncate_xattr_node(struct inode *inode); 2928 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2929 unsigned int seq_id); 2930 int f2fs_remove_inode_page(struct inode *inode); 2931 struct page *f2fs_new_inode_page(struct inode *inode); 2932 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2933 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2934 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2935 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 2936 int f2fs_move_node_page(struct page *node_page, int gc_type); 2937 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2938 struct writeback_control *wbc, bool atomic, 2939 unsigned int *seq_id); 2940 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 2941 struct writeback_control *wbc, 2942 bool do_balance, enum iostat_type io_type); 2943 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2944 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2945 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2946 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2947 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2948 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 2949 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 2950 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2951 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2952 unsigned int segno, struct f2fs_summary_block *sum); 2953 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2954 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 2955 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 2956 int __init f2fs_create_node_manager_caches(void); 2957 void f2fs_destroy_node_manager_caches(void); 2958 2959 /* 2960 * segment.c 2961 */ 2962 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 2963 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 2964 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 2965 void f2fs_drop_inmem_pages(struct inode *inode); 2966 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 2967 int f2fs_commit_inmem_pages(struct inode *inode); 2968 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2969 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2970 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2971 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 2972 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2973 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2974 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2975 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2976 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 2977 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 2978 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2979 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2980 struct cp_control *cpc); 2981 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 2982 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi); 2983 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 2984 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2985 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 2986 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2987 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2988 struct cp_control *cpc); 2989 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2990 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 2991 block_t blk_addr); 2992 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2993 enum iostat_type io_type); 2994 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2995 void f2fs_outplace_write_data(struct dnode_of_data *dn, 2996 struct f2fs_io_info *fio); 2997 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 2998 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2999 block_t old_blkaddr, block_t new_blkaddr, 3000 bool recover_curseg, bool recover_newaddr); 3001 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3002 block_t old_addr, block_t new_addr, 3003 unsigned char version, bool recover_curseg, 3004 bool recover_newaddr); 3005 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3006 block_t old_blkaddr, block_t *new_blkaddr, 3007 struct f2fs_summary *sum, int type, 3008 struct f2fs_io_info *fio, bool add_list); 3009 void f2fs_wait_on_page_writeback(struct page *page, 3010 enum page_type type, bool ordered); 3011 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3012 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3013 block_t len); 3014 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3015 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3016 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3017 unsigned int val, int alloc); 3018 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3019 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3020 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3021 int __init f2fs_create_segment_manager_caches(void); 3022 void f2fs_destroy_segment_manager_caches(void); 3023 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3024 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3025 enum page_type type, enum temp_type temp); 3026 3027 /* 3028 * checkpoint.c 3029 */ 3030 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 3031 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3032 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3033 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index); 3034 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3035 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3036 block_t blkaddr, int type); 3037 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3038 int type, bool sync); 3039 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 3040 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3041 long nr_to_write, enum iostat_type io_type); 3042 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3043 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3044 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3045 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3046 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3047 unsigned int devidx, int type); 3048 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3049 unsigned int devidx, int type); 3050 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3051 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3052 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3053 void f2fs_add_orphan_inode(struct inode *inode); 3054 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3055 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3056 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3057 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 3058 void f2fs_remove_dirty_inode(struct inode *inode); 3059 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 3060 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi); 3061 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3062 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3063 int __init f2fs_create_checkpoint_caches(void); 3064 void f2fs_destroy_checkpoint_caches(void); 3065 3066 /* 3067 * data.c 3068 */ 3069 int f2fs_init_post_read_processing(void); 3070 void f2fs_destroy_post_read_processing(void); 3071 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3072 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3073 struct inode *inode, struct page *page, 3074 nid_t ino, enum page_type type); 3075 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3076 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3077 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3078 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3079 block_t blk_addr, struct bio *bio); 3080 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3081 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3082 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3083 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3084 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3085 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3086 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3087 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3088 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3089 int op_flags, bool for_write); 3090 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3091 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3092 bool for_write); 3093 struct page *f2fs_get_new_data_page(struct inode *inode, 3094 struct page *ipage, pgoff_t index, bool new_i_size); 3095 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3096 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3097 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3098 int create, int flag); 3099 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3100 u64 start, u64 len); 3101 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3102 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3103 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3104 unsigned int length); 3105 int f2fs_release_page(struct page *page, gfp_t wait); 3106 #ifdef CONFIG_MIGRATION 3107 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3108 struct page *page, enum migrate_mode mode); 3109 #endif 3110 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3111 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3112 3113 /* 3114 * gc.c 3115 */ 3116 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3117 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3118 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3119 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 3120 unsigned int segno); 3121 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3122 3123 /* 3124 * recovery.c 3125 */ 3126 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3127 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3128 3129 /* 3130 * debug.c 3131 */ 3132 #ifdef CONFIG_F2FS_STAT_FS 3133 struct f2fs_stat_info { 3134 struct list_head stat_list; 3135 struct f2fs_sb_info *sbi; 3136 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3137 int main_area_segs, main_area_sections, main_area_zones; 3138 unsigned long long hit_largest, hit_cached, hit_rbtree; 3139 unsigned long long hit_total, total_ext; 3140 int ext_tree, zombie_tree, ext_node; 3141 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3142 int ndirty_data, ndirty_qdata; 3143 int inmem_pages; 3144 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3145 int nats, dirty_nats, sits, dirty_sits; 3146 int free_nids, avail_nids, alloc_nids; 3147 int total_count, utilization; 3148 int bg_gc, nr_wb_cp_data, nr_wb_data; 3149 int nr_rd_data, nr_rd_node, nr_rd_meta; 3150 unsigned int io_skip_bggc, other_skip_bggc; 3151 int nr_flushing, nr_flushed, flush_list_empty; 3152 int nr_discarding, nr_discarded; 3153 int nr_discard_cmd; 3154 unsigned int undiscard_blks; 3155 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3156 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3157 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3158 unsigned int bimodal, avg_vblocks; 3159 int util_free, util_valid, util_invalid; 3160 int rsvd_segs, overp_segs; 3161 int dirty_count, node_pages, meta_pages; 3162 int prefree_count, call_count, cp_count, bg_cp_count; 3163 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3164 int bg_node_segs, bg_data_segs; 3165 int tot_blks, data_blks, node_blks; 3166 int bg_data_blks, bg_node_blks; 3167 unsigned long long skipped_atomic_files[2]; 3168 int curseg[NR_CURSEG_TYPE]; 3169 int cursec[NR_CURSEG_TYPE]; 3170 int curzone[NR_CURSEG_TYPE]; 3171 3172 unsigned int meta_count[META_MAX]; 3173 unsigned int segment_count[2]; 3174 unsigned int block_count[2]; 3175 unsigned int inplace_count; 3176 unsigned long long base_mem, cache_mem, page_mem; 3177 }; 3178 3179 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3180 { 3181 return (struct f2fs_stat_info *)sbi->stat_info; 3182 } 3183 3184 #define stat_inc_cp_count(si) ((si)->cp_count++) 3185 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3186 #define stat_inc_call_count(si) ((si)->call_count++) 3187 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 3188 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3189 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3190 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3191 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3192 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3193 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3194 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3195 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3196 #define stat_inc_inline_xattr(inode) \ 3197 do { \ 3198 if (f2fs_has_inline_xattr(inode)) \ 3199 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3200 } while (0) 3201 #define stat_dec_inline_xattr(inode) \ 3202 do { \ 3203 if (f2fs_has_inline_xattr(inode)) \ 3204 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3205 } while (0) 3206 #define stat_inc_inline_inode(inode) \ 3207 do { \ 3208 if (f2fs_has_inline_data(inode)) \ 3209 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3210 } while (0) 3211 #define stat_dec_inline_inode(inode) \ 3212 do { \ 3213 if (f2fs_has_inline_data(inode)) \ 3214 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3215 } while (0) 3216 #define stat_inc_inline_dir(inode) \ 3217 do { \ 3218 if (f2fs_has_inline_dentry(inode)) \ 3219 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3220 } while (0) 3221 #define stat_dec_inline_dir(inode) \ 3222 do { \ 3223 if (f2fs_has_inline_dentry(inode)) \ 3224 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3225 } while (0) 3226 #define stat_inc_meta_count(sbi, blkaddr) \ 3227 do { \ 3228 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3229 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3230 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3231 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3232 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3233 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3234 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3235 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3236 } while (0) 3237 #define stat_inc_seg_type(sbi, curseg) \ 3238 ((sbi)->segment_count[(curseg)->alloc_type]++) 3239 #define stat_inc_block_count(sbi, curseg) \ 3240 ((sbi)->block_count[(curseg)->alloc_type]++) 3241 #define stat_inc_inplace_blocks(sbi) \ 3242 (atomic_inc(&(sbi)->inplace_count)) 3243 #define stat_inc_atomic_write(inode) \ 3244 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 3245 #define stat_dec_atomic_write(inode) \ 3246 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 3247 #define stat_update_max_atomic_write(inode) \ 3248 do { \ 3249 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3250 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3251 if (cur > max) \ 3252 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3253 } while (0) 3254 #define stat_inc_volatile_write(inode) \ 3255 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3256 #define stat_dec_volatile_write(inode) \ 3257 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3258 #define stat_update_max_volatile_write(inode) \ 3259 do { \ 3260 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3261 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3262 if (cur > max) \ 3263 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3264 } while (0) 3265 #define stat_inc_seg_count(sbi, type, gc_type) \ 3266 do { \ 3267 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3268 si->tot_segs++; \ 3269 if ((type) == SUM_TYPE_DATA) { \ 3270 si->data_segs++; \ 3271 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3272 } else { \ 3273 si->node_segs++; \ 3274 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3275 } \ 3276 } while (0) 3277 3278 #define stat_inc_tot_blk_count(si, blks) \ 3279 ((si)->tot_blks += (blks)) 3280 3281 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3282 do { \ 3283 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3284 stat_inc_tot_blk_count(si, blks); \ 3285 si->data_blks += (blks); \ 3286 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3287 } while (0) 3288 3289 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3290 do { \ 3291 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3292 stat_inc_tot_blk_count(si, blks); \ 3293 si->node_blks += (blks); \ 3294 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3295 } while (0) 3296 3297 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3298 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3299 int __init f2fs_create_root_stats(void); 3300 void f2fs_destroy_root_stats(void); 3301 #else 3302 #define stat_inc_cp_count(si) do { } while (0) 3303 #define stat_inc_bg_cp_count(si) do { } while (0) 3304 #define stat_inc_call_count(si) do { } while (0) 3305 #define stat_inc_bggc_count(si) do { } while (0) 3306 #define stat_io_skip_bggc_count(sbi) do { } while (0) 3307 #define stat_other_skip_bggc_count(sbi) do { } while (0) 3308 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3309 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3310 #define stat_inc_total_hit(sb) do { } while (0) 3311 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3312 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3313 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3314 #define stat_inc_inline_xattr(inode) do { } while (0) 3315 #define stat_dec_inline_xattr(inode) do { } while (0) 3316 #define stat_inc_inline_inode(inode) do { } while (0) 3317 #define stat_dec_inline_inode(inode) do { } while (0) 3318 #define stat_inc_inline_dir(inode) do { } while (0) 3319 #define stat_dec_inline_dir(inode) do { } while (0) 3320 #define stat_inc_atomic_write(inode) do { } while (0) 3321 #define stat_dec_atomic_write(inode) do { } while (0) 3322 #define stat_update_max_atomic_write(inode) do { } while (0) 3323 #define stat_inc_volatile_write(inode) do { } while (0) 3324 #define stat_dec_volatile_write(inode) do { } while (0) 3325 #define stat_update_max_volatile_write(inode) do { } while (0) 3326 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 3327 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3328 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3329 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3330 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3331 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3332 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3333 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3334 3335 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3336 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3337 static inline int __init f2fs_create_root_stats(void) { return 0; } 3338 static inline void f2fs_destroy_root_stats(void) { } 3339 #endif 3340 3341 extern const struct file_operations f2fs_dir_operations; 3342 extern const struct file_operations f2fs_file_operations; 3343 extern const struct inode_operations f2fs_file_inode_operations; 3344 extern const struct address_space_operations f2fs_dblock_aops; 3345 extern const struct address_space_operations f2fs_node_aops; 3346 extern const struct address_space_operations f2fs_meta_aops; 3347 extern const struct inode_operations f2fs_dir_inode_operations; 3348 extern const struct inode_operations f2fs_symlink_inode_operations; 3349 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3350 extern const struct inode_operations f2fs_special_inode_operations; 3351 extern struct kmem_cache *f2fs_inode_entry_slab; 3352 3353 /* 3354 * inline.c 3355 */ 3356 bool f2fs_may_inline_data(struct inode *inode); 3357 bool f2fs_may_inline_dentry(struct inode *inode); 3358 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3359 void f2fs_truncate_inline_inode(struct inode *inode, 3360 struct page *ipage, u64 from); 3361 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3362 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3363 int f2fs_convert_inline_inode(struct inode *inode); 3364 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3365 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3366 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3367 struct fscrypt_name *fname, struct page **res_page); 3368 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3369 struct page *ipage); 3370 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3371 const struct qstr *orig_name, 3372 struct inode *inode, nid_t ino, umode_t mode); 3373 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3374 struct page *page, struct inode *dir, 3375 struct inode *inode); 3376 bool f2fs_empty_inline_dir(struct inode *dir); 3377 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3378 struct fscrypt_str *fstr); 3379 int f2fs_inline_data_fiemap(struct inode *inode, 3380 struct fiemap_extent_info *fieinfo, 3381 __u64 start, __u64 len); 3382 3383 /* 3384 * shrinker.c 3385 */ 3386 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3387 struct shrink_control *sc); 3388 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3389 struct shrink_control *sc); 3390 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3391 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3392 3393 /* 3394 * extent_cache.c 3395 */ 3396 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 3397 struct rb_entry *cached_re, unsigned int ofs); 3398 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3399 struct rb_root_cached *root, 3400 struct rb_node **parent, 3401 unsigned int ofs, bool *leftmost); 3402 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 3403 struct rb_entry *cached_re, unsigned int ofs, 3404 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3405 struct rb_node ***insert_p, struct rb_node **insert_parent, 3406 bool force, bool *leftmost); 3407 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3408 struct rb_root_cached *root); 3409 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3410 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3411 void f2fs_drop_extent_tree(struct inode *inode); 3412 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3413 void f2fs_destroy_extent_tree(struct inode *inode); 3414 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3415 struct extent_info *ei); 3416 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3417 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3418 pgoff_t fofs, block_t blkaddr, unsigned int len); 3419 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3420 int __init f2fs_create_extent_cache(void); 3421 void f2fs_destroy_extent_cache(void); 3422 3423 /* 3424 * sysfs.c 3425 */ 3426 int __init f2fs_init_sysfs(void); 3427 void f2fs_exit_sysfs(void); 3428 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3429 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3430 3431 /* 3432 * crypto support 3433 */ 3434 static inline bool f2fs_encrypted_inode(struct inode *inode) 3435 { 3436 return file_is_encrypt(inode); 3437 } 3438 3439 static inline bool f2fs_encrypted_file(struct inode *inode) 3440 { 3441 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3442 } 3443 3444 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3445 { 3446 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3447 file_set_encrypt(inode); 3448 f2fs_set_inode_flags(inode); 3449 #endif 3450 } 3451 3452 /* 3453 * Returns true if the reads of the inode's data need to undergo some 3454 * postprocessing step, like decryption or authenticity verification. 3455 */ 3456 static inline bool f2fs_post_read_required(struct inode *inode) 3457 { 3458 return f2fs_encrypted_file(inode); 3459 } 3460 3461 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3462 static inline int f2fs_sb_has_##name(struct super_block *sb) \ 3463 { \ 3464 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \ 3465 } 3466 3467 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3468 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3469 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3470 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3471 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3472 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3473 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3474 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3475 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3476 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 3477 3478 #ifdef CONFIG_BLK_DEV_ZONED 3479 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3480 struct block_device *bdev, block_t blkaddr) 3481 { 3482 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3483 int i; 3484 3485 for (i = 0; i < sbi->s_ndevs; i++) 3486 if (FDEV(i).bdev == bdev) 3487 return FDEV(i).blkz_type[zno]; 3488 return -EINVAL; 3489 } 3490 #endif 3491 3492 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 3493 { 3494 return f2fs_sb_has_blkzoned(sbi->sb); 3495 } 3496 3497 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 3498 { 3499 return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev)); 3500 } 3501 3502 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 3503 { 3504 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 3505 f2fs_hw_should_discard(sbi); 3506 } 3507 3508 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3509 { 3510 clear_opt(sbi, ADAPTIVE); 3511 clear_opt(sbi, LFS); 3512 3513 switch (mt) { 3514 case F2FS_MOUNT_ADAPTIVE: 3515 set_opt(sbi, ADAPTIVE); 3516 break; 3517 case F2FS_MOUNT_LFS: 3518 set_opt(sbi, LFS); 3519 break; 3520 } 3521 } 3522 3523 static inline bool f2fs_may_encrypt(struct inode *inode) 3524 { 3525 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3526 umode_t mode = inode->i_mode; 3527 3528 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3529 #else 3530 return false; 3531 #endif 3532 } 3533 3534 static inline int block_unaligned_IO(struct inode *inode, 3535 struct kiocb *iocb, struct iov_iter *iter) 3536 { 3537 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits); 3538 unsigned int blocksize_mask = (1 << i_blkbits) - 1; 3539 loff_t offset = iocb->ki_pos; 3540 unsigned long align = offset | iov_iter_alignment(iter); 3541 3542 return align & blocksize_mask; 3543 } 3544 3545 static inline int allow_outplace_dio(struct inode *inode, 3546 struct kiocb *iocb, struct iov_iter *iter) 3547 { 3548 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3549 int rw = iov_iter_rw(iter); 3550 3551 return (test_opt(sbi, LFS) && (rw == WRITE) && 3552 !block_unaligned_IO(inode, iocb, iter)); 3553 } 3554 3555 static inline bool f2fs_force_buffered_io(struct inode *inode, 3556 struct kiocb *iocb, struct iov_iter *iter) 3557 { 3558 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3559 int rw = iov_iter_rw(iter); 3560 3561 if (f2fs_post_read_required(inode)) 3562 return true; 3563 if (sbi->s_ndevs) 3564 return true; 3565 /* 3566 * for blkzoned device, fallback direct IO to buffered IO, so 3567 * all IOs can be serialized by log-structured write. 3568 */ 3569 if (f2fs_sb_has_blkzoned(sbi->sb)) 3570 return true; 3571 if (test_opt(sbi, LFS) && (rw == WRITE) && 3572 block_unaligned_IO(inode, iocb, iter)) 3573 return true; 3574 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED)) 3575 return true; 3576 3577 return false; 3578 } 3579 3580 #ifdef CONFIG_F2FS_FAULT_INJECTION 3581 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 3582 unsigned int type); 3583 #else 3584 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 3585 #endif 3586 3587 #endif 3588 3589 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 3590 { 3591 #ifdef CONFIG_QUOTA 3592 if (f2fs_sb_has_quota_ino(sbi->sb)) 3593 return true; 3594 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 3595 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 3596 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 3597 return true; 3598 #endif 3599 return false; 3600 } 3601