xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 6ce19aff)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_NID,
47 	FAULT_ORPHAN,
48 	FAULT_BLOCK,
49 	FAULT_DIR_DEPTH,
50 	FAULT_EVICT_INODE,
51 	FAULT_TRUNCATE,
52 	FAULT_READ_IO,
53 	FAULT_CHECKPOINT,
54 	FAULT_DISCARD,
55 	FAULT_WRITE_IO,
56 	FAULT_MAX,
57 };
58 
59 #ifdef CONFIG_F2FS_FAULT_INJECTION
60 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
61 
62 struct f2fs_fault_info {
63 	atomic_t inject_ops;
64 	unsigned int inject_rate;
65 	unsigned int inject_type;
66 };
67 
68 extern const char *f2fs_fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71 
72 /*
73  * For mount options
74  */
75 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
76 #define F2FS_MOUNT_DISCARD		0x00000004
77 #define F2FS_MOUNT_NOHEAP		0x00000008
78 #define F2FS_MOUNT_XATTR_USER		0x00000010
79 #define F2FS_MOUNT_POSIX_ACL		0x00000020
80 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
81 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
82 #define F2FS_MOUNT_INLINE_DATA		0x00000100
83 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
84 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
85 #define F2FS_MOUNT_NOBARRIER		0x00000800
86 #define F2FS_MOUNT_FASTBOOT		0x00001000
87 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_USRQUOTA		0x00080000
91 #define F2FS_MOUNT_GRPQUOTA		0x00100000
92 #define F2FS_MOUNT_PRJQUOTA		0x00200000
93 #define F2FS_MOUNT_QUOTA		0x00400000
94 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
95 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
96 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
97 #define F2FS_MOUNT_NORECOVERY		0x04000000
98 #define F2FS_MOUNT_ATGC			0x08000000
99 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
100 #define	F2FS_MOUNT_GC_MERGE		0x20000000
101 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 #define COMPRESS_EXT_NUM		16
119 
120 struct f2fs_mount_info {
121 	unsigned int opt;
122 	int write_io_size_bits;		/* Write IO size bits */
123 	block_t root_reserved_blocks;	/* root reserved blocks */
124 	kuid_t s_resuid;		/* reserved blocks for uid */
125 	kgid_t s_resgid;		/* reserved blocks for gid */
126 	int active_logs;		/* # of active logs */
127 	int inline_xattr_size;		/* inline xattr size */
128 #ifdef CONFIG_F2FS_FAULT_INJECTION
129 	struct f2fs_fault_info fault_info;	/* For fault injection */
130 #endif
131 #ifdef CONFIG_QUOTA
132 	/* Names of quota files with journalled quota */
133 	char *s_qf_names[MAXQUOTAS];
134 	int s_jquota_fmt;			/* Format of quota to use */
135 #endif
136 	/* For which write hints are passed down to block layer */
137 	int whint_mode;
138 	int alloc_mode;			/* segment allocation policy */
139 	int fsync_mode;			/* fsync policy */
140 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
141 	int bggc_mode;			/* bggc mode: off, on or sync */
142 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
143 	block_t unusable_cap_perc;	/* percentage for cap */
144 	block_t unusable_cap;		/* Amount of space allowed to be
145 					 * unusable when disabling checkpoint
146 					 */
147 
148 	/* For compression */
149 	unsigned char compress_algorithm;	/* algorithm type */
150 	unsigned char compress_log_size;	/* cluster log size */
151 	unsigned char compress_level;		/* compress level */
152 	bool compress_chksum;			/* compressed data chksum */
153 	unsigned char compress_ext_cnt;		/* extension count */
154 	int compress_mode;			/* compression mode */
155 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
156 };
157 
158 #define F2FS_FEATURE_ENCRYPT		0x0001
159 #define F2FS_FEATURE_BLKZONED		0x0002
160 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
161 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
162 #define F2FS_FEATURE_PRJQUOTA		0x0010
163 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
164 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
165 #define F2FS_FEATURE_QUOTA_INO		0x0080
166 #define F2FS_FEATURE_INODE_CRTIME	0x0100
167 #define F2FS_FEATURE_LOST_FOUND		0x0200
168 #define F2FS_FEATURE_VERITY		0x0400
169 #define F2FS_FEATURE_SB_CHKSUM		0x0800
170 #define F2FS_FEATURE_CASEFOLD		0x1000
171 #define F2FS_FEATURE_COMPRESSION	0x2000
172 #define F2FS_FEATURE_RO			0x4000
173 
174 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
175 	((raw_super->feature & cpu_to_le32(mask)) != 0)
176 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
177 #define F2FS_SET_FEATURE(sbi, mask)					\
178 	(sbi->raw_super->feature |= cpu_to_le32(mask))
179 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
180 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
181 
182 /*
183  * Default values for user and/or group using reserved blocks
184  */
185 #define	F2FS_DEF_RESUID		0
186 #define	F2FS_DEF_RESGID		0
187 
188 /*
189  * For checkpoint manager
190  */
191 enum {
192 	NAT_BITMAP,
193 	SIT_BITMAP
194 };
195 
196 #define	CP_UMOUNT	0x00000001
197 #define	CP_FASTBOOT	0x00000002
198 #define	CP_SYNC		0x00000004
199 #define	CP_RECOVERY	0x00000008
200 #define	CP_DISCARD	0x00000010
201 #define CP_TRIMMED	0x00000020
202 #define CP_PAUSE	0x00000040
203 #define CP_RESIZE 	0x00000080
204 
205 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
206 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
207 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
208 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
209 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
210 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
211 #define DEF_CP_INTERVAL			60	/* 60 secs */
212 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
213 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
214 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
215 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
216 
217 struct cp_control {
218 	int reason;
219 	__u64 trim_start;
220 	__u64 trim_end;
221 	__u64 trim_minlen;
222 };
223 
224 /*
225  * indicate meta/data type
226  */
227 enum {
228 	META_CP,
229 	META_NAT,
230 	META_SIT,
231 	META_SSA,
232 	META_MAX,
233 	META_POR,
234 	DATA_GENERIC,		/* check range only */
235 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
236 	DATA_GENERIC_ENHANCE_READ,	/*
237 					 * strong check on range and segment
238 					 * bitmap but no warning due to race
239 					 * condition of read on truncated area
240 					 * by extent_cache
241 					 */
242 	META_GENERIC,
243 };
244 
245 /* for the list of ino */
246 enum {
247 	ORPHAN_INO,		/* for orphan ino list */
248 	APPEND_INO,		/* for append ino list */
249 	UPDATE_INO,		/* for update ino list */
250 	TRANS_DIR_INO,		/* for trasactions dir ino list */
251 	FLUSH_INO,		/* for multiple device flushing */
252 	MAX_INO_ENTRY,		/* max. list */
253 };
254 
255 struct ino_entry {
256 	struct list_head list;		/* list head */
257 	nid_t ino;			/* inode number */
258 	unsigned int dirty_device;	/* dirty device bitmap */
259 };
260 
261 /* for the list of inodes to be GCed */
262 struct inode_entry {
263 	struct list_head list;	/* list head */
264 	struct inode *inode;	/* vfs inode pointer */
265 };
266 
267 struct fsync_node_entry {
268 	struct list_head list;	/* list head */
269 	struct page *page;	/* warm node page pointer */
270 	unsigned int seq_id;	/* sequence id */
271 };
272 
273 struct ckpt_req {
274 	struct completion wait;		/* completion for checkpoint done */
275 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
276 	int ret;			/* return code of checkpoint */
277 	ktime_t queue_time;		/* request queued time */
278 };
279 
280 struct ckpt_req_control {
281 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
282 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
283 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
284 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
285 	atomic_t total_ckpt;		/* # of total ckpts */
286 	atomic_t queued_ckpt;		/* # of queued ckpts */
287 	struct llist_head issue_list;	/* list for command issue */
288 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
289 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
290 	unsigned int peak_time;		/* peak wait time in msec until now */
291 };
292 
293 /* for the bitmap indicate blocks to be discarded */
294 struct discard_entry {
295 	struct list_head list;	/* list head */
296 	block_t start_blkaddr;	/* start blockaddr of current segment */
297 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
298 };
299 
300 /* default discard granularity of inner discard thread, unit: block count */
301 #define DEFAULT_DISCARD_GRANULARITY		16
302 
303 /* max discard pend list number */
304 #define MAX_PLIST_NUM		512
305 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
306 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
307 
308 enum {
309 	D_PREP,			/* initial */
310 	D_PARTIAL,		/* partially submitted */
311 	D_SUBMIT,		/* all submitted */
312 	D_DONE,			/* finished */
313 };
314 
315 struct discard_info {
316 	block_t lstart;			/* logical start address */
317 	block_t len;			/* length */
318 	block_t start;			/* actual start address in dev */
319 };
320 
321 struct discard_cmd {
322 	struct rb_node rb_node;		/* rb node located in rb-tree */
323 	union {
324 		struct {
325 			block_t lstart;	/* logical start address */
326 			block_t len;	/* length */
327 			block_t start;	/* actual start address in dev */
328 		};
329 		struct discard_info di;	/* discard info */
330 
331 	};
332 	struct list_head list;		/* command list */
333 	struct completion wait;		/* compleation */
334 	struct block_device *bdev;	/* bdev */
335 	unsigned short ref;		/* reference count */
336 	unsigned char state;		/* state */
337 	unsigned char queued;		/* queued discard */
338 	int error;			/* bio error */
339 	spinlock_t lock;		/* for state/bio_ref updating */
340 	unsigned short bio_ref;		/* bio reference count */
341 };
342 
343 enum {
344 	DPOLICY_BG,
345 	DPOLICY_FORCE,
346 	DPOLICY_FSTRIM,
347 	DPOLICY_UMOUNT,
348 	MAX_DPOLICY,
349 };
350 
351 struct discard_policy {
352 	int type;			/* type of discard */
353 	unsigned int min_interval;	/* used for candidates exist */
354 	unsigned int mid_interval;	/* used for device busy */
355 	unsigned int max_interval;	/* used for candidates not exist */
356 	unsigned int max_requests;	/* # of discards issued per round */
357 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
358 	bool io_aware;			/* issue discard in idle time */
359 	bool sync;			/* submit discard with REQ_SYNC flag */
360 	bool ordered;			/* issue discard by lba order */
361 	bool timeout;			/* discard timeout for put_super */
362 	unsigned int granularity;	/* discard granularity */
363 };
364 
365 struct discard_cmd_control {
366 	struct task_struct *f2fs_issue_discard;	/* discard thread */
367 	struct list_head entry_list;		/* 4KB discard entry list */
368 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
369 	struct list_head wait_list;		/* store on-flushing entries */
370 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
371 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
372 	unsigned int discard_wake;		/* to wake up discard thread */
373 	struct mutex cmd_lock;
374 	unsigned int nr_discards;		/* # of discards in the list */
375 	unsigned int max_discards;		/* max. discards to be issued */
376 	unsigned int discard_granularity;	/* discard granularity */
377 	unsigned int undiscard_blks;		/* # of undiscard blocks */
378 	unsigned int next_pos;			/* next discard position */
379 	atomic_t issued_discard;		/* # of issued discard */
380 	atomic_t queued_discard;		/* # of queued discard */
381 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
382 	struct rb_root_cached root;		/* root of discard rb-tree */
383 	bool rbtree_check;			/* config for consistence check */
384 };
385 
386 /* for the list of fsync inodes, used only during recovery */
387 struct fsync_inode_entry {
388 	struct list_head list;	/* list head */
389 	struct inode *inode;	/* vfs inode pointer */
390 	block_t blkaddr;	/* block address locating the last fsync */
391 	block_t last_dentry;	/* block address locating the last dentry */
392 };
393 
394 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
395 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
396 
397 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
398 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
399 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
400 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
401 
402 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
403 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
404 
405 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
406 {
407 	int before = nats_in_cursum(journal);
408 
409 	journal->n_nats = cpu_to_le16(before + i);
410 	return before;
411 }
412 
413 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
414 {
415 	int before = sits_in_cursum(journal);
416 
417 	journal->n_sits = cpu_to_le16(before + i);
418 	return before;
419 }
420 
421 static inline bool __has_cursum_space(struct f2fs_journal *journal,
422 							int size, int type)
423 {
424 	if (type == NAT_JOURNAL)
425 		return size <= MAX_NAT_JENTRIES(journal);
426 	return size <= MAX_SIT_JENTRIES(journal);
427 }
428 
429 /* for inline stuff */
430 #define DEF_INLINE_RESERVED_SIZE	1
431 static inline int get_extra_isize(struct inode *inode);
432 static inline int get_inline_xattr_addrs(struct inode *inode);
433 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
434 				(CUR_ADDRS_PER_INODE(inode) -		\
435 				get_inline_xattr_addrs(inode) -	\
436 				DEF_INLINE_RESERVED_SIZE))
437 
438 /* for inline dir */
439 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
440 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
441 				BITS_PER_BYTE + 1))
442 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
443 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
444 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
445 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
446 				NR_INLINE_DENTRY(inode) + \
447 				INLINE_DENTRY_BITMAP_SIZE(inode)))
448 
449 /*
450  * For INODE and NODE manager
451  */
452 /* for directory operations */
453 
454 struct f2fs_filename {
455 	/*
456 	 * The filename the user specified.  This is NULL for some
457 	 * filesystem-internal operations, e.g. converting an inline directory
458 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
459 	 */
460 	const struct qstr *usr_fname;
461 
462 	/*
463 	 * The on-disk filename.  For encrypted directories, this is encrypted.
464 	 * This may be NULL for lookups in an encrypted dir without the key.
465 	 */
466 	struct fscrypt_str disk_name;
467 
468 	/* The dirhash of this filename */
469 	f2fs_hash_t hash;
470 
471 #ifdef CONFIG_FS_ENCRYPTION
472 	/*
473 	 * For lookups in encrypted directories: either the buffer backing
474 	 * disk_name, or a buffer that holds the decoded no-key name.
475 	 */
476 	struct fscrypt_str crypto_buf;
477 #endif
478 #ifdef CONFIG_UNICODE
479 	/*
480 	 * For casefolded directories: the casefolded name, but it's left NULL
481 	 * if the original name is not valid Unicode, if the directory is both
482 	 * casefolded and encrypted and its encryption key is unavailable, or if
483 	 * the filesystem is doing an internal operation where usr_fname is also
484 	 * NULL.  In all these cases we fall back to treating the name as an
485 	 * opaque byte sequence.
486 	 */
487 	struct fscrypt_str cf_name;
488 #endif
489 };
490 
491 struct f2fs_dentry_ptr {
492 	struct inode *inode;
493 	void *bitmap;
494 	struct f2fs_dir_entry *dentry;
495 	__u8 (*filename)[F2FS_SLOT_LEN];
496 	int max;
497 	int nr_bitmap;
498 };
499 
500 static inline void make_dentry_ptr_block(struct inode *inode,
501 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
502 {
503 	d->inode = inode;
504 	d->max = NR_DENTRY_IN_BLOCK;
505 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
506 	d->bitmap = t->dentry_bitmap;
507 	d->dentry = t->dentry;
508 	d->filename = t->filename;
509 }
510 
511 static inline void make_dentry_ptr_inline(struct inode *inode,
512 					struct f2fs_dentry_ptr *d, void *t)
513 {
514 	int entry_cnt = NR_INLINE_DENTRY(inode);
515 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
516 	int reserved_size = INLINE_RESERVED_SIZE(inode);
517 
518 	d->inode = inode;
519 	d->max = entry_cnt;
520 	d->nr_bitmap = bitmap_size;
521 	d->bitmap = t;
522 	d->dentry = t + bitmap_size + reserved_size;
523 	d->filename = t + bitmap_size + reserved_size +
524 					SIZE_OF_DIR_ENTRY * entry_cnt;
525 }
526 
527 /*
528  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
529  * as its node offset to distinguish from index node blocks.
530  * But some bits are used to mark the node block.
531  */
532 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
533 				>> OFFSET_BIT_SHIFT)
534 enum {
535 	ALLOC_NODE,			/* allocate a new node page if needed */
536 	LOOKUP_NODE,			/* look up a node without readahead */
537 	LOOKUP_NODE_RA,			/*
538 					 * look up a node with readahead called
539 					 * by get_data_block.
540 					 */
541 };
542 
543 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
544 
545 /* congestion wait timeout value, default: 20ms */
546 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
547 
548 /* maximum retry quota flush count */
549 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
550 
551 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
552 
553 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
554 
555 /* for in-memory extent cache entry */
556 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
557 
558 /* number of extent info in extent cache we try to shrink */
559 #define EXTENT_CACHE_SHRINK_NUMBER	128
560 
561 struct rb_entry {
562 	struct rb_node rb_node;		/* rb node located in rb-tree */
563 	union {
564 		struct {
565 			unsigned int ofs;	/* start offset of the entry */
566 			unsigned int len;	/* length of the entry */
567 		};
568 		unsigned long long key;		/* 64-bits key */
569 	} __packed;
570 };
571 
572 struct extent_info {
573 	unsigned int fofs;		/* start offset in a file */
574 	unsigned int len;		/* length of the extent */
575 	u32 blk;			/* start block address of the extent */
576 };
577 
578 struct extent_node {
579 	struct rb_node rb_node;		/* rb node located in rb-tree */
580 	struct extent_info ei;		/* extent info */
581 	struct list_head list;		/* node in global extent list of sbi */
582 	struct extent_tree *et;		/* extent tree pointer */
583 };
584 
585 struct extent_tree {
586 	nid_t ino;			/* inode number */
587 	struct rb_root_cached root;	/* root of extent info rb-tree */
588 	struct extent_node *cached_en;	/* recently accessed extent node */
589 	struct extent_info largest;	/* largested extent info */
590 	struct list_head list;		/* to be used by sbi->zombie_list */
591 	rwlock_t lock;			/* protect extent info rb-tree */
592 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
593 	bool largest_updated;		/* largest extent updated */
594 };
595 
596 /*
597  * This structure is taken from ext4_map_blocks.
598  *
599  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
600  */
601 #define F2FS_MAP_NEW		(1 << BH_New)
602 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
603 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
604 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
605 				F2FS_MAP_UNWRITTEN)
606 
607 struct f2fs_map_blocks {
608 	block_t m_pblk;
609 	block_t m_lblk;
610 	unsigned int m_len;
611 	unsigned int m_flags;
612 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
613 	pgoff_t *m_next_extent;		/* point to next possible extent */
614 	int m_seg_type;
615 	bool m_may_create;		/* indicate it is from write path */
616 };
617 
618 /* for flag in get_data_block */
619 enum {
620 	F2FS_GET_BLOCK_DEFAULT,
621 	F2FS_GET_BLOCK_FIEMAP,
622 	F2FS_GET_BLOCK_BMAP,
623 	F2FS_GET_BLOCK_DIO,
624 	F2FS_GET_BLOCK_PRE_DIO,
625 	F2FS_GET_BLOCK_PRE_AIO,
626 	F2FS_GET_BLOCK_PRECACHE,
627 };
628 
629 /*
630  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
631  */
632 #define FADVISE_COLD_BIT	0x01
633 #define FADVISE_LOST_PINO_BIT	0x02
634 #define FADVISE_ENCRYPT_BIT	0x04
635 #define FADVISE_ENC_NAME_BIT	0x08
636 #define FADVISE_KEEP_SIZE_BIT	0x10
637 #define FADVISE_HOT_BIT		0x20
638 #define FADVISE_VERITY_BIT	0x40
639 
640 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
641 
642 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
643 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
644 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
645 
646 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
647 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
648 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
649 
650 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
651 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
652 
653 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
654 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
655 
656 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
657 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
658 
659 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
660 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
661 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
662 
663 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
664 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
665 
666 #define DEF_DIR_LEVEL		0
667 
668 enum {
669 	GC_FAILURE_PIN,
670 	GC_FAILURE_ATOMIC,
671 	MAX_GC_FAILURE
672 };
673 
674 /* used for f2fs_inode_info->flags */
675 enum {
676 	FI_NEW_INODE,		/* indicate newly allocated inode */
677 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
678 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
679 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
680 	FI_INC_LINK,		/* need to increment i_nlink */
681 	FI_ACL_MODE,		/* indicate acl mode */
682 	FI_NO_ALLOC,		/* should not allocate any blocks */
683 	FI_FREE_NID,		/* free allocated nide */
684 	FI_NO_EXTENT,		/* not to use the extent cache */
685 	FI_INLINE_XATTR,	/* used for inline xattr */
686 	FI_INLINE_DATA,		/* used for inline data*/
687 	FI_INLINE_DENTRY,	/* used for inline dentry */
688 	FI_APPEND_WRITE,	/* inode has appended data */
689 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
690 	FI_NEED_IPU,		/* used for ipu per file */
691 	FI_ATOMIC_FILE,		/* indicate atomic file */
692 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
693 	FI_VOLATILE_FILE,	/* indicate volatile file */
694 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
695 	FI_DROP_CACHE,		/* drop dirty page cache */
696 	FI_DATA_EXIST,		/* indicate data exists */
697 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
698 	FI_DO_DEFRAG,		/* indicate defragment is running */
699 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
700 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
701 	FI_HOT_DATA,		/* indicate file is hot */
702 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
703 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
704 	FI_PIN_FILE,		/* indicate file should not be gced */
705 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
706 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
707 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
708 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
709 	FI_MMAP_FILE,		/* indicate file was mmapped */
710 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
711 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
712 	FI_MAX,			/* max flag, never be used */
713 };
714 
715 struct f2fs_inode_info {
716 	struct inode vfs_inode;		/* serve a vfs inode */
717 	unsigned long i_flags;		/* keep an inode flags for ioctl */
718 	unsigned char i_advise;		/* use to give file attribute hints */
719 	unsigned char i_dir_level;	/* use for dentry level for large dir */
720 	unsigned int i_current_depth;	/* only for directory depth */
721 	/* for gc failure statistic */
722 	unsigned int i_gc_failures[MAX_GC_FAILURE];
723 	unsigned int i_pino;		/* parent inode number */
724 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
725 
726 	/* Use below internally in f2fs*/
727 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
728 	struct rw_semaphore i_sem;	/* protect fi info */
729 	atomic_t dirty_pages;		/* # of dirty pages */
730 	f2fs_hash_t chash;		/* hash value of given file name */
731 	unsigned int clevel;		/* maximum level of given file name */
732 	struct task_struct *task;	/* lookup and create consistency */
733 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
734 	nid_t i_xattr_nid;		/* node id that contains xattrs */
735 	loff_t	last_disk_size;		/* lastly written file size */
736 	spinlock_t i_size_lock;		/* protect last_disk_size */
737 
738 #ifdef CONFIG_QUOTA
739 	struct dquot *i_dquot[MAXQUOTAS];
740 
741 	/* quota space reservation, managed internally by quota code */
742 	qsize_t i_reserved_quota;
743 #endif
744 	struct list_head dirty_list;	/* dirty list for dirs and files */
745 	struct list_head gdirty_list;	/* linked in global dirty list */
746 	struct list_head inmem_ilist;	/* list for inmem inodes */
747 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
748 	struct task_struct *inmem_task;	/* store inmemory task */
749 	struct mutex inmem_lock;	/* lock for inmemory pages */
750 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
751 
752 	/* avoid racing between foreground op and gc */
753 	struct rw_semaphore i_gc_rwsem[2];
754 	struct rw_semaphore i_mmap_sem;
755 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
756 
757 	int i_extra_isize;		/* size of extra space located in i_addr */
758 	kprojid_t i_projid;		/* id for project quota */
759 	int i_inline_xattr_size;	/* inline xattr size */
760 	struct timespec64 i_crtime;	/* inode creation time */
761 	struct timespec64 i_disk_time[4];/* inode disk times */
762 
763 	/* for file compress */
764 	atomic_t i_compr_blocks;		/* # of compressed blocks */
765 	unsigned char i_compress_algorithm;	/* algorithm type */
766 	unsigned char i_log_cluster_size;	/* log of cluster size */
767 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
768 	unsigned short i_compress_flag;		/* compress flag */
769 	unsigned int i_cluster_size;		/* cluster size */
770 };
771 
772 static inline void get_extent_info(struct extent_info *ext,
773 					struct f2fs_extent *i_ext)
774 {
775 	ext->fofs = le32_to_cpu(i_ext->fofs);
776 	ext->blk = le32_to_cpu(i_ext->blk);
777 	ext->len = le32_to_cpu(i_ext->len);
778 }
779 
780 static inline void set_raw_extent(struct extent_info *ext,
781 					struct f2fs_extent *i_ext)
782 {
783 	i_ext->fofs = cpu_to_le32(ext->fofs);
784 	i_ext->blk = cpu_to_le32(ext->blk);
785 	i_ext->len = cpu_to_le32(ext->len);
786 }
787 
788 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
789 						u32 blk, unsigned int len)
790 {
791 	ei->fofs = fofs;
792 	ei->blk = blk;
793 	ei->len = len;
794 }
795 
796 static inline bool __is_discard_mergeable(struct discard_info *back,
797 			struct discard_info *front, unsigned int max_len)
798 {
799 	return (back->lstart + back->len == front->lstart) &&
800 		(back->len + front->len <= max_len);
801 }
802 
803 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
804 			struct discard_info *back, unsigned int max_len)
805 {
806 	return __is_discard_mergeable(back, cur, max_len);
807 }
808 
809 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
810 			struct discard_info *front, unsigned int max_len)
811 {
812 	return __is_discard_mergeable(cur, front, max_len);
813 }
814 
815 static inline bool __is_extent_mergeable(struct extent_info *back,
816 						struct extent_info *front)
817 {
818 	return (back->fofs + back->len == front->fofs &&
819 			back->blk + back->len == front->blk);
820 }
821 
822 static inline bool __is_back_mergeable(struct extent_info *cur,
823 						struct extent_info *back)
824 {
825 	return __is_extent_mergeable(back, cur);
826 }
827 
828 static inline bool __is_front_mergeable(struct extent_info *cur,
829 						struct extent_info *front)
830 {
831 	return __is_extent_mergeable(cur, front);
832 }
833 
834 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
835 static inline void __try_update_largest_extent(struct extent_tree *et,
836 						struct extent_node *en)
837 {
838 	if (en->ei.len > et->largest.len) {
839 		et->largest = en->ei;
840 		et->largest_updated = true;
841 	}
842 }
843 
844 /*
845  * For free nid management
846  */
847 enum nid_state {
848 	FREE_NID,		/* newly added to free nid list */
849 	PREALLOC_NID,		/* it is preallocated */
850 	MAX_NID_STATE,
851 };
852 
853 enum nat_state {
854 	TOTAL_NAT,
855 	DIRTY_NAT,
856 	RECLAIMABLE_NAT,
857 	MAX_NAT_STATE,
858 };
859 
860 struct f2fs_nm_info {
861 	block_t nat_blkaddr;		/* base disk address of NAT */
862 	nid_t max_nid;			/* maximum possible node ids */
863 	nid_t available_nids;		/* # of available node ids */
864 	nid_t next_scan_nid;		/* the next nid to be scanned */
865 	unsigned int ram_thresh;	/* control the memory footprint */
866 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
867 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
868 
869 	/* NAT cache management */
870 	struct radix_tree_root nat_root;/* root of the nat entry cache */
871 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
872 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
873 	struct list_head nat_entries;	/* cached nat entry list (clean) */
874 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
875 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
876 	unsigned int nat_blocks;	/* # of nat blocks */
877 
878 	/* free node ids management */
879 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
880 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
881 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
882 	spinlock_t nid_list_lock;	/* protect nid lists ops */
883 	struct mutex build_lock;	/* lock for build free nids */
884 	unsigned char **free_nid_bitmap;
885 	unsigned char *nat_block_bitmap;
886 	unsigned short *free_nid_count;	/* free nid count of NAT block */
887 
888 	/* for checkpoint */
889 	char *nat_bitmap;		/* NAT bitmap pointer */
890 
891 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
892 	unsigned char *nat_bits;	/* NAT bits blocks */
893 	unsigned char *full_nat_bits;	/* full NAT pages */
894 	unsigned char *empty_nat_bits;	/* empty NAT pages */
895 #ifdef CONFIG_F2FS_CHECK_FS
896 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
897 #endif
898 	int bitmap_size;		/* bitmap size */
899 };
900 
901 /*
902  * this structure is used as one of function parameters.
903  * all the information are dedicated to a given direct node block determined
904  * by the data offset in a file.
905  */
906 struct dnode_of_data {
907 	struct inode *inode;		/* vfs inode pointer */
908 	struct page *inode_page;	/* its inode page, NULL is possible */
909 	struct page *node_page;		/* cached direct node page */
910 	nid_t nid;			/* node id of the direct node block */
911 	unsigned int ofs_in_node;	/* data offset in the node page */
912 	bool inode_page_locked;		/* inode page is locked or not */
913 	bool node_changed;		/* is node block changed */
914 	char cur_level;			/* level of hole node page */
915 	char max_level;			/* level of current page located */
916 	block_t	data_blkaddr;		/* block address of the node block */
917 };
918 
919 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
920 		struct page *ipage, struct page *npage, nid_t nid)
921 {
922 	memset(dn, 0, sizeof(*dn));
923 	dn->inode = inode;
924 	dn->inode_page = ipage;
925 	dn->node_page = npage;
926 	dn->nid = nid;
927 }
928 
929 /*
930  * For SIT manager
931  *
932  * By default, there are 6 active log areas across the whole main area.
933  * When considering hot and cold data separation to reduce cleaning overhead,
934  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
935  * respectively.
936  * In the current design, you should not change the numbers intentionally.
937  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
938  * logs individually according to the underlying devices. (default: 6)
939  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
940  * data and 8 for node logs.
941  */
942 #define	NR_CURSEG_DATA_TYPE	(3)
943 #define NR_CURSEG_NODE_TYPE	(3)
944 #define NR_CURSEG_INMEM_TYPE	(2)
945 #define NR_CURSEG_RO_TYPE	(2)
946 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
947 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
948 
949 enum {
950 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
951 	CURSEG_WARM_DATA,	/* data blocks */
952 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
953 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
954 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
955 	CURSEG_COLD_NODE,	/* indirect node blocks */
956 	NR_PERSISTENT_LOG,	/* number of persistent log */
957 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
958 				/* pinned file that needs consecutive block address */
959 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
960 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
961 };
962 
963 struct flush_cmd {
964 	struct completion wait;
965 	struct llist_node llnode;
966 	nid_t ino;
967 	int ret;
968 };
969 
970 struct flush_cmd_control {
971 	struct task_struct *f2fs_issue_flush;	/* flush thread */
972 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
973 	atomic_t issued_flush;			/* # of issued flushes */
974 	atomic_t queued_flush;			/* # of queued flushes */
975 	struct llist_head issue_list;		/* list for command issue */
976 	struct llist_node *dispatch_list;	/* list for command dispatch */
977 };
978 
979 struct f2fs_sm_info {
980 	struct sit_info *sit_info;		/* whole segment information */
981 	struct free_segmap_info *free_info;	/* free segment information */
982 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
983 	struct curseg_info *curseg_array;	/* active segment information */
984 
985 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
986 
987 	block_t seg0_blkaddr;		/* block address of 0'th segment */
988 	block_t main_blkaddr;		/* start block address of main area */
989 	block_t ssa_blkaddr;		/* start block address of SSA area */
990 
991 	unsigned int segment_count;	/* total # of segments */
992 	unsigned int main_segments;	/* # of segments in main area */
993 	unsigned int reserved_segments;	/* # of reserved segments */
994 	unsigned int ovp_segments;	/* # of overprovision segments */
995 
996 	/* a threshold to reclaim prefree segments */
997 	unsigned int rec_prefree_segments;
998 
999 	/* for batched trimming */
1000 	unsigned int trim_sections;		/* # of sections to trim */
1001 
1002 	struct list_head sit_entry_set;	/* sit entry set list */
1003 
1004 	unsigned int ipu_policy;	/* in-place-update policy */
1005 	unsigned int min_ipu_util;	/* in-place-update threshold */
1006 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1007 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1008 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1009 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1010 
1011 	/* for flush command control */
1012 	struct flush_cmd_control *fcc_info;
1013 
1014 	/* for discard command control */
1015 	struct discard_cmd_control *dcc_info;
1016 };
1017 
1018 /*
1019  * For superblock
1020  */
1021 /*
1022  * COUNT_TYPE for monitoring
1023  *
1024  * f2fs monitors the number of several block types such as on-writeback,
1025  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1026  */
1027 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1028 enum count_type {
1029 	F2FS_DIRTY_DENTS,
1030 	F2FS_DIRTY_DATA,
1031 	F2FS_DIRTY_QDATA,
1032 	F2FS_DIRTY_NODES,
1033 	F2FS_DIRTY_META,
1034 	F2FS_INMEM_PAGES,
1035 	F2FS_DIRTY_IMETA,
1036 	F2FS_WB_CP_DATA,
1037 	F2FS_WB_DATA,
1038 	F2FS_RD_DATA,
1039 	F2FS_RD_NODE,
1040 	F2FS_RD_META,
1041 	F2FS_DIO_WRITE,
1042 	F2FS_DIO_READ,
1043 	NR_COUNT_TYPE,
1044 };
1045 
1046 /*
1047  * The below are the page types of bios used in submit_bio().
1048  * The available types are:
1049  * DATA			User data pages. It operates as async mode.
1050  * NODE			Node pages. It operates as async mode.
1051  * META			FS metadata pages such as SIT, NAT, CP.
1052  * NR_PAGE_TYPE		The number of page types.
1053  * META_FLUSH		Make sure the previous pages are written
1054  *			with waiting the bio's completion
1055  * ...			Only can be used with META.
1056  */
1057 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1058 enum page_type {
1059 	DATA,
1060 	NODE,
1061 	META,
1062 	NR_PAGE_TYPE,
1063 	META_FLUSH,
1064 	INMEM,		/* the below types are used by tracepoints only. */
1065 	INMEM_DROP,
1066 	INMEM_INVALIDATE,
1067 	INMEM_REVOKE,
1068 	IPU,
1069 	OPU,
1070 };
1071 
1072 enum temp_type {
1073 	HOT = 0,	/* must be zero for meta bio */
1074 	WARM,
1075 	COLD,
1076 	NR_TEMP_TYPE,
1077 };
1078 
1079 enum need_lock_type {
1080 	LOCK_REQ = 0,
1081 	LOCK_DONE,
1082 	LOCK_RETRY,
1083 };
1084 
1085 enum cp_reason_type {
1086 	CP_NO_NEEDED,
1087 	CP_NON_REGULAR,
1088 	CP_COMPRESSED,
1089 	CP_HARDLINK,
1090 	CP_SB_NEED_CP,
1091 	CP_WRONG_PINO,
1092 	CP_NO_SPC_ROLL,
1093 	CP_NODE_NEED_CP,
1094 	CP_FASTBOOT_MODE,
1095 	CP_SPEC_LOG_NUM,
1096 	CP_RECOVER_DIR,
1097 };
1098 
1099 enum iostat_type {
1100 	/* WRITE IO */
1101 	APP_DIRECT_IO,			/* app direct write IOs */
1102 	APP_BUFFERED_IO,		/* app buffered write IOs */
1103 	APP_WRITE_IO,			/* app write IOs */
1104 	APP_MAPPED_IO,			/* app mapped IOs */
1105 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1106 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1107 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1108 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1109 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1110 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1111 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1112 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1113 
1114 	/* READ IO */
1115 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1116 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1117 	APP_READ_IO,			/* app read IOs */
1118 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1119 	FS_DATA_READ_IO,		/* data read IOs */
1120 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1121 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1122 	FS_NODE_READ_IO,		/* node read IOs */
1123 	FS_META_READ_IO,		/* meta read IOs */
1124 
1125 	/* other */
1126 	FS_DISCARD,			/* discard */
1127 	NR_IO_TYPE,
1128 };
1129 
1130 struct f2fs_io_info {
1131 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1132 	nid_t ino;		/* inode number */
1133 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1134 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1135 	int op;			/* contains REQ_OP_ */
1136 	int op_flags;		/* req_flag_bits */
1137 	block_t new_blkaddr;	/* new block address to be written */
1138 	block_t old_blkaddr;	/* old block address before Cow */
1139 	struct page *page;	/* page to be written */
1140 	struct page *encrypted_page;	/* encrypted page */
1141 	struct page *compressed_page;	/* compressed page */
1142 	struct list_head list;		/* serialize IOs */
1143 	bool submitted;		/* indicate IO submission */
1144 	int need_lock;		/* indicate we need to lock cp_rwsem */
1145 	bool in_list;		/* indicate fio is in io_list */
1146 	bool is_por;		/* indicate IO is from recovery or not */
1147 	bool retry;		/* need to reallocate block address */
1148 	int compr_blocks;	/* # of compressed block addresses */
1149 	bool encrypted;		/* indicate file is encrypted */
1150 	enum iostat_type io_type;	/* io type */
1151 	struct writeback_control *io_wbc; /* writeback control */
1152 	struct bio **bio;		/* bio for ipu */
1153 	sector_t *last_block;		/* last block number in bio */
1154 	unsigned char version;		/* version of the node */
1155 };
1156 
1157 struct bio_entry {
1158 	struct bio *bio;
1159 	struct list_head list;
1160 };
1161 
1162 #define is_read_io(rw) ((rw) == READ)
1163 struct f2fs_bio_info {
1164 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1165 	struct bio *bio;		/* bios to merge */
1166 	sector_t last_block_in_bio;	/* last block number */
1167 	struct f2fs_io_info fio;	/* store buffered io info. */
1168 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1169 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1170 	struct list_head io_list;	/* track fios */
1171 	struct list_head bio_list;	/* bio entry list head */
1172 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1173 };
1174 
1175 #define FDEV(i)				(sbi->devs[i])
1176 #define RDEV(i)				(raw_super->devs[i])
1177 struct f2fs_dev_info {
1178 	struct block_device *bdev;
1179 	char path[MAX_PATH_LEN];
1180 	unsigned int total_segments;
1181 	block_t start_blk;
1182 	block_t end_blk;
1183 #ifdef CONFIG_BLK_DEV_ZONED
1184 	unsigned int nr_blkz;		/* Total number of zones */
1185 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1186 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1187 #endif
1188 };
1189 
1190 enum inode_type {
1191 	DIR_INODE,			/* for dirty dir inode */
1192 	FILE_INODE,			/* for dirty regular/symlink inode */
1193 	DIRTY_META,			/* for all dirtied inode metadata */
1194 	ATOMIC_FILE,			/* for all atomic files */
1195 	NR_INODE_TYPE,
1196 };
1197 
1198 /* for inner inode cache management */
1199 struct inode_management {
1200 	struct radix_tree_root ino_root;	/* ino entry array */
1201 	spinlock_t ino_lock;			/* for ino entry lock */
1202 	struct list_head ino_list;		/* inode list head */
1203 	unsigned long ino_num;			/* number of entries */
1204 };
1205 
1206 /* for GC_AT */
1207 struct atgc_management {
1208 	bool atgc_enabled;			/* ATGC is enabled or not */
1209 	struct rb_root_cached root;		/* root of victim rb-tree */
1210 	struct list_head victim_list;		/* linked with all victim entries */
1211 	unsigned int victim_count;		/* victim count in rb-tree */
1212 	unsigned int candidate_ratio;		/* candidate ratio */
1213 	unsigned int max_candidate_count;	/* max candidate count */
1214 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1215 	unsigned long long age_threshold;	/* age threshold */
1216 };
1217 
1218 /* For s_flag in struct f2fs_sb_info */
1219 enum {
1220 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1221 	SBI_IS_CLOSE,				/* specify unmounting */
1222 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1223 	SBI_POR_DOING,				/* recovery is doing or not */
1224 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1225 	SBI_NEED_CP,				/* need to checkpoint */
1226 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1227 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1228 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1229 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1230 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1231 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1232 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1233 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1234 };
1235 
1236 enum {
1237 	CP_TIME,
1238 	REQ_TIME,
1239 	DISCARD_TIME,
1240 	GC_TIME,
1241 	DISABLE_TIME,
1242 	UMOUNT_DISCARD_TIMEOUT,
1243 	MAX_TIME,
1244 };
1245 
1246 enum {
1247 	GC_NORMAL,
1248 	GC_IDLE_CB,
1249 	GC_IDLE_GREEDY,
1250 	GC_IDLE_AT,
1251 	GC_URGENT_HIGH,
1252 	GC_URGENT_LOW,
1253 };
1254 
1255 enum {
1256 	BGGC_MODE_ON,		/* background gc is on */
1257 	BGGC_MODE_OFF,		/* background gc is off */
1258 	BGGC_MODE_SYNC,		/*
1259 				 * background gc is on, migrating blocks
1260 				 * like foreground gc
1261 				 */
1262 };
1263 
1264 enum {
1265 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1266 	FS_MODE_LFS,		/* use lfs allocation only */
1267 };
1268 
1269 enum {
1270 	WHINT_MODE_OFF,		/* not pass down write hints */
1271 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1272 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1273 };
1274 
1275 enum {
1276 	ALLOC_MODE_DEFAULT,	/* stay default */
1277 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1278 };
1279 
1280 enum fsync_mode {
1281 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1282 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1283 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1284 };
1285 
1286 enum {
1287 	COMPR_MODE_FS,		/*
1288 				 * automatically compress compression
1289 				 * enabled files
1290 				 */
1291 	COMPR_MODE_USER,	/*
1292 				 * automatical compression is disabled.
1293 				 * user can control the file compression
1294 				 * using ioctls
1295 				 */
1296 };
1297 
1298 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1299 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1300 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1301 
1302 /*
1303  * Layout of f2fs page.private:
1304  *
1305  * Layout A: lowest bit should be 1
1306  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1307  * bit 0	PAGE_PRIVATE_NOT_POINTER
1308  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1309  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1310  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1311  * bit 4	PAGE_PRIVATE_INLINE_INODE
1312  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1313  * bit 6-	f2fs private data
1314  *
1315  * Layout B: lowest bit should be 0
1316  * page.private is a wrapped pointer.
1317  */
1318 enum {
1319 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1320 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1321 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1322 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1323 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1324 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1325 	PAGE_PRIVATE_MAX
1326 };
1327 
1328 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1329 static inline bool page_private_##name(struct page *page) \
1330 { \
1331 	return test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1332 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1333 }
1334 
1335 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1336 static inline void set_page_private_##name(struct page *page) \
1337 { \
1338 	if (!PagePrivate(page)) { \
1339 		get_page(page); \
1340 		SetPagePrivate(page); \
1341 	} \
1342 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1343 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1344 }
1345 
1346 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1347 static inline void clear_page_private_##name(struct page *page) \
1348 { \
1349 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1350 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1351 		set_page_private(page, 0); \
1352 		if (PagePrivate(page)) { \
1353 			ClearPagePrivate(page); \
1354 			put_page(page); \
1355 		}\
1356 	} \
1357 }
1358 
1359 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1360 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1361 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1362 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1363 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1364 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1365 
1366 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1367 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1368 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1369 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1370 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1371 
1372 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1373 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1374 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1375 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1376 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1377 
1378 static inline unsigned long get_page_private_data(struct page *page)
1379 {
1380 	unsigned long data = page_private(page);
1381 
1382 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1383 		return 0;
1384 	return data >> PAGE_PRIVATE_MAX;
1385 }
1386 
1387 static inline void set_page_private_data(struct page *page, unsigned long data)
1388 {
1389 	if (!PagePrivate(page)) {
1390 		get_page(page);
1391 		SetPagePrivate(page);
1392 	}
1393 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1394 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1395 }
1396 
1397 static inline void clear_page_private_data(struct page *page)
1398 {
1399 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1400 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1401 		set_page_private(page, 0);
1402 		if (PagePrivate(page)) {
1403 			ClearPagePrivate(page);
1404 			put_page(page);
1405 		}
1406 	}
1407 }
1408 
1409 /* For compression */
1410 enum compress_algorithm_type {
1411 	COMPRESS_LZO,
1412 	COMPRESS_LZ4,
1413 	COMPRESS_ZSTD,
1414 	COMPRESS_LZORLE,
1415 	COMPRESS_MAX,
1416 };
1417 
1418 enum compress_flag {
1419 	COMPRESS_CHKSUM,
1420 	COMPRESS_MAX_FLAG,
1421 };
1422 
1423 #define	COMPRESS_WATERMARK			20
1424 #define	COMPRESS_PERCENT			20
1425 
1426 #define COMPRESS_DATA_RESERVED_SIZE		4
1427 struct compress_data {
1428 	__le32 clen;			/* compressed data size */
1429 	__le32 chksum;			/* compressed data chksum */
1430 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1431 	u8 cdata[];			/* compressed data */
1432 };
1433 
1434 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1435 
1436 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1437 
1438 #define	COMPRESS_LEVEL_OFFSET	8
1439 
1440 /* compress context */
1441 struct compress_ctx {
1442 	struct inode *inode;		/* inode the context belong to */
1443 	pgoff_t cluster_idx;		/* cluster index number */
1444 	unsigned int cluster_size;	/* page count in cluster */
1445 	unsigned int log_cluster_size;	/* log of cluster size */
1446 	struct page **rpages;		/* pages store raw data in cluster */
1447 	unsigned int nr_rpages;		/* total page number in rpages */
1448 	struct page **cpages;		/* pages store compressed data in cluster */
1449 	unsigned int nr_cpages;		/* total page number in cpages */
1450 	void *rbuf;			/* virtual mapped address on rpages */
1451 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1452 	size_t rlen;			/* valid data length in rbuf */
1453 	size_t clen;			/* valid data length in cbuf */
1454 	void *private;			/* payload buffer for specified compression algorithm */
1455 	void *private2;			/* extra payload buffer */
1456 };
1457 
1458 /* compress context for write IO path */
1459 struct compress_io_ctx {
1460 	u32 magic;			/* magic number to indicate page is compressed */
1461 	struct inode *inode;		/* inode the context belong to */
1462 	struct page **rpages;		/* pages store raw data in cluster */
1463 	unsigned int nr_rpages;		/* total page number in rpages */
1464 	atomic_t pending_pages;		/* in-flight compressed page count */
1465 };
1466 
1467 /* Context for decompressing one cluster on the read IO path */
1468 struct decompress_io_ctx {
1469 	u32 magic;			/* magic number to indicate page is compressed */
1470 	struct inode *inode;		/* inode the context belong to */
1471 	pgoff_t cluster_idx;		/* cluster index number */
1472 	unsigned int cluster_size;	/* page count in cluster */
1473 	unsigned int log_cluster_size;	/* log of cluster size */
1474 	struct page **rpages;		/* pages store raw data in cluster */
1475 	unsigned int nr_rpages;		/* total page number in rpages */
1476 	struct page **cpages;		/* pages store compressed data in cluster */
1477 	unsigned int nr_cpages;		/* total page number in cpages */
1478 	struct page **tpages;		/* temp pages to pad holes in cluster */
1479 	void *rbuf;			/* virtual mapped address on rpages */
1480 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1481 	size_t rlen;			/* valid data length in rbuf */
1482 	size_t clen;			/* valid data length in cbuf */
1483 
1484 	/*
1485 	 * The number of compressed pages remaining to be read in this cluster.
1486 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1487 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1488 	 * is decompressed (or an error is reported).
1489 	 *
1490 	 * If an error occurs before all the pages have been submitted for I/O,
1491 	 * then this will never reach 0.  In this case the I/O submitter is
1492 	 * responsible for calling f2fs_decompress_end_io() instead.
1493 	 */
1494 	atomic_t remaining_pages;
1495 
1496 	/*
1497 	 * Number of references to this decompress_io_ctx.
1498 	 *
1499 	 * One reference is held for I/O completion.  This reference is dropped
1500 	 * after the pagecache pages are updated and unlocked -- either after
1501 	 * decompression (and verity if enabled), or after an error.
1502 	 *
1503 	 * In addition, each compressed page holds a reference while it is in a
1504 	 * bio.  These references are necessary prevent compressed pages from
1505 	 * being freed while they are still in a bio.
1506 	 */
1507 	refcount_t refcnt;
1508 
1509 	bool failed;			/* IO error occurred before decompression? */
1510 	bool need_verity;		/* need fs-verity verification after decompression? */
1511 	void *private;			/* payload buffer for specified decompression algorithm */
1512 	void *private2;			/* extra payload buffer */
1513 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1514 };
1515 
1516 #define NULL_CLUSTER			((unsigned int)(~0))
1517 #define MIN_COMPRESS_LOG_SIZE		2
1518 #define MAX_COMPRESS_LOG_SIZE		8
1519 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1520 
1521 struct f2fs_sb_info {
1522 	struct super_block *sb;			/* pointer to VFS super block */
1523 	struct proc_dir_entry *s_proc;		/* proc entry */
1524 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1525 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1526 	int valid_super_block;			/* valid super block no */
1527 	unsigned long s_flag;				/* flags for sbi */
1528 	struct mutex writepages;		/* mutex for writepages() */
1529 
1530 #ifdef CONFIG_BLK_DEV_ZONED
1531 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1532 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1533 #endif
1534 
1535 	/* for node-related operations */
1536 	struct f2fs_nm_info *nm_info;		/* node manager */
1537 	struct inode *node_inode;		/* cache node blocks */
1538 
1539 	/* for segment-related operations */
1540 	struct f2fs_sm_info *sm_info;		/* segment manager */
1541 
1542 	/* for bio operations */
1543 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1544 	/* keep migration IO order for LFS mode */
1545 	struct rw_semaphore io_order_lock;
1546 	mempool_t *write_io_dummy;		/* Dummy pages */
1547 
1548 	/* for checkpoint */
1549 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1550 	int cur_cp_pack;			/* remain current cp pack */
1551 	spinlock_t cp_lock;			/* for flag in ckpt */
1552 	struct inode *meta_inode;		/* cache meta blocks */
1553 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1554 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1555 	struct rw_semaphore node_write;		/* locking node writes */
1556 	struct rw_semaphore node_change;	/* locking node change */
1557 	wait_queue_head_t cp_wait;
1558 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1559 	long interval_time[MAX_TIME];		/* to store thresholds */
1560 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1561 
1562 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1563 
1564 	spinlock_t fsync_node_lock;		/* for node entry lock */
1565 	struct list_head fsync_node_list;	/* node list head */
1566 	unsigned int fsync_seg_id;		/* sequence id */
1567 	unsigned int fsync_node_num;		/* number of node entries */
1568 
1569 	/* for orphan inode, use 0'th array */
1570 	unsigned int max_orphans;		/* max orphan inodes */
1571 
1572 	/* for inode management */
1573 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1574 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1575 	struct mutex flush_lock;		/* for flush exclusion */
1576 
1577 	/* for extent tree cache */
1578 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1579 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1580 	struct list_head extent_list;		/* lru list for shrinker */
1581 	spinlock_t extent_lock;			/* locking extent lru list */
1582 	atomic_t total_ext_tree;		/* extent tree count */
1583 	struct list_head zombie_list;		/* extent zombie tree list */
1584 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1585 	atomic_t total_ext_node;		/* extent info count */
1586 
1587 	/* basic filesystem units */
1588 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1589 	unsigned int log_blocksize;		/* log2 block size */
1590 	unsigned int blocksize;			/* block size */
1591 	unsigned int root_ino_num;		/* root inode number*/
1592 	unsigned int node_ino_num;		/* node inode number*/
1593 	unsigned int meta_ino_num;		/* meta inode number*/
1594 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1595 	unsigned int blocks_per_seg;		/* blocks per segment */
1596 	unsigned int segs_per_sec;		/* segments per section */
1597 	unsigned int secs_per_zone;		/* sections per zone */
1598 	unsigned int total_sections;		/* total section count */
1599 	unsigned int total_node_count;		/* total node block count */
1600 	unsigned int total_valid_node_count;	/* valid node block count */
1601 	int dir_level;				/* directory level */
1602 	int readdir_ra;				/* readahead inode in readdir */
1603 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1604 
1605 	block_t user_block_count;		/* # of user blocks */
1606 	block_t total_valid_block_count;	/* # of valid blocks */
1607 	block_t discard_blks;			/* discard command candidats */
1608 	block_t last_valid_block_count;		/* for recovery */
1609 	block_t reserved_blocks;		/* configurable reserved blocks */
1610 	block_t current_reserved_blocks;	/* current reserved blocks */
1611 
1612 	/* Additional tracking for no checkpoint mode */
1613 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1614 
1615 	unsigned int nquota_files;		/* # of quota sysfile */
1616 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1617 
1618 	/* # of pages, see count_type */
1619 	atomic_t nr_pages[NR_COUNT_TYPE];
1620 	/* # of allocated blocks */
1621 	struct percpu_counter alloc_valid_block_count;
1622 
1623 	/* writeback control */
1624 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1625 
1626 	/* valid inode count */
1627 	struct percpu_counter total_valid_inode_count;
1628 
1629 	struct f2fs_mount_info mount_opt;	/* mount options */
1630 
1631 	/* for cleaning operations */
1632 	struct rw_semaphore gc_lock;		/*
1633 						 * semaphore for GC, avoid
1634 						 * race between GC and GC or CP
1635 						 */
1636 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1637 	struct atgc_management am;		/* atgc management */
1638 	unsigned int cur_victim_sec;		/* current victim section num */
1639 	unsigned int gc_mode;			/* current GC state */
1640 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1641 
1642 	/* for skip statistic */
1643 	unsigned int atomic_files;		/* # of opened atomic file */
1644 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1645 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1646 
1647 	/* threshold for gc trials on pinned files */
1648 	u64 gc_pin_file_threshold;
1649 	struct rw_semaphore pin_sem;
1650 
1651 	/* maximum # of trials to find a victim segment for SSR and GC */
1652 	unsigned int max_victim_search;
1653 	/* migration granularity of garbage collection, unit: segment */
1654 	unsigned int migration_granularity;
1655 
1656 	/*
1657 	 * for stat information.
1658 	 * one is for the LFS mode, and the other is for the SSR mode.
1659 	 */
1660 #ifdef CONFIG_F2FS_STAT_FS
1661 	struct f2fs_stat_info *stat_info;	/* FS status information */
1662 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1663 	unsigned int segment_count[2];		/* # of allocated segments */
1664 	unsigned int block_count[2];		/* # of allocated blocks */
1665 	atomic_t inplace_count;		/* # of inplace update */
1666 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1667 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1668 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1669 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1670 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1671 	atomic_t inline_inode;			/* # of inline_data inodes */
1672 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1673 	atomic_t compr_inode;			/* # of compressed inodes */
1674 	atomic64_t compr_blocks;		/* # of compressed blocks */
1675 	atomic_t vw_cnt;			/* # of volatile writes */
1676 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1677 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1678 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1679 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1680 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1681 #endif
1682 	spinlock_t stat_lock;			/* lock for stat operations */
1683 
1684 	/* For app/fs IO statistics */
1685 	spinlock_t iostat_lock;
1686 	unsigned long long rw_iostat[NR_IO_TYPE];
1687 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1688 	bool iostat_enable;
1689 	unsigned long iostat_next_period;
1690 	unsigned int iostat_period_ms;
1691 
1692 	/* to attach REQ_META|REQ_FUA flags */
1693 	unsigned int data_io_flag;
1694 	unsigned int node_io_flag;
1695 
1696 	/* For sysfs suppport */
1697 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1698 	struct completion s_kobj_unregister;
1699 
1700 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1701 	struct completion s_stat_kobj_unregister;
1702 
1703 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1704 	struct completion s_feature_list_kobj_unregister;
1705 
1706 	/* For shrinker support */
1707 	struct list_head s_list;
1708 	int s_ndevs;				/* number of devices */
1709 	struct f2fs_dev_info *devs;		/* for device list */
1710 	unsigned int dirty_device;		/* for checkpoint data flush */
1711 	spinlock_t dev_lock;			/* protect dirty_device */
1712 	struct mutex umount_mutex;
1713 	unsigned int shrinker_run_no;
1714 
1715 	/* For write statistics */
1716 	u64 sectors_written_start;
1717 	u64 kbytes_written;
1718 
1719 	/* Reference to checksum algorithm driver via cryptoapi */
1720 	struct crypto_shash *s_chksum_driver;
1721 
1722 	/* Precomputed FS UUID checksum for seeding other checksums */
1723 	__u32 s_chksum_seed;
1724 
1725 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1726 
1727 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1728 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1729 
1730 #ifdef CONFIG_F2FS_FS_COMPRESSION
1731 	struct kmem_cache *page_array_slab;	/* page array entry */
1732 	unsigned int page_array_slab_size;	/* default page array slab size */
1733 
1734 	/* For runtime compression statistics */
1735 	u64 compr_written_block;
1736 	u64 compr_saved_block;
1737 	u32 compr_new_inode;
1738 
1739 	/* For compressed block cache */
1740 	struct inode *compress_inode;		/* cache compressed blocks */
1741 	unsigned int compress_percent;		/* cache page percentage */
1742 	unsigned int compress_watermark;	/* cache page watermark */
1743 	atomic_t compress_page_hit;		/* cache hit count */
1744 #endif
1745 };
1746 
1747 struct f2fs_private_dio {
1748 	struct inode *inode;
1749 	void *orig_private;
1750 	bio_end_io_t *orig_end_io;
1751 	bool write;
1752 };
1753 
1754 #ifdef CONFIG_F2FS_FAULT_INJECTION
1755 #define f2fs_show_injection_info(sbi, type)					\
1756 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1757 		KERN_INFO, sbi->sb->s_id,				\
1758 		f2fs_fault_name[type],					\
1759 		__func__, __builtin_return_address(0))
1760 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1761 {
1762 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1763 
1764 	if (!ffi->inject_rate)
1765 		return false;
1766 
1767 	if (!IS_FAULT_SET(ffi, type))
1768 		return false;
1769 
1770 	atomic_inc(&ffi->inject_ops);
1771 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1772 		atomic_set(&ffi->inject_ops, 0);
1773 		return true;
1774 	}
1775 	return false;
1776 }
1777 #else
1778 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1779 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1780 {
1781 	return false;
1782 }
1783 #endif
1784 
1785 /*
1786  * Test if the mounted volume is a multi-device volume.
1787  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1788  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1789  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1790  */
1791 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1792 {
1793 	return sbi->s_ndevs > 1;
1794 }
1795 
1796 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1797 {
1798 	unsigned long now = jiffies;
1799 
1800 	sbi->last_time[type] = now;
1801 
1802 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1803 	if (type == REQ_TIME) {
1804 		sbi->last_time[DISCARD_TIME] = now;
1805 		sbi->last_time[GC_TIME] = now;
1806 	}
1807 }
1808 
1809 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1810 {
1811 	unsigned long interval = sbi->interval_time[type] * HZ;
1812 
1813 	return time_after(jiffies, sbi->last_time[type] + interval);
1814 }
1815 
1816 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1817 						int type)
1818 {
1819 	unsigned long interval = sbi->interval_time[type] * HZ;
1820 	unsigned int wait_ms = 0;
1821 	long delta;
1822 
1823 	delta = (sbi->last_time[type] + interval) - jiffies;
1824 	if (delta > 0)
1825 		wait_ms = jiffies_to_msecs(delta);
1826 
1827 	return wait_ms;
1828 }
1829 
1830 /*
1831  * Inline functions
1832  */
1833 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1834 			      const void *address, unsigned int length)
1835 {
1836 	struct {
1837 		struct shash_desc shash;
1838 		char ctx[4];
1839 	} desc;
1840 	int err;
1841 
1842 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1843 
1844 	desc.shash.tfm = sbi->s_chksum_driver;
1845 	*(u32 *)desc.ctx = crc;
1846 
1847 	err = crypto_shash_update(&desc.shash, address, length);
1848 	BUG_ON(err);
1849 
1850 	return *(u32 *)desc.ctx;
1851 }
1852 
1853 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1854 			   unsigned int length)
1855 {
1856 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1857 }
1858 
1859 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1860 				  void *buf, size_t buf_size)
1861 {
1862 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1863 }
1864 
1865 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1866 			      const void *address, unsigned int length)
1867 {
1868 	return __f2fs_crc32(sbi, crc, address, length);
1869 }
1870 
1871 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1872 {
1873 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1874 }
1875 
1876 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1877 {
1878 	return sb->s_fs_info;
1879 }
1880 
1881 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1882 {
1883 	return F2FS_SB(inode->i_sb);
1884 }
1885 
1886 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1887 {
1888 	return F2FS_I_SB(mapping->host);
1889 }
1890 
1891 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1892 {
1893 	return F2FS_M_SB(page_file_mapping(page));
1894 }
1895 
1896 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1897 {
1898 	return (struct f2fs_super_block *)(sbi->raw_super);
1899 }
1900 
1901 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1902 {
1903 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1904 }
1905 
1906 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1907 {
1908 	return (struct f2fs_node *)page_address(page);
1909 }
1910 
1911 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1912 {
1913 	return &((struct f2fs_node *)page_address(page))->i;
1914 }
1915 
1916 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1917 {
1918 	return (struct f2fs_nm_info *)(sbi->nm_info);
1919 }
1920 
1921 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1922 {
1923 	return (struct f2fs_sm_info *)(sbi->sm_info);
1924 }
1925 
1926 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1927 {
1928 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1929 }
1930 
1931 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1932 {
1933 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1934 }
1935 
1936 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1937 {
1938 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1939 }
1940 
1941 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1942 {
1943 	return sbi->meta_inode->i_mapping;
1944 }
1945 
1946 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1947 {
1948 	return sbi->node_inode->i_mapping;
1949 }
1950 
1951 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1952 {
1953 	return test_bit(type, &sbi->s_flag);
1954 }
1955 
1956 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1957 {
1958 	set_bit(type, &sbi->s_flag);
1959 }
1960 
1961 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1962 {
1963 	clear_bit(type, &sbi->s_flag);
1964 }
1965 
1966 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1967 {
1968 	return le64_to_cpu(cp->checkpoint_ver);
1969 }
1970 
1971 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1972 {
1973 	if (type < F2FS_MAX_QUOTAS)
1974 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1975 	return 0;
1976 }
1977 
1978 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1979 {
1980 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1981 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1982 }
1983 
1984 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1985 {
1986 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1987 
1988 	return ckpt_flags & f;
1989 }
1990 
1991 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1992 {
1993 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1994 }
1995 
1996 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1997 {
1998 	unsigned int ckpt_flags;
1999 
2000 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2001 	ckpt_flags |= f;
2002 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2003 }
2004 
2005 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2006 {
2007 	unsigned long flags;
2008 
2009 	spin_lock_irqsave(&sbi->cp_lock, flags);
2010 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2011 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2012 }
2013 
2014 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2015 {
2016 	unsigned int ckpt_flags;
2017 
2018 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2019 	ckpt_flags &= (~f);
2020 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2021 }
2022 
2023 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2024 {
2025 	unsigned long flags;
2026 
2027 	spin_lock_irqsave(&sbi->cp_lock, flags);
2028 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2029 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2030 }
2031 
2032 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2033 {
2034 	unsigned long flags;
2035 	unsigned char *nat_bits;
2036 
2037 	/*
2038 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
2039 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2040 	 * so let's rely on regular fsck or unclean shutdown.
2041 	 */
2042 
2043 	if (lock)
2044 		spin_lock_irqsave(&sbi->cp_lock, flags);
2045 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2046 	nat_bits = NM_I(sbi)->nat_bits;
2047 	NM_I(sbi)->nat_bits = NULL;
2048 	if (lock)
2049 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
2050 
2051 	kvfree(nat_bits);
2052 }
2053 
2054 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2055 					struct cp_control *cpc)
2056 {
2057 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2058 
2059 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2060 }
2061 
2062 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2063 {
2064 	down_read(&sbi->cp_rwsem);
2065 }
2066 
2067 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2068 {
2069 	return down_read_trylock(&sbi->cp_rwsem);
2070 }
2071 
2072 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2073 {
2074 	up_read(&sbi->cp_rwsem);
2075 }
2076 
2077 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2078 {
2079 	down_write(&sbi->cp_rwsem);
2080 }
2081 
2082 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2083 {
2084 	up_write(&sbi->cp_rwsem);
2085 }
2086 
2087 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2088 {
2089 	int reason = CP_SYNC;
2090 
2091 	if (test_opt(sbi, FASTBOOT))
2092 		reason = CP_FASTBOOT;
2093 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2094 		reason = CP_UMOUNT;
2095 	return reason;
2096 }
2097 
2098 static inline bool __remain_node_summaries(int reason)
2099 {
2100 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2101 }
2102 
2103 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2104 {
2105 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2106 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2107 }
2108 
2109 /*
2110  * Check whether the inode has blocks or not
2111  */
2112 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2113 {
2114 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2115 
2116 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2117 }
2118 
2119 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2120 {
2121 	return ofs == XATTR_NODE_OFFSET;
2122 }
2123 
2124 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2125 					struct inode *inode, bool cap)
2126 {
2127 	if (!inode)
2128 		return true;
2129 	if (!test_opt(sbi, RESERVE_ROOT))
2130 		return false;
2131 	if (IS_NOQUOTA(inode))
2132 		return true;
2133 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2134 		return true;
2135 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2136 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2137 		return true;
2138 	if (cap && capable(CAP_SYS_RESOURCE))
2139 		return true;
2140 	return false;
2141 }
2142 
2143 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2144 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2145 				 struct inode *inode, blkcnt_t *count)
2146 {
2147 	blkcnt_t diff = 0, release = 0;
2148 	block_t avail_user_block_count;
2149 	int ret;
2150 
2151 	ret = dquot_reserve_block(inode, *count);
2152 	if (ret)
2153 		return ret;
2154 
2155 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2156 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2157 		release = *count;
2158 		goto release_quota;
2159 	}
2160 
2161 	/*
2162 	 * let's increase this in prior to actual block count change in order
2163 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2164 	 */
2165 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2166 
2167 	spin_lock(&sbi->stat_lock);
2168 	sbi->total_valid_block_count += (block_t)(*count);
2169 	avail_user_block_count = sbi->user_block_count -
2170 					sbi->current_reserved_blocks;
2171 
2172 	if (!__allow_reserved_blocks(sbi, inode, true))
2173 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2174 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2175 		if (avail_user_block_count > sbi->unusable_block_count)
2176 			avail_user_block_count -= sbi->unusable_block_count;
2177 		else
2178 			avail_user_block_count = 0;
2179 	}
2180 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2181 		diff = sbi->total_valid_block_count - avail_user_block_count;
2182 		if (diff > *count)
2183 			diff = *count;
2184 		*count -= diff;
2185 		release = diff;
2186 		sbi->total_valid_block_count -= diff;
2187 		if (!*count) {
2188 			spin_unlock(&sbi->stat_lock);
2189 			goto enospc;
2190 		}
2191 	}
2192 	spin_unlock(&sbi->stat_lock);
2193 
2194 	if (unlikely(release)) {
2195 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2196 		dquot_release_reservation_block(inode, release);
2197 	}
2198 	f2fs_i_blocks_write(inode, *count, true, true);
2199 	return 0;
2200 
2201 enospc:
2202 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2203 release_quota:
2204 	dquot_release_reservation_block(inode, release);
2205 	return -ENOSPC;
2206 }
2207 
2208 __printf(2, 3)
2209 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2210 
2211 #define f2fs_err(sbi, fmt, ...)						\
2212 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2213 #define f2fs_warn(sbi, fmt, ...)					\
2214 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2215 #define f2fs_notice(sbi, fmt, ...)					\
2216 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2217 #define f2fs_info(sbi, fmt, ...)					\
2218 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2219 #define f2fs_debug(sbi, fmt, ...)					\
2220 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2221 
2222 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2223 						struct inode *inode,
2224 						block_t count)
2225 {
2226 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2227 
2228 	spin_lock(&sbi->stat_lock);
2229 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2230 	sbi->total_valid_block_count -= (block_t)count;
2231 	if (sbi->reserved_blocks &&
2232 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2233 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2234 					sbi->current_reserved_blocks + count);
2235 	spin_unlock(&sbi->stat_lock);
2236 	if (unlikely(inode->i_blocks < sectors)) {
2237 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2238 			  inode->i_ino,
2239 			  (unsigned long long)inode->i_blocks,
2240 			  (unsigned long long)sectors);
2241 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2242 		return;
2243 	}
2244 	f2fs_i_blocks_write(inode, count, false, true);
2245 }
2246 
2247 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2248 {
2249 	atomic_inc(&sbi->nr_pages[count_type]);
2250 
2251 	if (count_type == F2FS_DIRTY_DENTS ||
2252 			count_type == F2FS_DIRTY_NODES ||
2253 			count_type == F2FS_DIRTY_META ||
2254 			count_type == F2FS_DIRTY_QDATA ||
2255 			count_type == F2FS_DIRTY_IMETA)
2256 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2257 }
2258 
2259 static inline void inode_inc_dirty_pages(struct inode *inode)
2260 {
2261 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2262 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2263 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2264 	if (IS_NOQUOTA(inode))
2265 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2266 }
2267 
2268 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2269 {
2270 	atomic_dec(&sbi->nr_pages[count_type]);
2271 }
2272 
2273 static inline void inode_dec_dirty_pages(struct inode *inode)
2274 {
2275 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2276 			!S_ISLNK(inode->i_mode))
2277 		return;
2278 
2279 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2280 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2281 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2282 	if (IS_NOQUOTA(inode))
2283 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2284 }
2285 
2286 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2287 {
2288 	return atomic_read(&sbi->nr_pages[count_type]);
2289 }
2290 
2291 static inline int get_dirty_pages(struct inode *inode)
2292 {
2293 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2294 }
2295 
2296 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2297 {
2298 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2299 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2300 						sbi->log_blocks_per_seg;
2301 
2302 	return segs / sbi->segs_per_sec;
2303 }
2304 
2305 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2306 {
2307 	return sbi->total_valid_block_count;
2308 }
2309 
2310 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2311 {
2312 	return sbi->discard_blks;
2313 }
2314 
2315 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2316 {
2317 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2318 
2319 	/* return NAT or SIT bitmap */
2320 	if (flag == NAT_BITMAP)
2321 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2322 	else if (flag == SIT_BITMAP)
2323 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2324 
2325 	return 0;
2326 }
2327 
2328 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2329 {
2330 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2331 }
2332 
2333 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2334 {
2335 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2336 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2337 	int offset;
2338 
2339 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2340 		offset = (flag == SIT_BITMAP) ?
2341 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2342 		/*
2343 		 * if large_nat_bitmap feature is enabled, leave checksum
2344 		 * protection for all nat/sit bitmaps.
2345 		 */
2346 		return tmp_ptr + offset + sizeof(__le32);
2347 	}
2348 
2349 	if (__cp_payload(sbi) > 0) {
2350 		if (flag == NAT_BITMAP)
2351 			return &ckpt->sit_nat_version_bitmap;
2352 		else
2353 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2354 	} else {
2355 		offset = (flag == NAT_BITMAP) ?
2356 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2357 		return tmp_ptr + offset;
2358 	}
2359 }
2360 
2361 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2362 {
2363 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2364 
2365 	if (sbi->cur_cp_pack == 2)
2366 		start_addr += sbi->blocks_per_seg;
2367 	return start_addr;
2368 }
2369 
2370 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2371 {
2372 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2373 
2374 	if (sbi->cur_cp_pack == 1)
2375 		start_addr += sbi->blocks_per_seg;
2376 	return start_addr;
2377 }
2378 
2379 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2380 {
2381 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2382 }
2383 
2384 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2385 {
2386 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2387 }
2388 
2389 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2390 					struct inode *inode, bool is_inode)
2391 {
2392 	block_t	valid_block_count;
2393 	unsigned int valid_node_count, user_block_count;
2394 	int err;
2395 
2396 	if (is_inode) {
2397 		if (inode) {
2398 			err = dquot_alloc_inode(inode);
2399 			if (err)
2400 				return err;
2401 		}
2402 	} else {
2403 		err = dquot_reserve_block(inode, 1);
2404 		if (err)
2405 			return err;
2406 	}
2407 
2408 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2409 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2410 		goto enospc;
2411 	}
2412 
2413 	spin_lock(&sbi->stat_lock);
2414 
2415 	valid_block_count = sbi->total_valid_block_count +
2416 					sbi->current_reserved_blocks + 1;
2417 
2418 	if (!__allow_reserved_blocks(sbi, inode, false))
2419 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2420 	user_block_count = sbi->user_block_count;
2421 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2422 		user_block_count -= sbi->unusable_block_count;
2423 
2424 	if (unlikely(valid_block_count > user_block_count)) {
2425 		spin_unlock(&sbi->stat_lock);
2426 		goto enospc;
2427 	}
2428 
2429 	valid_node_count = sbi->total_valid_node_count + 1;
2430 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2431 		spin_unlock(&sbi->stat_lock);
2432 		goto enospc;
2433 	}
2434 
2435 	sbi->total_valid_node_count++;
2436 	sbi->total_valid_block_count++;
2437 	spin_unlock(&sbi->stat_lock);
2438 
2439 	if (inode) {
2440 		if (is_inode)
2441 			f2fs_mark_inode_dirty_sync(inode, true);
2442 		else
2443 			f2fs_i_blocks_write(inode, 1, true, true);
2444 	}
2445 
2446 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2447 	return 0;
2448 
2449 enospc:
2450 	if (is_inode) {
2451 		if (inode)
2452 			dquot_free_inode(inode);
2453 	} else {
2454 		dquot_release_reservation_block(inode, 1);
2455 	}
2456 	return -ENOSPC;
2457 }
2458 
2459 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2460 					struct inode *inode, bool is_inode)
2461 {
2462 	spin_lock(&sbi->stat_lock);
2463 
2464 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2465 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2466 
2467 	sbi->total_valid_node_count--;
2468 	sbi->total_valid_block_count--;
2469 	if (sbi->reserved_blocks &&
2470 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2471 		sbi->current_reserved_blocks++;
2472 
2473 	spin_unlock(&sbi->stat_lock);
2474 
2475 	if (is_inode) {
2476 		dquot_free_inode(inode);
2477 	} else {
2478 		if (unlikely(inode->i_blocks == 0)) {
2479 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2480 				  inode->i_ino,
2481 				  (unsigned long long)inode->i_blocks);
2482 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2483 			return;
2484 		}
2485 		f2fs_i_blocks_write(inode, 1, false, true);
2486 	}
2487 }
2488 
2489 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2490 {
2491 	return sbi->total_valid_node_count;
2492 }
2493 
2494 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2495 {
2496 	percpu_counter_inc(&sbi->total_valid_inode_count);
2497 }
2498 
2499 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2500 {
2501 	percpu_counter_dec(&sbi->total_valid_inode_count);
2502 }
2503 
2504 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2505 {
2506 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2507 }
2508 
2509 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2510 						pgoff_t index, bool for_write)
2511 {
2512 	struct page *page;
2513 
2514 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2515 		if (!for_write)
2516 			page = find_get_page_flags(mapping, index,
2517 							FGP_LOCK | FGP_ACCESSED);
2518 		else
2519 			page = find_lock_page(mapping, index);
2520 		if (page)
2521 			return page;
2522 
2523 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2524 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2525 							FAULT_PAGE_ALLOC);
2526 			return NULL;
2527 		}
2528 	}
2529 
2530 	if (!for_write)
2531 		return grab_cache_page(mapping, index);
2532 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2533 }
2534 
2535 static inline struct page *f2fs_pagecache_get_page(
2536 				struct address_space *mapping, pgoff_t index,
2537 				int fgp_flags, gfp_t gfp_mask)
2538 {
2539 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2540 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2541 		return NULL;
2542 	}
2543 
2544 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2545 }
2546 
2547 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2548 {
2549 	char *src_kaddr = kmap(src);
2550 	char *dst_kaddr = kmap(dst);
2551 
2552 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2553 	kunmap(dst);
2554 	kunmap(src);
2555 }
2556 
2557 static inline void f2fs_put_page(struct page *page, int unlock)
2558 {
2559 	if (!page)
2560 		return;
2561 
2562 	if (unlock) {
2563 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2564 		unlock_page(page);
2565 	}
2566 	put_page(page);
2567 }
2568 
2569 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2570 {
2571 	if (dn->node_page)
2572 		f2fs_put_page(dn->node_page, 1);
2573 	if (dn->inode_page && dn->node_page != dn->inode_page)
2574 		f2fs_put_page(dn->inode_page, 0);
2575 	dn->node_page = NULL;
2576 	dn->inode_page = NULL;
2577 }
2578 
2579 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2580 					size_t size)
2581 {
2582 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2583 }
2584 
2585 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2586 						gfp_t flags)
2587 {
2588 	void *entry;
2589 
2590 	entry = kmem_cache_alloc(cachep, flags);
2591 	if (!entry)
2592 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2593 	return entry;
2594 }
2595 
2596 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2597 {
2598 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2599 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2600 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2601 		get_pages(sbi, F2FS_DIO_READ) ||
2602 		get_pages(sbi, F2FS_DIO_WRITE))
2603 		return true;
2604 
2605 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2606 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2607 		return true;
2608 
2609 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2610 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2611 		return true;
2612 	return false;
2613 }
2614 
2615 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2616 {
2617 	if (sbi->gc_mode == GC_URGENT_HIGH)
2618 		return true;
2619 
2620 	if (is_inflight_io(sbi, type))
2621 		return false;
2622 
2623 	if (sbi->gc_mode == GC_URGENT_LOW &&
2624 			(type == DISCARD_TIME || type == GC_TIME))
2625 		return true;
2626 
2627 	return f2fs_time_over(sbi, type);
2628 }
2629 
2630 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2631 				unsigned long index, void *item)
2632 {
2633 	while (radix_tree_insert(root, index, item))
2634 		cond_resched();
2635 }
2636 
2637 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2638 
2639 static inline bool IS_INODE(struct page *page)
2640 {
2641 	struct f2fs_node *p = F2FS_NODE(page);
2642 
2643 	return RAW_IS_INODE(p);
2644 }
2645 
2646 static inline int offset_in_addr(struct f2fs_inode *i)
2647 {
2648 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2649 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2650 }
2651 
2652 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2653 {
2654 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2655 }
2656 
2657 static inline int f2fs_has_extra_attr(struct inode *inode);
2658 static inline block_t data_blkaddr(struct inode *inode,
2659 			struct page *node_page, unsigned int offset)
2660 {
2661 	struct f2fs_node *raw_node;
2662 	__le32 *addr_array;
2663 	int base = 0;
2664 	bool is_inode = IS_INODE(node_page);
2665 
2666 	raw_node = F2FS_NODE(node_page);
2667 
2668 	if (is_inode) {
2669 		if (!inode)
2670 			/* from GC path only */
2671 			base = offset_in_addr(&raw_node->i);
2672 		else if (f2fs_has_extra_attr(inode))
2673 			base = get_extra_isize(inode);
2674 	}
2675 
2676 	addr_array = blkaddr_in_node(raw_node);
2677 	return le32_to_cpu(addr_array[base + offset]);
2678 }
2679 
2680 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2681 {
2682 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2683 }
2684 
2685 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2686 {
2687 	int mask;
2688 
2689 	addr += (nr >> 3);
2690 	mask = 1 << (7 - (nr & 0x07));
2691 	return mask & *addr;
2692 }
2693 
2694 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2695 {
2696 	int mask;
2697 
2698 	addr += (nr >> 3);
2699 	mask = 1 << (7 - (nr & 0x07));
2700 	*addr |= mask;
2701 }
2702 
2703 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2704 {
2705 	int mask;
2706 
2707 	addr += (nr >> 3);
2708 	mask = 1 << (7 - (nr & 0x07));
2709 	*addr &= ~mask;
2710 }
2711 
2712 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2713 {
2714 	int mask;
2715 	int ret;
2716 
2717 	addr += (nr >> 3);
2718 	mask = 1 << (7 - (nr & 0x07));
2719 	ret = mask & *addr;
2720 	*addr |= mask;
2721 	return ret;
2722 }
2723 
2724 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2725 {
2726 	int mask;
2727 	int ret;
2728 
2729 	addr += (nr >> 3);
2730 	mask = 1 << (7 - (nr & 0x07));
2731 	ret = mask & *addr;
2732 	*addr &= ~mask;
2733 	return ret;
2734 }
2735 
2736 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2737 {
2738 	int mask;
2739 
2740 	addr += (nr >> 3);
2741 	mask = 1 << (7 - (nr & 0x07));
2742 	*addr ^= mask;
2743 }
2744 
2745 /*
2746  * On-disk inode flags (f2fs_inode::i_flags)
2747  */
2748 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2749 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2750 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2751 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2752 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2753 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2754 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2755 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2756 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2757 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2758 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2759 
2760 /* Flags that should be inherited by new inodes from their parent. */
2761 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2762 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2763 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2764 
2765 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2766 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2767 				F2FS_CASEFOLD_FL))
2768 
2769 /* Flags that are appropriate for non-directories/regular files. */
2770 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2771 
2772 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2773 {
2774 	if (S_ISDIR(mode))
2775 		return flags;
2776 	else if (S_ISREG(mode))
2777 		return flags & F2FS_REG_FLMASK;
2778 	else
2779 		return flags & F2FS_OTHER_FLMASK;
2780 }
2781 
2782 static inline void __mark_inode_dirty_flag(struct inode *inode,
2783 						int flag, bool set)
2784 {
2785 	switch (flag) {
2786 	case FI_INLINE_XATTR:
2787 	case FI_INLINE_DATA:
2788 	case FI_INLINE_DENTRY:
2789 	case FI_NEW_INODE:
2790 		if (set)
2791 			return;
2792 		fallthrough;
2793 	case FI_DATA_EXIST:
2794 	case FI_INLINE_DOTS:
2795 	case FI_PIN_FILE:
2796 	case FI_COMPRESS_RELEASED:
2797 		f2fs_mark_inode_dirty_sync(inode, true);
2798 	}
2799 }
2800 
2801 static inline void set_inode_flag(struct inode *inode, int flag)
2802 {
2803 	set_bit(flag, F2FS_I(inode)->flags);
2804 	__mark_inode_dirty_flag(inode, flag, true);
2805 }
2806 
2807 static inline int is_inode_flag_set(struct inode *inode, int flag)
2808 {
2809 	return test_bit(flag, F2FS_I(inode)->flags);
2810 }
2811 
2812 static inline void clear_inode_flag(struct inode *inode, int flag)
2813 {
2814 	clear_bit(flag, F2FS_I(inode)->flags);
2815 	__mark_inode_dirty_flag(inode, flag, false);
2816 }
2817 
2818 static inline bool f2fs_verity_in_progress(struct inode *inode)
2819 {
2820 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2821 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2822 }
2823 
2824 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2825 {
2826 	F2FS_I(inode)->i_acl_mode = mode;
2827 	set_inode_flag(inode, FI_ACL_MODE);
2828 	f2fs_mark_inode_dirty_sync(inode, false);
2829 }
2830 
2831 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2832 {
2833 	if (inc)
2834 		inc_nlink(inode);
2835 	else
2836 		drop_nlink(inode);
2837 	f2fs_mark_inode_dirty_sync(inode, true);
2838 }
2839 
2840 static inline void f2fs_i_blocks_write(struct inode *inode,
2841 					block_t diff, bool add, bool claim)
2842 {
2843 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2844 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2845 
2846 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2847 	if (add) {
2848 		if (claim)
2849 			dquot_claim_block(inode, diff);
2850 		else
2851 			dquot_alloc_block_nofail(inode, diff);
2852 	} else {
2853 		dquot_free_block(inode, diff);
2854 	}
2855 
2856 	f2fs_mark_inode_dirty_sync(inode, true);
2857 	if (clean || recover)
2858 		set_inode_flag(inode, FI_AUTO_RECOVER);
2859 }
2860 
2861 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2862 {
2863 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2864 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2865 
2866 	if (i_size_read(inode) == i_size)
2867 		return;
2868 
2869 	i_size_write(inode, i_size);
2870 	f2fs_mark_inode_dirty_sync(inode, true);
2871 	if (clean || recover)
2872 		set_inode_flag(inode, FI_AUTO_RECOVER);
2873 }
2874 
2875 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2876 {
2877 	F2FS_I(inode)->i_current_depth = depth;
2878 	f2fs_mark_inode_dirty_sync(inode, true);
2879 }
2880 
2881 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2882 					unsigned int count)
2883 {
2884 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2885 	f2fs_mark_inode_dirty_sync(inode, true);
2886 }
2887 
2888 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2889 {
2890 	F2FS_I(inode)->i_xattr_nid = xnid;
2891 	f2fs_mark_inode_dirty_sync(inode, true);
2892 }
2893 
2894 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2895 {
2896 	F2FS_I(inode)->i_pino = pino;
2897 	f2fs_mark_inode_dirty_sync(inode, true);
2898 }
2899 
2900 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2901 {
2902 	struct f2fs_inode_info *fi = F2FS_I(inode);
2903 
2904 	if (ri->i_inline & F2FS_INLINE_XATTR)
2905 		set_bit(FI_INLINE_XATTR, fi->flags);
2906 	if (ri->i_inline & F2FS_INLINE_DATA)
2907 		set_bit(FI_INLINE_DATA, fi->flags);
2908 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2909 		set_bit(FI_INLINE_DENTRY, fi->flags);
2910 	if (ri->i_inline & F2FS_DATA_EXIST)
2911 		set_bit(FI_DATA_EXIST, fi->flags);
2912 	if (ri->i_inline & F2FS_INLINE_DOTS)
2913 		set_bit(FI_INLINE_DOTS, fi->flags);
2914 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2915 		set_bit(FI_EXTRA_ATTR, fi->flags);
2916 	if (ri->i_inline & F2FS_PIN_FILE)
2917 		set_bit(FI_PIN_FILE, fi->flags);
2918 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2919 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
2920 }
2921 
2922 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2923 {
2924 	ri->i_inline = 0;
2925 
2926 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2927 		ri->i_inline |= F2FS_INLINE_XATTR;
2928 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2929 		ri->i_inline |= F2FS_INLINE_DATA;
2930 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2931 		ri->i_inline |= F2FS_INLINE_DENTRY;
2932 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2933 		ri->i_inline |= F2FS_DATA_EXIST;
2934 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2935 		ri->i_inline |= F2FS_INLINE_DOTS;
2936 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2937 		ri->i_inline |= F2FS_EXTRA_ATTR;
2938 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2939 		ri->i_inline |= F2FS_PIN_FILE;
2940 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
2941 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
2942 }
2943 
2944 static inline int f2fs_has_extra_attr(struct inode *inode)
2945 {
2946 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2947 }
2948 
2949 static inline int f2fs_has_inline_xattr(struct inode *inode)
2950 {
2951 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2952 }
2953 
2954 static inline int f2fs_compressed_file(struct inode *inode)
2955 {
2956 	return S_ISREG(inode->i_mode) &&
2957 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2958 }
2959 
2960 static inline bool f2fs_need_compress_data(struct inode *inode)
2961 {
2962 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2963 
2964 	if (!f2fs_compressed_file(inode))
2965 		return false;
2966 
2967 	if (compress_mode == COMPR_MODE_FS)
2968 		return true;
2969 	else if (compress_mode == COMPR_MODE_USER &&
2970 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2971 		return true;
2972 
2973 	return false;
2974 }
2975 
2976 static inline unsigned int addrs_per_inode(struct inode *inode)
2977 {
2978 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2979 				get_inline_xattr_addrs(inode);
2980 
2981 	if (!f2fs_compressed_file(inode))
2982 		return addrs;
2983 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2984 }
2985 
2986 static inline unsigned int addrs_per_block(struct inode *inode)
2987 {
2988 	if (!f2fs_compressed_file(inode))
2989 		return DEF_ADDRS_PER_BLOCK;
2990 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2991 }
2992 
2993 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2994 {
2995 	struct f2fs_inode *ri = F2FS_INODE(page);
2996 
2997 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2998 					get_inline_xattr_addrs(inode)]);
2999 }
3000 
3001 static inline int inline_xattr_size(struct inode *inode)
3002 {
3003 	if (f2fs_has_inline_xattr(inode))
3004 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3005 	return 0;
3006 }
3007 
3008 static inline int f2fs_has_inline_data(struct inode *inode)
3009 {
3010 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3011 }
3012 
3013 static inline int f2fs_exist_data(struct inode *inode)
3014 {
3015 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3016 }
3017 
3018 static inline int f2fs_has_inline_dots(struct inode *inode)
3019 {
3020 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3021 }
3022 
3023 static inline int f2fs_is_mmap_file(struct inode *inode)
3024 {
3025 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3026 }
3027 
3028 static inline bool f2fs_is_pinned_file(struct inode *inode)
3029 {
3030 	return is_inode_flag_set(inode, FI_PIN_FILE);
3031 }
3032 
3033 static inline bool f2fs_is_atomic_file(struct inode *inode)
3034 {
3035 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3036 }
3037 
3038 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3039 {
3040 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3041 }
3042 
3043 static inline bool f2fs_is_volatile_file(struct inode *inode)
3044 {
3045 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3046 }
3047 
3048 static inline bool f2fs_is_first_block_written(struct inode *inode)
3049 {
3050 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3051 }
3052 
3053 static inline bool f2fs_is_drop_cache(struct inode *inode)
3054 {
3055 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3056 }
3057 
3058 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3059 {
3060 	struct f2fs_inode *ri = F2FS_INODE(page);
3061 	int extra_size = get_extra_isize(inode);
3062 
3063 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3064 }
3065 
3066 static inline int f2fs_has_inline_dentry(struct inode *inode)
3067 {
3068 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3069 }
3070 
3071 static inline int is_file(struct inode *inode, int type)
3072 {
3073 	return F2FS_I(inode)->i_advise & type;
3074 }
3075 
3076 static inline void set_file(struct inode *inode, int type)
3077 {
3078 	F2FS_I(inode)->i_advise |= type;
3079 	f2fs_mark_inode_dirty_sync(inode, true);
3080 }
3081 
3082 static inline void clear_file(struct inode *inode, int type)
3083 {
3084 	F2FS_I(inode)->i_advise &= ~type;
3085 	f2fs_mark_inode_dirty_sync(inode, true);
3086 }
3087 
3088 static inline bool f2fs_is_time_consistent(struct inode *inode)
3089 {
3090 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3091 		return false;
3092 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3093 		return false;
3094 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3095 		return false;
3096 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3097 						&F2FS_I(inode)->i_crtime))
3098 		return false;
3099 	return true;
3100 }
3101 
3102 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3103 {
3104 	bool ret;
3105 
3106 	if (dsync) {
3107 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3108 
3109 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3110 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3111 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3112 		return ret;
3113 	}
3114 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3115 			file_keep_isize(inode) ||
3116 			i_size_read(inode) & ~PAGE_MASK)
3117 		return false;
3118 
3119 	if (!f2fs_is_time_consistent(inode))
3120 		return false;
3121 
3122 	spin_lock(&F2FS_I(inode)->i_size_lock);
3123 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3124 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3125 
3126 	return ret;
3127 }
3128 
3129 static inline bool f2fs_readonly(struct super_block *sb)
3130 {
3131 	return sb_rdonly(sb);
3132 }
3133 
3134 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3135 {
3136 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3137 }
3138 
3139 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3140 {
3141 	if (len == 1 && name[0] == '.')
3142 		return true;
3143 
3144 	if (len == 2 && name[0] == '.' && name[1] == '.')
3145 		return true;
3146 
3147 	return false;
3148 }
3149 
3150 static inline bool f2fs_may_extent_tree(struct inode *inode)
3151 {
3152 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3153 
3154 	if (!test_opt(sbi, EXTENT_CACHE) ||
3155 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
3156 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3157 		return false;
3158 
3159 	/*
3160 	 * for recovered files during mount do not create extents
3161 	 * if shrinker is not registered.
3162 	 */
3163 	if (list_empty(&sbi->s_list))
3164 		return false;
3165 
3166 	return S_ISREG(inode->i_mode);
3167 }
3168 
3169 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3170 					size_t size, gfp_t flags)
3171 {
3172 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3173 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3174 		return NULL;
3175 	}
3176 
3177 	return kmalloc(size, flags);
3178 }
3179 
3180 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3181 					size_t size, gfp_t flags)
3182 {
3183 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3184 }
3185 
3186 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3187 					size_t size, gfp_t flags)
3188 {
3189 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3190 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3191 		return NULL;
3192 	}
3193 
3194 	return kvmalloc(size, flags);
3195 }
3196 
3197 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3198 					size_t size, gfp_t flags)
3199 {
3200 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3201 }
3202 
3203 static inline int get_extra_isize(struct inode *inode)
3204 {
3205 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3206 }
3207 
3208 static inline int get_inline_xattr_addrs(struct inode *inode)
3209 {
3210 	return F2FS_I(inode)->i_inline_xattr_size;
3211 }
3212 
3213 #define f2fs_get_inode_mode(i) \
3214 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3215 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3216 
3217 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3218 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3219 	offsetof(struct f2fs_inode, i_extra_isize))	\
3220 
3221 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3222 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3223 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3224 		sizeof((f2fs_inode)->field))			\
3225 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3226 
3227 #define DEFAULT_IOSTAT_PERIOD_MS	3000
3228 #define MIN_IOSTAT_PERIOD_MS		100
3229 /* maximum period of iostat tracing is 1 day */
3230 #define MAX_IOSTAT_PERIOD_MS		8640000
3231 
3232 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3233 {
3234 	int i;
3235 
3236 	spin_lock(&sbi->iostat_lock);
3237 	for (i = 0; i < NR_IO_TYPE; i++) {
3238 		sbi->rw_iostat[i] = 0;
3239 		sbi->prev_rw_iostat[i] = 0;
3240 	}
3241 	spin_unlock(&sbi->iostat_lock);
3242 }
3243 
3244 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3245 
3246 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3247 			enum iostat_type type, unsigned long long io_bytes)
3248 {
3249 	if (!sbi->iostat_enable)
3250 		return;
3251 	spin_lock(&sbi->iostat_lock);
3252 	sbi->rw_iostat[type] += io_bytes;
3253 
3254 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3255 		sbi->rw_iostat[APP_BUFFERED_IO] =
3256 			sbi->rw_iostat[APP_WRITE_IO] -
3257 			sbi->rw_iostat[APP_DIRECT_IO];
3258 
3259 	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3260 		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3261 			sbi->rw_iostat[APP_READ_IO] -
3262 			sbi->rw_iostat[APP_DIRECT_READ_IO];
3263 	spin_unlock(&sbi->iostat_lock);
3264 
3265 	f2fs_record_iostat(sbi);
3266 }
3267 
3268 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3269 
3270 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3271 
3272 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3273 					block_t blkaddr, int type);
3274 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3275 					block_t blkaddr, int type)
3276 {
3277 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3278 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3279 			 blkaddr, type);
3280 		f2fs_bug_on(sbi, 1);
3281 	}
3282 }
3283 
3284 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3285 {
3286 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3287 			blkaddr == COMPRESS_ADDR)
3288 		return false;
3289 	return true;
3290 }
3291 
3292 /*
3293  * file.c
3294  */
3295 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3296 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3297 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3298 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3299 int f2fs_truncate(struct inode *inode);
3300 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3301 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3302 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3303 		 struct iattr *attr);
3304 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3305 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3306 int f2fs_precache_extents(struct inode *inode);
3307 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3308 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3309 		      struct dentry *dentry, struct fileattr *fa);
3310 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3311 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3312 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3313 int f2fs_pin_file_control(struct inode *inode, bool inc);
3314 
3315 /*
3316  * inode.c
3317  */
3318 void f2fs_set_inode_flags(struct inode *inode);
3319 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3320 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3321 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3322 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3323 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3324 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3325 void f2fs_update_inode_page(struct inode *inode);
3326 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3327 void f2fs_evict_inode(struct inode *inode);
3328 void f2fs_handle_failed_inode(struct inode *inode);
3329 
3330 /*
3331  * namei.c
3332  */
3333 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3334 							bool hot, bool set);
3335 struct dentry *f2fs_get_parent(struct dentry *child);
3336 
3337 /*
3338  * dir.c
3339  */
3340 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3341 int f2fs_init_casefolded_name(const struct inode *dir,
3342 			      struct f2fs_filename *fname);
3343 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3344 			int lookup, struct f2fs_filename *fname);
3345 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3346 			struct f2fs_filename *fname);
3347 void f2fs_free_filename(struct f2fs_filename *fname);
3348 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3349 			const struct f2fs_filename *fname, int *max_slots);
3350 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3351 			unsigned int start_pos, struct fscrypt_str *fstr);
3352 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3353 			struct f2fs_dentry_ptr *d);
3354 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3355 			const struct f2fs_filename *fname, struct page *dpage);
3356 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3357 			unsigned int current_depth);
3358 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3359 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3360 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3361 					 const struct f2fs_filename *fname,
3362 					 struct page **res_page);
3363 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3364 			const struct qstr *child, struct page **res_page);
3365 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3366 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3367 			struct page **page);
3368 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3369 			struct page *page, struct inode *inode);
3370 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3371 			  const struct f2fs_filename *fname);
3372 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3373 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3374 			unsigned int bit_pos);
3375 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3376 			struct inode *inode, nid_t ino, umode_t mode);
3377 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3378 			struct inode *inode, nid_t ino, umode_t mode);
3379 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3380 			struct inode *inode, nid_t ino, umode_t mode);
3381 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3382 			struct inode *dir, struct inode *inode);
3383 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3384 bool f2fs_empty_dir(struct inode *dir);
3385 
3386 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3387 {
3388 	if (fscrypt_is_nokey_name(dentry))
3389 		return -ENOKEY;
3390 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3391 				inode, inode->i_ino, inode->i_mode);
3392 }
3393 
3394 /*
3395  * super.c
3396  */
3397 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3398 void f2fs_inode_synced(struct inode *inode);
3399 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3400 int f2fs_quota_sync(struct super_block *sb, int type);
3401 loff_t max_file_blocks(struct inode *inode);
3402 void f2fs_quota_off_umount(struct super_block *sb);
3403 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3404 int f2fs_sync_fs(struct super_block *sb, int sync);
3405 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3406 
3407 /*
3408  * hash.c
3409  */
3410 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3411 
3412 /*
3413  * node.c
3414  */
3415 struct node_info;
3416 
3417 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3418 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3419 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3420 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3421 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3422 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3423 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3424 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3425 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3426 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3427 						struct node_info *ni);
3428 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3429 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3430 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3431 int f2fs_truncate_xattr_node(struct inode *inode);
3432 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3433 					unsigned int seq_id);
3434 int f2fs_remove_inode_page(struct inode *inode);
3435 struct page *f2fs_new_inode_page(struct inode *inode);
3436 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3437 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3438 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3439 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3440 int f2fs_move_node_page(struct page *node_page, int gc_type);
3441 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3442 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3443 			struct writeback_control *wbc, bool atomic,
3444 			unsigned int *seq_id);
3445 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3446 			struct writeback_control *wbc,
3447 			bool do_balance, enum iostat_type io_type);
3448 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3449 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3450 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3451 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3452 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3453 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3454 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3455 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3456 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3457 			unsigned int segno, struct f2fs_summary_block *sum);
3458 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3459 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3460 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3461 int __init f2fs_create_node_manager_caches(void);
3462 void f2fs_destroy_node_manager_caches(void);
3463 
3464 /*
3465  * segment.c
3466  */
3467 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3468 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3469 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3470 void f2fs_drop_inmem_pages(struct inode *inode);
3471 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3472 int f2fs_commit_inmem_pages(struct inode *inode);
3473 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3474 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3475 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3476 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3477 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3478 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3479 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3480 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3481 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3482 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3483 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3484 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3485 					struct cp_control *cpc);
3486 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3487 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3488 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3489 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3490 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3491 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3492 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3493 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3494 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3495 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3496 			unsigned int *newseg, bool new_sec, int dir);
3497 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3498 					unsigned int start, unsigned int end);
3499 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3500 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3501 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3502 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3503 					struct cp_control *cpc);
3504 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3505 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3506 					block_t blk_addr);
3507 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3508 						enum iostat_type io_type);
3509 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3510 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3511 			struct f2fs_io_info *fio);
3512 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3513 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3514 			block_t old_blkaddr, block_t new_blkaddr,
3515 			bool recover_curseg, bool recover_newaddr,
3516 			bool from_gc);
3517 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3518 			block_t old_addr, block_t new_addr,
3519 			unsigned char version, bool recover_curseg,
3520 			bool recover_newaddr);
3521 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3522 			block_t old_blkaddr, block_t *new_blkaddr,
3523 			struct f2fs_summary *sum, int type,
3524 			struct f2fs_io_info *fio);
3525 void f2fs_wait_on_page_writeback(struct page *page,
3526 			enum page_type type, bool ordered, bool locked);
3527 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3528 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3529 								block_t len);
3530 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3531 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3532 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3533 			unsigned int val, int alloc);
3534 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3535 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3536 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3537 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3538 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3539 int __init f2fs_create_segment_manager_caches(void);
3540 void f2fs_destroy_segment_manager_caches(void);
3541 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3542 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3543 			enum page_type type, enum temp_type temp);
3544 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3545 			unsigned int segno);
3546 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3547 			unsigned int segno);
3548 
3549 /*
3550  * checkpoint.c
3551  */
3552 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3553 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3554 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3555 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3556 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3557 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3558 					block_t blkaddr, int type);
3559 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3560 			int type, bool sync);
3561 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3562 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3563 			long nr_to_write, enum iostat_type io_type);
3564 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3565 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3566 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3567 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3568 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3569 					unsigned int devidx, int type);
3570 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3571 					unsigned int devidx, int type);
3572 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3573 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3574 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3575 void f2fs_add_orphan_inode(struct inode *inode);
3576 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3577 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3578 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3579 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3580 void f2fs_remove_dirty_inode(struct inode *inode);
3581 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3582 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3583 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3584 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3585 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3586 int __init f2fs_create_checkpoint_caches(void);
3587 void f2fs_destroy_checkpoint_caches(void);
3588 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3589 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3590 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3591 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3592 
3593 /*
3594  * data.c
3595  */
3596 int __init f2fs_init_bioset(void);
3597 void f2fs_destroy_bioset(void);
3598 int f2fs_init_bio_entry_cache(void);
3599 void f2fs_destroy_bio_entry_cache(void);
3600 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3601 				struct bio *bio, enum page_type type);
3602 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3603 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3604 				struct inode *inode, struct page *page,
3605 				nid_t ino, enum page_type type);
3606 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3607 					struct bio **bio, struct page *page);
3608 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3609 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3610 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3611 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3612 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3613 			block_t blk_addr, struct bio *bio);
3614 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3615 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3616 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3617 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3618 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3619 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3620 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3621 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3622 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3623 			int op_flags, bool for_write);
3624 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3625 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3626 			bool for_write);
3627 struct page *f2fs_get_new_data_page(struct inode *inode,
3628 			struct page *ipage, pgoff_t index, bool new_i_size);
3629 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3630 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3631 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3632 			int create, int flag);
3633 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3634 			u64 start, u64 len);
3635 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3636 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3637 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3638 int f2fs_write_single_data_page(struct page *page, int *submitted,
3639 				struct bio **bio, sector_t *last_block,
3640 				struct writeback_control *wbc,
3641 				enum iostat_type io_type,
3642 				int compr_blocks, bool allow_balance);
3643 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3644 			unsigned int length);
3645 int f2fs_release_page(struct page *page, gfp_t wait);
3646 #ifdef CONFIG_MIGRATION
3647 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3648 			struct page *page, enum migrate_mode mode);
3649 #endif
3650 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3651 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3652 int f2fs_init_post_read_processing(void);
3653 void f2fs_destroy_post_read_processing(void);
3654 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3655 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3656 
3657 /*
3658  * gc.c
3659  */
3660 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3661 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3662 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3663 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3664 			unsigned int segno);
3665 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3666 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3667 int __init f2fs_create_garbage_collection_cache(void);
3668 void f2fs_destroy_garbage_collection_cache(void);
3669 
3670 /*
3671  * recovery.c
3672  */
3673 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3674 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3675 int __init f2fs_create_recovery_cache(void);
3676 void f2fs_destroy_recovery_cache(void);
3677 
3678 /*
3679  * debug.c
3680  */
3681 #ifdef CONFIG_F2FS_STAT_FS
3682 struct f2fs_stat_info {
3683 	struct list_head stat_list;
3684 	struct f2fs_sb_info *sbi;
3685 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3686 	int main_area_segs, main_area_sections, main_area_zones;
3687 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3688 	unsigned long long hit_total, total_ext;
3689 	int ext_tree, zombie_tree, ext_node;
3690 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3691 	int ndirty_data, ndirty_qdata;
3692 	int inmem_pages;
3693 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3694 	int nats, dirty_nats, sits, dirty_sits;
3695 	int free_nids, avail_nids, alloc_nids;
3696 	int total_count, utilization;
3697 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3698 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3699 	int nr_dio_read, nr_dio_write;
3700 	unsigned int io_skip_bggc, other_skip_bggc;
3701 	int nr_flushing, nr_flushed, flush_list_empty;
3702 	int nr_discarding, nr_discarded;
3703 	int nr_discard_cmd;
3704 	unsigned int undiscard_blks;
3705 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3706 	unsigned int cur_ckpt_time, peak_ckpt_time;
3707 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3708 	int compr_inode;
3709 	unsigned long long compr_blocks;
3710 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3711 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3712 	unsigned int bimodal, avg_vblocks;
3713 	int util_free, util_valid, util_invalid;
3714 	int rsvd_segs, overp_segs;
3715 	int dirty_count, node_pages, meta_pages, compress_pages;
3716 	int compress_page_hit;
3717 	int prefree_count, call_count, cp_count, bg_cp_count;
3718 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3719 	int bg_node_segs, bg_data_segs;
3720 	int tot_blks, data_blks, node_blks;
3721 	int bg_data_blks, bg_node_blks;
3722 	unsigned long long skipped_atomic_files[2];
3723 	int curseg[NR_CURSEG_TYPE];
3724 	int cursec[NR_CURSEG_TYPE];
3725 	int curzone[NR_CURSEG_TYPE];
3726 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3727 	unsigned int full_seg[NR_CURSEG_TYPE];
3728 	unsigned int valid_blks[NR_CURSEG_TYPE];
3729 
3730 	unsigned int meta_count[META_MAX];
3731 	unsigned int segment_count[2];
3732 	unsigned int block_count[2];
3733 	unsigned int inplace_count;
3734 	unsigned long long base_mem, cache_mem, page_mem;
3735 };
3736 
3737 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3738 {
3739 	return (struct f2fs_stat_info *)sbi->stat_info;
3740 }
3741 
3742 #define stat_inc_cp_count(si)		((si)->cp_count++)
3743 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3744 #define stat_inc_call_count(si)		((si)->call_count++)
3745 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3746 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3747 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3748 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3749 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3750 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3751 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3752 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3753 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3754 #define stat_inc_inline_xattr(inode)					\
3755 	do {								\
3756 		if (f2fs_has_inline_xattr(inode))			\
3757 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3758 	} while (0)
3759 #define stat_dec_inline_xattr(inode)					\
3760 	do {								\
3761 		if (f2fs_has_inline_xattr(inode))			\
3762 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3763 	} while (0)
3764 #define stat_inc_inline_inode(inode)					\
3765 	do {								\
3766 		if (f2fs_has_inline_data(inode))			\
3767 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3768 	} while (0)
3769 #define stat_dec_inline_inode(inode)					\
3770 	do {								\
3771 		if (f2fs_has_inline_data(inode))			\
3772 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3773 	} while (0)
3774 #define stat_inc_inline_dir(inode)					\
3775 	do {								\
3776 		if (f2fs_has_inline_dentry(inode))			\
3777 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3778 	} while (0)
3779 #define stat_dec_inline_dir(inode)					\
3780 	do {								\
3781 		if (f2fs_has_inline_dentry(inode))			\
3782 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3783 	} while (0)
3784 #define stat_inc_compr_inode(inode)					\
3785 	do {								\
3786 		if (f2fs_compressed_file(inode))			\
3787 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3788 	} while (0)
3789 #define stat_dec_compr_inode(inode)					\
3790 	do {								\
3791 		if (f2fs_compressed_file(inode))			\
3792 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3793 	} while (0)
3794 #define stat_add_compr_blocks(inode, blocks)				\
3795 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3796 #define stat_sub_compr_blocks(inode, blocks)				\
3797 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3798 #define stat_inc_meta_count(sbi, blkaddr)				\
3799 	do {								\
3800 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3801 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3802 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3803 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3804 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3805 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3806 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3807 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3808 	} while (0)
3809 #define stat_inc_seg_type(sbi, curseg)					\
3810 		((sbi)->segment_count[(curseg)->alloc_type]++)
3811 #define stat_inc_block_count(sbi, curseg)				\
3812 		((sbi)->block_count[(curseg)->alloc_type]++)
3813 #define stat_inc_inplace_blocks(sbi)					\
3814 		(atomic_inc(&(sbi)->inplace_count))
3815 #define stat_update_max_atomic_write(inode)				\
3816 	do {								\
3817 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3818 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3819 		if (cur > max)						\
3820 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3821 	} while (0)
3822 #define stat_inc_volatile_write(inode)					\
3823 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3824 #define stat_dec_volatile_write(inode)					\
3825 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3826 #define stat_update_max_volatile_write(inode)				\
3827 	do {								\
3828 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3829 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3830 		if (cur > max)						\
3831 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3832 	} while (0)
3833 #define stat_inc_seg_count(sbi, type, gc_type)				\
3834 	do {								\
3835 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3836 		si->tot_segs++;						\
3837 		if ((type) == SUM_TYPE_DATA) {				\
3838 			si->data_segs++;				\
3839 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3840 		} else {						\
3841 			si->node_segs++;				\
3842 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3843 		}							\
3844 	} while (0)
3845 
3846 #define stat_inc_tot_blk_count(si, blks)				\
3847 	((si)->tot_blks += (blks))
3848 
3849 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3850 	do {								\
3851 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3852 		stat_inc_tot_blk_count(si, blks);			\
3853 		si->data_blks += (blks);				\
3854 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3855 	} while (0)
3856 
3857 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3858 	do {								\
3859 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3860 		stat_inc_tot_blk_count(si, blks);			\
3861 		si->node_blks += (blks);				\
3862 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3863 	} while (0)
3864 
3865 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3866 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3867 void __init f2fs_create_root_stats(void);
3868 void f2fs_destroy_root_stats(void);
3869 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3870 #else
3871 #define stat_inc_cp_count(si)				do { } while (0)
3872 #define stat_inc_bg_cp_count(si)			do { } while (0)
3873 #define stat_inc_call_count(si)				do { } while (0)
3874 #define stat_inc_bggc_count(si)				do { } while (0)
3875 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3876 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3877 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3878 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3879 #define stat_inc_total_hit(sbi)				do { } while (0)
3880 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3881 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3882 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3883 #define stat_inc_inline_xattr(inode)			do { } while (0)
3884 #define stat_dec_inline_xattr(inode)			do { } while (0)
3885 #define stat_inc_inline_inode(inode)			do { } while (0)
3886 #define stat_dec_inline_inode(inode)			do { } while (0)
3887 #define stat_inc_inline_dir(inode)			do { } while (0)
3888 #define stat_dec_inline_dir(inode)			do { } while (0)
3889 #define stat_inc_compr_inode(inode)			do { } while (0)
3890 #define stat_dec_compr_inode(inode)			do { } while (0)
3891 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3892 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3893 #define stat_update_max_atomic_write(inode)		do { } while (0)
3894 #define stat_inc_volatile_write(inode)			do { } while (0)
3895 #define stat_dec_volatile_write(inode)			do { } while (0)
3896 #define stat_update_max_volatile_write(inode)		do { } while (0)
3897 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3898 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3899 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3900 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3901 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3902 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3903 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3904 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3905 
3906 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3907 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3908 static inline void __init f2fs_create_root_stats(void) { }
3909 static inline void f2fs_destroy_root_stats(void) { }
3910 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3911 #endif
3912 
3913 extern const struct file_operations f2fs_dir_operations;
3914 extern const struct file_operations f2fs_file_operations;
3915 extern const struct inode_operations f2fs_file_inode_operations;
3916 extern const struct address_space_operations f2fs_dblock_aops;
3917 extern const struct address_space_operations f2fs_node_aops;
3918 extern const struct address_space_operations f2fs_meta_aops;
3919 extern const struct inode_operations f2fs_dir_inode_operations;
3920 extern const struct inode_operations f2fs_symlink_inode_operations;
3921 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3922 extern const struct inode_operations f2fs_special_inode_operations;
3923 extern struct kmem_cache *f2fs_inode_entry_slab;
3924 
3925 /*
3926  * inline.c
3927  */
3928 bool f2fs_may_inline_data(struct inode *inode);
3929 bool f2fs_may_inline_dentry(struct inode *inode);
3930 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3931 void f2fs_truncate_inline_inode(struct inode *inode,
3932 						struct page *ipage, u64 from);
3933 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3934 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3935 int f2fs_convert_inline_inode(struct inode *inode);
3936 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3937 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3938 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3939 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3940 					const struct f2fs_filename *fname,
3941 					struct page **res_page);
3942 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3943 			struct page *ipage);
3944 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3945 			struct inode *inode, nid_t ino, umode_t mode);
3946 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3947 				struct page *page, struct inode *dir,
3948 				struct inode *inode);
3949 bool f2fs_empty_inline_dir(struct inode *dir);
3950 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3951 			struct fscrypt_str *fstr);
3952 int f2fs_inline_data_fiemap(struct inode *inode,
3953 			struct fiemap_extent_info *fieinfo,
3954 			__u64 start, __u64 len);
3955 
3956 /*
3957  * shrinker.c
3958  */
3959 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3960 			struct shrink_control *sc);
3961 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3962 			struct shrink_control *sc);
3963 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3964 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3965 
3966 /*
3967  * extent_cache.c
3968  */
3969 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3970 				struct rb_entry *cached_re, unsigned int ofs);
3971 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3972 				struct rb_root_cached *root,
3973 				struct rb_node **parent,
3974 				unsigned long long key, bool *left_most);
3975 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3976 				struct rb_root_cached *root,
3977 				struct rb_node **parent,
3978 				unsigned int ofs, bool *leftmost);
3979 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3980 		struct rb_entry *cached_re, unsigned int ofs,
3981 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3982 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3983 		bool force, bool *leftmost);
3984 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3985 				struct rb_root_cached *root, bool check_key);
3986 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3987 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3988 void f2fs_drop_extent_tree(struct inode *inode);
3989 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3990 void f2fs_destroy_extent_tree(struct inode *inode);
3991 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3992 			struct extent_info *ei);
3993 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3994 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3995 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3996 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3997 int __init f2fs_create_extent_cache(void);
3998 void f2fs_destroy_extent_cache(void);
3999 
4000 /*
4001  * sysfs.c
4002  */
4003 int __init f2fs_init_sysfs(void);
4004 void f2fs_exit_sysfs(void);
4005 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4006 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4007 
4008 /* verity.c */
4009 extern const struct fsverity_operations f2fs_verityops;
4010 
4011 /*
4012  * crypto support
4013  */
4014 static inline bool f2fs_encrypted_file(struct inode *inode)
4015 {
4016 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4017 }
4018 
4019 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4020 {
4021 #ifdef CONFIG_FS_ENCRYPTION
4022 	file_set_encrypt(inode);
4023 	f2fs_set_inode_flags(inode);
4024 #endif
4025 }
4026 
4027 /*
4028  * Returns true if the reads of the inode's data need to undergo some
4029  * postprocessing step, like decryption or authenticity verification.
4030  */
4031 static inline bool f2fs_post_read_required(struct inode *inode)
4032 {
4033 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4034 		f2fs_compressed_file(inode);
4035 }
4036 
4037 /*
4038  * compress.c
4039  */
4040 #ifdef CONFIG_F2FS_FS_COMPRESSION
4041 bool f2fs_is_compressed_page(struct page *page);
4042 struct page *f2fs_compress_control_page(struct page *page);
4043 int f2fs_prepare_compress_overwrite(struct inode *inode,
4044 			struct page **pagep, pgoff_t index, void **fsdata);
4045 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4046 					pgoff_t index, unsigned copied);
4047 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4048 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4049 bool f2fs_is_compress_backend_ready(struct inode *inode);
4050 int f2fs_init_compress_mempool(void);
4051 void f2fs_destroy_compress_mempool(void);
4052 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4053 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4054 							block_t blkaddr);
4055 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4056 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4057 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4058 int f2fs_write_multi_pages(struct compress_ctx *cc,
4059 						int *submitted,
4060 						struct writeback_control *wbc,
4061 						enum iostat_type io_type);
4062 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4063 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4064 				unsigned nr_pages, sector_t *last_block_in_bio,
4065 				bool is_readahead, bool for_write);
4066 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4067 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4068 void f2fs_put_page_dic(struct page *page);
4069 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4070 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4071 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4072 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4073 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4074 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4075 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4076 int __init f2fs_init_compress_cache(void);
4077 void f2fs_destroy_compress_cache(void);
4078 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4079 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4080 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4081 						nid_t ino, block_t blkaddr);
4082 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4083 								block_t blkaddr);
4084 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4085 #define inc_compr_inode_stat(inode)					\
4086 	do {								\
4087 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4088 		sbi->compr_new_inode++;					\
4089 	} while (0)
4090 #define add_compr_block_stat(inode, blocks)				\
4091 	do {								\
4092 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4093 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4094 		sbi->compr_written_block += blocks;			\
4095 		sbi->compr_saved_block += diff;				\
4096 	} while (0)
4097 #else
4098 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4099 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4100 {
4101 	if (!f2fs_compressed_file(inode))
4102 		return true;
4103 	/* not support compression */
4104 	return false;
4105 }
4106 static inline struct page *f2fs_compress_control_page(struct page *page)
4107 {
4108 	WARN_ON_ONCE(1);
4109 	return ERR_PTR(-EINVAL);
4110 }
4111 static inline int f2fs_init_compress_mempool(void) { return 0; }
4112 static inline void f2fs_destroy_compress_mempool(void) { }
4113 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4114 static inline void f2fs_end_read_compressed_page(struct page *page,
4115 						bool failed, block_t blkaddr)
4116 {
4117 	WARN_ON_ONCE(1);
4118 }
4119 static inline void f2fs_put_page_dic(struct page *page)
4120 {
4121 	WARN_ON_ONCE(1);
4122 }
4123 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4124 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4125 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4126 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4127 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4128 static inline void f2fs_destroy_compress_cache(void) { }
4129 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4130 				block_t blkaddr) { }
4131 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4132 				struct page *page, nid_t ino, block_t blkaddr) { }
4133 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4134 				struct page *page, block_t blkaddr) { return false; }
4135 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4136 							nid_t ino) { }
4137 #define inc_compr_inode_stat(inode)		do { } while (0)
4138 #endif
4139 
4140 static inline void set_compress_context(struct inode *inode)
4141 {
4142 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4143 
4144 	F2FS_I(inode)->i_compress_algorithm =
4145 			F2FS_OPTION(sbi).compress_algorithm;
4146 	F2FS_I(inode)->i_log_cluster_size =
4147 			F2FS_OPTION(sbi).compress_log_size;
4148 	F2FS_I(inode)->i_compress_flag =
4149 			F2FS_OPTION(sbi).compress_chksum ?
4150 				1 << COMPRESS_CHKSUM : 0;
4151 	F2FS_I(inode)->i_cluster_size =
4152 			1 << F2FS_I(inode)->i_log_cluster_size;
4153 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 &&
4154 			F2FS_OPTION(sbi).compress_level)
4155 		F2FS_I(inode)->i_compress_flag |=
4156 				F2FS_OPTION(sbi).compress_level <<
4157 				COMPRESS_LEVEL_OFFSET;
4158 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4159 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4160 	stat_inc_compr_inode(inode);
4161 	inc_compr_inode_stat(inode);
4162 	f2fs_mark_inode_dirty_sync(inode, true);
4163 }
4164 
4165 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4166 {
4167 	struct f2fs_inode_info *fi = F2FS_I(inode);
4168 
4169 	if (!f2fs_compressed_file(inode))
4170 		return true;
4171 	if (S_ISREG(inode->i_mode) &&
4172 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
4173 		return false;
4174 
4175 	fi->i_flags &= ~F2FS_COMPR_FL;
4176 	stat_dec_compr_inode(inode);
4177 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4178 	f2fs_mark_inode_dirty_sync(inode, true);
4179 	return true;
4180 }
4181 
4182 #define F2FS_FEATURE_FUNCS(name, flagname) \
4183 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4184 { \
4185 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4186 }
4187 
4188 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4189 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4190 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4191 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4192 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4193 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4194 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4195 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4196 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4197 F2FS_FEATURE_FUNCS(verity, VERITY);
4198 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4199 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4200 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4201 F2FS_FEATURE_FUNCS(readonly, RO);
4202 
4203 #ifdef CONFIG_BLK_DEV_ZONED
4204 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4205 				    block_t blkaddr)
4206 {
4207 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4208 
4209 	return test_bit(zno, FDEV(devi).blkz_seq);
4210 }
4211 #endif
4212 
4213 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4214 {
4215 	return f2fs_sb_has_blkzoned(sbi);
4216 }
4217 
4218 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4219 {
4220 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4221 	       bdev_is_zoned(bdev);
4222 }
4223 
4224 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4225 {
4226 	int i;
4227 
4228 	if (!f2fs_is_multi_device(sbi))
4229 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4230 
4231 	for (i = 0; i < sbi->s_ndevs; i++)
4232 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4233 			return true;
4234 	return false;
4235 }
4236 
4237 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4238 {
4239 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4240 					f2fs_hw_should_discard(sbi);
4241 }
4242 
4243 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4244 {
4245 	int i;
4246 
4247 	if (!f2fs_is_multi_device(sbi))
4248 		return bdev_read_only(sbi->sb->s_bdev);
4249 
4250 	for (i = 0; i < sbi->s_ndevs; i++)
4251 		if (bdev_read_only(FDEV(i).bdev))
4252 			return true;
4253 	return false;
4254 }
4255 
4256 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4257 {
4258 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4259 }
4260 
4261 static inline bool f2fs_may_compress(struct inode *inode)
4262 {
4263 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4264 				f2fs_is_atomic_file(inode) ||
4265 				f2fs_is_volatile_file(inode))
4266 		return false;
4267 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4268 }
4269 
4270 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4271 						u64 blocks, bool add)
4272 {
4273 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4274 	struct f2fs_inode_info *fi = F2FS_I(inode);
4275 
4276 	/* don't update i_compr_blocks if saved blocks were released */
4277 	if (!add && !atomic_read(&fi->i_compr_blocks))
4278 		return;
4279 
4280 	if (add) {
4281 		atomic_add(diff, &fi->i_compr_blocks);
4282 		stat_add_compr_blocks(inode, diff);
4283 	} else {
4284 		atomic_sub(diff, &fi->i_compr_blocks);
4285 		stat_sub_compr_blocks(inode, diff);
4286 	}
4287 	f2fs_mark_inode_dirty_sync(inode, true);
4288 }
4289 
4290 static inline int block_unaligned_IO(struct inode *inode,
4291 				struct kiocb *iocb, struct iov_iter *iter)
4292 {
4293 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4294 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4295 	loff_t offset = iocb->ki_pos;
4296 	unsigned long align = offset | iov_iter_alignment(iter);
4297 
4298 	return align & blocksize_mask;
4299 }
4300 
4301 static inline int allow_outplace_dio(struct inode *inode,
4302 				struct kiocb *iocb, struct iov_iter *iter)
4303 {
4304 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4305 	int rw = iov_iter_rw(iter);
4306 
4307 	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4308 				!block_unaligned_IO(inode, iocb, iter));
4309 }
4310 
4311 static inline bool f2fs_force_buffered_io(struct inode *inode,
4312 				struct kiocb *iocb, struct iov_iter *iter)
4313 {
4314 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4315 	int rw = iov_iter_rw(iter);
4316 
4317 	if (f2fs_post_read_required(inode))
4318 		return true;
4319 	if (f2fs_is_multi_device(sbi))
4320 		return true;
4321 	/*
4322 	 * for blkzoned device, fallback direct IO to buffered IO, so
4323 	 * all IOs can be serialized by log-structured write.
4324 	 */
4325 	if (f2fs_sb_has_blkzoned(sbi))
4326 		return true;
4327 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4328 		if (block_unaligned_IO(inode, iocb, iter))
4329 			return true;
4330 		if (F2FS_IO_ALIGNED(sbi))
4331 			return true;
4332 	}
4333 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4334 		return true;
4335 
4336 	return false;
4337 }
4338 
4339 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4340 {
4341 	return fsverity_active(inode) &&
4342 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4343 }
4344 
4345 #ifdef CONFIG_F2FS_FAULT_INJECTION
4346 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4347 							unsigned int type);
4348 #else
4349 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4350 #endif
4351 
4352 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4353 {
4354 #ifdef CONFIG_QUOTA
4355 	if (f2fs_sb_has_quota_ino(sbi))
4356 		return true;
4357 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4358 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4359 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4360 		return true;
4361 #endif
4362 	return false;
4363 }
4364 
4365 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4366 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4367 
4368 #endif /* _LINUX_F2FS_H */
4369