xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 56d06fa2)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27 
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition)					\
32 	do {								\
33 		if (unlikely(condition)) {				\
34 			WARN_ON(1);					\
35 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
36 		}							\
37 	} while (0)
38 #endif
39 
40 /*
41  * For mount options
42  */
43 #define F2FS_MOUNT_BG_GC		0x00000001
44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
45 #define F2FS_MOUNT_DISCARD		0x00000004
46 #define F2FS_MOUNT_NOHEAP		0x00000008
47 #define F2FS_MOUNT_XATTR_USER		0x00000010
48 #define F2FS_MOUNT_POSIX_ACL		0x00000020
49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
50 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
51 #define F2FS_MOUNT_INLINE_DATA		0x00000100
52 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
53 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
54 #define F2FS_MOUNT_NOBARRIER		0x00000800
55 #define F2FS_MOUNT_FASTBOOT		0x00001000
56 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
57 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
58 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
59 
60 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
61 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
62 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
63 
64 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
65 		typecheck(unsigned long long, b) &&			\
66 		((long long)((a) - (b)) > 0))
67 
68 typedef u32 block_t;	/*
69 			 * should not change u32, since it is the on-disk block
70 			 * address format, __le32.
71 			 */
72 typedef u32 nid_t;
73 
74 struct f2fs_mount_info {
75 	unsigned int	opt;
76 };
77 
78 #define F2FS_FEATURE_ENCRYPT	0x0001
79 
80 #define F2FS_HAS_FEATURE(sb, mask)					\
81 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
82 #define F2FS_SET_FEATURE(sb, mask)					\
83 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
84 #define F2FS_CLEAR_FEATURE(sb, mask)					\
85 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
86 
87 /*
88  * For checkpoint manager
89  */
90 enum {
91 	NAT_BITMAP,
92 	SIT_BITMAP
93 };
94 
95 enum {
96 	CP_UMOUNT,
97 	CP_FASTBOOT,
98 	CP_SYNC,
99 	CP_RECOVERY,
100 	CP_DISCARD,
101 };
102 
103 #define DEF_BATCHED_TRIM_SECTIONS	32
104 #define BATCHED_TRIM_SEGMENTS(sbi)	\
105 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
106 #define BATCHED_TRIM_BLOCKS(sbi)	\
107 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
108 #define DEF_CP_INTERVAL			60	/* 60 secs */
109 #define DEF_IDLE_INTERVAL		120	/* 2 mins */
110 
111 struct cp_control {
112 	int reason;
113 	__u64 trim_start;
114 	__u64 trim_end;
115 	__u64 trim_minlen;
116 	__u64 trimmed;
117 };
118 
119 /*
120  * For CP/NAT/SIT/SSA readahead
121  */
122 enum {
123 	META_CP,
124 	META_NAT,
125 	META_SIT,
126 	META_SSA,
127 	META_POR,
128 };
129 
130 /* for the list of ino */
131 enum {
132 	ORPHAN_INO,		/* for orphan ino list */
133 	APPEND_INO,		/* for append ino list */
134 	UPDATE_INO,		/* for update ino list */
135 	MAX_INO_ENTRY,		/* max. list */
136 };
137 
138 struct ino_entry {
139 	struct list_head list;	/* list head */
140 	nid_t ino;		/* inode number */
141 };
142 
143 /* for the list of inodes to be GCed */
144 struct inode_entry {
145 	struct list_head list;	/* list head */
146 	struct inode *inode;	/* vfs inode pointer */
147 };
148 
149 /* for the list of blockaddresses to be discarded */
150 struct discard_entry {
151 	struct list_head list;	/* list head */
152 	block_t blkaddr;	/* block address to be discarded */
153 	int len;		/* # of consecutive blocks of the discard */
154 };
155 
156 /* for the list of fsync inodes, used only during recovery */
157 struct fsync_inode_entry {
158 	struct list_head list;	/* list head */
159 	struct inode *inode;	/* vfs inode pointer */
160 	block_t blkaddr;	/* block address locating the last fsync */
161 	block_t last_dentry;	/* block address locating the last dentry */
162 	block_t last_inode;	/* block address locating the last inode */
163 };
164 
165 #define nats_in_cursum(jnl)		(le16_to_cpu(jnl->n_nats))
166 #define sits_in_cursum(jnl)		(le16_to_cpu(jnl->n_sits))
167 
168 #define nat_in_journal(jnl, i)		(jnl->nat_j.entries[i].ne)
169 #define nid_in_journal(jnl, i)		(jnl->nat_j.entries[i].nid)
170 #define sit_in_journal(jnl, i)		(jnl->sit_j.entries[i].se)
171 #define segno_in_journal(jnl, i)	(jnl->sit_j.entries[i].segno)
172 
173 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
174 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
175 
176 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
177 {
178 	int before = nats_in_cursum(journal);
179 	journal->n_nats = cpu_to_le16(before + i);
180 	return before;
181 }
182 
183 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
184 {
185 	int before = sits_in_cursum(journal);
186 	journal->n_sits = cpu_to_le16(before + i);
187 	return before;
188 }
189 
190 static inline bool __has_cursum_space(struct f2fs_journal *journal,
191 							int size, int type)
192 {
193 	if (type == NAT_JOURNAL)
194 		return size <= MAX_NAT_JENTRIES(journal);
195 	return size <= MAX_SIT_JENTRIES(journal);
196 }
197 
198 /*
199  * ioctl commands
200  */
201 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
202 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
203 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
204 
205 #define F2FS_IOCTL_MAGIC		0xf5
206 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
207 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
208 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
209 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
210 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
211 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
212 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
213 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
214 
215 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
216 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
217 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
218 
219 /*
220  * should be same as XFS_IOC_GOINGDOWN.
221  * Flags for going down operation used by FS_IOC_GOINGDOWN
222  */
223 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
224 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
225 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
226 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
227 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
228 
229 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
230 /*
231  * ioctl commands in 32 bit emulation
232  */
233 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
234 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
235 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
236 #endif
237 
238 struct f2fs_defragment {
239 	u64 start;
240 	u64 len;
241 };
242 
243 /*
244  * For INODE and NODE manager
245  */
246 /* for directory operations */
247 struct f2fs_dentry_ptr {
248 	struct inode *inode;
249 	const void *bitmap;
250 	struct f2fs_dir_entry *dentry;
251 	__u8 (*filename)[F2FS_SLOT_LEN];
252 	int max;
253 };
254 
255 static inline void make_dentry_ptr(struct inode *inode,
256 		struct f2fs_dentry_ptr *d, void *src, int type)
257 {
258 	d->inode = inode;
259 
260 	if (type == 1) {
261 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
262 		d->max = NR_DENTRY_IN_BLOCK;
263 		d->bitmap = &t->dentry_bitmap;
264 		d->dentry = t->dentry;
265 		d->filename = t->filename;
266 	} else {
267 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
268 		d->max = NR_INLINE_DENTRY;
269 		d->bitmap = &t->dentry_bitmap;
270 		d->dentry = t->dentry;
271 		d->filename = t->filename;
272 	}
273 }
274 
275 /*
276  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
277  * as its node offset to distinguish from index node blocks.
278  * But some bits are used to mark the node block.
279  */
280 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
281 				>> OFFSET_BIT_SHIFT)
282 enum {
283 	ALLOC_NODE,			/* allocate a new node page if needed */
284 	LOOKUP_NODE,			/* look up a node without readahead */
285 	LOOKUP_NODE_RA,			/*
286 					 * look up a node with readahead called
287 					 * by get_data_block.
288 					 */
289 };
290 
291 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
292 
293 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
294 
295 /* vector size for gang look-up from extent cache that consists of radix tree */
296 #define EXT_TREE_VEC_SIZE	64
297 
298 /* for in-memory extent cache entry */
299 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
300 
301 /* number of extent info in extent cache we try to shrink */
302 #define EXTENT_CACHE_SHRINK_NUMBER	128
303 
304 struct extent_info {
305 	unsigned int fofs;		/* start offset in a file */
306 	u32 blk;			/* start block address of the extent */
307 	unsigned int len;		/* length of the extent */
308 };
309 
310 struct extent_node {
311 	struct rb_node rb_node;		/* rb node located in rb-tree */
312 	struct list_head list;		/* node in global extent list of sbi */
313 	struct extent_info ei;		/* extent info */
314 	struct extent_tree *et;		/* extent tree pointer */
315 };
316 
317 struct extent_tree {
318 	nid_t ino;			/* inode number */
319 	struct rb_root root;		/* root of extent info rb-tree */
320 	struct extent_node *cached_en;	/* recently accessed extent node */
321 	struct extent_info largest;	/* largested extent info */
322 	struct list_head list;		/* to be used by sbi->zombie_list */
323 	rwlock_t lock;			/* protect extent info rb-tree */
324 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
325 };
326 
327 /*
328  * This structure is taken from ext4_map_blocks.
329  *
330  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
331  */
332 #define F2FS_MAP_NEW		(1 << BH_New)
333 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
334 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
335 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
336 				F2FS_MAP_UNWRITTEN)
337 
338 struct f2fs_map_blocks {
339 	block_t m_pblk;
340 	block_t m_lblk;
341 	unsigned int m_len;
342 	unsigned int m_flags;
343 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
344 };
345 
346 /* for flag in get_data_block */
347 #define F2FS_GET_BLOCK_READ		0
348 #define F2FS_GET_BLOCK_DIO		1
349 #define F2FS_GET_BLOCK_FIEMAP		2
350 #define F2FS_GET_BLOCK_BMAP		3
351 #define F2FS_GET_BLOCK_PRE_DIO		4
352 #define F2FS_GET_BLOCK_PRE_AIO		5
353 
354 /*
355  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
356  */
357 #define FADVISE_COLD_BIT	0x01
358 #define FADVISE_LOST_PINO_BIT	0x02
359 #define FADVISE_ENCRYPT_BIT	0x04
360 #define FADVISE_ENC_NAME_BIT	0x08
361 
362 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
363 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
364 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
365 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
366 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
367 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
368 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
369 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
370 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
371 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
372 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
373 
374 #define DEF_DIR_LEVEL		0
375 
376 struct f2fs_inode_info {
377 	struct inode vfs_inode;		/* serve a vfs inode */
378 	unsigned long i_flags;		/* keep an inode flags for ioctl */
379 	unsigned char i_advise;		/* use to give file attribute hints */
380 	unsigned char i_dir_level;	/* use for dentry level for large dir */
381 	unsigned int i_current_depth;	/* use only in directory structure */
382 	unsigned int i_pino;		/* parent inode number */
383 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
384 
385 	/* Use below internally in f2fs*/
386 	unsigned long flags;		/* use to pass per-file flags */
387 	struct rw_semaphore i_sem;	/* protect fi info */
388 	atomic_t dirty_pages;		/* # of dirty pages */
389 	f2fs_hash_t chash;		/* hash value of given file name */
390 	unsigned int clevel;		/* maximum level of given file name */
391 	nid_t i_xattr_nid;		/* node id that contains xattrs */
392 	unsigned long long xattr_ver;	/* cp version of xattr modification */
393 
394 	struct list_head dirty_list;	/* linked in global dirty list */
395 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
396 	struct mutex inmem_lock;	/* lock for inmemory pages */
397 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
398 };
399 
400 static inline void get_extent_info(struct extent_info *ext,
401 					struct f2fs_extent i_ext)
402 {
403 	ext->fofs = le32_to_cpu(i_ext.fofs);
404 	ext->blk = le32_to_cpu(i_ext.blk);
405 	ext->len = le32_to_cpu(i_ext.len);
406 }
407 
408 static inline void set_raw_extent(struct extent_info *ext,
409 					struct f2fs_extent *i_ext)
410 {
411 	i_ext->fofs = cpu_to_le32(ext->fofs);
412 	i_ext->blk = cpu_to_le32(ext->blk);
413 	i_ext->len = cpu_to_le32(ext->len);
414 }
415 
416 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
417 						u32 blk, unsigned int len)
418 {
419 	ei->fofs = fofs;
420 	ei->blk = blk;
421 	ei->len = len;
422 }
423 
424 static inline bool __is_extent_same(struct extent_info *ei1,
425 						struct extent_info *ei2)
426 {
427 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
428 						ei1->len == ei2->len);
429 }
430 
431 static inline bool __is_extent_mergeable(struct extent_info *back,
432 						struct extent_info *front)
433 {
434 	return (back->fofs + back->len == front->fofs &&
435 			back->blk + back->len == front->blk);
436 }
437 
438 static inline bool __is_back_mergeable(struct extent_info *cur,
439 						struct extent_info *back)
440 {
441 	return __is_extent_mergeable(back, cur);
442 }
443 
444 static inline bool __is_front_mergeable(struct extent_info *cur,
445 						struct extent_info *front)
446 {
447 	return __is_extent_mergeable(cur, front);
448 }
449 
450 static inline void __try_update_largest_extent(struct extent_tree *et,
451 						struct extent_node *en)
452 {
453 	if (en->ei.len > et->largest.len)
454 		et->largest = en->ei;
455 }
456 
457 struct f2fs_nm_info {
458 	block_t nat_blkaddr;		/* base disk address of NAT */
459 	nid_t max_nid;			/* maximum possible node ids */
460 	nid_t available_nids;		/* maximum available node ids */
461 	nid_t next_scan_nid;		/* the next nid to be scanned */
462 	unsigned int ram_thresh;	/* control the memory footprint */
463 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
464 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
465 
466 	/* NAT cache management */
467 	struct radix_tree_root nat_root;/* root of the nat entry cache */
468 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
469 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
470 	struct list_head nat_entries;	/* cached nat entry list (clean) */
471 	unsigned int nat_cnt;		/* the # of cached nat entries */
472 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
473 
474 	/* free node ids management */
475 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
476 	struct list_head free_nid_list;	/* a list for free nids */
477 	spinlock_t free_nid_list_lock;	/* protect free nid list */
478 	unsigned int fcnt;		/* the number of free node id */
479 	struct mutex build_lock;	/* lock for build free nids */
480 
481 	/* for checkpoint */
482 	char *nat_bitmap;		/* NAT bitmap pointer */
483 	int bitmap_size;		/* bitmap size */
484 };
485 
486 /*
487  * this structure is used as one of function parameters.
488  * all the information are dedicated to a given direct node block determined
489  * by the data offset in a file.
490  */
491 struct dnode_of_data {
492 	struct inode *inode;		/* vfs inode pointer */
493 	struct page *inode_page;	/* its inode page, NULL is possible */
494 	struct page *node_page;		/* cached direct node page */
495 	nid_t nid;			/* node id of the direct node block */
496 	unsigned int ofs_in_node;	/* data offset in the node page */
497 	bool inode_page_locked;		/* inode page is locked or not */
498 	bool node_changed;		/* is node block changed */
499 	char cur_level;			/* level of hole node page */
500 	char max_level;			/* level of current page located */
501 	block_t	data_blkaddr;		/* block address of the node block */
502 };
503 
504 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
505 		struct page *ipage, struct page *npage, nid_t nid)
506 {
507 	memset(dn, 0, sizeof(*dn));
508 	dn->inode = inode;
509 	dn->inode_page = ipage;
510 	dn->node_page = npage;
511 	dn->nid = nid;
512 }
513 
514 /*
515  * For SIT manager
516  *
517  * By default, there are 6 active log areas across the whole main area.
518  * When considering hot and cold data separation to reduce cleaning overhead,
519  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
520  * respectively.
521  * In the current design, you should not change the numbers intentionally.
522  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
523  * logs individually according to the underlying devices. (default: 6)
524  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
525  * data and 8 for node logs.
526  */
527 #define	NR_CURSEG_DATA_TYPE	(3)
528 #define NR_CURSEG_NODE_TYPE	(3)
529 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
530 
531 enum {
532 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
533 	CURSEG_WARM_DATA,	/* data blocks */
534 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
535 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
536 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
537 	CURSEG_COLD_NODE,	/* indirect node blocks */
538 	NO_CHECK_TYPE,
539 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
540 };
541 
542 struct flush_cmd {
543 	struct completion wait;
544 	struct llist_node llnode;
545 	int ret;
546 };
547 
548 struct flush_cmd_control {
549 	struct task_struct *f2fs_issue_flush;	/* flush thread */
550 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
551 	struct llist_head issue_list;		/* list for command issue */
552 	struct llist_node *dispatch_list;	/* list for command dispatch */
553 };
554 
555 struct f2fs_sm_info {
556 	struct sit_info *sit_info;		/* whole segment information */
557 	struct free_segmap_info *free_info;	/* free segment information */
558 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
559 	struct curseg_info *curseg_array;	/* active segment information */
560 
561 	block_t seg0_blkaddr;		/* block address of 0'th segment */
562 	block_t main_blkaddr;		/* start block address of main area */
563 	block_t ssa_blkaddr;		/* start block address of SSA area */
564 
565 	unsigned int segment_count;	/* total # of segments */
566 	unsigned int main_segments;	/* # of segments in main area */
567 	unsigned int reserved_segments;	/* # of reserved segments */
568 	unsigned int ovp_segments;	/* # of overprovision segments */
569 
570 	/* a threshold to reclaim prefree segments */
571 	unsigned int rec_prefree_segments;
572 
573 	/* for small discard management */
574 	struct list_head discard_list;		/* 4KB discard list */
575 	int nr_discards;			/* # of discards in the list */
576 	int max_discards;			/* max. discards to be issued */
577 
578 	/* for batched trimming */
579 	unsigned int trim_sections;		/* # of sections to trim */
580 
581 	struct list_head sit_entry_set;	/* sit entry set list */
582 
583 	unsigned int ipu_policy;	/* in-place-update policy */
584 	unsigned int min_ipu_util;	/* in-place-update threshold */
585 	unsigned int min_fsync_blocks;	/* threshold for fsync */
586 
587 	/* for flush command control */
588 	struct flush_cmd_control *cmd_control_info;
589 
590 };
591 
592 /*
593  * For superblock
594  */
595 /*
596  * COUNT_TYPE for monitoring
597  *
598  * f2fs monitors the number of several block types such as on-writeback,
599  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
600  */
601 enum count_type {
602 	F2FS_WRITEBACK,
603 	F2FS_DIRTY_DENTS,
604 	F2FS_DIRTY_DATA,
605 	F2FS_DIRTY_NODES,
606 	F2FS_DIRTY_META,
607 	F2FS_INMEM_PAGES,
608 	NR_COUNT_TYPE,
609 };
610 
611 /*
612  * The below are the page types of bios used in submit_bio().
613  * The available types are:
614  * DATA			User data pages. It operates as async mode.
615  * NODE			Node pages. It operates as async mode.
616  * META			FS metadata pages such as SIT, NAT, CP.
617  * NR_PAGE_TYPE		The number of page types.
618  * META_FLUSH		Make sure the previous pages are written
619  *			with waiting the bio's completion
620  * ...			Only can be used with META.
621  */
622 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
623 enum page_type {
624 	DATA,
625 	NODE,
626 	META,
627 	NR_PAGE_TYPE,
628 	META_FLUSH,
629 	INMEM,		/* the below types are used by tracepoints only. */
630 	INMEM_DROP,
631 	INMEM_REVOKE,
632 	IPU,
633 	OPU,
634 };
635 
636 struct f2fs_io_info {
637 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
638 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
639 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
640 	block_t new_blkaddr;	/* new block address to be written */
641 	block_t old_blkaddr;	/* old block address before Cow */
642 	struct page *page;	/* page to be written */
643 	struct page *encrypted_page;	/* encrypted page */
644 };
645 
646 #define is_read_io(rw)	(((rw) & 1) == READ)
647 struct f2fs_bio_info {
648 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
649 	struct bio *bio;		/* bios to merge */
650 	sector_t last_block_in_bio;	/* last block number */
651 	struct f2fs_io_info fio;	/* store buffered io info. */
652 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
653 };
654 
655 enum inode_type {
656 	DIR_INODE,			/* for dirty dir inode */
657 	FILE_INODE,			/* for dirty regular/symlink inode */
658 	NR_INODE_TYPE,
659 };
660 
661 /* for inner inode cache management */
662 struct inode_management {
663 	struct radix_tree_root ino_root;	/* ino entry array */
664 	spinlock_t ino_lock;			/* for ino entry lock */
665 	struct list_head ino_list;		/* inode list head */
666 	unsigned long ino_num;			/* number of entries */
667 };
668 
669 /* For s_flag in struct f2fs_sb_info */
670 enum {
671 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
672 	SBI_IS_CLOSE,				/* specify unmounting */
673 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
674 	SBI_POR_DOING,				/* recovery is doing or not */
675 };
676 
677 enum {
678 	CP_TIME,
679 	REQ_TIME,
680 	MAX_TIME,
681 };
682 
683 struct f2fs_sb_info {
684 	struct super_block *sb;			/* pointer to VFS super block */
685 	struct proc_dir_entry *s_proc;		/* proc entry */
686 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
687 	int valid_super_block;			/* valid super block no */
688 	int s_flag;				/* flags for sbi */
689 
690 	/* for node-related operations */
691 	struct f2fs_nm_info *nm_info;		/* node manager */
692 	struct inode *node_inode;		/* cache node blocks */
693 
694 	/* for segment-related operations */
695 	struct f2fs_sm_info *sm_info;		/* segment manager */
696 
697 	/* for bio operations */
698 	struct f2fs_bio_info read_io;			/* for read bios */
699 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
700 
701 	/* for checkpoint */
702 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
703 	struct inode *meta_inode;		/* cache meta blocks */
704 	struct mutex cp_mutex;			/* checkpoint procedure lock */
705 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
706 	struct rw_semaphore node_write;		/* locking node writes */
707 	struct mutex writepages;		/* mutex for writepages() */
708 	wait_queue_head_t cp_wait;
709 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
710 	long interval_time[MAX_TIME];		/* to store thresholds */
711 
712 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
713 
714 	/* for orphan inode, use 0'th array */
715 	unsigned int max_orphans;		/* max orphan inodes */
716 
717 	/* for inode management */
718 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
719 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
720 
721 	/* for extent tree cache */
722 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
723 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
724 	struct list_head extent_list;		/* lru list for shrinker */
725 	spinlock_t extent_lock;			/* locking extent lru list */
726 	atomic_t total_ext_tree;		/* extent tree count */
727 	struct list_head zombie_list;		/* extent zombie tree list */
728 	atomic_t total_zombie_tree;		/* extent zombie tree count */
729 	atomic_t total_ext_node;		/* extent info count */
730 
731 	/* basic filesystem units */
732 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
733 	unsigned int log_blocksize;		/* log2 block size */
734 	unsigned int blocksize;			/* block size */
735 	unsigned int root_ino_num;		/* root inode number*/
736 	unsigned int node_ino_num;		/* node inode number*/
737 	unsigned int meta_ino_num;		/* meta inode number*/
738 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
739 	unsigned int blocks_per_seg;		/* blocks per segment */
740 	unsigned int segs_per_sec;		/* segments per section */
741 	unsigned int secs_per_zone;		/* sections per zone */
742 	unsigned int total_sections;		/* total section count */
743 	unsigned int total_node_count;		/* total node block count */
744 	unsigned int total_valid_node_count;	/* valid node block count */
745 	unsigned int total_valid_inode_count;	/* valid inode count */
746 	loff_t max_file_blocks;			/* max block index of file */
747 	int active_logs;			/* # of active logs */
748 	int dir_level;				/* directory level */
749 
750 	block_t user_block_count;		/* # of user blocks */
751 	block_t total_valid_block_count;	/* # of valid blocks */
752 	block_t alloc_valid_block_count;	/* # of allocated blocks */
753 	block_t discard_blks;			/* discard command candidats */
754 	block_t last_valid_block_count;		/* for recovery */
755 	u32 s_next_generation;			/* for NFS support */
756 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
757 
758 	struct f2fs_mount_info mount_opt;	/* mount options */
759 
760 	/* for cleaning operations */
761 	struct mutex gc_mutex;			/* mutex for GC */
762 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
763 	unsigned int cur_victim_sec;		/* current victim section num */
764 
765 	/* maximum # of trials to find a victim segment for SSR and GC */
766 	unsigned int max_victim_search;
767 
768 	/*
769 	 * for stat information.
770 	 * one is for the LFS mode, and the other is for the SSR mode.
771 	 */
772 #ifdef CONFIG_F2FS_STAT_FS
773 	struct f2fs_stat_info *stat_info;	/* FS status information */
774 	unsigned int segment_count[2];		/* # of allocated segments */
775 	unsigned int block_count[2];		/* # of allocated blocks */
776 	atomic_t inplace_count;		/* # of inplace update */
777 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
778 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
779 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
780 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
781 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
782 	atomic_t inline_inode;			/* # of inline_data inodes */
783 	atomic_t inline_dir;			/* # of inline_dentry inodes */
784 	int bg_gc;				/* background gc calls */
785 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
786 #endif
787 	unsigned int last_victim[2];		/* last victim segment # */
788 	spinlock_t stat_lock;			/* lock for stat operations */
789 
790 	/* For sysfs suppport */
791 	struct kobject s_kobj;
792 	struct completion s_kobj_unregister;
793 
794 	/* For shrinker support */
795 	struct list_head s_list;
796 	struct mutex umount_mutex;
797 	unsigned int shrinker_run_no;
798 
799 	/* For write statistics */
800 	u64 sectors_written_start;
801 	u64 kbytes_written;
802 
803 	/* Reference to checksum algorithm driver via cryptoapi */
804 	struct crypto_shash *s_chksum_driver;
805 };
806 
807 /* For write statistics. Suppose sector size is 512 bytes,
808  * and the return value is in kbytes. s is of struct f2fs_sb_info.
809  */
810 #define BD_PART_WRITTEN(s)						 \
811 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) -		 \
812 		s->sectors_written_start) >> 1)
813 
814 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
815 {
816 	sbi->last_time[type] = jiffies;
817 }
818 
819 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
820 {
821 	struct timespec ts = {sbi->interval_time[type], 0};
822 	unsigned long interval = timespec_to_jiffies(&ts);
823 
824 	return time_after(jiffies, sbi->last_time[type] + interval);
825 }
826 
827 static inline bool is_idle(struct f2fs_sb_info *sbi)
828 {
829 	struct block_device *bdev = sbi->sb->s_bdev;
830 	struct request_queue *q = bdev_get_queue(bdev);
831 	struct request_list *rl = &q->root_rl;
832 
833 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
834 		return 0;
835 
836 	return f2fs_time_over(sbi, REQ_TIME);
837 }
838 
839 /*
840  * Inline functions
841  */
842 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
843 			   unsigned int length)
844 {
845 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
846 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
847 	int err;
848 
849 	shash->tfm = sbi->s_chksum_driver;
850 	shash->flags = 0;
851 	*ctx = F2FS_SUPER_MAGIC;
852 
853 	err = crypto_shash_update(shash, address, length);
854 	BUG_ON(err);
855 
856 	return *ctx;
857 }
858 
859 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
860 				  void *buf, size_t buf_size)
861 {
862 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
863 }
864 
865 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
866 {
867 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
868 }
869 
870 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
871 {
872 	return sb->s_fs_info;
873 }
874 
875 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
876 {
877 	return F2FS_SB(inode->i_sb);
878 }
879 
880 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
881 {
882 	return F2FS_I_SB(mapping->host);
883 }
884 
885 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
886 {
887 	return F2FS_M_SB(page->mapping);
888 }
889 
890 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
891 {
892 	return (struct f2fs_super_block *)(sbi->raw_super);
893 }
894 
895 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
896 {
897 	return (struct f2fs_checkpoint *)(sbi->ckpt);
898 }
899 
900 static inline struct f2fs_node *F2FS_NODE(struct page *page)
901 {
902 	return (struct f2fs_node *)page_address(page);
903 }
904 
905 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
906 {
907 	return &((struct f2fs_node *)page_address(page))->i;
908 }
909 
910 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
911 {
912 	return (struct f2fs_nm_info *)(sbi->nm_info);
913 }
914 
915 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
916 {
917 	return (struct f2fs_sm_info *)(sbi->sm_info);
918 }
919 
920 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
921 {
922 	return (struct sit_info *)(SM_I(sbi)->sit_info);
923 }
924 
925 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
926 {
927 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
928 }
929 
930 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
931 {
932 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
933 }
934 
935 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
936 {
937 	return sbi->meta_inode->i_mapping;
938 }
939 
940 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
941 {
942 	return sbi->node_inode->i_mapping;
943 }
944 
945 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
946 {
947 	return sbi->s_flag & (0x01 << type);
948 }
949 
950 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
951 {
952 	sbi->s_flag |= (0x01 << type);
953 }
954 
955 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
956 {
957 	sbi->s_flag &= ~(0x01 << type);
958 }
959 
960 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
961 {
962 	return le64_to_cpu(cp->checkpoint_ver);
963 }
964 
965 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
966 {
967 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
968 	return ckpt_flags & f;
969 }
970 
971 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
972 {
973 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
974 	ckpt_flags |= f;
975 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
976 }
977 
978 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
979 {
980 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
981 	ckpt_flags &= (~f);
982 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
983 }
984 
985 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
986 {
987 	down_read(&sbi->cp_rwsem);
988 }
989 
990 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
991 {
992 	up_read(&sbi->cp_rwsem);
993 }
994 
995 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
996 {
997 	down_write(&sbi->cp_rwsem);
998 }
999 
1000 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1001 {
1002 	up_write(&sbi->cp_rwsem);
1003 }
1004 
1005 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1006 {
1007 	int reason = CP_SYNC;
1008 
1009 	if (test_opt(sbi, FASTBOOT))
1010 		reason = CP_FASTBOOT;
1011 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1012 		reason = CP_UMOUNT;
1013 	return reason;
1014 }
1015 
1016 static inline bool __remain_node_summaries(int reason)
1017 {
1018 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1019 }
1020 
1021 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1022 {
1023 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1024 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1025 }
1026 
1027 /*
1028  * Check whether the given nid is within node id range.
1029  */
1030 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1031 {
1032 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1033 		return -EINVAL;
1034 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1035 		return -EINVAL;
1036 	return 0;
1037 }
1038 
1039 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1040 
1041 /*
1042  * Check whether the inode has blocks or not
1043  */
1044 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1045 {
1046 	if (F2FS_I(inode)->i_xattr_nid)
1047 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1048 	else
1049 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1050 }
1051 
1052 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1053 {
1054 	return ofs == XATTR_NODE_OFFSET;
1055 }
1056 
1057 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1058 				 struct inode *inode, blkcnt_t count)
1059 {
1060 	block_t	valid_block_count;
1061 
1062 	spin_lock(&sbi->stat_lock);
1063 	valid_block_count =
1064 		sbi->total_valid_block_count + (block_t)count;
1065 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1066 		spin_unlock(&sbi->stat_lock);
1067 		return false;
1068 	}
1069 	inode->i_blocks += count;
1070 	sbi->total_valid_block_count = valid_block_count;
1071 	sbi->alloc_valid_block_count += (block_t)count;
1072 	spin_unlock(&sbi->stat_lock);
1073 	return true;
1074 }
1075 
1076 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1077 						struct inode *inode,
1078 						blkcnt_t count)
1079 {
1080 	spin_lock(&sbi->stat_lock);
1081 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1082 	f2fs_bug_on(sbi, inode->i_blocks < count);
1083 	inode->i_blocks -= count;
1084 	sbi->total_valid_block_count -= (block_t)count;
1085 	spin_unlock(&sbi->stat_lock);
1086 }
1087 
1088 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1089 {
1090 	atomic_inc(&sbi->nr_pages[count_type]);
1091 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1092 }
1093 
1094 static inline void inode_inc_dirty_pages(struct inode *inode)
1095 {
1096 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1097 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1098 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1099 }
1100 
1101 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1102 {
1103 	atomic_dec(&sbi->nr_pages[count_type]);
1104 }
1105 
1106 static inline void inode_dec_dirty_pages(struct inode *inode)
1107 {
1108 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1109 			!S_ISLNK(inode->i_mode))
1110 		return;
1111 
1112 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1113 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1114 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1115 }
1116 
1117 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1118 {
1119 	return atomic_read(&sbi->nr_pages[count_type]);
1120 }
1121 
1122 static inline int get_dirty_pages(struct inode *inode)
1123 {
1124 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1125 }
1126 
1127 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1128 {
1129 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1130 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1131 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1132 }
1133 
1134 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1135 {
1136 	return sbi->total_valid_block_count;
1137 }
1138 
1139 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1140 {
1141 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1142 
1143 	/* return NAT or SIT bitmap */
1144 	if (flag == NAT_BITMAP)
1145 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1146 	else if (flag == SIT_BITMAP)
1147 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1148 
1149 	return 0;
1150 }
1151 
1152 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1153 {
1154 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1155 }
1156 
1157 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1158 {
1159 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1160 	int offset;
1161 
1162 	if (__cp_payload(sbi) > 0) {
1163 		if (flag == NAT_BITMAP)
1164 			return &ckpt->sit_nat_version_bitmap;
1165 		else
1166 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1167 	} else {
1168 		offset = (flag == NAT_BITMAP) ?
1169 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1170 		return &ckpt->sit_nat_version_bitmap + offset;
1171 	}
1172 }
1173 
1174 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1175 {
1176 	block_t start_addr;
1177 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1178 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1179 
1180 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1181 
1182 	/*
1183 	 * odd numbered checkpoint should at cp segment 0
1184 	 * and even segment must be at cp segment 1
1185 	 */
1186 	if (!(ckpt_version & 1))
1187 		start_addr += sbi->blocks_per_seg;
1188 
1189 	return start_addr;
1190 }
1191 
1192 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1193 {
1194 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1195 }
1196 
1197 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1198 						struct inode *inode)
1199 {
1200 	block_t	valid_block_count;
1201 	unsigned int valid_node_count;
1202 
1203 	spin_lock(&sbi->stat_lock);
1204 
1205 	valid_block_count = sbi->total_valid_block_count + 1;
1206 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1207 		spin_unlock(&sbi->stat_lock);
1208 		return false;
1209 	}
1210 
1211 	valid_node_count = sbi->total_valid_node_count + 1;
1212 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1213 		spin_unlock(&sbi->stat_lock);
1214 		return false;
1215 	}
1216 
1217 	if (inode)
1218 		inode->i_blocks++;
1219 
1220 	sbi->alloc_valid_block_count++;
1221 	sbi->total_valid_node_count++;
1222 	sbi->total_valid_block_count++;
1223 	spin_unlock(&sbi->stat_lock);
1224 
1225 	return true;
1226 }
1227 
1228 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1229 						struct inode *inode)
1230 {
1231 	spin_lock(&sbi->stat_lock);
1232 
1233 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1234 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1235 	f2fs_bug_on(sbi, !inode->i_blocks);
1236 
1237 	inode->i_blocks--;
1238 	sbi->total_valid_node_count--;
1239 	sbi->total_valid_block_count--;
1240 
1241 	spin_unlock(&sbi->stat_lock);
1242 }
1243 
1244 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1245 {
1246 	return sbi->total_valid_node_count;
1247 }
1248 
1249 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1250 {
1251 	spin_lock(&sbi->stat_lock);
1252 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1253 	sbi->total_valid_inode_count++;
1254 	spin_unlock(&sbi->stat_lock);
1255 }
1256 
1257 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1258 {
1259 	spin_lock(&sbi->stat_lock);
1260 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1261 	sbi->total_valid_inode_count--;
1262 	spin_unlock(&sbi->stat_lock);
1263 }
1264 
1265 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1266 {
1267 	return sbi->total_valid_inode_count;
1268 }
1269 
1270 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1271 						pgoff_t index, bool for_write)
1272 {
1273 	if (!for_write)
1274 		return grab_cache_page(mapping, index);
1275 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1276 }
1277 
1278 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1279 {
1280 	char *src_kaddr = kmap(src);
1281 	char *dst_kaddr = kmap(dst);
1282 
1283 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1284 	kunmap(dst);
1285 	kunmap(src);
1286 }
1287 
1288 static inline void f2fs_put_page(struct page *page, int unlock)
1289 {
1290 	if (!page)
1291 		return;
1292 
1293 	if (unlock) {
1294 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1295 		unlock_page(page);
1296 	}
1297 	put_page(page);
1298 }
1299 
1300 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1301 {
1302 	if (dn->node_page)
1303 		f2fs_put_page(dn->node_page, 1);
1304 	if (dn->inode_page && dn->node_page != dn->inode_page)
1305 		f2fs_put_page(dn->inode_page, 0);
1306 	dn->node_page = NULL;
1307 	dn->inode_page = NULL;
1308 }
1309 
1310 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1311 					size_t size)
1312 {
1313 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1314 }
1315 
1316 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1317 						gfp_t flags)
1318 {
1319 	void *entry;
1320 
1321 	entry = kmem_cache_alloc(cachep, flags);
1322 	if (!entry)
1323 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1324 	return entry;
1325 }
1326 
1327 static inline struct bio *f2fs_bio_alloc(int npages)
1328 {
1329 	struct bio *bio;
1330 
1331 	/* No failure on bio allocation */
1332 	bio = bio_alloc(GFP_NOIO, npages);
1333 	if (!bio)
1334 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1335 	return bio;
1336 }
1337 
1338 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1339 				unsigned long index, void *item)
1340 {
1341 	while (radix_tree_insert(root, index, item))
1342 		cond_resched();
1343 }
1344 
1345 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1346 
1347 static inline bool IS_INODE(struct page *page)
1348 {
1349 	struct f2fs_node *p = F2FS_NODE(page);
1350 	return RAW_IS_INODE(p);
1351 }
1352 
1353 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1354 {
1355 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1356 }
1357 
1358 static inline block_t datablock_addr(struct page *node_page,
1359 		unsigned int offset)
1360 {
1361 	struct f2fs_node *raw_node;
1362 	__le32 *addr_array;
1363 	raw_node = F2FS_NODE(node_page);
1364 	addr_array = blkaddr_in_node(raw_node);
1365 	return le32_to_cpu(addr_array[offset]);
1366 }
1367 
1368 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1369 {
1370 	int mask;
1371 
1372 	addr += (nr >> 3);
1373 	mask = 1 << (7 - (nr & 0x07));
1374 	return mask & *addr;
1375 }
1376 
1377 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1378 {
1379 	int mask;
1380 
1381 	addr += (nr >> 3);
1382 	mask = 1 << (7 - (nr & 0x07));
1383 	*addr |= mask;
1384 }
1385 
1386 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1387 {
1388 	int mask;
1389 
1390 	addr += (nr >> 3);
1391 	mask = 1 << (7 - (nr & 0x07));
1392 	*addr &= ~mask;
1393 }
1394 
1395 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1396 {
1397 	int mask;
1398 	int ret;
1399 
1400 	addr += (nr >> 3);
1401 	mask = 1 << (7 - (nr & 0x07));
1402 	ret = mask & *addr;
1403 	*addr |= mask;
1404 	return ret;
1405 }
1406 
1407 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1408 {
1409 	int mask;
1410 	int ret;
1411 
1412 	addr += (nr >> 3);
1413 	mask = 1 << (7 - (nr & 0x07));
1414 	ret = mask & *addr;
1415 	*addr &= ~mask;
1416 	return ret;
1417 }
1418 
1419 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1420 {
1421 	int mask;
1422 
1423 	addr += (nr >> 3);
1424 	mask = 1 << (7 - (nr & 0x07));
1425 	*addr ^= mask;
1426 }
1427 
1428 /* used for f2fs_inode_info->flags */
1429 enum {
1430 	FI_NEW_INODE,		/* indicate newly allocated inode */
1431 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1432 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1433 	FI_INC_LINK,		/* need to increment i_nlink */
1434 	FI_ACL_MODE,		/* indicate acl mode */
1435 	FI_NO_ALLOC,		/* should not allocate any blocks */
1436 	FI_FREE_NID,		/* free allocated nide */
1437 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1438 	FI_DELAY_IPUT,		/* used for the recovery */
1439 	FI_NO_EXTENT,		/* not to use the extent cache */
1440 	FI_INLINE_XATTR,	/* used for inline xattr */
1441 	FI_INLINE_DATA,		/* used for inline data*/
1442 	FI_INLINE_DENTRY,	/* used for inline dentry */
1443 	FI_APPEND_WRITE,	/* inode has appended data */
1444 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1445 	FI_NEED_IPU,		/* used for ipu per file */
1446 	FI_ATOMIC_FILE,		/* indicate atomic file */
1447 	FI_VOLATILE_FILE,	/* indicate volatile file */
1448 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1449 	FI_DROP_CACHE,		/* drop dirty page cache */
1450 	FI_DATA_EXIST,		/* indicate data exists */
1451 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1452 	FI_DO_DEFRAG,		/* indicate defragment is running */
1453 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1454 };
1455 
1456 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1457 {
1458 	if (!test_bit(flag, &fi->flags))
1459 		set_bit(flag, &fi->flags);
1460 }
1461 
1462 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1463 {
1464 	return test_bit(flag, &fi->flags);
1465 }
1466 
1467 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1468 {
1469 	if (test_bit(flag, &fi->flags))
1470 		clear_bit(flag, &fi->flags);
1471 }
1472 
1473 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1474 {
1475 	fi->i_acl_mode = mode;
1476 	set_inode_flag(fi, FI_ACL_MODE);
1477 }
1478 
1479 static inline void get_inline_info(struct f2fs_inode_info *fi,
1480 					struct f2fs_inode *ri)
1481 {
1482 	if (ri->i_inline & F2FS_INLINE_XATTR)
1483 		set_inode_flag(fi, FI_INLINE_XATTR);
1484 	if (ri->i_inline & F2FS_INLINE_DATA)
1485 		set_inode_flag(fi, FI_INLINE_DATA);
1486 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1487 		set_inode_flag(fi, FI_INLINE_DENTRY);
1488 	if (ri->i_inline & F2FS_DATA_EXIST)
1489 		set_inode_flag(fi, FI_DATA_EXIST);
1490 	if (ri->i_inline & F2FS_INLINE_DOTS)
1491 		set_inode_flag(fi, FI_INLINE_DOTS);
1492 }
1493 
1494 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1495 					struct f2fs_inode *ri)
1496 {
1497 	ri->i_inline = 0;
1498 
1499 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1500 		ri->i_inline |= F2FS_INLINE_XATTR;
1501 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1502 		ri->i_inline |= F2FS_INLINE_DATA;
1503 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1504 		ri->i_inline |= F2FS_INLINE_DENTRY;
1505 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1506 		ri->i_inline |= F2FS_DATA_EXIST;
1507 	if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1508 		ri->i_inline |= F2FS_INLINE_DOTS;
1509 }
1510 
1511 static inline int f2fs_has_inline_xattr(struct inode *inode)
1512 {
1513 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1514 }
1515 
1516 static inline unsigned int addrs_per_inode(struct inode *inode)
1517 {
1518 	if (f2fs_has_inline_xattr(inode))
1519 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1520 	return DEF_ADDRS_PER_INODE;
1521 }
1522 
1523 static inline void *inline_xattr_addr(struct page *page)
1524 {
1525 	struct f2fs_inode *ri = F2FS_INODE(page);
1526 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1527 					F2FS_INLINE_XATTR_ADDRS]);
1528 }
1529 
1530 static inline int inline_xattr_size(struct inode *inode)
1531 {
1532 	if (f2fs_has_inline_xattr(inode))
1533 		return F2FS_INLINE_XATTR_ADDRS << 2;
1534 	else
1535 		return 0;
1536 }
1537 
1538 static inline int f2fs_has_inline_data(struct inode *inode)
1539 {
1540 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1541 }
1542 
1543 static inline void f2fs_clear_inline_inode(struct inode *inode)
1544 {
1545 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1546 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1547 }
1548 
1549 static inline int f2fs_exist_data(struct inode *inode)
1550 {
1551 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1552 }
1553 
1554 static inline int f2fs_has_inline_dots(struct inode *inode)
1555 {
1556 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1557 }
1558 
1559 static inline bool f2fs_is_atomic_file(struct inode *inode)
1560 {
1561 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1562 }
1563 
1564 static inline bool f2fs_is_volatile_file(struct inode *inode)
1565 {
1566 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1567 }
1568 
1569 static inline bool f2fs_is_first_block_written(struct inode *inode)
1570 {
1571 	return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1572 }
1573 
1574 static inline bool f2fs_is_drop_cache(struct inode *inode)
1575 {
1576 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1577 }
1578 
1579 static inline void *inline_data_addr(struct page *page)
1580 {
1581 	struct f2fs_inode *ri = F2FS_INODE(page);
1582 	return (void *)&(ri->i_addr[1]);
1583 }
1584 
1585 static inline int f2fs_has_inline_dentry(struct inode *inode)
1586 {
1587 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1588 }
1589 
1590 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1591 {
1592 	if (!f2fs_has_inline_dentry(dir))
1593 		kunmap(page);
1594 }
1595 
1596 static inline int is_file(struct inode *inode, int type)
1597 {
1598 	return F2FS_I(inode)->i_advise & type;
1599 }
1600 
1601 static inline void set_file(struct inode *inode, int type)
1602 {
1603 	F2FS_I(inode)->i_advise |= type;
1604 }
1605 
1606 static inline void clear_file(struct inode *inode, int type)
1607 {
1608 	F2FS_I(inode)->i_advise &= ~type;
1609 }
1610 
1611 static inline int f2fs_readonly(struct super_block *sb)
1612 {
1613 	return sb->s_flags & MS_RDONLY;
1614 }
1615 
1616 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1617 {
1618 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1619 }
1620 
1621 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1622 {
1623 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1624 	sbi->sb->s_flags |= MS_RDONLY;
1625 }
1626 
1627 static inline bool is_dot_dotdot(const struct qstr *str)
1628 {
1629 	if (str->len == 1 && str->name[0] == '.')
1630 		return true;
1631 
1632 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1633 		return true;
1634 
1635 	return false;
1636 }
1637 
1638 static inline bool f2fs_may_extent_tree(struct inode *inode)
1639 {
1640 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1641 			is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1642 		return false;
1643 
1644 	return S_ISREG(inode->i_mode);
1645 }
1646 
1647 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1648 {
1649 	void *ret;
1650 
1651 	ret = kmalloc(size, flags | __GFP_NOWARN);
1652 	if (!ret)
1653 		ret = __vmalloc(size, flags, PAGE_KERNEL);
1654 	return ret;
1655 }
1656 
1657 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1658 {
1659 	void *ret;
1660 
1661 	ret = kzalloc(size, flags | __GFP_NOWARN);
1662 	if (!ret)
1663 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1664 	return ret;
1665 }
1666 
1667 #define get_inode_mode(i) \
1668 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1669 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1670 
1671 /* get offset of first page in next direct node */
1672 #define PGOFS_OF_NEXT_DNODE(pgofs, inode)				\
1673 	((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) :	\
1674 	(pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) /	\
1675 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1676 
1677 /*
1678  * file.c
1679  */
1680 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1681 void truncate_data_blocks(struct dnode_of_data *);
1682 int truncate_blocks(struct inode *, u64, bool);
1683 int f2fs_truncate(struct inode *, bool);
1684 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1685 int f2fs_setattr(struct dentry *, struct iattr *);
1686 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1687 int truncate_data_blocks_range(struct dnode_of_data *, int);
1688 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1689 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1690 
1691 /*
1692  * inode.c
1693  */
1694 void f2fs_set_inode_flags(struct inode *);
1695 struct inode *f2fs_iget(struct super_block *, unsigned long);
1696 int try_to_free_nats(struct f2fs_sb_info *, int);
1697 int update_inode(struct inode *, struct page *);
1698 int update_inode_page(struct inode *);
1699 int f2fs_write_inode(struct inode *, struct writeback_control *);
1700 void f2fs_evict_inode(struct inode *);
1701 void handle_failed_inode(struct inode *);
1702 
1703 /*
1704  * namei.c
1705  */
1706 struct dentry *f2fs_get_parent(struct dentry *child);
1707 
1708 /*
1709  * dir.c
1710  */
1711 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1712 void set_de_type(struct f2fs_dir_entry *, umode_t);
1713 
1714 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1715 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1716 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1717 			unsigned int, struct fscrypt_str *);
1718 void do_make_empty_dir(struct inode *, struct inode *,
1719 			struct f2fs_dentry_ptr *);
1720 struct page *init_inode_metadata(struct inode *, struct inode *,
1721 			const struct qstr *, struct page *);
1722 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1723 int room_for_filename(const void *, int, int);
1724 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1725 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1726 							struct page **);
1727 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1728 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1729 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1730 				struct page *, struct inode *);
1731 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1732 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1733 			const struct qstr *, f2fs_hash_t , unsigned int);
1734 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1735 			umode_t);
1736 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1737 							struct inode *);
1738 int f2fs_do_tmpfile(struct inode *, struct inode *);
1739 bool f2fs_empty_dir(struct inode *);
1740 
1741 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1742 {
1743 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1744 				inode, inode->i_ino, inode->i_mode);
1745 }
1746 
1747 /*
1748  * super.c
1749  */
1750 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1751 int f2fs_sync_fs(struct super_block *, int);
1752 extern __printf(3, 4)
1753 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1754 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1755 
1756 /*
1757  * hash.c
1758  */
1759 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1760 
1761 /*
1762  * node.c
1763  */
1764 struct dnode_of_data;
1765 struct node_info;
1766 
1767 bool available_free_memory(struct f2fs_sb_info *, int);
1768 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1769 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1770 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1771 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1772 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1773 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1774 int truncate_inode_blocks(struct inode *, pgoff_t);
1775 int truncate_xattr_node(struct inode *, struct page *);
1776 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1777 int remove_inode_page(struct inode *);
1778 struct page *new_inode_page(struct inode *);
1779 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1780 void ra_node_page(struct f2fs_sb_info *, nid_t);
1781 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1782 struct page *get_node_page_ra(struct page *, int);
1783 void sync_inode_page(struct dnode_of_data *);
1784 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1785 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1786 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1787 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1788 int try_to_free_nids(struct f2fs_sb_info *, int);
1789 void recover_inline_xattr(struct inode *, struct page *);
1790 void recover_xattr_data(struct inode *, struct page *, block_t);
1791 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1792 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1793 				struct f2fs_summary_block *);
1794 void flush_nat_entries(struct f2fs_sb_info *);
1795 int build_node_manager(struct f2fs_sb_info *);
1796 void destroy_node_manager(struct f2fs_sb_info *);
1797 int __init create_node_manager_caches(void);
1798 void destroy_node_manager_caches(void);
1799 
1800 /*
1801  * segment.c
1802  */
1803 void register_inmem_page(struct inode *, struct page *);
1804 void drop_inmem_pages(struct inode *);
1805 int commit_inmem_pages(struct inode *);
1806 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1807 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1808 int f2fs_issue_flush(struct f2fs_sb_info *);
1809 int create_flush_cmd_control(struct f2fs_sb_info *);
1810 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1811 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1812 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1813 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1814 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1815 void release_discard_addrs(struct f2fs_sb_info *);
1816 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1817 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1818 void allocate_new_segments(struct f2fs_sb_info *);
1819 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1820 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1821 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1822 void write_meta_page(struct f2fs_sb_info *, struct page *);
1823 void write_node_page(unsigned int, struct f2fs_io_info *);
1824 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1825 void rewrite_data_page(struct f2fs_io_info *);
1826 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1827 					block_t, block_t, bool, bool);
1828 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1829 				block_t, block_t, unsigned char, bool, bool);
1830 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1831 		block_t, block_t *, struct f2fs_summary *, int);
1832 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1833 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1834 void write_data_summaries(struct f2fs_sb_info *, block_t);
1835 void write_node_summaries(struct f2fs_sb_info *, block_t);
1836 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1837 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1838 int build_segment_manager(struct f2fs_sb_info *);
1839 void destroy_segment_manager(struct f2fs_sb_info *);
1840 int __init create_segment_manager_caches(void);
1841 void destroy_segment_manager_caches(void);
1842 
1843 /*
1844  * checkpoint.c
1845  */
1846 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1847 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1848 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1849 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1850 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1851 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1852 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1853 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1854 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1855 void release_ino_entry(struct f2fs_sb_info *);
1856 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1857 int acquire_orphan_inode(struct f2fs_sb_info *);
1858 void release_orphan_inode(struct f2fs_sb_info *);
1859 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1860 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1861 int recover_orphan_inodes(struct f2fs_sb_info *);
1862 int get_valid_checkpoint(struct f2fs_sb_info *);
1863 void update_dirty_page(struct inode *, struct page *);
1864 void add_dirty_dir_inode(struct inode *);
1865 void remove_dirty_inode(struct inode *);
1866 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1867 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1868 void init_ino_entry_info(struct f2fs_sb_info *);
1869 int __init create_checkpoint_caches(void);
1870 void destroy_checkpoint_caches(void);
1871 
1872 /*
1873  * data.c
1874  */
1875 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1876 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1877 				struct page *, nid_t, enum page_type, int);
1878 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
1879 int f2fs_submit_page_bio(struct f2fs_io_info *);
1880 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1881 void set_data_blkaddr(struct dnode_of_data *);
1882 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
1883 int reserve_new_block(struct dnode_of_data *);
1884 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1885 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1886 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1887 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1888 struct page *find_data_page(struct inode *, pgoff_t);
1889 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1890 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1891 int do_write_data_page(struct f2fs_io_info *);
1892 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1893 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1894 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1895 int f2fs_release_page(struct page *, gfp_t);
1896 
1897 /*
1898  * gc.c
1899  */
1900 int start_gc_thread(struct f2fs_sb_info *);
1901 void stop_gc_thread(struct f2fs_sb_info *);
1902 block_t start_bidx_of_node(unsigned int, struct inode *);
1903 int f2fs_gc(struct f2fs_sb_info *, bool);
1904 void build_gc_manager(struct f2fs_sb_info *);
1905 
1906 /*
1907  * recovery.c
1908  */
1909 int recover_fsync_data(struct f2fs_sb_info *);
1910 bool space_for_roll_forward(struct f2fs_sb_info *);
1911 
1912 /*
1913  * debug.c
1914  */
1915 #ifdef CONFIG_F2FS_STAT_FS
1916 struct f2fs_stat_info {
1917 	struct list_head stat_list;
1918 	struct f2fs_sb_info *sbi;
1919 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1920 	int main_area_segs, main_area_sections, main_area_zones;
1921 	unsigned long long hit_largest, hit_cached, hit_rbtree;
1922 	unsigned long long hit_total, total_ext;
1923 	int ext_tree, zombie_tree, ext_node;
1924 	int ndirty_node, ndirty_meta;
1925 	int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1926 	int nats, dirty_nats, sits, dirty_sits, fnids;
1927 	int total_count, utilization;
1928 	int bg_gc, inmem_pages, wb_pages;
1929 	int inline_xattr, inline_inode, inline_dir;
1930 	unsigned int valid_count, valid_node_count, valid_inode_count;
1931 	unsigned int bimodal, avg_vblocks;
1932 	int util_free, util_valid, util_invalid;
1933 	int rsvd_segs, overp_segs;
1934 	int dirty_count, node_pages, meta_pages;
1935 	int prefree_count, call_count, cp_count, bg_cp_count;
1936 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1937 	int bg_node_segs, bg_data_segs;
1938 	int tot_blks, data_blks, node_blks;
1939 	int bg_data_blks, bg_node_blks;
1940 	int curseg[NR_CURSEG_TYPE];
1941 	int cursec[NR_CURSEG_TYPE];
1942 	int curzone[NR_CURSEG_TYPE];
1943 
1944 	unsigned int segment_count[2];
1945 	unsigned int block_count[2];
1946 	unsigned int inplace_count;
1947 	unsigned long long base_mem, cache_mem, page_mem;
1948 };
1949 
1950 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1951 {
1952 	return (struct f2fs_stat_info *)sbi->stat_info;
1953 }
1954 
1955 #define stat_inc_cp_count(si)		((si)->cp_count++)
1956 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
1957 #define stat_inc_call_count(si)		((si)->call_count++)
1958 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1959 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
1960 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
1961 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
1962 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
1963 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
1964 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
1965 #define stat_inc_inline_xattr(inode)					\
1966 	do {								\
1967 		if (f2fs_has_inline_xattr(inode))			\
1968 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
1969 	} while (0)
1970 #define stat_dec_inline_xattr(inode)					\
1971 	do {								\
1972 		if (f2fs_has_inline_xattr(inode))			\
1973 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
1974 	} while (0)
1975 #define stat_inc_inline_inode(inode)					\
1976 	do {								\
1977 		if (f2fs_has_inline_data(inode))			\
1978 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
1979 	} while (0)
1980 #define stat_dec_inline_inode(inode)					\
1981 	do {								\
1982 		if (f2fs_has_inline_data(inode))			\
1983 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
1984 	} while (0)
1985 #define stat_inc_inline_dir(inode)					\
1986 	do {								\
1987 		if (f2fs_has_inline_dentry(inode))			\
1988 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
1989 	} while (0)
1990 #define stat_dec_inline_dir(inode)					\
1991 	do {								\
1992 		if (f2fs_has_inline_dentry(inode))			\
1993 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
1994 	} while (0)
1995 #define stat_inc_seg_type(sbi, curseg)					\
1996 		((sbi)->segment_count[(curseg)->alloc_type]++)
1997 #define stat_inc_block_count(sbi, curseg)				\
1998 		((sbi)->block_count[(curseg)->alloc_type]++)
1999 #define stat_inc_inplace_blocks(sbi)					\
2000 		(atomic_inc(&(sbi)->inplace_count))
2001 #define stat_inc_seg_count(sbi, type, gc_type)				\
2002 	do {								\
2003 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2004 		(si)->tot_segs++;					\
2005 		if (type == SUM_TYPE_DATA) {				\
2006 			si->data_segs++;				\
2007 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2008 		} else {						\
2009 			si->node_segs++;				\
2010 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2011 		}							\
2012 	} while (0)
2013 
2014 #define stat_inc_tot_blk_count(si, blks)				\
2015 	(si->tot_blks += (blks))
2016 
2017 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2018 	do {								\
2019 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2020 		stat_inc_tot_blk_count(si, blks);			\
2021 		si->data_blks += (blks);				\
2022 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2023 	} while (0)
2024 
2025 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2026 	do {								\
2027 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2028 		stat_inc_tot_blk_count(si, blks);			\
2029 		si->node_blks += (blks);				\
2030 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2031 	} while (0)
2032 
2033 int f2fs_build_stats(struct f2fs_sb_info *);
2034 void f2fs_destroy_stats(struct f2fs_sb_info *);
2035 int __init f2fs_create_root_stats(void);
2036 void f2fs_destroy_root_stats(void);
2037 #else
2038 #define stat_inc_cp_count(si)
2039 #define stat_inc_bg_cp_count(si)
2040 #define stat_inc_call_count(si)
2041 #define stat_inc_bggc_count(si)
2042 #define stat_inc_dirty_inode(sbi, type)
2043 #define stat_dec_dirty_inode(sbi, type)
2044 #define stat_inc_total_hit(sb)
2045 #define stat_inc_rbtree_node_hit(sb)
2046 #define stat_inc_largest_node_hit(sbi)
2047 #define stat_inc_cached_node_hit(sbi)
2048 #define stat_inc_inline_xattr(inode)
2049 #define stat_dec_inline_xattr(inode)
2050 #define stat_inc_inline_inode(inode)
2051 #define stat_dec_inline_inode(inode)
2052 #define stat_inc_inline_dir(inode)
2053 #define stat_dec_inline_dir(inode)
2054 #define stat_inc_seg_type(sbi, curseg)
2055 #define stat_inc_block_count(sbi, curseg)
2056 #define stat_inc_inplace_blocks(sbi)
2057 #define stat_inc_seg_count(sbi, type, gc_type)
2058 #define stat_inc_tot_blk_count(si, blks)
2059 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2060 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2061 
2062 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2063 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2064 static inline int __init f2fs_create_root_stats(void) { return 0; }
2065 static inline void f2fs_destroy_root_stats(void) { }
2066 #endif
2067 
2068 extern const struct file_operations f2fs_dir_operations;
2069 extern const struct file_operations f2fs_file_operations;
2070 extern const struct inode_operations f2fs_file_inode_operations;
2071 extern const struct address_space_operations f2fs_dblock_aops;
2072 extern const struct address_space_operations f2fs_node_aops;
2073 extern const struct address_space_operations f2fs_meta_aops;
2074 extern const struct inode_operations f2fs_dir_inode_operations;
2075 extern const struct inode_operations f2fs_symlink_inode_operations;
2076 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2077 extern const struct inode_operations f2fs_special_inode_operations;
2078 extern struct kmem_cache *inode_entry_slab;
2079 
2080 /*
2081  * inline.c
2082  */
2083 bool f2fs_may_inline_data(struct inode *);
2084 bool f2fs_may_inline_dentry(struct inode *);
2085 void read_inline_data(struct page *, struct page *);
2086 bool truncate_inline_inode(struct page *, u64);
2087 int f2fs_read_inline_data(struct inode *, struct page *);
2088 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2089 int f2fs_convert_inline_inode(struct inode *);
2090 int f2fs_write_inline_data(struct inode *, struct page *);
2091 bool recover_inline_data(struct inode *, struct page *);
2092 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2093 				struct fscrypt_name *, struct page **);
2094 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2095 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2096 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2097 						nid_t, umode_t);
2098 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2099 						struct inode *, struct inode *);
2100 bool f2fs_empty_inline_dir(struct inode *);
2101 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2102 						struct fscrypt_str *);
2103 int f2fs_inline_data_fiemap(struct inode *,
2104 		struct fiemap_extent_info *, __u64, __u64);
2105 
2106 /*
2107  * shrinker.c
2108  */
2109 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2110 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2111 void f2fs_join_shrinker(struct f2fs_sb_info *);
2112 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2113 
2114 /*
2115  * extent_cache.c
2116  */
2117 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2118 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2119 unsigned int f2fs_destroy_extent_node(struct inode *);
2120 void f2fs_destroy_extent_tree(struct inode *);
2121 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2122 void f2fs_update_extent_cache(struct dnode_of_data *);
2123 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2124 						pgoff_t, block_t, unsigned int);
2125 void init_extent_cache_info(struct f2fs_sb_info *);
2126 int __init create_extent_cache(void);
2127 void destroy_extent_cache(void);
2128 
2129 /*
2130  * crypto support
2131  */
2132 static inline bool f2fs_encrypted_inode(struct inode *inode)
2133 {
2134 	return file_is_encrypt(inode);
2135 }
2136 
2137 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2138 {
2139 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2140 	file_set_encrypt(inode);
2141 #endif
2142 }
2143 
2144 static inline bool f2fs_bio_encrypted(struct bio *bio)
2145 {
2146 	return bio->bi_private != NULL;
2147 }
2148 
2149 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2150 {
2151 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2152 }
2153 
2154 static inline bool f2fs_may_encrypt(struct inode *inode)
2155 {
2156 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2157 	umode_t mode = inode->i_mode;
2158 
2159 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2160 #else
2161 	return 0;
2162 #endif
2163 }
2164 
2165 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2166 #define fscrypt_set_d_op(i)
2167 #define fscrypt_get_ctx			fscrypt_notsupp_get_ctx
2168 #define fscrypt_release_ctx		fscrypt_notsupp_release_ctx
2169 #define fscrypt_encrypt_page		fscrypt_notsupp_encrypt_page
2170 #define fscrypt_decrypt_page		fscrypt_notsupp_decrypt_page
2171 #define fscrypt_decrypt_bio_pages	fscrypt_notsupp_decrypt_bio_pages
2172 #define fscrypt_pullback_bio_page	fscrypt_notsupp_pullback_bio_page
2173 #define fscrypt_restore_control_page	fscrypt_notsupp_restore_control_page
2174 #define fscrypt_zeroout_range		fscrypt_notsupp_zeroout_range
2175 #define fscrypt_process_policy		fscrypt_notsupp_process_policy
2176 #define fscrypt_get_policy		fscrypt_notsupp_get_policy
2177 #define fscrypt_has_permitted_context	fscrypt_notsupp_has_permitted_context
2178 #define fscrypt_inherit_context		fscrypt_notsupp_inherit_context
2179 #define fscrypt_get_encryption_info	fscrypt_notsupp_get_encryption_info
2180 #define fscrypt_put_encryption_info	fscrypt_notsupp_put_encryption_info
2181 #define fscrypt_setup_filename		fscrypt_notsupp_setup_filename
2182 #define fscrypt_free_filename		fscrypt_notsupp_free_filename
2183 #define fscrypt_fname_encrypted_size	fscrypt_notsupp_fname_encrypted_size
2184 #define fscrypt_fname_alloc_buffer	fscrypt_notsupp_fname_alloc_buffer
2185 #define fscrypt_fname_free_buffer	fscrypt_notsupp_fname_free_buffer
2186 #define fscrypt_fname_disk_to_usr	fscrypt_notsupp_fname_disk_to_usr
2187 #define fscrypt_fname_usr_to_disk	fscrypt_notsupp_fname_usr_to_disk
2188 #endif
2189 #endif
2190