xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 6189f1b0)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
25 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition)					\
28 	do {								\
29 		if (unlikely(condition)) {				\
30 			WARN_ON(1);					\
31 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
32 		}							\
33 	} while (0)
34 #define f2fs_down_write(x, y)	down_write(x)
35 #endif
36 
37 /*
38  * For mount options
39  */
40 #define F2FS_MOUNT_BG_GC		0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
42 #define F2FS_MOUNT_DISCARD		0x00000004
43 #define F2FS_MOUNT_NOHEAP		0x00000008
44 #define F2FS_MOUNT_XATTR_USER		0x00000010
45 #define F2FS_MOUNT_POSIX_ACL		0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
48 #define F2FS_MOUNT_INLINE_DATA		0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
51 #define F2FS_MOUNT_NOBARRIER		0x00000800
52 #define F2FS_MOUNT_FASTBOOT		0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
54 
55 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
58 
59 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
60 		typecheck(unsigned long long, b) &&			\
61 		((long long)((a) - (b)) > 0))
62 
63 typedef u32 block_t;	/*
64 			 * should not change u32, since it is the on-disk block
65 			 * address format, __le32.
66 			 */
67 typedef u32 nid_t;
68 
69 struct f2fs_mount_info {
70 	unsigned int	opt;
71 };
72 
73 #define F2FS_FEATURE_ENCRYPT	0x0001
74 
75 #define F2FS_HAS_FEATURE(sb, mask)					\
76 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
77 #define F2FS_SET_FEATURE(sb, mask)					\
78 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
79 #define F2FS_CLEAR_FEATURE(sb, mask)					\
80 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
81 
82 #define CRCPOLY_LE 0xedb88320
83 
84 static inline __u32 f2fs_crc32(void *buf, size_t len)
85 {
86 	unsigned char *p = (unsigned char *)buf;
87 	__u32 crc = F2FS_SUPER_MAGIC;
88 	int i;
89 
90 	while (len--) {
91 		crc ^= *p++;
92 		for (i = 0; i < 8; i++)
93 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
94 	}
95 	return crc;
96 }
97 
98 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
99 {
100 	return f2fs_crc32(buf, buf_size) == blk_crc;
101 }
102 
103 /*
104  * For checkpoint manager
105  */
106 enum {
107 	NAT_BITMAP,
108 	SIT_BITMAP
109 };
110 
111 enum {
112 	CP_UMOUNT,
113 	CP_FASTBOOT,
114 	CP_SYNC,
115 	CP_RECOVERY,
116 	CP_DISCARD,
117 };
118 
119 #define DEF_BATCHED_TRIM_SECTIONS	32
120 #define BATCHED_TRIM_SEGMENTS(sbi)	\
121 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
122 #define BATCHED_TRIM_BLOCKS(sbi)	\
123 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
124 
125 struct cp_control {
126 	int reason;
127 	__u64 trim_start;
128 	__u64 trim_end;
129 	__u64 trim_minlen;
130 	__u64 trimmed;
131 };
132 
133 /*
134  * For CP/NAT/SIT/SSA readahead
135  */
136 enum {
137 	META_CP,
138 	META_NAT,
139 	META_SIT,
140 	META_SSA,
141 	META_POR,
142 };
143 
144 /* for the list of ino */
145 enum {
146 	ORPHAN_INO,		/* for orphan ino list */
147 	APPEND_INO,		/* for append ino list */
148 	UPDATE_INO,		/* for update ino list */
149 	MAX_INO_ENTRY,		/* max. list */
150 };
151 
152 struct ino_entry {
153 	struct list_head list;	/* list head */
154 	nid_t ino;		/* inode number */
155 };
156 
157 /*
158  * for the list of directory inodes or gc inodes.
159  * NOTE: there are two slab users for this structure, if we add/modify/delete
160  * fields in structure for one of slab users, it may affect fields or size of
161  * other one, in this condition, it's better to split both of slab and related
162  * data structure.
163  */
164 struct inode_entry {
165 	struct list_head list;	/* list head */
166 	struct inode *inode;	/* vfs inode pointer */
167 };
168 
169 /* for the list of blockaddresses to be discarded */
170 struct discard_entry {
171 	struct list_head list;	/* list head */
172 	block_t blkaddr;	/* block address to be discarded */
173 	int len;		/* # of consecutive blocks of the discard */
174 };
175 
176 /* for the list of fsync inodes, used only during recovery */
177 struct fsync_inode_entry {
178 	struct list_head list;	/* list head */
179 	struct inode *inode;	/* vfs inode pointer */
180 	block_t blkaddr;	/* block address locating the last fsync */
181 	block_t last_dentry;	/* block address locating the last dentry */
182 	block_t last_inode;	/* block address locating the last inode */
183 };
184 
185 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
186 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
187 
188 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
189 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
190 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
191 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
192 
193 #define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
194 #define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
195 
196 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
197 {
198 	int before = nats_in_cursum(rs);
199 	rs->n_nats = cpu_to_le16(before + i);
200 	return before;
201 }
202 
203 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
204 {
205 	int before = sits_in_cursum(rs);
206 	rs->n_sits = cpu_to_le16(before + i);
207 	return before;
208 }
209 
210 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
211 								int type)
212 {
213 	if (type == NAT_JOURNAL)
214 		return size <= MAX_NAT_JENTRIES(sum);
215 	return size <= MAX_SIT_JENTRIES(sum);
216 }
217 
218 /*
219  * ioctl commands
220  */
221 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
222 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
223 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
224 
225 #define F2FS_IOCTL_MAGIC		0xf5
226 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
227 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
228 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
229 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
230 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
231 
232 #define F2FS_IOC_SET_ENCRYPTION_POLICY					\
233 		_IOR('f', 19, struct f2fs_encryption_policy)
234 #define F2FS_IOC_GET_ENCRYPTION_PWSALT					\
235 		_IOW('f', 20, __u8[16])
236 #define F2FS_IOC_GET_ENCRYPTION_POLICY					\
237 		_IOW('f', 21, struct f2fs_encryption_policy)
238 
239 /*
240  * should be same as XFS_IOC_GOINGDOWN.
241  * Flags for going down operation used by FS_IOC_GOINGDOWN
242  */
243 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
244 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
245 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
246 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
247 
248 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
249 /*
250  * ioctl commands in 32 bit emulation
251  */
252 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
253 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
254 #endif
255 
256 /*
257  * For INODE and NODE manager
258  */
259 /* for directory operations */
260 struct f2fs_str {
261 	unsigned char *name;
262 	u32 len;
263 };
264 
265 struct f2fs_filename {
266 	const struct qstr *usr_fname;
267 	struct f2fs_str disk_name;
268 	f2fs_hash_t hash;
269 #ifdef CONFIG_F2FS_FS_ENCRYPTION
270 	struct f2fs_str crypto_buf;
271 #endif
272 };
273 
274 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
275 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
276 #define fname_name(p)		((p)->disk_name.name)
277 #define fname_len(p)		((p)->disk_name.len)
278 
279 struct f2fs_dentry_ptr {
280 	struct inode *inode;
281 	const void *bitmap;
282 	struct f2fs_dir_entry *dentry;
283 	__u8 (*filename)[F2FS_SLOT_LEN];
284 	int max;
285 };
286 
287 static inline void make_dentry_ptr(struct inode *inode,
288 		struct f2fs_dentry_ptr *d, void *src, int type)
289 {
290 	d->inode = inode;
291 
292 	if (type == 1) {
293 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
294 		d->max = NR_DENTRY_IN_BLOCK;
295 		d->bitmap = &t->dentry_bitmap;
296 		d->dentry = t->dentry;
297 		d->filename = t->filename;
298 	} else {
299 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
300 		d->max = NR_INLINE_DENTRY;
301 		d->bitmap = &t->dentry_bitmap;
302 		d->dentry = t->dentry;
303 		d->filename = t->filename;
304 	}
305 }
306 
307 /*
308  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
309  * as its node offset to distinguish from index node blocks.
310  * But some bits are used to mark the node block.
311  */
312 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
313 				>> OFFSET_BIT_SHIFT)
314 enum {
315 	ALLOC_NODE,			/* allocate a new node page if needed */
316 	LOOKUP_NODE,			/* look up a node without readahead */
317 	LOOKUP_NODE_RA,			/*
318 					 * look up a node with readahead called
319 					 * by get_data_block.
320 					 */
321 };
322 
323 #define F2FS_LINK_MAX		32000	/* maximum link count per file */
324 
325 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
326 
327 /* vector size for gang look-up from extent cache that consists of radix tree */
328 #define EXT_TREE_VEC_SIZE	64
329 
330 /* for in-memory extent cache entry */
331 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
332 
333 /* number of extent info in extent cache we try to shrink */
334 #define EXTENT_CACHE_SHRINK_NUMBER	128
335 
336 struct extent_info {
337 	unsigned int fofs;		/* start offset in a file */
338 	u32 blk;			/* start block address of the extent */
339 	unsigned int len;		/* length of the extent */
340 };
341 
342 struct extent_node {
343 	struct rb_node rb_node;		/* rb node located in rb-tree */
344 	struct list_head list;		/* node in global extent list of sbi */
345 	struct extent_info ei;		/* extent info */
346 };
347 
348 struct extent_tree {
349 	nid_t ino;			/* inode number */
350 	struct rb_root root;		/* root of extent info rb-tree */
351 	struct extent_node *cached_en;	/* recently accessed extent node */
352 	rwlock_t lock;			/* protect extent info rb-tree */
353 	atomic_t refcount;		/* reference count of rb-tree */
354 	unsigned int count;		/* # of extent node in rb-tree*/
355 };
356 
357 /*
358  * This structure is taken from ext4_map_blocks.
359  *
360  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
361  */
362 #define F2FS_MAP_NEW		(1 << BH_New)
363 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
364 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
365 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
366 				F2FS_MAP_UNWRITTEN)
367 
368 struct f2fs_map_blocks {
369 	block_t m_pblk;
370 	block_t m_lblk;
371 	unsigned int m_len;
372 	unsigned int m_flags;
373 };
374 
375 /*
376  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
377  */
378 #define FADVISE_COLD_BIT	0x01
379 #define FADVISE_LOST_PINO_BIT	0x02
380 #define FADVISE_ENCRYPT_BIT	0x04
381 #define FADVISE_ENC_NAME_BIT	0x08
382 
383 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
384 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
385 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
386 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
387 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
388 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
389 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
390 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
391 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
392 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
393 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
394 
395 /* Encryption algorithms */
396 #define F2FS_ENCRYPTION_MODE_INVALID		0
397 #define F2FS_ENCRYPTION_MODE_AES_256_XTS	1
398 #define F2FS_ENCRYPTION_MODE_AES_256_GCM	2
399 #define F2FS_ENCRYPTION_MODE_AES_256_CBC	3
400 #define F2FS_ENCRYPTION_MODE_AES_256_CTS	4
401 
402 #include "f2fs_crypto.h"
403 
404 #define DEF_DIR_LEVEL		0
405 
406 struct f2fs_inode_info {
407 	struct inode vfs_inode;		/* serve a vfs inode */
408 	unsigned long i_flags;		/* keep an inode flags for ioctl */
409 	unsigned char i_advise;		/* use to give file attribute hints */
410 	unsigned char i_dir_level;	/* use for dentry level for large dir */
411 	unsigned int i_current_depth;	/* use only in directory structure */
412 	unsigned int i_pino;		/* parent inode number */
413 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
414 
415 	/* Use below internally in f2fs*/
416 	unsigned long flags;		/* use to pass per-file flags */
417 	struct rw_semaphore i_sem;	/* protect fi info */
418 	atomic_t dirty_pages;		/* # of dirty pages */
419 	f2fs_hash_t chash;		/* hash value of given file name */
420 	unsigned int clevel;		/* maximum level of given file name */
421 	nid_t i_xattr_nid;		/* node id that contains xattrs */
422 	unsigned long long xattr_ver;	/* cp version of xattr modification */
423 	struct extent_info ext;		/* in-memory extent cache entry */
424 	rwlock_t ext_lock;		/* rwlock for single extent cache */
425 	struct inode_entry *dirty_dir;	/* the pointer of dirty dir */
426 
427 	struct radix_tree_root inmem_root;	/* radix tree for inmem pages */
428 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
429 	struct mutex inmem_lock;	/* lock for inmemory pages */
430 
431 #ifdef CONFIG_F2FS_FS_ENCRYPTION
432 	/* Encryption params */
433 	struct f2fs_crypt_info *i_crypt_info;
434 #endif
435 };
436 
437 static inline void get_extent_info(struct extent_info *ext,
438 					struct f2fs_extent i_ext)
439 {
440 	ext->fofs = le32_to_cpu(i_ext.fofs);
441 	ext->blk = le32_to_cpu(i_ext.blk);
442 	ext->len = le32_to_cpu(i_ext.len);
443 }
444 
445 static inline void set_raw_extent(struct extent_info *ext,
446 					struct f2fs_extent *i_ext)
447 {
448 	i_ext->fofs = cpu_to_le32(ext->fofs);
449 	i_ext->blk = cpu_to_le32(ext->blk);
450 	i_ext->len = cpu_to_le32(ext->len);
451 }
452 
453 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
454 						u32 blk, unsigned int len)
455 {
456 	ei->fofs = fofs;
457 	ei->blk = blk;
458 	ei->len = len;
459 }
460 
461 static inline bool __is_extent_same(struct extent_info *ei1,
462 						struct extent_info *ei2)
463 {
464 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
465 						ei1->len == ei2->len);
466 }
467 
468 static inline bool __is_extent_mergeable(struct extent_info *back,
469 						struct extent_info *front)
470 {
471 	return (back->fofs + back->len == front->fofs &&
472 			back->blk + back->len == front->blk);
473 }
474 
475 static inline bool __is_back_mergeable(struct extent_info *cur,
476 						struct extent_info *back)
477 {
478 	return __is_extent_mergeable(back, cur);
479 }
480 
481 static inline bool __is_front_mergeable(struct extent_info *cur,
482 						struct extent_info *front)
483 {
484 	return __is_extent_mergeable(cur, front);
485 }
486 
487 struct f2fs_nm_info {
488 	block_t nat_blkaddr;		/* base disk address of NAT */
489 	nid_t max_nid;			/* maximum possible node ids */
490 	nid_t available_nids;		/* maximum available node ids */
491 	nid_t next_scan_nid;		/* the next nid to be scanned */
492 	unsigned int ram_thresh;	/* control the memory footprint */
493 
494 	/* NAT cache management */
495 	struct radix_tree_root nat_root;/* root of the nat entry cache */
496 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
497 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
498 	struct list_head nat_entries;	/* cached nat entry list (clean) */
499 	unsigned int nat_cnt;		/* the # of cached nat entries */
500 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
501 
502 	/* free node ids management */
503 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
504 	struct list_head free_nid_list;	/* a list for free nids */
505 	spinlock_t free_nid_list_lock;	/* protect free nid list */
506 	unsigned int fcnt;		/* the number of free node id */
507 	struct mutex build_lock;	/* lock for build free nids */
508 
509 	/* for checkpoint */
510 	char *nat_bitmap;		/* NAT bitmap pointer */
511 	int bitmap_size;		/* bitmap size */
512 };
513 
514 /*
515  * this structure is used as one of function parameters.
516  * all the information are dedicated to a given direct node block determined
517  * by the data offset in a file.
518  */
519 struct dnode_of_data {
520 	struct inode *inode;		/* vfs inode pointer */
521 	struct page *inode_page;	/* its inode page, NULL is possible */
522 	struct page *node_page;		/* cached direct node page */
523 	nid_t nid;			/* node id of the direct node block */
524 	unsigned int ofs_in_node;	/* data offset in the node page */
525 	bool inode_page_locked;		/* inode page is locked or not */
526 	block_t	data_blkaddr;		/* block address of the node block */
527 };
528 
529 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
530 		struct page *ipage, struct page *npage, nid_t nid)
531 {
532 	memset(dn, 0, sizeof(*dn));
533 	dn->inode = inode;
534 	dn->inode_page = ipage;
535 	dn->node_page = npage;
536 	dn->nid = nid;
537 }
538 
539 /*
540  * For SIT manager
541  *
542  * By default, there are 6 active log areas across the whole main area.
543  * When considering hot and cold data separation to reduce cleaning overhead,
544  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
545  * respectively.
546  * In the current design, you should not change the numbers intentionally.
547  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
548  * logs individually according to the underlying devices. (default: 6)
549  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
550  * data and 8 for node logs.
551  */
552 #define	NR_CURSEG_DATA_TYPE	(3)
553 #define NR_CURSEG_NODE_TYPE	(3)
554 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
555 
556 enum {
557 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
558 	CURSEG_WARM_DATA,	/* data blocks */
559 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
560 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
561 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
562 	CURSEG_COLD_NODE,	/* indirect node blocks */
563 	NO_CHECK_TYPE,
564 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
565 };
566 
567 struct flush_cmd {
568 	struct completion wait;
569 	struct llist_node llnode;
570 	int ret;
571 };
572 
573 struct flush_cmd_control {
574 	struct task_struct *f2fs_issue_flush;	/* flush thread */
575 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
576 	struct llist_head issue_list;		/* list for command issue */
577 	struct llist_node *dispatch_list;	/* list for command dispatch */
578 };
579 
580 struct f2fs_sm_info {
581 	struct sit_info *sit_info;		/* whole segment information */
582 	struct free_segmap_info *free_info;	/* free segment information */
583 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
584 	struct curseg_info *curseg_array;	/* active segment information */
585 
586 	block_t seg0_blkaddr;		/* block address of 0'th segment */
587 	block_t main_blkaddr;		/* start block address of main area */
588 	block_t ssa_blkaddr;		/* start block address of SSA area */
589 
590 	unsigned int segment_count;	/* total # of segments */
591 	unsigned int main_segments;	/* # of segments in main area */
592 	unsigned int reserved_segments;	/* # of reserved segments */
593 	unsigned int ovp_segments;	/* # of overprovision segments */
594 
595 	/* a threshold to reclaim prefree segments */
596 	unsigned int rec_prefree_segments;
597 
598 	/* for small discard management */
599 	struct list_head discard_list;		/* 4KB discard list */
600 	int nr_discards;			/* # of discards in the list */
601 	int max_discards;			/* max. discards to be issued */
602 
603 	/* for batched trimming */
604 	unsigned int trim_sections;		/* # of sections to trim */
605 
606 	struct list_head sit_entry_set;	/* sit entry set list */
607 
608 	unsigned int ipu_policy;	/* in-place-update policy */
609 	unsigned int min_ipu_util;	/* in-place-update threshold */
610 	unsigned int min_fsync_blocks;	/* threshold for fsync */
611 
612 	/* for flush command control */
613 	struct flush_cmd_control *cmd_control_info;
614 
615 };
616 
617 /*
618  * For superblock
619  */
620 /*
621  * COUNT_TYPE for monitoring
622  *
623  * f2fs monitors the number of several block types such as on-writeback,
624  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
625  */
626 enum count_type {
627 	F2FS_WRITEBACK,
628 	F2FS_DIRTY_DENTS,
629 	F2FS_DIRTY_NODES,
630 	F2FS_DIRTY_META,
631 	F2FS_INMEM_PAGES,
632 	NR_COUNT_TYPE,
633 };
634 
635 /*
636  * The below are the page types of bios used in submit_bio().
637  * The available types are:
638  * DATA			User data pages. It operates as async mode.
639  * NODE			Node pages. It operates as async mode.
640  * META			FS metadata pages such as SIT, NAT, CP.
641  * NR_PAGE_TYPE		The number of page types.
642  * META_FLUSH		Make sure the previous pages are written
643  *			with waiting the bio's completion
644  * ...			Only can be used with META.
645  */
646 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
647 enum page_type {
648 	DATA,
649 	NODE,
650 	META,
651 	NR_PAGE_TYPE,
652 	META_FLUSH,
653 	INMEM,		/* the below types are used by tracepoints only. */
654 	INMEM_DROP,
655 	IPU,
656 	OPU,
657 };
658 
659 struct f2fs_io_info {
660 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
661 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
662 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
663 	block_t blk_addr;	/* block address to be written */
664 	struct page *page;	/* page to be written */
665 	struct page *encrypted_page;	/* encrypted page */
666 };
667 
668 #define is_read_io(rw)	(((rw) & 1) == READ)
669 struct f2fs_bio_info {
670 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
671 	struct bio *bio;		/* bios to merge */
672 	sector_t last_block_in_bio;	/* last block number */
673 	struct f2fs_io_info fio;	/* store buffered io info. */
674 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
675 };
676 
677 /* for inner inode cache management */
678 struct inode_management {
679 	struct radix_tree_root ino_root;	/* ino entry array */
680 	spinlock_t ino_lock;			/* for ino entry lock */
681 	struct list_head ino_list;		/* inode list head */
682 	unsigned long ino_num;			/* number of entries */
683 };
684 
685 /* For s_flag in struct f2fs_sb_info */
686 enum {
687 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
688 	SBI_IS_CLOSE,				/* specify unmounting */
689 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
690 	SBI_POR_DOING,				/* recovery is doing or not */
691 };
692 
693 struct f2fs_sb_info {
694 	struct super_block *sb;			/* pointer to VFS super block */
695 	struct proc_dir_entry *s_proc;		/* proc entry */
696 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
697 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
698 	int s_flag;				/* flags for sbi */
699 
700 	/* for node-related operations */
701 	struct f2fs_nm_info *nm_info;		/* node manager */
702 	struct inode *node_inode;		/* cache node blocks */
703 
704 	/* for segment-related operations */
705 	struct f2fs_sm_info *sm_info;		/* segment manager */
706 
707 	/* for bio operations */
708 	struct f2fs_bio_info read_io;			/* for read bios */
709 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
710 
711 	/* for checkpoint */
712 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
713 	struct inode *meta_inode;		/* cache meta blocks */
714 	struct mutex cp_mutex;			/* checkpoint procedure lock */
715 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
716 	struct rw_semaphore node_write;		/* locking node writes */
717 	struct mutex writepages;		/* mutex for writepages() */
718 	wait_queue_head_t cp_wait;
719 
720 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
721 
722 	/* for orphan inode, use 0'th array */
723 	unsigned int max_orphans;		/* max orphan inodes */
724 
725 	/* for directory inode management */
726 	struct list_head dir_inode_list;	/* dir inode list */
727 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
728 
729 	/* for extent tree cache */
730 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
731 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
732 	struct list_head extent_list;		/* lru list for shrinker */
733 	spinlock_t extent_lock;			/* locking extent lru list */
734 	int total_ext_tree;			/* extent tree count */
735 	atomic_t total_ext_node;		/* extent info count */
736 
737 	/* basic filesystem units */
738 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
739 	unsigned int log_blocksize;		/* log2 block size */
740 	unsigned int blocksize;			/* block size */
741 	unsigned int root_ino_num;		/* root inode number*/
742 	unsigned int node_ino_num;		/* node inode number*/
743 	unsigned int meta_ino_num;		/* meta inode number*/
744 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
745 	unsigned int blocks_per_seg;		/* blocks per segment */
746 	unsigned int segs_per_sec;		/* segments per section */
747 	unsigned int secs_per_zone;		/* sections per zone */
748 	unsigned int total_sections;		/* total section count */
749 	unsigned int total_node_count;		/* total node block count */
750 	unsigned int total_valid_node_count;	/* valid node block count */
751 	unsigned int total_valid_inode_count;	/* valid inode count */
752 	int active_logs;			/* # of active logs */
753 	int dir_level;				/* directory level */
754 
755 	block_t user_block_count;		/* # of user blocks */
756 	block_t total_valid_block_count;	/* # of valid blocks */
757 	block_t alloc_valid_block_count;	/* # of allocated blocks */
758 	block_t discard_blks;			/* discard command candidats */
759 	block_t last_valid_block_count;		/* for recovery */
760 	u32 s_next_generation;			/* for NFS support */
761 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
762 
763 	struct f2fs_mount_info mount_opt;	/* mount options */
764 
765 	/* for cleaning operations */
766 	struct mutex gc_mutex;			/* mutex for GC */
767 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
768 	unsigned int cur_victim_sec;		/* current victim section num */
769 
770 	/* maximum # of trials to find a victim segment for SSR and GC */
771 	unsigned int max_victim_search;
772 
773 	/*
774 	 * for stat information.
775 	 * one is for the LFS mode, and the other is for the SSR mode.
776 	 */
777 #ifdef CONFIG_F2FS_STAT_FS
778 	struct f2fs_stat_info *stat_info;	/* FS status information */
779 	unsigned int segment_count[2];		/* # of allocated segments */
780 	unsigned int block_count[2];		/* # of allocated blocks */
781 	atomic_t inplace_count;		/* # of inplace update */
782 	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
783 	atomic_t inline_inode;			/* # of inline_data inodes */
784 	atomic_t inline_dir;			/* # of inline_dentry inodes */
785 	int bg_gc;				/* background gc calls */
786 	unsigned int n_dirty_dirs;		/* # of dir inodes */
787 #endif
788 	unsigned int last_victim[2];		/* last victim segment # */
789 	spinlock_t stat_lock;			/* lock for stat operations */
790 
791 	/* For sysfs suppport */
792 	struct kobject s_kobj;
793 	struct completion s_kobj_unregister;
794 };
795 
796 /*
797  * Inline functions
798  */
799 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
800 {
801 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
802 }
803 
804 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
805 {
806 	return sb->s_fs_info;
807 }
808 
809 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
810 {
811 	return F2FS_SB(inode->i_sb);
812 }
813 
814 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
815 {
816 	return F2FS_I_SB(mapping->host);
817 }
818 
819 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
820 {
821 	return F2FS_M_SB(page->mapping);
822 }
823 
824 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
825 {
826 	return (struct f2fs_super_block *)(sbi->raw_super);
827 }
828 
829 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
830 {
831 	return (struct f2fs_checkpoint *)(sbi->ckpt);
832 }
833 
834 static inline struct f2fs_node *F2FS_NODE(struct page *page)
835 {
836 	return (struct f2fs_node *)page_address(page);
837 }
838 
839 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
840 {
841 	return &((struct f2fs_node *)page_address(page))->i;
842 }
843 
844 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
845 {
846 	return (struct f2fs_nm_info *)(sbi->nm_info);
847 }
848 
849 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
850 {
851 	return (struct f2fs_sm_info *)(sbi->sm_info);
852 }
853 
854 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
855 {
856 	return (struct sit_info *)(SM_I(sbi)->sit_info);
857 }
858 
859 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
860 {
861 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
862 }
863 
864 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
865 {
866 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
867 }
868 
869 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
870 {
871 	return sbi->meta_inode->i_mapping;
872 }
873 
874 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
875 {
876 	return sbi->node_inode->i_mapping;
877 }
878 
879 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
880 {
881 	return sbi->s_flag & (0x01 << type);
882 }
883 
884 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
885 {
886 	sbi->s_flag |= (0x01 << type);
887 }
888 
889 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
890 {
891 	sbi->s_flag &= ~(0x01 << type);
892 }
893 
894 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
895 {
896 	return le64_to_cpu(cp->checkpoint_ver);
897 }
898 
899 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
900 {
901 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
902 	return ckpt_flags & f;
903 }
904 
905 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
906 {
907 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
908 	ckpt_flags |= f;
909 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
910 }
911 
912 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
913 {
914 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
915 	ckpt_flags &= (~f);
916 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
917 }
918 
919 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
920 {
921 	down_read(&sbi->cp_rwsem);
922 }
923 
924 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
925 {
926 	up_read(&sbi->cp_rwsem);
927 }
928 
929 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
930 {
931 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
932 }
933 
934 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
935 {
936 	up_write(&sbi->cp_rwsem);
937 }
938 
939 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
940 {
941 	int reason = CP_SYNC;
942 
943 	if (test_opt(sbi, FASTBOOT))
944 		reason = CP_FASTBOOT;
945 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
946 		reason = CP_UMOUNT;
947 	return reason;
948 }
949 
950 static inline bool __remain_node_summaries(int reason)
951 {
952 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
953 }
954 
955 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
956 {
957 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
958 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
959 }
960 
961 /*
962  * Check whether the given nid is within node id range.
963  */
964 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
965 {
966 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
967 		return -EINVAL;
968 	if (unlikely(nid >= NM_I(sbi)->max_nid))
969 		return -EINVAL;
970 	return 0;
971 }
972 
973 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
974 
975 /*
976  * Check whether the inode has blocks or not
977  */
978 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
979 {
980 	if (F2FS_I(inode)->i_xattr_nid)
981 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
982 	else
983 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
984 }
985 
986 static inline bool f2fs_has_xattr_block(unsigned int ofs)
987 {
988 	return ofs == XATTR_NODE_OFFSET;
989 }
990 
991 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
992 				 struct inode *inode, blkcnt_t count)
993 {
994 	block_t	valid_block_count;
995 
996 	spin_lock(&sbi->stat_lock);
997 	valid_block_count =
998 		sbi->total_valid_block_count + (block_t)count;
999 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1000 		spin_unlock(&sbi->stat_lock);
1001 		return false;
1002 	}
1003 	inode->i_blocks += count;
1004 	sbi->total_valid_block_count = valid_block_count;
1005 	sbi->alloc_valid_block_count += (block_t)count;
1006 	spin_unlock(&sbi->stat_lock);
1007 	return true;
1008 }
1009 
1010 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1011 						struct inode *inode,
1012 						blkcnt_t count)
1013 {
1014 	spin_lock(&sbi->stat_lock);
1015 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1016 	f2fs_bug_on(sbi, inode->i_blocks < count);
1017 	inode->i_blocks -= count;
1018 	sbi->total_valid_block_count -= (block_t)count;
1019 	spin_unlock(&sbi->stat_lock);
1020 }
1021 
1022 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1023 {
1024 	atomic_inc(&sbi->nr_pages[count_type]);
1025 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1026 }
1027 
1028 static inline void inode_inc_dirty_pages(struct inode *inode)
1029 {
1030 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1031 	if (S_ISDIR(inode->i_mode))
1032 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1033 }
1034 
1035 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1036 {
1037 	atomic_dec(&sbi->nr_pages[count_type]);
1038 }
1039 
1040 static inline void inode_dec_dirty_pages(struct inode *inode)
1041 {
1042 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
1043 		return;
1044 
1045 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1046 
1047 	if (S_ISDIR(inode->i_mode))
1048 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1049 }
1050 
1051 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1052 {
1053 	return atomic_read(&sbi->nr_pages[count_type]);
1054 }
1055 
1056 static inline int get_dirty_pages(struct inode *inode)
1057 {
1058 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1059 }
1060 
1061 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1062 {
1063 	unsigned int pages_per_sec = sbi->segs_per_sec *
1064 					(1 << sbi->log_blocks_per_seg);
1065 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1066 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1067 }
1068 
1069 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1070 {
1071 	return sbi->total_valid_block_count;
1072 }
1073 
1074 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1075 {
1076 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1077 
1078 	/* return NAT or SIT bitmap */
1079 	if (flag == NAT_BITMAP)
1080 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1081 	else if (flag == SIT_BITMAP)
1082 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1083 
1084 	return 0;
1085 }
1086 
1087 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1088 {
1089 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1090 }
1091 
1092 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1093 {
1094 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1095 	int offset;
1096 
1097 	if (__cp_payload(sbi) > 0) {
1098 		if (flag == NAT_BITMAP)
1099 			return &ckpt->sit_nat_version_bitmap;
1100 		else
1101 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1102 	} else {
1103 		offset = (flag == NAT_BITMAP) ?
1104 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1105 		return &ckpt->sit_nat_version_bitmap + offset;
1106 	}
1107 }
1108 
1109 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1110 {
1111 	block_t start_addr;
1112 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1113 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1114 
1115 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1116 
1117 	/*
1118 	 * odd numbered checkpoint should at cp segment 0
1119 	 * and even segment must be at cp segment 1
1120 	 */
1121 	if (!(ckpt_version & 1))
1122 		start_addr += sbi->blocks_per_seg;
1123 
1124 	return start_addr;
1125 }
1126 
1127 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1128 {
1129 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1130 }
1131 
1132 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1133 						struct inode *inode)
1134 {
1135 	block_t	valid_block_count;
1136 	unsigned int valid_node_count;
1137 
1138 	spin_lock(&sbi->stat_lock);
1139 
1140 	valid_block_count = sbi->total_valid_block_count + 1;
1141 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1142 		spin_unlock(&sbi->stat_lock);
1143 		return false;
1144 	}
1145 
1146 	valid_node_count = sbi->total_valid_node_count + 1;
1147 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1148 		spin_unlock(&sbi->stat_lock);
1149 		return false;
1150 	}
1151 
1152 	if (inode)
1153 		inode->i_blocks++;
1154 
1155 	sbi->alloc_valid_block_count++;
1156 	sbi->total_valid_node_count++;
1157 	sbi->total_valid_block_count++;
1158 	spin_unlock(&sbi->stat_lock);
1159 
1160 	return true;
1161 }
1162 
1163 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1164 						struct inode *inode)
1165 {
1166 	spin_lock(&sbi->stat_lock);
1167 
1168 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1169 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1170 	f2fs_bug_on(sbi, !inode->i_blocks);
1171 
1172 	inode->i_blocks--;
1173 	sbi->total_valid_node_count--;
1174 	sbi->total_valid_block_count--;
1175 
1176 	spin_unlock(&sbi->stat_lock);
1177 }
1178 
1179 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1180 {
1181 	return sbi->total_valid_node_count;
1182 }
1183 
1184 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1185 {
1186 	spin_lock(&sbi->stat_lock);
1187 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1188 	sbi->total_valid_inode_count++;
1189 	spin_unlock(&sbi->stat_lock);
1190 }
1191 
1192 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1193 {
1194 	spin_lock(&sbi->stat_lock);
1195 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1196 	sbi->total_valid_inode_count--;
1197 	spin_unlock(&sbi->stat_lock);
1198 }
1199 
1200 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1201 {
1202 	return sbi->total_valid_inode_count;
1203 }
1204 
1205 static inline void f2fs_put_page(struct page *page, int unlock)
1206 {
1207 	if (!page)
1208 		return;
1209 
1210 	if (unlock) {
1211 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1212 		unlock_page(page);
1213 	}
1214 	page_cache_release(page);
1215 }
1216 
1217 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1218 {
1219 	if (dn->node_page)
1220 		f2fs_put_page(dn->node_page, 1);
1221 	if (dn->inode_page && dn->node_page != dn->inode_page)
1222 		f2fs_put_page(dn->inode_page, 0);
1223 	dn->node_page = NULL;
1224 	dn->inode_page = NULL;
1225 }
1226 
1227 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1228 					size_t size)
1229 {
1230 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1231 }
1232 
1233 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1234 						gfp_t flags)
1235 {
1236 	void *entry;
1237 retry:
1238 	entry = kmem_cache_alloc(cachep, flags);
1239 	if (!entry) {
1240 		cond_resched();
1241 		goto retry;
1242 	}
1243 
1244 	return entry;
1245 }
1246 
1247 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1248 				unsigned long index, void *item)
1249 {
1250 	while (radix_tree_insert(root, index, item))
1251 		cond_resched();
1252 }
1253 
1254 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1255 
1256 static inline bool IS_INODE(struct page *page)
1257 {
1258 	struct f2fs_node *p = F2FS_NODE(page);
1259 	return RAW_IS_INODE(p);
1260 }
1261 
1262 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1263 {
1264 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1265 }
1266 
1267 static inline block_t datablock_addr(struct page *node_page,
1268 		unsigned int offset)
1269 {
1270 	struct f2fs_node *raw_node;
1271 	__le32 *addr_array;
1272 	raw_node = F2FS_NODE(node_page);
1273 	addr_array = blkaddr_in_node(raw_node);
1274 	return le32_to_cpu(addr_array[offset]);
1275 }
1276 
1277 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1278 {
1279 	int mask;
1280 
1281 	addr += (nr >> 3);
1282 	mask = 1 << (7 - (nr & 0x07));
1283 	return mask & *addr;
1284 }
1285 
1286 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1287 {
1288 	int mask;
1289 
1290 	addr += (nr >> 3);
1291 	mask = 1 << (7 - (nr & 0x07));
1292 	*addr |= mask;
1293 }
1294 
1295 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1296 {
1297 	int mask;
1298 
1299 	addr += (nr >> 3);
1300 	mask = 1 << (7 - (nr & 0x07));
1301 	*addr &= ~mask;
1302 }
1303 
1304 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1305 {
1306 	int mask;
1307 	int ret;
1308 
1309 	addr += (nr >> 3);
1310 	mask = 1 << (7 - (nr & 0x07));
1311 	ret = mask & *addr;
1312 	*addr |= mask;
1313 	return ret;
1314 }
1315 
1316 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1317 {
1318 	int mask;
1319 	int ret;
1320 
1321 	addr += (nr >> 3);
1322 	mask = 1 << (7 - (nr & 0x07));
1323 	ret = mask & *addr;
1324 	*addr &= ~mask;
1325 	return ret;
1326 }
1327 
1328 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1329 {
1330 	int mask;
1331 
1332 	addr += (nr >> 3);
1333 	mask = 1 << (7 - (nr & 0x07));
1334 	*addr ^= mask;
1335 }
1336 
1337 /* used for f2fs_inode_info->flags */
1338 enum {
1339 	FI_NEW_INODE,		/* indicate newly allocated inode */
1340 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1341 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1342 	FI_INC_LINK,		/* need to increment i_nlink */
1343 	FI_ACL_MODE,		/* indicate acl mode */
1344 	FI_NO_ALLOC,		/* should not allocate any blocks */
1345 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1346 	FI_DELAY_IPUT,		/* used for the recovery */
1347 	FI_NO_EXTENT,		/* not to use the extent cache */
1348 	FI_INLINE_XATTR,	/* used for inline xattr */
1349 	FI_INLINE_DATA,		/* used for inline data*/
1350 	FI_INLINE_DENTRY,	/* used for inline dentry */
1351 	FI_APPEND_WRITE,	/* inode has appended data */
1352 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1353 	FI_NEED_IPU,		/* used for ipu per file */
1354 	FI_ATOMIC_FILE,		/* indicate atomic file */
1355 	FI_VOLATILE_FILE,	/* indicate volatile file */
1356 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1357 	FI_DROP_CACHE,		/* drop dirty page cache */
1358 	FI_DATA_EXIST,		/* indicate data exists */
1359 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1360 };
1361 
1362 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1363 {
1364 	if (!test_bit(flag, &fi->flags))
1365 		set_bit(flag, &fi->flags);
1366 }
1367 
1368 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1369 {
1370 	return test_bit(flag, &fi->flags);
1371 }
1372 
1373 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1374 {
1375 	if (test_bit(flag, &fi->flags))
1376 		clear_bit(flag, &fi->flags);
1377 }
1378 
1379 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1380 {
1381 	fi->i_acl_mode = mode;
1382 	set_inode_flag(fi, FI_ACL_MODE);
1383 }
1384 
1385 static inline void get_inline_info(struct f2fs_inode_info *fi,
1386 					struct f2fs_inode *ri)
1387 {
1388 	if (ri->i_inline & F2FS_INLINE_XATTR)
1389 		set_inode_flag(fi, FI_INLINE_XATTR);
1390 	if (ri->i_inline & F2FS_INLINE_DATA)
1391 		set_inode_flag(fi, FI_INLINE_DATA);
1392 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1393 		set_inode_flag(fi, FI_INLINE_DENTRY);
1394 	if (ri->i_inline & F2FS_DATA_EXIST)
1395 		set_inode_flag(fi, FI_DATA_EXIST);
1396 	if (ri->i_inline & F2FS_INLINE_DOTS)
1397 		set_inode_flag(fi, FI_INLINE_DOTS);
1398 }
1399 
1400 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1401 					struct f2fs_inode *ri)
1402 {
1403 	ri->i_inline = 0;
1404 
1405 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1406 		ri->i_inline |= F2FS_INLINE_XATTR;
1407 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1408 		ri->i_inline |= F2FS_INLINE_DATA;
1409 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1410 		ri->i_inline |= F2FS_INLINE_DENTRY;
1411 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1412 		ri->i_inline |= F2FS_DATA_EXIST;
1413 	if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1414 		ri->i_inline |= F2FS_INLINE_DOTS;
1415 }
1416 
1417 static inline int f2fs_has_inline_xattr(struct inode *inode)
1418 {
1419 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1420 }
1421 
1422 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1423 {
1424 	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1425 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1426 	return DEF_ADDRS_PER_INODE;
1427 }
1428 
1429 static inline void *inline_xattr_addr(struct page *page)
1430 {
1431 	struct f2fs_inode *ri = F2FS_INODE(page);
1432 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1433 					F2FS_INLINE_XATTR_ADDRS]);
1434 }
1435 
1436 static inline int inline_xattr_size(struct inode *inode)
1437 {
1438 	if (f2fs_has_inline_xattr(inode))
1439 		return F2FS_INLINE_XATTR_ADDRS << 2;
1440 	else
1441 		return 0;
1442 }
1443 
1444 static inline int f2fs_has_inline_data(struct inode *inode)
1445 {
1446 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1447 }
1448 
1449 static inline void f2fs_clear_inline_inode(struct inode *inode)
1450 {
1451 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1452 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1453 }
1454 
1455 static inline int f2fs_exist_data(struct inode *inode)
1456 {
1457 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1458 }
1459 
1460 static inline int f2fs_has_inline_dots(struct inode *inode)
1461 {
1462 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1463 }
1464 
1465 static inline bool f2fs_is_atomic_file(struct inode *inode)
1466 {
1467 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1468 }
1469 
1470 static inline bool f2fs_is_volatile_file(struct inode *inode)
1471 {
1472 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1473 }
1474 
1475 static inline bool f2fs_is_first_block_written(struct inode *inode)
1476 {
1477 	return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1478 }
1479 
1480 static inline bool f2fs_is_drop_cache(struct inode *inode)
1481 {
1482 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1483 }
1484 
1485 static inline void *inline_data_addr(struct page *page)
1486 {
1487 	struct f2fs_inode *ri = F2FS_INODE(page);
1488 	return (void *)&(ri->i_addr[1]);
1489 }
1490 
1491 static inline int f2fs_has_inline_dentry(struct inode *inode)
1492 {
1493 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1494 }
1495 
1496 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1497 {
1498 	if (!f2fs_has_inline_dentry(dir))
1499 		kunmap(page);
1500 }
1501 
1502 static inline int is_file(struct inode *inode, int type)
1503 {
1504 	return F2FS_I(inode)->i_advise & type;
1505 }
1506 
1507 static inline void set_file(struct inode *inode, int type)
1508 {
1509 	F2FS_I(inode)->i_advise |= type;
1510 }
1511 
1512 static inline void clear_file(struct inode *inode, int type)
1513 {
1514 	F2FS_I(inode)->i_advise &= ~type;
1515 }
1516 
1517 static inline int f2fs_readonly(struct super_block *sb)
1518 {
1519 	return sb->s_flags & MS_RDONLY;
1520 }
1521 
1522 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1523 {
1524 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1525 }
1526 
1527 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1528 {
1529 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1530 	sbi->sb->s_flags |= MS_RDONLY;
1531 }
1532 
1533 static inline bool is_dot_dotdot(const struct qstr *str)
1534 {
1535 	if (str->len == 1 && str->name[0] == '.')
1536 		return true;
1537 
1538 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1539 		return true;
1540 
1541 	return false;
1542 }
1543 
1544 #define get_inode_mode(i) \
1545 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1546 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1547 
1548 /* get offset of first page in next direct node */
1549 #define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1550 	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1551 	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1552 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1553 
1554 /*
1555  * file.c
1556  */
1557 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1558 void truncate_data_blocks(struct dnode_of_data *);
1559 int truncate_blocks(struct inode *, u64, bool);
1560 void f2fs_truncate(struct inode *);
1561 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1562 int f2fs_setattr(struct dentry *, struct iattr *);
1563 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1564 int truncate_data_blocks_range(struct dnode_of_data *, int);
1565 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1566 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1567 
1568 /*
1569  * inode.c
1570  */
1571 void f2fs_set_inode_flags(struct inode *);
1572 struct inode *f2fs_iget(struct super_block *, unsigned long);
1573 int try_to_free_nats(struct f2fs_sb_info *, int);
1574 void update_inode(struct inode *, struct page *);
1575 void update_inode_page(struct inode *);
1576 int f2fs_write_inode(struct inode *, struct writeback_control *);
1577 void f2fs_evict_inode(struct inode *);
1578 void handle_failed_inode(struct inode *);
1579 
1580 /*
1581  * namei.c
1582  */
1583 struct dentry *f2fs_get_parent(struct dentry *child);
1584 
1585 /*
1586  * dir.c
1587  */
1588 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1589 void set_de_type(struct f2fs_dir_entry *, umode_t);
1590 
1591 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1592 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1593 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1594 			unsigned int, struct f2fs_str *);
1595 void do_make_empty_dir(struct inode *, struct inode *,
1596 			struct f2fs_dentry_ptr *);
1597 struct page *init_inode_metadata(struct inode *, struct inode *,
1598 			const struct qstr *, struct page *);
1599 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1600 int room_for_filename(const void *, int, int);
1601 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1602 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1603 							struct page **);
1604 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1605 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1606 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1607 				struct page *, struct inode *);
1608 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1609 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1610 			const struct qstr *, f2fs_hash_t , unsigned int);
1611 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1612 			umode_t);
1613 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1614 							struct inode *);
1615 int f2fs_do_tmpfile(struct inode *, struct inode *);
1616 bool f2fs_empty_dir(struct inode *);
1617 
1618 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1619 {
1620 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1621 				inode, inode->i_ino, inode->i_mode);
1622 }
1623 
1624 /*
1625  * super.c
1626  */
1627 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1628 int f2fs_sync_fs(struct super_block *, int);
1629 extern __printf(3, 4)
1630 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1631 
1632 /*
1633  * hash.c
1634  */
1635 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1636 
1637 /*
1638  * node.c
1639  */
1640 struct dnode_of_data;
1641 struct node_info;
1642 
1643 bool available_free_memory(struct f2fs_sb_info *, int);
1644 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1645 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1646 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1647 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1648 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1649 int truncate_inode_blocks(struct inode *, pgoff_t);
1650 int truncate_xattr_node(struct inode *, struct page *);
1651 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1652 void remove_inode_page(struct inode *);
1653 struct page *new_inode_page(struct inode *);
1654 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1655 void ra_node_page(struct f2fs_sb_info *, nid_t);
1656 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1657 struct page *get_node_page_ra(struct page *, int);
1658 void sync_inode_page(struct dnode_of_data *);
1659 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1660 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1661 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1662 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1663 void recover_inline_xattr(struct inode *, struct page *);
1664 void recover_xattr_data(struct inode *, struct page *, block_t);
1665 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1666 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1667 				struct f2fs_summary_block *);
1668 void flush_nat_entries(struct f2fs_sb_info *);
1669 int build_node_manager(struct f2fs_sb_info *);
1670 void destroy_node_manager(struct f2fs_sb_info *);
1671 int __init create_node_manager_caches(void);
1672 void destroy_node_manager_caches(void);
1673 
1674 /*
1675  * segment.c
1676  */
1677 void register_inmem_page(struct inode *, struct page *);
1678 void commit_inmem_pages(struct inode *, bool);
1679 void f2fs_balance_fs(struct f2fs_sb_info *);
1680 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1681 int f2fs_issue_flush(struct f2fs_sb_info *);
1682 int create_flush_cmd_control(struct f2fs_sb_info *);
1683 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1684 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1685 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1686 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1687 void release_discard_addrs(struct f2fs_sb_info *);
1688 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1689 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1690 void allocate_new_segments(struct f2fs_sb_info *);
1691 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1692 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1693 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1694 void write_meta_page(struct f2fs_sb_info *, struct page *);
1695 void write_node_page(unsigned int, struct f2fs_io_info *);
1696 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1697 void rewrite_data_page(struct f2fs_io_info *);
1698 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1699 				block_t, block_t, unsigned char, bool);
1700 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1701 		block_t, block_t *, struct f2fs_summary *, int);
1702 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1703 void write_data_summaries(struct f2fs_sb_info *, block_t);
1704 void write_node_summaries(struct f2fs_sb_info *, block_t);
1705 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1706 					int, unsigned int, int);
1707 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1708 int build_segment_manager(struct f2fs_sb_info *);
1709 void destroy_segment_manager(struct f2fs_sb_info *);
1710 int __init create_segment_manager_caches(void);
1711 void destroy_segment_manager_caches(void);
1712 
1713 /*
1714  * checkpoint.c
1715  */
1716 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1717 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1718 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1719 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1720 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1721 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1722 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1723 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1724 void release_dirty_inode(struct f2fs_sb_info *);
1725 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1726 int acquire_orphan_inode(struct f2fs_sb_info *);
1727 void release_orphan_inode(struct f2fs_sb_info *);
1728 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1729 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1730 void recover_orphan_inodes(struct f2fs_sb_info *);
1731 int get_valid_checkpoint(struct f2fs_sb_info *);
1732 void update_dirty_page(struct inode *, struct page *);
1733 void add_dirty_dir_inode(struct inode *);
1734 void remove_dirty_dir_inode(struct inode *);
1735 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1736 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1737 void init_ino_entry_info(struct f2fs_sb_info *);
1738 int __init create_checkpoint_caches(void);
1739 void destroy_checkpoint_caches(void);
1740 
1741 /*
1742  * data.c
1743  */
1744 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1745 int f2fs_submit_page_bio(struct f2fs_io_info *);
1746 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1747 void set_data_blkaddr(struct dnode_of_data *);
1748 int reserve_new_block(struct dnode_of_data *);
1749 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1750 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1751 void f2fs_destroy_extent_tree(struct inode *);
1752 void f2fs_init_extent_cache(struct inode *, struct f2fs_extent *);
1753 void f2fs_update_extent_cache(struct dnode_of_data *);
1754 void f2fs_preserve_extent_tree(struct inode *);
1755 struct page *get_read_data_page(struct inode *, pgoff_t, int);
1756 struct page *find_data_page(struct inode *, pgoff_t);
1757 struct page *get_lock_data_page(struct inode *, pgoff_t);
1758 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1759 int do_write_data_page(struct f2fs_io_info *);
1760 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1761 void init_extent_cache_info(struct f2fs_sb_info *);
1762 int __init create_extent_cache(void);
1763 void destroy_extent_cache(void);
1764 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1765 int f2fs_release_page(struct page *, gfp_t);
1766 
1767 /*
1768  * gc.c
1769  */
1770 int start_gc_thread(struct f2fs_sb_info *);
1771 void stop_gc_thread(struct f2fs_sb_info *);
1772 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1773 int f2fs_gc(struct f2fs_sb_info *);
1774 void build_gc_manager(struct f2fs_sb_info *);
1775 
1776 /*
1777  * recovery.c
1778  */
1779 int recover_fsync_data(struct f2fs_sb_info *);
1780 bool space_for_roll_forward(struct f2fs_sb_info *);
1781 
1782 /*
1783  * debug.c
1784  */
1785 #ifdef CONFIG_F2FS_STAT_FS
1786 struct f2fs_stat_info {
1787 	struct list_head stat_list;
1788 	struct f2fs_sb_info *sbi;
1789 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1790 	int main_area_segs, main_area_sections, main_area_zones;
1791 	int hit_ext, total_ext, ext_tree, ext_node;
1792 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1793 	int nats, dirty_nats, sits, dirty_sits, fnids;
1794 	int total_count, utilization;
1795 	int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1796 	unsigned int valid_count, valid_node_count, valid_inode_count;
1797 	unsigned int bimodal, avg_vblocks;
1798 	int util_free, util_valid, util_invalid;
1799 	int rsvd_segs, overp_segs;
1800 	int dirty_count, node_pages, meta_pages;
1801 	int prefree_count, call_count, cp_count;
1802 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1803 	int bg_node_segs, bg_data_segs;
1804 	int tot_blks, data_blks, node_blks;
1805 	int bg_data_blks, bg_node_blks;
1806 	int curseg[NR_CURSEG_TYPE];
1807 	int cursec[NR_CURSEG_TYPE];
1808 	int curzone[NR_CURSEG_TYPE];
1809 
1810 	unsigned int segment_count[2];
1811 	unsigned int block_count[2];
1812 	unsigned int inplace_count;
1813 	unsigned base_mem, cache_mem, page_mem;
1814 };
1815 
1816 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1817 {
1818 	return (struct f2fs_stat_info *)sbi->stat_info;
1819 }
1820 
1821 #define stat_inc_cp_count(si)		((si)->cp_count++)
1822 #define stat_inc_call_count(si)		((si)->call_count++)
1823 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1824 #define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1825 #define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1826 #define stat_inc_total_hit(sb)		((F2FS_SB(sb))->total_hit_ext++)
1827 #define stat_inc_read_hit(sb)		((F2FS_SB(sb))->read_hit_ext++)
1828 #define stat_inc_inline_inode(inode)					\
1829 	do {								\
1830 		if (f2fs_has_inline_data(inode))			\
1831 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
1832 	} while (0)
1833 #define stat_dec_inline_inode(inode)					\
1834 	do {								\
1835 		if (f2fs_has_inline_data(inode))			\
1836 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
1837 	} while (0)
1838 #define stat_inc_inline_dir(inode)					\
1839 	do {								\
1840 		if (f2fs_has_inline_dentry(inode))			\
1841 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
1842 	} while (0)
1843 #define stat_dec_inline_dir(inode)					\
1844 	do {								\
1845 		if (f2fs_has_inline_dentry(inode))			\
1846 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
1847 	} while (0)
1848 #define stat_inc_seg_type(sbi, curseg)					\
1849 		((sbi)->segment_count[(curseg)->alloc_type]++)
1850 #define stat_inc_block_count(sbi, curseg)				\
1851 		((sbi)->block_count[(curseg)->alloc_type]++)
1852 #define stat_inc_inplace_blocks(sbi)					\
1853 		(atomic_inc(&(sbi)->inplace_count))
1854 #define stat_inc_seg_count(sbi, type, gc_type)				\
1855 	do {								\
1856 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1857 		(si)->tot_segs++;					\
1858 		if (type == SUM_TYPE_DATA) {				\
1859 			si->data_segs++;				\
1860 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
1861 		} else {						\
1862 			si->node_segs++;				\
1863 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
1864 		}							\
1865 	} while (0)
1866 
1867 #define stat_inc_tot_blk_count(si, blks)				\
1868 	(si->tot_blks += (blks))
1869 
1870 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
1871 	do {								\
1872 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1873 		stat_inc_tot_blk_count(si, blks);			\
1874 		si->data_blks += (blks);				\
1875 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1876 	} while (0)
1877 
1878 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
1879 	do {								\
1880 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1881 		stat_inc_tot_blk_count(si, blks);			\
1882 		si->node_blks += (blks);				\
1883 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1884 	} while (0)
1885 
1886 int f2fs_build_stats(struct f2fs_sb_info *);
1887 void f2fs_destroy_stats(struct f2fs_sb_info *);
1888 void __init f2fs_create_root_stats(void);
1889 void f2fs_destroy_root_stats(void);
1890 #else
1891 #define stat_inc_cp_count(si)
1892 #define stat_inc_call_count(si)
1893 #define stat_inc_bggc_count(si)
1894 #define stat_inc_dirty_dir(sbi)
1895 #define stat_dec_dirty_dir(sbi)
1896 #define stat_inc_total_hit(sb)
1897 #define stat_inc_read_hit(sb)
1898 #define stat_inc_inline_inode(inode)
1899 #define stat_dec_inline_inode(inode)
1900 #define stat_inc_inline_dir(inode)
1901 #define stat_dec_inline_dir(inode)
1902 #define stat_inc_seg_type(sbi, curseg)
1903 #define stat_inc_block_count(sbi, curseg)
1904 #define stat_inc_inplace_blocks(sbi)
1905 #define stat_inc_seg_count(sbi, type, gc_type)
1906 #define stat_inc_tot_blk_count(si, blks)
1907 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1908 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1909 
1910 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1911 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1912 static inline void __init f2fs_create_root_stats(void) { }
1913 static inline void f2fs_destroy_root_stats(void) { }
1914 #endif
1915 
1916 extern const struct file_operations f2fs_dir_operations;
1917 extern const struct file_operations f2fs_file_operations;
1918 extern const struct inode_operations f2fs_file_inode_operations;
1919 extern const struct address_space_operations f2fs_dblock_aops;
1920 extern const struct address_space_operations f2fs_node_aops;
1921 extern const struct address_space_operations f2fs_meta_aops;
1922 extern const struct inode_operations f2fs_dir_inode_operations;
1923 extern const struct inode_operations f2fs_symlink_inode_operations;
1924 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
1925 extern const struct inode_operations f2fs_special_inode_operations;
1926 extern struct kmem_cache *inode_entry_slab;
1927 
1928 /*
1929  * inline.c
1930  */
1931 bool f2fs_may_inline_data(struct inode *);
1932 bool f2fs_may_inline_dentry(struct inode *);
1933 void read_inline_data(struct page *, struct page *);
1934 bool truncate_inline_inode(struct page *, u64);
1935 int f2fs_read_inline_data(struct inode *, struct page *);
1936 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1937 int f2fs_convert_inline_inode(struct inode *);
1938 int f2fs_write_inline_data(struct inode *, struct page *);
1939 bool recover_inline_data(struct inode *, struct page *);
1940 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
1941 				struct f2fs_filename *, struct page **);
1942 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1943 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1944 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1945 						nid_t, umode_t);
1946 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1947 						struct inode *, struct inode *);
1948 bool f2fs_empty_inline_dir(struct inode *);
1949 int f2fs_read_inline_dir(struct file *, struct dir_context *,
1950 						struct f2fs_str *);
1951 
1952 /*
1953  * crypto support
1954  */
1955 static inline int f2fs_encrypted_inode(struct inode *inode)
1956 {
1957 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1958 	return file_is_encrypt(inode);
1959 #else
1960 	return 0;
1961 #endif
1962 }
1963 
1964 static inline void f2fs_set_encrypted_inode(struct inode *inode)
1965 {
1966 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1967 	file_set_encrypt(inode);
1968 #endif
1969 }
1970 
1971 static inline bool f2fs_bio_encrypted(struct bio *bio)
1972 {
1973 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1974 	return unlikely(bio->bi_private != NULL);
1975 #else
1976 	return false;
1977 #endif
1978 }
1979 
1980 static inline int f2fs_sb_has_crypto(struct super_block *sb)
1981 {
1982 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1983 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
1984 #else
1985 	return 0;
1986 #endif
1987 }
1988 
1989 static inline bool f2fs_may_encrypt(struct inode *inode)
1990 {
1991 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1992 	mode_t mode = inode->i_mode;
1993 
1994 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
1995 #else
1996 	return 0;
1997 #endif
1998 }
1999 
2000 /* crypto_policy.c */
2001 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2002 							struct inode *);
2003 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2004 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2005 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2006 
2007 /* crypt.c */
2008 extern struct kmem_cache *f2fs_crypt_info_cachep;
2009 bool f2fs_valid_contents_enc_mode(uint32_t);
2010 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2011 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2012 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2013 struct page *f2fs_encrypt(struct inode *, struct page *);
2014 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2015 int f2fs_decrypt_one(struct inode *, struct page *);
2016 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2017 
2018 /* crypto_key.c */
2019 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2020 int _f2fs_get_encryption_info(struct inode *inode);
2021 
2022 /* crypto_fname.c */
2023 bool f2fs_valid_filenames_enc_mode(uint32_t);
2024 u32 f2fs_fname_crypto_round_up(u32, u32);
2025 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2026 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2027 			const struct f2fs_str *, struct f2fs_str *);
2028 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2029 			struct f2fs_str *);
2030 
2031 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2032 void f2fs_restore_and_release_control_page(struct page **);
2033 void f2fs_restore_control_page(struct page *);
2034 
2035 int __init f2fs_init_crypto(void);
2036 int f2fs_crypto_initialize(void);
2037 void f2fs_exit_crypto(void);
2038 
2039 int f2fs_has_encryption_key(struct inode *);
2040 
2041 static inline int f2fs_get_encryption_info(struct inode *inode)
2042 {
2043 	struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2044 
2045 	if (!ci ||
2046 		(ci->ci_keyring_key &&
2047 		 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2048 					       (1 << KEY_FLAG_REVOKED) |
2049 					       (1 << KEY_FLAG_DEAD)))))
2050 		return _f2fs_get_encryption_info(inode);
2051 	return 0;
2052 }
2053 
2054 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2055 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2056 				int lookup, struct f2fs_filename *);
2057 void f2fs_fname_free_filename(struct f2fs_filename *);
2058 #else
2059 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2060 static inline void f2fs_restore_control_page(struct page *p) { }
2061 
2062 static inline int __init f2fs_init_crypto(void) { return 0; }
2063 static inline void f2fs_exit_crypto(void) { }
2064 
2065 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2066 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2067 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2068 
2069 static inline int f2fs_fname_setup_filename(struct inode *dir,
2070 					const struct qstr *iname,
2071 					int lookup, struct f2fs_filename *fname)
2072 {
2073 	memset(fname, 0, sizeof(struct f2fs_filename));
2074 	fname->usr_fname = iname;
2075 	fname->disk_name.name = (unsigned char *)iname->name;
2076 	fname->disk_name.len = iname->len;
2077 	return 0;
2078 }
2079 
2080 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2081 #endif
2082 #endif
2083