xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 66aee5aa)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	unsigned int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
78 #endif
79 
80 /*
81  * For mount options
82  */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
84 #define F2FS_MOUNT_DISCARD		0x00000004
85 #define F2FS_MOUNT_NOHEAP		0x00000008
86 #define F2FS_MOUNT_XATTR_USER		0x00000010
87 #define F2FS_MOUNT_POSIX_ACL		0x00000020
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
89 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
90 #define F2FS_MOUNT_INLINE_DATA		0x00000100
91 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
92 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
93 #define F2FS_MOUNT_NOBARRIER		0x00000800
94 #define F2FS_MOUNT_FASTBOOT		0x00001000
95 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
96 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
97 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
98 #define F2FS_MOUNT_USRQUOTA		0x00080000
99 #define F2FS_MOUNT_GRPQUOTA		0x00100000
100 #define F2FS_MOUNT_PRJQUOTA		0x00200000
101 #define F2FS_MOUNT_QUOTA		0x00400000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
103 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
105 #define F2FS_MOUNT_NORECOVERY		0x04000000
106 #define F2FS_MOUNT_ATGC			0x08000000
107 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
108 #define	F2FS_MOUNT_GC_MERGE		0x20000000
109 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
110 
111 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
112 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
113 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
114 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
115 
116 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
117 		typecheck(unsigned long long, b) &&			\
118 		((long long)((a) - (b)) > 0))
119 
120 typedef u32 block_t;	/*
121 			 * should not change u32, since it is the on-disk block
122 			 * address format, __le32.
123 			 */
124 typedef u32 nid_t;
125 
126 #define COMPRESS_EXT_NUM		16
127 
128 /*
129  * An implementation of an rwsem that is explicitly unfair to readers. This
130  * prevents priority inversion when a low-priority reader acquires the read lock
131  * while sleeping on the write lock but the write lock is needed by
132  * higher-priority clients.
133  */
134 
135 struct f2fs_rwsem {
136         struct rw_semaphore internal_rwsem;
137 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
138         wait_queue_head_t read_waiters;
139 #endif
140 };
141 
142 struct f2fs_mount_info {
143 	unsigned int opt;
144 	int write_io_size_bits;		/* Write IO size bits */
145 	block_t root_reserved_blocks;	/* root reserved blocks */
146 	kuid_t s_resuid;		/* reserved blocks for uid */
147 	kgid_t s_resgid;		/* reserved blocks for gid */
148 	int active_logs;		/* # of active logs */
149 	int inline_xattr_size;		/* inline xattr size */
150 #ifdef CONFIG_F2FS_FAULT_INJECTION
151 	struct f2fs_fault_info fault_info;	/* For fault injection */
152 #endif
153 #ifdef CONFIG_QUOTA
154 	/* Names of quota files with journalled quota */
155 	char *s_qf_names[MAXQUOTAS];
156 	int s_jquota_fmt;			/* Format of quota to use */
157 #endif
158 	/* For which write hints are passed down to block layer */
159 	int alloc_mode;			/* segment allocation policy */
160 	int fsync_mode;			/* fsync policy */
161 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
162 	int bggc_mode;			/* bggc mode: off, on or sync */
163 	int memory_mode;		/* memory mode */
164 	int discard_unit;		/*
165 					 * discard command's offset/size should
166 					 * be aligned to this unit: block,
167 					 * segment or section
168 					 */
169 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
170 	block_t unusable_cap_perc;	/* percentage for cap */
171 	block_t unusable_cap;		/* Amount of space allowed to be
172 					 * unusable when disabling checkpoint
173 					 */
174 
175 	/* For compression */
176 	unsigned char compress_algorithm;	/* algorithm type */
177 	unsigned char compress_log_size;	/* cluster log size */
178 	unsigned char compress_level;		/* compress level */
179 	bool compress_chksum;			/* compressed data chksum */
180 	unsigned char compress_ext_cnt;		/* extension count */
181 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
182 	int compress_mode;			/* compression mode */
183 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
184 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
185 };
186 
187 #define F2FS_FEATURE_ENCRYPT		0x0001
188 #define F2FS_FEATURE_BLKZONED		0x0002
189 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
190 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
191 #define F2FS_FEATURE_PRJQUOTA		0x0010
192 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
193 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
194 #define F2FS_FEATURE_QUOTA_INO		0x0080
195 #define F2FS_FEATURE_INODE_CRTIME	0x0100
196 #define F2FS_FEATURE_LOST_FOUND		0x0200
197 #define F2FS_FEATURE_VERITY		0x0400
198 #define F2FS_FEATURE_SB_CHKSUM		0x0800
199 #define F2FS_FEATURE_CASEFOLD		0x1000
200 #define F2FS_FEATURE_COMPRESSION	0x2000
201 #define F2FS_FEATURE_RO			0x4000
202 
203 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
204 	((raw_super->feature & cpu_to_le32(mask)) != 0)
205 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
206 #define F2FS_SET_FEATURE(sbi, mask)					\
207 	(sbi->raw_super->feature |= cpu_to_le32(mask))
208 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
209 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
210 
211 /*
212  * Default values for user and/or group using reserved blocks
213  */
214 #define	F2FS_DEF_RESUID		0
215 #define	F2FS_DEF_RESGID		0
216 
217 /*
218  * For checkpoint manager
219  */
220 enum {
221 	NAT_BITMAP,
222 	SIT_BITMAP
223 };
224 
225 #define	CP_UMOUNT	0x00000001
226 #define	CP_FASTBOOT	0x00000002
227 #define	CP_SYNC		0x00000004
228 #define	CP_RECOVERY	0x00000008
229 #define	CP_DISCARD	0x00000010
230 #define CP_TRIMMED	0x00000020
231 #define CP_PAUSE	0x00000040
232 #define CP_RESIZE 	0x00000080
233 
234 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
235 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
236 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
237 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
238 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
239 #define DEF_CP_INTERVAL			60	/* 60 secs */
240 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
241 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
242 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
243 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
244 
245 struct cp_control {
246 	int reason;
247 	__u64 trim_start;
248 	__u64 trim_end;
249 	__u64 trim_minlen;
250 };
251 
252 /*
253  * indicate meta/data type
254  */
255 enum {
256 	META_CP,
257 	META_NAT,
258 	META_SIT,
259 	META_SSA,
260 	META_MAX,
261 	META_POR,
262 	DATA_GENERIC,		/* check range only */
263 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
264 	DATA_GENERIC_ENHANCE_READ,	/*
265 					 * strong check on range and segment
266 					 * bitmap but no warning due to race
267 					 * condition of read on truncated area
268 					 * by extent_cache
269 					 */
270 	DATA_GENERIC_ENHANCE_UPDATE,	/*
271 					 * strong check on range and segment
272 					 * bitmap for update case
273 					 */
274 	META_GENERIC,
275 };
276 
277 /* for the list of ino */
278 enum {
279 	ORPHAN_INO,		/* for orphan ino list */
280 	APPEND_INO,		/* for append ino list */
281 	UPDATE_INO,		/* for update ino list */
282 	TRANS_DIR_INO,		/* for transactions dir ino list */
283 	FLUSH_INO,		/* for multiple device flushing */
284 	MAX_INO_ENTRY,		/* max. list */
285 };
286 
287 struct ino_entry {
288 	struct list_head list;		/* list head */
289 	nid_t ino;			/* inode number */
290 	unsigned int dirty_device;	/* dirty device bitmap */
291 };
292 
293 /* for the list of inodes to be GCed */
294 struct inode_entry {
295 	struct list_head list;	/* list head */
296 	struct inode *inode;	/* vfs inode pointer */
297 };
298 
299 struct fsync_node_entry {
300 	struct list_head list;	/* list head */
301 	struct page *page;	/* warm node page pointer */
302 	unsigned int seq_id;	/* sequence id */
303 };
304 
305 struct ckpt_req {
306 	struct completion wait;		/* completion for checkpoint done */
307 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
308 	int ret;			/* return code of checkpoint */
309 	ktime_t queue_time;		/* request queued time */
310 };
311 
312 struct ckpt_req_control {
313 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
314 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
315 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
316 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
317 	atomic_t total_ckpt;		/* # of total ckpts */
318 	atomic_t queued_ckpt;		/* # of queued ckpts */
319 	struct llist_head issue_list;	/* list for command issue */
320 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
321 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
322 	unsigned int peak_time;		/* peak wait time in msec until now */
323 };
324 
325 /* for the bitmap indicate blocks to be discarded */
326 struct discard_entry {
327 	struct list_head list;	/* list head */
328 	block_t start_blkaddr;	/* start blockaddr of current segment */
329 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
330 };
331 
332 /* default discard granularity of inner discard thread, unit: block count */
333 #define DEFAULT_DISCARD_GRANULARITY		16
334 /* default maximum discard granularity of ordered discard, unit: block count */
335 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
336 
337 /* max discard pend list number */
338 #define MAX_PLIST_NUM		512
339 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
340 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
341 
342 enum {
343 	D_PREP,			/* initial */
344 	D_PARTIAL,		/* partially submitted */
345 	D_SUBMIT,		/* all submitted */
346 	D_DONE,			/* finished */
347 };
348 
349 struct discard_info {
350 	block_t lstart;			/* logical start address */
351 	block_t len;			/* length */
352 	block_t start;			/* actual start address in dev */
353 };
354 
355 struct discard_cmd {
356 	struct rb_node rb_node;		/* rb node located in rb-tree */
357 	union {
358 		struct {
359 			block_t lstart;	/* logical start address */
360 			block_t len;	/* length */
361 			block_t start;	/* actual start address in dev */
362 		};
363 		struct discard_info di;	/* discard info */
364 
365 	};
366 	struct list_head list;		/* command list */
367 	struct completion wait;		/* compleation */
368 	struct block_device *bdev;	/* bdev */
369 	unsigned short ref;		/* reference count */
370 	unsigned char state;		/* state */
371 	unsigned char queued;		/* queued discard */
372 	int error;			/* bio error */
373 	spinlock_t lock;		/* for state/bio_ref updating */
374 	unsigned short bio_ref;		/* bio reference count */
375 };
376 
377 enum {
378 	DPOLICY_BG,
379 	DPOLICY_FORCE,
380 	DPOLICY_FSTRIM,
381 	DPOLICY_UMOUNT,
382 	MAX_DPOLICY,
383 };
384 
385 struct discard_policy {
386 	int type;			/* type of discard */
387 	unsigned int min_interval;	/* used for candidates exist */
388 	unsigned int mid_interval;	/* used for device busy */
389 	unsigned int max_interval;	/* used for candidates not exist */
390 	unsigned int max_requests;	/* # of discards issued per round */
391 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
392 	bool io_aware;			/* issue discard in idle time */
393 	bool sync;			/* submit discard with REQ_SYNC flag */
394 	bool ordered;			/* issue discard by lba order */
395 	bool timeout;			/* discard timeout for put_super */
396 	unsigned int granularity;	/* discard granularity */
397 };
398 
399 struct discard_cmd_control {
400 	struct task_struct *f2fs_issue_discard;	/* discard thread */
401 	struct list_head entry_list;		/* 4KB discard entry list */
402 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
403 	struct list_head wait_list;		/* store on-flushing entries */
404 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
405 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
406 	unsigned int discard_wake;		/* to wake up discard thread */
407 	struct mutex cmd_lock;
408 	unsigned int nr_discards;		/* # of discards in the list */
409 	unsigned int max_discards;		/* max. discards to be issued */
410 	unsigned int max_discard_request;	/* max. discard request per round */
411 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
412 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
413 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
414 	unsigned int discard_granularity;	/* discard granularity */
415 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
416 	unsigned int undiscard_blks;		/* # of undiscard blocks */
417 	unsigned int next_pos;			/* next discard position */
418 	atomic_t issued_discard;		/* # of issued discard */
419 	atomic_t queued_discard;		/* # of queued discard */
420 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
421 	struct rb_root_cached root;		/* root of discard rb-tree */
422 	bool rbtree_check;			/* config for consistence check */
423 };
424 
425 /* for the list of fsync inodes, used only during recovery */
426 struct fsync_inode_entry {
427 	struct list_head list;	/* list head */
428 	struct inode *inode;	/* vfs inode pointer */
429 	block_t blkaddr;	/* block address locating the last fsync */
430 	block_t last_dentry;	/* block address locating the last dentry */
431 };
432 
433 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
434 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
435 
436 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
437 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
438 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
439 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
440 
441 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
442 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
443 
444 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
445 {
446 	int before = nats_in_cursum(journal);
447 
448 	journal->n_nats = cpu_to_le16(before + i);
449 	return before;
450 }
451 
452 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
453 {
454 	int before = sits_in_cursum(journal);
455 
456 	journal->n_sits = cpu_to_le16(before + i);
457 	return before;
458 }
459 
460 static inline bool __has_cursum_space(struct f2fs_journal *journal,
461 							int size, int type)
462 {
463 	if (type == NAT_JOURNAL)
464 		return size <= MAX_NAT_JENTRIES(journal);
465 	return size <= MAX_SIT_JENTRIES(journal);
466 }
467 
468 /* for inline stuff */
469 #define DEF_INLINE_RESERVED_SIZE	1
470 static inline int get_extra_isize(struct inode *inode);
471 static inline int get_inline_xattr_addrs(struct inode *inode);
472 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
473 				(CUR_ADDRS_PER_INODE(inode) -		\
474 				get_inline_xattr_addrs(inode) -	\
475 				DEF_INLINE_RESERVED_SIZE))
476 
477 /* for inline dir */
478 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
479 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
480 				BITS_PER_BYTE + 1))
481 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
482 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
483 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
484 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
485 				NR_INLINE_DENTRY(inode) + \
486 				INLINE_DENTRY_BITMAP_SIZE(inode)))
487 
488 /*
489  * For INODE and NODE manager
490  */
491 /* for directory operations */
492 
493 struct f2fs_filename {
494 	/*
495 	 * The filename the user specified.  This is NULL for some
496 	 * filesystem-internal operations, e.g. converting an inline directory
497 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
498 	 */
499 	const struct qstr *usr_fname;
500 
501 	/*
502 	 * The on-disk filename.  For encrypted directories, this is encrypted.
503 	 * This may be NULL for lookups in an encrypted dir without the key.
504 	 */
505 	struct fscrypt_str disk_name;
506 
507 	/* The dirhash of this filename */
508 	f2fs_hash_t hash;
509 
510 #ifdef CONFIG_FS_ENCRYPTION
511 	/*
512 	 * For lookups in encrypted directories: either the buffer backing
513 	 * disk_name, or a buffer that holds the decoded no-key name.
514 	 */
515 	struct fscrypt_str crypto_buf;
516 #endif
517 #if IS_ENABLED(CONFIG_UNICODE)
518 	/*
519 	 * For casefolded directories: the casefolded name, but it's left NULL
520 	 * if the original name is not valid Unicode, if the original name is
521 	 * "." or "..", if the directory is both casefolded and encrypted and
522 	 * its encryption key is unavailable, or if the filesystem is doing an
523 	 * internal operation where usr_fname is also NULL.  In all these cases
524 	 * we fall back to treating the name as an opaque byte sequence.
525 	 */
526 	struct fscrypt_str cf_name;
527 #endif
528 };
529 
530 struct f2fs_dentry_ptr {
531 	struct inode *inode;
532 	void *bitmap;
533 	struct f2fs_dir_entry *dentry;
534 	__u8 (*filename)[F2FS_SLOT_LEN];
535 	int max;
536 	int nr_bitmap;
537 };
538 
539 static inline void make_dentry_ptr_block(struct inode *inode,
540 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
541 {
542 	d->inode = inode;
543 	d->max = NR_DENTRY_IN_BLOCK;
544 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
545 	d->bitmap = t->dentry_bitmap;
546 	d->dentry = t->dentry;
547 	d->filename = t->filename;
548 }
549 
550 static inline void make_dentry_ptr_inline(struct inode *inode,
551 					struct f2fs_dentry_ptr *d, void *t)
552 {
553 	int entry_cnt = NR_INLINE_DENTRY(inode);
554 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
555 	int reserved_size = INLINE_RESERVED_SIZE(inode);
556 
557 	d->inode = inode;
558 	d->max = entry_cnt;
559 	d->nr_bitmap = bitmap_size;
560 	d->bitmap = t;
561 	d->dentry = t + bitmap_size + reserved_size;
562 	d->filename = t + bitmap_size + reserved_size +
563 					SIZE_OF_DIR_ENTRY * entry_cnt;
564 }
565 
566 /*
567  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
568  * as its node offset to distinguish from index node blocks.
569  * But some bits are used to mark the node block.
570  */
571 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
572 				>> OFFSET_BIT_SHIFT)
573 enum {
574 	ALLOC_NODE,			/* allocate a new node page if needed */
575 	LOOKUP_NODE,			/* look up a node without readahead */
576 	LOOKUP_NODE_RA,			/*
577 					 * look up a node with readahead called
578 					 * by get_data_block.
579 					 */
580 };
581 
582 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
583 
584 /* congestion wait timeout value, default: 20ms */
585 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
586 
587 /* maximum retry quota flush count */
588 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
589 
590 /* maximum retry of EIO'ed page */
591 #define MAX_RETRY_PAGE_EIO			100
592 
593 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
594 
595 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
596 
597 /* dirty segments threshold for triggering CP */
598 #define DEFAULT_DIRTY_THRESHOLD		4
599 
600 /* for in-memory extent cache entry */
601 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
602 
603 /* number of extent info in extent cache we try to shrink */
604 #define EXTENT_CACHE_SHRINK_NUMBER	128
605 
606 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
607 #define RECOVERY_MIN_RA_BLOCKS		1
608 
609 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
610 
611 struct rb_entry {
612 	struct rb_node rb_node;		/* rb node located in rb-tree */
613 	union {
614 		struct {
615 			unsigned int ofs;	/* start offset of the entry */
616 			unsigned int len;	/* length of the entry */
617 		};
618 		unsigned long long key;		/* 64-bits key */
619 	} __packed;
620 };
621 
622 struct extent_info {
623 	unsigned int fofs;		/* start offset in a file */
624 	unsigned int len;		/* length of the extent */
625 	u32 blk;			/* start block address of the extent */
626 #ifdef CONFIG_F2FS_FS_COMPRESSION
627 	unsigned int c_len;		/* physical extent length of compressed blocks */
628 #endif
629 };
630 
631 struct extent_node {
632 	struct rb_node rb_node;		/* rb node located in rb-tree */
633 	struct extent_info ei;		/* extent info */
634 	struct list_head list;		/* node in global extent list of sbi */
635 	struct extent_tree *et;		/* extent tree pointer */
636 };
637 
638 struct extent_tree {
639 	nid_t ino;			/* inode number */
640 	struct rb_root_cached root;	/* root of extent info rb-tree */
641 	struct extent_node *cached_en;	/* recently accessed extent node */
642 	struct extent_info largest;	/* largested extent info */
643 	struct list_head list;		/* to be used by sbi->zombie_list */
644 	rwlock_t lock;			/* protect extent info rb-tree */
645 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
646 	bool largest_updated;		/* largest extent updated */
647 };
648 
649 /*
650  * This structure is taken from ext4_map_blocks.
651  *
652  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
653  */
654 #define F2FS_MAP_NEW		(1 << BH_New)
655 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
656 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
657 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
658 				F2FS_MAP_UNWRITTEN)
659 
660 struct f2fs_map_blocks {
661 	struct block_device *m_bdev;	/* for multi-device dio */
662 	block_t m_pblk;
663 	block_t m_lblk;
664 	unsigned int m_len;
665 	unsigned int m_flags;
666 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
667 	pgoff_t *m_next_extent;		/* point to next possible extent */
668 	int m_seg_type;
669 	bool m_may_create;		/* indicate it is from write path */
670 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
671 };
672 
673 /* for flag in get_data_block */
674 enum {
675 	F2FS_GET_BLOCK_DEFAULT,
676 	F2FS_GET_BLOCK_FIEMAP,
677 	F2FS_GET_BLOCK_BMAP,
678 	F2FS_GET_BLOCK_DIO,
679 	F2FS_GET_BLOCK_PRE_DIO,
680 	F2FS_GET_BLOCK_PRE_AIO,
681 	F2FS_GET_BLOCK_PRECACHE,
682 };
683 
684 /*
685  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
686  */
687 #define FADVISE_COLD_BIT	0x01
688 #define FADVISE_LOST_PINO_BIT	0x02
689 #define FADVISE_ENCRYPT_BIT	0x04
690 #define FADVISE_ENC_NAME_BIT	0x08
691 #define FADVISE_KEEP_SIZE_BIT	0x10
692 #define FADVISE_HOT_BIT		0x20
693 #define FADVISE_VERITY_BIT	0x40
694 #define FADVISE_TRUNC_BIT	0x80
695 
696 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
697 
698 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
699 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
700 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
701 
702 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
703 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
704 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
705 
706 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
707 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
708 
709 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
710 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
711 
712 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
713 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
714 
715 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
716 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
717 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
718 
719 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
720 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
721 
722 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
723 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
724 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
725 
726 #define DEF_DIR_LEVEL		0
727 
728 enum {
729 	GC_FAILURE_PIN,
730 	MAX_GC_FAILURE
731 };
732 
733 /* used for f2fs_inode_info->flags */
734 enum {
735 	FI_NEW_INODE,		/* indicate newly allocated inode */
736 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
737 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
738 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
739 	FI_INC_LINK,		/* need to increment i_nlink */
740 	FI_ACL_MODE,		/* indicate acl mode */
741 	FI_NO_ALLOC,		/* should not allocate any blocks */
742 	FI_FREE_NID,		/* free allocated nide */
743 	FI_NO_EXTENT,		/* not to use the extent cache */
744 	FI_INLINE_XATTR,	/* used for inline xattr */
745 	FI_INLINE_DATA,		/* used for inline data*/
746 	FI_INLINE_DENTRY,	/* used for inline dentry */
747 	FI_APPEND_WRITE,	/* inode has appended data */
748 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
749 	FI_NEED_IPU,		/* used for ipu per file */
750 	FI_ATOMIC_FILE,		/* indicate atomic file */
751 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
752 	FI_DROP_CACHE,		/* drop dirty page cache */
753 	FI_DATA_EXIST,		/* indicate data exists */
754 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
755 	FI_SKIP_WRITES,		/* should skip data page writeback */
756 	FI_OPU_WRITE,		/* used for opu per file */
757 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
758 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
759 	FI_HOT_DATA,		/* indicate file is hot */
760 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
761 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
762 	FI_PIN_FILE,		/* indicate file should not be gced */
763 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
764 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
765 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
766 	FI_MMAP_FILE,		/* indicate file was mmapped */
767 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
768 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
769 	FI_ALIGNED_WRITE,	/* enable aligned write */
770 	FI_COW_FILE,		/* indicate COW file */
771 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
772 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
773 	FI_MAX,			/* max flag, never be used */
774 };
775 
776 struct f2fs_inode_info {
777 	struct inode vfs_inode;		/* serve a vfs inode */
778 	unsigned long i_flags;		/* keep an inode flags for ioctl */
779 	unsigned char i_advise;		/* use to give file attribute hints */
780 	unsigned char i_dir_level;	/* use for dentry level for large dir */
781 	unsigned int i_current_depth;	/* only for directory depth */
782 	/* for gc failure statistic */
783 	unsigned int i_gc_failures[MAX_GC_FAILURE];
784 	unsigned int i_pino;		/* parent inode number */
785 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
786 
787 	/* Use below internally in f2fs*/
788 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
789 	struct f2fs_rwsem i_sem;	/* protect fi info */
790 	atomic_t dirty_pages;		/* # of dirty pages */
791 	f2fs_hash_t chash;		/* hash value of given file name */
792 	unsigned int clevel;		/* maximum level of given file name */
793 	struct task_struct *task;	/* lookup and create consistency */
794 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
795 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
796 	nid_t i_xattr_nid;		/* node id that contains xattrs */
797 	loff_t	last_disk_size;		/* lastly written file size */
798 	spinlock_t i_size_lock;		/* protect last_disk_size */
799 
800 #ifdef CONFIG_QUOTA
801 	struct dquot *i_dquot[MAXQUOTAS];
802 
803 	/* quota space reservation, managed internally by quota code */
804 	qsize_t i_reserved_quota;
805 #endif
806 	struct list_head dirty_list;	/* dirty list for dirs and files */
807 	struct list_head gdirty_list;	/* linked in global dirty list */
808 	struct task_struct *atomic_write_task;	/* store atomic write task */
809 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
810 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
811 
812 	/* avoid racing between foreground op and gc */
813 	struct f2fs_rwsem i_gc_rwsem[2];
814 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
815 
816 	int i_extra_isize;		/* size of extra space located in i_addr */
817 	kprojid_t i_projid;		/* id for project quota */
818 	int i_inline_xattr_size;	/* inline xattr size */
819 	struct timespec64 i_crtime;	/* inode creation time */
820 	struct timespec64 i_disk_time[4];/* inode disk times */
821 
822 	/* for file compress */
823 	atomic_t i_compr_blocks;		/* # of compressed blocks */
824 	unsigned char i_compress_algorithm;	/* algorithm type */
825 	unsigned char i_log_cluster_size;	/* log of cluster size */
826 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
827 	unsigned short i_compress_flag;		/* compress flag */
828 	unsigned int i_cluster_size;		/* cluster size */
829 
830 	unsigned int atomic_write_cnt;
831 	loff_t original_i_size;		/* original i_size before atomic write */
832 };
833 
834 static inline void get_extent_info(struct extent_info *ext,
835 					struct f2fs_extent *i_ext)
836 {
837 	ext->fofs = le32_to_cpu(i_ext->fofs);
838 	ext->blk = le32_to_cpu(i_ext->blk);
839 	ext->len = le32_to_cpu(i_ext->len);
840 }
841 
842 static inline void set_raw_extent(struct extent_info *ext,
843 					struct f2fs_extent *i_ext)
844 {
845 	i_ext->fofs = cpu_to_le32(ext->fofs);
846 	i_ext->blk = cpu_to_le32(ext->blk);
847 	i_ext->len = cpu_to_le32(ext->len);
848 }
849 
850 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
851 						u32 blk, unsigned int len)
852 {
853 	ei->fofs = fofs;
854 	ei->blk = blk;
855 	ei->len = len;
856 #ifdef CONFIG_F2FS_FS_COMPRESSION
857 	ei->c_len = 0;
858 #endif
859 }
860 
861 static inline bool __is_discard_mergeable(struct discard_info *back,
862 			struct discard_info *front, unsigned int max_len)
863 {
864 	return (back->lstart + back->len == front->lstart) &&
865 		(back->len + front->len <= max_len);
866 }
867 
868 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
869 			struct discard_info *back, unsigned int max_len)
870 {
871 	return __is_discard_mergeable(back, cur, max_len);
872 }
873 
874 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
875 			struct discard_info *front, unsigned int max_len)
876 {
877 	return __is_discard_mergeable(cur, front, max_len);
878 }
879 
880 static inline bool __is_extent_mergeable(struct extent_info *back,
881 						struct extent_info *front)
882 {
883 #ifdef CONFIG_F2FS_FS_COMPRESSION
884 	if (back->c_len && back->len != back->c_len)
885 		return false;
886 	if (front->c_len && front->len != front->c_len)
887 		return false;
888 #endif
889 	return (back->fofs + back->len == front->fofs &&
890 			back->blk + back->len == front->blk);
891 }
892 
893 static inline bool __is_back_mergeable(struct extent_info *cur,
894 						struct extent_info *back)
895 {
896 	return __is_extent_mergeable(back, cur);
897 }
898 
899 static inline bool __is_front_mergeable(struct extent_info *cur,
900 						struct extent_info *front)
901 {
902 	return __is_extent_mergeable(cur, front);
903 }
904 
905 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
906 static inline void __try_update_largest_extent(struct extent_tree *et,
907 						struct extent_node *en)
908 {
909 	if (en->ei.len > et->largest.len) {
910 		et->largest = en->ei;
911 		et->largest_updated = true;
912 	}
913 }
914 
915 /*
916  * For free nid management
917  */
918 enum nid_state {
919 	FREE_NID,		/* newly added to free nid list */
920 	PREALLOC_NID,		/* it is preallocated */
921 	MAX_NID_STATE,
922 };
923 
924 enum nat_state {
925 	TOTAL_NAT,
926 	DIRTY_NAT,
927 	RECLAIMABLE_NAT,
928 	MAX_NAT_STATE,
929 };
930 
931 struct f2fs_nm_info {
932 	block_t nat_blkaddr;		/* base disk address of NAT */
933 	nid_t max_nid;			/* maximum possible node ids */
934 	nid_t available_nids;		/* # of available node ids */
935 	nid_t next_scan_nid;		/* the next nid to be scanned */
936 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
937 	unsigned int ram_thresh;	/* control the memory footprint */
938 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
939 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
940 
941 	/* NAT cache management */
942 	struct radix_tree_root nat_root;/* root of the nat entry cache */
943 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
944 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
945 	struct list_head nat_entries;	/* cached nat entry list (clean) */
946 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
947 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
948 	unsigned int nat_blocks;	/* # of nat blocks */
949 
950 	/* free node ids management */
951 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
952 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
953 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
954 	spinlock_t nid_list_lock;	/* protect nid lists ops */
955 	struct mutex build_lock;	/* lock for build free nids */
956 	unsigned char **free_nid_bitmap;
957 	unsigned char *nat_block_bitmap;
958 	unsigned short *free_nid_count;	/* free nid count of NAT block */
959 
960 	/* for checkpoint */
961 	char *nat_bitmap;		/* NAT bitmap pointer */
962 
963 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
964 	unsigned char *nat_bits;	/* NAT bits blocks */
965 	unsigned char *full_nat_bits;	/* full NAT pages */
966 	unsigned char *empty_nat_bits;	/* empty NAT pages */
967 #ifdef CONFIG_F2FS_CHECK_FS
968 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
969 #endif
970 	int bitmap_size;		/* bitmap size */
971 };
972 
973 /*
974  * this structure is used as one of function parameters.
975  * all the information are dedicated to a given direct node block determined
976  * by the data offset in a file.
977  */
978 struct dnode_of_data {
979 	struct inode *inode;		/* vfs inode pointer */
980 	struct page *inode_page;	/* its inode page, NULL is possible */
981 	struct page *node_page;		/* cached direct node page */
982 	nid_t nid;			/* node id of the direct node block */
983 	unsigned int ofs_in_node;	/* data offset in the node page */
984 	bool inode_page_locked;		/* inode page is locked or not */
985 	bool node_changed;		/* is node block changed */
986 	char cur_level;			/* level of hole node page */
987 	char max_level;			/* level of current page located */
988 	block_t	data_blkaddr;		/* block address of the node block */
989 };
990 
991 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
992 		struct page *ipage, struct page *npage, nid_t nid)
993 {
994 	memset(dn, 0, sizeof(*dn));
995 	dn->inode = inode;
996 	dn->inode_page = ipage;
997 	dn->node_page = npage;
998 	dn->nid = nid;
999 }
1000 
1001 /*
1002  * For SIT manager
1003  *
1004  * By default, there are 6 active log areas across the whole main area.
1005  * When considering hot and cold data separation to reduce cleaning overhead,
1006  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1007  * respectively.
1008  * In the current design, you should not change the numbers intentionally.
1009  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1010  * logs individually according to the underlying devices. (default: 6)
1011  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1012  * data and 8 for node logs.
1013  */
1014 #define	NR_CURSEG_DATA_TYPE	(3)
1015 #define NR_CURSEG_NODE_TYPE	(3)
1016 #define NR_CURSEG_INMEM_TYPE	(2)
1017 #define NR_CURSEG_RO_TYPE	(2)
1018 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1019 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1020 
1021 enum {
1022 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1023 	CURSEG_WARM_DATA,	/* data blocks */
1024 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1025 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1026 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1027 	CURSEG_COLD_NODE,	/* indirect node blocks */
1028 	NR_PERSISTENT_LOG,	/* number of persistent log */
1029 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1030 				/* pinned file that needs consecutive block address */
1031 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1032 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1033 };
1034 
1035 struct flush_cmd {
1036 	struct completion wait;
1037 	struct llist_node llnode;
1038 	nid_t ino;
1039 	int ret;
1040 };
1041 
1042 struct flush_cmd_control {
1043 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1044 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1045 	atomic_t issued_flush;			/* # of issued flushes */
1046 	atomic_t queued_flush;			/* # of queued flushes */
1047 	struct llist_head issue_list;		/* list for command issue */
1048 	struct llist_node *dispatch_list;	/* list for command dispatch */
1049 };
1050 
1051 struct f2fs_sm_info {
1052 	struct sit_info *sit_info;		/* whole segment information */
1053 	struct free_segmap_info *free_info;	/* free segment information */
1054 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1055 	struct curseg_info *curseg_array;	/* active segment information */
1056 
1057 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1058 
1059 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1060 	block_t main_blkaddr;		/* start block address of main area */
1061 	block_t ssa_blkaddr;		/* start block address of SSA area */
1062 
1063 	unsigned int segment_count;	/* total # of segments */
1064 	unsigned int main_segments;	/* # of segments in main area */
1065 	unsigned int reserved_segments;	/* # of reserved segments */
1066 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1067 	unsigned int ovp_segments;	/* # of overprovision segments */
1068 
1069 	/* a threshold to reclaim prefree segments */
1070 	unsigned int rec_prefree_segments;
1071 
1072 	struct list_head sit_entry_set;	/* sit entry set list */
1073 
1074 	unsigned int ipu_policy;	/* in-place-update policy */
1075 	unsigned int min_ipu_util;	/* in-place-update threshold */
1076 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1077 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1078 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1079 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1080 
1081 	/* for flush command control */
1082 	struct flush_cmd_control *fcc_info;
1083 
1084 	/* for discard command control */
1085 	struct discard_cmd_control *dcc_info;
1086 };
1087 
1088 /*
1089  * For superblock
1090  */
1091 /*
1092  * COUNT_TYPE for monitoring
1093  *
1094  * f2fs monitors the number of several block types such as on-writeback,
1095  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1096  */
1097 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1098 enum count_type {
1099 	F2FS_DIRTY_DENTS,
1100 	F2FS_DIRTY_DATA,
1101 	F2FS_DIRTY_QDATA,
1102 	F2FS_DIRTY_NODES,
1103 	F2FS_DIRTY_META,
1104 	F2FS_DIRTY_IMETA,
1105 	F2FS_WB_CP_DATA,
1106 	F2FS_WB_DATA,
1107 	F2FS_RD_DATA,
1108 	F2FS_RD_NODE,
1109 	F2FS_RD_META,
1110 	F2FS_DIO_WRITE,
1111 	F2FS_DIO_READ,
1112 	NR_COUNT_TYPE,
1113 };
1114 
1115 /*
1116  * The below are the page types of bios used in submit_bio().
1117  * The available types are:
1118  * DATA			User data pages. It operates as async mode.
1119  * NODE			Node pages. It operates as async mode.
1120  * META			FS metadata pages such as SIT, NAT, CP.
1121  * NR_PAGE_TYPE		The number of page types.
1122  * META_FLUSH		Make sure the previous pages are written
1123  *			with waiting the bio's completion
1124  * ...			Only can be used with META.
1125  */
1126 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1127 enum page_type {
1128 	DATA = 0,
1129 	NODE = 1,	/* should not change this */
1130 	META,
1131 	NR_PAGE_TYPE,
1132 	META_FLUSH,
1133 	IPU,		/* the below types are used by tracepoints only. */
1134 	OPU,
1135 };
1136 
1137 enum temp_type {
1138 	HOT = 0,	/* must be zero for meta bio */
1139 	WARM,
1140 	COLD,
1141 	NR_TEMP_TYPE,
1142 };
1143 
1144 enum need_lock_type {
1145 	LOCK_REQ = 0,
1146 	LOCK_DONE,
1147 	LOCK_RETRY,
1148 };
1149 
1150 enum cp_reason_type {
1151 	CP_NO_NEEDED,
1152 	CP_NON_REGULAR,
1153 	CP_COMPRESSED,
1154 	CP_HARDLINK,
1155 	CP_SB_NEED_CP,
1156 	CP_WRONG_PINO,
1157 	CP_NO_SPC_ROLL,
1158 	CP_NODE_NEED_CP,
1159 	CP_FASTBOOT_MODE,
1160 	CP_SPEC_LOG_NUM,
1161 	CP_RECOVER_DIR,
1162 };
1163 
1164 enum iostat_type {
1165 	/* WRITE IO */
1166 	APP_DIRECT_IO,			/* app direct write IOs */
1167 	APP_BUFFERED_IO,		/* app buffered write IOs */
1168 	APP_WRITE_IO,			/* app write IOs */
1169 	APP_MAPPED_IO,			/* app mapped IOs */
1170 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1171 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1172 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1173 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1174 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1175 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1176 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1177 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1178 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1179 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1180 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1181 
1182 	/* READ IO */
1183 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1184 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1185 	APP_READ_IO,			/* app read IOs */
1186 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1187 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1188 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1189 	FS_DATA_READ_IO,		/* data read IOs */
1190 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1191 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1192 	FS_NODE_READ_IO,		/* node read IOs */
1193 	FS_META_READ_IO,		/* meta read IOs */
1194 
1195 	/* other */
1196 	FS_DISCARD,			/* discard */
1197 	NR_IO_TYPE,
1198 };
1199 
1200 struct f2fs_io_info {
1201 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1202 	nid_t ino;		/* inode number */
1203 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1204 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1205 	enum req_op op;		/* contains REQ_OP_ */
1206 	blk_opf_t op_flags;	/* req_flag_bits */
1207 	block_t new_blkaddr;	/* new block address to be written */
1208 	block_t old_blkaddr;	/* old block address before Cow */
1209 	struct page *page;	/* page to be written */
1210 	struct page *encrypted_page;	/* encrypted page */
1211 	struct page *compressed_page;	/* compressed page */
1212 	struct list_head list;		/* serialize IOs */
1213 	bool submitted;		/* indicate IO submission */
1214 	int need_lock;		/* indicate we need to lock cp_rwsem */
1215 	bool in_list;		/* indicate fio is in io_list */
1216 	bool is_por;		/* indicate IO is from recovery or not */
1217 	bool retry;		/* need to reallocate block address */
1218 	int compr_blocks;	/* # of compressed block addresses */
1219 	bool encrypted;		/* indicate file is encrypted */
1220 	bool post_read;		/* require post read */
1221 	enum iostat_type io_type;	/* io type */
1222 	struct writeback_control *io_wbc; /* writeback control */
1223 	struct bio **bio;		/* bio for ipu */
1224 	sector_t *last_block;		/* last block number in bio */
1225 	unsigned char version;		/* version of the node */
1226 };
1227 
1228 struct bio_entry {
1229 	struct bio *bio;
1230 	struct list_head list;
1231 };
1232 
1233 #define is_read_io(rw) ((rw) == READ)
1234 struct f2fs_bio_info {
1235 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1236 	struct bio *bio;		/* bios to merge */
1237 	sector_t last_block_in_bio;	/* last block number */
1238 	struct f2fs_io_info fio;	/* store buffered io info. */
1239 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1240 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1241 	struct list_head io_list;	/* track fios */
1242 	struct list_head bio_list;	/* bio entry list head */
1243 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1244 };
1245 
1246 #define FDEV(i)				(sbi->devs[i])
1247 #define RDEV(i)				(raw_super->devs[i])
1248 struct f2fs_dev_info {
1249 	struct block_device *bdev;
1250 	char path[MAX_PATH_LEN];
1251 	unsigned int total_segments;
1252 	block_t start_blk;
1253 	block_t end_blk;
1254 #ifdef CONFIG_BLK_DEV_ZONED
1255 	unsigned int nr_blkz;		/* Total number of zones */
1256 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1257 #endif
1258 };
1259 
1260 enum inode_type {
1261 	DIR_INODE,			/* for dirty dir inode */
1262 	FILE_INODE,			/* for dirty regular/symlink inode */
1263 	DIRTY_META,			/* for all dirtied inode metadata */
1264 	NR_INODE_TYPE,
1265 };
1266 
1267 /* for inner inode cache management */
1268 struct inode_management {
1269 	struct radix_tree_root ino_root;	/* ino entry array */
1270 	spinlock_t ino_lock;			/* for ino entry lock */
1271 	struct list_head ino_list;		/* inode list head */
1272 	unsigned long ino_num;			/* number of entries */
1273 };
1274 
1275 /* for GC_AT */
1276 struct atgc_management {
1277 	bool atgc_enabled;			/* ATGC is enabled or not */
1278 	struct rb_root_cached root;		/* root of victim rb-tree */
1279 	struct list_head victim_list;		/* linked with all victim entries */
1280 	unsigned int victim_count;		/* victim count in rb-tree */
1281 	unsigned int candidate_ratio;		/* candidate ratio */
1282 	unsigned int max_candidate_count;	/* max candidate count */
1283 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1284 	unsigned long long age_threshold;	/* age threshold */
1285 };
1286 
1287 struct f2fs_gc_control {
1288 	unsigned int victim_segno;	/* target victim segment number */
1289 	int init_gc_type;		/* FG_GC or BG_GC */
1290 	bool no_bg_gc;			/* check the space and stop bg_gc */
1291 	bool should_migrate_blocks;	/* should migrate blocks */
1292 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1293 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1294 };
1295 
1296 /* For s_flag in struct f2fs_sb_info */
1297 enum {
1298 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1299 	SBI_IS_CLOSE,				/* specify unmounting */
1300 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1301 	SBI_POR_DOING,				/* recovery is doing or not */
1302 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1303 	SBI_NEED_CP,				/* need to checkpoint */
1304 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1305 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1306 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1307 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1308 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1309 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1310 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1311 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1312 	SBI_IS_FREEZING,			/* freezefs is in process */
1313 };
1314 
1315 enum {
1316 	CP_TIME,
1317 	REQ_TIME,
1318 	DISCARD_TIME,
1319 	GC_TIME,
1320 	DISABLE_TIME,
1321 	UMOUNT_DISCARD_TIMEOUT,
1322 	MAX_TIME,
1323 };
1324 
1325 /* Note that you need to keep synchronization with this gc_mode_names array */
1326 enum {
1327 	GC_NORMAL,
1328 	GC_IDLE_CB,
1329 	GC_IDLE_GREEDY,
1330 	GC_IDLE_AT,
1331 	GC_URGENT_HIGH,
1332 	GC_URGENT_LOW,
1333 	GC_URGENT_MID,
1334 	MAX_GC_MODE,
1335 };
1336 
1337 enum {
1338 	BGGC_MODE_ON,		/* background gc is on */
1339 	BGGC_MODE_OFF,		/* background gc is off */
1340 	BGGC_MODE_SYNC,		/*
1341 				 * background gc is on, migrating blocks
1342 				 * like foreground gc
1343 				 */
1344 };
1345 
1346 enum {
1347 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1348 	FS_MODE_LFS,			/* use lfs allocation only */
1349 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1350 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1351 };
1352 
1353 enum {
1354 	ALLOC_MODE_DEFAULT,	/* stay default */
1355 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1356 };
1357 
1358 enum fsync_mode {
1359 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1360 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1361 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1362 };
1363 
1364 enum {
1365 	COMPR_MODE_FS,		/*
1366 				 * automatically compress compression
1367 				 * enabled files
1368 				 */
1369 	COMPR_MODE_USER,	/*
1370 				 * automatical compression is disabled.
1371 				 * user can control the file compression
1372 				 * using ioctls
1373 				 */
1374 };
1375 
1376 enum {
1377 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1378 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1379 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1380 };
1381 
1382 enum {
1383 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1384 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1385 };
1386 
1387 
1388 
1389 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1390 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1391 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1392 
1393 /*
1394  * Layout of f2fs page.private:
1395  *
1396  * Layout A: lowest bit should be 1
1397  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1398  * bit 0	PAGE_PRIVATE_NOT_POINTER
1399  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1400  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1401  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1402  * bit 4	PAGE_PRIVATE_INLINE_INODE
1403  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1404  * bit 6-	f2fs private data
1405  *
1406  * Layout B: lowest bit should be 0
1407  * page.private is a wrapped pointer.
1408  */
1409 enum {
1410 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1411 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1412 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1413 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1414 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1415 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1416 	PAGE_PRIVATE_MAX
1417 };
1418 
1419 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1420 static inline bool page_private_##name(struct page *page) \
1421 { \
1422 	return PagePrivate(page) && \
1423 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1424 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1425 }
1426 
1427 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1428 static inline void set_page_private_##name(struct page *page) \
1429 { \
1430 	if (!PagePrivate(page)) { \
1431 		get_page(page); \
1432 		SetPagePrivate(page); \
1433 		set_page_private(page, 0); \
1434 	} \
1435 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1436 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1437 }
1438 
1439 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1440 static inline void clear_page_private_##name(struct page *page) \
1441 { \
1442 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1443 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1444 		set_page_private(page, 0); \
1445 		if (PagePrivate(page)) { \
1446 			ClearPagePrivate(page); \
1447 			put_page(page); \
1448 		}\
1449 	} \
1450 }
1451 
1452 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1453 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1454 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1455 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1456 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1457 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1458 
1459 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1460 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1461 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1462 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1463 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1464 
1465 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1466 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1467 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1468 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1469 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1470 
1471 static inline unsigned long get_page_private_data(struct page *page)
1472 {
1473 	unsigned long data = page_private(page);
1474 
1475 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1476 		return 0;
1477 	return data >> PAGE_PRIVATE_MAX;
1478 }
1479 
1480 static inline void set_page_private_data(struct page *page, unsigned long data)
1481 {
1482 	if (!PagePrivate(page)) {
1483 		get_page(page);
1484 		SetPagePrivate(page);
1485 		set_page_private(page, 0);
1486 	}
1487 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1488 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1489 }
1490 
1491 static inline void clear_page_private_data(struct page *page)
1492 {
1493 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1494 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1495 		set_page_private(page, 0);
1496 		if (PagePrivate(page)) {
1497 			ClearPagePrivate(page);
1498 			put_page(page);
1499 		}
1500 	}
1501 }
1502 
1503 /* For compression */
1504 enum compress_algorithm_type {
1505 	COMPRESS_LZO,
1506 	COMPRESS_LZ4,
1507 	COMPRESS_ZSTD,
1508 	COMPRESS_LZORLE,
1509 	COMPRESS_MAX,
1510 };
1511 
1512 enum compress_flag {
1513 	COMPRESS_CHKSUM,
1514 	COMPRESS_MAX_FLAG,
1515 };
1516 
1517 #define	COMPRESS_WATERMARK			20
1518 #define	COMPRESS_PERCENT			20
1519 
1520 #define COMPRESS_DATA_RESERVED_SIZE		4
1521 struct compress_data {
1522 	__le32 clen;			/* compressed data size */
1523 	__le32 chksum;			/* compressed data chksum */
1524 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1525 	u8 cdata[];			/* compressed data */
1526 };
1527 
1528 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1529 
1530 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1531 
1532 #define	COMPRESS_LEVEL_OFFSET	8
1533 
1534 /* compress context */
1535 struct compress_ctx {
1536 	struct inode *inode;		/* inode the context belong to */
1537 	pgoff_t cluster_idx;		/* cluster index number */
1538 	unsigned int cluster_size;	/* page count in cluster */
1539 	unsigned int log_cluster_size;	/* log of cluster size */
1540 	struct page **rpages;		/* pages store raw data in cluster */
1541 	unsigned int nr_rpages;		/* total page number in rpages */
1542 	struct page **cpages;		/* pages store compressed data in cluster */
1543 	unsigned int nr_cpages;		/* total page number in cpages */
1544 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1545 	void *rbuf;			/* virtual mapped address on rpages */
1546 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1547 	size_t rlen;			/* valid data length in rbuf */
1548 	size_t clen;			/* valid data length in cbuf */
1549 	void *private;			/* payload buffer for specified compression algorithm */
1550 	void *private2;			/* extra payload buffer */
1551 };
1552 
1553 /* compress context for write IO path */
1554 struct compress_io_ctx {
1555 	u32 magic;			/* magic number to indicate page is compressed */
1556 	struct inode *inode;		/* inode the context belong to */
1557 	struct page **rpages;		/* pages store raw data in cluster */
1558 	unsigned int nr_rpages;		/* total page number in rpages */
1559 	atomic_t pending_pages;		/* in-flight compressed page count */
1560 };
1561 
1562 /* Context for decompressing one cluster on the read IO path */
1563 struct decompress_io_ctx {
1564 	u32 magic;			/* magic number to indicate page is compressed */
1565 	struct inode *inode;		/* inode the context belong to */
1566 	pgoff_t cluster_idx;		/* cluster index number */
1567 	unsigned int cluster_size;	/* page count in cluster */
1568 	unsigned int log_cluster_size;	/* log of cluster size */
1569 	struct page **rpages;		/* pages store raw data in cluster */
1570 	unsigned int nr_rpages;		/* total page number in rpages */
1571 	struct page **cpages;		/* pages store compressed data in cluster */
1572 	unsigned int nr_cpages;		/* total page number in cpages */
1573 	struct page **tpages;		/* temp pages to pad holes in cluster */
1574 	void *rbuf;			/* virtual mapped address on rpages */
1575 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1576 	size_t rlen;			/* valid data length in rbuf */
1577 	size_t clen;			/* valid data length in cbuf */
1578 
1579 	/*
1580 	 * The number of compressed pages remaining to be read in this cluster.
1581 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1582 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1583 	 * is decompressed (or an error is reported).
1584 	 *
1585 	 * If an error occurs before all the pages have been submitted for I/O,
1586 	 * then this will never reach 0.  In this case the I/O submitter is
1587 	 * responsible for calling f2fs_decompress_end_io() instead.
1588 	 */
1589 	atomic_t remaining_pages;
1590 
1591 	/*
1592 	 * Number of references to this decompress_io_ctx.
1593 	 *
1594 	 * One reference is held for I/O completion.  This reference is dropped
1595 	 * after the pagecache pages are updated and unlocked -- either after
1596 	 * decompression (and verity if enabled), or after an error.
1597 	 *
1598 	 * In addition, each compressed page holds a reference while it is in a
1599 	 * bio.  These references are necessary prevent compressed pages from
1600 	 * being freed while they are still in a bio.
1601 	 */
1602 	refcount_t refcnt;
1603 
1604 	bool failed;			/* IO error occurred before decompression? */
1605 	bool need_verity;		/* need fs-verity verification after decompression? */
1606 	void *private;			/* payload buffer for specified decompression algorithm */
1607 	void *private2;			/* extra payload buffer */
1608 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1609 	struct work_struct free_work;	/* work for late free this structure itself */
1610 };
1611 
1612 #define NULL_CLUSTER			((unsigned int)(~0))
1613 #define MIN_COMPRESS_LOG_SIZE		2
1614 #define MAX_COMPRESS_LOG_SIZE		8
1615 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1616 
1617 struct f2fs_sb_info {
1618 	struct super_block *sb;			/* pointer to VFS super block */
1619 	struct proc_dir_entry *s_proc;		/* proc entry */
1620 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1621 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1622 	int valid_super_block;			/* valid super block no */
1623 	unsigned long s_flag;				/* flags for sbi */
1624 	struct mutex writepages;		/* mutex for writepages() */
1625 
1626 #ifdef CONFIG_BLK_DEV_ZONED
1627 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1628 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1629 #endif
1630 
1631 	/* for node-related operations */
1632 	struct f2fs_nm_info *nm_info;		/* node manager */
1633 	struct inode *node_inode;		/* cache node blocks */
1634 
1635 	/* for segment-related operations */
1636 	struct f2fs_sm_info *sm_info;		/* segment manager */
1637 
1638 	/* for bio operations */
1639 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1640 	/* keep migration IO order for LFS mode */
1641 	struct f2fs_rwsem io_order_lock;
1642 	mempool_t *write_io_dummy;		/* Dummy pages */
1643 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1644 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1645 
1646 	/* for checkpoint */
1647 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1648 	int cur_cp_pack;			/* remain current cp pack */
1649 	spinlock_t cp_lock;			/* for flag in ckpt */
1650 	struct inode *meta_inode;		/* cache meta blocks */
1651 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1652 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1653 	struct f2fs_rwsem node_write;		/* locking node writes */
1654 	struct f2fs_rwsem node_change;	/* locking node change */
1655 	wait_queue_head_t cp_wait;
1656 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1657 	long interval_time[MAX_TIME];		/* to store thresholds */
1658 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1659 
1660 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1661 
1662 	spinlock_t fsync_node_lock;		/* for node entry lock */
1663 	struct list_head fsync_node_list;	/* node list head */
1664 	unsigned int fsync_seg_id;		/* sequence id */
1665 	unsigned int fsync_node_num;		/* number of node entries */
1666 
1667 	/* for orphan inode, use 0'th array */
1668 	unsigned int max_orphans;		/* max orphan inodes */
1669 
1670 	/* for inode management */
1671 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1672 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1673 	struct mutex flush_lock;		/* for flush exclusion */
1674 
1675 	/* for extent tree cache */
1676 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1677 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1678 	struct list_head extent_list;		/* lru list for shrinker */
1679 	spinlock_t extent_lock;			/* locking extent lru list */
1680 	atomic_t total_ext_tree;		/* extent tree count */
1681 	struct list_head zombie_list;		/* extent zombie tree list */
1682 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1683 	atomic_t total_ext_node;		/* extent info count */
1684 
1685 	/* basic filesystem units */
1686 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1687 	unsigned int log_blocksize;		/* log2 block size */
1688 	unsigned int blocksize;			/* block size */
1689 	unsigned int root_ino_num;		/* root inode number*/
1690 	unsigned int node_ino_num;		/* node inode number*/
1691 	unsigned int meta_ino_num;		/* meta inode number*/
1692 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1693 	unsigned int blocks_per_seg;		/* blocks per segment */
1694 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1695 	unsigned int segs_per_sec;		/* segments per section */
1696 	unsigned int secs_per_zone;		/* sections per zone */
1697 	unsigned int total_sections;		/* total section count */
1698 	unsigned int total_node_count;		/* total node block count */
1699 	unsigned int total_valid_node_count;	/* valid node block count */
1700 	int dir_level;				/* directory level */
1701 	bool readdir_ra;			/* readahead inode in readdir */
1702 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1703 
1704 	block_t user_block_count;		/* # of user blocks */
1705 	block_t total_valid_block_count;	/* # of valid blocks */
1706 	block_t discard_blks;			/* discard command candidats */
1707 	block_t last_valid_block_count;		/* for recovery */
1708 	block_t reserved_blocks;		/* configurable reserved blocks */
1709 	block_t current_reserved_blocks;	/* current reserved blocks */
1710 
1711 	/* Additional tracking for no checkpoint mode */
1712 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1713 
1714 	unsigned int nquota_files;		/* # of quota sysfile */
1715 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1716 
1717 	/* # of pages, see count_type */
1718 	atomic_t nr_pages[NR_COUNT_TYPE];
1719 	/* # of allocated blocks */
1720 	struct percpu_counter alloc_valid_block_count;
1721 	/* # of node block writes as roll forward recovery */
1722 	struct percpu_counter rf_node_block_count;
1723 
1724 	/* writeback control */
1725 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1726 
1727 	/* valid inode count */
1728 	struct percpu_counter total_valid_inode_count;
1729 
1730 	struct f2fs_mount_info mount_opt;	/* mount options */
1731 
1732 	/* for cleaning operations */
1733 	struct f2fs_rwsem gc_lock;		/*
1734 						 * semaphore for GC, avoid
1735 						 * race between GC and GC or CP
1736 						 */
1737 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1738 	struct atgc_management am;		/* atgc management */
1739 	unsigned int cur_victim_sec;		/* current victim section num */
1740 	unsigned int gc_mode;			/* current GC state */
1741 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1742 	spinlock_t gc_remaining_trials_lock;
1743 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1744 	unsigned int gc_remaining_trials;
1745 
1746 	/* for skip statistic */
1747 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1748 
1749 	/* threshold for gc trials on pinned files */
1750 	u64 gc_pin_file_threshold;
1751 	struct f2fs_rwsem pin_sem;
1752 
1753 	/* maximum # of trials to find a victim segment for SSR and GC */
1754 	unsigned int max_victim_search;
1755 	/* migration granularity of garbage collection, unit: segment */
1756 	unsigned int migration_granularity;
1757 
1758 	/*
1759 	 * for stat information.
1760 	 * one is for the LFS mode, and the other is for the SSR mode.
1761 	 */
1762 #ifdef CONFIG_F2FS_STAT_FS
1763 	struct f2fs_stat_info *stat_info;	/* FS status information */
1764 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1765 	unsigned int segment_count[2];		/* # of allocated segments */
1766 	unsigned int block_count[2];		/* # of allocated blocks */
1767 	atomic_t inplace_count;		/* # of inplace update */
1768 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1769 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1770 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1771 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1772 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1773 	atomic_t inline_inode;			/* # of inline_data inodes */
1774 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1775 	atomic_t compr_inode;			/* # of compressed inodes */
1776 	atomic64_t compr_blocks;		/* # of compressed blocks */
1777 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1778 	atomic_t atomic_files;			/* # of opened atomic file */
1779 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1780 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1781 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1782 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1783 #endif
1784 	spinlock_t stat_lock;			/* lock for stat operations */
1785 
1786 	/* to attach REQ_META|REQ_FUA flags */
1787 	unsigned int data_io_flag;
1788 	unsigned int node_io_flag;
1789 
1790 	/* For sysfs support */
1791 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1792 	struct completion s_kobj_unregister;
1793 
1794 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1795 	struct completion s_stat_kobj_unregister;
1796 
1797 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1798 	struct completion s_feature_list_kobj_unregister;
1799 
1800 	/* For shrinker support */
1801 	struct list_head s_list;
1802 	struct mutex umount_mutex;
1803 	unsigned int shrinker_run_no;
1804 
1805 	/* For multi devices */
1806 	int s_ndevs;				/* number of devices */
1807 	struct f2fs_dev_info *devs;		/* for device list */
1808 	unsigned int dirty_device;		/* for checkpoint data flush */
1809 	spinlock_t dev_lock;			/* protect dirty_device */
1810 	bool aligned_blksize;			/* all devices has the same logical blksize */
1811 
1812 	/* For write statistics */
1813 	u64 sectors_written_start;
1814 	u64 kbytes_written;
1815 
1816 	/* Reference to checksum algorithm driver via cryptoapi */
1817 	struct crypto_shash *s_chksum_driver;
1818 
1819 	/* Precomputed FS UUID checksum for seeding other checksums */
1820 	__u32 s_chksum_seed;
1821 
1822 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1823 
1824 	unsigned char errors[MAX_F2FS_ERRORS];	/* error flags */
1825 	spinlock_t error_lock;			/* protect errors array */
1826 	bool error_dirty;			/* errors of sb is dirty */
1827 
1828 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1829 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1830 
1831 	/* For reclaimed segs statistics per each GC mode */
1832 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1833 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1834 
1835 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1836 
1837 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1838 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1839 
1840 	/* For atomic write statistics */
1841 	atomic64_t current_atomic_write;
1842 	s64 peak_atomic_write;
1843 	u64 committed_atomic_block;
1844 	u64 revoked_atomic_block;
1845 
1846 #ifdef CONFIG_F2FS_FS_COMPRESSION
1847 	struct kmem_cache *page_array_slab;	/* page array entry */
1848 	unsigned int page_array_slab_size;	/* default page array slab size */
1849 
1850 	/* For runtime compression statistics */
1851 	u64 compr_written_block;
1852 	u64 compr_saved_block;
1853 	u32 compr_new_inode;
1854 
1855 	/* For compressed block cache */
1856 	struct inode *compress_inode;		/* cache compressed blocks */
1857 	unsigned int compress_percent;		/* cache page percentage */
1858 	unsigned int compress_watermark;	/* cache page watermark */
1859 	atomic_t compress_page_hit;		/* cache hit count */
1860 #endif
1861 
1862 #ifdef CONFIG_F2FS_IOSTAT
1863 	/* For app/fs IO statistics */
1864 	spinlock_t iostat_lock;
1865 	unsigned long long rw_iostat[NR_IO_TYPE];
1866 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1867 	bool iostat_enable;
1868 	unsigned long iostat_next_period;
1869 	unsigned int iostat_period_ms;
1870 
1871 	/* For io latency related statistics info in one iostat period */
1872 	spinlock_t iostat_lat_lock;
1873 	struct iostat_lat_info *iostat_io_lat;
1874 #endif
1875 };
1876 
1877 #ifdef CONFIG_F2FS_FAULT_INJECTION
1878 #define f2fs_show_injection_info(sbi, type)					\
1879 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1880 		KERN_INFO, sbi->sb->s_id,				\
1881 		f2fs_fault_name[type],					\
1882 		__func__, __builtin_return_address(0))
1883 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1884 {
1885 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1886 
1887 	if (!ffi->inject_rate)
1888 		return false;
1889 
1890 	if (!IS_FAULT_SET(ffi, type))
1891 		return false;
1892 
1893 	atomic_inc(&ffi->inject_ops);
1894 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1895 		atomic_set(&ffi->inject_ops, 0);
1896 		return true;
1897 	}
1898 	return false;
1899 }
1900 #else
1901 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1902 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1903 {
1904 	return false;
1905 }
1906 #endif
1907 
1908 /*
1909  * Test if the mounted volume is a multi-device volume.
1910  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1911  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1912  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1913  */
1914 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1915 {
1916 	return sbi->s_ndevs > 1;
1917 }
1918 
1919 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1920 {
1921 	unsigned long now = jiffies;
1922 
1923 	sbi->last_time[type] = now;
1924 
1925 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1926 	if (type == REQ_TIME) {
1927 		sbi->last_time[DISCARD_TIME] = now;
1928 		sbi->last_time[GC_TIME] = now;
1929 	}
1930 }
1931 
1932 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1933 {
1934 	unsigned long interval = sbi->interval_time[type] * HZ;
1935 
1936 	return time_after(jiffies, sbi->last_time[type] + interval);
1937 }
1938 
1939 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1940 						int type)
1941 {
1942 	unsigned long interval = sbi->interval_time[type] * HZ;
1943 	unsigned int wait_ms = 0;
1944 	long delta;
1945 
1946 	delta = (sbi->last_time[type] + interval) - jiffies;
1947 	if (delta > 0)
1948 		wait_ms = jiffies_to_msecs(delta);
1949 
1950 	return wait_ms;
1951 }
1952 
1953 /*
1954  * Inline functions
1955  */
1956 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1957 			      const void *address, unsigned int length)
1958 {
1959 	struct {
1960 		struct shash_desc shash;
1961 		char ctx[4];
1962 	} desc;
1963 	int err;
1964 
1965 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1966 
1967 	desc.shash.tfm = sbi->s_chksum_driver;
1968 	*(u32 *)desc.ctx = crc;
1969 
1970 	err = crypto_shash_update(&desc.shash, address, length);
1971 	BUG_ON(err);
1972 
1973 	return *(u32 *)desc.ctx;
1974 }
1975 
1976 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1977 			   unsigned int length)
1978 {
1979 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1980 }
1981 
1982 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1983 				  void *buf, size_t buf_size)
1984 {
1985 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1986 }
1987 
1988 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1989 			      const void *address, unsigned int length)
1990 {
1991 	return __f2fs_crc32(sbi, crc, address, length);
1992 }
1993 
1994 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1995 {
1996 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1997 }
1998 
1999 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
2000 {
2001 	return sb->s_fs_info;
2002 }
2003 
2004 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2005 {
2006 	return F2FS_SB(inode->i_sb);
2007 }
2008 
2009 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2010 {
2011 	return F2FS_I_SB(mapping->host);
2012 }
2013 
2014 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2015 {
2016 	return F2FS_M_SB(page_file_mapping(page));
2017 }
2018 
2019 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2020 {
2021 	return (struct f2fs_super_block *)(sbi->raw_super);
2022 }
2023 
2024 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2025 {
2026 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2027 }
2028 
2029 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2030 {
2031 	return (struct f2fs_node *)page_address(page);
2032 }
2033 
2034 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2035 {
2036 	return &((struct f2fs_node *)page_address(page))->i;
2037 }
2038 
2039 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2040 {
2041 	return (struct f2fs_nm_info *)(sbi->nm_info);
2042 }
2043 
2044 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2045 {
2046 	return (struct f2fs_sm_info *)(sbi->sm_info);
2047 }
2048 
2049 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2050 {
2051 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2052 }
2053 
2054 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2055 {
2056 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2057 }
2058 
2059 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2060 {
2061 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2062 }
2063 
2064 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2065 {
2066 	return sbi->meta_inode->i_mapping;
2067 }
2068 
2069 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2070 {
2071 	return sbi->node_inode->i_mapping;
2072 }
2073 
2074 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2075 {
2076 	return test_bit(type, &sbi->s_flag);
2077 }
2078 
2079 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2080 {
2081 	set_bit(type, &sbi->s_flag);
2082 }
2083 
2084 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2085 {
2086 	clear_bit(type, &sbi->s_flag);
2087 }
2088 
2089 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2090 {
2091 	return le64_to_cpu(cp->checkpoint_ver);
2092 }
2093 
2094 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2095 {
2096 	if (type < F2FS_MAX_QUOTAS)
2097 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2098 	return 0;
2099 }
2100 
2101 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2102 {
2103 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2104 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2105 }
2106 
2107 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2108 {
2109 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2110 
2111 	return ckpt_flags & f;
2112 }
2113 
2114 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2115 {
2116 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2117 }
2118 
2119 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2120 {
2121 	unsigned int ckpt_flags;
2122 
2123 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2124 	ckpt_flags |= f;
2125 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2126 }
2127 
2128 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2129 {
2130 	unsigned long flags;
2131 
2132 	spin_lock_irqsave(&sbi->cp_lock, flags);
2133 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2134 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2135 }
2136 
2137 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2138 {
2139 	unsigned int ckpt_flags;
2140 
2141 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2142 	ckpt_flags &= (~f);
2143 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2144 }
2145 
2146 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2147 {
2148 	unsigned long flags;
2149 
2150 	spin_lock_irqsave(&sbi->cp_lock, flags);
2151 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2152 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2153 }
2154 
2155 #define init_f2fs_rwsem(sem)					\
2156 do {								\
2157 	static struct lock_class_key __key;			\
2158 								\
2159 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2160 } while (0)
2161 
2162 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2163 		const char *sem_name, struct lock_class_key *key)
2164 {
2165 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2166 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2167 	init_waitqueue_head(&sem->read_waiters);
2168 #endif
2169 }
2170 
2171 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2172 {
2173 	return rwsem_is_locked(&sem->internal_rwsem);
2174 }
2175 
2176 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2177 {
2178 	return rwsem_is_contended(&sem->internal_rwsem);
2179 }
2180 
2181 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2182 {
2183 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2184 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2185 #else
2186 	down_read(&sem->internal_rwsem);
2187 #endif
2188 }
2189 
2190 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2191 {
2192 	return down_read_trylock(&sem->internal_rwsem);
2193 }
2194 
2195 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2196 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2197 {
2198 	down_read_nested(&sem->internal_rwsem, subclass);
2199 }
2200 #else
2201 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2202 #endif
2203 
2204 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2205 {
2206 	up_read(&sem->internal_rwsem);
2207 }
2208 
2209 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2210 {
2211 	down_write(&sem->internal_rwsem);
2212 }
2213 
2214 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2215 {
2216 	return down_write_trylock(&sem->internal_rwsem);
2217 }
2218 
2219 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2220 {
2221 	up_write(&sem->internal_rwsem);
2222 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2223 	wake_up_all(&sem->read_waiters);
2224 #endif
2225 }
2226 
2227 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2228 {
2229 	f2fs_down_read(&sbi->cp_rwsem);
2230 }
2231 
2232 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2233 {
2234 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2235 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2236 		return 0;
2237 	}
2238 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2239 }
2240 
2241 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2242 {
2243 	f2fs_up_read(&sbi->cp_rwsem);
2244 }
2245 
2246 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2247 {
2248 	f2fs_down_write(&sbi->cp_rwsem);
2249 }
2250 
2251 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2252 {
2253 	f2fs_up_write(&sbi->cp_rwsem);
2254 }
2255 
2256 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2257 {
2258 	int reason = CP_SYNC;
2259 
2260 	if (test_opt(sbi, FASTBOOT))
2261 		reason = CP_FASTBOOT;
2262 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2263 		reason = CP_UMOUNT;
2264 	return reason;
2265 }
2266 
2267 static inline bool __remain_node_summaries(int reason)
2268 {
2269 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2270 }
2271 
2272 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2273 {
2274 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2275 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2276 }
2277 
2278 /*
2279  * Check whether the inode has blocks or not
2280  */
2281 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2282 {
2283 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2284 
2285 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2286 }
2287 
2288 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2289 {
2290 	return ofs == XATTR_NODE_OFFSET;
2291 }
2292 
2293 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2294 					struct inode *inode, bool cap)
2295 {
2296 	if (!inode)
2297 		return true;
2298 	if (!test_opt(sbi, RESERVE_ROOT))
2299 		return false;
2300 	if (IS_NOQUOTA(inode))
2301 		return true;
2302 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2303 		return true;
2304 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2305 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2306 		return true;
2307 	if (cap && capable(CAP_SYS_RESOURCE))
2308 		return true;
2309 	return false;
2310 }
2311 
2312 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2313 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2314 				 struct inode *inode, blkcnt_t *count)
2315 {
2316 	blkcnt_t diff = 0, release = 0;
2317 	block_t avail_user_block_count;
2318 	int ret;
2319 
2320 	ret = dquot_reserve_block(inode, *count);
2321 	if (ret)
2322 		return ret;
2323 
2324 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2325 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2326 		release = *count;
2327 		goto release_quota;
2328 	}
2329 
2330 	/*
2331 	 * let's increase this in prior to actual block count change in order
2332 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2333 	 */
2334 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2335 
2336 	spin_lock(&sbi->stat_lock);
2337 	sbi->total_valid_block_count += (block_t)(*count);
2338 	avail_user_block_count = sbi->user_block_count -
2339 					sbi->current_reserved_blocks;
2340 
2341 	if (!__allow_reserved_blocks(sbi, inode, true))
2342 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2343 
2344 	if (F2FS_IO_ALIGNED(sbi))
2345 		avail_user_block_count -= sbi->blocks_per_seg *
2346 				SM_I(sbi)->additional_reserved_segments;
2347 
2348 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2349 		if (avail_user_block_count > sbi->unusable_block_count)
2350 			avail_user_block_count -= sbi->unusable_block_count;
2351 		else
2352 			avail_user_block_count = 0;
2353 	}
2354 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2355 		diff = sbi->total_valid_block_count - avail_user_block_count;
2356 		if (diff > *count)
2357 			diff = *count;
2358 		*count -= diff;
2359 		release = diff;
2360 		sbi->total_valid_block_count -= diff;
2361 		if (!*count) {
2362 			spin_unlock(&sbi->stat_lock);
2363 			goto enospc;
2364 		}
2365 	}
2366 	spin_unlock(&sbi->stat_lock);
2367 
2368 	if (unlikely(release)) {
2369 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2370 		dquot_release_reservation_block(inode, release);
2371 	}
2372 	f2fs_i_blocks_write(inode, *count, true, true);
2373 	return 0;
2374 
2375 enospc:
2376 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2377 release_quota:
2378 	dquot_release_reservation_block(inode, release);
2379 	return -ENOSPC;
2380 }
2381 
2382 __printf(2, 3)
2383 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2384 
2385 #define f2fs_err(sbi, fmt, ...)						\
2386 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2387 #define f2fs_warn(sbi, fmt, ...)					\
2388 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2389 #define f2fs_notice(sbi, fmt, ...)					\
2390 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2391 #define f2fs_info(sbi, fmt, ...)					\
2392 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2393 #define f2fs_debug(sbi, fmt, ...)					\
2394 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2395 
2396 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2397 						struct inode *inode,
2398 						block_t count)
2399 {
2400 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2401 
2402 	spin_lock(&sbi->stat_lock);
2403 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2404 	sbi->total_valid_block_count -= (block_t)count;
2405 	if (sbi->reserved_blocks &&
2406 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2407 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2408 					sbi->current_reserved_blocks + count);
2409 	spin_unlock(&sbi->stat_lock);
2410 	if (unlikely(inode->i_blocks < sectors)) {
2411 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2412 			  inode->i_ino,
2413 			  (unsigned long long)inode->i_blocks,
2414 			  (unsigned long long)sectors);
2415 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2416 		return;
2417 	}
2418 	f2fs_i_blocks_write(inode, count, false, true);
2419 }
2420 
2421 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2422 {
2423 	atomic_inc(&sbi->nr_pages[count_type]);
2424 
2425 	if (count_type == F2FS_DIRTY_DENTS ||
2426 			count_type == F2FS_DIRTY_NODES ||
2427 			count_type == F2FS_DIRTY_META ||
2428 			count_type == F2FS_DIRTY_QDATA ||
2429 			count_type == F2FS_DIRTY_IMETA)
2430 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2431 }
2432 
2433 static inline void inode_inc_dirty_pages(struct inode *inode)
2434 {
2435 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2436 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2437 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2438 	if (IS_NOQUOTA(inode))
2439 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2440 }
2441 
2442 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2443 {
2444 	atomic_dec(&sbi->nr_pages[count_type]);
2445 }
2446 
2447 static inline void inode_dec_dirty_pages(struct inode *inode)
2448 {
2449 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2450 			!S_ISLNK(inode->i_mode))
2451 		return;
2452 
2453 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2454 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2455 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2456 	if (IS_NOQUOTA(inode))
2457 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2458 }
2459 
2460 static inline void inc_atomic_write_cnt(struct inode *inode)
2461 {
2462 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2463 	struct f2fs_inode_info *fi = F2FS_I(inode);
2464 	u64 current_write;
2465 
2466 	fi->atomic_write_cnt++;
2467 	atomic64_inc(&sbi->current_atomic_write);
2468 	current_write = atomic64_read(&sbi->current_atomic_write);
2469 	if (current_write > sbi->peak_atomic_write)
2470 		sbi->peak_atomic_write = current_write;
2471 }
2472 
2473 static inline void release_atomic_write_cnt(struct inode *inode)
2474 {
2475 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2476 	struct f2fs_inode_info *fi = F2FS_I(inode);
2477 
2478 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2479 	fi->atomic_write_cnt = 0;
2480 }
2481 
2482 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2483 {
2484 	return atomic_read(&sbi->nr_pages[count_type]);
2485 }
2486 
2487 static inline int get_dirty_pages(struct inode *inode)
2488 {
2489 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2490 }
2491 
2492 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2493 {
2494 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2495 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2496 						sbi->log_blocks_per_seg;
2497 
2498 	return segs / sbi->segs_per_sec;
2499 }
2500 
2501 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2502 {
2503 	return sbi->total_valid_block_count;
2504 }
2505 
2506 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2507 {
2508 	return sbi->discard_blks;
2509 }
2510 
2511 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2512 {
2513 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2514 
2515 	/* return NAT or SIT bitmap */
2516 	if (flag == NAT_BITMAP)
2517 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2518 	else if (flag == SIT_BITMAP)
2519 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2520 
2521 	return 0;
2522 }
2523 
2524 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2525 {
2526 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2527 }
2528 
2529 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2530 {
2531 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2532 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2533 	int offset;
2534 
2535 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2536 		offset = (flag == SIT_BITMAP) ?
2537 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2538 		/*
2539 		 * if large_nat_bitmap feature is enabled, leave checksum
2540 		 * protection for all nat/sit bitmaps.
2541 		 */
2542 		return tmp_ptr + offset + sizeof(__le32);
2543 	}
2544 
2545 	if (__cp_payload(sbi) > 0) {
2546 		if (flag == NAT_BITMAP)
2547 			return tmp_ptr;
2548 		else
2549 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2550 	} else {
2551 		offset = (flag == NAT_BITMAP) ?
2552 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2553 		return tmp_ptr + offset;
2554 	}
2555 }
2556 
2557 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2558 {
2559 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2560 
2561 	if (sbi->cur_cp_pack == 2)
2562 		start_addr += sbi->blocks_per_seg;
2563 	return start_addr;
2564 }
2565 
2566 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2567 {
2568 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2569 
2570 	if (sbi->cur_cp_pack == 1)
2571 		start_addr += sbi->blocks_per_seg;
2572 	return start_addr;
2573 }
2574 
2575 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2576 {
2577 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2578 }
2579 
2580 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2581 {
2582 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2583 }
2584 
2585 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2586 					struct inode *inode, bool is_inode)
2587 {
2588 	block_t	valid_block_count;
2589 	unsigned int valid_node_count, user_block_count;
2590 	int err;
2591 
2592 	if (is_inode) {
2593 		if (inode) {
2594 			err = dquot_alloc_inode(inode);
2595 			if (err)
2596 				return err;
2597 		}
2598 	} else {
2599 		err = dquot_reserve_block(inode, 1);
2600 		if (err)
2601 			return err;
2602 	}
2603 
2604 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2605 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2606 		goto enospc;
2607 	}
2608 
2609 	spin_lock(&sbi->stat_lock);
2610 
2611 	valid_block_count = sbi->total_valid_block_count +
2612 					sbi->current_reserved_blocks + 1;
2613 
2614 	if (!__allow_reserved_blocks(sbi, inode, false))
2615 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2616 
2617 	if (F2FS_IO_ALIGNED(sbi))
2618 		valid_block_count += sbi->blocks_per_seg *
2619 				SM_I(sbi)->additional_reserved_segments;
2620 
2621 	user_block_count = sbi->user_block_count;
2622 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2623 		user_block_count -= sbi->unusable_block_count;
2624 
2625 	if (unlikely(valid_block_count > user_block_count)) {
2626 		spin_unlock(&sbi->stat_lock);
2627 		goto enospc;
2628 	}
2629 
2630 	valid_node_count = sbi->total_valid_node_count + 1;
2631 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2632 		spin_unlock(&sbi->stat_lock);
2633 		goto enospc;
2634 	}
2635 
2636 	sbi->total_valid_node_count++;
2637 	sbi->total_valid_block_count++;
2638 	spin_unlock(&sbi->stat_lock);
2639 
2640 	if (inode) {
2641 		if (is_inode)
2642 			f2fs_mark_inode_dirty_sync(inode, true);
2643 		else
2644 			f2fs_i_blocks_write(inode, 1, true, true);
2645 	}
2646 
2647 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2648 	return 0;
2649 
2650 enospc:
2651 	if (is_inode) {
2652 		if (inode)
2653 			dquot_free_inode(inode);
2654 	} else {
2655 		dquot_release_reservation_block(inode, 1);
2656 	}
2657 	return -ENOSPC;
2658 }
2659 
2660 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2661 					struct inode *inode, bool is_inode)
2662 {
2663 	spin_lock(&sbi->stat_lock);
2664 
2665 	if (unlikely(!sbi->total_valid_block_count ||
2666 			!sbi->total_valid_node_count)) {
2667 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2668 			  sbi->total_valid_block_count,
2669 			  sbi->total_valid_node_count);
2670 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2671 	} else {
2672 		sbi->total_valid_block_count--;
2673 		sbi->total_valid_node_count--;
2674 	}
2675 
2676 	if (sbi->reserved_blocks &&
2677 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2678 		sbi->current_reserved_blocks++;
2679 
2680 	spin_unlock(&sbi->stat_lock);
2681 
2682 	if (is_inode) {
2683 		dquot_free_inode(inode);
2684 	} else {
2685 		if (unlikely(inode->i_blocks == 0)) {
2686 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2687 				  inode->i_ino,
2688 				  (unsigned long long)inode->i_blocks);
2689 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2690 			return;
2691 		}
2692 		f2fs_i_blocks_write(inode, 1, false, true);
2693 	}
2694 }
2695 
2696 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2697 {
2698 	return sbi->total_valid_node_count;
2699 }
2700 
2701 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2702 {
2703 	percpu_counter_inc(&sbi->total_valid_inode_count);
2704 }
2705 
2706 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2707 {
2708 	percpu_counter_dec(&sbi->total_valid_inode_count);
2709 }
2710 
2711 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2712 {
2713 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2714 }
2715 
2716 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2717 						pgoff_t index, bool for_write)
2718 {
2719 	struct page *page;
2720 	unsigned int flags;
2721 
2722 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2723 		if (!for_write)
2724 			page = find_get_page_flags(mapping, index,
2725 							FGP_LOCK | FGP_ACCESSED);
2726 		else
2727 			page = find_lock_page(mapping, index);
2728 		if (page)
2729 			return page;
2730 
2731 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2732 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2733 							FAULT_PAGE_ALLOC);
2734 			return NULL;
2735 		}
2736 	}
2737 
2738 	if (!for_write)
2739 		return grab_cache_page(mapping, index);
2740 
2741 	flags = memalloc_nofs_save();
2742 	page = grab_cache_page_write_begin(mapping, index);
2743 	memalloc_nofs_restore(flags);
2744 
2745 	return page;
2746 }
2747 
2748 static inline struct page *f2fs_pagecache_get_page(
2749 				struct address_space *mapping, pgoff_t index,
2750 				int fgp_flags, gfp_t gfp_mask)
2751 {
2752 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2753 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2754 		return NULL;
2755 	}
2756 
2757 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2758 }
2759 
2760 static inline void f2fs_put_page(struct page *page, int unlock)
2761 {
2762 	if (!page)
2763 		return;
2764 
2765 	if (unlock) {
2766 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2767 		unlock_page(page);
2768 	}
2769 	put_page(page);
2770 }
2771 
2772 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2773 {
2774 	if (dn->node_page)
2775 		f2fs_put_page(dn->node_page, 1);
2776 	if (dn->inode_page && dn->node_page != dn->inode_page)
2777 		f2fs_put_page(dn->inode_page, 0);
2778 	dn->node_page = NULL;
2779 	dn->inode_page = NULL;
2780 }
2781 
2782 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2783 					size_t size)
2784 {
2785 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2786 }
2787 
2788 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2789 						gfp_t flags)
2790 {
2791 	void *entry;
2792 
2793 	entry = kmem_cache_alloc(cachep, flags);
2794 	if (!entry)
2795 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2796 	return entry;
2797 }
2798 
2799 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2800 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2801 {
2802 	if (nofail)
2803 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2804 
2805 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2806 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2807 		return NULL;
2808 	}
2809 
2810 	return kmem_cache_alloc(cachep, flags);
2811 }
2812 
2813 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2814 {
2815 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2816 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2817 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2818 		get_pages(sbi, F2FS_DIO_READ) ||
2819 		get_pages(sbi, F2FS_DIO_WRITE))
2820 		return true;
2821 
2822 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2823 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2824 		return true;
2825 
2826 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2827 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2828 		return true;
2829 	return false;
2830 }
2831 
2832 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2833 {
2834 	if (sbi->gc_mode == GC_URGENT_HIGH)
2835 		return true;
2836 
2837 	if (is_inflight_io(sbi, type))
2838 		return false;
2839 
2840 	if (sbi->gc_mode == GC_URGENT_MID)
2841 		return true;
2842 
2843 	if (sbi->gc_mode == GC_URGENT_LOW &&
2844 			(type == DISCARD_TIME || type == GC_TIME))
2845 		return true;
2846 
2847 	return f2fs_time_over(sbi, type);
2848 }
2849 
2850 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2851 				unsigned long index, void *item)
2852 {
2853 	while (radix_tree_insert(root, index, item))
2854 		cond_resched();
2855 }
2856 
2857 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2858 
2859 static inline bool IS_INODE(struct page *page)
2860 {
2861 	struct f2fs_node *p = F2FS_NODE(page);
2862 
2863 	return RAW_IS_INODE(p);
2864 }
2865 
2866 static inline int offset_in_addr(struct f2fs_inode *i)
2867 {
2868 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2869 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2870 }
2871 
2872 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2873 {
2874 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2875 }
2876 
2877 static inline int f2fs_has_extra_attr(struct inode *inode);
2878 static inline block_t data_blkaddr(struct inode *inode,
2879 			struct page *node_page, unsigned int offset)
2880 {
2881 	struct f2fs_node *raw_node;
2882 	__le32 *addr_array;
2883 	int base = 0;
2884 	bool is_inode = IS_INODE(node_page);
2885 
2886 	raw_node = F2FS_NODE(node_page);
2887 
2888 	if (is_inode) {
2889 		if (!inode)
2890 			/* from GC path only */
2891 			base = offset_in_addr(&raw_node->i);
2892 		else if (f2fs_has_extra_attr(inode))
2893 			base = get_extra_isize(inode);
2894 	}
2895 
2896 	addr_array = blkaddr_in_node(raw_node);
2897 	return le32_to_cpu(addr_array[base + offset]);
2898 }
2899 
2900 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2901 {
2902 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2903 }
2904 
2905 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2906 {
2907 	int mask;
2908 
2909 	addr += (nr >> 3);
2910 	mask = 1 << (7 - (nr & 0x07));
2911 	return mask & *addr;
2912 }
2913 
2914 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2915 {
2916 	int mask;
2917 
2918 	addr += (nr >> 3);
2919 	mask = 1 << (7 - (nr & 0x07));
2920 	*addr |= mask;
2921 }
2922 
2923 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2924 {
2925 	int mask;
2926 
2927 	addr += (nr >> 3);
2928 	mask = 1 << (7 - (nr & 0x07));
2929 	*addr &= ~mask;
2930 }
2931 
2932 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2933 {
2934 	int mask;
2935 	int ret;
2936 
2937 	addr += (nr >> 3);
2938 	mask = 1 << (7 - (nr & 0x07));
2939 	ret = mask & *addr;
2940 	*addr |= mask;
2941 	return ret;
2942 }
2943 
2944 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2945 {
2946 	int mask;
2947 	int ret;
2948 
2949 	addr += (nr >> 3);
2950 	mask = 1 << (7 - (nr & 0x07));
2951 	ret = mask & *addr;
2952 	*addr &= ~mask;
2953 	return ret;
2954 }
2955 
2956 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2957 {
2958 	int mask;
2959 
2960 	addr += (nr >> 3);
2961 	mask = 1 << (7 - (nr & 0x07));
2962 	*addr ^= mask;
2963 }
2964 
2965 /*
2966  * On-disk inode flags (f2fs_inode::i_flags)
2967  */
2968 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2969 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2970 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2971 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2972 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2973 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2974 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2975 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2976 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2977 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2978 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2979 
2980 /* Flags that should be inherited by new inodes from their parent. */
2981 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2982 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2983 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2984 
2985 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2986 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2987 				F2FS_CASEFOLD_FL))
2988 
2989 /* Flags that are appropriate for non-directories/regular files. */
2990 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2991 
2992 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2993 {
2994 	if (S_ISDIR(mode))
2995 		return flags;
2996 	else if (S_ISREG(mode))
2997 		return flags & F2FS_REG_FLMASK;
2998 	else
2999 		return flags & F2FS_OTHER_FLMASK;
3000 }
3001 
3002 static inline void __mark_inode_dirty_flag(struct inode *inode,
3003 						int flag, bool set)
3004 {
3005 	switch (flag) {
3006 	case FI_INLINE_XATTR:
3007 	case FI_INLINE_DATA:
3008 	case FI_INLINE_DENTRY:
3009 	case FI_NEW_INODE:
3010 		if (set)
3011 			return;
3012 		fallthrough;
3013 	case FI_DATA_EXIST:
3014 	case FI_INLINE_DOTS:
3015 	case FI_PIN_FILE:
3016 	case FI_COMPRESS_RELEASED:
3017 		f2fs_mark_inode_dirty_sync(inode, true);
3018 	}
3019 }
3020 
3021 static inline void set_inode_flag(struct inode *inode, int flag)
3022 {
3023 	set_bit(flag, F2FS_I(inode)->flags);
3024 	__mark_inode_dirty_flag(inode, flag, true);
3025 }
3026 
3027 static inline int is_inode_flag_set(struct inode *inode, int flag)
3028 {
3029 	return test_bit(flag, F2FS_I(inode)->flags);
3030 }
3031 
3032 static inline void clear_inode_flag(struct inode *inode, int flag)
3033 {
3034 	clear_bit(flag, F2FS_I(inode)->flags);
3035 	__mark_inode_dirty_flag(inode, flag, false);
3036 }
3037 
3038 static inline bool f2fs_verity_in_progress(struct inode *inode)
3039 {
3040 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3041 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3042 }
3043 
3044 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3045 {
3046 	F2FS_I(inode)->i_acl_mode = mode;
3047 	set_inode_flag(inode, FI_ACL_MODE);
3048 	f2fs_mark_inode_dirty_sync(inode, false);
3049 }
3050 
3051 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3052 {
3053 	if (inc)
3054 		inc_nlink(inode);
3055 	else
3056 		drop_nlink(inode);
3057 	f2fs_mark_inode_dirty_sync(inode, true);
3058 }
3059 
3060 static inline void f2fs_i_blocks_write(struct inode *inode,
3061 					block_t diff, bool add, bool claim)
3062 {
3063 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3064 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3065 
3066 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3067 	if (add) {
3068 		if (claim)
3069 			dquot_claim_block(inode, diff);
3070 		else
3071 			dquot_alloc_block_nofail(inode, diff);
3072 	} else {
3073 		dquot_free_block(inode, diff);
3074 	}
3075 
3076 	f2fs_mark_inode_dirty_sync(inode, true);
3077 	if (clean || recover)
3078 		set_inode_flag(inode, FI_AUTO_RECOVER);
3079 }
3080 
3081 static inline bool f2fs_is_atomic_file(struct inode *inode);
3082 
3083 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3084 {
3085 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3086 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3087 
3088 	if (i_size_read(inode) == i_size)
3089 		return;
3090 
3091 	i_size_write(inode, i_size);
3092 
3093 	if (f2fs_is_atomic_file(inode))
3094 		return;
3095 
3096 	f2fs_mark_inode_dirty_sync(inode, true);
3097 	if (clean || recover)
3098 		set_inode_flag(inode, FI_AUTO_RECOVER);
3099 }
3100 
3101 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3102 {
3103 	F2FS_I(inode)->i_current_depth = depth;
3104 	f2fs_mark_inode_dirty_sync(inode, true);
3105 }
3106 
3107 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3108 					unsigned int count)
3109 {
3110 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3111 	f2fs_mark_inode_dirty_sync(inode, true);
3112 }
3113 
3114 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3115 {
3116 	F2FS_I(inode)->i_xattr_nid = xnid;
3117 	f2fs_mark_inode_dirty_sync(inode, true);
3118 }
3119 
3120 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3121 {
3122 	F2FS_I(inode)->i_pino = pino;
3123 	f2fs_mark_inode_dirty_sync(inode, true);
3124 }
3125 
3126 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3127 {
3128 	struct f2fs_inode_info *fi = F2FS_I(inode);
3129 
3130 	if (ri->i_inline & F2FS_INLINE_XATTR)
3131 		set_bit(FI_INLINE_XATTR, fi->flags);
3132 	if (ri->i_inline & F2FS_INLINE_DATA)
3133 		set_bit(FI_INLINE_DATA, fi->flags);
3134 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3135 		set_bit(FI_INLINE_DENTRY, fi->flags);
3136 	if (ri->i_inline & F2FS_DATA_EXIST)
3137 		set_bit(FI_DATA_EXIST, fi->flags);
3138 	if (ri->i_inline & F2FS_INLINE_DOTS)
3139 		set_bit(FI_INLINE_DOTS, fi->flags);
3140 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3141 		set_bit(FI_EXTRA_ATTR, fi->flags);
3142 	if (ri->i_inline & F2FS_PIN_FILE)
3143 		set_bit(FI_PIN_FILE, fi->flags);
3144 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3145 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3146 }
3147 
3148 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3149 {
3150 	ri->i_inline = 0;
3151 
3152 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3153 		ri->i_inline |= F2FS_INLINE_XATTR;
3154 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3155 		ri->i_inline |= F2FS_INLINE_DATA;
3156 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3157 		ri->i_inline |= F2FS_INLINE_DENTRY;
3158 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3159 		ri->i_inline |= F2FS_DATA_EXIST;
3160 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3161 		ri->i_inline |= F2FS_INLINE_DOTS;
3162 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3163 		ri->i_inline |= F2FS_EXTRA_ATTR;
3164 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3165 		ri->i_inline |= F2FS_PIN_FILE;
3166 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3167 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3168 }
3169 
3170 static inline int f2fs_has_extra_attr(struct inode *inode)
3171 {
3172 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3173 }
3174 
3175 static inline int f2fs_has_inline_xattr(struct inode *inode)
3176 {
3177 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3178 }
3179 
3180 static inline int f2fs_compressed_file(struct inode *inode)
3181 {
3182 	return S_ISREG(inode->i_mode) &&
3183 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3184 }
3185 
3186 static inline bool f2fs_need_compress_data(struct inode *inode)
3187 {
3188 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3189 
3190 	if (!f2fs_compressed_file(inode))
3191 		return false;
3192 
3193 	if (compress_mode == COMPR_MODE_FS)
3194 		return true;
3195 	else if (compress_mode == COMPR_MODE_USER &&
3196 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3197 		return true;
3198 
3199 	return false;
3200 }
3201 
3202 static inline unsigned int addrs_per_inode(struct inode *inode)
3203 {
3204 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3205 				get_inline_xattr_addrs(inode);
3206 
3207 	if (!f2fs_compressed_file(inode))
3208 		return addrs;
3209 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3210 }
3211 
3212 static inline unsigned int addrs_per_block(struct inode *inode)
3213 {
3214 	if (!f2fs_compressed_file(inode))
3215 		return DEF_ADDRS_PER_BLOCK;
3216 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3217 }
3218 
3219 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3220 {
3221 	struct f2fs_inode *ri = F2FS_INODE(page);
3222 
3223 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3224 					get_inline_xattr_addrs(inode)]);
3225 }
3226 
3227 static inline int inline_xattr_size(struct inode *inode)
3228 {
3229 	if (f2fs_has_inline_xattr(inode))
3230 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3231 	return 0;
3232 }
3233 
3234 /*
3235  * Notice: check inline_data flag without inode page lock is unsafe.
3236  * It could change at any time by f2fs_convert_inline_page().
3237  */
3238 static inline int f2fs_has_inline_data(struct inode *inode)
3239 {
3240 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3241 }
3242 
3243 static inline int f2fs_exist_data(struct inode *inode)
3244 {
3245 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3246 }
3247 
3248 static inline int f2fs_has_inline_dots(struct inode *inode)
3249 {
3250 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3251 }
3252 
3253 static inline int f2fs_is_mmap_file(struct inode *inode)
3254 {
3255 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3256 }
3257 
3258 static inline bool f2fs_is_pinned_file(struct inode *inode)
3259 {
3260 	return is_inode_flag_set(inode, FI_PIN_FILE);
3261 }
3262 
3263 static inline bool f2fs_is_atomic_file(struct inode *inode)
3264 {
3265 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3266 }
3267 
3268 static inline bool f2fs_is_cow_file(struct inode *inode)
3269 {
3270 	return is_inode_flag_set(inode, FI_COW_FILE);
3271 }
3272 
3273 static inline bool f2fs_is_first_block_written(struct inode *inode)
3274 {
3275 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3276 }
3277 
3278 static inline bool f2fs_is_drop_cache(struct inode *inode)
3279 {
3280 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3281 }
3282 
3283 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3284 {
3285 	struct f2fs_inode *ri = F2FS_INODE(page);
3286 	int extra_size = get_extra_isize(inode);
3287 
3288 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3289 }
3290 
3291 static inline int f2fs_has_inline_dentry(struct inode *inode)
3292 {
3293 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3294 }
3295 
3296 static inline int is_file(struct inode *inode, int type)
3297 {
3298 	return F2FS_I(inode)->i_advise & type;
3299 }
3300 
3301 static inline void set_file(struct inode *inode, int type)
3302 {
3303 	if (is_file(inode, type))
3304 		return;
3305 	F2FS_I(inode)->i_advise |= type;
3306 	f2fs_mark_inode_dirty_sync(inode, true);
3307 }
3308 
3309 static inline void clear_file(struct inode *inode, int type)
3310 {
3311 	if (!is_file(inode, type))
3312 		return;
3313 	F2FS_I(inode)->i_advise &= ~type;
3314 	f2fs_mark_inode_dirty_sync(inode, true);
3315 }
3316 
3317 static inline bool f2fs_is_time_consistent(struct inode *inode)
3318 {
3319 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3320 		return false;
3321 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3322 		return false;
3323 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3324 		return false;
3325 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3326 						&F2FS_I(inode)->i_crtime))
3327 		return false;
3328 	return true;
3329 }
3330 
3331 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3332 {
3333 	bool ret;
3334 
3335 	if (dsync) {
3336 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3337 
3338 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3339 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3340 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3341 		return ret;
3342 	}
3343 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3344 			file_keep_isize(inode) ||
3345 			i_size_read(inode) & ~PAGE_MASK)
3346 		return false;
3347 
3348 	if (!f2fs_is_time_consistent(inode))
3349 		return false;
3350 
3351 	spin_lock(&F2FS_I(inode)->i_size_lock);
3352 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3353 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3354 
3355 	return ret;
3356 }
3357 
3358 static inline bool f2fs_readonly(struct super_block *sb)
3359 {
3360 	return sb_rdonly(sb);
3361 }
3362 
3363 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3364 {
3365 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3366 }
3367 
3368 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3369 {
3370 	if (len == 1 && name[0] == '.')
3371 		return true;
3372 
3373 	if (len == 2 && name[0] == '.' && name[1] == '.')
3374 		return true;
3375 
3376 	return false;
3377 }
3378 
3379 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3380 					size_t size, gfp_t flags)
3381 {
3382 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3383 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3384 		return NULL;
3385 	}
3386 
3387 	return kmalloc(size, flags);
3388 }
3389 
3390 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3391 					size_t size, gfp_t flags)
3392 {
3393 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3394 }
3395 
3396 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3397 					size_t size, gfp_t flags)
3398 {
3399 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3400 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3401 		return NULL;
3402 	}
3403 
3404 	return kvmalloc(size, flags);
3405 }
3406 
3407 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3408 					size_t size, gfp_t flags)
3409 {
3410 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3411 }
3412 
3413 static inline int get_extra_isize(struct inode *inode)
3414 {
3415 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3416 }
3417 
3418 static inline int get_inline_xattr_addrs(struct inode *inode)
3419 {
3420 	return F2FS_I(inode)->i_inline_xattr_size;
3421 }
3422 
3423 #define f2fs_get_inode_mode(i) \
3424 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3425 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3426 
3427 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3428 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3429 	offsetof(struct f2fs_inode, i_extra_isize))	\
3430 
3431 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3432 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3433 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3434 		sizeof((f2fs_inode)->field))			\
3435 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3436 
3437 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3438 
3439 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3440 
3441 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3442 					block_t blkaddr, int type);
3443 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3444 					block_t blkaddr, int type)
3445 {
3446 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3447 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3448 			 blkaddr, type);
3449 		f2fs_bug_on(sbi, 1);
3450 	}
3451 }
3452 
3453 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3454 {
3455 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3456 			blkaddr == COMPRESS_ADDR)
3457 		return false;
3458 	return true;
3459 }
3460 
3461 /*
3462  * file.c
3463  */
3464 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3465 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3466 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3467 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3468 int f2fs_truncate(struct inode *inode);
3469 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3470 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3471 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3472 		 struct iattr *attr);
3473 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3474 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3475 int f2fs_precache_extents(struct inode *inode);
3476 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3477 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3478 		      struct dentry *dentry, struct fileattr *fa);
3479 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3480 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3481 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3482 int f2fs_pin_file_control(struct inode *inode, bool inc);
3483 
3484 /*
3485  * inode.c
3486  */
3487 void f2fs_set_inode_flags(struct inode *inode);
3488 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3489 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3490 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3491 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3492 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3493 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3494 void f2fs_update_inode_page(struct inode *inode);
3495 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3496 void f2fs_evict_inode(struct inode *inode);
3497 void f2fs_handle_failed_inode(struct inode *inode);
3498 
3499 /*
3500  * namei.c
3501  */
3502 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3503 							bool hot, bool set);
3504 struct dentry *f2fs_get_parent(struct dentry *child);
3505 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3506 		     struct inode **new_inode);
3507 
3508 /*
3509  * dir.c
3510  */
3511 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3512 int f2fs_init_casefolded_name(const struct inode *dir,
3513 			      struct f2fs_filename *fname);
3514 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3515 			int lookup, struct f2fs_filename *fname);
3516 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3517 			struct f2fs_filename *fname);
3518 void f2fs_free_filename(struct f2fs_filename *fname);
3519 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3520 			const struct f2fs_filename *fname, int *max_slots);
3521 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3522 			unsigned int start_pos, struct fscrypt_str *fstr);
3523 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3524 			struct f2fs_dentry_ptr *d);
3525 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3526 			const struct f2fs_filename *fname, struct page *dpage);
3527 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3528 			unsigned int current_depth);
3529 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3530 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3531 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3532 					 const struct f2fs_filename *fname,
3533 					 struct page **res_page);
3534 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3535 			const struct qstr *child, struct page **res_page);
3536 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3537 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3538 			struct page **page);
3539 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3540 			struct page *page, struct inode *inode);
3541 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3542 			  const struct f2fs_filename *fname);
3543 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3544 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3545 			unsigned int bit_pos);
3546 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3547 			struct inode *inode, nid_t ino, umode_t mode);
3548 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3549 			struct inode *inode, nid_t ino, umode_t mode);
3550 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3551 			struct inode *inode, nid_t ino, umode_t mode);
3552 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3553 			struct inode *dir, struct inode *inode);
3554 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3555 bool f2fs_empty_dir(struct inode *dir);
3556 
3557 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3558 {
3559 	if (fscrypt_is_nokey_name(dentry))
3560 		return -ENOKEY;
3561 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3562 				inode, inode->i_ino, inode->i_mode);
3563 }
3564 
3565 /*
3566  * super.c
3567  */
3568 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3569 void f2fs_inode_synced(struct inode *inode);
3570 int f2fs_dquot_initialize(struct inode *inode);
3571 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3572 int f2fs_quota_sync(struct super_block *sb, int type);
3573 loff_t max_file_blocks(struct inode *inode);
3574 void f2fs_quota_off_umount(struct super_block *sb);
3575 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3576 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3577 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3578 int f2fs_sync_fs(struct super_block *sb, int sync);
3579 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3580 
3581 /*
3582  * hash.c
3583  */
3584 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3585 
3586 /*
3587  * node.c
3588  */
3589 struct node_info;
3590 
3591 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3592 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3593 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3594 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3595 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3596 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3597 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3598 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3599 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3600 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3601 				struct node_info *ni, bool checkpoint_context);
3602 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3603 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3604 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3605 int f2fs_truncate_xattr_node(struct inode *inode);
3606 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3607 					unsigned int seq_id);
3608 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3609 int f2fs_remove_inode_page(struct inode *inode);
3610 struct page *f2fs_new_inode_page(struct inode *inode);
3611 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3612 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3613 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3614 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3615 int f2fs_move_node_page(struct page *node_page, int gc_type);
3616 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3617 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3618 			struct writeback_control *wbc, bool atomic,
3619 			unsigned int *seq_id);
3620 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3621 			struct writeback_control *wbc,
3622 			bool do_balance, enum iostat_type io_type);
3623 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3624 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3625 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3626 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3627 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3628 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3629 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3630 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3631 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3632 			unsigned int segno, struct f2fs_summary_block *sum);
3633 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3634 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3635 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3636 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3637 int __init f2fs_create_node_manager_caches(void);
3638 void f2fs_destroy_node_manager_caches(void);
3639 
3640 /*
3641  * segment.c
3642  */
3643 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3644 int f2fs_commit_atomic_write(struct inode *inode);
3645 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3646 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3647 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3648 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3649 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3650 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3651 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3652 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3653 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3654 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3655 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3656 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3657 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3658 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3659 					struct cp_control *cpc);
3660 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3661 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3662 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3663 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3664 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3665 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3666 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3667 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3668 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3669 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3670 			unsigned int *newseg, bool new_sec, int dir);
3671 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3672 					unsigned int start, unsigned int end);
3673 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3674 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3675 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3676 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3677 					struct cp_control *cpc);
3678 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3679 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3680 					block_t blk_addr);
3681 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3682 						enum iostat_type io_type);
3683 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3684 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3685 			struct f2fs_io_info *fio);
3686 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3687 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3688 			block_t old_blkaddr, block_t new_blkaddr,
3689 			bool recover_curseg, bool recover_newaddr,
3690 			bool from_gc);
3691 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3692 			block_t old_addr, block_t new_addr,
3693 			unsigned char version, bool recover_curseg,
3694 			bool recover_newaddr);
3695 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3696 			block_t old_blkaddr, block_t *new_blkaddr,
3697 			struct f2fs_summary *sum, int type,
3698 			struct f2fs_io_info *fio);
3699 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3700 					block_t blkaddr, unsigned int blkcnt);
3701 void f2fs_wait_on_page_writeback(struct page *page,
3702 			enum page_type type, bool ordered, bool locked);
3703 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3704 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3705 								block_t len);
3706 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3707 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3708 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3709 			unsigned int val, int alloc);
3710 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3711 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3712 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3713 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3714 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3715 int __init f2fs_create_segment_manager_caches(void);
3716 void f2fs_destroy_segment_manager_caches(void);
3717 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3718 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3719 			unsigned int segno);
3720 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3721 			unsigned int segno);
3722 
3723 #define DEF_FRAGMENT_SIZE	4
3724 #define MIN_FRAGMENT_SIZE	1
3725 #define MAX_FRAGMENT_SIZE	512
3726 
3727 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3728 {
3729 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3730 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3731 }
3732 
3733 /*
3734  * checkpoint.c
3735  */
3736 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3737 							unsigned char reason);
3738 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3739 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3740 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3741 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3742 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3743 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3744 					block_t blkaddr, int type);
3745 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3746 			int type, bool sync);
3747 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3748 							unsigned int ra_blocks);
3749 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3750 			long nr_to_write, enum iostat_type io_type);
3751 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3752 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3753 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3754 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3755 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3756 					unsigned int devidx, int type);
3757 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3758 					unsigned int devidx, int type);
3759 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3760 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3761 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3762 void f2fs_add_orphan_inode(struct inode *inode);
3763 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3764 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3765 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3766 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3767 void f2fs_remove_dirty_inode(struct inode *inode);
3768 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3769 								bool from_cp);
3770 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3771 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3772 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3773 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3774 int __init f2fs_create_checkpoint_caches(void);
3775 void f2fs_destroy_checkpoint_caches(void);
3776 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3777 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3778 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3779 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3780 
3781 /*
3782  * data.c
3783  */
3784 int __init f2fs_init_bioset(void);
3785 void f2fs_destroy_bioset(void);
3786 int f2fs_init_bio_entry_cache(void);
3787 void f2fs_destroy_bio_entry_cache(void);
3788 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3789 				struct bio *bio, enum page_type type);
3790 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3791 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3792 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3793 				struct inode *inode, struct page *page,
3794 				nid_t ino, enum page_type type);
3795 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3796 					struct bio **bio, struct page *page);
3797 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3798 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3799 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3800 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3801 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3802 		block_t blk_addr, sector_t *sector);
3803 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3804 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3805 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3806 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3807 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3808 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3809 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3810 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3811 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3812 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3813 							pgoff_t *next_pgofs);
3814 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3815 			bool for_write);
3816 struct page *f2fs_get_new_data_page(struct inode *inode,
3817 			struct page *ipage, pgoff_t index, bool new_i_size);
3818 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3819 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3820 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3821 			int create, int flag);
3822 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3823 			u64 start, u64 len);
3824 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3825 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3826 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3827 int f2fs_write_single_data_page(struct page *page, int *submitted,
3828 				struct bio **bio, sector_t *last_block,
3829 				struct writeback_control *wbc,
3830 				enum iostat_type io_type,
3831 				int compr_blocks, bool allow_balance);
3832 void f2fs_write_failed(struct inode *inode, loff_t to);
3833 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3834 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3835 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3836 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3837 int f2fs_init_post_read_processing(void);
3838 void f2fs_destroy_post_read_processing(void);
3839 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3840 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3841 extern const struct iomap_ops f2fs_iomap_ops;
3842 
3843 /*
3844  * gc.c
3845  */
3846 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3847 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3848 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3849 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3850 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3851 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3852 int __init f2fs_create_garbage_collection_cache(void);
3853 void f2fs_destroy_garbage_collection_cache(void);
3854 
3855 /*
3856  * recovery.c
3857  */
3858 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3859 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3860 int __init f2fs_create_recovery_cache(void);
3861 void f2fs_destroy_recovery_cache(void);
3862 
3863 /*
3864  * debug.c
3865  */
3866 #ifdef CONFIG_F2FS_STAT_FS
3867 struct f2fs_stat_info {
3868 	struct list_head stat_list;
3869 	struct f2fs_sb_info *sbi;
3870 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3871 	int main_area_segs, main_area_sections, main_area_zones;
3872 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3873 	unsigned long long hit_total, total_ext;
3874 	int ext_tree, zombie_tree, ext_node;
3875 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3876 	int ndirty_data, ndirty_qdata;
3877 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3878 	int nats, dirty_nats, sits, dirty_sits;
3879 	int free_nids, avail_nids, alloc_nids;
3880 	int total_count, utilization;
3881 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3882 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3883 	int nr_dio_read, nr_dio_write;
3884 	unsigned int io_skip_bggc, other_skip_bggc;
3885 	int nr_flushing, nr_flushed, flush_list_empty;
3886 	int nr_discarding, nr_discarded;
3887 	int nr_discard_cmd;
3888 	unsigned int undiscard_blks;
3889 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3890 	unsigned int cur_ckpt_time, peak_ckpt_time;
3891 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3892 	int compr_inode, swapfile_inode;
3893 	unsigned long long compr_blocks;
3894 	int aw_cnt, max_aw_cnt;
3895 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3896 	unsigned int bimodal, avg_vblocks;
3897 	int util_free, util_valid, util_invalid;
3898 	int rsvd_segs, overp_segs;
3899 	int dirty_count, node_pages, meta_pages, compress_pages;
3900 	int compress_page_hit;
3901 	int prefree_count, call_count, cp_count, bg_cp_count;
3902 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3903 	int bg_node_segs, bg_data_segs;
3904 	int tot_blks, data_blks, node_blks;
3905 	int bg_data_blks, bg_node_blks;
3906 	int curseg[NR_CURSEG_TYPE];
3907 	int cursec[NR_CURSEG_TYPE];
3908 	int curzone[NR_CURSEG_TYPE];
3909 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3910 	unsigned int full_seg[NR_CURSEG_TYPE];
3911 	unsigned int valid_blks[NR_CURSEG_TYPE];
3912 
3913 	unsigned int meta_count[META_MAX];
3914 	unsigned int segment_count[2];
3915 	unsigned int block_count[2];
3916 	unsigned int inplace_count;
3917 	unsigned long long base_mem, cache_mem, page_mem;
3918 };
3919 
3920 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3921 {
3922 	return (struct f2fs_stat_info *)sbi->stat_info;
3923 }
3924 
3925 #define stat_inc_cp_count(si)		((si)->cp_count++)
3926 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3927 #define stat_inc_call_count(si)		((si)->call_count++)
3928 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3929 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3930 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3931 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3932 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3933 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3934 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3935 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3936 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3937 #define stat_inc_inline_xattr(inode)					\
3938 	do {								\
3939 		if (f2fs_has_inline_xattr(inode))			\
3940 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3941 	} while (0)
3942 #define stat_dec_inline_xattr(inode)					\
3943 	do {								\
3944 		if (f2fs_has_inline_xattr(inode))			\
3945 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3946 	} while (0)
3947 #define stat_inc_inline_inode(inode)					\
3948 	do {								\
3949 		if (f2fs_has_inline_data(inode))			\
3950 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3951 	} while (0)
3952 #define stat_dec_inline_inode(inode)					\
3953 	do {								\
3954 		if (f2fs_has_inline_data(inode))			\
3955 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3956 	} while (0)
3957 #define stat_inc_inline_dir(inode)					\
3958 	do {								\
3959 		if (f2fs_has_inline_dentry(inode))			\
3960 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3961 	} while (0)
3962 #define stat_dec_inline_dir(inode)					\
3963 	do {								\
3964 		if (f2fs_has_inline_dentry(inode))			\
3965 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3966 	} while (0)
3967 #define stat_inc_compr_inode(inode)					\
3968 	do {								\
3969 		if (f2fs_compressed_file(inode))			\
3970 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3971 	} while (0)
3972 #define stat_dec_compr_inode(inode)					\
3973 	do {								\
3974 		if (f2fs_compressed_file(inode))			\
3975 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3976 	} while (0)
3977 #define stat_add_compr_blocks(inode, blocks)				\
3978 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3979 #define stat_sub_compr_blocks(inode, blocks)				\
3980 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3981 #define stat_inc_swapfile_inode(inode)					\
3982 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3983 #define stat_dec_swapfile_inode(inode)					\
3984 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3985 #define stat_inc_atomic_inode(inode)					\
3986 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3987 #define stat_dec_atomic_inode(inode)					\
3988 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3989 #define stat_inc_meta_count(sbi, blkaddr)				\
3990 	do {								\
3991 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3992 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3993 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3994 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3995 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3996 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3997 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3998 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3999 	} while (0)
4000 #define stat_inc_seg_type(sbi, curseg)					\
4001 		((sbi)->segment_count[(curseg)->alloc_type]++)
4002 #define stat_inc_block_count(sbi, curseg)				\
4003 		((sbi)->block_count[(curseg)->alloc_type]++)
4004 #define stat_inc_inplace_blocks(sbi)					\
4005 		(atomic_inc(&(sbi)->inplace_count))
4006 #define stat_update_max_atomic_write(inode)				\
4007 	do {								\
4008 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4009 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4010 		if (cur > max)						\
4011 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4012 	} while (0)
4013 #define stat_inc_seg_count(sbi, type, gc_type)				\
4014 	do {								\
4015 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4016 		si->tot_segs++;						\
4017 		if ((type) == SUM_TYPE_DATA) {				\
4018 			si->data_segs++;				\
4019 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
4020 		} else {						\
4021 			si->node_segs++;				\
4022 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
4023 		}							\
4024 	} while (0)
4025 
4026 #define stat_inc_tot_blk_count(si, blks)				\
4027 	((si)->tot_blks += (blks))
4028 
4029 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4030 	do {								\
4031 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4032 		stat_inc_tot_blk_count(si, blks);			\
4033 		si->data_blks += (blks);				\
4034 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4035 	} while (0)
4036 
4037 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4038 	do {								\
4039 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4040 		stat_inc_tot_blk_count(si, blks);			\
4041 		si->node_blks += (blks);				\
4042 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4043 	} while (0)
4044 
4045 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4046 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4047 void __init f2fs_create_root_stats(void);
4048 void f2fs_destroy_root_stats(void);
4049 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4050 #else
4051 #define stat_inc_cp_count(si)				do { } while (0)
4052 #define stat_inc_bg_cp_count(si)			do { } while (0)
4053 #define stat_inc_call_count(si)				do { } while (0)
4054 #define stat_inc_bggc_count(si)				do { } while (0)
4055 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4056 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4057 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4058 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4059 #define stat_inc_total_hit(sbi)				do { } while (0)
4060 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
4061 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4062 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
4063 #define stat_inc_inline_xattr(inode)			do { } while (0)
4064 #define stat_dec_inline_xattr(inode)			do { } while (0)
4065 #define stat_inc_inline_inode(inode)			do { } while (0)
4066 #define stat_dec_inline_inode(inode)			do { } while (0)
4067 #define stat_inc_inline_dir(inode)			do { } while (0)
4068 #define stat_dec_inline_dir(inode)			do { } while (0)
4069 #define stat_inc_compr_inode(inode)			do { } while (0)
4070 #define stat_dec_compr_inode(inode)			do { } while (0)
4071 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4072 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4073 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4074 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4075 #define stat_inc_atomic_inode(inode)			do { } while (0)
4076 #define stat_dec_atomic_inode(inode)			do { } while (0)
4077 #define stat_update_max_atomic_write(inode)		do { } while (0)
4078 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4079 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4080 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4081 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4082 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4083 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4084 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4085 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4086 
4087 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4088 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4089 static inline void __init f2fs_create_root_stats(void) { }
4090 static inline void f2fs_destroy_root_stats(void) { }
4091 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4092 #endif
4093 
4094 extern const struct file_operations f2fs_dir_operations;
4095 extern const struct file_operations f2fs_file_operations;
4096 extern const struct inode_operations f2fs_file_inode_operations;
4097 extern const struct address_space_operations f2fs_dblock_aops;
4098 extern const struct address_space_operations f2fs_node_aops;
4099 extern const struct address_space_operations f2fs_meta_aops;
4100 extern const struct inode_operations f2fs_dir_inode_operations;
4101 extern const struct inode_operations f2fs_symlink_inode_operations;
4102 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4103 extern const struct inode_operations f2fs_special_inode_operations;
4104 extern struct kmem_cache *f2fs_inode_entry_slab;
4105 
4106 /*
4107  * inline.c
4108  */
4109 bool f2fs_may_inline_data(struct inode *inode);
4110 bool f2fs_sanity_check_inline_data(struct inode *inode);
4111 bool f2fs_may_inline_dentry(struct inode *inode);
4112 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4113 void f2fs_truncate_inline_inode(struct inode *inode,
4114 						struct page *ipage, u64 from);
4115 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4116 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4117 int f2fs_convert_inline_inode(struct inode *inode);
4118 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4119 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4120 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4121 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4122 					const struct f2fs_filename *fname,
4123 					struct page **res_page);
4124 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4125 			struct page *ipage);
4126 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4127 			struct inode *inode, nid_t ino, umode_t mode);
4128 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4129 				struct page *page, struct inode *dir,
4130 				struct inode *inode);
4131 bool f2fs_empty_inline_dir(struct inode *dir);
4132 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4133 			struct fscrypt_str *fstr);
4134 int f2fs_inline_data_fiemap(struct inode *inode,
4135 			struct fiemap_extent_info *fieinfo,
4136 			__u64 start, __u64 len);
4137 
4138 /*
4139  * shrinker.c
4140  */
4141 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4142 			struct shrink_control *sc);
4143 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4144 			struct shrink_control *sc);
4145 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4146 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4147 
4148 /*
4149  * extent_cache.c
4150  */
4151 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4152 				struct rb_entry *cached_re, unsigned int ofs);
4153 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4154 				struct rb_root_cached *root,
4155 				struct rb_node **parent,
4156 				unsigned long long key, bool *left_most);
4157 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4158 				struct rb_root_cached *root,
4159 				struct rb_node **parent,
4160 				unsigned int ofs, bool *leftmost);
4161 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4162 		struct rb_entry *cached_re, unsigned int ofs,
4163 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4164 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4165 		bool force, bool *leftmost);
4166 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4167 				struct rb_root_cached *root, bool check_key);
4168 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4169 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4170 void f2fs_drop_extent_tree(struct inode *inode);
4171 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4172 void f2fs_destroy_extent_tree(struct inode *inode);
4173 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4174 			struct extent_info *ei);
4175 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4176 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4177 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4178 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4179 int __init f2fs_create_extent_cache(void);
4180 void f2fs_destroy_extent_cache(void);
4181 
4182 /*
4183  * sysfs.c
4184  */
4185 #define MIN_RA_MUL	2
4186 #define MAX_RA_MUL	256
4187 
4188 int __init f2fs_init_sysfs(void);
4189 void f2fs_exit_sysfs(void);
4190 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4191 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4192 
4193 /* verity.c */
4194 extern const struct fsverity_operations f2fs_verityops;
4195 
4196 /*
4197  * crypto support
4198  */
4199 static inline bool f2fs_encrypted_file(struct inode *inode)
4200 {
4201 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4202 }
4203 
4204 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4205 {
4206 #ifdef CONFIG_FS_ENCRYPTION
4207 	file_set_encrypt(inode);
4208 	f2fs_set_inode_flags(inode);
4209 #endif
4210 }
4211 
4212 /*
4213  * Returns true if the reads of the inode's data need to undergo some
4214  * postprocessing step, like decryption or authenticity verification.
4215  */
4216 static inline bool f2fs_post_read_required(struct inode *inode)
4217 {
4218 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4219 		f2fs_compressed_file(inode);
4220 }
4221 
4222 /*
4223  * compress.c
4224  */
4225 #ifdef CONFIG_F2FS_FS_COMPRESSION
4226 bool f2fs_is_compressed_page(struct page *page);
4227 struct page *f2fs_compress_control_page(struct page *page);
4228 int f2fs_prepare_compress_overwrite(struct inode *inode,
4229 			struct page **pagep, pgoff_t index, void **fsdata);
4230 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4231 					pgoff_t index, unsigned copied);
4232 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4233 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4234 bool f2fs_is_compress_backend_ready(struct inode *inode);
4235 int f2fs_init_compress_mempool(void);
4236 void f2fs_destroy_compress_mempool(void);
4237 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4238 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4239 				block_t blkaddr, bool in_task);
4240 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4241 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4242 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4243 				int index, int nr_pages, bool uptodate);
4244 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4245 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4246 int f2fs_write_multi_pages(struct compress_ctx *cc,
4247 						int *submitted,
4248 						struct writeback_control *wbc,
4249 						enum iostat_type io_type);
4250 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4251 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4252 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4253 				unsigned int c_len);
4254 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4255 				unsigned nr_pages, sector_t *last_block_in_bio,
4256 				bool is_readahead, bool for_write);
4257 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4258 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4259 				bool in_task);
4260 void f2fs_put_page_dic(struct page *page, bool in_task);
4261 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4262 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4263 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4264 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4265 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4266 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4267 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4268 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4269 int __init f2fs_init_compress_cache(void);
4270 void f2fs_destroy_compress_cache(void);
4271 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4272 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4273 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4274 						nid_t ino, block_t blkaddr);
4275 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4276 								block_t blkaddr);
4277 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4278 #define inc_compr_inode_stat(inode)					\
4279 	do {								\
4280 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4281 		sbi->compr_new_inode++;					\
4282 	} while (0)
4283 #define add_compr_block_stat(inode, blocks)				\
4284 	do {								\
4285 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4286 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4287 		sbi->compr_written_block += blocks;			\
4288 		sbi->compr_saved_block += diff;				\
4289 	} while (0)
4290 #else
4291 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4292 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4293 {
4294 	if (!f2fs_compressed_file(inode))
4295 		return true;
4296 	/* not support compression */
4297 	return false;
4298 }
4299 static inline struct page *f2fs_compress_control_page(struct page *page)
4300 {
4301 	WARN_ON_ONCE(1);
4302 	return ERR_PTR(-EINVAL);
4303 }
4304 static inline int f2fs_init_compress_mempool(void) { return 0; }
4305 static inline void f2fs_destroy_compress_mempool(void) { }
4306 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4307 				bool in_task) { }
4308 static inline void f2fs_end_read_compressed_page(struct page *page,
4309 				bool failed, block_t blkaddr, bool in_task)
4310 {
4311 	WARN_ON_ONCE(1);
4312 }
4313 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4314 {
4315 	WARN_ON_ONCE(1);
4316 }
4317 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4318 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4319 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4320 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4321 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4322 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4323 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4324 static inline void f2fs_destroy_compress_cache(void) { }
4325 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4326 				block_t blkaddr) { }
4327 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4328 				struct page *page, nid_t ino, block_t blkaddr) { }
4329 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4330 				struct page *page, block_t blkaddr) { return false; }
4331 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4332 							nid_t ino) { }
4333 #define inc_compr_inode_stat(inode)		do { } while (0)
4334 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4335 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4336 				unsigned int c_len) { }
4337 #endif
4338 
4339 static inline int set_compress_context(struct inode *inode)
4340 {
4341 #ifdef CONFIG_F2FS_FS_COMPRESSION
4342 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4343 
4344 	F2FS_I(inode)->i_compress_algorithm =
4345 			F2FS_OPTION(sbi).compress_algorithm;
4346 	F2FS_I(inode)->i_log_cluster_size =
4347 			F2FS_OPTION(sbi).compress_log_size;
4348 	F2FS_I(inode)->i_compress_flag =
4349 			F2FS_OPTION(sbi).compress_chksum ?
4350 				1 << COMPRESS_CHKSUM : 0;
4351 	F2FS_I(inode)->i_cluster_size =
4352 			1 << F2FS_I(inode)->i_log_cluster_size;
4353 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4354 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4355 			F2FS_OPTION(sbi).compress_level)
4356 		F2FS_I(inode)->i_compress_flag |=
4357 				F2FS_OPTION(sbi).compress_level <<
4358 				COMPRESS_LEVEL_OFFSET;
4359 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4360 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4361 	stat_inc_compr_inode(inode);
4362 	inc_compr_inode_stat(inode);
4363 	f2fs_mark_inode_dirty_sync(inode, true);
4364 	return 0;
4365 #else
4366 	return -EOPNOTSUPP;
4367 #endif
4368 }
4369 
4370 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4371 {
4372 	struct f2fs_inode_info *fi = F2FS_I(inode);
4373 
4374 	if (!f2fs_compressed_file(inode))
4375 		return true;
4376 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4377 		return false;
4378 
4379 	fi->i_flags &= ~F2FS_COMPR_FL;
4380 	stat_dec_compr_inode(inode);
4381 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4382 	f2fs_mark_inode_dirty_sync(inode, true);
4383 	return true;
4384 }
4385 
4386 #define F2FS_FEATURE_FUNCS(name, flagname) \
4387 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4388 { \
4389 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4390 }
4391 
4392 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4393 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4394 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4395 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4396 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4397 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4398 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4399 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4400 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4401 F2FS_FEATURE_FUNCS(verity, VERITY);
4402 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4403 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4404 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4405 F2FS_FEATURE_FUNCS(readonly, RO);
4406 
4407 static inline bool f2fs_may_extent_tree(struct inode *inode)
4408 {
4409 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4410 
4411 	if (!test_opt(sbi, EXTENT_CACHE) ||
4412 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4413 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4414 			 !f2fs_sb_has_readonly(sbi)))
4415 		return false;
4416 
4417 	/*
4418 	 * for recovered files during mount do not create extents
4419 	 * if shrinker is not registered.
4420 	 */
4421 	if (list_empty(&sbi->s_list))
4422 		return false;
4423 
4424 	return S_ISREG(inode->i_mode);
4425 }
4426 
4427 #ifdef CONFIG_BLK_DEV_ZONED
4428 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4429 				    block_t blkaddr)
4430 {
4431 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4432 
4433 	return test_bit(zno, FDEV(devi).blkz_seq);
4434 }
4435 #endif
4436 
4437 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4438 {
4439 	return f2fs_sb_has_blkzoned(sbi);
4440 }
4441 
4442 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4443 {
4444 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4445 }
4446 
4447 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4448 {
4449 	int i;
4450 
4451 	if (!f2fs_is_multi_device(sbi))
4452 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4453 
4454 	for (i = 0; i < sbi->s_ndevs; i++)
4455 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4456 			return true;
4457 	return false;
4458 }
4459 
4460 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4461 {
4462 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4463 					f2fs_hw_should_discard(sbi);
4464 }
4465 
4466 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4467 {
4468 	int i;
4469 
4470 	if (!f2fs_is_multi_device(sbi))
4471 		return bdev_read_only(sbi->sb->s_bdev);
4472 
4473 	for (i = 0; i < sbi->s_ndevs; i++)
4474 		if (bdev_read_only(FDEV(i).bdev))
4475 			return true;
4476 	return false;
4477 }
4478 
4479 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4480 {
4481 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4482 }
4483 
4484 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4485 {
4486 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4487 }
4488 
4489 static inline bool f2fs_may_compress(struct inode *inode)
4490 {
4491 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4492 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4493 		return false;
4494 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4495 }
4496 
4497 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4498 						u64 blocks, bool add)
4499 {
4500 	struct f2fs_inode_info *fi = F2FS_I(inode);
4501 	int diff = fi->i_cluster_size - blocks;
4502 
4503 	/* don't update i_compr_blocks if saved blocks were released */
4504 	if (!add && !atomic_read(&fi->i_compr_blocks))
4505 		return;
4506 
4507 	if (add) {
4508 		atomic_add(diff, &fi->i_compr_blocks);
4509 		stat_add_compr_blocks(inode, diff);
4510 	} else {
4511 		atomic_sub(diff, &fi->i_compr_blocks);
4512 		stat_sub_compr_blocks(inode, diff);
4513 	}
4514 	f2fs_mark_inode_dirty_sync(inode, true);
4515 }
4516 
4517 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4518 								int flag)
4519 {
4520 	if (!f2fs_is_multi_device(sbi))
4521 		return false;
4522 	if (flag != F2FS_GET_BLOCK_DIO)
4523 		return false;
4524 	return sbi->aligned_blksize;
4525 }
4526 
4527 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4528 {
4529 	return fsverity_active(inode) &&
4530 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4531 }
4532 
4533 #ifdef CONFIG_F2FS_FAULT_INJECTION
4534 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4535 							unsigned int type);
4536 #else
4537 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4538 #endif
4539 
4540 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4541 {
4542 #ifdef CONFIG_QUOTA
4543 	if (f2fs_sb_has_quota_ino(sbi))
4544 		return true;
4545 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4546 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4547 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4548 		return true;
4549 #endif
4550 	return false;
4551 }
4552 
4553 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4554 {
4555 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4556 }
4557 
4558 static inline void f2fs_io_schedule_timeout(long timeout)
4559 {
4560 	set_current_state(TASK_UNINTERRUPTIBLE);
4561 	io_schedule_timeout(timeout);
4562 }
4563 
4564 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4565 					enum page_type type)
4566 {
4567 	if (unlikely(f2fs_cp_error(sbi)))
4568 		return;
4569 
4570 	if (ofs == sbi->page_eio_ofs[type]) {
4571 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4572 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4573 	} else {
4574 		sbi->page_eio_ofs[type] = ofs;
4575 		sbi->page_eio_cnt[type] = 0;
4576 	}
4577 }
4578 
4579 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4580 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4581 
4582 #endif /* _LINUX_F2FS_H */
4583