xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 64288aa9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 struct pagevec;
32 
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition)					\
37 	do {								\
38 		if (WARN_ON(condition))					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_SLAB_ALLOC,
60 	FAULT_DQUOT_INIT,
61 	FAULT_LOCK_OP,
62 	FAULT_MAX,
63 };
64 
65 #ifdef CONFIG_F2FS_FAULT_INJECTION
66 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
67 
68 struct f2fs_fault_info {
69 	atomic_t inject_ops;
70 	unsigned int inject_rate;
71 	unsigned int inject_type;
72 };
73 
74 extern const char *f2fs_fault_name[FAULT_MAX];
75 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
76 #endif
77 
78 /*
79  * For mount options
80  */
81 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
82 #define F2FS_MOUNT_DISCARD		0x00000004
83 #define F2FS_MOUNT_NOHEAP		0x00000008
84 #define F2FS_MOUNT_XATTR_USER		0x00000010
85 #define F2FS_MOUNT_POSIX_ACL		0x00000020
86 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
87 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
88 #define F2FS_MOUNT_INLINE_DATA		0x00000100
89 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
90 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
91 #define F2FS_MOUNT_NOBARRIER		0x00000800
92 #define F2FS_MOUNT_FASTBOOT		0x00001000
93 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
94 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
95 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 #define F2FS_MOUNT_NORECOVERY		0x04000000
104 #define F2FS_MOUNT_ATGC			0x08000000
105 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
106 #define	F2FS_MOUNT_GC_MERGE		0x20000000
107 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
108 
109 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
110 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
111 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
112 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
113 
114 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
115 		typecheck(unsigned long long, b) &&			\
116 		((long long)((a) - (b)) > 0))
117 
118 typedef u32 block_t;	/*
119 			 * should not change u32, since it is the on-disk block
120 			 * address format, __le32.
121 			 */
122 typedef u32 nid_t;
123 
124 #define COMPRESS_EXT_NUM		16
125 
126 struct f2fs_mount_info {
127 	unsigned int opt;
128 	int write_io_size_bits;		/* Write IO size bits */
129 	block_t root_reserved_blocks;	/* root reserved blocks */
130 	kuid_t s_resuid;		/* reserved blocks for uid */
131 	kgid_t s_resgid;		/* reserved blocks for gid */
132 	int active_logs;		/* # of active logs */
133 	int inline_xattr_size;		/* inline xattr size */
134 #ifdef CONFIG_F2FS_FAULT_INJECTION
135 	struct f2fs_fault_info fault_info;	/* For fault injection */
136 #endif
137 #ifdef CONFIG_QUOTA
138 	/* Names of quota files with journalled quota */
139 	char *s_qf_names[MAXQUOTAS];
140 	int s_jquota_fmt;			/* Format of quota to use */
141 #endif
142 	/* For which write hints are passed down to block layer */
143 	int whint_mode;
144 	int alloc_mode;			/* segment allocation policy */
145 	int fsync_mode;			/* fsync policy */
146 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
147 	int bggc_mode;			/* bggc mode: off, on or sync */
148 	int discard_unit;		/*
149 					 * discard command's offset/size should
150 					 * be aligned to this unit: block,
151 					 * segment or section
152 					 */
153 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
154 	block_t unusable_cap_perc;	/* percentage for cap */
155 	block_t unusable_cap;		/* Amount of space allowed to be
156 					 * unusable when disabling checkpoint
157 					 */
158 
159 	/* For compression */
160 	unsigned char compress_algorithm;	/* algorithm type */
161 	unsigned char compress_log_size;	/* cluster log size */
162 	unsigned char compress_level;		/* compress level */
163 	bool compress_chksum;			/* compressed data chksum */
164 	unsigned char compress_ext_cnt;		/* extension count */
165 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
166 	int compress_mode;			/* compression mode */
167 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
168 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
169 };
170 
171 #define F2FS_FEATURE_ENCRYPT		0x0001
172 #define F2FS_FEATURE_BLKZONED		0x0002
173 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
174 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
175 #define F2FS_FEATURE_PRJQUOTA		0x0010
176 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
177 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
178 #define F2FS_FEATURE_QUOTA_INO		0x0080
179 #define F2FS_FEATURE_INODE_CRTIME	0x0100
180 #define F2FS_FEATURE_LOST_FOUND		0x0200
181 #define F2FS_FEATURE_VERITY		0x0400
182 #define F2FS_FEATURE_SB_CHKSUM		0x0800
183 #define F2FS_FEATURE_CASEFOLD		0x1000
184 #define F2FS_FEATURE_COMPRESSION	0x2000
185 #define F2FS_FEATURE_RO			0x4000
186 
187 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
188 	((raw_super->feature & cpu_to_le32(mask)) != 0)
189 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
190 #define F2FS_SET_FEATURE(sbi, mask)					\
191 	(sbi->raw_super->feature |= cpu_to_le32(mask))
192 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
193 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
194 
195 /*
196  * Default values for user and/or group using reserved blocks
197  */
198 #define	F2FS_DEF_RESUID		0
199 #define	F2FS_DEF_RESGID		0
200 
201 /*
202  * For checkpoint manager
203  */
204 enum {
205 	NAT_BITMAP,
206 	SIT_BITMAP
207 };
208 
209 #define	CP_UMOUNT	0x00000001
210 #define	CP_FASTBOOT	0x00000002
211 #define	CP_SYNC		0x00000004
212 #define	CP_RECOVERY	0x00000008
213 #define	CP_DISCARD	0x00000010
214 #define CP_TRIMMED	0x00000020
215 #define CP_PAUSE	0x00000040
216 #define CP_RESIZE 	0x00000080
217 
218 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
219 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
220 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
221 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
222 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
223 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
224 #define DEF_CP_INTERVAL			60	/* 60 secs */
225 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
226 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
227 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
228 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
229 
230 struct cp_control {
231 	int reason;
232 	__u64 trim_start;
233 	__u64 trim_end;
234 	__u64 trim_minlen;
235 };
236 
237 /*
238  * indicate meta/data type
239  */
240 enum {
241 	META_CP,
242 	META_NAT,
243 	META_SIT,
244 	META_SSA,
245 	META_MAX,
246 	META_POR,
247 	DATA_GENERIC,		/* check range only */
248 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
249 	DATA_GENERIC_ENHANCE_READ,	/*
250 					 * strong check on range and segment
251 					 * bitmap but no warning due to race
252 					 * condition of read on truncated area
253 					 * by extent_cache
254 					 */
255 	META_GENERIC,
256 };
257 
258 /* for the list of ino */
259 enum {
260 	ORPHAN_INO,		/* for orphan ino list */
261 	APPEND_INO,		/* for append ino list */
262 	UPDATE_INO,		/* for update ino list */
263 	TRANS_DIR_INO,		/* for trasactions dir ino list */
264 	FLUSH_INO,		/* for multiple device flushing */
265 	MAX_INO_ENTRY,		/* max. list */
266 };
267 
268 struct ino_entry {
269 	struct list_head list;		/* list head */
270 	nid_t ino;			/* inode number */
271 	unsigned int dirty_device;	/* dirty device bitmap */
272 };
273 
274 /* for the list of inodes to be GCed */
275 struct inode_entry {
276 	struct list_head list;	/* list head */
277 	struct inode *inode;	/* vfs inode pointer */
278 };
279 
280 struct fsync_node_entry {
281 	struct list_head list;	/* list head */
282 	struct page *page;	/* warm node page pointer */
283 	unsigned int seq_id;	/* sequence id */
284 };
285 
286 struct ckpt_req {
287 	struct completion wait;		/* completion for checkpoint done */
288 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
289 	int ret;			/* return code of checkpoint */
290 	ktime_t queue_time;		/* request queued time */
291 };
292 
293 struct ckpt_req_control {
294 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
295 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
296 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
297 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
298 	atomic_t total_ckpt;		/* # of total ckpts */
299 	atomic_t queued_ckpt;		/* # of queued ckpts */
300 	struct llist_head issue_list;	/* list for command issue */
301 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
302 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
303 	unsigned int peak_time;		/* peak wait time in msec until now */
304 };
305 
306 /* for the bitmap indicate blocks to be discarded */
307 struct discard_entry {
308 	struct list_head list;	/* list head */
309 	block_t start_blkaddr;	/* start blockaddr of current segment */
310 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
311 };
312 
313 /* default discard granularity of inner discard thread, unit: block count */
314 #define DEFAULT_DISCARD_GRANULARITY		16
315 
316 /* max discard pend list number */
317 #define MAX_PLIST_NUM		512
318 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
319 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
320 
321 enum {
322 	D_PREP,			/* initial */
323 	D_PARTIAL,		/* partially submitted */
324 	D_SUBMIT,		/* all submitted */
325 	D_DONE,			/* finished */
326 };
327 
328 struct discard_info {
329 	block_t lstart;			/* logical start address */
330 	block_t len;			/* length */
331 	block_t start;			/* actual start address in dev */
332 };
333 
334 struct discard_cmd {
335 	struct rb_node rb_node;		/* rb node located in rb-tree */
336 	union {
337 		struct {
338 			block_t lstart;	/* logical start address */
339 			block_t len;	/* length */
340 			block_t start;	/* actual start address in dev */
341 		};
342 		struct discard_info di;	/* discard info */
343 
344 	};
345 	struct list_head list;		/* command list */
346 	struct completion wait;		/* compleation */
347 	struct block_device *bdev;	/* bdev */
348 	unsigned short ref;		/* reference count */
349 	unsigned char state;		/* state */
350 	unsigned char queued;		/* queued discard */
351 	int error;			/* bio error */
352 	spinlock_t lock;		/* for state/bio_ref updating */
353 	unsigned short bio_ref;		/* bio reference count */
354 };
355 
356 enum {
357 	DPOLICY_BG,
358 	DPOLICY_FORCE,
359 	DPOLICY_FSTRIM,
360 	DPOLICY_UMOUNT,
361 	MAX_DPOLICY,
362 };
363 
364 struct discard_policy {
365 	int type;			/* type of discard */
366 	unsigned int min_interval;	/* used for candidates exist */
367 	unsigned int mid_interval;	/* used for device busy */
368 	unsigned int max_interval;	/* used for candidates not exist */
369 	unsigned int max_requests;	/* # of discards issued per round */
370 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
371 	bool io_aware;			/* issue discard in idle time */
372 	bool sync;			/* submit discard with REQ_SYNC flag */
373 	bool ordered;			/* issue discard by lba order */
374 	bool timeout;			/* discard timeout for put_super */
375 	unsigned int granularity;	/* discard granularity */
376 };
377 
378 struct discard_cmd_control {
379 	struct task_struct *f2fs_issue_discard;	/* discard thread */
380 	struct list_head entry_list;		/* 4KB discard entry list */
381 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
382 	struct list_head wait_list;		/* store on-flushing entries */
383 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
384 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
385 	unsigned int discard_wake;		/* to wake up discard thread */
386 	struct mutex cmd_lock;
387 	unsigned int nr_discards;		/* # of discards in the list */
388 	unsigned int max_discards;		/* max. discards to be issued */
389 	unsigned int discard_granularity;	/* discard granularity */
390 	unsigned int undiscard_blks;		/* # of undiscard blocks */
391 	unsigned int next_pos;			/* next discard position */
392 	atomic_t issued_discard;		/* # of issued discard */
393 	atomic_t queued_discard;		/* # of queued discard */
394 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
395 	struct rb_root_cached root;		/* root of discard rb-tree */
396 	bool rbtree_check;			/* config for consistence check */
397 };
398 
399 /* for the list of fsync inodes, used only during recovery */
400 struct fsync_inode_entry {
401 	struct list_head list;	/* list head */
402 	struct inode *inode;	/* vfs inode pointer */
403 	block_t blkaddr;	/* block address locating the last fsync */
404 	block_t last_dentry;	/* block address locating the last dentry */
405 };
406 
407 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
408 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
409 
410 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
411 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
412 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
413 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
414 
415 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
416 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
417 
418 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
419 {
420 	int before = nats_in_cursum(journal);
421 
422 	journal->n_nats = cpu_to_le16(before + i);
423 	return before;
424 }
425 
426 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
427 {
428 	int before = sits_in_cursum(journal);
429 
430 	journal->n_sits = cpu_to_le16(before + i);
431 	return before;
432 }
433 
434 static inline bool __has_cursum_space(struct f2fs_journal *journal,
435 							int size, int type)
436 {
437 	if (type == NAT_JOURNAL)
438 		return size <= MAX_NAT_JENTRIES(journal);
439 	return size <= MAX_SIT_JENTRIES(journal);
440 }
441 
442 /* for inline stuff */
443 #define DEF_INLINE_RESERVED_SIZE	1
444 static inline int get_extra_isize(struct inode *inode);
445 static inline int get_inline_xattr_addrs(struct inode *inode);
446 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
447 				(CUR_ADDRS_PER_INODE(inode) -		\
448 				get_inline_xattr_addrs(inode) -	\
449 				DEF_INLINE_RESERVED_SIZE))
450 
451 /* for inline dir */
452 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
453 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
454 				BITS_PER_BYTE + 1))
455 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
456 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
457 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
458 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
459 				NR_INLINE_DENTRY(inode) + \
460 				INLINE_DENTRY_BITMAP_SIZE(inode)))
461 
462 /*
463  * For INODE and NODE manager
464  */
465 /* for directory operations */
466 
467 struct f2fs_filename {
468 	/*
469 	 * The filename the user specified.  This is NULL for some
470 	 * filesystem-internal operations, e.g. converting an inline directory
471 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
472 	 */
473 	const struct qstr *usr_fname;
474 
475 	/*
476 	 * The on-disk filename.  For encrypted directories, this is encrypted.
477 	 * This may be NULL for lookups in an encrypted dir without the key.
478 	 */
479 	struct fscrypt_str disk_name;
480 
481 	/* The dirhash of this filename */
482 	f2fs_hash_t hash;
483 
484 #ifdef CONFIG_FS_ENCRYPTION
485 	/*
486 	 * For lookups in encrypted directories: either the buffer backing
487 	 * disk_name, or a buffer that holds the decoded no-key name.
488 	 */
489 	struct fscrypt_str crypto_buf;
490 #endif
491 #ifdef CONFIG_UNICODE
492 	/*
493 	 * For casefolded directories: the casefolded name, but it's left NULL
494 	 * if the original name is not valid Unicode, if the directory is both
495 	 * casefolded and encrypted and its encryption key is unavailable, or if
496 	 * the filesystem is doing an internal operation where usr_fname is also
497 	 * NULL.  In all these cases we fall back to treating the name as an
498 	 * opaque byte sequence.
499 	 */
500 	struct fscrypt_str cf_name;
501 #endif
502 };
503 
504 struct f2fs_dentry_ptr {
505 	struct inode *inode;
506 	void *bitmap;
507 	struct f2fs_dir_entry *dentry;
508 	__u8 (*filename)[F2FS_SLOT_LEN];
509 	int max;
510 	int nr_bitmap;
511 };
512 
513 static inline void make_dentry_ptr_block(struct inode *inode,
514 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
515 {
516 	d->inode = inode;
517 	d->max = NR_DENTRY_IN_BLOCK;
518 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
519 	d->bitmap = t->dentry_bitmap;
520 	d->dentry = t->dentry;
521 	d->filename = t->filename;
522 }
523 
524 static inline void make_dentry_ptr_inline(struct inode *inode,
525 					struct f2fs_dentry_ptr *d, void *t)
526 {
527 	int entry_cnt = NR_INLINE_DENTRY(inode);
528 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
529 	int reserved_size = INLINE_RESERVED_SIZE(inode);
530 
531 	d->inode = inode;
532 	d->max = entry_cnt;
533 	d->nr_bitmap = bitmap_size;
534 	d->bitmap = t;
535 	d->dentry = t + bitmap_size + reserved_size;
536 	d->filename = t + bitmap_size + reserved_size +
537 					SIZE_OF_DIR_ENTRY * entry_cnt;
538 }
539 
540 /*
541  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
542  * as its node offset to distinguish from index node blocks.
543  * But some bits are used to mark the node block.
544  */
545 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
546 				>> OFFSET_BIT_SHIFT)
547 enum {
548 	ALLOC_NODE,			/* allocate a new node page if needed */
549 	LOOKUP_NODE,			/* look up a node without readahead */
550 	LOOKUP_NODE_RA,			/*
551 					 * look up a node with readahead called
552 					 * by get_data_block.
553 					 */
554 };
555 
556 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
557 
558 /* congestion wait timeout value, default: 20ms */
559 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
560 
561 /* maximum retry quota flush count */
562 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
563 
564 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
565 
566 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
567 
568 /* dirty segments threshold for triggering CP */
569 #define DEFAULT_DIRTY_THRESHOLD		4
570 
571 /* for in-memory extent cache entry */
572 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
573 
574 /* number of extent info in extent cache we try to shrink */
575 #define EXTENT_CACHE_SHRINK_NUMBER	128
576 
577 struct rb_entry {
578 	struct rb_node rb_node;		/* rb node located in rb-tree */
579 	union {
580 		struct {
581 			unsigned int ofs;	/* start offset of the entry */
582 			unsigned int len;	/* length of the entry */
583 		};
584 		unsigned long long key;		/* 64-bits key */
585 	} __packed;
586 };
587 
588 struct extent_info {
589 	unsigned int fofs;		/* start offset in a file */
590 	unsigned int len;		/* length of the extent */
591 	u32 blk;			/* start block address of the extent */
592 #ifdef CONFIG_F2FS_FS_COMPRESSION
593 	unsigned int c_len;		/* physical extent length of compressed blocks */
594 #endif
595 };
596 
597 struct extent_node {
598 	struct rb_node rb_node;		/* rb node located in rb-tree */
599 	struct extent_info ei;		/* extent info */
600 	struct list_head list;		/* node in global extent list of sbi */
601 	struct extent_tree *et;		/* extent tree pointer */
602 };
603 
604 struct extent_tree {
605 	nid_t ino;			/* inode number */
606 	struct rb_root_cached root;	/* root of extent info rb-tree */
607 	struct extent_node *cached_en;	/* recently accessed extent node */
608 	struct extent_info largest;	/* largested extent info */
609 	struct list_head list;		/* to be used by sbi->zombie_list */
610 	rwlock_t lock;			/* protect extent info rb-tree */
611 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
612 	bool largest_updated;		/* largest extent updated */
613 };
614 
615 /*
616  * This structure is taken from ext4_map_blocks.
617  *
618  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
619  */
620 #define F2FS_MAP_NEW		(1 << BH_New)
621 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
622 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
623 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
624 				F2FS_MAP_UNWRITTEN)
625 
626 struct f2fs_map_blocks {
627 	struct block_device *m_bdev;	/* for multi-device dio */
628 	block_t m_pblk;
629 	block_t m_lblk;
630 	unsigned int m_len;
631 	unsigned int m_flags;
632 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
633 	pgoff_t *m_next_extent;		/* point to next possible extent */
634 	int m_seg_type;
635 	bool m_may_create;		/* indicate it is from write path */
636 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
637 };
638 
639 /* for flag in get_data_block */
640 enum {
641 	F2FS_GET_BLOCK_DEFAULT,
642 	F2FS_GET_BLOCK_FIEMAP,
643 	F2FS_GET_BLOCK_BMAP,
644 	F2FS_GET_BLOCK_DIO,
645 	F2FS_GET_BLOCK_PRE_DIO,
646 	F2FS_GET_BLOCK_PRE_AIO,
647 	F2FS_GET_BLOCK_PRECACHE,
648 };
649 
650 /*
651  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
652  */
653 #define FADVISE_COLD_BIT	0x01
654 #define FADVISE_LOST_PINO_BIT	0x02
655 #define FADVISE_ENCRYPT_BIT	0x04
656 #define FADVISE_ENC_NAME_BIT	0x08
657 #define FADVISE_KEEP_SIZE_BIT	0x10
658 #define FADVISE_HOT_BIT		0x20
659 #define FADVISE_VERITY_BIT	0x40
660 #define FADVISE_TRUNC_BIT	0x80
661 
662 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
663 
664 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
665 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
666 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
667 
668 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
669 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
670 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
671 
672 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
673 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
674 
675 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
676 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
677 
678 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
679 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
680 
681 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
682 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
683 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
684 
685 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
686 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
687 
688 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
689 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
690 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
691 
692 #define DEF_DIR_LEVEL		0
693 
694 enum {
695 	GC_FAILURE_PIN,
696 	GC_FAILURE_ATOMIC,
697 	MAX_GC_FAILURE
698 };
699 
700 /* used for f2fs_inode_info->flags */
701 enum {
702 	FI_NEW_INODE,		/* indicate newly allocated inode */
703 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
704 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
705 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
706 	FI_INC_LINK,		/* need to increment i_nlink */
707 	FI_ACL_MODE,		/* indicate acl mode */
708 	FI_NO_ALLOC,		/* should not allocate any blocks */
709 	FI_FREE_NID,		/* free allocated nide */
710 	FI_NO_EXTENT,		/* not to use the extent cache */
711 	FI_INLINE_XATTR,	/* used for inline xattr */
712 	FI_INLINE_DATA,		/* used for inline data*/
713 	FI_INLINE_DENTRY,	/* used for inline dentry */
714 	FI_APPEND_WRITE,	/* inode has appended data */
715 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
716 	FI_NEED_IPU,		/* used for ipu per file */
717 	FI_ATOMIC_FILE,		/* indicate atomic file */
718 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
719 	FI_VOLATILE_FILE,	/* indicate volatile file */
720 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
721 	FI_DROP_CACHE,		/* drop dirty page cache */
722 	FI_DATA_EXIST,		/* indicate data exists */
723 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
724 	FI_DO_DEFRAG,		/* indicate defragment is running */
725 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
726 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
727 	FI_HOT_DATA,		/* indicate file is hot */
728 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
729 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
730 	FI_PIN_FILE,		/* indicate file should not be gced */
731 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
732 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
733 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
734 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
735 	FI_MMAP_FILE,		/* indicate file was mmapped */
736 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
737 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
738 	FI_ALIGNED_WRITE,	/* enable aligned write */
739 	FI_MAX,			/* max flag, never be used */
740 };
741 
742 struct f2fs_inode_info {
743 	struct inode vfs_inode;		/* serve a vfs inode */
744 	unsigned long i_flags;		/* keep an inode flags for ioctl */
745 	unsigned char i_advise;		/* use to give file attribute hints */
746 	unsigned char i_dir_level;	/* use for dentry level for large dir */
747 	unsigned int i_current_depth;	/* only for directory depth */
748 	/* for gc failure statistic */
749 	unsigned int i_gc_failures[MAX_GC_FAILURE];
750 	unsigned int i_pino;		/* parent inode number */
751 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
752 
753 	/* Use below internally in f2fs*/
754 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
755 	struct rw_semaphore i_sem;	/* protect fi info */
756 	atomic_t dirty_pages;		/* # of dirty pages */
757 	f2fs_hash_t chash;		/* hash value of given file name */
758 	unsigned int clevel;		/* maximum level of given file name */
759 	struct task_struct *task;	/* lookup and create consistency */
760 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
761 	nid_t i_xattr_nid;		/* node id that contains xattrs */
762 	loff_t	last_disk_size;		/* lastly written file size */
763 	spinlock_t i_size_lock;		/* protect last_disk_size */
764 
765 #ifdef CONFIG_QUOTA
766 	struct dquot *i_dquot[MAXQUOTAS];
767 
768 	/* quota space reservation, managed internally by quota code */
769 	qsize_t i_reserved_quota;
770 #endif
771 	struct list_head dirty_list;	/* dirty list for dirs and files */
772 	struct list_head gdirty_list;	/* linked in global dirty list */
773 	struct list_head inmem_ilist;	/* list for inmem inodes */
774 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
775 	struct task_struct *inmem_task;	/* store inmemory task */
776 	struct mutex inmem_lock;	/* lock for inmemory pages */
777 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
778 
779 	/* avoid racing between foreground op and gc */
780 	struct rw_semaphore i_gc_rwsem[2];
781 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
782 
783 	int i_extra_isize;		/* size of extra space located in i_addr */
784 	kprojid_t i_projid;		/* id for project quota */
785 	int i_inline_xattr_size;	/* inline xattr size */
786 	struct timespec64 i_crtime;	/* inode creation time */
787 	struct timespec64 i_disk_time[4];/* inode disk times */
788 
789 	/* for file compress */
790 	atomic_t i_compr_blocks;		/* # of compressed blocks */
791 	unsigned char i_compress_algorithm;	/* algorithm type */
792 	unsigned char i_log_cluster_size;	/* log of cluster size */
793 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
794 	unsigned short i_compress_flag;		/* compress flag */
795 	unsigned int i_cluster_size;		/* cluster size */
796 };
797 
798 static inline void get_extent_info(struct extent_info *ext,
799 					struct f2fs_extent *i_ext)
800 {
801 	ext->fofs = le32_to_cpu(i_ext->fofs);
802 	ext->blk = le32_to_cpu(i_ext->blk);
803 	ext->len = le32_to_cpu(i_ext->len);
804 }
805 
806 static inline void set_raw_extent(struct extent_info *ext,
807 					struct f2fs_extent *i_ext)
808 {
809 	i_ext->fofs = cpu_to_le32(ext->fofs);
810 	i_ext->blk = cpu_to_le32(ext->blk);
811 	i_ext->len = cpu_to_le32(ext->len);
812 }
813 
814 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
815 						u32 blk, unsigned int len)
816 {
817 	ei->fofs = fofs;
818 	ei->blk = blk;
819 	ei->len = len;
820 #ifdef CONFIG_F2FS_FS_COMPRESSION
821 	ei->c_len = 0;
822 #endif
823 }
824 
825 static inline bool __is_discard_mergeable(struct discard_info *back,
826 			struct discard_info *front, unsigned int max_len)
827 {
828 	return (back->lstart + back->len == front->lstart) &&
829 		(back->len + front->len <= max_len);
830 }
831 
832 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
833 			struct discard_info *back, unsigned int max_len)
834 {
835 	return __is_discard_mergeable(back, cur, max_len);
836 }
837 
838 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
839 			struct discard_info *front, unsigned int max_len)
840 {
841 	return __is_discard_mergeable(cur, front, max_len);
842 }
843 
844 static inline bool __is_extent_mergeable(struct extent_info *back,
845 						struct extent_info *front)
846 {
847 #ifdef CONFIG_F2FS_FS_COMPRESSION
848 	if (back->c_len && back->len != back->c_len)
849 		return false;
850 	if (front->c_len && front->len != front->c_len)
851 		return false;
852 #endif
853 	return (back->fofs + back->len == front->fofs &&
854 			back->blk + back->len == front->blk);
855 }
856 
857 static inline bool __is_back_mergeable(struct extent_info *cur,
858 						struct extent_info *back)
859 {
860 	return __is_extent_mergeable(back, cur);
861 }
862 
863 static inline bool __is_front_mergeable(struct extent_info *cur,
864 						struct extent_info *front)
865 {
866 	return __is_extent_mergeable(cur, front);
867 }
868 
869 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
870 static inline void __try_update_largest_extent(struct extent_tree *et,
871 						struct extent_node *en)
872 {
873 	if (en->ei.len > et->largest.len) {
874 		et->largest = en->ei;
875 		et->largest_updated = true;
876 	}
877 }
878 
879 /*
880  * For free nid management
881  */
882 enum nid_state {
883 	FREE_NID,		/* newly added to free nid list */
884 	PREALLOC_NID,		/* it is preallocated */
885 	MAX_NID_STATE,
886 };
887 
888 enum nat_state {
889 	TOTAL_NAT,
890 	DIRTY_NAT,
891 	RECLAIMABLE_NAT,
892 	MAX_NAT_STATE,
893 };
894 
895 struct f2fs_nm_info {
896 	block_t nat_blkaddr;		/* base disk address of NAT */
897 	nid_t max_nid;			/* maximum possible node ids */
898 	nid_t available_nids;		/* # of available node ids */
899 	nid_t next_scan_nid;		/* the next nid to be scanned */
900 	unsigned int ram_thresh;	/* control the memory footprint */
901 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
902 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
903 
904 	/* NAT cache management */
905 	struct radix_tree_root nat_root;/* root of the nat entry cache */
906 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
907 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
908 	struct list_head nat_entries;	/* cached nat entry list (clean) */
909 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
910 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
911 	unsigned int nat_blocks;	/* # of nat blocks */
912 
913 	/* free node ids management */
914 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
915 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
916 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
917 	spinlock_t nid_list_lock;	/* protect nid lists ops */
918 	struct mutex build_lock;	/* lock for build free nids */
919 	unsigned char **free_nid_bitmap;
920 	unsigned char *nat_block_bitmap;
921 	unsigned short *free_nid_count;	/* free nid count of NAT block */
922 
923 	/* for checkpoint */
924 	char *nat_bitmap;		/* NAT bitmap pointer */
925 
926 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
927 	unsigned char *nat_bits;	/* NAT bits blocks */
928 	unsigned char *full_nat_bits;	/* full NAT pages */
929 	unsigned char *empty_nat_bits;	/* empty NAT pages */
930 #ifdef CONFIG_F2FS_CHECK_FS
931 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
932 #endif
933 	int bitmap_size;		/* bitmap size */
934 };
935 
936 /*
937  * this structure is used as one of function parameters.
938  * all the information are dedicated to a given direct node block determined
939  * by the data offset in a file.
940  */
941 struct dnode_of_data {
942 	struct inode *inode;		/* vfs inode pointer */
943 	struct page *inode_page;	/* its inode page, NULL is possible */
944 	struct page *node_page;		/* cached direct node page */
945 	nid_t nid;			/* node id of the direct node block */
946 	unsigned int ofs_in_node;	/* data offset in the node page */
947 	bool inode_page_locked;		/* inode page is locked or not */
948 	bool node_changed;		/* is node block changed */
949 	char cur_level;			/* level of hole node page */
950 	char max_level;			/* level of current page located */
951 	block_t	data_blkaddr;		/* block address of the node block */
952 };
953 
954 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
955 		struct page *ipage, struct page *npage, nid_t nid)
956 {
957 	memset(dn, 0, sizeof(*dn));
958 	dn->inode = inode;
959 	dn->inode_page = ipage;
960 	dn->node_page = npage;
961 	dn->nid = nid;
962 }
963 
964 /*
965  * For SIT manager
966  *
967  * By default, there are 6 active log areas across the whole main area.
968  * When considering hot and cold data separation to reduce cleaning overhead,
969  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
970  * respectively.
971  * In the current design, you should not change the numbers intentionally.
972  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
973  * logs individually according to the underlying devices. (default: 6)
974  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
975  * data and 8 for node logs.
976  */
977 #define	NR_CURSEG_DATA_TYPE	(3)
978 #define NR_CURSEG_NODE_TYPE	(3)
979 #define NR_CURSEG_INMEM_TYPE	(2)
980 #define NR_CURSEG_RO_TYPE	(2)
981 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
982 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
983 
984 enum {
985 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
986 	CURSEG_WARM_DATA,	/* data blocks */
987 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
988 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
989 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
990 	CURSEG_COLD_NODE,	/* indirect node blocks */
991 	NR_PERSISTENT_LOG,	/* number of persistent log */
992 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
993 				/* pinned file that needs consecutive block address */
994 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
995 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
996 };
997 
998 struct flush_cmd {
999 	struct completion wait;
1000 	struct llist_node llnode;
1001 	nid_t ino;
1002 	int ret;
1003 };
1004 
1005 struct flush_cmd_control {
1006 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1007 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1008 	atomic_t issued_flush;			/* # of issued flushes */
1009 	atomic_t queued_flush;			/* # of queued flushes */
1010 	struct llist_head issue_list;		/* list for command issue */
1011 	struct llist_node *dispatch_list;	/* list for command dispatch */
1012 };
1013 
1014 struct f2fs_sm_info {
1015 	struct sit_info *sit_info;		/* whole segment information */
1016 	struct free_segmap_info *free_info;	/* free segment information */
1017 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1018 	struct curseg_info *curseg_array;	/* active segment information */
1019 
1020 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
1021 
1022 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1023 	block_t main_blkaddr;		/* start block address of main area */
1024 	block_t ssa_blkaddr;		/* start block address of SSA area */
1025 
1026 	unsigned int segment_count;	/* total # of segments */
1027 	unsigned int main_segments;	/* # of segments in main area */
1028 	unsigned int reserved_segments;	/* # of reserved segments */
1029 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1030 	unsigned int ovp_segments;	/* # of overprovision segments */
1031 
1032 	/* a threshold to reclaim prefree segments */
1033 	unsigned int rec_prefree_segments;
1034 
1035 	/* for batched trimming */
1036 	unsigned int trim_sections;		/* # of sections to trim */
1037 
1038 	struct list_head sit_entry_set;	/* sit entry set list */
1039 
1040 	unsigned int ipu_policy;	/* in-place-update policy */
1041 	unsigned int min_ipu_util;	/* in-place-update threshold */
1042 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1043 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1044 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1045 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1046 
1047 	/* for flush command control */
1048 	struct flush_cmd_control *fcc_info;
1049 
1050 	/* for discard command control */
1051 	struct discard_cmd_control *dcc_info;
1052 };
1053 
1054 /*
1055  * For superblock
1056  */
1057 /*
1058  * COUNT_TYPE for monitoring
1059  *
1060  * f2fs monitors the number of several block types such as on-writeback,
1061  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1062  */
1063 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1064 enum count_type {
1065 	F2FS_DIRTY_DENTS,
1066 	F2FS_DIRTY_DATA,
1067 	F2FS_DIRTY_QDATA,
1068 	F2FS_DIRTY_NODES,
1069 	F2FS_DIRTY_META,
1070 	F2FS_INMEM_PAGES,
1071 	F2FS_DIRTY_IMETA,
1072 	F2FS_WB_CP_DATA,
1073 	F2FS_WB_DATA,
1074 	F2FS_RD_DATA,
1075 	F2FS_RD_NODE,
1076 	F2FS_RD_META,
1077 	F2FS_DIO_WRITE,
1078 	F2FS_DIO_READ,
1079 	NR_COUNT_TYPE,
1080 };
1081 
1082 /*
1083  * The below are the page types of bios used in submit_bio().
1084  * The available types are:
1085  * DATA			User data pages. It operates as async mode.
1086  * NODE			Node pages. It operates as async mode.
1087  * META			FS metadata pages such as SIT, NAT, CP.
1088  * NR_PAGE_TYPE		The number of page types.
1089  * META_FLUSH		Make sure the previous pages are written
1090  *			with waiting the bio's completion
1091  * ...			Only can be used with META.
1092  */
1093 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1094 enum page_type {
1095 	DATA,
1096 	NODE,
1097 	META,
1098 	NR_PAGE_TYPE,
1099 	META_FLUSH,
1100 	INMEM,		/* the below types are used by tracepoints only. */
1101 	INMEM_DROP,
1102 	INMEM_INVALIDATE,
1103 	INMEM_REVOKE,
1104 	IPU,
1105 	OPU,
1106 };
1107 
1108 enum temp_type {
1109 	HOT = 0,	/* must be zero for meta bio */
1110 	WARM,
1111 	COLD,
1112 	NR_TEMP_TYPE,
1113 };
1114 
1115 enum need_lock_type {
1116 	LOCK_REQ = 0,
1117 	LOCK_DONE,
1118 	LOCK_RETRY,
1119 };
1120 
1121 enum cp_reason_type {
1122 	CP_NO_NEEDED,
1123 	CP_NON_REGULAR,
1124 	CP_COMPRESSED,
1125 	CP_HARDLINK,
1126 	CP_SB_NEED_CP,
1127 	CP_WRONG_PINO,
1128 	CP_NO_SPC_ROLL,
1129 	CP_NODE_NEED_CP,
1130 	CP_FASTBOOT_MODE,
1131 	CP_SPEC_LOG_NUM,
1132 	CP_RECOVER_DIR,
1133 };
1134 
1135 enum iostat_type {
1136 	/* WRITE IO */
1137 	APP_DIRECT_IO,			/* app direct write IOs */
1138 	APP_BUFFERED_IO,		/* app buffered write IOs */
1139 	APP_WRITE_IO,			/* app write IOs */
1140 	APP_MAPPED_IO,			/* app mapped IOs */
1141 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1142 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1143 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1144 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1145 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1146 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1147 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1148 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1149 
1150 	/* READ IO */
1151 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1152 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1153 	APP_READ_IO,			/* app read IOs */
1154 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1155 	FS_DATA_READ_IO,		/* data read IOs */
1156 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1157 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1158 	FS_NODE_READ_IO,		/* node read IOs */
1159 	FS_META_READ_IO,		/* meta read IOs */
1160 
1161 	/* other */
1162 	FS_DISCARD,			/* discard */
1163 	NR_IO_TYPE,
1164 };
1165 
1166 struct f2fs_io_info {
1167 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1168 	nid_t ino;		/* inode number */
1169 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1170 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1171 	int op;			/* contains REQ_OP_ */
1172 	int op_flags;		/* req_flag_bits */
1173 	block_t new_blkaddr;	/* new block address to be written */
1174 	block_t old_blkaddr;	/* old block address before Cow */
1175 	struct page *page;	/* page to be written */
1176 	struct page *encrypted_page;	/* encrypted page */
1177 	struct page *compressed_page;	/* compressed page */
1178 	struct list_head list;		/* serialize IOs */
1179 	bool submitted;		/* indicate IO submission */
1180 	int need_lock;		/* indicate we need to lock cp_rwsem */
1181 	bool in_list;		/* indicate fio is in io_list */
1182 	bool is_por;		/* indicate IO is from recovery or not */
1183 	bool retry;		/* need to reallocate block address */
1184 	int compr_blocks;	/* # of compressed block addresses */
1185 	bool encrypted;		/* indicate file is encrypted */
1186 	enum iostat_type io_type;	/* io type */
1187 	struct writeback_control *io_wbc; /* writeback control */
1188 	struct bio **bio;		/* bio for ipu */
1189 	sector_t *last_block;		/* last block number in bio */
1190 	unsigned char version;		/* version of the node */
1191 };
1192 
1193 struct bio_entry {
1194 	struct bio *bio;
1195 	struct list_head list;
1196 };
1197 
1198 #define is_read_io(rw) ((rw) == READ)
1199 struct f2fs_bio_info {
1200 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1201 	struct bio *bio;		/* bios to merge */
1202 	sector_t last_block_in_bio;	/* last block number */
1203 	struct f2fs_io_info fio;	/* store buffered io info. */
1204 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1205 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1206 	struct list_head io_list;	/* track fios */
1207 	struct list_head bio_list;	/* bio entry list head */
1208 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1209 };
1210 
1211 #define FDEV(i)				(sbi->devs[i])
1212 #define RDEV(i)				(raw_super->devs[i])
1213 struct f2fs_dev_info {
1214 	struct block_device *bdev;
1215 	char path[MAX_PATH_LEN];
1216 	unsigned int total_segments;
1217 	block_t start_blk;
1218 	block_t end_blk;
1219 #ifdef CONFIG_BLK_DEV_ZONED
1220 	unsigned int nr_blkz;		/* Total number of zones */
1221 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1222 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1223 #endif
1224 };
1225 
1226 enum inode_type {
1227 	DIR_INODE,			/* for dirty dir inode */
1228 	FILE_INODE,			/* for dirty regular/symlink inode */
1229 	DIRTY_META,			/* for all dirtied inode metadata */
1230 	ATOMIC_FILE,			/* for all atomic files */
1231 	NR_INODE_TYPE,
1232 };
1233 
1234 /* for inner inode cache management */
1235 struct inode_management {
1236 	struct radix_tree_root ino_root;	/* ino entry array */
1237 	spinlock_t ino_lock;			/* for ino entry lock */
1238 	struct list_head ino_list;		/* inode list head */
1239 	unsigned long ino_num;			/* number of entries */
1240 };
1241 
1242 /* for GC_AT */
1243 struct atgc_management {
1244 	bool atgc_enabled;			/* ATGC is enabled or not */
1245 	struct rb_root_cached root;		/* root of victim rb-tree */
1246 	struct list_head victim_list;		/* linked with all victim entries */
1247 	unsigned int victim_count;		/* victim count in rb-tree */
1248 	unsigned int candidate_ratio;		/* candidate ratio */
1249 	unsigned int max_candidate_count;	/* max candidate count */
1250 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1251 	unsigned long long age_threshold;	/* age threshold */
1252 };
1253 
1254 /* For s_flag in struct f2fs_sb_info */
1255 enum {
1256 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1257 	SBI_IS_CLOSE,				/* specify unmounting */
1258 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1259 	SBI_POR_DOING,				/* recovery is doing or not */
1260 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1261 	SBI_NEED_CP,				/* need to checkpoint */
1262 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1263 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1264 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1265 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1266 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1267 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1268 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1269 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1270 };
1271 
1272 enum {
1273 	CP_TIME,
1274 	REQ_TIME,
1275 	DISCARD_TIME,
1276 	GC_TIME,
1277 	DISABLE_TIME,
1278 	UMOUNT_DISCARD_TIMEOUT,
1279 	MAX_TIME,
1280 };
1281 
1282 enum {
1283 	GC_NORMAL,
1284 	GC_IDLE_CB,
1285 	GC_IDLE_GREEDY,
1286 	GC_IDLE_AT,
1287 	GC_URGENT_HIGH,
1288 	GC_URGENT_LOW,
1289 	MAX_GC_MODE,
1290 };
1291 
1292 enum {
1293 	BGGC_MODE_ON,		/* background gc is on */
1294 	BGGC_MODE_OFF,		/* background gc is off */
1295 	BGGC_MODE_SYNC,		/*
1296 				 * background gc is on, migrating blocks
1297 				 * like foreground gc
1298 				 */
1299 };
1300 
1301 enum {
1302 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1303 	FS_MODE_LFS,			/* use lfs allocation only */
1304 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1305 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1306 };
1307 
1308 enum {
1309 	WHINT_MODE_OFF,		/* not pass down write hints */
1310 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1311 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1312 };
1313 
1314 enum {
1315 	ALLOC_MODE_DEFAULT,	/* stay default */
1316 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1317 };
1318 
1319 enum fsync_mode {
1320 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1321 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1322 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1323 };
1324 
1325 enum {
1326 	COMPR_MODE_FS,		/*
1327 				 * automatically compress compression
1328 				 * enabled files
1329 				 */
1330 	COMPR_MODE_USER,	/*
1331 				 * automatical compression is disabled.
1332 				 * user can control the file compression
1333 				 * using ioctls
1334 				 */
1335 };
1336 
1337 enum {
1338 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1339 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1340 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1341 };
1342 
1343 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1344 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1345 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1346 
1347 /*
1348  * Layout of f2fs page.private:
1349  *
1350  * Layout A: lowest bit should be 1
1351  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1352  * bit 0	PAGE_PRIVATE_NOT_POINTER
1353  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1354  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1355  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1356  * bit 4	PAGE_PRIVATE_INLINE_INODE
1357  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1358  * bit 6-	f2fs private data
1359  *
1360  * Layout B: lowest bit should be 0
1361  * page.private is a wrapped pointer.
1362  */
1363 enum {
1364 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1365 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1366 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1367 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1368 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1369 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1370 	PAGE_PRIVATE_MAX
1371 };
1372 
1373 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1374 static inline bool page_private_##name(struct page *page) \
1375 { \
1376 	return PagePrivate(page) && \
1377 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1378 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1379 }
1380 
1381 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1382 static inline void set_page_private_##name(struct page *page) \
1383 { \
1384 	if (!PagePrivate(page)) { \
1385 		get_page(page); \
1386 		SetPagePrivate(page); \
1387 		set_page_private(page, 0); \
1388 	} \
1389 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1390 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1391 }
1392 
1393 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1394 static inline void clear_page_private_##name(struct page *page) \
1395 { \
1396 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1397 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1398 		set_page_private(page, 0); \
1399 		if (PagePrivate(page)) { \
1400 			ClearPagePrivate(page); \
1401 			put_page(page); \
1402 		}\
1403 	} \
1404 }
1405 
1406 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1407 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1408 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1409 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1410 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1411 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1412 
1413 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1414 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1415 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1416 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1417 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1418 
1419 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1420 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1421 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1422 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1423 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1424 
1425 static inline unsigned long get_page_private_data(struct page *page)
1426 {
1427 	unsigned long data = page_private(page);
1428 
1429 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1430 		return 0;
1431 	return data >> PAGE_PRIVATE_MAX;
1432 }
1433 
1434 static inline void set_page_private_data(struct page *page, unsigned long data)
1435 {
1436 	if (!PagePrivate(page)) {
1437 		get_page(page);
1438 		SetPagePrivate(page);
1439 		set_page_private(page, 0);
1440 	}
1441 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1442 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1443 }
1444 
1445 static inline void clear_page_private_data(struct page *page)
1446 {
1447 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1448 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1449 		set_page_private(page, 0);
1450 		if (PagePrivate(page)) {
1451 			ClearPagePrivate(page);
1452 			put_page(page);
1453 		}
1454 	}
1455 }
1456 
1457 /* For compression */
1458 enum compress_algorithm_type {
1459 	COMPRESS_LZO,
1460 	COMPRESS_LZ4,
1461 	COMPRESS_ZSTD,
1462 	COMPRESS_LZORLE,
1463 	COMPRESS_MAX,
1464 };
1465 
1466 enum compress_flag {
1467 	COMPRESS_CHKSUM,
1468 	COMPRESS_MAX_FLAG,
1469 };
1470 
1471 #define	COMPRESS_WATERMARK			20
1472 #define	COMPRESS_PERCENT			20
1473 
1474 #define COMPRESS_DATA_RESERVED_SIZE		4
1475 struct compress_data {
1476 	__le32 clen;			/* compressed data size */
1477 	__le32 chksum;			/* compressed data chksum */
1478 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1479 	u8 cdata[];			/* compressed data */
1480 };
1481 
1482 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1483 
1484 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1485 
1486 #define	COMPRESS_LEVEL_OFFSET	8
1487 
1488 /* compress context */
1489 struct compress_ctx {
1490 	struct inode *inode;		/* inode the context belong to */
1491 	pgoff_t cluster_idx;		/* cluster index number */
1492 	unsigned int cluster_size;	/* page count in cluster */
1493 	unsigned int log_cluster_size;	/* log of cluster size */
1494 	struct page **rpages;		/* pages store raw data in cluster */
1495 	unsigned int nr_rpages;		/* total page number in rpages */
1496 	struct page **cpages;		/* pages store compressed data in cluster */
1497 	unsigned int nr_cpages;		/* total page number in cpages */
1498 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1499 	void *rbuf;			/* virtual mapped address on rpages */
1500 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1501 	size_t rlen;			/* valid data length in rbuf */
1502 	size_t clen;			/* valid data length in cbuf */
1503 	void *private;			/* payload buffer for specified compression algorithm */
1504 	void *private2;			/* extra payload buffer */
1505 };
1506 
1507 /* compress context for write IO path */
1508 struct compress_io_ctx {
1509 	u32 magic;			/* magic number to indicate page is compressed */
1510 	struct inode *inode;		/* inode the context belong to */
1511 	struct page **rpages;		/* pages store raw data in cluster */
1512 	unsigned int nr_rpages;		/* total page number in rpages */
1513 	atomic_t pending_pages;		/* in-flight compressed page count */
1514 };
1515 
1516 /* Context for decompressing one cluster on the read IO path */
1517 struct decompress_io_ctx {
1518 	u32 magic;			/* magic number to indicate page is compressed */
1519 	struct inode *inode;		/* inode the context belong to */
1520 	pgoff_t cluster_idx;		/* cluster index number */
1521 	unsigned int cluster_size;	/* page count in cluster */
1522 	unsigned int log_cluster_size;	/* log of cluster size */
1523 	struct page **rpages;		/* pages store raw data in cluster */
1524 	unsigned int nr_rpages;		/* total page number in rpages */
1525 	struct page **cpages;		/* pages store compressed data in cluster */
1526 	unsigned int nr_cpages;		/* total page number in cpages */
1527 	struct page **tpages;		/* temp pages to pad holes in cluster */
1528 	void *rbuf;			/* virtual mapped address on rpages */
1529 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1530 	size_t rlen;			/* valid data length in rbuf */
1531 	size_t clen;			/* valid data length in cbuf */
1532 
1533 	/*
1534 	 * The number of compressed pages remaining to be read in this cluster.
1535 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1536 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1537 	 * is decompressed (or an error is reported).
1538 	 *
1539 	 * If an error occurs before all the pages have been submitted for I/O,
1540 	 * then this will never reach 0.  In this case the I/O submitter is
1541 	 * responsible for calling f2fs_decompress_end_io() instead.
1542 	 */
1543 	atomic_t remaining_pages;
1544 
1545 	/*
1546 	 * Number of references to this decompress_io_ctx.
1547 	 *
1548 	 * One reference is held for I/O completion.  This reference is dropped
1549 	 * after the pagecache pages are updated and unlocked -- either after
1550 	 * decompression (and verity if enabled), or after an error.
1551 	 *
1552 	 * In addition, each compressed page holds a reference while it is in a
1553 	 * bio.  These references are necessary prevent compressed pages from
1554 	 * being freed while they are still in a bio.
1555 	 */
1556 	refcount_t refcnt;
1557 
1558 	bool failed;			/* IO error occurred before decompression? */
1559 	bool need_verity;		/* need fs-verity verification after decompression? */
1560 	void *private;			/* payload buffer for specified decompression algorithm */
1561 	void *private2;			/* extra payload buffer */
1562 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1563 };
1564 
1565 #define NULL_CLUSTER			((unsigned int)(~0))
1566 #define MIN_COMPRESS_LOG_SIZE		2
1567 #define MAX_COMPRESS_LOG_SIZE		8
1568 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1569 
1570 struct f2fs_sb_info {
1571 	struct super_block *sb;			/* pointer to VFS super block */
1572 	struct proc_dir_entry *s_proc;		/* proc entry */
1573 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1574 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1575 	int valid_super_block;			/* valid super block no */
1576 	unsigned long s_flag;				/* flags for sbi */
1577 	struct mutex writepages;		/* mutex for writepages() */
1578 
1579 #ifdef CONFIG_BLK_DEV_ZONED
1580 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1581 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1582 #endif
1583 
1584 	/* for node-related operations */
1585 	struct f2fs_nm_info *nm_info;		/* node manager */
1586 	struct inode *node_inode;		/* cache node blocks */
1587 
1588 	/* for segment-related operations */
1589 	struct f2fs_sm_info *sm_info;		/* segment manager */
1590 
1591 	/* for bio operations */
1592 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1593 	/* keep migration IO order for LFS mode */
1594 	struct rw_semaphore io_order_lock;
1595 	mempool_t *write_io_dummy;		/* Dummy pages */
1596 
1597 	/* for checkpoint */
1598 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1599 	int cur_cp_pack;			/* remain current cp pack */
1600 	spinlock_t cp_lock;			/* for flag in ckpt */
1601 	struct inode *meta_inode;		/* cache meta blocks */
1602 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1603 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1604 	struct rw_semaphore node_write;		/* locking node writes */
1605 	struct rw_semaphore node_change;	/* locking node change */
1606 	wait_queue_head_t cp_wait;
1607 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1608 	long interval_time[MAX_TIME];		/* to store thresholds */
1609 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1610 
1611 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1612 
1613 	spinlock_t fsync_node_lock;		/* for node entry lock */
1614 	struct list_head fsync_node_list;	/* node list head */
1615 	unsigned int fsync_seg_id;		/* sequence id */
1616 	unsigned int fsync_node_num;		/* number of node entries */
1617 
1618 	/* for orphan inode, use 0'th array */
1619 	unsigned int max_orphans;		/* max orphan inodes */
1620 
1621 	/* for inode management */
1622 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1623 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1624 	struct mutex flush_lock;		/* for flush exclusion */
1625 
1626 	/* for extent tree cache */
1627 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1628 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1629 	struct list_head extent_list;		/* lru list for shrinker */
1630 	spinlock_t extent_lock;			/* locking extent lru list */
1631 	atomic_t total_ext_tree;		/* extent tree count */
1632 	struct list_head zombie_list;		/* extent zombie tree list */
1633 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1634 	atomic_t total_ext_node;		/* extent info count */
1635 
1636 	/* basic filesystem units */
1637 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1638 	unsigned int log_blocksize;		/* log2 block size */
1639 	unsigned int blocksize;			/* block size */
1640 	unsigned int root_ino_num;		/* root inode number*/
1641 	unsigned int node_ino_num;		/* node inode number*/
1642 	unsigned int meta_ino_num;		/* meta inode number*/
1643 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1644 	unsigned int blocks_per_seg;		/* blocks per segment */
1645 	unsigned int segs_per_sec;		/* segments per section */
1646 	unsigned int secs_per_zone;		/* sections per zone */
1647 	unsigned int total_sections;		/* total section count */
1648 	unsigned int total_node_count;		/* total node block count */
1649 	unsigned int total_valid_node_count;	/* valid node block count */
1650 	int dir_level;				/* directory level */
1651 	int readdir_ra;				/* readahead inode in readdir */
1652 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1653 
1654 	block_t user_block_count;		/* # of user blocks */
1655 	block_t total_valid_block_count;	/* # of valid blocks */
1656 	block_t discard_blks;			/* discard command candidats */
1657 	block_t last_valid_block_count;		/* for recovery */
1658 	block_t reserved_blocks;		/* configurable reserved blocks */
1659 	block_t current_reserved_blocks;	/* current reserved blocks */
1660 
1661 	/* Additional tracking for no checkpoint mode */
1662 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1663 
1664 	unsigned int nquota_files;		/* # of quota sysfile */
1665 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1666 
1667 	/* # of pages, see count_type */
1668 	atomic_t nr_pages[NR_COUNT_TYPE];
1669 	/* # of allocated blocks */
1670 	struct percpu_counter alloc_valid_block_count;
1671 
1672 	/* writeback control */
1673 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1674 
1675 	/* valid inode count */
1676 	struct percpu_counter total_valid_inode_count;
1677 
1678 	struct f2fs_mount_info mount_opt;	/* mount options */
1679 
1680 	/* for cleaning operations */
1681 	struct rw_semaphore gc_lock;		/*
1682 						 * semaphore for GC, avoid
1683 						 * race between GC and GC or CP
1684 						 */
1685 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1686 	struct atgc_management am;		/* atgc management */
1687 	unsigned int cur_victim_sec;		/* current victim section num */
1688 	unsigned int gc_mode;			/* current GC state */
1689 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1690 	spinlock_t gc_urgent_high_lock;
1691 	bool gc_urgent_high_limited;		/* indicates having limited trial count */
1692 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1693 
1694 	/* for skip statistic */
1695 	unsigned int atomic_files;		/* # of opened atomic file */
1696 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1697 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1698 
1699 	/* threshold for gc trials on pinned files */
1700 	u64 gc_pin_file_threshold;
1701 	struct rw_semaphore pin_sem;
1702 
1703 	/* maximum # of trials to find a victim segment for SSR and GC */
1704 	unsigned int max_victim_search;
1705 	/* migration granularity of garbage collection, unit: segment */
1706 	unsigned int migration_granularity;
1707 
1708 	/*
1709 	 * for stat information.
1710 	 * one is for the LFS mode, and the other is for the SSR mode.
1711 	 */
1712 #ifdef CONFIG_F2FS_STAT_FS
1713 	struct f2fs_stat_info *stat_info;	/* FS status information */
1714 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1715 	unsigned int segment_count[2];		/* # of allocated segments */
1716 	unsigned int block_count[2];		/* # of allocated blocks */
1717 	atomic_t inplace_count;		/* # of inplace update */
1718 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1719 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1720 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1721 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1722 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1723 	atomic_t inline_inode;			/* # of inline_data inodes */
1724 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1725 	atomic_t compr_inode;			/* # of compressed inodes */
1726 	atomic64_t compr_blocks;		/* # of compressed blocks */
1727 	atomic_t vw_cnt;			/* # of volatile writes */
1728 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1729 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1730 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1731 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1732 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1733 #endif
1734 	spinlock_t stat_lock;			/* lock for stat operations */
1735 
1736 	/* to attach REQ_META|REQ_FUA flags */
1737 	unsigned int data_io_flag;
1738 	unsigned int node_io_flag;
1739 
1740 	/* For sysfs suppport */
1741 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1742 	struct completion s_kobj_unregister;
1743 
1744 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1745 	struct completion s_stat_kobj_unregister;
1746 
1747 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1748 	struct completion s_feature_list_kobj_unregister;
1749 
1750 	/* For shrinker support */
1751 	struct list_head s_list;
1752 	struct mutex umount_mutex;
1753 	unsigned int shrinker_run_no;
1754 
1755 	/* For multi devices */
1756 	int s_ndevs;				/* number of devices */
1757 	struct f2fs_dev_info *devs;		/* for device list */
1758 	unsigned int dirty_device;		/* for checkpoint data flush */
1759 	spinlock_t dev_lock;			/* protect dirty_device */
1760 	bool aligned_blksize;			/* all devices has the same logical blksize */
1761 
1762 	/* For write statistics */
1763 	u64 sectors_written_start;
1764 	u64 kbytes_written;
1765 
1766 	/* Reference to checksum algorithm driver via cryptoapi */
1767 	struct crypto_shash *s_chksum_driver;
1768 
1769 	/* Precomputed FS UUID checksum for seeding other checksums */
1770 	__u32 s_chksum_seed;
1771 
1772 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1773 
1774 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1775 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1776 
1777 	/* For reclaimed segs statistics per each GC mode */
1778 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1779 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1780 
1781 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1782 
1783 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1784 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1785 
1786 #ifdef CONFIG_F2FS_FS_COMPRESSION
1787 	struct kmem_cache *page_array_slab;	/* page array entry */
1788 	unsigned int page_array_slab_size;	/* default page array slab size */
1789 
1790 	/* For runtime compression statistics */
1791 	u64 compr_written_block;
1792 	u64 compr_saved_block;
1793 	u32 compr_new_inode;
1794 
1795 	/* For compressed block cache */
1796 	struct inode *compress_inode;		/* cache compressed blocks */
1797 	unsigned int compress_percent;		/* cache page percentage */
1798 	unsigned int compress_watermark;	/* cache page watermark */
1799 	atomic_t compress_page_hit;		/* cache hit count */
1800 #endif
1801 
1802 #ifdef CONFIG_F2FS_IOSTAT
1803 	/* For app/fs IO statistics */
1804 	spinlock_t iostat_lock;
1805 	unsigned long long rw_iostat[NR_IO_TYPE];
1806 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1807 	bool iostat_enable;
1808 	unsigned long iostat_next_period;
1809 	unsigned int iostat_period_ms;
1810 
1811 	/* For io latency related statistics info in one iostat period */
1812 	spinlock_t iostat_lat_lock;
1813 	struct iostat_lat_info *iostat_io_lat;
1814 #endif
1815 };
1816 
1817 #ifdef CONFIG_F2FS_FAULT_INJECTION
1818 #define f2fs_show_injection_info(sbi, type)					\
1819 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1820 		KERN_INFO, sbi->sb->s_id,				\
1821 		f2fs_fault_name[type],					\
1822 		__func__, __builtin_return_address(0))
1823 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1824 {
1825 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1826 
1827 	if (!ffi->inject_rate)
1828 		return false;
1829 
1830 	if (!IS_FAULT_SET(ffi, type))
1831 		return false;
1832 
1833 	atomic_inc(&ffi->inject_ops);
1834 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1835 		atomic_set(&ffi->inject_ops, 0);
1836 		return true;
1837 	}
1838 	return false;
1839 }
1840 #else
1841 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1842 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1843 {
1844 	return false;
1845 }
1846 #endif
1847 
1848 /*
1849  * Test if the mounted volume is a multi-device volume.
1850  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1851  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1852  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1853  */
1854 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1855 {
1856 	return sbi->s_ndevs > 1;
1857 }
1858 
1859 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1860 {
1861 	unsigned long now = jiffies;
1862 
1863 	sbi->last_time[type] = now;
1864 
1865 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1866 	if (type == REQ_TIME) {
1867 		sbi->last_time[DISCARD_TIME] = now;
1868 		sbi->last_time[GC_TIME] = now;
1869 	}
1870 }
1871 
1872 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1873 {
1874 	unsigned long interval = sbi->interval_time[type] * HZ;
1875 
1876 	return time_after(jiffies, sbi->last_time[type] + interval);
1877 }
1878 
1879 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1880 						int type)
1881 {
1882 	unsigned long interval = sbi->interval_time[type] * HZ;
1883 	unsigned int wait_ms = 0;
1884 	long delta;
1885 
1886 	delta = (sbi->last_time[type] + interval) - jiffies;
1887 	if (delta > 0)
1888 		wait_ms = jiffies_to_msecs(delta);
1889 
1890 	return wait_ms;
1891 }
1892 
1893 /*
1894  * Inline functions
1895  */
1896 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1897 			      const void *address, unsigned int length)
1898 {
1899 	struct {
1900 		struct shash_desc shash;
1901 		char ctx[4];
1902 	} desc;
1903 	int err;
1904 
1905 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1906 
1907 	desc.shash.tfm = sbi->s_chksum_driver;
1908 	*(u32 *)desc.ctx = crc;
1909 
1910 	err = crypto_shash_update(&desc.shash, address, length);
1911 	BUG_ON(err);
1912 
1913 	return *(u32 *)desc.ctx;
1914 }
1915 
1916 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1917 			   unsigned int length)
1918 {
1919 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1920 }
1921 
1922 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1923 				  void *buf, size_t buf_size)
1924 {
1925 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1926 }
1927 
1928 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1929 			      const void *address, unsigned int length)
1930 {
1931 	return __f2fs_crc32(sbi, crc, address, length);
1932 }
1933 
1934 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1935 {
1936 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1937 }
1938 
1939 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1940 {
1941 	return sb->s_fs_info;
1942 }
1943 
1944 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1945 {
1946 	return F2FS_SB(inode->i_sb);
1947 }
1948 
1949 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1950 {
1951 	return F2FS_I_SB(mapping->host);
1952 }
1953 
1954 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1955 {
1956 	return F2FS_M_SB(page_file_mapping(page));
1957 }
1958 
1959 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1960 {
1961 	return (struct f2fs_super_block *)(sbi->raw_super);
1962 }
1963 
1964 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1965 {
1966 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1967 }
1968 
1969 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1970 {
1971 	return (struct f2fs_node *)page_address(page);
1972 }
1973 
1974 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1975 {
1976 	return &((struct f2fs_node *)page_address(page))->i;
1977 }
1978 
1979 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1980 {
1981 	return (struct f2fs_nm_info *)(sbi->nm_info);
1982 }
1983 
1984 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1985 {
1986 	return (struct f2fs_sm_info *)(sbi->sm_info);
1987 }
1988 
1989 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1990 {
1991 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1992 }
1993 
1994 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1995 {
1996 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1997 }
1998 
1999 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2000 {
2001 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2002 }
2003 
2004 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2005 {
2006 	return sbi->meta_inode->i_mapping;
2007 }
2008 
2009 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2010 {
2011 	return sbi->node_inode->i_mapping;
2012 }
2013 
2014 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2015 {
2016 	return test_bit(type, &sbi->s_flag);
2017 }
2018 
2019 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2020 {
2021 	set_bit(type, &sbi->s_flag);
2022 }
2023 
2024 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2025 {
2026 	clear_bit(type, &sbi->s_flag);
2027 }
2028 
2029 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2030 {
2031 	return le64_to_cpu(cp->checkpoint_ver);
2032 }
2033 
2034 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2035 {
2036 	if (type < F2FS_MAX_QUOTAS)
2037 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2038 	return 0;
2039 }
2040 
2041 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2042 {
2043 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2044 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2045 }
2046 
2047 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2048 {
2049 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2050 
2051 	return ckpt_flags & f;
2052 }
2053 
2054 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2055 {
2056 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2057 }
2058 
2059 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2060 {
2061 	unsigned int ckpt_flags;
2062 
2063 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2064 	ckpt_flags |= f;
2065 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2066 }
2067 
2068 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2069 {
2070 	unsigned long flags;
2071 
2072 	spin_lock_irqsave(&sbi->cp_lock, flags);
2073 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2074 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2075 }
2076 
2077 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2078 {
2079 	unsigned int ckpt_flags;
2080 
2081 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2082 	ckpt_flags &= (~f);
2083 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2084 }
2085 
2086 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2087 {
2088 	unsigned long flags;
2089 
2090 	spin_lock_irqsave(&sbi->cp_lock, flags);
2091 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2092 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2093 }
2094 
2095 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2096 {
2097 	down_read(&sbi->cp_rwsem);
2098 }
2099 
2100 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2101 {
2102 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2103 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2104 		return 0;
2105 	}
2106 	return down_read_trylock(&sbi->cp_rwsem);
2107 }
2108 
2109 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2110 {
2111 	up_read(&sbi->cp_rwsem);
2112 }
2113 
2114 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2115 {
2116 	down_write(&sbi->cp_rwsem);
2117 }
2118 
2119 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2120 {
2121 	up_write(&sbi->cp_rwsem);
2122 }
2123 
2124 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2125 {
2126 	int reason = CP_SYNC;
2127 
2128 	if (test_opt(sbi, FASTBOOT))
2129 		reason = CP_FASTBOOT;
2130 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2131 		reason = CP_UMOUNT;
2132 	return reason;
2133 }
2134 
2135 static inline bool __remain_node_summaries(int reason)
2136 {
2137 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2138 }
2139 
2140 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2141 {
2142 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2143 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2144 }
2145 
2146 /*
2147  * Check whether the inode has blocks or not
2148  */
2149 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2150 {
2151 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2152 
2153 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2154 }
2155 
2156 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2157 {
2158 	return ofs == XATTR_NODE_OFFSET;
2159 }
2160 
2161 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2162 					struct inode *inode, bool cap)
2163 {
2164 	if (!inode)
2165 		return true;
2166 	if (!test_opt(sbi, RESERVE_ROOT))
2167 		return false;
2168 	if (IS_NOQUOTA(inode))
2169 		return true;
2170 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2171 		return true;
2172 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2173 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2174 		return true;
2175 	if (cap && capable(CAP_SYS_RESOURCE))
2176 		return true;
2177 	return false;
2178 }
2179 
2180 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2181 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2182 				 struct inode *inode, blkcnt_t *count)
2183 {
2184 	blkcnt_t diff = 0, release = 0;
2185 	block_t avail_user_block_count;
2186 	int ret;
2187 
2188 	ret = dquot_reserve_block(inode, *count);
2189 	if (ret)
2190 		return ret;
2191 
2192 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2193 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2194 		release = *count;
2195 		goto release_quota;
2196 	}
2197 
2198 	/*
2199 	 * let's increase this in prior to actual block count change in order
2200 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2201 	 */
2202 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2203 
2204 	spin_lock(&sbi->stat_lock);
2205 	sbi->total_valid_block_count += (block_t)(*count);
2206 	avail_user_block_count = sbi->user_block_count -
2207 					sbi->current_reserved_blocks;
2208 
2209 	if (!__allow_reserved_blocks(sbi, inode, true))
2210 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2211 
2212 	if (F2FS_IO_ALIGNED(sbi))
2213 		avail_user_block_count -= sbi->blocks_per_seg *
2214 				SM_I(sbi)->additional_reserved_segments;
2215 
2216 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2217 		if (avail_user_block_count > sbi->unusable_block_count)
2218 			avail_user_block_count -= sbi->unusable_block_count;
2219 		else
2220 			avail_user_block_count = 0;
2221 	}
2222 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2223 		diff = sbi->total_valid_block_count - avail_user_block_count;
2224 		if (diff > *count)
2225 			diff = *count;
2226 		*count -= diff;
2227 		release = diff;
2228 		sbi->total_valid_block_count -= diff;
2229 		if (!*count) {
2230 			spin_unlock(&sbi->stat_lock);
2231 			goto enospc;
2232 		}
2233 	}
2234 	spin_unlock(&sbi->stat_lock);
2235 
2236 	if (unlikely(release)) {
2237 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2238 		dquot_release_reservation_block(inode, release);
2239 	}
2240 	f2fs_i_blocks_write(inode, *count, true, true);
2241 	return 0;
2242 
2243 enospc:
2244 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2245 release_quota:
2246 	dquot_release_reservation_block(inode, release);
2247 	return -ENOSPC;
2248 }
2249 
2250 __printf(2, 3)
2251 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2252 
2253 #define f2fs_err(sbi, fmt, ...)						\
2254 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2255 #define f2fs_warn(sbi, fmt, ...)					\
2256 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2257 #define f2fs_notice(sbi, fmt, ...)					\
2258 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2259 #define f2fs_info(sbi, fmt, ...)					\
2260 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2261 #define f2fs_debug(sbi, fmt, ...)					\
2262 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2263 
2264 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2265 						struct inode *inode,
2266 						block_t count)
2267 {
2268 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2269 
2270 	spin_lock(&sbi->stat_lock);
2271 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2272 	sbi->total_valid_block_count -= (block_t)count;
2273 	if (sbi->reserved_blocks &&
2274 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2275 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2276 					sbi->current_reserved_blocks + count);
2277 	spin_unlock(&sbi->stat_lock);
2278 	if (unlikely(inode->i_blocks < sectors)) {
2279 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2280 			  inode->i_ino,
2281 			  (unsigned long long)inode->i_blocks,
2282 			  (unsigned long long)sectors);
2283 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2284 		return;
2285 	}
2286 	f2fs_i_blocks_write(inode, count, false, true);
2287 }
2288 
2289 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2290 {
2291 	atomic_inc(&sbi->nr_pages[count_type]);
2292 
2293 	if (count_type == F2FS_DIRTY_DENTS ||
2294 			count_type == F2FS_DIRTY_NODES ||
2295 			count_type == F2FS_DIRTY_META ||
2296 			count_type == F2FS_DIRTY_QDATA ||
2297 			count_type == F2FS_DIRTY_IMETA)
2298 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2299 }
2300 
2301 static inline void inode_inc_dirty_pages(struct inode *inode)
2302 {
2303 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2304 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2305 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2306 	if (IS_NOQUOTA(inode))
2307 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2308 }
2309 
2310 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2311 {
2312 	atomic_dec(&sbi->nr_pages[count_type]);
2313 }
2314 
2315 static inline void inode_dec_dirty_pages(struct inode *inode)
2316 {
2317 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2318 			!S_ISLNK(inode->i_mode))
2319 		return;
2320 
2321 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2322 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2323 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2324 	if (IS_NOQUOTA(inode))
2325 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2326 }
2327 
2328 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2329 {
2330 	return atomic_read(&sbi->nr_pages[count_type]);
2331 }
2332 
2333 static inline int get_dirty_pages(struct inode *inode)
2334 {
2335 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2336 }
2337 
2338 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2339 {
2340 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2341 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2342 						sbi->log_blocks_per_seg;
2343 
2344 	return segs / sbi->segs_per_sec;
2345 }
2346 
2347 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2348 {
2349 	return sbi->total_valid_block_count;
2350 }
2351 
2352 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2353 {
2354 	return sbi->discard_blks;
2355 }
2356 
2357 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2358 {
2359 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2360 
2361 	/* return NAT or SIT bitmap */
2362 	if (flag == NAT_BITMAP)
2363 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2364 	else if (flag == SIT_BITMAP)
2365 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2366 
2367 	return 0;
2368 }
2369 
2370 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2371 {
2372 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2373 }
2374 
2375 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2376 {
2377 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2378 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2379 	int offset;
2380 
2381 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2382 		offset = (flag == SIT_BITMAP) ?
2383 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2384 		/*
2385 		 * if large_nat_bitmap feature is enabled, leave checksum
2386 		 * protection for all nat/sit bitmaps.
2387 		 */
2388 		return tmp_ptr + offset + sizeof(__le32);
2389 	}
2390 
2391 	if (__cp_payload(sbi) > 0) {
2392 		if (flag == NAT_BITMAP)
2393 			return &ckpt->sit_nat_version_bitmap;
2394 		else
2395 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2396 	} else {
2397 		offset = (flag == NAT_BITMAP) ?
2398 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2399 		return tmp_ptr + offset;
2400 	}
2401 }
2402 
2403 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2404 {
2405 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2406 
2407 	if (sbi->cur_cp_pack == 2)
2408 		start_addr += sbi->blocks_per_seg;
2409 	return start_addr;
2410 }
2411 
2412 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2413 {
2414 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2415 
2416 	if (sbi->cur_cp_pack == 1)
2417 		start_addr += sbi->blocks_per_seg;
2418 	return start_addr;
2419 }
2420 
2421 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2422 {
2423 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2424 }
2425 
2426 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2427 {
2428 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2429 }
2430 
2431 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2432 					struct inode *inode, bool is_inode)
2433 {
2434 	block_t	valid_block_count;
2435 	unsigned int valid_node_count, user_block_count;
2436 	int err;
2437 
2438 	if (is_inode) {
2439 		if (inode) {
2440 			err = dquot_alloc_inode(inode);
2441 			if (err)
2442 				return err;
2443 		}
2444 	} else {
2445 		err = dquot_reserve_block(inode, 1);
2446 		if (err)
2447 			return err;
2448 	}
2449 
2450 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2451 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2452 		goto enospc;
2453 	}
2454 
2455 	spin_lock(&sbi->stat_lock);
2456 
2457 	valid_block_count = sbi->total_valid_block_count +
2458 					sbi->current_reserved_blocks + 1;
2459 
2460 	if (!__allow_reserved_blocks(sbi, inode, false))
2461 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2462 
2463 	if (F2FS_IO_ALIGNED(sbi))
2464 		valid_block_count += sbi->blocks_per_seg *
2465 				SM_I(sbi)->additional_reserved_segments;
2466 
2467 	user_block_count = sbi->user_block_count;
2468 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2469 		user_block_count -= sbi->unusable_block_count;
2470 
2471 	if (unlikely(valid_block_count > user_block_count)) {
2472 		spin_unlock(&sbi->stat_lock);
2473 		goto enospc;
2474 	}
2475 
2476 	valid_node_count = sbi->total_valid_node_count + 1;
2477 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2478 		spin_unlock(&sbi->stat_lock);
2479 		goto enospc;
2480 	}
2481 
2482 	sbi->total_valid_node_count++;
2483 	sbi->total_valid_block_count++;
2484 	spin_unlock(&sbi->stat_lock);
2485 
2486 	if (inode) {
2487 		if (is_inode)
2488 			f2fs_mark_inode_dirty_sync(inode, true);
2489 		else
2490 			f2fs_i_blocks_write(inode, 1, true, true);
2491 	}
2492 
2493 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2494 	return 0;
2495 
2496 enospc:
2497 	if (is_inode) {
2498 		if (inode)
2499 			dquot_free_inode(inode);
2500 	} else {
2501 		dquot_release_reservation_block(inode, 1);
2502 	}
2503 	return -ENOSPC;
2504 }
2505 
2506 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2507 					struct inode *inode, bool is_inode)
2508 {
2509 	spin_lock(&sbi->stat_lock);
2510 
2511 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2512 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2513 
2514 	sbi->total_valid_node_count--;
2515 	sbi->total_valid_block_count--;
2516 	if (sbi->reserved_blocks &&
2517 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2518 		sbi->current_reserved_blocks++;
2519 
2520 	spin_unlock(&sbi->stat_lock);
2521 
2522 	if (is_inode) {
2523 		dquot_free_inode(inode);
2524 	} else {
2525 		if (unlikely(inode->i_blocks == 0)) {
2526 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2527 				  inode->i_ino,
2528 				  (unsigned long long)inode->i_blocks);
2529 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2530 			return;
2531 		}
2532 		f2fs_i_blocks_write(inode, 1, false, true);
2533 	}
2534 }
2535 
2536 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2537 {
2538 	return sbi->total_valid_node_count;
2539 }
2540 
2541 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2542 {
2543 	percpu_counter_inc(&sbi->total_valid_inode_count);
2544 }
2545 
2546 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2547 {
2548 	percpu_counter_dec(&sbi->total_valid_inode_count);
2549 }
2550 
2551 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2552 {
2553 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2554 }
2555 
2556 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2557 						pgoff_t index, bool for_write)
2558 {
2559 	struct page *page;
2560 
2561 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2562 		if (!for_write)
2563 			page = find_get_page_flags(mapping, index,
2564 							FGP_LOCK | FGP_ACCESSED);
2565 		else
2566 			page = find_lock_page(mapping, index);
2567 		if (page)
2568 			return page;
2569 
2570 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2571 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2572 							FAULT_PAGE_ALLOC);
2573 			return NULL;
2574 		}
2575 	}
2576 
2577 	if (!for_write)
2578 		return grab_cache_page(mapping, index);
2579 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2580 }
2581 
2582 static inline struct page *f2fs_pagecache_get_page(
2583 				struct address_space *mapping, pgoff_t index,
2584 				int fgp_flags, gfp_t gfp_mask)
2585 {
2586 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2587 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2588 		return NULL;
2589 	}
2590 
2591 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2592 }
2593 
2594 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2595 {
2596 	char *src_kaddr = kmap(src);
2597 	char *dst_kaddr = kmap(dst);
2598 
2599 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2600 	kunmap(dst);
2601 	kunmap(src);
2602 }
2603 
2604 static inline void f2fs_put_page(struct page *page, int unlock)
2605 {
2606 	if (!page)
2607 		return;
2608 
2609 	if (unlock) {
2610 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2611 		unlock_page(page);
2612 	}
2613 	put_page(page);
2614 }
2615 
2616 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2617 {
2618 	if (dn->node_page)
2619 		f2fs_put_page(dn->node_page, 1);
2620 	if (dn->inode_page && dn->node_page != dn->inode_page)
2621 		f2fs_put_page(dn->inode_page, 0);
2622 	dn->node_page = NULL;
2623 	dn->inode_page = NULL;
2624 }
2625 
2626 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2627 					size_t size)
2628 {
2629 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2630 }
2631 
2632 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2633 						gfp_t flags)
2634 {
2635 	void *entry;
2636 
2637 	entry = kmem_cache_alloc(cachep, flags);
2638 	if (!entry)
2639 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2640 	return entry;
2641 }
2642 
2643 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2644 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2645 {
2646 	if (nofail)
2647 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2648 
2649 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2650 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2651 		return NULL;
2652 	}
2653 
2654 	return kmem_cache_alloc(cachep, flags);
2655 }
2656 
2657 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2658 {
2659 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2660 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2661 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2662 		get_pages(sbi, F2FS_DIO_READ) ||
2663 		get_pages(sbi, F2FS_DIO_WRITE))
2664 		return true;
2665 
2666 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2667 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2668 		return true;
2669 
2670 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2671 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2672 		return true;
2673 	return false;
2674 }
2675 
2676 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2677 {
2678 	if (sbi->gc_mode == GC_URGENT_HIGH)
2679 		return true;
2680 
2681 	if (is_inflight_io(sbi, type))
2682 		return false;
2683 
2684 	if (sbi->gc_mode == GC_URGENT_LOW &&
2685 			(type == DISCARD_TIME || type == GC_TIME))
2686 		return true;
2687 
2688 	return f2fs_time_over(sbi, type);
2689 }
2690 
2691 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2692 				unsigned long index, void *item)
2693 {
2694 	while (radix_tree_insert(root, index, item))
2695 		cond_resched();
2696 }
2697 
2698 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2699 
2700 static inline bool IS_INODE(struct page *page)
2701 {
2702 	struct f2fs_node *p = F2FS_NODE(page);
2703 
2704 	return RAW_IS_INODE(p);
2705 }
2706 
2707 static inline int offset_in_addr(struct f2fs_inode *i)
2708 {
2709 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2710 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2711 }
2712 
2713 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2714 {
2715 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2716 }
2717 
2718 static inline int f2fs_has_extra_attr(struct inode *inode);
2719 static inline block_t data_blkaddr(struct inode *inode,
2720 			struct page *node_page, unsigned int offset)
2721 {
2722 	struct f2fs_node *raw_node;
2723 	__le32 *addr_array;
2724 	int base = 0;
2725 	bool is_inode = IS_INODE(node_page);
2726 
2727 	raw_node = F2FS_NODE(node_page);
2728 
2729 	if (is_inode) {
2730 		if (!inode)
2731 			/* from GC path only */
2732 			base = offset_in_addr(&raw_node->i);
2733 		else if (f2fs_has_extra_attr(inode))
2734 			base = get_extra_isize(inode);
2735 	}
2736 
2737 	addr_array = blkaddr_in_node(raw_node);
2738 	return le32_to_cpu(addr_array[base + offset]);
2739 }
2740 
2741 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2742 {
2743 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2744 }
2745 
2746 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2747 {
2748 	int mask;
2749 
2750 	addr += (nr >> 3);
2751 	mask = 1 << (7 - (nr & 0x07));
2752 	return mask & *addr;
2753 }
2754 
2755 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2756 {
2757 	int mask;
2758 
2759 	addr += (nr >> 3);
2760 	mask = 1 << (7 - (nr & 0x07));
2761 	*addr |= mask;
2762 }
2763 
2764 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2765 {
2766 	int mask;
2767 
2768 	addr += (nr >> 3);
2769 	mask = 1 << (7 - (nr & 0x07));
2770 	*addr &= ~mask;
2771 }
2772 
2773 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2774 {
2775 	int mask;
2776 	int ret;
2777 
2778 	addr += (nr >> 3);
2779 	mask = 1 << (7 - (nr & 0x07));
2780 	ret = mask & *addr;
2781 	*addr |= mask;
2782 	return ret;
2783 }
2784 
2785 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2786 {
2787 	int mask;
2788 	int ret;
2789 
2790 	addr += (nr >> 3);
2791 	mask = 1 << (7 - (nr & 0x07));
2792 	ret = mask & *addr;
2793 	*addr &= ~mask;
2794 	return ret;
2795 }
2796 
2797 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2798 {
2799 	int mask;
2800 
2801 	addr += (nr >> 3);
2802 	mask = 1 << (7 - (nr & 0x07));
2803 	*addr ^= mask;
2804 }
2805 
2806 /*
2807  * On-disk inode flags (f2fs_inode::i_flags)
2808  */
2809 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2810 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2811 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2812 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2813 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2814 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2815 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2816 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2817 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2818 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2819 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2820 
2821 /* Flags that should be inherited by new inodes from their parent. */
2822 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2823 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2824 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2825 
2826 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2827 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2828 				F2FS_CASEFOLD_FL))
2829 
2830 /* Flags that are appropriate for non-directories/regular files. */
2831 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2832 
2833 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2834 {
2835 	if (S_ISDIR(mode))
2836 		return flags;
2837 	else if (S_ISREG(mode))
2838 		return flags & F2FS_REG_FLMASK;
2839 	else
2840 		return flags & F2FS_OTHER_FLMASK;
2841 }
2842 
2843 static inline void __mark_inode_dirty_flag(struct inode *inode,
2844 						int flag, bool set)
2845 {
2846 	switch (flag) {
2847 	case FI_INLINE_XATTR:
2848 	case FI_INLINE_DATA:
2849 	case FI_INLINE_DENTRY:
2850 	case FI_NEW_INODE:
2851 		if (set)
2852 			return;
2853 		fallthrough;
2854 	case FI_DATA_EXIST:
2855 	case FI_INLINE_DOTS:
2856 	case FI_PIN_FILE:
2857 	case FI_COMPRESS_RELEASED:
2858 		f2fs_mark_inode_dirty_sync(inode, true);
2859 	}
2860 }
2861 
2862 static inline void set_inode_flag(struct inode *inode, int flag)
2863 {
2864 	set_bit(flag, F2FS_I(inode)->flags);
2865 	__mark_inode_dirty_flag(inode, flag, true);
2866 }
2867 
2868 static inline int is_inode_flag_set(struct inode *inode, int flag)
2869 {
2870 	return test_bit(flag, F2FS_I(inode)->flags);
2871 }
2872 
2873 static inline void clear_inode_flag(struct inode *inode, int flag)
2874 {
2875 	clear_bit(flag, F2FS_I(inode)->flags);
2876 	__mark_inode_dirty_flag(inode, flag, false);
2877 }
2878 
2879 static inline bool f2fs_verity_in_progress(struct inode *inode)
2880 {
2881 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2882 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2883 }
2884 
2885 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2886 {
2887 	F2FS_I(inode)->i_acl_mode = mode;
2888 	set_inode_flag(inode, FI_ACL_MODE);
2889 	f2fs_mark_inode_dirty_sync(inode, false);
2890 }
2891 
2892 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2893 {
2894 	if (inc)
2895 		inc_nlink(inode);
2896 	else
2897 		drop_nlink(inode);
2898 	f2fs_mark_inode_dirty_sync(inode, true);
2899 }
2900 
2901 static inline void f2fs_i_blocks_write(struct inode *inode,
2902 					block_t diff, bool add, bool claim)
2903 {
2904 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2905 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2906 
2907 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2908 	if (add) {
2909 		if (claim)
2910 			dquot_claim_block(inode, diff);
2911 		else
2912 			dquot_alloc_block_nofail(inode, diff);
2913 	} else {
2914 		dquot_free_block(inode, diff);
2915 	}
2916 
2917 	f2fs_mark_inode_dirty_sync(inode, true);
2918 	if (clean || recover)
2919 		set_inode_flag(inode, FI_AUTO_RECOVER);
2920 }
2921 
2922 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2923 {
2924 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2925 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2926 
2927 	if (i_size_read(inode) == i_size)
2928 		return;
2929 
2930 	i_size_write(inode, i_size);
2931 	f2fs_mark_inode_dirty_sync(inode, true);
2932 	if (clean || recover)
2933 		set_inode_flag(inode, FI_AUTO_RECOVER);
2934 }
2935 
2936 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2937 {
2938 	F2FS_I(inode)->i_current_depth = depth;
2939 	f2fs_mark_inode_dirty_sync(inode, true);
2940 }
2941 
2942 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2943 					unsigned int count)
2944 {
2945 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2946 	f2fs_mark_inode_dirty_sync(inode, true);
2947 }
2948 
2949 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2950 {
2951 	F2FS_I(inode)->i_xattr_nid = xnid;
2952 	f2fs_mark_inode_dirty_sync(inode, true);
2953 }
2954 
2955 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2956 {
2957 	F2FS_I(inode)->i_pino = pino;
2958 	f2fs_mark_inode_dirty_sync(inode, true);
2959 }
2960 
2961 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2962 {
2963 	struct f2fs_inode_info *fi = F2FS_I(inode);
2964 
2965 	if (ri->i_inline & F2FS_INLINE_XATTR)
2966 		set_bit(FI_INLINE_XATTR, fi->flags);
2967 	if (ri->i_inline & F2FS_INLINE_DATA)
2968 		set_bit(FI_INLINE_DATA, fi->flags);
2969 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2970 		set_bit(FI_INLINE_DENTRY, fi->flags);
2971 	if (ri->i_inline & F2FS_DATA_EXIST)
2972 		set_bit(FI_DATA_EXIST, fi->flags);
2973 	if (ri->i_inline & F2FS_INLINE_DOTS)
2974 		set_bit(FI_INLINE_DOTS, fi->flags);
2975 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2976 		set_bit(FI_EXTRA_ATTR, fi->flags);
2977 	if (ri->i_inline & F2FS_PIN_FILE)
2978 		set_bit(FI_PIN_FILE, fi->flags);
2979 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2980 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
2981 }
2982 
2983 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2984 {
2985 	ri->i_inline = 0;
2986 
2987 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2988 		ri->i_inline |= F2FS_INLINE_XATTR;
2989 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2990 		ri->i_inline |= F2FS_INLINE_DATA;
2991 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2992 		ri->i_inline |= F2FS_INLINE_DENTRY;
2993 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2994 		ri->i_inline |= F2FS_DATA_EXIST;
2995 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2996 		ri->i_inline |= F2FS_INLINE_DOTS;
2997 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2998 		ri->i_inline |= F2FS_EXTRA_ATTR;
2999 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3000 		ri->i_inline |= F2FS_PIN_FILE;
3001 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3002 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3003 }
3004 
3005 static inline int f2fs_has_extra_attr(struct inode *inode)
3006 {
3007 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3008 }
3009 
3010 static inline int f2fs_has_inline_xattr(struct inode *inode)
3011 {
3012 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3013 }
3014 
3015 static inline int f2fs_compressed_file(struct inode *inode)
3016 {
3017 	return S_ISREG(inode->i_mode) &&
3018 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3019 }
3020 
3021 static inline bool f2fs_need_compress_data(struct inode *inode)
3022 {
3023 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3024 
3025 	if (!f2fs_compressed_file(inode))
3026 		return false;
3027 
3028 	if (compress_mode == COMPR_MODE_FS)
3029 		return true;
3030 	else if (compress_mode == COMPR_MODE_USER &&
3031 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3032 		return true;
3033 
3034 	return false;
3035 }
3036 
3037 static inline unsigned int addrs_per_inode(struct inode *inode)
3038 {
3039 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3040 				get_inline_xattr_addrs(inode);
3041 
3042 	if (!f2fs_compressed_file(inode))
3043 		return addrs;
3044 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3045 }
3046 
3047 static inline unsigned int addrs_per_block(struct inode *inode)
3048 {
3049 	if (!f2fs_compressed_file(inode))
3050 		return DEF_ADDRS_PER_BLOCK;
3051 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3052 }
3053 
3054 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3055 {
3056 	struct f2fs_inode *ri = F2FS_INODE(page);
3057 
3058 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3059 					get_inline_xattr_addrs(inode)]);
3060 }
3061 
3062 static inline int inline_xattr_size(struct inode *inode)
3063 {
3064 	if (f2fs_has_inline_xattr(inode))
3065 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3066 	return 0;
3067 }
3068 
3069 static inline int f2fs_has_inline_data(struct inode *inode)
3070 {
3071 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3072 }
3073 
3074 static inline int f2fs_exist_data(struct inode *inode)
3075 {
3076 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3077 }
3078 
3079 static inline int f2fs_has_inline_dots(struct inode *inode)
3080 {
3081 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3082 }
3083 
3084 static inline int f2fs_is_mmap_file(struct inode *inode)
3085 {
3086 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3087 }
3088 
3089 static inline bool f2fs_is_pinned_file(struct inode *inode)
3090 {
3091 	return is_inode_flag_set(inode, FI_PIN_FILE);
3092 }
3093 
3094 static inline bool f2fs_is_atomic_file(struct inode *inode)
3095 {
3096 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3097 }
3098 
3099 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3100 {
3101 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3102 }
3103 
3104 static inline bool f2fs_is_volatile_file(struct inode *inode)
3105 {
3106 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3107 }
3108 
3109 static inline bool f2fs_is_first_block_written(struct inode *inode)
3110 {
3111 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3112 }
3113 
3114 static inline bool f2fs_is_drop_cache(struct inode *inode)
3115 {
3116 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3117 }
3118 
3119 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3120 {
3121 	struct f2fs_inode *ri = F2FS_INODE(page);
3122 	int extra_size = get_extra_isize(inode);
3123 
3124 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3125 }
3126 
3127 static inline int f2fs_has_inline_dentry(struct inode *inode)
3128 {
3129 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3130 }
3131 
3132 static inline int is_file(struct inode *inode, int type)
3133 {
3134 	return F2FS_I(inode)->i_advise & type;
3135 }
3136 
3137 static inline void set_file(struct inode *inode, int type)
3138 {
3139 	if (is_file(inode, type))
3140 		return;
3141 	F2FS_I(inode)->i_advise |= type;
3142 	f2fs_mark_inode_dirty_sync(inode, true);
3143 }
3144 
3145 static inline void clear_file(struct inode *inode, int type)
3146 {
3147 	if (!is_file(inode, type))
3148 		return;
3149 	F2FS_I(inode)->i_advise &= ~type;
3150 	f2fs_mark_inode_dirty_sync(inode, true);
3151 }
3152 
3153 static inline bool f2fs_is_time_consistent(struct inode *inode)
3154 {
3155 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3156 		return false;
3157 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3158 		return false;
3159 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3160 		return false;
3161 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3162 						&F2FS_I(inode)->i_crtime))
3163 		return false;
3164 	return true;
3165 }
3166 
3167 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3168 {
3169 	bool ret;
3170 
3171 	if (dsync) {
3172 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3173 
3174 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3175 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3176 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3177 		return ret;
3178 	}
3179 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3180 			file_keep_isize(inode) ||
3181 			i_size_read(inode) & ~PAGE_MASK)
3182 		return false;
3183 
3184 	if (!f2fs_is_time_consistent(inode))
3185 		return false;
3186 
3187 	spin_lock(&F2FS_I(inode)->i_size_lock);
3188 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3189 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3190 
3191 	return ret;
3192 }
3193 
3194 static inline bool f2fs_readonly(struct super_block *sb)
3195 {
3196 	return sb_rdonly(sb);
3197 }
3198 
3199 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3200 {
3201 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3202 }
3203 
3204 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3205 {
3206 	if (len == 1 && name[0] == '.')
3207 		return true;
3208 
3209 	if (len == 2 && name[0] == '.' && name[1] == '.')
3210 		return true;
3211 
3212 	return false;
3213 }
3214 
3215 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3216 					size_t size, gfp_t flags)
3217 {
3218 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3219 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3220 		return NULL;
3221 	}
3222 
3223 	return kmalloc(size, flags);
3224 }
3225 
3226 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3227 					size_t size, gfp_t flags)
3228 {
3229 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3230 }
3231 
3232 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3233 					size_t size, gfp_t flags)
3234 {
3235 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3236 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3237 		return NULL;
3238 	}
3239 
3240 	return kvmalloc(size, flags);
3241 }
3242 
3243 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3244 					size_t size, gfp_t flags)
3245 {
3246 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3247 }
3248 
3249 static inline int get_extra_isize(struct inode *inode)
3250 {
3251 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3252 }
3253 
3254 static inline int get_inline_xattr_addrs(struct inode *inode)
3255 {
3256 	return F2FS_I(inode)->i_inline_xattr_size;
3257 }
3258 
3259 #define f2fs_get_inode_mode(i) \
3260 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3261 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3262 
3263 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3264 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3265 	offsetof(struct f2fs_inode, i_extra_isize))	\
3266 
3267 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3268 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3269 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3270 		sizeof((f2fs_inode)->field))			\
3271 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3272 
3273 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3274 
3275 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3276 
3277 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3278 					block_t blkaddr, int type);
3279 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3280 					block_t blkaddr, int type)
3281 {
3282 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3283 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3284 			 blkaddr, type);
3285 		f2fs_bug_on(sbi, 1);
3286 	}
3287 }
3288 
3289 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3290 {
3291 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3292 			blkaddr == COMPRESS_ADDR)
3293 		return false;
3294 	return true;
3295 }
3296 
3297 /*
3298  * file.c
3299  */
3300 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3301 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3302 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3303 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3304 int f2fs_truncate(struct inode *inode);
3305 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3306 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3307 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3308 		 struct iattr *attr);
3309 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3310 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3311 int f2fs_precache_extents(struct inode *inode);
3312 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3313 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3314 		      struct dentry *dentry, struct fileattr *fa);
3315 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3316 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3317 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3318 int f2fs_pin_file_control(struct inode *inode, bool inc);
3319 
3320 /*
3321  * inode.c
3322  */
3323 void f2fs_set_inode_flags(struct inode *inode);
3324 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3325 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3326 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3327 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3328 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3329 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3330 void f2fs_update_inode_page(struct inode *inode);
3331 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3332 void f2fs_evict_inode(struct inode *inode);
3333 void f2fs_handle_failed_inode(struct inode *inode);
3334 
3335 /*
3336  * namei.c
3337  */
3338 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3339 							bool hot, bool set);
3340 struct dentry *f2fs_get_parent(struct dentry *child);
3341 
3342 /*
3343  * dir.c
3344  */
3345 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3346 int f2fs_init_casefolded_name(const struct inode *dir,
3347 			      struct f2fs_filename *fname);
3348 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3349 			int lookup, struct f2fs_filename *fname);
3350 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3351 			struct f2fs_filename *fname);
3352 void f2fs_free_filename(struct f2fs_filename *fname);
3353 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3354 			const struct f2fs_filename *fname, int *max_slots);
3355 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3356 			unsigned int start_pos, struct fscrypt_str *fstr);
3357 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3358 			struct f2fs_dentry_ptr *d);
3359 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3360 			const struct f2fs_filename *fname, struct page *dpage);
3361 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3362 			unsigned int current_depth);
3363 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3364 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3365 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3366 					 const struct f2fs_filename *fname,
3367 					 struct page **res_page);
3368 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3369 			const struct qstr *child, struct page **res_page);
3370 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3371 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3372 			struct page **page);
3373 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3374 			struct page *page, struct inode *inode);
3375 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3376 			  const struct f2fs_filename *fname);
3377 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3378 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3379 			unsigned int bit_pos);
3380 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3381 			struct inode *inode, nid_t ino, umode_t mode);
3382 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3383 			struct inode *inode, nid_t ino, umode_t mode);
3384 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3385 			struct inode *inode, nid_t ino, umode_t mode);
3386 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3387 			struct inode *dir, struct inode *inode);
3388 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3389 bool f2fs_empty_dir(struct inode *dir);
3390 
3391 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3392 {
3393 	if (fscrypt_is_nokey_name(dentry))
3394 		return -ENOKEY;
3395 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3396 				inode, inode->i_ino, inode->i_mode);
3397 }
3398 
3399 /*
3400  * super.c
3401  */
3402 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3403 void f2fs_inode_synced(struct inode *inode);
3404 int f2fs_dquot_initialize(struct inode *inode);
3405 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3406 int f2fs_quota_sync(struct super_block *sb, int type);
3407 loff_t max_file_blocks(struct inode *inode);
3408 void f2fs_quota_off_umount(struct super_block *sb);
3409 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3410 int f2fs_sync_fs(struct super_block *sb, int sync);
3411 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3412 
3413 /*
3414  * hash.c
3415  */
3416 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3417 
3418 /*
3419  * node.c
3420  */
3421 struct node_info;
3422 
3423 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3424 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3425 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3426 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3427 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3428 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3429 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3430 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3431 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3432 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3433 				struct node_info *ni, bool checkpoint_context);
3434 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3435 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3436 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3437 int f2fs_truncate_xattr_node(struct inode *inode);
3438 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3439 					unsigned int seq_id);
3440 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3441 int f2fs_remove_inode_page(struct inode *inode);
3442 struct page *f2fs_new_inode_page(struct inode *inode);
3443 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3444 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3445 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3446 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3447 int f2fs_move_node_page(struct page *node_page, int gc_type);
3448 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3449 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3450 			struct writeback_control *wbc, bool atomic,
3451 			unsigned int *seq_id);
3452 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3453 			struct writeback_control *wbc,
3454 			bool do_balance, enum iostat_type io_type);
3455 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3456 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3457 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3458 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3459 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3460 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3461 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3462 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3463 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3464 			unsigned int segno, struct f2fs_summary_block *sum);
3465 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3466 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3467 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3468 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3469 int __init f2fs_create_node_manager_caches(void);
3470 void f2fs_destroy_node_manager_caches(void);
3471 
3472 /*
3473  * segment.c
3474  */
3475 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3476 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3477 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3478 void f2fs_drop_inmem_pages(struct inode *inode);
3479 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3480 int f2fs_commit_inmem_pages(struct inode *inode);
3481 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3482 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3483 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3484 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3485 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3486 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3487 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3488 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3489 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3490 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3491 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3492 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3493 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3494 					struct cp_control *cpc);
3495 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3496 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3497 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3498 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3499 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3500 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3501 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3502 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3503 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3504 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3505 			unsigned int *newseg, bool new_sec, int dir);
3506 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3507 					unsigned int start, unsigned int end);
3508 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3509 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3510 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3511 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3512 					struct cp_control *cpc);
3513 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3514 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3515 					block_t blk_addr);
3516 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3517 						enum iostat_type io_type);
3518 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3519 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3520 			struct f2fs_io_info *fio);
3521 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3522 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3523 			block_t old_blkaddr, block_t new_blkaddr,
3524 			bool recover_curseg, bool recover_newaddr,
3525 			bool from_gc);
3526 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3527 			block_t old_addr, block_t new_addr,
3528 			unsigned char version, bool recover_curseg,
3529 			bool recover_newaddr);
3530 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3531 			block_t old_blkaddr, block_t *new_blkaddr,
3532 			struct f2fs_summary *sum, int type,
3533 			struct f2fs_io_info *fio);
3534 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3535 					block_t blkaddr, unsigned int blkcnt);
3536 void f2fs_wait_on_page_writeback(struct page *page,
3537 			enum page_type type, bool ordered, bool locked);
3538 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3539 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3540 								block_t len);
3541 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3542 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3543 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3544 			unsigned int val, int alloc);
3545 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3546 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3547 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3548 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3549 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3550 int __init f2fs_create_segment_manager_caches(void);
3551 void f2fs_destroy_segment_manager_caches(void);
3552 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3553 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3554 			enum page_type type, enum temp_type temp);
3555 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3556 			unsigned int segno);
3557 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3558 			unsigned int segno);
3559 
3560 #define DEF_FRAGMENT_SIZE	4
3561 #define MIN_FRAGMENT_SIZE	1
3562 #define MAX_FRAGMENT_SIZE	512
3563 
3564 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3565 {
3566 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3567 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3568 }
3569 
3570 /*
3571  * checkpoint.c
3572  */
3573 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3574 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3575 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3576 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3577 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3578 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3579 					block_t blkaddr, int type);
3580 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3581 			int type, bool sync);
3582 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3583 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3584 			long nr_to_write, enum iostat_type io_type);
3585 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3586 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3587 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3588 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3589 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3590 					unsigned int devidx, int type);
3591 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3592 					unsigned int devidx, int type);
3593 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3594 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3595 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3596 void f2fs_add_orphan_inode(struct inode *inode);
3597 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3598 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3599 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3600 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3601 void f2fs_remove_dirty_inode(struct inode *inode);
3602 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3603 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3604 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3605 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3606 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3607 int __init f2fs_create_checkpoint_caches(void);
3608 void f2fs_destroy_checkpoint_caches(void);
3609 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3610 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3611 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3612 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3613 
3614 /*
3615  * data.c
3616  */
3617 int __init f2fs_init_bioset(void);
3618 void f2fs_destroy_bioset(void);
3619 int f2fs_init_bio_entry_cache(void);
3620 void f2fs_destroy_bio_entry_cache(void);
3621 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3622 				struct bio *bio, enum page_type type);
3623 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3624 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3625 				struct inode *inode, struct page *page,
3626 				nid_t ino, enum page_type type);
3627 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3628 					struct bio **bio, struct page *page);
3629 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3630 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3631 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3632 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3633 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3634 			block_t blk_addr, struct bio *bio);
3635 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3636 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3637 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3638 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3639 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3640 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3641 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3642 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3643 			int op_flags, bool for_write);
3644 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3645 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3646 			bool for_write);
3647 struct page *f2fs_get_new_data_page(struct inode *inode,
3648 			struct page *ipage, pgoff_t index, bool new_i_size);
3649 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3650 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3651 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3652 			int create, int flag);
3653 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3654 			u64 start, u64 len);
3655 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3656 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3657 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3658 int f2fs_write_single_data_page(struct page *page, int *submitted,
3659 				struct bio **bio, sector_t *last_block,
3660 				struct writeback_control *wbc,
3661 				enum iostat_type io_type,
3662 				int compr_blocks, bool allow_balance);
3663 void f2fs_write_failed(struct inode *inode, loff_t to);
3664 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3665 			unsigned int length);
3666 int f2fs_release_page(struct page *page, gfp_t wait);
3667 #ifdef CONFIG_MIGRATION
3668 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3669 			struct page *page, enum migrate_mode mode);
3670 #endif
3671 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3672 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3673 int f2fs_init_post_read_processing(void);
3674 void f2fs_destroy_post_read_processing(void);
3675 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3676 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3677 extern const struct iomap_ops f2fs_iomap_ops;
3678 
3679 /*
3680  * gc.c
3681  */
3682 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3683 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3684 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3685 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3686 			unsigned int segno);
3687 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3688 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3689 int __init f2fs_create_garbage_collection_cache(void);
3690 void f2fs_destroy_garbage_collection_cache(void);
3691 
3692 /*
3693  * recovery.c
3694  */
3695 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3696 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3697 int __init f2fs_create_recovery_cache(void);
3698 void f2fs_destroy_recovery_cache(void);
3699 
3700 /*
3701  * debug.c
3702  */
3703 #ifdef CONFIG_F2FS_STAT_FS
3704 struct f2fs_stat_info {
3705 	struct list_head stat_list;
3706 	struct f2fs_sb_info *sbi;
3707 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3708 	int main_area_segs, main_area_sections, main_area_zones;
3709 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3710 	unsigned long long hit_total, total_ext;
3711 	int ext_tree, zombie_tree, ext_node;
3712 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3713 	int ndirty_data, ndirty_qdata;
3714 	int inmem_pages;
3715 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3716 	int nats, dirty_nats, sits, dirty_sits;
3717 	int free_nids, avail_nids, alloc_nids;
3718 	int total_count, utilization;
3719 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3720 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3721 	int nr_dio_read, nr_dio_write;
3722 	unsigned int io_skip_bggc, other_skip_bggc;
3723 	int nr_flushing, nr_flushed, flush_list_empty;
3724 	int nr_discarding, nr_discarded;
3725 	int nr_discard_cmd;
3726 	unsigned int undiscard_blks;
3727 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3728 	unsigned int cur_ckpt_time, peak_ckpt_time;
3729 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3730 	int compr_inode;
3731 	unsigned long long compr_blocks;
3732 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3733 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3734 	unsigned int bimodal, avg_vblocks;
3735 	int util_free, util_valid, util_invalid;
3736 	int rsvd_segs, overp_segs;
3737 	int dirty_count, node_pages, meta_pages, compress_pages;
3738 	int compress_page_hit;
3739 	int prefree_count, call_count, cp_count, bg_cp_count;
3740 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3741 	int bg_node_segs, bg_data_segs;
3742 	int tot_blks, data_blks, node_blks;
3743 	int bg_data_blks, bg_node_blks;
3744 	unsigned long long skipped_atomic_files[2];
3745 	int curseg[NR_CURSEG_TYPE];
3746 	int cursec[NR_CURSEG_TYPE];
3747 	int curzone[NR_CURSEG_TYPE];
3748 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3749 	unsigned int full_seg[NR_CURSEG_TYPE];
3750 	unsigned int valid_blks[NR_CURSEG_TYPE];
3751 
3752 	unsigned int meta_count[META_MAX];
3753 	unsigned int segment_count[2];
3754 	unsigned int block_count[2];
3755 	unsigned int inplace_count;
3756 	unsigned long long base_mem, cache_mem, page_mem;
3757 };
3758 
3759 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3760 {
3761 	return (struct f2fs_stat_info *)sbi->stat_info;
3762 }
3763 
3764 #define stat_inc_cp_count(si)		((si)->cp_count++)
3765 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3766 #define stat_inc_call_count(si)		((si)->call_count++)
3767 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3768 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3769 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3770 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3771 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3772 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3773 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3774 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3775 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3776 #define stat_inc_inline_xattr(inode)					\
3777 	do {								\
3778 		if (f2fs_has_inline_xattr(inode))			\
3779 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3780 	} while (0)
3781 #define stat_dec_inline_xattr(inode)					\
3782 	do {								\
3783 		if (f2fs_has_inline_xattr(inode))			\
3784 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3785 	} while (0)
3786 #define stat_inc_inline_inode(inode)					\
3787 	do {								\
3788 		if (f2fs_has_inline_data(inode))			\
3789 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3790 	} while (0)
3791 #define stat_dec_inline_inode(inode)					\
3792 	do {								\
3793 		if (f2fs_has_inline_data(inode))			\
3794 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3795 	} while (0)
3796 #define stat_inc_inline_dir(inode)					\
3797 	do {								\
3798 		if (f2fs_has_inline_dentry(inode))			\
3799 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3800 	} while (0)
3801 #define stat_dec_inline_dir(inode)					\
3802 	do {								\
3803 		if (f2fs_has_inline_dentry(inode))			\
3804 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3805 	} while (0)
3806 #define stat_inc_compr_inode(inode)					\
3807 	do {								\
3808 		if (f2fs_compressed_file(inode))			\
3809 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3810 	} while (0)
3811 #define stat_dec_compr_inode(inode)					\
3812 	do {								\
3813 		if (f2fs_compressed_file(inode))			\
3814 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3815 	} while (0)
3816 #define stat_add_compr_blocks(inode, blocks)				\
3817 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3818 #define stat_sub_compr_blocks(inode, blocks)				\
3819 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3820 #define stat_inc_meta_count(sbi, blkaddr)				\
3821 	do {								\
3822 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3823 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3824 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3825 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3826 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3827 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3828 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3829 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3830 	} while (0)
3831 #define stat_inc_seg_type(sbi, curseg)					\
3832 		((sbi)->segment_count[(curseg)->alloc_type]++)
3833 #define stat_inc_block_count(sbi, curseg)				\
3834 		((sbi)->block_count[(curseg)->alloc_type]++)
3835 #define stat_inc_inplace_blocks(sbi)					\
3836 		(atomic_inc(&(sbi)->inplace_count))
3837 #define stat_update_max_atomic_write(inode)				\
3838 	do {								\
3839 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3840 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3841 		if (cur > max)						\
3842 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3843 	} while (0)
3844 #define stat_inc_volatile_write(inode)					\
3845 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3846 #define stat_dec_volatile_write(inode)					\
3847 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3848 #define stat_update_max_volatile_write(inode)				\
3849 	do {								\
3850 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3851 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3852 		if (cur > max)						\
3853 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3854 	} while (0)
3855 #define stat_inc_seg_count(sbi, type, gc_type)				\
3856 	do {								\
3857 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3858 		si->tot_segs++;						\
3859 		if ((type) == SUM_TYPE_DATA) {				\
3860 			si->data_segs++;				\
3861 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3862 		} else {						\
3863 			si->node_segs++;				\
3864 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3865 		}							\
3866 	} while (0)
3867 
3868 #define stat_inc_tot_blk_count(si, blks)				\
3869 	((si)->tot_blks += (blks))
3870 
3871 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3872 	do {								\
3873 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3874 		stat_inc_tot_blk_count(si, blks);			\
3875 		si->data_blks += (blks);				\
3876 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3877 	} while (0)
3878 
3879 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3880 	do {								\
3881 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3882 		stat_inc_tot_blk_count(si, blks);			\
3883 		si->node_blks += (blks);				\
3884 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3885 	} while (0)
3886 
3887 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3888 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3889 void __init f2fs_create_root_stats(void);
3890 void f2fs_destroy_root_stats(void);
3891 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3892 #else
3893 #define stat_inc_cp_count(si)				do { } while (0)
3894 #define stat_inc_bg_cp_count(si)			do { } while (0)
3895 #define stat_inc_call_count(si)				do { } while (0)
3896 #define stat_inc_bggc_count(si)				do { } while (0)
3897 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3898 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3899 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3900 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3901 #define stat_inc_total_hit(sbi)				do { } while (0)
3902 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3903 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3904 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3905 #define stat_inc_inline_xattr(inode)			do { } while (0)
3906 #define stat_dec_inline_xattr(inode)			do { } while (0)
3907 #define stat_inc_inline_inode(inode)			do { } while (0)
3908 #define stat_dec_inline_inode(inode)			do { } while (0)
3909 #define stat_inc_inline_dir(inode)			do { } while (0)
3910 #define stat_dec_inline_dir(inode)			do { } while (0)
3911 #define stat_inc_compr_inode(inode)			do { } while (0)
3912 #define stat_dec_compr_inode(inode)			do { } while (0)
3913 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3914 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3915 #define stat_update_max_atomic_write(inode)		do { } while (0)
3916 #define stat_inc_volatile_write(inode)			do { } while (0)
3917 #define stat_dec_volatile_write(inode)			do { } while (0)
3918 #define stat_update_max_volatile_write(inode)		do { } while (0)
3919 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3920 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3921 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3922 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3923 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3924 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3925 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3926 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3927 
3928 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3929 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3930 static inline void __init f2fs_create_root_stats(void) { }
3931 static inline void f2fs_destroy_root_stats(void) { }
3932 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3933 #endif
3934 
3935 extern const struct file_operations f2fs_dir_operations;
3936 extern const struct file_operations f2fs_file_operations;
3937 extern const struct inode_operations f2fs_file_inode_operations;
3938 extern const struct address_space_operations f2fs_dblock_aops;
3939 extern const struct address_space_operations f2fs_node_aops;
3940 extern const struct address_space_operations f2fs_meta_aops;
3941 extern const struct inode_operations f2fs_dir_inode_operations;
3942 extern const struct inode_operations f2fs_symlink_inode_operations;
3943 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3944 extern const struct inode_operations f2fs_special_inode_operations;
3945 extern struct kmem_cache *f2fs_inode_entry_slab;
3946 
3947 /*
3948  * inline.c
3949  */
3950 bool f2fs_may_inline_data(struct inode *inode);
3951 bool f2fs_may_inline_dentry(struct inode *inode);
3952 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3953 void f2fs_truncate_inline_inode(struct inode *inode,
3954 						struct page *ipage, u64 from);
3955 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3956 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3957 int f2fs_convert_inline_inode(struct inode *inode);
3958 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3959 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3960 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3961 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3962 					const struct f2fs_filename *fname,
3963 					struct page **res_page);
3964 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3965 			struct page *ipage);
3966 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3967 			struct inode *inode, nid_t ino, umode_t mode);
3968 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3969 				struct page *page, struct inode *dir,
3970 				struct inode *inode);
3971 bool f2fs_empty_inline_dir(struct inode *dir);
3972 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3973 			struct fscrypt_str *fstr);
3974 int f2fs_inline_data_fiemap(struct inode *inode,
3975 			struct fiemap_extent_info *fieinfo,
3976 			__u64 start, __u64 len);
3977 
3978 /*
3979  * shrinker.c
3980  */
3981 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3982 			struct shrink_control *sc);
3983 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3984 			struct shrink_control *sc);
3985 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3986 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3987 
3988 /*
3989  * extent_cache.c
3990  */
3991 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3992 				struct rb_entry *cached_re, unsigned int ofs);
3993 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3994 				struct rb_root_cached *root,
3995 				struct rb_node **parent,
3996 				unsigned long long key, bool *left_most);
3997 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3998 				struct rb_root_cached *root,
3999 				struct rb_node **parent,
4000 				unsigned int ofs, bool *leftmost);
4001 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4002 		struct rb_entry *cached_re, unsigned int ofs,
4003 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4004 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4005 		bool force, bool *leftmost);
4006 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4007 				struct rb_root_cached *root, bool check_key);
4008 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4009 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4010 void f2fs_drop_extent_tree(struct inode *inode);
4011 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4012 void f2fs_destroy_extent_tree(struct inode *inode);
4013 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4014 			struct extent_info *ei);
4015 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4016 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4017 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4018 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4019 int __init f2fs_create_extent_cache(void);
4020 void f2fs_destroy_extent_cache(void);
4021 
4022 /*
4023  * sysfs.c
4024  */
4025 #define MIN_RA_MUL	2
4026 #define MAX_RA_MUL	256
4027 
4028 int __init f2fs_init_sysfs(void);
4029 void f2fs_exit_sysfs(void);
4030 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4031 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4032 
4033 /* verity.c */
4034 extern const struct fsverity_operations f2fs_verityops;
4035 
4036 /*
4037  * crypto support
4038  */
4039 static inline bool f2fs_encrypted_file(struct inode *inode)
4040 {
4041 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4042 }
4043 
4044 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4045 {
4046 #ifdef CONFIG_FS_ENCRYPTION
4047 	file_set_encrypt(inode);
4048 	f2fs_set_inode_flags(inode);
4049 #endif
4050 }
4051 
4052 /*
4053  * Returns true if the reads of the inode's data need to undergo some
4054  * postprocessing step, like decryption or authenticity verification.
4055  */
4056 static inline bool f2fs_post_read_required(struct inode *inode)
4057 {
4058 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4059 		f2fs_compressed_file(inode);
4060 }
4061 
4062 /*
4063  * compress.c
4064  */
4065 #ifdef CONFIG_F2FS_FS_COMPRESSION
4066 bool f2fs_is_compressed_page(struct page *page);
4067 struct page *f2fs_compress_control_page(struct page *page);
4068 int f2fs_prepare_compress_overwrite(struct inode *inode,
4069 			struct page **pagep, pgoff_t index, void **fsdata);
4070 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4071 					pgoff_t index, unsigned copied);
4072 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4073 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4074 bool f2fs_is_compress_backend_ready(struct inode *inode);
4075 int f2fs_init_compress_mempool(void);
4076 void f2fs_destroy_compress_mempool(void);
4077 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4078 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4079 							block_t blkaddr);
4080 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4081 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4082 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4083 				int index, int nr_pages);
4084 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4085 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4086 int f2fs_write_multi_pages(struct compress_ctx *cc,
4087 						int *submitted,
4088 						struct writeback_control *wbc,
4089 						enum iostat_type io_type);
4090 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4091 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4092 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4093 				unsigned int c_len);
4094 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4095 				unsigned nr_pages, sector_t *last_block_in_bio,
4096 				bool is_readahead, bool for_write);
4097 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4098 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4099 void f2fs_put_page_dic(struct page *page);
4100 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4101 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4102 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4103 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4104 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4105 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4106 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4107 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4108 int __init f2fs_init_compress_cache(void);
4109 void f2fs_destroy_compress_cache(void);
4110 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4111 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4112 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4113 						nid_t ino, block_t blkaddr);
4114 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4115 								block_t blkaddr);
4116 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4117 #define inc_compr_inode_stat(inode)					\
4118 	do {								\
4119 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4120 		sbi->compr_new_inode++;					\
4121 	} while (0)
4122 #define add_compr_block_stat(inode, blocks)				\
4123 	do {								\
4124 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4125 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4126 		sbi->compr_written_block += blocks;			\
4127 		sbi->compr_saved_block += diff;				\
4128 	} while (0)
4129 #else
4130 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4131 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4132 {
4133 	if (!f2fs_compressed_file(inode))
4134 		return true;
4135 	/* not support compression */
4136 	return false;
4137 }
4138 static inline struct page *f2fs_compress_control_page(struct page *page)
4139 {
4140 	WARN_ON_ONCE(1);
4141 	return ERR_PTR(-EINVAL);
4142 }
4143 static inline int f2fs_init_compress_mempool(void) { return 0; }
4144 static inline void f2fs_destroy_compress_mempool(void) { }
4145 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
4146 static inline void f2fs_end_read_compressed_page(struct page *page,
4147 						bool failed, block_t blkaddr)
4148 {
4149 	WARN_ON_ONCE(1);
4150 }
4151 static inline void f2fs_put_page_dic(struct page *page)
4152 {
4153 	WARN_ON_ONCE(1);
4154 }
4155 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4156 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4157 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4158 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4159 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4160 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4161 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4162 static inline void f2fs_destroy_compress_cache(void) { }
4163 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4164 				block_t blkaddr) { }
4165 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4166 				struct page *page, nid_t ino, block_t blkaddr) { }
4167 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4168 				struct page *page, block_t blkaddr) { return false; }
4169 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4170 							nid_t ino) { }
4171 #define inc_compr_inode_stat(inode)		do { } while (0)
4172 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4173 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4174 				unsigned int c_len) { }
4175 #endif
4176 
4177 static inline void set_compress_context(struct inode *inode)
4178 {
4179 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4180 
4181 	F2FS_I(inode)->i_compress_algorithm =
4182 			F2FS_OPTION(sbi).compress_algorithm;
4183 	F2FS_I(inode)->i_log_cluster_size =
4184 			F2FS_OPTION(sbi).compress_log_size;
4185 	F2FS_I(inode)->i_compress_flag =
4186 			F2FS_OPTION(sbi).compress_chksum ?
4187 				1 << COMPRESS_CHKSUM : 0;
4188 	F2FS_I(inode)->i_cluster_size =
4189 			1 << F2FS_I(inode)->i_log_cluster_size;
4190 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4191 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4192 			F2FS_OPTION(sbi).compress_level)
4193 		F2FS_I(inode)->i_compress_flag |=
4194 				F2FS_OPTION(sbi).compress_level <<
4195 				COMPRESS_LEVEL_OFFSET;
4196 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4197 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4198 	stat_inc_compr_inode(inode);
4199 	inc_compr_inode_stat(inode);
4200 	f2fs_mark_inode_dirty_sync(inode, true);
4201 }
4202 
4203 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4204 {
4205 	struct f2fs_inode_info *fi = F2FS_I(inode);
4206 
4207 	if (!f2fs_compressed_file(inode))
4208 		return true;
4209 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4210 		return false;
4211 
4212 	fi->i_flags &= ~F2FS_COMPR_FL;
4213 	stat_dec_compr_inode(inode);
4214 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4215 	f2fs_mark_inode_dirty_sync(inode, true);
4216 	return true;
4217 }
4218 
4219 #define F2FS_FEATURE_FUNCS(name, flagname) \
4220 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4221 { \
4222 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4223 }
4224 
4225 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4226 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4227 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4228 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4229 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4230 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4231 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4232 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4233 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4234 F2FS_FEATURE_FUNCS(verity, VERITY);
4235 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4236 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4237 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4238 F2FS_FEATURE_FUNCS(readonly, RO);
4239 
4240 static inline bool f2fs_may_extent_tree(struct inode *inode)
4241 {
4242 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4243 
4244 	if (!test_opt(sbi, EXTENT_CACHE) ||
4245 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4246 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4247 			 !f2fs_sb_has_readonly(sbi)))
4248 		return false;
4249 
4250 	/*
4251 	 * for recovered files during mount do not create extents
4252 	 * if shrinker is not registered.
4253 	 */
4254 	if (list_empty(&sbi->s_list))
4255 		return false;
4256 
4257 	return S_ISREG(inode->i_mode);
4258 }
4259 
4260 #ifdef CONFIG_BLK_DEV_ZONED
4261 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4262 				    block_t blkaddr)
4263 {
4264 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4265 
4266 	return test_bit(zno, FDEV(devi).blkz_seq);
4267 }
4268 #endif
4269 
4270 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4271 {
4272 	return f2fs_sb_has_blkzoned(sbi);
4273 }
4274 
4275 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4276 {
4277 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4278 	       bdev_is_zoned(bdev);
4279 }
4280 
4281 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4282 {
4283 	int i;
4284 
4285 	if (!f2fs_is_multi_device(sbi))
4286 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4287 
4288 	for (i = 0; i < sbi->s_ndevs; i++)
4289 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4290 			return true;
4291 	return false;
4292 }
4293 
4294 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4295 {
4296 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4297 					f2fs_hw_should_discard(sbi);
4298 }
4299 
4300 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4301 {
4302 	int i;
4303 
4304 	if (!f2fs_is_multi_device(sbi))
4305 		return bdev_read_only(sbi->sb->s_bdev);
4306 
4307 	for (i = 0; i < sbi->s_ndevs; i++)
4308 		if (bdev_read_only(FDEV(i).bdev))
4309 			return true;
4310 	return false;
4311 }
4312 
4313 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4314 {
4315 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4316 }
4317 
4318 static inline bool f2fs_may_compress(struct inode *inode)
4319 {
4320 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4321 				f2fs_is_atomic_file(inode) ||
4322 				f2fs_is_volatile_file(inode))
4323 		return false;
4324 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4325 }
4326 
4327 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4328 						u64 blocks, bool add)
4329 {
4330 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4331 	struct f2fs_inode_info *fi = F2FS_I(inode);
4332 
4333 	/* don't update i_compr_blocks if saved blocks were released */
4334 	if (!add && !atomic_read(&fi->i_compr_blocks))
4335 		return;
4336 
4337 	if (add) {
4338 		atomic_add(diff, &fi->i_compr_blocks);
4339 		stat_add_compr_blocks(inode, diff);
4340 	} else {
4341 		atomic_sub(diff, &fi->i_compr_blocks);
4342 		stat_sub_compr_blocks(inode, diff);
4343 	}
4344 	f2fs_mark_inode_dirty_sync(inode, true);
4345 }
4346 
4347 static inline int block_unaligned_IO(struct inode *inode,
4348 				struct kiocb *iocb, struct iov_iter *iter)
4349 {
4350 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4351 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4352 	loff_t offset = iocb->ki_pos;
4353 	unsigned long align = offset | iov_iter_alignment(iter);
4354 
4355 	return align & blocksize_mask;
4356 }
4357 
4358 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4359 								int flag)
4360 {
4361 	if (!f2fs_is_multi_device(sbi))
4362 		return false;
4363 	if (flag != F2FS_GET_BLOCK_DIO)
4364 		return false;
4365 	return sbi->aligned_blksize;
4366 }
4367 
4368 static inline bool f2fs_force_buffered_io(struct inode *inode,
4369 				struct kiocb *iocb, struct iov_iter *iter)
4370 {
4371 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4372 	int rw = iov_iter_rw(iter);
4373 
4374 	if (f2fs_post_read_required(inode))
4375 		return true;
4376 
4377 	/* disallow direct IO if any of devices has unaligned blksize */
4378 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4379 		return true;
4380 	/*
4381 	 * for blkzoned device, fallback direct IO to buffered IO, so
4382 	 * all IOs can be serialized by log-structured write.
4383 	 */
4384 	if (f2fs_sb_has_blkzoned(sbi))
4385 		return true;
4386 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4387 		if (block_unaligned_IO(inode, iocb, iter))
4388 			return true;
4389 		if (F2FS_IO_ALIGNED(sbi))
4390 			return true;
4391 	}
4392 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4393 		return true;
4394 
4395 	return false;
4396 }
4397 
4398 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4399 {
4400 	return fsverity_active(inode) &&
4401 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4402 }
4403 
4404 #ifdef CONFIG_F2FS_FAULT_INJECTION
4405 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4406 							unsigned int type);
4407 #else
4408 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4409 #endif
4410 
4411 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4412 {
4413 #ifdef CONFIG_QUOTA
4414 	if (f2fs_sb_has_quota_ino(sbi))
4415 		return true;
4416 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4417 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4418 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4419 		return true;
4420 #endif
4421 	return false;
4422 }
4423 
4424 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4425 {
4426 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4427 }
4428 
4429 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4430 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4431 
4432 #endif /* _LINUX_F2FS_H */
4433