1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 23 #ifdef CONFIG_F2FS_CHECK_FS 24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y) 26 #else 27 #define f2fs_bug_on(sbi, condition) \ 28 do { \ 29 if (unlikely(condition)) { \ 30 WARN_ON(1); \ 31 sbi->need_fsck = true; \ 32 } \ 33 } while (0) 34 #define f2fs_down_write(x, y) down_write(x) 35 #endif 36 37 /* 38 * For mount options 39 */ 40 #define F2FS_MOUNT_BG_GC 0x00000001 41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 42 #define F2FS_MOUNT_DISCARD 0x00000004 43 #define F2FS_MOUNT_NOHEAP 0x00000008 44 #define F2FS_MOUNT_XATTR_USER 0x00000010 45 #define F2FS_MOUNT_POSIX_ACL 0x00000020 46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 48 #define F2FS_MOUNT_INLINE_DATA 0x00000100 49 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200 50 #define F2FS_MOUNT_NOBARRIER 0x00000400 51 52 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 53 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 54 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 55 56 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 57 typecheck(unsigned long long, b) && \ 58 ((long long)((a) - (b)) > 0)) 59 60 typedef u32 block_t; /* 61 * should not change u32, since it is the on-disk block 62 * address format, __le32. 63 */ 64 typedef u32 nid_t; 65 66 struct f2fs_mount_info { 67 unsigned int opt; 68 }; 69 70 #define CRCPOLY_LE 0xedb88320 71 72 static inline __u32 f2fs_crc32(void *buf, size_t len) 73 { 74 unsigned char *p = (unsigned char *)buf; 75 __u32 crc = F2FS_SUPER_MAGIC; 76 int i; 77 78 while (len--) { 79 crc ^= *p++; 80 for (i = 0; i < 8; i++) 81 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 82 } 83 return crc; 84 } 85 86 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 87 { 88 return f2fs_crc32(buf, buf_size) == blk_crc; 89 } 90 91 /* 92 * For checkpoint manager 93 */ 94 enum { 95 NAT_BITMAP, 96 SIT_BITMAP 97 }; 98 99 enum { 100 CP_UMOUNT, 101 CP_SYNC, 102 CP_DISCARD, 103 }; 104 105 struct cp_control { 106 int reason; 107 __u64 trim_start; 108 __u64 trim_end; 109 __u64 trim_minlen; 110 __u64 trimmed; 111 }; 112 113 /* 114 * For CP/NAT/SIT/SSA readahead 115 */ 116 enum { 117 META_CP, 118 META_NAT, 119 META_SIT, 120 META_SSA, 121 META_POR, 122 }; 123 124 /* for the list of ino */ 125 enum { 126 ORPHAN_INO, /* for orphan ino list */ 127 APPEND_INO, /* for append ino list */ 128 UPDATE_INO, /* for update ino list */ 129 MAX_INO_ENTRY, /* max. list */ 130 }; 131 132 struct ino_entry { 133 struct list_head list; /* list head */ 134 nid_t ino; /* inode number */ 135 }; 136 137 /* for the list of directory inodes */ 138 struct dir_inode_entry { 139 struct list_head list; /* list head */ 140 struct inode *inode; /* vfs inode pointer */ 141 }; 142 143 /* for the list of blockaddresses to be discarded */ 144 struct discard_entry { 145 struct list_head list; /* list head */ 146 block_t blkaddr; /* block address to be discarded */ 147 int len; /* # of consecutive blocks of the discard */ 148 }; 149 150 /* for the list of fsync inodes, used only during recovery */ 151 struct fsync_inode_entry { 152 struct list_head list; /* list head */ 153 struct inode *inode; /* vfs inode pointer */ 154 block_t blkaddr; /* block address locating the last fsync */ 155 block_t last_dentry; /* block address locating the last dentry */ 156 block_t last_inode; /* block address locating the last inode */ 157 }; 158 159 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 160 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 161 162 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 163 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 164 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 165 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 166 167 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum)) 168 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum)) 169 170 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 171 { 172 int before = nats_in_cursum(rs); 173 rs->n_nats = cpu_to_le16(before + i); 174 return before; 175 } 176 177 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 178 { 179 int before = sits_in_cursum(rs); 180 rs->n_sits = cpu_to_le16(before + i); 181 return before; 182 } 183 184 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size, 185 int type) 186 { 187 if (type == NAT_JOURNAL) 188 return size <= MAX_NAT_JENTRIES(sum); 189 return size <= MAX_SIT_JENTRIES(sum); 190 } 191 192 /* 193 * ioctl commands 194 */ 195 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 196 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 197 198 #define F2FS_IOCTL_MAGIC 0xf5 199 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 200 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 201 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 202 203 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 204 /* 205 * ioctl commands in 32 bit emulation 206 */ 207 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 208 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 209 #endif 210 211 /* 212 * For INODE and NODE manager 213 */ 214 /* 215 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 216 * as its node offset to distinguish from index node blocks. 217 * But some bits are used to mark the node block. 218 */ 219 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 220 >> OFFSET_BIT_SHIFT) 221 enum { 222 ALLOC_NODE, /* allocate a new node page if needed */ 223 LOOKUP_NODE, /* look up a node without readahead */ 224 LOOKUP_NODE_RA, /* 225 * look up a node with readahead called 226 * by get_data_block. 227 */ 228 }; 229 230 #define F2FS_LINK_MAX 32000 /* maximum link count per file */ 231 232 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 233 234 /* for in-memory extent cache entry */ 235 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */ 236 237 struct extent_info { 238 rwlock_t ext_lock; /* rwlock for consistency */ 239 unsigned int fofs; /* start offset in a file */ 240 u32 blk_addr; /* start block address of the extent */ 241 unsigned int len; /* length of the extent */ 242 }; 243 244 /* 245 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 246 */ 247 #define FADVISE_COLD_BIT 0x01 248 #define FADVISE_LOST_PINO_BIT 0x02 249 250 #define DEF_DIR_LEVEL 0 251 252 struct f2fs_inode_info { 253 struct inode vfs_inode; /* serve a vfs inode */ 254 unsigned long i_flags; /* keep an inode flags for ioctl */ 255 unsigned char i_advise; /* use to give file attribute hints */ 256 unsigned char i_dir_level; /* use for dentry level for large dir */ 257 unsigned int i_current_depth; /* use only in directory structure */ 258 unsigned int i_pino; /* parent inode number */ 259 umode_t i_acl_mode; /* keep file acl mode temporarily */ 260 261 /* Use below internally in f2fs*/ 262 unsigned long flags; /* use to pass per-file flags */ 263 struct rw_semaphore i_sem; /* protect fi info */ 264 atomic_t dirty_pages; /* # of dirty pages */ 265 f2fs_hash_t chash; /* hash value of given file name */ 266 unsigned int clevel; /* maximum level of given file name */ 267 nid_t i_xattr_nid; /* node id that contains xattrs */ 268 unsigned long long xattr_ver; /* cp version of xattr modification */ 269 struct extent_info ext; /* in-memory extent cache entry */ 270 struct dir_inode_entry *dirty_dir; /* the pointer of dirty dir */ 271 272 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 273 struct mutex inmem_lock; /* lock for inmemory pages */ 274 }; 275 276 static inline void get_extent_info(struct extent_info *ext, 277 struct f2fs_extent i_ext) 278 { 279 write_lock(&ext->ext_lock); 280 ext->fofs = le32_to_cpu(i_ext.fofs); 281 ext->blk_addr = le32_to_cpu(i_ext.blk_addr); 282 ext->len = le32_to_cpu(i_ext.len); 283 write_unlock(&ext->ext_lock); 284 } 285 286 static inline void set_raw_extent(struct extent_info *ext, 287 struct f2fs_extent *i_ext) 288 { 289 read_lock(&ext->ext_lock); 290 i_ext->fofs = cpu_to_le32(ext->fofs); 291 i_ext->blk_addr = cpu_to_le32(ext->blk_addr); 292 i_ext->len = cpu_to_le32(ext->len); 293 read_unlock(&ext->ext_lock); 294 } 295 296 struct f2fs_nm_info { 297 block_t nat_blkaddr; /* base disk address of NAT */ 298 nid_t max_nid; /* maximum possible node ids */ 299 nid_t available_nids; /* maximum available node ids */ 300 nid_t next_scan_nid; /* the next nid to be scanned */ 301 unsigned int ram_thresh; /* control the memory footprint */ 302 303 /* NAT cache management */ 304 struct radix_tree_root nat_root;/* root of the nat entry cache */ 305 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 306 rwlock_t nat_tree_lock; /* protect nat_tree_lock */ 307 struct list_head nat_entries; /* cached nat entry list (clean) */ 308 unsigned int nat_cnt; /* the # of cached nat entries */ 309 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 310 311 /* free node ids management */ 312 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 313 struct list_head free_nid_list; /* a list for free nids */ 314 spinlock_t free_nid_list_lock; /* protect free nid list */ 315 unsigned int fcnt; /* the number of free node id */ 316 struct mutex build_lock; /* lock for build free nids */ 317 318 /* for checkpoint */ 319 char *nat_bitmap; /* NAT bitmap pointer */ 320 int bitmap_size; /* bitmap size */ 321 }; 322 323 /* 324 * this structure is used as one of function parameters. 325 * all the information are dedicated to a given direct node block determined 326 * by the data offset in a file. 327 */ 328 struct dnode_of_data { 329 struct inode *inode; /* vfs inode pointer */ 330 struct page *inode_page; /* its inode page, NULL is possible */ 331 struct page *node_page; /* cached direct node page */ 332 nid_t nid; /* node id of the direct node block */ 333 unsigned int ofs_in_node; /* data offset in the node page */ 334 bool inode_page_locked; /* inode page is locked or not */ 335 block_t data_blkaddr; /* block address of the node block */ 336 }; 337 338 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 339 struct page *ipage, struct page *npage, nid_t nid) 340 { 341 memset(dn, 0, sizeof(*dn)); 342 dn->inode = inode; 343 dn->inode_page = ipage; 344 dn->node_page = npage; 345 dn->nid = nid; 346 } 347 348 /* 349 * For SIT manager 350 * 351 * By default, there are 6 active log areas across the whole main area. 352 * When considering hot and cold data separation to reduce cleaning overhead, 353 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 354 * respectively. 355 * In the current design, you should not change the numbers intentionally. 356 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 357 * logs individually according to the underlying devices. (default: 6) 358 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 359 * data and 8 for node logs. 360 */ 361 #define NR_CURSEG_DATA_TYPE (3) 362 #define NR_CURSEG_NODE_TYPE (3) 363 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 364 365 enum { 366 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 367 CURSEG_WARM_DATA, /* data blocks */ 368 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 369 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 370 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 371 CURSEG_COLD_NODE, /* indirect node blocks */ 372 NO_CHECK_TYPE 373 }; 374 375 struct flush_cmd { 376 struct completion wait; 377 struct llist_node llnode; 378 int ret; 379 }; 380 381 struct flush_cmd_control { 382 struct task_struct *f2fs_issue_flush; /* flush thread */ 383 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 384 struct llist_head issue_list; /* list for command issue */ 385 struct llist_node *dispatch_list; /* list for command dispatch */ 386 }; 387 388 struct f2fs_sm_info { 389 struct sit_info *sit_info; /* whole segment information */ 390 struct free_segmap_info *free_info; /* free segment information */ 391 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 392 struct curseg_info *curseg_array; /* active segment information */ 393 394 block_t seg0_blkaddr; /* block address of 0'th segment */ 395 block_t main_blkaddr; /* start block address of main area */ 396 block_t ssa_blkaddr; /* start block address of SSA area */ 397 398 unsigned int segment_count; /* total # of segments */ 399 unsigned int main_segments; /* # of segments in main area */ 400 unsigned int reserved_segments; /* # of reserved segments */ 401 unsigned int ovp_segments; /* # of overprovision segments */ 402 403 /* a threshold to reclaim prefree segments */ 404 unsigned int rec_prefree_segments; 405 406 /* for small discard management */ 407 struct list_head discard_list; /* 4KB discard list */ 408 int nr_discards; /* # of discards in the list */ 409 int max_discards; /* max. discards to be issued */ 410 411 struct list_head sit_entry_set; /* sit entry set list */ 412 413 unsigned int ipu_policy; /* in-place-update policy */ 414 unsigned int min_ipu_util; /* in-place-update threshold */ 415 unsigned int min_fsync_blocks; /* threshold for fsync */ 416 417 /* for flush command control */ 418 struct flush_cmd_control *cmd_control_info; 419 420 }; 421 422 /* 423 * For superblock 424 */ 425 /* 426 * COUNT_TYPE for monitoring 427 * 428 * f2fs monitors the number of several block types such as on-writeback, 429 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 430 */ 431 enum count_type { 432 F2FS_WRITEBACK, 433 F2FS_DIRTY_DENTS, 434 F2FS_DIRTY_NODES, 435 F2FS_DIRTY_META, 436 NR_COUNT_TYPE, 437 }; 438 439 /* 440 * The below are the page types of bios used in submit_bio(). 441 * The available types are: 442 * DATA User data pages. It operates as async mode. 443 * NODE Node pages. It operates as async mode. 444 * META FS metadata pages such as SIT, NAT, CP. 445 * NR_PAGE_TYPE The number of page types. 446 * META_FLUSH Make sure the previous pages are written 447 * with waiting the bio's completion 448 * ... Only can be used with META. 449 */ 450 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 451 enum page_type { 452 DATA, 453 NODE, 454 META, 455 NR_PAGE_TYPE, 456 META_FLUSH, 457 }; 458 459 struct f2fs_io_info { 460 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 461 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 462 }; 463 464 #define is_read_io(rw) (((rw) & 1) == READ) 465 struct f2fs_bio_info { 466 struct f2fs_sb_info *sbi; /* f2fs superblock */ 467 struct bio *bio; /* bios to merge */ 468 sector_t last_block_in_bio; /* last block number */ 469 struct f2fs_io_info fio; /* store buffered io info. */ 470 struct rw_semaphore io_rwsem; /* blocking op for bio */ 471 }; 472 473 struct f2fs_sb_info { 474 struct super_block *sb; /* pointer to VFS super block */ 475 struct proc_dir_entry *s_proc; /* proc entry */ 476 struct buffer_head *raw_super_buf; /* buffer head of raw sb */ 477 struct f2fs_super_block *raw_super; /* raw super block pointer */ 478 int s_dirty; /* dirty flag for checkpoint */ 479 bool need_fsck; /* need fsck.f2fs to fix */ 480 481 /* for node-related operations */ 482 struct f2fs_nm_info *nm_info; /* node manager */ 483 struct inode *node_inode; /* cache node blocks */ 484 485 /* for segment-related operations */ 486 struct f2fs_sm_info *sm_info; /* segment manager */ 487 488 /* for bio operations */ 489 struct f2fs_bio_info read_io; /* for read bios */ 490 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 491 struct completion *wait_io; /* for completion bios */ 492 493 /* for checkpoint */ 494 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 495 struct inode *meta_inode; /* cache meta blocks */ 496 struct mutex cp_mutex; /* checkpoint procedure lock */ 497 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 498 struct rw_semaphore node_write; /* locking node writes */ 499 struct mutex writepages; /* mutex for writepages() */ 500 bool por_doing; /* recovery is doing or not */ 501 wait_queue_head_t cp_wait; 502 503 /* for inode management */ 504 struct radix_tree_root ino_root[MAX_INO_ENTRY]; /* ino entry array */ 505 spinlock_t ino_lock[MAX_INO_ENTRY]; /* for ino entry lock */ 506 struct list_head ino_list[MAX_INO_ENTRY]; /* inode list head */ 507 508 /* for orphan inode, use 0'th array */ 509 unsigned int n_orphans; /* # of orphan inodes */ 510 unsigned int max_orphans; /* max orphan inodes */ 511 512 /* for directory inode management */ 513 struct list_head dir_inode_list; /* dir inode list */ 514 spinlock_t dir_inode_lock; /* for dir inode list lock */ 515 516 /* basic filesystem units */ 517 unsigned int log_sectors_per_block; /* log2 sectors per block */ 518 unsigned int log_blocksize; /* log2 block size */ 519 unsigned int blocksize; /* block size */ 520 unsigned int root_ino_num; /* root inode number*/ 521 unsigned int node_ino_num; /* node inode number*/ 522 unsigned int meta_ino_num; /* meta inode number*/ 523 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 524 unsigned int blocks_per_seg; /* blocks per segment */ 525 unsigned int segs_per_sec; /* segments per section */ 526 unsigned int secs_per_zone; /* sections per zone */ 527 unsigned int total_sections; /* total section count */ 528 unsigned int total_node_count; /* total node block count */ 529 unsigned int total_valid_node_count; /* valid node block count */ 530 unsigned int total_valid_inode_count; /* valid inode count */ 531 int active_logs; /* # of active logs */ 532 int dir_level; /* directory level */ 533 534 block_t user_block_count; /* # of user blocks */ 535 block_t total_valid_block_count; /* # of valid blocks */ 536 block_t alloc_valid_block_count; /* # of allocated blocks */ 537 block_t last_valid_block_count; /* for recovery */ 538 u32 s_next_generation; /* for NFS support */ 539 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 540 541 struct f2fs_mount_info mount_opt; /* mount options */ 542 543 /* for cleaning operations */ 544 struct mutex gc_mutex; /* mutex for GC */ 545 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 546 unsigned int cur_victim_sec; /* current victim section num */ 547 548 /* maximum # of trials to find a victim segment for SSR and GC */ 549 unsigned int max_victim_search; 550 551 /* 552 * for stat information. 553 * one is for the LFS mode, and the other is for the SSR mode. 554 */ 555 #ifdef CONFIG_F2FS_STAT_FS 556 struct f2fs_stat_info *stat_info; /* FS status information */ 557 unsigned int segment_count[2]; /* # of allocated segments */ 558 unsigned int block_count[2]; /* # of allocated blocks */ 559 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */ 560 int inline_inode; /* # of inline_data inodes */ 561 int bg_gc; /* background gc calls */ 562 unsigned int n_dirty_dirs; /* # of dir inodes */ 563 #endif 564 unsigned int last_victim[2]; /* last victim segment # */ 565 spinlock_t stat_lock; /* lock for stat operations */ 566 567 /* For sysfs suppport */ 568 struct kobject s_kobj; 569 struct completion s_kobj_unregister; 570 }; 571 572 /* 573 * Inline functions 574 */ 575 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 576 { 577 return container_of(inode, struct f2fs_inode_info, vfs_inode); 578 } 579 580 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 581 { 582 return sb->s_fs_info; 583 } 584 585 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 586 { 587 return F2FS_SB(inode->i_sb); 588 } 589 590 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 591 { 592 return F2FS_I_SB(mapping->host); 593 } 594 595 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 596 { 597 return F2FS_M_SB(page->mapping); 598 } 599 600 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 601 { 602 return (struct f2fs_super_block *)(sbi->raw_super); 603 } 604 605 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 606 { 607 return (struct f2fs_checkpoint *)(sbi->ckpt); 608 } 609 610 static inline struct f2fs_node *F2FS_NODE(struct page *page) 611 { 612 return (struct f2fs_node *)page_address(page); 613 } 614 615 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 616 { 617 return &((struct f2fs_node *)page_address(page))->i; 618 } 619 620 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 621 { 622 return (struct f2fs_nm_info *)(sbi->nm_info); 623 } 624 625 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 626 { 627 return (struct f2fs_sm_info *)(sbi->sm_info); 628 } 629 630 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 631 { 632 return (struct sit_info *)(SM_I(sbi)->sit_info); 633 } 634 635 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 636 { 637 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 638 } 639 640 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 641 { 642 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 643 } 644 645 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 646 { 647 return sbi->meta_inode->i_mapping; 648 } 649 650 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 651 { 652 return sbi->node_inode->i_mapping; 653 } 654 655 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi) 656 { 657 sbi->s_dirty = 1; 658 } 659 660 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi) 661 { 662 sbi->s_dirty = 0; 663 } 664 665 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 666 { 667 return le64_to_cpu(cp->checkpoint_ver); 668 } 669 670 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 671 { 672 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 673 return ckpt_flags & f; 674 } 675 676 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 677 { 678 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 679 ckpt_flags |= f; 680 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 681 } 682 683 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 684 { 685 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 686 ckpt_flags &= (~f); 687 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 688 } 689 690 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 691 { 692 down_read(&sbi->cp_rwsem); 693 } 694 695 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 696 { 697 up_read(&sbi->cp_rwsem); 698 } 699 700 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 701 { 702 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex); 703 } 704 705 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 706 { 707 up_write(&sbi->cp_rwsem); 708 } 709 710 /* 711 * Check whether the given nid is within node id range. 712 */ 713 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 714 { 715 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 716 return -EINVAL; 717 if (unlikely(nid >= NM_I(sbi)->max_nid)) 718 return -EINVAL; 719 return 0; 720 } 721 722 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 723 724 /* 725 * Check whether the inode has blocks or not 726 */ 727 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 728 { 729 if (F2FS_I(inode)->i_xattr_nid) 730 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 731 else 732 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 733 } 734 735 static inline bool f2fs_has_xattr_block(unsigned int ofs) 736 { 737 return ofs == XATTR_NODE_OFFSET; 738 } 739 740 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 741 struct inode *inode, blkcnt_t count) 742 { 743 block_t valid_block_count; 744 745 spin_lock(&sbi->stat_lock); 746 valid_block_count = 747 sbi->total_valid_block_count + (block_t)count; 748 if (unlikely(valid_block_count > sbi->user_block_count)) { 749 spin_unlock(&sbi->stat_lock); 750 return false; 751 } 752 inode->i_blocks += count; 753 sbi->total_valid_block_count = valid_block_count; 754 sbi->alloc_valid_block_count += (block_t)count; 755 spin_unlock(&sbi->stat_lock); 756 return true; 757 } 758 759 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 760 struct inode *inode, 761 blkcnt_t count) 762 { 763 spin_lock(&sbi->stat_lock); 764 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 765 f2fs_bug_on(sbi, inode->i_blocks < count); 766 inode->i_blocks -= count; 767 sbi->total_valid_block_count -= (block_t)count; 768 spin_unlock(&sbi->stat_lock); 769 } 770 771 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 772 { 773 atomic_inc(&sbi->nr_pages[count_type]); 774 F2FS_SET_SB_DIRT(sbi); 775 } 776 777 static inline void inode_inc_dirty_pages(struct inode *inode) 778 { 779 atomic_inc(&F2FS_I(inode)->dirty_pages); 780 if (S_ISDIR(inode->i_mode)) 781 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 782 } 783 784 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 785 { 786 atomic_dec(&sbi->nr_pages[count_type]); 787 } 788 789 static inline void inode_dec_dirty_pages(struct inode *inode) 790 { 791 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode)) 792 return; 793 794 atomic_dec(&F2FS_I(inode)->dirty_pages); 795 796 if (S_ISDIR(inode->i_mode)) 797 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 798 } 799 800 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 801 { 802 return atomic_read(&sbi->nr_pages[count_type]); 803 } 804 805 static inline int get_dirty_pages(struct inode *inode) 806 { 807 return atomic_read(&F2FS_I(inode)->dirty_pages); 808 } 809 810 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 811 { 812 unsigned int pages_per_sec = sbi->segs_per_sec * 813 (1 << sbi->log_blocks_per_seg); 814 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 815 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 816 } 817 818 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 819 { 820 return sbi->total_valid_block_count; 821 } 822 823 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 824 { 825 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 826 827 /* return NAT or SIT bitmap */ 828 if (flag == NAT_BITMAP) 829 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 830 else if (flag == SIT_BITMAP) 831 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 832 833 return 0; 834 } 835 836 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 837 { 838 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 839 int offset; 840 841 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) { 842 if (flag == NAT_BITMAP) 843 return &ckpt->sit_nat_version_bitmap; 844 else 845 return (unsigned char *)ckpt + F2FS_BLKSIZE; 846 } else { 847 offset = (flag == NAT_BITMAP) ? 848 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 849 return &ckpt->sit_nat_version_bitmap + offset; 850 } 851 } 852 853 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 854 { 855 block_t start_addr; 856 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 857 unsigned long long ckpt_version = cur_cp_version(ckpt); 858 859 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 860 861 /* 862 * odd numbered checkpoint should at cp segment 0 863 * and even segment must be at cp segment 1 864 */ 865 if (!(ckpt_version & 1)) 866 start_addr += sbi->blocks_per_seg; 867 868 return start_addr; 869 } 870 871 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 872 { 873 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 874 } 875 876 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 877 struct inode *inode) 878 { 879 block_t valid_block_count; 880 unsigned int valid_node_count; 881 882 spin_lock(&sbi->stat_lock); 883 884 valid_block_count = sbi->total_valid_block_count + 1; 885 if (unlikely(valid_block_count > sbi->user_block_count)) { 886 spin_unlock(&sbi->stat_lock); 887 return false; 888 } 889 890 valid_node_count = sbi->total_valid_node_count + 1; 891 if (unlikely(valid_node_count > sbi->total_node_count)) { 892 spin_unlock(&sbi->stat_lock); 893 return false; 894 } 895 896 if (inode) 897 inode->i_blocks++; 898 899 sbi->alloc_valid_block_count++; 900 sbi->total_valid_node_count++; 901 sbi->total_valid_block_count++; 902 spin_unlock(&sbi->stat_lock); 903 904 return true; 905 } 906 907 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 908 struct inode *inode) 909 { 910 spin_lock(&sbi->stat_lock); 911 912 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 913 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 914 f2fs_bug_on(sbi, !inode->i_blocks); 915 916 inode->i_blocks--; 917 sbi->total_valid_node_count--; 918 sbi->total_valid_block_count--; 919 920 spin_unlock(&sbi->stat_lock); 921 } 922 923 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 924 { 925 return sbi->total_valid_node_count; 926 } 927 928 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 929 { 930 spin_lock(&sbi->stat_lock); 931 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count); 932 sbi->total_valid_inode_count++; 933 spin_unlock(&sbi->stat_lock); 934 } 935 936 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 937 { 938 spin_lock(&sbi->stat_lock); 939 f2fs_bug_on(sbi, !sbi->total_valid_inode_count); 940 sbi->total_valid_inode_count--; 941 spin_unlock(&sbi->stat_lock); 942 } 943 944 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 945 { 946 return sbi->total_valid_inode_count; 947 } 948 949 static inline void f2fs_put_page(struct page *page, int unlock) 950 { 951 if (!page) 952 return; 953 954 if (unlock) { 955 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 956 unlock_page(page); 957 } 958 page_cache_release(page); 959 } 960 961 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 962 { 963 if (dn->node_page) 964 f2fs_put_page(dn->node_page, 1); 965 if (dn->inode_page && dn->node_page != dn->inode_page) 966 f2fs_put_page(dn->inode_page, 0); 967 dn->node_page = NULL; 968 dn->inode_page = NULL; 969 } 970 971 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 972 size_t size) 973 { 974 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 975 } 976 977 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 978 gfp_t flags) 979 { 980 void *entry; 981 retry: 982 entry = kmem_cache_alloc(cachep, flags); 983 if (!entry) { 984 cond_resched(); 985 goto retry; 986 } 987 988 return entry; 989 } 990 991 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 992 993 static inline bool IS_INODE(struct page *page) 994 { 995 struct f2fs_node *p = F2FS_NODE(page); 996 return RAW_IS_INODE(p); 997 } 998 999 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1000 { 1001 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1002 } 1003 1004 static inline block_t datablock_addr(struct page *node_page, 1005 unsigned int offset) 1006 { 1007 struct f2fs_node *raw_node; 1008 __le32 *addr_array; 1009 raw_node = F2FS_NODE(node_page); 1010 addr_array = blkaddr_in_node(raw_node); 1011 return le32_to_cpu(addr_array[offset]); 1012 } 1013 1014 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1015 { 1016 int mask; 1017 1018 addr += (nr >> 3); 1019 mask = 1 << (7 - (nr & 0x07)); 1020 return mask & *addr; 1021 } 1022 1023 static inline int f2fs_set_bit(unsigned int nr, char *addr) 1024 { 1025 int mask; 1026 int ret; 1027 1028 addr += (nr >> 3); 1029 mask = 1 << (7 - (nr & 0x07)); 1030 ret = mask & *addr; 1031 *addr |= mask; 1032 return ret; 1033 } 1034 1035 static inline int f2fs_clear_bit(unsigned int nr, char *addr) 1036 { 1037 int mask; 1038 int ret; 1039 1040 addr += (nr >> 3); 1041 mask = 1 << (7 - (nr & 0x07)); 1042 ret = mask & *addr; 1043 *addr &= ~mask; 1044 return ret; 1045 } 1046 1047 /* used for f2fs_inode_info->flags */ 1048 enum { 1049 FI_NEW_INODE, /* indicate newly allocated inode */ 1050 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1051 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1052 FI_INC_LINK, /* need to increment i_nlink */ 1053 FI_ACL_MODE, /* indicate acl mode */ 1054 FI_NO_ALLOC, /* should not allocate any blocks */ 1055 FI_UPDATE_DIR, /* should update inode block for consistency */ 1056 FI_DELAY_IPUT, /* used for the recovery */ 1057 FI_NO_EXTENT, /* not to use the extent cache */ 1058 FI_INLINE_XATTR, /* used for inline xattr */ 1059 FI_INLINE_DATA, /* used for inline data*/ 1060 FI_APPEND_WRITE, /* inode has appended data */ 1061 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1062 FI_NEED_IPU, /* used for ipu per file */ 1063 FI_ATOMIC_FILE, /* indicate atomic file */ 1064 FI_VOLATILE_FILE, /* indicate volatile file */ 1065 }; 1066 1067 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 1068 { 1069 if (!test_bit(flag, &fi->flags)) 1070 set_bit(flag, &fi->flags); 1071 } 1072 1073 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 1074 { 1075 return test_bit(flag, &fi->flags); 1076 } 1077 1078 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1079 { 1080 if (test_bit(flag, &fi->flags)) 1081 clear_bit(flag, &fi->flags); 1082 } 1083 1084 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1085 { 1086 fi->i_acl_mode = mode; 1087 set_inode_flag(fi, FI_ACL_MODE); 1088 } 1089 1090 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1091 { 1092 if (is_inode_flag_set(fi, FI_ACL_MODE)) { 1093 clear_inode_flag(fi, FI_ACL_MODE); 1094 return 1; 1095 } 1096 return 0; 1097 } 1098 1099 static inline void get_inline_info(struct f2fs_inode_info *fi, 1100 struct f2fs_inode *ri) 1101 { 1102 if (ri->i_inline & F2FS_INLINE_XATTR) 1103 set_inode_flag(fi, FI_INLINE_XATTR); 1104 if (ri->i_inline & F2FS_INLINE_DATA) 1105 set_inode_flag(fi, FI_INLINE_DATA); 1106 } 1107 1108 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1109 struct f2fs_inode *ri) 1110 { 1111 ri->i_inline = 0; 1112 1113 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1114 ri->i_inline |= F2FS_INLINE_XATTR; 1115 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1116 ri->i_inline |= F2FS_INLINE_DATA; 1117 } 1118 1119 static inline int f2fs_has_inline_xattr(struct inode *inode) 1120 { 1121 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1122 } 1123 1124 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi) 1125 { 1126 if (f2fs_has_inline_xattr(&fi->vfs_inode)) 1127 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1128 return DEF_ADDRS_PER_INODE; 1129 } 1130 1131 static inline void *inline_xattr_addr(struct page *page) 1132 { 1133 struct f2fs_inode *ri = F2FS_INODE(page); 1134 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1135 F2FS_INLINE_XATTR_ADDRS]); 1136 } 1137 1138 static inline int inline_xattr_size(struct inode *inode) 1139 { 1140 if (f2fs_has_inline_xattr(inode)) 1141 return F2FS_INLINE_XATTR_ADDRS << 2; 1142 else 1143 return 0; 1144 } 1145 1146 static inline int f2fs_has_inline_data(struct inode *inode) 1147 { 1148 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1149 } 1150 1151 static inline bool f2fs_is_atomic_file(struct inode *inode) 1152 { 1153 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE); 1154 } 1155 1156 static inline bool f2fs_is_volatile_file(struct inode *inode) 1157 { 1158 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE); 1159 } 1160 1161 static inline void *inline_data_addr(struct page *page) 1162 { 1163 struct f2fs_inode *ri = F2FS_INODE(page); 1164 return (void *)&(ri->i_addr[1]); 1165 } 1166 1167 static inline int f2fs_readonly(struct super_block *sb) 1168 { 1169 return sb->s_flags & MS_RDONLY; 1170 } 1171 1172 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1173 { 1174 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1175 } 1176 1177 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi) 1178 { 1179 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1180 sbi->sb->s_flags |= MS_RDONLY; 1181 } 1182 1183 #define get_inode_mode(i) \ 1184 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1185 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1186 1187 /* get offset of first page in next direct node */ 1188 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \ 1189 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \ 1190 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \ 1191 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi)) 1192 1193 /* 1194 * file.c 1195 */ 1196 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1197 void truncate_data_blocks(struct dnode_of_data *); 1198 int truncate_blocks(struct inode *, u64, bool); 1199 void f2fs_truncate(struct inode *); 1200 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1201 int f2fs_setattr(struct dentry *, struct iattr *); 1202 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1203 int truncate_data_blocks_range(struct dnode_of_data *, int); 1204 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1205 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1206 1207 /* 1208 * inode.c 1209 */ 1210 void f2fs_set_inode_flags(struct inode *); 1211 struct inode *f2fs_iget(struct super_block *, unsigned long); 1212 int try_to_free_nats(struct f2fs_sb_info *, int); 1213 void update_inode(struct inode *, struct page *); 1214 void update_inode_page(struct inode *); 1215 int f2fs_write_inode(struct inode *, struct writeback_control *); 1216 void f2fs_evict_inode(struct inode *); 1217 void handle_failed_inode(struct inode *); 1218 1219 /* 1220 * namei.c 1221 */ 1222 struct dentry *f2fs_get_parent(struct dentry *child); 1223 1224 /* 1225 * dir.c 1226 */ 1227 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1228 struct page **); 1229 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1230 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1231 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1232 struct page *, struct inode *); 1233 int update_dent_inode(struct inode *, const struct qstr *); 1234 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *); 1235 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *); 1236 int f2fs_do_tmpfile(struct inode *, struct inode *); 1237 int f2fs_make_empty(struct inode *, struct inode *); 1238 bool f2fs_empty_dir(struct inode *); 1239 1240 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1241 { 1242 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name, 1243 inode); 1244 } 1245 1246 /* 1247 * super.c 1248 */ 1249 int f2fs_sync_fs(struct super_block *, int); 1250 extern __printf(3, 4) 1251 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1252 1253 /* 1254 * hash.c 1255 */ 1256 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1257 1258 /* 1259 * node.c 1260 */ 1261 struct dnode_of_data; 1262 struct node_info; 1263 1264 bool available_free_memory(struct f2fs_sb_info *, int); 1265 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1266 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t); 1267 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1268 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1269 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1270 int truncate_inode_blocks(struct inode *, pgoff_t); 1271 int truncate_xattr_node(struct inode *, struct page *); 1272 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1273 void remove_inode_page(struct inode *); 1274 struct page *new_inode_page(struct inode *); 1275 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1276 void ra_node_page(struct f2fs_sb_info *, nid_t); 1277 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1278 struct page *get_node_page_ra(struct page *, int); 1279 void sync_inode_page(struct dnode_of_data *); 1280 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1281 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1282 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1283 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1284 void recover_inline_xattr(struct inode *, struct page *); 1285 void recover_xattr_data(struct inode *, struct page *, block_t); 1286 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1287 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1288 struct f2fs_summary_block *); 1289 void flush_nat_entries(struct f2fs_sb_info *); 1290 int build_node_manager(struct f2fs_sb_info *); 1291 void destroy_node_manager(struct f2fs_sb_info *); 1292 int __init create_node_manager_caches(void); 1293 void destroy_node_manager_caches(void); 1294 1295 /* 1296 * segment.c 1297 */ 1298 void register_inmem_page(struct inode *, struct page *); 1299 void commit_inmem_pages(struct inode *, bool); 1300 void f2fs_balance_fs(struct f2fs_sb_info *); 1301 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1302 int f2fs_issue_flush(struct f2fs_sb_info *); 1303 int create_flush_cmd_control(struct f2fs_sb_info *); 1304 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1305 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1306 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1307 void clear_prefree_segments(struct f2fs_sb_info *); 1308 void release_discard_addrs(struct f2fs_sb_info *); 1309 void discard_next_dnode(struct f2fs_sb_info *, block_t); 1310 int npages_for_summary_flush(struct f2fs_sb_info *); 1311 void allocate_new_segments(struct f2fs_sb_info *); 1312 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 1313 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1314 void write_meta_page(struct f2fs_sb_info *, struct page *); 1315 void write_node_page(struct f2fs_sb_info *, struct page *, 1316 struct f2fs_io_info *, unsigned int, block_t, block_t *); 1317 void write_data_page(struct page *, struct dnode_of_data *, block_t *, 1318 struct f2fs_io_info *); 1319 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *); 1320 void recover_data_page(struct f2fs_sb_info *, struct page *, 1321 struct f2fs_summary *, block_t, block_t); 1322 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1323 block_t, block_t *, struct f2fs_summary *, int); 1324 void f2fs_wait_on_page_writeback(struct page *, enum page_type); 1325 void write_data_summaries(struct f2fs_sb_info *, block_t); 1326 void write_node_summaries(struct f2fs_sb_info *, block_t); 1327 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1328 int, unsigned int, int); 1329 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 1330 int build_segment_manager(struct f2fs_sb_info *); 1331 void destroy_segment_manager(struct f2fs_sb_info *); 1332 int __init create_segment_manager_caches(void); 1333 void destroy_segment_manager_caches(void); 1334 1335 /* 1336 * checkpoint.c 1337 */ 1338 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1339 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1340 struct page *get_meta_page_ra(struct f2fs_sb_info *, pgoff_t); 1341 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int); 1342 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1343 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1344 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1345 void release_dirty_inode(struct f2fs_sb_info *); 1346 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 1347 int acquire_orphan_inode(struct f2fs_sb_info *); 1348 void release_orphan_inode(struct f2fs_sb_info *); 1349 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1350 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1351 void recover_orphan_inodes(struct f2fs_sb_info *); 1352 int get_valid_checkpoint(struct f2fs_sb_info *); 1353 void update_dirty_page(struct inode *, struct page *); 1354 void add_dirty_dir_inode(struct inode *); 1355 void remove_dirty_dir_inode(struct inode *); 1356 void sync_dirty_dir_inodes(struct f2fs_sb_info *); 1357 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 1358 void init_ino_entry_info(struct f2fs_sb_info *); 1359 int __init create_checkpoint_caches(void); 1360 void destroy_checkpoint_caches(void); 1361 1362 /* 1363 * data.c 1364 */ 1365 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1366 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int); 1367 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t, 1368 struct f2fs_io_info *); 1369 int reserve_new_block(struct dnode_of_data *); 1370 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1371 void update_extent_cache(block_t, struct dnode_of_data *); 1372 struct page *find_data_page(struct inode *, pgoff_t, bool); 1373 struct page *get_lock_data_page(struct inode *, pgoff_t); 1374 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1375 int do_write_data_page(struct page *, struct f2fs_io_info *); 1376 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1377 1378 /* 1379 * gc.c 1380 */ 1381 int start_gc_thread(struct f2fs_sb_info *); 1382 void stop_gc_thread(struct f2fs_sb_info *); 1383 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *); 1384 int f2fs_gc(struct f2fs_sb_info *); 1385 void build_gc_manager(struct f2fs_sb_info *); 1386 int __init create_gc_caches(void); 1387 void destroy_gc_caches(void); 1388 1389 /* 1390 * recovery.c 1391 */ 1392 int recover_fsync_data(struct f2fs_sb_info *); 1393 bool space_for_roll_forward(struct f2fs_sb_info *); 1394 1395 /* 1396 * debug.c 1397 */ 1398 #ifdef CONFIG_F2FS_STAT_FS 1399 struct f2fs_stat_info { 1400 struct list_head stat_list; 1401 struct f2fs_sb_info *sbi; 1402 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1403 int main_area_segs, main_area_sections, main_area_zones; 1404 int hit_ext, total_ext; 1405 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; 1406 int nats, sits, fnids; 1407 int total_count, utilization; 1408 int bg_gc, inline_inode; 1409 unsigned int valid_count, valid_node_count, valid_inode_count; 1410 unsigned int bimodal, avg_vblocks; 1411 int util_free, util_valid, util_invalid; 1412 int rsvd_segs, overp_segs; 1413 int dirty_count, node_pages, meta_pages; 1414 int prefree_count, call_count, cp_count; 1415 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1416 int tot_blks, data_blks, node_blks; 1417 int curseg[NR_CURSEG_TYPE]; 1418 int cursec[NR_CURSEG_TYPE]; 1419 int curzone[NR_CURSEG_TYPE]; 1420 1421 unsigned int segment_count[2]; 1422 unsigned int block_count[2]; 1423 unsigned base_mem, cache_mem; 1424 }; 1425 1426 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1427 { 1428 return (struct f2fs_stat_info *)sbi->stat_info; 1429 } 1430 1431 #define stat_inc_cp_count(si) ((si)->cp_count++) 1432 #define stat_inc_call_count(si) ((si)->call_count++) 1433 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1434 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++) 1435 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--) 1436 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++) 1437 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++) 1438 #define stat_inc_inline_inode(inode) \ 1439 do { \ 1440 if (f2fs_has_inline_data(inode)) \ 1441 ((F2FS_I_SB(inode))->inline_inode++); \ 1442 } while (0) 1443 #define stat_dec_inline_inode(inode) \ 1444 do { \ 1445 if (f2fs_has_inline_data(inode)) \ 1446 ((F2FS_I_SB(inode))->inline_inode--); \ 1447 } while (0) 1448 1449 #define stat_inc_seg_type(sbi, curseg) \ 1450 ((sbi)->segment_count[(curseg)->alloc_type]++) 1451 #define stat_inc_block_count(sbi, curseg) \ 1452 ((sbi)->block_count[(curseg)->alloc_type]++) 1453 1454 #define stat_inc_seg_count(sbi, type) \ 1455 do { \ 1456 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1457 (si)->tot_segs++; \ 1458 if (type == SUM_TYPE_DATA) \ 1459 si->data_segs++; \ 1460 else \ 1461 si->node_segs++; \ 1462 } while (0) 1463 1464 #define stat_inc_tot_blk_count(si, blks) \ 1465 (si->tot_blks += (blks)) 1466 1467 #define stat_inc_data_blk_count(sbi, blks) \ 1468 do { \ 1469 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1470 stat_inc_tot_blk_count(si, blks); \ 1471 si->data_blks += (blks); \ 1472 } while (0) 1473 1474 #define stat_inc_node_blk_count(sbi, blks) \ 1475 do { \ 1476 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1477 stat_inc_tot_blk_count(si, blks); \ 1478 si->node_blks += (blks); \ 1479 } while (0) 1480 1481 int f2fs_build_stats(struct f2fs_sb_info *); 1482 void f2fs_destroy_stats(struct f2fs_sb_info *); 1483 void __init f2fs_create_root_stats(void); 1484 void f2fs_destroy_root_stats(void); 1485 #else 1486 #define stat_inc_cp_count(si) 1487 #define stat_inc_call_count(si) 1488 #define stat_inc_bggc_count(si) 1489 #define stat_inc_dirty_dir(sbi) 1490 #define stat_dec_dirty_dir(sbi) 1491 #define stat_inc_total_hit(sb) 1492 #define stat_inc_read_hit(sb) 1493 #define stat_inc_inline_inode(inode) 1494 #define stat_dec_inline_inode(inode) 1495 #define stat_inc_seg_type(sbi, curseg) 1496 #define stat_inc_block_count(sbi, curseg) 1497 #define stat_inc_seg_count(si, type) 1498 #define stat_inc_tot_blk_count(si, blks) 1499 #define stat_inc_data_blk_count(si, blks) 1500 #define stat_inc_node_blk_count(sbi, blks) 1501 1502 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 1503 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 1504 static inline void __init f2fs_create_root_stats(void) { } 1505 static inline void f2fs_destroy_root_stats(void) { } 1506 #endif 1507 1508 extern const struct file_operations f2fs_dir_operations; 1509 extern const struct file_operations f2fs_file_operations; 1510 extern const struct inode_operations f2fs_file_inode_operations; 1511 extern const struct address_space_operations f2fs_dblock_aops; 1512 extern const struct address_space_operations f2fs_node_aops; 1513 extern const struct address_space_operations f2fs_meta_aops; 1514 extern const struct inode_operations f2fs_dir_inode_operations; 1515 extern const struct inode_operations f2fs_symlink_inode_operations; 1516 extern const struct inode_operations f2fs_special_inode_operations; 1517 1518 /* 1519 * inline.c 1520 */ 1521 bool f2fs_may_inline(struct inode *); 1522 int f2fs_read_inline_data(struct inode *, struct page *); 1523 int f2fs_convert_inline_data(struct inode *, pgoff_t, struct page *); 1524 int f2fs_write_inline_data(struct inode *, struct page *, unsigned int); 1525 void truncate_inline_data(struct inode *, u64); 1526 bool recover_inline_data(struct inode *, struct page *); 1527 #endif 1528