xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 500e0b28)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
28 #include <linux/fscrypt.h>
29 
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition)					\
34 	do {								\
35 		if (unlikely(condition)) {				\
36 			WARN_ON(1);					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 		}							\
39 	} while (0)
40 #endif
41 
42 enum {
43 	FAULT_KMALLOC,
44 	FAULT_KVMALLOC,
45 	FAULT_PAGE_ALLOC,
46 	FAULT_PAGE_GET,
47 	FAULT_ALLOC_BIO,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_READ_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_DISCARD,
57 	FAULT_WRITE_IO,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_BG_GC		0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_ADAPTIVE		0x00020000
95 #define F2FS_MOUNT_LFS			0x00040000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 };
141 
142 #define F2FS_FEATURE_ENCRYPT		0x0001
143 #define F2FS_FEATURE_BLKZONED		0x0002
144 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
145 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
146 #define F2FS_FEATURE_PRJQUOTA		0x0010
147 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
149 #define F2FS_FEATURE_QUOTA_INO		0x0080
150 #define F2FS_FEATURE_INODE_CRTIME	0x0100
151 #define F2FS_FEATURE_LOST_FOUND		0x0200
152 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
153 #define F2FS_FEATURE_SB_CHKSUM		0x0800
154 
155 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
156 	((raw_super->feature & cpu_to_le32(mask)) != 0)
157 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
158 #define F2FS_SET_FEATURE(sbi, mask)					\
159 	(sbi->raw_super->feature |= cpu_to_le32(mask))
160 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
161 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
162 
163 /*
164  * Default values for user and/or group using reserved blocks
165  */
166 #define	F2FS_DEF_RESUID		0
167 #define	F2FS_DEF_RESGID		0
168 
169 /*
170  * For checkpoint manager
171  */
172 enum {
173 	NAT_BITMAP,
174 	SIT_BITMAP
175 };
176 
177 #define	CP_UMOUNT	0x00000001
178 #define	CP_FASTBOOT	0x00000002
179 #define	CP_SYNC		0x00000004
180 #define	CP_RECOVERY	0x00000008
181 #define	CP_DISCARD	0x00000010
182 #define CP_TRIMMED	0x00000020
183 #define CP_PAUSE	0x00000040
184 
185 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
186 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
187 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
188 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
189 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
190 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
191 #define DEF_CP_INTERVAL			60	/* 60 secs */
192 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
193 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
194 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
195 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
196 
197 struct cp_control {
198 	int reason;
199 	__u64 trim_start;
200 	__u64 trim_end;
201 	__u64 trim_minlen;
202 };
203 
204 /*
205  * indicate meta/data type
206  */
207 enum {
208 	META_CP,
209 	META_NAT,
210 	META_SIT,
211 	META_SSA,
212 	META_MAX,
213 	META_POR,
214 	DATA_GENERIC,
215 	META_GENERIC,
216 };
217 
218 /* for the list of ino */
219 enum {
220 	ORPHAN_INO,		/* for orphan ino list */
221 	APPEND_INO,		/* for append ino list */
222 	UPDATE_INO,		/* for update ino list */
223 	TRANS_DIR_INO,		/* for trasactions dir ino list */
224 	FLUSH_INO,		/* for multiple device flushing */
225 	MAX_INO_ENTRY,		/* max. list */
226 };
227 
228 struct ino_entry {
229 	struct list_head list;		/* list head */
230 	nid_t ino;			/* inode number */
231 	unsigned int dirty_device;	/* dirty device bitmap */
232 };
233 
234 /* for the list of inodes to be GCed */
235 struct inode_entry {
236 	struct list_head list;	/* list head */
237 	struct inode *inode;	/* vfs inode pointer */
238 };
239 
240 struct fsync_node_entry {
241 	struct list_head list;	/* list head */
242 	struct page *page;	/* warm node page pointer */
243 	unsigned int seq_id;	/* sequence id */
244 };
245 
246 /* for the bitmap indicate blocks to be discarded */
247 struct discard_entry {
248 	struct list_head list;	/* list head */
249 	block_t start_blkaddr;	/* start blockaddr of current segment */
250 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
251 };
252 
253 /* default discard granularity of inner discard thread, unit: block count */
254 #define DEFAULT_DISCARD_GRANULARITY		16
255 
256 /* max discard pend list number */
257 #define MAX_PLIST_NUM		512
258 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
259 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
260 
261 enum {
262 	D_PREP,			/* initial */
263 	D_PARTIAL,		/* partially submitted */
264 	D_SUBMIT,		/* all submitted */
265 	D_DONE,			/* finished */
266 };
267 
268 struct discard_info {
269 	block_t lstart;			/* logical start address */
270 	block_t len;			/* length */
271 	block_t start;			/* actual start address in dev */
272 };
273 
274 struct discard_cmd {
275 	struct rb_node rb_node;		/* rb node located in rb-tree */
276 	union {
277 		struct {
278 			block_t lstart;	/* logical start address */
279 			block_t len;	/* length */
280 			block_t start;	/* actual start address in dev */
281 		};
282 		struct discard_info di;	/* discard info */
283 
284 	};
285 	struct list_head list;		/* command list */
286 	struct completion wait;		/* compleation */
287 	struct block_device *bdev;	/* bdev */
288 	unsigned short ref;		/* reference count */
289 	unsigned char state;		/* state */
290 	unsigned char queued;		/* queued discard */
291 	int error;			/* bio error */
292 	spinlock_t lock;		/* for state/bio_ref updating */
293 	unsigned short bio_ref;		/* bio reference count */
294 };
295 
296 enum {
297 	DPOLICY_BG,
298 	DPOLICY_FORCE,
299 	DPOLICY_FSTRIM,
300 	DPOLICY_UMOUNT,
301 	MAX_DPOLICY,
302 };
303 
304 struct discard_policy {
305 	int type;			/* type of discard */
306 	unsigned int min_interval;	/* used for candidates exist */
307 	unsigned int mid_interval;	/* used for device busy */
308 	unsigned int max_interval;	/* used for candidates not exist */
309 	unsigned int max_requests;	/* # of discards issued per round */
310 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
311 	bool io_aware;			/* issue discard in idle time */
312 	bool sync;			/* submit discard with REQ_SYNC flag */
313 	bool ordered;			/* issue discard by lba order */
314 	unsigned int granularity;	/* discard granularity */
315 	int timeout;			/* discard timeout for put_super */
316 };
317 
318 struct discard_cmd_control {
319 	struct task_struct *f2fs_issue_discard;	/* discard thread */
320 	struct list_head entry_list;		/* 4KB discard entry list */
321 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
322 	struct list_head wait_list;		/* store on-flushing entries */
323 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
324 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
325 	unsigned int discard_wake;		/* to wake up discard thread */
326 	struct mutex cmd_lock;
327 	unsigned int nr_discards;		/* # of discards in the list */
328 	unsigned int max_discards;		/* max. discards to be issued */
329 	unsigned int discard_granularity;	/* discard granularity */
330 	unsigned int undiscard_blks;		/* # of undiscard blocks */
331 	unsigned int next_pos;			/* next discard position */
332 	atomic_t issued_discard;		/* # of issued discard */
333 	atomic_t queued_discard;		/* # of queued discard */
334 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
335 	struct rb_root_cached root;		/* root of discard rb-tree */
336 	bool rbtree_check;			/* config for consistence check */
337 };
338 
339 /* for the list of fsync inodes, used only during recovery */
340 struct fsync_inode_entry {
341 	struct list_head list;	/* list head */
342 	struct inode *inode;	/* vfs inode pointer */
343 	block_t blkaddr;	/* block address locating the last fsync */
344 	block_t last_dentry;	/* block address locating the last dentry */
345 };
346 
347 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
348 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
349 
350 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
351 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
352 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
353 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
354 
355 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
356 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
357 
358 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
359 {
360 	int before = nats_in_cursum(journal);
361 
362 	journal->n_nats = cpu_to_le16(before + i);
363 	return before;
364 }
365 
366 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
367 {
368 	int before = sits_in_cursum(journal);
369 
370 	journal->n_sits = cpu_to_le16(before + i);
371 	return before;
372 }
373 
374 static inline bool __has_cursum_space(struct f2fs_journal *journal,
375 							int size, int type)
376 {
377 	if (type == NAT_JOURNAL)
378 		return size <= MAX_NAT_JENTRIES(journal);
379 	return size <= MAX_SIT_JENTRIES(journal);
380 }
381 
382 /*
383  * ioctl commands
384  */
385 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
386 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
387 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
388 
389 #define F2FS_IOCTL_MAGIC		0xf5
390 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
391 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
392 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
393 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
394 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
395 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
396 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
397 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
398 						struct f2fs_defragment)
399 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
400 						struct f2fs_move_range)
401 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
402 						struct f2fs_flush_device)
403 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
404 						struct f2fs_gc_range)
405 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
406 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
407 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
408 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
409 
410 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
411 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
412 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
413 
414 /*
415  * should be same as XFS_IOC_GOINGDOWN.
416  * Flags for going down operation used by FS_IOC_GOINGDOWN
417  */
418 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
419 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
420 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
421 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
422 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
423 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
424 
425 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
426 /*
427  * ioctl commands in 32 bit emulation
428  */
429 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
430 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
431 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
432 #endif
433 
434 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
435 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
436 
437 struct f2fs_gc_range {
438 	u32 sync;
439 	u64 start;
440 	u64 len;
441 };
442 
443 struct f2fs_defragment {
444 	u64 start;
445 	u64 len;
446 };
447 
448 struct f2fs_move_range {
449 	u32 dst_fd;		/* destination fd */
450 	u64 pos_in;		/* start position in src_fd */
451 	u64 pos_out;		/* start position in dst_fd */
452 	u64 len;		/* size to move */
453 };
454 
455 struct f2fs_flush_device {
456 	u32 dev_num;		/* device number to flush */
457 	u32 segments;		/* # of segments to flush */
458 };
459 
460 /* for inline stuff */
461 #define DEF_INLINE_RESERVED_SIZE	1
462 static inline int get_extra_isize(struct inode *inode);
463 static inline int get_inline_xattr_addrs(struct inode *inode);
464 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
465 				(CUR_ADDRS_PER_INODE(inode) -		\
466 				get_inline_xattr_addrs(inode) -	\
467 				DEF_INLINE_RESERVED_SIZE))
468 
469 /* for inline dir */
470 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
471 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
472 				BITS_PER_BYTE + 1))
473 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
474 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
475 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
476 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
477 				NR_INLINE_DENTRY(inode) + \
478 				INLINE_DENTRY_BITMAP_SIZE(inode)))
479 
480 /*
481  * For INODE and NODE manager
482  */
483 /* for directory operations */
484 struct f2fs_dentry_ptr {
485 	struct inode *inode;
486 	void *bitmap;
487 	struct f2fs_dir_entry *dentry;
488 	__u8 (*filename)[F2FS_SLOT_LEN];
489 	int max;
490 	int nr_bitmap;
491 };
492 
493 static inline void make_dentry_ptr_block(struct inode *inode,
494 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
495 {
496 	d->inode = inode;
497 	d->max = NR_DENTRY_IN_BLOCK;
498 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
499 	d->bitmap = t->dentry_bitmap;
500 	d->dentry = t->dentry;
501 	d->filename = t->filename;
502 }
503 
504 static inline void make_dentry_ptr_inline(struct inode *inode,
505 					struct f2fs_dentry_ptr *d, void *t)
506 {
507 	int entry_cnt = NR_INLINE_DENTRY(inode);
508 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
509 	int reserved_size = INLINE_RESERVED_SIZE(inode);
510 
511 	d->inode = inode;
512 	d->max = entry_cnt;
513 	d->nr_bitmap = bitmap_size;
514 	d->bitmap = t;
515 	d->dentry = t + bitmap_size + reserved_size;
516 	d->filename = t + bitmap_size + reserved_size +
517 					SIZE_OF_DIR_ENTRY * entry_cnt;
518 }
519 
520 /*
521  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
522  * as its node offset to distinguish from index node blocks.
523  * But some bits are used to mark the node block.
524  */
525 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
526 				>> OFFSET_BIT_SHIFT)
527 enum {
528 	ALLOC_NODE,			/* allocate a new node page if needed */
529 	LOOKUP_NODE,			/* look up a node without readahead */
530 	LOOKUP_NODE_RA,			/*
531 					 * look up a node with readahead called
532 					 * by get_data_block.
533 					 */
534 };
535 
536 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
537 
538 /* maximum retry quota flush count */
539 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
540 
541 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
542 
543 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
544 
545 /* for in-memory extent cache entry */
546 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
547 
548 /* number of extent info in extent cache we try to shrink */
549 #define EXTENT_CACHE_SHRINK_NUMBER	128
550 
551 struct rb_entry {
552 	struct rb_node rb_node;		/* rb node located in rb-tree */
553 	unsigned int ofs;		/* start offset of the entry */
554 	unsigned int len;		/* length of the entry */
555 };
556 
557 struct extent_info {
558 	unsigned int fofs;		/* start offset in a file */
559 	unsigned int len;		/* length of the extent */
560 	u32 blk;			/* start block address of the extent */
561 };
562 
563 struct extent_node {
564 	struct rb_node rb_node;		/* rb node located in rb-tree */
565 	struct extent_info ei;		/* extent info */
566 	struct list_head list;		/* node in global extent list of sbi */
567 	struct extent_tree *et;		/* extent tree pointer */
568 };
569 
570 struct extent_tree {
571 	nid_t ino;			/* inode number */
572 	struct rb_root_cached root;	/* root of extent info rb-tree */
573 	struct extent_node *cached_en;	/* recently accessed extent node */
574 	struct extent_info largest;	/* largested extent info */
575 	struct list_head list;		/* to be used by sbi->zombie_list */
576 	rwlock_t lock;			/* protect extent info rb-tree */
577 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
578 	bool largest_updated;		/* largest extent updated */
579 };
580 
581 /*
582  * This structure is taken from ext4_map_blocks.
583  *
584  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
585  */
586 #define F2FS_MAP_NEW		(1 << BH_New)
587 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
588 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
589 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
590 				F2FS_MAP_UNWRITTEN)
591 
592 struct f2fs_map_blocks {
593 	block_t m_pblk;
594 	block_t m_lblk;
595 	unsigned int m_len;
596 	unsigned int m_flags;
597 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
598 	pgoff_t *m_next_extent;		/* point to next possible extent */
599 	int m_seg_type;
600 	bool m_may_create;		/* indicate it is from write path */
601 };
602 
603 /* for flag in get_data_block */
604 enum {
605 	F2FS_GET_BLOCK_DEFAULT,
606 	F2FS_GET_BLOCK_FIEMAP,
607 	F2FS_GET_BLOCK_BMAP,
608 	F2FS_GET_BLOCK_DIO,
609 	F2FS_GET_BLOCK_PRE_DIO,
610 	F2FS_GET_BLOCK_PRE_AIO,
611 	F2FS_GET_BLOCK_PRECACHE,
612 };
613 
614 /*
615  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
616  */
617 #define FADVISE_COLD_BIT	0x01
618 #define FADVISE_LOST_PINO_BIT	0x02
619 #define FADVISE_ENCRYPT_BIT	0x04
620 #define FADVISE_ENC_NAME_BIT	0x08
621 #define FADVISE_KEEP_SIZE_BIT	0x10
622 #define FADVISE_HOT_BIT		0x20
623 #define FADVISE_VERITY_BIT	0x40	/* reserved */
624 
625 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
626 
627 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
628 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
629 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
630 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
631 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
632 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
633 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
634 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
635 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
636 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
637 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
638 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
639 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
640 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
641 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
642 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
643 
644 #define DEF_DIR_LEVEL		0
645 
646 enum {
647 	GC_FAILURE_PIN,
648 	GC_FAILURE_ATOMIC,
649 	MAX_GC_FAILURE
650 };
651 
652 struct f2fs_inode_info {
653 	struct inode vfs_inode;		/* serve a vfs inode */
654 	unsigned long i_flags;		/* keep an inode flags for ioctl */
655 	unsigned char i_advise;		/* use to give file attribute hints */
656 	unsigned char i_dir_level;	/* use for dentry level for large dir */
657 	unsigned int i_current_depth;	/* only for directory depth */
658 	/* for gc failure statistic */
659 	unsigned int i_gc_failures[MAX_GC_FAILURE];
660 	unsigned int i_pino;		/* parent inode number */
661 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
662 
663 	/* Use below internally in f2fs*/
664 	unsigned long flags;		/* use to pass per-file flags */
665 	struct rw_semaphore i_sem;	/* protect fi info */
666 	atomic_t dirty_pages;		/* # of dirty pages */
667 	f2fs_hash_t chash;		/* hash value of given file name */
668 	unsigned int clevel;		/* maximum level of given file name */
669 	struct task_struct *task;	/* lookup and create consistency */
670 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
671 	nid_t i_xattr_nid;		/* node id that contains xattrs */
672 	loff_t	last_disk_size;		/* lastly written file size */
673 
674 #ifdef CONFIG_QUOTA
675 	struct dquot *i_dquot[MAXQUOTAS];
676 
677 	/* quota space reservation, managed internally by quota code */
678 	qsize_t i_reserved_quota;
679 #endif
680 	struct list_head dirty_list;	/* dirty list for dirs and files */
681 	struct list_head gdirty_list;	/* linked in global dirty list */
682 	struct list_head inmem_ilist;	/* list for inmem inodes */
683 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
684 	struct task_struct *inmem_task;	/* store inmemory task */
685 	struct mutex inmem_lock;	/* lock for inmemory pages */
686 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
687 
688 	/* avoid racing between foreground op and gc */
689 	struct rw_semaphore i_gc_rwsem[2];
690 	struct rw_semaphore i_mmap_sem;
691 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
692 
693 	int i_extra_isize;		/* size of extra space located in i_addr */
694 	kprojid_t i_projid;		/* id for project quota */
695 	int i_inline_xattr_size;	/* inline xattr size */
696 	struct timespec64 i_crtime;	/* inode creation time */
697 	struct timespec64 i_disk_time[4];/* inode disk times */
698 };
699 
700 static inline void get_extent_info(struct extent_info *ext,
701 					struct f2fs_extent *i_ext)
702 {
703 	ext->fofs = le32_to_cpu(i_ext->fofs);
704 	ext->blk = le32_to_cpu(i_ext->blk);
705 	ext->len = le32_to_cpu(i_ext->len);
706 }
707 
708 static inline void set_raw_extent(struct extent_info *ext,
709 					struct f2fs_extent *i_ext)
710 {
711 	i_ext->fofs = cpu_to_le32(ext->fofs);
712 	i_ext->blk = cpu_to_le32(ext->blk);
713 	i_ext->len = cpu_to_le32(ext->len);
714 }
715 
716 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
717 						u32 blk, unsigned int len)
718 {
719 	ei->fofs = fofs;
720 	ei->blk = blk;
721 	ei->len = len;
722 }
723 
724 static inline bool __is_discard_mergeable(struct discard_info *back,
725 			struct discard_info *front, unsigned int max_len)
726 {
727 	return (back->lstart + back->len == front->lstart) &&
728 		(back->len + front->len <= max_len);
729 }
730 
731 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
732 			struct discard_info *back, unsigned int max_len)
733 {
734 	return __is_discard_mergeable(back, cur, max_len);
735 }
736 
737 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
738 			struct discard_info *front, unsigned int max_len)
739 {
740 	return __is_discard_mergeable(cur, front, max_len);
741 }
742 
743 static inline bool __is_extent_mergeable(struct extent_info *back,
744 						struct extent_info *front)
745 {
746 	return (back->fofs + back->len == front->fofs &&
747 			back->blk + back->len == front->blk);
748 }
749 
750 static inline bool __is_back_mergeable(struct extent_info *cur,
751 						struct extent_info *back)
752 {
753 	return __is_extent_mergeable(back, cur);
754 }
755 
756 static inline bool __is_front_mergeable(struct extent_info *cur,
757 						struct extent_info *front)
758 {
759 	return __is_extent_mergeable(cur, front);
760 }
761 
762 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
763 static inline void __try_update_largest_extent(struct extent_tree *et,
764 						struct extent_node *en)
765 {
766 	if (en->ei.len > et->largest.len) {
767 		et->largest = en->ei;
768 		et->largest_updated = true;
769 	}
770 }
771 
772 /*
773  * For free nid management
774  */
775 enum nid_state {
776 	FREE_NID,		/* newly added to free nid list */
777 	PREALLOC_NID,		/* it is preallocated */
778 	MAX_NID_STATE,
779 };
780 
781 struct f2fs_nm_info {
782 	block_t nat_blkaddr;		/* base disk address of NAT */
783 	nid_t max_nid;			/* maximum possible node ids */
784 	nid_t available_nids;		/* # of available node ids */
785 	nid_t next_scan_nid;		/* the next nid to be scanned */
786 	unsigned int ram_thresh;	/* control the memory footprint */
787 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
788 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
789 
790 	/* NAT cache management */
791 	struct radix_tree_root nat_root;/* root of the nat entry cache */
792 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
793 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
794 	struct list_head nat_entries;	/* cached nat entry list (clean) */
795 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
796 	unsigned int nat_cnt;		/* the # of cached nat entries */
797 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
798 	unsigned int nat_blocks;	/* # of nat blocks */
799 
800 	/* free node ids management */
801 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
802 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
803 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
804 	spinlock_t nid_list_lock;	/* protect nid lists ops */
805 	struct mutex build_lock;	/* lock for build free nids */
806 	unsigned char **free_nid_bitmap;
807 	unsigned char *nat_block_bitmap;
808 	unsigned short *free_nid_count;	/* free nid count of NAT block */
809 
810 	/* for checkpoint */
811 	char *nat_bitmap;		/* NAT bitmap pointer */
812 
813 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
814 	unsigned char *nat_bits;	/* NAT bits blocks */
815 	unsigned char *full_nat_bits;	/* full NAT pages */
816 	unsigned char *empty_nat_bits;	/* empty NAT pages */
817 #ifdef CONFIG_F2FS_CHECK_FS
818 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
819 #endif
820 	int bitmap_size;		/* bitmap size */
821 };
822 
823 /*
824  * this structure is used as one of function parameters.
825  * all the information are dedicated to a given direct node block determined
826  * by the data offset in a file.
827  */
828 struct dnode_of_data {
829 	struct inode *inode;		/* vfs inode pointer */
830 	struct page *inode_page;	/* its inode page, NULL is possible */
831 	struct page *node_page;		/* cached direct node page */
832 	nid_t nid;			/* node id of the direct node block */
833 	unsigned int ofs_in_node;	/* data offset in the node page */
834 	bool inode_page_locked;		/* inode page is locked or not */
835 	bool node_changed;		/* is node block changed */
836 	char cur_level;			/* level of hole node page */
837 	char max_level;			/* level of current page located */
838 	block_t	data_blkaddr;		/* block address of the node block */
839 };
840 
841 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
842 		struct page *ipage, struct page *npage, nid_t nid)
843 {
844 	memset(dn, 0, sizeof(*dn));
845 	dn->inode = inode;
846 	dn->inode_page = ipage;
847 	dn->node_page = npage;
848 	dn->nid = nid;
849 }
850 
851 /*
852  * For SIT manager
853  *
854  * By default, there are 6 active log areas across the whole main area.
855  * When considering hot and cold data separation to reduce cleaning overhead,
856  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
857  * respectively.
858  * In the current design, you should not change the numbers intentionally.
859  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
860  * logs individually according to the underlying devices. (default: 6)
861  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
862  * data and 8 for node logs.
863  */
864 #define	NR_CURSEG_DATA_TYPE	(3)
865 #define NR_CURSEG_NODE_TYPE	(3)
866 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
867 
868 enum {
869 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
870 	CURSEG_WARM_DATA,	/* data blocks */
871 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
872 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
873 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
874 	CURSEG_COLD_NODE,	/* indirect node blocks */
875 	NO_CHECK_TYPE,
876 };
877 
878 struct flush_cmd {
879 	struct completion wait;
880 	struct llist_node llnode;
881 	nid_t ino;
882 	int ret;
883 };
884 
885 struct flush_cmd_control {
886 	struct task_struct *f2fs_issue_flush;	/* flush thread */
887 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
888 	atomic_t issued_flush;			/* # of issued flushes */
889 	atomic_t queued_flush;			/* # of queued flushes */
890 	struct llist_head issue_list;		/* list for command issue */
891 	struct llist_node *dispatch_list;	/* list for command dispatch */
892 };
893 
894 struct f2fs_sm_info {
895 	struct sit_info *sit_info;		/* whole segment information */
896 	struct free_segmap_info *free_info;	/* free segment information */
897 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
898 	struct curseg_info *curseg_array;	/* active segment information */
899 
900 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
901 
902 	block_t seg0_blkaddr;		/* block address of 0'th segment */
903 	block_t main_blkaddr;		/* start block address of main area */
904 	block_t ssa_blkaddr;		/* start block address of SSA area */
905 
906 	unsigned int segment_count;	/* total # of segments */
907 	unsigned int main_segments;	/* # of segments in main area */
908 	unsigned int reserved_segments;	/* # of reserved segments */
909 	unsigned int ovp_segments;	/* # of overprovision segments */
910 
911 	/* a threshold to reclaim prefree segments */
912 	unsigned int rec_prefree_segments;
913 
914 	/* for batched trimming */
915 	unsigned int trim_sections;		/* # of sections to trim */
916 
917 	struct list_head sit_entry_set;	/* sit entry set list */
918 
919 	unsigned int ipu_policy;	/* in-place-update policy */
920 	unsigned int min_ipu_util;	/* in-place-update threshold */
921 	unsigned int min_fsync_blocks;	/* threshold for fsync */
922 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
923 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
924 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
925 
926 	/* for flush command control */
927 	struct flush_cmd_control *fcc_info;
928 
929 	/* for discard command control */
930 	struct discard_cmd_control *dcc_info;
931 };
932 
933 /*
934  * For superblock
935  */
936 /*
937  * COUNT_TYPE for monitoring
938  *
939  * f2fs monitors the number of several block types such as on-writeback,
940  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
941  */
942 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
943 enum count_type {
944 	F2FS_DIRTY_DENTS,
945 	F2FS_DIRTY_DATA,
946 	F2FS_DIRTY_QDATA,
947 	F2FS_DIRTY_NODES,
948 	F2FS_DIRTY_META,
949 	F2FS_INMEM_PAGES,
950 	F2FS_DIRTY_IMETA,
951 	F2FS_WB_CP_DATA,
952 	F2FS_WB_DATA,
953 	F2FS_RD_DATA,
954 	F2FS_RD_NODE,
955 	F2FS_RD_META,
956 	F2FS_DIO_WRITE,
957 	F2FS_DIO_READ,
958 	NR_COUNT_TYPE,
959 };
960 
961 /*
962  * The below are the page types of bios used in submit_bio().
963  * The available types are:
964  * DATA			User data pages. It operates as async mode.
965  * NODE			Node pages. It operates as async mode.
966  * META			FS metadata pages such as SIT, NAT, CP.
967  * NR_PAGE_TYPE		The number of page types.
968  * META_FLUSH		Make sure the previous pages are written
969  *			with waiting the bio's completion
970  * ...			Only can be used with META.
971  */
972 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
973 enum page_type {
974 	DATA,
975 	NODE,
976 	META,
977 	NR_PAGE_TYPE,
978 	META_FLUSH,
979 	INMEM,		/* the below types are used by tracepoints only. */
980 	INMEM_DROP,
981 	INMEM_INVALIDATE,
982 	INMEM_REVOKE,
983 	IPU,
984 	OPU,
985 };
986 
987 enum temp_type {
988 	HOT = 0,	/* must be zero for meta bio */
989 	WARM,
990 	COLD,
991 	NR_TEMP_TYPE,
992 };
993 
994 enum need_lock_type {
995 	LOCK_REQ = 0,
996 	LOCK_DONE,
997 	LOCK_RETRY,
998 };
999 
1000 enum cp_reason_type {
1001 	CP_NO_NEEDED,
1002 	CP_NON_REGULAR,
1003 	CP_HARDLINK,
1004 	CP_SB_NEED_CP,
1005 	CP_WRONG_PINO,
1006 	CP_NO_SPC_ROLL,
1007 	CP_NODE_NEED_CP,
1008 	CP_FASTBOOT_MODE,
1009 	CP_SPEC_LOG_NUM,
1010 	CP_RECOVER_DIR,
1011 };
1012 
1013 enum iostat_type {
1014 	APP_DIRECT_IO,			/* app direct IOs */
1015 	APP_BUFFERED_IO,		/* app buffered IOs */
1016 	APP_WRITE_IO,			/* app write IOs */
1017 	APP_MAPPED_IO,			/* app mapped IOs */
1018 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1019 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1020 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1021 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1022 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1023 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1024 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1025 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1026 	FS_DISCARD,			/* discard */
1027 	NR_IO_TYPE,
1028 };
1029 
1030 struct f2fs_io_info {
1031 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1032 	nid_t ino;		/* inode number */
1033 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1034 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1035 	int op;			/* contains REQ_OP_ */
1036 	int op_flags;		/* req_flag_bits */
1037 	block_t new_blkaddr;	/* new block address to be written */
1038 	block_t old_blkaddr;	/* old block address before Cow */
1039 	struct page *page;	/* page to be written */
1040 	struct page *encrypted_page;	/* encrypted page */
1041 	struct list_head list;		/* serialize IOs */
1042 	bool submitted;		/* indicate IO submission */
1043 	int need_lock;		/* indicate we need to lock cp_rwsem */
1044 	bool in_list;		/* indicate fio is in io_list */
1045 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1046 	bool retry;		/* need to reallocate block address */
1047 	enum iostat_type io_type;	/* io type */
1048 	struct writeback_control *io_wbc; /* writeback control */
1049 	unsigned char version;		/* version of the node */
1050 };
1051 
1052 #define is_read_io(rw) ((rw) == READ)
1053 struct f2fs_bio_info {
1054 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1055 	struct bio *bio;		/* bios to merge */
1056 	sector_t last_block_in_bio;	/* last block number */
1057 	struct f2fs_io_info fio;	/* store buffered io info. */
1058 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1059 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1060 	struct list_head io_list;	/* track fios */
1061 };
1062 
1063 #define FDEV(i)				(sbi->devs[i])
1064 #define RDEV(i)				(raw_super->devs[i])
1065 struct f2fs_dev_info {
1066 	struct block_device *bdev;
1067 	char path[MAX_PATH_LEN];
1068 	unsigned int total_segments;
1069 	block_t start_blk;
1070 	block_t end_blk;
1071 #ifdef CONFIG_BLK_DEV_ZONED
1072 	unsigned int nr_blkz;			/* Total number of zones */
1073 	u8 *blkz_type;				/* Array of zones type */
1074 #endif
1075 };
1076 
1077 enum inode_type {
1078 	DIR_INODE,			/* for dirty dir inode */
1079 	FILE_INODE,			/* for dirty regular/symlink inode */
1080 	DIRTY_META,			/* for all dirtied inode metadata */
1081 	ATOMIC_FILE,			/* for all atomic files */
1082 	NR_INODE_TYPE,
1083 };
1084 
1085 /* for inner inode cache management */
1086 struct inode_management {
1087 	struct radix_tree_root ino_root;	/* ino entry array */
1088 	spinlock_t ino_lock;			/* for ino entry lock */
1089 	struct list_head ino_list;		/* inode list head */
1090 	unsigned long ino_num;			/* number of entries */
1091 };
1092 
1093 /* For s_flag in struct f2fs_sb_info */
1094 enum {
1095 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1096 	SBI_IS_CLOSE,				/* specify unmounting */
1097 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1098 	SBI_POR_DOING,				/* recovery is doing or not */
1099 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1100 	SBI_NEED_CP,				/* need to checkpoint */
1101 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1102 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1103 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1104 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1105 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1106 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1107 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1108 };
1109 
1110 enum {
1111 	CP_TIME,
1112 	REQ_TIME,
1113 	DISCARD_TIME,
1114 	GC_TIME,
1115 	DISABLE_TIME,
1116 	UMOUNT_DISCARD_TIMEOUT,
1117 	MAX_TIME,
1118 };
1119 
1120 enum {
1121 	GC_NORMAL,
1122 	GC_IDLE_CB,
1123 	GC_IDLE_GREEDY,
1124 	GC_URGENT,
1125 };
1126 
1127 enum {
1128 	WHINT_MODE_OFF,		/* not pass down write hints */
1129 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1130 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1131 };
1132 
1133 enum {
1134 	ALLOC_MODE_DEFAULT,	/* stay default */
1135 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1136 };
1137 
1138 enum fsync_mode {
1139 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1140 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1141 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1142 };
1143 
1144 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1145 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1146 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1147 #else
1148 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1149 #endif
1150 
1151 struct f2fs_sb_info {
1152 	struct super_block *sb;			/* pointer to VFS super block */
1153 	struct proc_dir_entry *s_proc;		/* proc entry */
1154 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1155 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1156 	int valid_super_block;			/* valid super block no */
1157 	unsigned long s_flag;				/* flags for sbi */
1158 	struct mutex writepages;		/* mutex for writepages() */
1159 
1160 #ifdef CONFIG_BLK_DEV_ZONED
1161 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1162 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1163 #endif
1164 
1165 	/* for node-related operations */
1166 	struct f2fs_nm_info *nm_info;		/* node manager */
1167 	struct inode *node_inode;		/* cache node blocks */
1168 
1169 	/* for segment-related operations */
1170 	struct f2fs_sm_info *sm_info;		/* segment manager */
1171 
1172 	/* for bio operations */
1173 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1174 	/* keep migration IO order for LFS mode */
1175 	struct rw_semaphore io_order_lock;
1176 	mempool_t *write_io_dummy;		/* Dummy pages */
1177 
1178 	/* for checkpoint */
1179 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1180 	int cur_cp_pack;			/* remain current cp pack */
1181 	spinlock_t cp_lock;			/* for flag in ckpt */
1182 	struct inode *meta_inode;		/* cache meta blocks */
1183 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1184 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1185 	struct rw_semaphore node_write;		/* locking node writes */
1186 	struct rw_semaphore node_change;	/* locking node change */
1187 	wait_queue_head_t cp_wait;
1188 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1189 	long interval_time[MAX_TIME];		/* to store thresholds */
1190 
1191 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1192 
1193 	spinlock_t fsync_node_lock;		/* for node entry lock */
1194 	struct list_head fsync_node_list;	/* node list head */
1195 	unsigned int fsync_seg_id;		/* sequence id */
1196 	unsigned int fsync_node_num;		/* number of node entries */
1197 
1198 	/* for orphan inode, use 0'th array */
1199 	unsigned int max_orphans;		/* max orphan inodes */
1200 
1201 	/* for inode management */
1202 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1203 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1204 
1205 	/* for extent tree cache */
1206 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1207 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1208 	struct list_head extent_list;		/* lru list for shrinker */
1209 	spinlock_t extent_lock;			/* locking extent lru list */
1210 	atomic_t total_ext_tree;		/* extent tree count */
1211 	struct list_head zombie_list;		/* extent zombie tree list */
1212 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1213 	atomic_t total_ext_node;		/* extent info count */
1214 
1215 	/* basic filesystem units */
1216 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1217 	unsigned int log_blocksize;		/* log2 block size */
1218 	unsigned int blocksize;			/* block size */
1219 	unsigned int root_ino_num;		/* root inode number*/
1220 	unsigned int node_ino_num;		/* node inode number*/
1221 	unsigned int meta_ino_num;		/* meta inode number*/
1222 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1223 	unsigned int blocks_per_seg;		/* blocks per segment */
1224 	unsigned int segs_per_sec;		/* segments per section */
1225 	unsigned int secs_per_zone;		/* sections per zone */
1226 	unsigned int total_sections;		/* total section count */
1227 	unsigned int total_node_count;		/* total node block count */
1228 	unsigned int total_valid_node_count;	/* valid node block count */
1229 	loff_t max_file_blocks;			/* max block index of file */
1230 	int dir_level;				/* directory level */
1231 	int readdir_ra;				/* readahead inode in readdir */
1232 
1233 	block_t user_block_count;		/* # of user blocks */
1234 	block_t total_valid_block_count;	/* # of valid blocks */
1235 	block_t discard_blks;			/* discard command candidats */
1236 	block_t last_valid_block_count;		/* for recovery */
1237 	block_t reserved_blocks;		/* configurable reserved blocks */
1238 	block_t current_reserved_blocks;	/* current reserved blocks */
1239 
1240 	/* Additional tracking for no checkpoint mode */
1241 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1242 
1243 	unsigned int nquota_files;		/* # of quota sysfile */
1244 
1245 	u32 s_next_generation;			/* for NFS support */
1246 
1247 	/* # of pages, see count_type */
1248 	atomic_t nr_pages[NR_COUNT_TYPE];
1249 	/* # of allocated blocks */
1250 	struct percpu_counter alloc_valid_block_count;
1251 
1252 	/* writeback control */
1253 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1254 
1255 	/* valid inode count */
1256 	struct percpu_counter total_valid_inode_count;
1257 
1258 	struct f2fs_mount_info mount_opt;	/* mount options */
1259 
1260 	/* for cleaning operations */
1261 	struct mutex gc_mutex;			/* mutex for GC */
1262 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1263 	unsigned int cur_victim_sec;		/* current victim section num */
1264 	unsigned int gc_mode;			/* current GC state */
1265 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1266 	/* for skip statistic */
1267 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1268 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1269 
1270 	/* threshold for gc trials on pinned files */
1271 	u64 gc_pin_file_threshold;
1272 
1273 	/* maximum # of trials to find a victim segment for SSR and GC */
1274 	unsigned int max_victim_search;
1275 	/* migration granularity of garbage collection, unit: segment */
1276 	unsigned int migration_granularity;
1277 
1278 	/*
1279 	 * for stat information.
1280 	 * one is for the LFS mode, and the other is for the SSR mode.
1281 	 */
1282 #ifdef CONFIG_F2FS_STAT_FS
1283 	struct f2fs_stat_info *stat_info;	/* FS status information */
1284 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1285 	unsigned int segment_count[2];		/* # of allocated segments */
1286 	unsigned int block_count[2];		/* # of allocated blocks */
1287 	atomic_t inplace_count;		/* # of inplace update */
1288 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1289 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1290 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1291 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1292 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1293 	atomic_t inline_inode;			/* # of inline_data inodes */
1294 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1295 	atomic_t aw_cnt;			/* # of atomic writes */
1296 	atomic_t vw_cnt;			/* # of volatile writes */
1297 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1298 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1299 	int bg_gc;				/* background gc calls */
1300 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1301 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1302 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1303 #endif
1304 	spinlock_t stat_lock;			/* lock for stat operations */
1305 
1306 	/* For app/fs IO statistics */
1307 	spinlock_t iostat_lock;
1308 	unsigned long long write_iostat[NR_IO_TYPE];
1309 	bool iostat_enable;
1310 
1311 	/* For sysfs suppport */
1312 	struct kobject s_kobj;
1313 	struct completion s_kobj_unregister;
1314 
1315 	/* For shrinker support */
1316 	struct list_head s_list;
1317 	int s_ndevs;				/* number of devices */
1318 	struct f2fs_dev_info *devs;		/* for device list */
1319 	unsigned int dirty_device;		/* for checkpoint data flush */
1320 	spinlock_t dev_lock;			/* protect dirty_device */
1321 	struct mutex umount_mutex;
1322 	unsigned int shrinker_run_no;
1323 
1324 	/* For write statistics */
1325 	u64 sectors_written_start;
1326 	u64 kbytes_written;
1327 
1328 	/* Reference to checksum algorithm driver via cryptoapi */
1329 	struct crypto_shash *s_chksum_driver;
1330 
1331 	/* Precomputed FS UUID checksum for seeding other checksums */
1332 	__u32 s_chksum_seed;
1333 };
1334 
1335 struct f2fs_private_dio {
1336 	struct inode *inode;
1337 	void *orig_private;
1338 	bio_end_io_t *orig_end_io;
1339 	bool write;
1340 };
1341 
1342 #ifdef CONFIG_F2FS_FAULT_INJECTION
1343 #define f2fs_show_injection_info(type)					\
1344 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n",	\
1345 		KERN_INFO, f2fs_fault_name[type],			\
1346 		__func__, __builtin_return_address(0))
1347 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1348 {
1349 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1350 
1351 	if (!ffi->inject_rate)
1352 		return false;
1353 
1354 	if (!IS_FAULT_SET(ffi, type))
1355 		return false;
1356 
1357 	atomic_inc(&ffi->inject_ops);
1358 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1359 		atomic_set(&ffi->inject_ops, 0);
1360 		return true;
1361 	}
1362 	return false;
1363 }
1364 #else
1365 #define f2fs_show_injection_info(type) do { } while (0)
1366 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1367 {
1368 	return false;
1369 }
1370 #endif
1371 
1372 /* For write statistics. Suppose sector size is 512 bytes,
1373  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1374  */
1375 #define BD_PART_WRITTEN(s)						 \
1376 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1377 		(s)->sectors_written_start) >> 1)
1378 
1379 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1380 {
1381 	unsigned long now = jiffies;
1382 
1383 	sbi->last_time[type] = now;
1384 
1385 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1386 	if (type == REQ_TIME) {
1387 		sbi->last_time[DISCARD_TIME] = now;
1388 		sbi->last_time[GC_TIME] = now;
1389 	}
1390 }
1391 
1392 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1393 {
1394 	unsigned long interval = sbi->interval_time[type] * HZ;
1395 
1396 	return time_after(jiffies, sbi->last_time[type] + interval);
1397 }
1398 
1399 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1400 						int type)
1401 {
1402 	unsigned long interval = sbi->interval_time[type] * HZ;
1403 	unsigned int wait_ms = 0;
1404 	long delta;
1405 
1406 	delta = (sbi->last_time[type] + interval) - jiffies;
1407 	if (delta > 0)
1408 		wait_ms = jiffies_to_msecs(delta);
1409 
1410 	return wait_ms;
1411 }
1412 
1413 /*
1414  * Inline functions
1415  */
1416 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1417 			      const void *address, unsigned int length)
1418 {
1419 	struct {
1420 		struct shash_desc shash;
1421 		char ctx[4];
1422 	} desc;
1423 	int err;
1424 
1425 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1426 
1427 	desc.shash.tfm = sbi->s_chksum_driver;
1428 	desc.shash.flags = 0;
1429 	*(u32 *)desc.ctx = crc;
1430 
1431 	err = crypto_shash_update(&desc.shash, address, length);
1432 	BUG_ON(err);
1433 
1434 	return *(u32 *)desc.ctx;
1435 }
1436 
1437 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1438 			   unsigned int length)
1439 {
1440 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1441 }
1442 
1443 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1444 				  void *buf, size_t buf_size)
1445 {
1446 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1447 }
1448 
1449 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1450 			      const void *address, unsigned int length)
1451 {
1452 	return __f2fs_crc32(sbi, crc, address, length);
1453 }
1454 
1455 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1456 {
1457 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1458 }
1459 
1460 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1461 {
1462 	return sb->s_fs_info;
1463 }
1464 
1465 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1466 {
1467 	return F2FS_SB(inode->i_sb);
1468 }
1469 
1470 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1471 {
1472 	return F2FS_I_SB(mapping->host);
1473 }
1474 
1475 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1476 {
1477 	return F2FS_M_SB(page->mapping);
1478 }
1479 
1480 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1481 {
1482 	return (struct f2fs_super_block *)(sbi->raw_super);
1483 }
1484 
1485 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1486 {
1487 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1488 }
1489 
1490 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1491 {
1492 	return (struct f2fs_node *)page_address(page);
1493 }
1494 
1495 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1496 {
1497 	return &((struct f2fs_node *)page_address(page))->i;
1498 }
1499 
1500 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1501 {
1502 	return (struct f2fs_nm_info *)(sbi->nm_info);
1503 }
1504 
1505 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1506 {
1507 	return (struct f2fs_sm_info *)(sbi->sm_info);
1508 }
1509 
1510 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1511 {
1512 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1513 }
1514 
1515 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1516 {
1517 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1518 }
1519 
1520 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1521 {
1522 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1523 }
1524 
1525 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1526 {
1527 	return sbi->meta_inode->i_mapping;
1528 }
1529 
1530 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1531 {
1532 	return sbi->node_inode->i_mapping;
1533 }
1534 
1535 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1536 {
1537 	return test_bit(type, &sbi->s_flag);
1538 }
1539 
1540 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1541 {
1542 	set_bit(type, &sbi->s_flag);
1543 }
1544 
1545 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1546 {
1547 	clear_bit(type, &sbi->s_flag);
1548 }
1549 
1550 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1551 {
1552 	return le64_to_cpu(cp->checkpoint_ver);
1553 }
1554 
1555 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1556 {
1557 	if (type < F2FS_MAX_QUOTAS)
1558 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1559 	return 0;
1560 }
1561 
1562 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1563 {
1564 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1565 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1566 }
1567 
1568 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1569 {
1570 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1571 
1572 	return ckpt_flags & f;
1573 }
1574 
1575 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1576 {
1577 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1578 }
1579 
1580 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1581 {
1582 	unsigned int ckpt_flags;
1583 
1584 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1585 	ckpt_flags |= f;
1586 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1587 }
1588 
1589 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1590 {
1591 	unsigned long flags;
1592 
1593 	spin_lock_irqsave(&sbi->cp_lock, flags);
1594 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1595 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1596 }
1597 
1598 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1599 {
1600 	unsigned int ckpt_flags;
1601 
1602 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1603 	ckpt_flags &= (~f);
1604 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1605 }
1606 
1607 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1608 {
1609 	unsigned long flags;
1610 
1611 	spin_lock_irqsave(&sbi->cp_lock, flags);
1612 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1613 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1614 }
1615 
1616 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1617 {
1618 	unsigned long flags;
1619 
1620 	/*
1621 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1622 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1623 	 * so let's rely on regular fsck or unclean shutdown.
1624 	 */
1625 
1626 	if (lock)
1627 		spin_lock_irqsave(&sbi->cp_lock, flags);
1628 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1629 	kvfree(NM_I(sbi)->nat_bits);
1630 	NM_I(sbi)->nat_bits = NULL;
1631 	if (lock)
1632 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1633 }
1634 
1635 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1636 					struct cp_control *cpc)
1637 {
1638 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1639 
1640 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1641 }
1642 
1643 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1644 {
1645 	down_read(&sbi->cp_rwsem);
1646 }
1647 
1648 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1649 {
1650 	return down_read_trylock(&sbi->cp_rwsem);
1651 }
1652 
1653 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1654 {
1655 	up_read(&sbi->cp_rwsem);
1656 }
1657 
1658 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1659 {
1660 	down_write(&sbi->cp_rwsem);
1661 }
1662 
1663 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1664 {
1665 	up_write(&sbi->cp_rwsem);
1666 }
1667 
1668 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1669 {
1670 	int reason = CP_SYNC;
1671 
1672 	if (test_opt(sbi, FASTBOOT))
1673 		reason = CP_FASTBOOT;
1674 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1675 		reason = CP_UMOUNT;
1676 	return reason;
1677 }
1678 
1679 static inline bool __remain_node_summaries(int reason)
1680 {
1681 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1682 }
1683 
1684 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1685 {
1686 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1687 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1688 }
1689 
1690 /*
1691  * Check whether the inode has blocks or not
1692  */
1693 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1694 {
1695 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1696 
1697 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1698 }
1699 
1700 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1701 {
1702 	return ofs == XATTR_NODE_OFFSET;
1703 }
1704 
1705 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1706 					struct inode *inode, bool cap)
1707 {
1708 	if (!inode)
1709 		return true;
1710 	if (!test_opt(sbi, RESERVE_ROOT))
1711 		return false;
1712 	if (IS_NOQUOTA(inode))
1713 		return true;
1714 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1715 		return true;
1716 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1717 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1718 		return true;
1719 	if (cap && capable(CAP_SYS_RESOURCE))
1720 		return true;
1721 	return false;
1722 }
1723 
1724 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1725 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1726 				 struct inode *inode, blkcnt_t *count)
1727 {
1728 	blkcnt_t diff = 0, release = 0;
1729 	block_t avail_user_block_count;
1730 	int ret;
1731 
1732 	ret = dquot_reserve_block(inode, *count);
1733 	if (ret)
1734 		return ret;
1735 
1736 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1737 		f2fs_show_injection_info(FAULT_BLOCK);
1738 		release = *count;
1739 		goto enospc;
1740 	}
1741 
1742 	/*
1743 	 * let's increase this in prior to actual block count change in order
1744 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1745 	 */
1746 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1747 
1748 	spin_lock(&sbi->stat_lock);
1749 	sbi->total_valid_block_count += (block_t)(*count);
1750 	avail_user_block_count = sbi->user_block_count -
1751 					sbi->current_reserved_blocks;
1752 
1753 	if (!__allow_reserved_blocks(sbi, inode, true))
1754 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1755 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1756 		avail_user_block_count -= sbi->unusable_block_count;
1757 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1758 		diff = sbi->total_valid_block_count - avail_user_block_count;
1759 		if (diff > *count)
1760 			diff = *count;
1761 		*count -= diff;
1762 		release = diff;
1763 		sbi->total_valid_block_count -= diff;
1764 		if (!*count) {
1765 			spin_unlock(&sbi->stat_lock);
1766 			goto enospc;
1767 		}
1768 	}
1769 	spin_unlock(&sbi->stat_lock);
1770 
1771 	if (unlikely(release)) {
1772 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1773 		dquot_release_reservation_block(inode, release);
1774 	}
1775 	f2fs_i_blocks_write(inode, *count, true, true);
1776 	return 0;
1777 
1778 enospc:
1779 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1780 	dquot_release_reservation_block(inode, release);
1781 	return -ENOSPC;
1782 }
1783 
1784 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1785 						struct inode *inode,
1786 						block_t count)
1787 {
1788 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1789 
1790 	spin_lock(&sbi->stat_lock);
1791 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1792 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1793 	sbi->total_valid_block_count -= (block_t)count;
1794 	if (sbi->reserved_blocks &&
1795 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1796 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1797 					sbi->current_reserved_blocks + count);
1798 	spin_unlock(&sbi->stat_lock);
1799 	f2fs_i_blocks_write(inode, count, false, true);
1800 }
1801 
1802 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1803 {
1804 	atomic_inc(&sbi->nr_pages[count_type]);
1805 
1806 	if (count_type == F2FS_DIRTY_DENTS ||
1807 			count_type == F2FS_DIRTY_NODES ||
1808 			count_type == F2FS_DIRTY_META ||
1809 			count_type == F2FS_DIRTY_QDATA ||
1810 			count_type == F2FS_DIRTY_IMETA)
1811 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1812 }
1813 
1814 static inline void inode_inc_dirty_pages(struct inode *inode)
1815 {
1816 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1817 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1818 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1819 	if (IS_NOQUOTA(inode))
1820 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1821 }
1822 
1823 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1824 {
1825 	atomic_dec(&sbi->nr_pages[count_type]);
1826 }
1827 
1828 static inline void inode_dec_dirty_pages(struct inode *inode)
1829 {
1830 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1831 			!S_ISLNK(inode->i_mode))
1832 		return;
1833 
1834 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1835 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1836 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1837 	if (IS_NOQUOTA(inode))
1838 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1839 }
1840 
1841 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1842 {
1843 	return atomic_read(&sbi->nr_pages[count_type]);
1844 }
1845 
1846 static inline int get_dirty_pages(struct inode *inode)
1847 {
1848 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1849 }
1850 
1851 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1852 {
1853 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1854 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1855 						sbi->log_blocks_per_seg;
1856 
1857 	return segs / sbi->segs_per_sec;
1858 }
1859 
1860 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1861 {
1862 	return sbi->total_valid_block_count;
1863 }
1864 
1865 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1866 {
1867 	return sbi->discard_blks;
1868 }
1869 
1870 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1871 {
1872 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1873 
1874 	/* return NAT or SIT bitmap */
1875 	if (flag == NAT_BITMAP)
1876 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1877 	else if (flag == SIT_BITMAP)
1878 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1879 
1880 	return 0;
1881 }
1882 
1883 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1884 {
1885 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1886 }
1887 
1888 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1889 {
1890 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1891 	int offset;
1892 
1893 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1894 		offset = (flag == SIT_BITMAP) ?
1895 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1896 		return &ckpt->sit_nat_version_bitmap + offset;
1897 	}
1898 
1899 	if (__cp_payload(sbi) > 0) {
1900 		if (flag == NAT_BITMAP)
1901 			return &ckpt->sit_nat_version_bitmap;
1902 		else
1903 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1904 	} else {
1905 		offset = (flag == NAT_BITMAP) ?
1906 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1907 		return &ckpt->sit_nat_version_bitmap + offset;
1908 	}
1909 }
1910 
1911 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1912 {
1913 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1914 
1915 	if (sbi->cur_cp_pack == 2)
1916 		start_addr += sbi->blocks_per_seg;
1917 	return start_addr;
1918 }
1919 
1920 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1921 {
1922 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1923 
1924 	if (sbi->cur_cp_pack == 1)
1925 		start_addr += sbi->blocks_per_seg;
1926 	return start_addr;
1927 }
1928 
1929 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1930 {
1931 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1932 }
1933 
1934 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1935 {
1936 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1937 }
1938 
1939 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1940 					struct inode *inode, bool is_inode)
1941 {
1942 	block_t	valid_block_count;
1943 	unsigned int valid_node_count;
1944 	int err;
1945 
1946 	if (is_inode) {
1947 		if (inode) {
1948 			err = dquot_alloc_inode(inode);
1949 			if (err)
1950 				return err;
1951 		}
1952 	} else {
1953 		err = dquot_reserve_block(inode, 1);
1954 		if (err)
1955 			return err;
1956 	}
1957 
1958 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1959 		f2fs_show_injection_info(FAULT_BLOCK);
1960 		goto enospc;
1961 	}
1962 
1963 	spin_lock(&sbi->stat_lock);
1964 
1965 	valid_block_count = sbi->total_valid_block_count +
1966 					sbi->current_reserved_blocks + 1;
1967 
1968 	if (!__allow_reserved_blocks(sbi, inode, false))
1969 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1970 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1971 		valid_block_count += sbi->unusable_block_count;
1972 
1973 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1974 		spin_unlock(&sbi->stat_lock);
1975 		goto enospc;
1976 	}
1977 
1978 	valid_node_count = sbi->total_valid_node_count + 1;
1979 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1980 		spin_unlock(&sbi->stat_lock);
1981 		goto enospc;
1982 	}
1983 
1984 	sbi->total_valid_node_count++;
1985 	sbi->total_valid_block_count++;
1986 	spin_unlock(&sbi->stat_lock);
1987 
1988 	if (inode) {
1989 		if (is_inode)
1990 			f2fs_mark_inode_dirty_sync(inode, true);
1991 		else
1992 			f2fs_i_blocks_write(inode, 1, true, true);
1993 	}
1994 
1995 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1996 	return 0;
1997 
1998 enospc:
1999 	if (is_inode) {
2000 		if (inode)
2001 			dquot_free_inode(inode);
2002 	} else {
2003 		dquot_release_reservation_block(inode, 1);
2004 	}
2005 	return -ENOSPC;
2006 }
2007 
2008 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2009 					struct inode *inode, bool is_inode)
2010 {
2011 	spin_lock(&sbi->stat_lock);
2012 
2013 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2014 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2015 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2016 
2017 	sbi->total_valid_node_count--;
2018 	sbi->total_valid_block_count--;
2019 	if (sbi->reserved_blocks &&
2020 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2021 		sbi->current_reserved_blocks++;
2022 
2023 	spin_unlock(&sbi->stat_lock);
2024 
2025 	if (is_inode)
2026 		dquot_free_inode(inode);
2027 	else
2028 		f2fs_i_blocks_write(inode, 1, false, true);
2029 }
2030 
2031 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2032 {
2033 	return sbi->total_valid_node_count;
2034 }
2035 
2036 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2037 {
2038 	percpu_counter_inc(&sbi->total_valid_inode_count);
2039 }
2040 
2041 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2042 {
2043 	percpu_counter_dec(&sbi->total_valid_inode_count);
2044 }
2045 
2046 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2047 {
2048 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2049 }
2050 
2051 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2052 						pgoff_t index, bool for_write)
2053 {
2054 	struct page *page;
2055 
2056 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2057 		if (!for_write)
2058 			page = find_get_page_flags(mapping, index,
2059 							FGP_LOCK | FGP_ACCESSED);
2060 		else
2061 			page = find_lock_page(mapping, index);
2062 		if (page)
2063 			return page;
2064 
2065 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2066 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2067 			return NULL;
2068 		}
2069 	}
2070 
2071 	if (!for_write)
2072 		return grab_cache_page(mapping, index);
2073 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2074 }
2075 
2076 static inline struct page *f2fs_pagecache_get_page(
2077 				struct address_space *mapping, pgoff_t index,
2078 				int fgp_flags, gfp_t gfp_mask)
2079 {
2080 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2081 		f2fs_show_injection_info(FAULT_PAGE_GET);
2082 		return NULL;
2083 	}
2084 
2085 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2086 }
2087 
2088 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2089 {
2090 	char *src_kaddr = kmap(src);
2091 	char *dst_kaddr = kmap(dst);
2092 
2093 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2094 	kunmap(dst);
2095 	kunmap(src);
2096 }
2097 
2098 static inline void f2fs_put_page(struct page *page, int unlock)
2099 {
2100 	if (!page)
2101 		return;
2102 
2103 	if (unlock) {
2104 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2105 		unlock_page(page);
2106 	}
2107 	put_page(page);
2108 }
2109 
2110 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2111 {
2112 	if (dn->node_page)
2113 		f2fs_put_page(dn->node_page, 1);
2114 	if (dn->inode_page && dn->node_page != dn->inode_page)
2115 		f2fs_put_page(dn->inode_page, 0);
2116 	dn->node_page = NULL;
2117 	dn->inode_page = NULL;
2118 }
2119 
2120 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2121 					size_t size)
2122 {
2123 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2124 }
2125 
2126 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2127 						gfp_t flags)
2128 {
2129 	void *entry;
2130 
2131 	entry = kmem_cache_alloc(cachep, flags);
2132 	if (!entry)
2133 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2134 	return entry;
2135 }
2136 
2137 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2138 						int npages, bool no_fail)
2139 {
2140 	struct bio *bio;
2141 
2142 	if (no_fail) {
2143 		/* No failure on bio allocation */
2144 		bio = bio_alloc(GFP_NOIO, npages);
2145 		if (!bio)
2146 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2147 		return bio;
2148 	}
2149 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2150 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2151 		return NULL;
2152 	}
2153 
2154 	return bio_alloc(GFP_KERNEL, npages);
2155 }
2156 
2157 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2158 {
2159 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2160 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2161 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2162 		get_pages(sbi, F2FS_DIO_READ) ||
2163 		get_pages(sbi, F2FS_DIO_WRITE))
2164 		return false;
2165 
2166 	if (SM_I(sbi) && SM_I(sbi)->dcc_info &&
2167 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2168 		return false;
2169 
2170 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2171 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2172 		return false;
2173 
2174 	return f2fs_time_over(sbi, type);
2175 }
2176 
2177 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2178 				unsigned long index, void *item)
2179 {
2180 	while (radix_tree_insert(root, index, item))
2181 		cond_resched();
2182 }
2183 
2184 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2185 
2186 static inline bool IS_INODE(struct page *page)
2187 {
2188 	struct f2fs_node *p = F2FS_NODE(page);
2189 
2190 	return RAW_IS_INODE(p);
2191 }
2192 
2193 static inline int offset_in_addr(struct f2fs_inode *i)
2194 {
2195 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2196 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2197 }
2198 
2199 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2200 {
2201 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2202 }
2203 
2204 static inline int f2fs_has_extra_attr(struct inode *inode);
2205 static inline block_t datablock_addr(struct inode *inode,
2206 			struct page *node_page, unsigned int offset)
2207 {
2208 	struct f2fs_node *raw_node;
2209 	__le32 *addr_array;
2210 	int base = 0;
2211 	bool is_inode = IS_INODE(node_page);
2212 
2213 	raw_node = F2FS_NODE(node_page);
2214 
2215 	/* from GC path only */
2216 	if (is_inode) {
2217 		if (!inode)
2218 			base = offset_in_addr(&raw_node->i);
2219 		else if (f2fs_has_extra_attr(inode))
2220 			base = get_extra_isize(inode);
2221 	}
2222 
2223 	addr_array = blkaddr_in_node(raw_node);
2224 	return le32_to_cpu(addr_array[base + offset]);
2225 }
2226 
2227 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2228 {
2229 	int mask;
2230 
2231 	addr += (nr >> 3);
2232 	mask = 1 << (7 - (nr & 0x07));
2233 	return mask & *addr;
2234 }
2235 
2236 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2237 {
2238 	int mask;
2239 
2240 	addr += (nr >> 3);
2241 	mask = 1 << (7 - (nr & 0x07));
2242 	*addr |= mask;
2243 }
2244 
2245 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2246 {
2247 	int mask;
2248 
2249 	addr += (nr >> 3);
2250 	mask = 1 << (7 - (nr & 0x07));
2251 	*addr &= ~mask;
2252 }
2253 
2254 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2255 {
2256 	int mask;
2257 	int ret;
2258 
2259 	addr += (nr >> 3);
2260 	mask = 1 << (7 - (nr & 0x07));
2261 	ret = mask & *addr;
2262 	*addr |= mask;
2263 	return ret;
2264 }
2265 
2266 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2267 {
2268 	int mask;
2269 	int ret;
2270 
2271 	addr += (nr >> 3);
2272 	mask = 1 << (7 - (nr & 0x07));
2273 	ret = mask & *addr;
2274 	*addr &= ~mask;
2275 	return ret;
2276 }
2277 
2278 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2279 {
2280 	int mask;
2281 
2282 	addr += (nr >> 3);
2283 	mask = 1 << (7 - (nr & 0x07));
2284 	*addr ^= mask;
2285 }
2286 
2287 /*
2288  * Inode flags
2289  */
2290 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2291 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2292 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2293 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2294 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2295 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2296 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2297 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2298 /* Reserved for compression usage... */
2299 #define F2FS_DIRTY_FL			0x00000100
2300 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2301 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2302 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2303 /* End compression flags --- maybe not all used */
2304 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2305 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2306 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2307 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2308 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2309 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2310 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2311 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2312 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2313 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2314 #define F2FS_NOCOW_FL			0x00800000 /* Do not cow file */
2315 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2316 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2317 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2318 
2319 #define F2FS_FL_USER_VISIBLE		0x30CBDFFF /* User visible flags */
2320 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2321 
2322 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2323 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2324 					 F2FS_IMMUTABLE_FL | \
2325 					 F2FS_APPEND_FL | \
2326 					 F2FS_NODUMP_FL | \
2327 					 F2FS_NOATIME_FL | \
2328 					 F2FS_PROJINHERIT_FL)
2329 
2330 /* Flags that should be inherited by new inodes from their parent. */
2331 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2332 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2333 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2334 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2335 			   F2FS_PROJINHERIT_FL)
2336 
2337 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2338 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2339 
2340 /* Flags that are appropriate for non-directories/regular files. */
2341 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2342 
2343 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2344 {
2345 	if (S_ISDIR(mode))
2346 		return flags;
2347 	else if (S_ISREG(mode))
2348 		return flags & F2FS_REG_FLMASK;
2349 	else
2350 		return flags & F2FS_OTHER_FLMASK;
2351 }
2352 
2353 /* used for f2fs_inode_info->flags */
2354 enum {
2355 	FI_NEW_INODE,		/* indicate newly allocated inode */
2356 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2357 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2358 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2359 	FI_INC_LINK,		/* need to increment i_nlink */
2360 	FI_ACL_MODE,		/* indicate acl mode */
2361 	FI_NO_ALLOC,		/* should not allocate any blocks */
2362 	FI_FREE_NID,		/* free allocated nide */
2363 	FI_NO_EXTENT,		/* not to use the extent cache */
2364 	FI_INLINE_XATTR,	/* used for inline xattr */
2365 	FI_INLINE_DATA,		/* used for inline data*/
2366 	FI_INLINE_DENTRY,	/* used for inline dentry */
2367 	FI_APPEND_WRITE,	/* inode has appended data */
2368 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2369 	FI_NEED_IPU,		/* used for ipu per file */
2370 	FI_ATOMIC_FILE,		/* indicate atomic file */
2371 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2372 	FI_VOLATILE_FILE,	/* indicate volatile file */
2373 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2374 	FI_DROP_CACHE,		/* drop dirty page cache */
2375 	FI_DATA_EXIST,		/* indicate data exists */
2376 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2377 	FI_DO_DEFRAG,		/* indicate defragment is running */
2378 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2379 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2380 	FI_HOT_DATA,		/* indicate file is hot */
2381 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2382 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2383 	FI_PIN_FILE,		/* indicate file should not be gced */
2384 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2385 };
2386 
2387 static inline void __mark_inode_dirty_flag(struct inode *inode,
2388 						int flag, bool set)
2389 {
2390 	switch (flag) {
2391 	case FI_INLINE_XATTR:
2392 	case FI_INLINE_DATA:
2393 	case FI_INLINE_DENTRY:
2394 	case FI_NEW_INODE:
2395 		if (set)
2396 			return;
2397 		/* fall through */
2398 	case FI_DATA_EXIST:
2399 	case FI_INLINE_DOTS:
2400 	case FI_PIN_FILE:
2401 		f2fs_mark_inode_dirty_sync(inode, true);
2402 	}
2403 }
2404 
2405 static inline void set_inode_flag(struct inode *inode, int flag)
2406 {
2407 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2408 		set_bit(flag, &F2FS_I(inode)->flags);
2409 	__mark_inode_dirty_flag(inode, flag, true);
2410 }
2411 
2412 static inline int is_inode_flag_set(struct inode *inode, int flag)
2413 {
2414 	return test_bit(flag, &F2FS_I(inode)->flags);
2415 }
2416 
2417 static inline void clear_inode_flag(struct inode *inode, int flag)
2418 {
2419 	if (test_bit(flag, &F2FS_I(inode)->flags))
2420 		clear_bit(flag, &F2FS_I(inode)->flags);
2421 	__mark_inode_dirty_flag(inode, flag, false);
2422 }
2423 
2424 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2425 {
2426 	F2FS_I(inode)->i_acl_mode = mode;
2427 	set_inode_flag(inode, FI_ACL_MODE);
2428 	f2fs_mark_inode_dirty_sync(inode, false);
2429 }
2430 
2431 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2432 {
2433 	if (inc)
2434 		inc_nlink(inode);
2435 	else
2436 		drop_nlink(inode);
2437 	f2fs_mark_inode_dirty_sync(inode, true);
2438 }
2439 
2440 static inline void f2fs_i_blocks_write(struct inode *inode,
2441 					block_t diff, bool add, bool claim)
2442 {
2443 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2444 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2445 
2446 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2447 	if (add) {
2448 		if (claim)
2449 			dquot_claim_block(inode, diff);
2450 		else
2451 			dquot_alloc_block_nofail(inode, diff);
2452 	} else {
2453 		dquot_free_block(inode, diff);
2454 	}
2455 
2456 	f2fs_mark_inode_dirty_sync(inode, true);
2457 	if (clean || recover)
2458 		set_inode_flag(inode, FI_AUTO_RECOVER);
2459 }
2460 
2461 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2462 {
2463 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2464 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2465 
2466 	if (i_size_read(inode) == i_size)
2467 		return;
2468 
2469 	i_size_write(inode, i_size);
2470 	f2fs_mark_inode_dirty_sync(inode, true);
2471 	if (clean || recover)
2472 		set_inode_flag(inode, FI_AUTO_RECOVER);
2473 }
2474 
2475 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2476 {
2477 	F2FS_I(inode)->i_current_depth = depth;
2478 	f2fs_mark_inode_dirty_sync(inode, true);
2479 }
2480 
2481 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2482 					unsigned int count)
2483 {
2484 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2485 	f2fs_mark_inode_dirty_sync(inode, true);
2486 }
2487 
2488 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2489 {
2490 	F2FS_I(inode)->i_xattr_nid = xnid;
2491 	f2fs_mark_inode_dirty_sync(inode, true);
2492 }
2493 
2494 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2495 {
2496 	F2FS_I(inode)->i_pino = pino;
2497 	f2fs_mark_inode_dirty_sync(inode, true);
2498 }
2499 
2500 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2501 {
2502 	struct f2fs_inode_info *fi = F2FS_I(inode);
2503 
2504 	if (ri->i_inline & F2FS_INLINE_XATTR)
2505 		set_bit(FI_INLINE_XATTR, &fi->flags);
2506 	if (ri->i_inline & F2FS_INLINE_DATA)
2507 		set_bit(FI_INLINE_DATA, &fi->flags);
2508 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2509 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2510 	if (ri->i_inline & F2FS_DATA_EXIST)
2511 		set_bit(FI_DATA_EXIST, &fi->flags);
2512 	if (ri->i_inline & F2FS_INLINE_DOTS)
2513 		set_bit(FI_INLINE_DOTS, &fi->flags);
2514 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2515 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2516 	if (ri->i_inline & F2FS_PIN_FILE)
2517 		set_bit(FI_PIN_FILE, &fi->flags);
2518 }
2519 
2520 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2521 {
2522 	ri->i_inline = 0;
2523 
2524 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2525 		ri->i_inline |= F2FS_INLINE_XATTR;
2526 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2527 		ri->i_inline |= F2FS_INLINE_DATA;
2528 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2529 		ri->i_inline |= F2FS_INLINE_DENTRY;
2530 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2531 		ri->i_inline |= F2FS_DATA_EXIST;
2532 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2533 		ri->i_inline |= F2FS_INLINE_DOTS;
2534 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2535 		ri->i_inline |= F2FS_EXTRA_ATTR;
2536 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2537 		ri->i_inline |= F2FS_PIN_FILE;
2538 }
2539 
2540 static inline int f2fs_has_extra_attr(struct inode *inode)
2541 {
2542 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2543 }
2544 
2545 static inline int f2fs_has_inline_xattr(struct inode *inode)
2546 {
2547 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2548 }
2549 
2550 static inline unsigned int addrs_per_inode(struct inode *inode)
2551 {
2552 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2553 }
2554 
2555 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2556 {
2557 	struct f2fs_inode *ri = F2FS_INODE(page);
2558 
2559 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2560 					get_inline_xattr_addrs(inode)]);
2561 }
2562 
2563 static inline int inline_xattr_size(struct inode *inode)
2564 {
2565 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2566 }
2567 
2568 static inline int f2fs_has_inline_data(struct inode *inode)
2569 {
2570 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2571 }
2572 
2573 static inline int f2fs_exist_data(struct inode *inode)
2574 {
2575 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2576 }
2577 
2578 static inline int f2fs_has_inline_dots(struct inode *inode)
2579 {
2580 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2581 }
2582 
2583 static inline bool f2fs_is_pinned_file(struct inode *inode)
2584 {
2585 	return is_inode_flag_set(inode, FI_PIN_FILE);
2586 }
2587 
2588 static inline bool f2fs_is_atomic_file(struct inode *inode)
2589 {
2590 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2591 }
2592 
2593 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2594 {
2595 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2596 }
2597 
2598 static inline bool f2fs_is_volatile_file(struct inode *inode)
2599 {
2600 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2601 }
2602 
2603 static inline bool f2fs_is_first_block_written(struct inode *inode)
2604 {
2605 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2606 }
2607 
2608 static inline bool f2fs_is_drop_cache(struct inode *inode)
2609 {
2610 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2611 }
2612 
2613 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2614 {
2615 	struct f2fs_inode *ri = F2FS_INODE(page);
2616 	int extra_size = get_extra_isize(inode);
2617 
2618 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2619 }
2620 
2621 static inline int f2fs_has_inline_dentry(struct inode *inode)
2622 {
2623 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2624 }
2625 
2626 static inline int is_file(struct inode *inode, int type)
2627 {
2628 	return F2FS_I(inode)->i_advise & type;
2629 }
2630 
2631 static inline void set_file(struct inode *inode, int type)
2632 {
2633 	F2FS_I(inode)->i_advise |= type;
2634 	f2fs_mark_inode_dirty_sync(inode, true);
2635 }
2636 
2637 static inline void clear_file(struct inode *inode, int type)
2638 {
2639 	F2FS_I(inode)->i_advise &= ~type;
2640 	f2fs_mark_inode_dirty_sync(inode, true);
2641 }
2642 
2643 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2644 {
2645 	bool ret;
2646 
2647 	if (dsync) {
2648 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2649 
2650 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2651 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2652 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2653 		return ret;
2654 	}
2655 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2656 			file_keep_isize(inode) ||
2657 			i_size_read(inode) & ~PAGE_MASK)
2658 		return false;
2659 
2660 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2661 		return false;
2662 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2663 		return false;
2664 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2665 		return false;
2666 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2667 						&F2FS_I(inode)->i_crtime))
2668 		return false;
2669 
2670 	down_read(&F2FS_I(inode)->i_sem);
2671 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2672 	up_read(&F2FS_I(inode)->i_sem);
2673 
2674 	return ret;
2675 }
2676 
2677 static inline bool f2fs_readonly(struct super_block *sb)
2678 {
2679 	return sb_rdonly(sb);
2680 }
2681 
2682 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2683 {
2684 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2685 }
2686 
2687 static inline bool is_dot_dotdot(const struct qstr *str)
2688 {
2689 	if (str->len == 1 && str->name[0] == '.')
2690 		return true;
2691 
2692 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2693 		return true;
2694 
2695 	return false;
2696 }
2697 
2698 static inline bool f2fs_may_extent_tree(struct inode *inode)
2699 {
2700 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2701 
2702 	if (!test_opt(sbi, EXTENT_CACHE) ||
2703 			is_inode_flag_set(inode, FI_NO_EXTENT))
2704 		return false;
2705 
2706 	/*
2707 	 * for recovered files during mount do not create extents
2708 	 * if shrinker is not registered.
2709 	 */
2710 	if (list_empty(&sbi->s_list))
2711 		return false;
2712 
2713 	return S_ISREG(inode->i_mode);
2714 }
2715 
2716 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2717 					size_t size, gfp_t flags)
2718 {
2719 	void *ret;
2720 
2721 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2722 		f2fs_show_injection_info(FAULT_KMALLOC);
2723 		return NULL;
2724 	}
2725 
2726 	ret = kmalloc(size, flags);
2727 	if (ret)
2728 		return ret;
2729 
2730 	return kvmalloc(size, flags);
2731 }
2732 
2733 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2734 					size_t size, gfp_t flags)
2735 {
2736 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2737 }
2738 
2739 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2740 					size_t size, gfp_t flags)
2741 {
2742 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2743 		f2fs_show_injection_info(FAULT_KVMALLOC);
2744 		return NULL;
2745 	}
2746 
2747 	return kvmalloc(size, flags);
2748 }
2749 
2750 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2751 					size_t size, gfp_t flags)
2752 {
2753 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2754 }
2755 
2756 static inline int get_extra_isize(struct inode *inode)
2757 {
2758 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2759 }
2760 
2761 static inline int get_inline_xattr_addrs(struct inode *inode)
2762 {
2763 	return F2FS_I(inode)->i_inline_xattr_size;
2764 }
2765 
2766 #define f2fs_get_inode_mode(i) \
2767 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2768 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2769 
2770 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2771 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2772 	offsetof(struct f2fs_inode, i_extra_isize))	\
2773 
2774 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2775 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2776 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2777 		sizeof((f2fs_inode)->field))			\
2778 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2779 
2780 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2781 {
2782 	int i;
2783 
2784 	spin_lock(&sbi->iostat_lock);
2785 	for (i = 0; i < NR_IO_TYPE; i++)
2786 		sbi->write_iostat[i] = 0;
2787 	spin_unlock(&sbi->iostat_lock);
2788 }
2789 
2790 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2791 			enum iostat_type type, unsigned long long io_bytes)
2792 {
2793 	if (!sbi->iostat_enable)
2794 		return;
2795 	spin_lock(&sbi->iostat_lock);
2796 	sbi->write_iostat[type] += io_bytes;
2797 
2798 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2799 		sbi->write_iostat[APP_BUFFERED_IO] =
2800 			sbi->write_iostat[APP_WRITE_IO] -
2801 			sbi->write_iostat[APP_DIRECT_IO];
2802 	spin_unlock(&sbi->iostat_lock);
2803 }
2804 
2805 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2806 
2807 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META &&	\
2808 				(!is_read_io((fio)->op) || (fio)->is_meta))
2809 
2810 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2811 					block_t blkaddr, int type);
2812 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2813 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2814 					block_t blkaddr, int type)
2815 {
2816 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2817 		f2fs_msg(sbi->sb, KERN_ERR,
2818 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2819 			blkaddr, type);
2820 		f2fs_bug_on(sbi, 1);
2821 	}
2822 }
2823 
2824 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2825 {
2826 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2827 		return false;
2828 	return true;
2829 }
2830 
2831 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2832 						block_t blkaddr)
2833 {
2834 	if (!__is_valid_data_blkaddr(blkaddr))
2835 		return false;
2836 	verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2837 	return true;
2838 }
2839 
2840 /*
2841  * file.c
2842  */
2843 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2844 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2845 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2846 int f2fs_truncate(struct inode *inode);
2847 int f2fs_getattr(const struct path *path, struct kstat *stat,
2848 			u32 request_mask, unsigned int flags);
2849 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2850 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2851 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2852 int f2fs_precache_extents(struct inode *inode);
2853 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2854 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2855 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2856 int f2fs_pin_file_control(struct inode *inode, bool inc);
2857 
2858 /*
2859  * inode.c
2860  */
2861 void f2fs_set_inode_flags(struct inode *inode);
2862 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2863 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2864 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2865 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2866 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2867 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2868 void f2fs_update_inode_page(struct inode *inode);
2869 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2870 void f2fs_evict_inode(struct inode *inode);
2871 void f2fs_handle_failed_inode(struct inode *inode);
2872 
2873 /*
2874  * namei.c
2875  */
2876 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2877 							bool hot, bool set);
2878 struct dentry *f2fs_get_parent(struct dentry *child);
2879 
2880 /*
2881  * dir.c
2882  */
2883 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2884 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2885 			f2fs_hash_t namehash, int *max_slots,
2886 			struct f2fs_dentry_ptr *d);
2887 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2888 			unsigned int start_pos, struct fscrypt_str *fstr);
2889 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2890 			struct f2fs_dentry_ptr *d);
2891 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2892 			const struct qstr *new_name,
2893 			const struct qstr *orig_name, struct page *dpage);
2894 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2895 			unsigned int current_depth);
2896 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2897 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2898 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2899 			struct fscrypt_name *fname, struct page **res_page);
2900 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2901 			const struct qstr *child, struct page **res_page);
2902 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2903 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2904 			struct page **page);
2905 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2906 			struct page *page, struct inode *inode);
2907 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2908 			const struct qstr *name, f2fs_hash_t name_hash,
2909 			unsigned int bit_pos);
2910 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2911 			const struct qstr *orig_name,
2912 			struct inode *inode, nid_t ino, umode_t mode);
2913 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2914 			struct inode *inode, nid_t ino, umode_t mode);
2915 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2916 			struct inode *inode, nid_t ino, umode_t mode);
2917 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2918 			struct inode *dir, struct inode *inode);
2919 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2920 bool f2fs_empty_dir(struct inode *dir);
2921 
2922 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2923 {
2924 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2925 				inode, inode->i_ino, inode->i_mode);
2926 }
2927 
2928 /*
2929  * super.c
2930  */
2931 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2932 void f2fs_inode_synced(struct inode *inode);
2933 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2934 int f2fs_quota_sync(struct super_block *sb, int type);
2935 void f2fs_quota_off_umount(struct super_block *sb);
2936 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2937 int f2fs_sync_fs(struct super_block *sb, int sync);
2938 extern __printf(3, 4)
2939 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2940 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2941 
2942 /*
2943  * hash.c
2944  */
2945 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2946 				struct fscrypt_name *fname);
2947 
2948 /*
2949  * node.c
2950  */
2951 struct dnode_of_data;
2952 struct node_info;
2953 
2954 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2955 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2956 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2957 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2958 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2959 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2960 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2961 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2962 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2963 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2964 						struct node_info *ni);
2965 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2966 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2967 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2968 int f2fs_truncate_xattr_node(struct inode *inode);
2969 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2970 					unsigned int seq_id);
2971 int f2fs_remove_inode_page(struct inode *inode);
2972 struct page *f2fs_new_inode_page(struct inode *inode);
2973 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2974 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2975 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2976 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2977 int f2fs_move_node_page(struct page *node_page, int gc_type);
2978 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2979 			struct writeback_control *wbc, bool atomic,
2980 			unsigned int *seq_id);
2981 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
2982 			struct writeback_control *wbc,
2983 			bool do_balance, enum iostat_type io_type);
2984 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2985 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2986 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2987 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2988 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2989 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
2990 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
2991 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2992 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2993 			unsigned int segno, struct f2fs_summary_block *sum);
2994 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2995 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
2996 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
2997 int __init f2fs_create_node_manager_caches(void);
2998 void f2fs_destroy_node_manager_caches(void);
2999 
3000 /*
3001  * segment.c
3002  */
3003 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3004 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3005 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3006 void f2fs_drop_inmem_pages(struct inode *inode);
3007 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3008 int f2fs_commit_inmem_pages(struct inode *inode);
3009 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3010 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3011 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3012 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3013 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3014 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3015 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3016 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3017 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3018 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3019 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3020 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3021 					struct cp_control *cpc);
3022 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3023 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3024 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3025 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3026 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3027 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3028 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3029 					struct cp_control *cpc);
3030 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3031 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3032 					block_t blk_addr);
3033 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3034 						enum iostat_type io_type);
3035 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3036 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3037 			struct f2fs_io_info *fio);
3038 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3039 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3040 			block_t old_blkaddr, block_t new_blkaddr,
3041 			bool recover_curseg, bool recover_newaddr);
3042 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3043 			block_t old_addr, block_t new_addr,
3044 			unsigned char version, bool recover_curseg,
3045 			bool recover_newaddr);
3046 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3047 			block_t old_blkaddr, block_t *new_blkaddr,
3048 			struct f2fs_summary *sum, int type,
3049 			struct f2fs_io_info *fio, bool add_list);
3050 void f2fs_wait_on_page_writeback(struct page *page,
3051 			enum page_type type, bool ordered, bool locked);
3052 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3053 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3054 								block_t len);
3055 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3056 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3057 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3058 			unsigned int val, int alloc);
3059 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3060 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3061 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3062 int __init f2fs_create_segment_manager_caches(void);
3063 void f2fs_destroy_segment_manager_caches(void);
3064 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3065 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3066 			enum page_type type, enum temp_type temp);
3067 
3068 /*
3069  * checkpoint.c
3070  */
3071 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3072 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3073 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3074 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3075 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3076 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3077 					block_t blkaddr, int type);
3078 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3079 			int type, bool sync);
3080 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3081 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3082 			long nr_to_write, enum iostat_type io_type);
3083 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3084 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3085 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3086 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3087 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3088 					unsigned int devidx, int type);
3089 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3090 					unsigned int devidx, int type);
3091 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3092 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3093 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3094 void f2fs_add_orphan_inode(struct inode *inode);
3095 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3096 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3097 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3098 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3099 void f2fs_remove_dirty_inode(struct inode *inode);
3100 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3101 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3102 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3103 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3104 int __init f2fs_create_checkpoint_caches(void);
3105 void f2fs_destroy_checkpoint_caches(void);
3106 
3107 /*
3108  * data.c
3109  */
3110 int f2fs_init_post_read_processing(void);
3111 void f2fs_destroy_post_read_processing(void);
3112 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3113 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3114 				struct inode *inode, struct page *page,
3115 				nid_t ino, enum page_type type);
3116 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3117 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3118 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3119 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3120 			block_t blk_addr, struct bio *bio);
3121 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3122 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3123 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3124 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3125 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3126 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3127 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3128 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3129 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3130 			int op_flags, bool for_write);
3131 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3132 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3133 			bool for_write);
3134 struct page *f2fs_get_new_data_page(struct inode *inode,
3135 			struct page *ipage, pgoff_t index, bool new_i_size);
3136 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3137 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3138 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3139 			int create, int flag);
3140 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3141 			u64 start, u64 len);
3142 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3143 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3144 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3145 			unsigned int length);
3146 int f2fs_release_page(struct page *page, gfp_t wait);
3147 #ifdef CONFIG_MIGRATION
3148 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3149 			struct page *page, enum migrate_mode mode);
3150 #endif
3151 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3152 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3153 
3154 /*
3155  * gc.c
3156  */
3157 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3158 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3159 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3160 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3161 			unsigned int segno);
3162 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3163 
3164 /*
3165  * recovery.c
3166  */
3167 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3168 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3169 
3170 /*
3171  * debug.c
3172  */
3173 #ifdef CONFIG_F2FS_STAT_FS
3174 struct f2fs_stat_info {
3175 	struct list_head stat_list;
3176 	struct f2fs_sb_info *sbi;
3177 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3178 	int main_area_segs, main_area_sections, main_area_zones;
3179 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3180 	unsigned long long hit_total, total_ext;
3181 	int ext_tree, zombie_tree, ext_node;
3182 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3183 	int ndirty_data, ndirty_qdata;
3184 	int inmem_pages;
3185 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3186 	int nats, dirty_nats, sits, dirty_sits;
3187 	int free_nids, avail_nids, alloc_nids;
3188 	int total_count, utilization;
3189 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3190 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3191 	int nr_dio_read, nr_dio_write;
3192 	unsigned int io_skip_bggc, other_skip_bggc;
3193 	int nr_flushing, nr_flushed, flush_list_empty;
3194 	int nr_discarding, nr_discarded;
3195 	int nr_discard_cmd;
3196 	unsigned int undiscard_blks;
3197 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3198 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3199 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3200 	unsigned int bimodal, avg_vblocks;
3201 	int util_free, util_valid, util_invalid;
3202 	int rsvd_segs, overp_segs;
3203 	int dirty_count, node_pages, meta_pages;
3204 	int prefree_count, call_count, cp_count, bg_cp_count;
3205 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3206 	int bg_node_segs, bg_data_segs;
3207 	int tot_blks, data_blks, node_blks;
3208 	int bg_data_blks, bg_node_blks;
3209 	unsigned long long skipped_atomic_files[2];
3210 	int curseg[NR_CURSEG_TYPE];
3211 	int cursec[NR_CURSEG_TYPE];
3212 	int curzone[NR_CURSEG_TYPE];
3213 
3214 	unsigned int meta_count[META_MAX];
3215 	unsigned int segment_count[2];
3216 	unsigned int block_count[2];
3217 	unsigned int inplace_count;
3218 	unsigned long long base_mem, cache_mem, page_mem;
3219 };
3220 
3221 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3222 {
3223 	return (struct f2fs_stat_info *)sbi->stat_info;
3224 }
3225 
3226 #define stat_inc_cp_count(si)		((si)->cp_count++)
3227 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3228 #define stat_inc_call_count(si)		((si)->call_count++)
3229 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3230 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3231 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3232 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3233 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3234 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3235 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3236 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3237 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3238 #define stat_inc_inline_xattr(inode)					\
3239 	do {								\
3240 		if (f2fs_has_inline_xattr(inode))			\
3241 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3242 	} while (0)
3243 #define stat_dec_inline_xattr(inode)					\
3244 	do {								\
3245 		if (f2fs_has_inline_xattr(inode))			\
3246 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3247 	} while (0)
3248 #define stat_inc_inline_inode(inode)					\
3249 	do {								\
3250 		if (f2fs_has_inline_data(inode))			\
3251 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3252 	} while (0)
3253 #define stat_dec_inline_inode(inode)					\
3254 	do {								\
3255 		if (f2fs_has_inline_data(inode))			\
3256 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3257 	} while (0)
3258 #define stat_inc_inline_dir(inode)					\
3259 	do {								\
3260 		if (f2fs_has_inline_dentry(inode))			\
3261 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3262 	} while (0)
3263 #define stat_dec_inline_dir(inode)					\
3264 	do {								\
3265 		if (f2fs_has_inline_dentry(inode))			\
3266 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3267 	} while (0)
3268 #define stat_inc_meta_count(sbi, blkaddr)				\
3269 	do {								\
3270 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3271 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3272 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3273 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3274 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3275 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3276 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3277 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3278 	} while (0)
3279 #define stat_inc_seg_type(sbi, curseg)					\
3280 		((sbi)->segment_count[(curseg)->alloc_type]++)
3281 #define stat_inc_block_count(sbi, curseg)				\
3282 		((sbi)->block_count[(curseg)->alloc_type]++)
3283 #define stat_inc_inplace_blocks(sbi)					\
3284 		(atomic_inc(&(sbi)->inplace_count))
3285 #define stat_inc_atomic_write(inode)					\
3286 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3287 #define stat_dec_atomic_write(inode)					\
3288 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3289 #define stat_update_max_atomic_write(inode)				\
3290 	do {								\
3291 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3292 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3293 		if (cur > max)						\
3294 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3295 	} while (0)
3296 #define stat_inc_volatile_write(inode)					\
3297 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3298 #define stat_dec_volatile_write(inode)					\
3299 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3300 #define stat_update_max_volatile_write(inode)				\
3301 	do {								\
3302 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3303 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3304 		if (cur > max)						\
3305 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3306 	} while (0)
3307 #define stat_inc_seg_count(sbi, type, gc_type)				\
3308 	do {								\
3309 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3310 		si->tot_segs++;						\
3311 		if ((type) == SUM_TYPE_DATA) {				\
3312 			si->data_segs++;				\
3313 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3314 		} else {						\
3315 			si->node_segs++;				\
3316 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3317 		}							\
3318 	} while (0)
3319 
3320 #define stat_inc_tot_blk_count(si, blks)				\
3321 	((si)->tot_blks += (blks))
3322 
3323 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3324 	do {								\
3325 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3326 		stat_inc_tot_blk_count(si, blks);			\
3327 		si->data_blks += (blks);				\
3328 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3329 	} while (0)
3330 
3331 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3332 	do {								\
3333 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3334 		stat_inc_tot_blk_count(si, blks);			\
3335 		si->node_blks += (blks);				\
3336 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3337 	} while (0)
3338 
3339 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3340 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3341 void __init f2fs_create_root_stats(void);
3342 void f2fs_destroy_root_stats(void);
3343 #else
3344 #define stat_inc_cp_count(si)				do { } while (0)
3345 #define stat_inc_bg_cp_count(si)			do { } while (0)
3346 #define stat_inc_call_count(si)				do { } while (0)
3347 #define stat_inc_bggc_count(si)				do { } while (0)
3348 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3349 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3350 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3351 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3352 #define stat_inc_total_hit(sb)				do { } while (0)
3353 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3354 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3355 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3356 #define stat_inc_inline_xattr(inode)			do { } while (0)
3357 #define stat_dec_inline_xattr(inode)			do { } while (0)
3358 #define stat_inc_inline_inode(inode)			do { } while (0)
3359 #define stat_dec_inline_inode(inode)			do { } while (0)
3360 #define stat_inc_inline_dir(inode)			do { } while (0)
3361 #define stat_dec_inline_dir(inode)			do { } while (0)
3362 #define stat_inc_atomic_write(inode)			do { } while (0)
3363 #define stat_dec_atomic_write(inode)			do { } while (0)
3364 #define stat_update_max_atomic_write(inode)		do { } while (0)
3365 #define stat_inc_volatile_write(inode)			do { } while (0)
3366 #define stat_dec_volatile_write(inode)			do { } while (0)
3367 #define stat_update_max_volatile_write(inode)		do { } while (0)
3368 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3369 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3370 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3371 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3372 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3373 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3374 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3375 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3376 
3377 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3378 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3379 static inline void __init f2fs_create_root_stats(void) { }
3380 static inline void f2fs_destroy_root_stats(void) { }
3381 #endif
3382 
3383 extern const struct file_operations f2fs_dir_operations;
3384 extern const struct file_operations f2fs_file_operations;
3385 extern const struct inode_operations f2fs_file_inode_operations;
3386 extern const struct address_space_operations f2fs_dblock_aops;
3387 extern const struct address_space_operations f2fs_node_aops;
3388 extern const struct address_space_operations f2fs_meta_aops;
3389 extern const struct inode_operations f2fs_dir_inode_operations;
3390 extern const struct inode_operations f2fs_symlink_inode_operations;
3391 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3392 extern const struct inode_operations f2fs_special_inode_operations;
3393 extern struct kmem_cache *f2fs_inode_entry_slab;
3394 
3395 /*
3396  * inline.c
3397  */
3398 bool f2fs_may_inline_data(struct inode *inode);
3399 bool f2fs_may_inline_dentry(struct inode *inode);
3400 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3401 void f2fs_truncate_inline_inode(struct inode *inode,
3402 						struct page *ipage, u64 from);
3403 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3404 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3405 int f2fs_convert_inline_inode(struct inode *inode);
3406 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3407 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3408 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3409 			struct fscrypt_name *fname, struct page **res_page);
3410 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3411 			struct page *ipage);
3412 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3413 			const struct qstr *orig_name,
3414 			struct inode *inode, nid_t ino, umode_t mode);
3415 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3416 				struct page *page, struct inode *dir,
3417 				struct inode *inode);
3418 bool f2fs_empty_inline_dir(struct inode *dir);
3419 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3420 			struct fscrypt_str *fstr);
3421 int f2fs_inline_data_fiemap(struct inode *inode,
3422 			struct fiemap_extent_info *fieinfo,
3423 			__u64 start, __u64 len);
3424 
3425 /*
3426  * shrinker.c
3427  */
3428 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3429 			struct shrink_control *sc);
3430 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3431 			struct shrink_control *sc);
3432 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3433 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3434 
3435 /*
3436  * extent_cache.c
3437  */
3438 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3439 				struct rb_entry *cached_re, unsigned int ofs);
3440 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3441 				struct rb_root_cached *root,
3442 				struct rb_node **parent,
3443 				unsigned int ofs, bool *leftmost);
3444 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3445 		struct rb_entry *cached_re, unsigned int ofs,
3446 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3447 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3448 		bool force, bool *leftmost);
3449 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3450 						struct rb_root_cached *root);
3451 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3452 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3453 void f2fs_drop_extent_tree(struct inode *inode);
3454 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3455 void f2fs_destroy_extent_tree(struct inode *inode);
3456 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3457 			struct extent_info *ei);
3458 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3459 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3460 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3461 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3462 int __init f2fs_create_extent_cache(void);
3463 void f2fs_destroy_extent_cache(void);
3464 
3465 /*
3466  * sysfs.c
3467  */
3468 int __init f2fs_init_sysfs(void);
3469 void f2fs_exit_sysfs(void);
3470 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3471 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3472 
3473 /*
3474  * crypto support
3475  */
3476 static inline bool f2fs_encrypted_inode(struct inode *inode)
3477 {
3478 	return file_is_encrypt(inode);
3479 }
3480 
3481 static inline bool f2fs_encrypted_file(struct inode *inode)
3482 {
3483 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3484 }
3485 
3486 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3487 {
3488 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3489 	file_set_encrypt(inode);
3490 	f2fs_set_inode_flags(inode);
3491 #endif
3492 }
3493 
3494 /*
3495  * Returns true if the reads of the inode's data need to undergo some
3496  * postprocessing step, like decryption or authenticity verification.
3497  */
3498 static inline bool f2fs_post_read_required(struct inode *inode)
3499 {
3500 	return f2fs_encrypted_file(inode);
3501 }
3502 
3503 #define F2FS_FEATURE_FUNCS(name, flagname) \
3504 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3505 { \
3506 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3507 }
3508 
3509 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3510 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3511 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3512 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3513 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3514 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3515 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3516 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3517 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3518 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3519 
3520 #ifdef CONFIG_BLK_DEV_ZONED
3521 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3522 			struct block_device *bdev, block_t blkaddr)
3523 {
3524 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3525 	int i;
3526 
3527 	for (i = 0; i < sbi->s_ndevs; i++)
3528 		if (FDEV(i).bdev == bdev)
3529 			return FDEV(i).blkz_type[zno];
3530 	return -EINVAL;
3531 }
3532 #endif
3533 
3534 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3535 {
3536 	return f2fs_sb_has_blkzoned(sbi);
3537 }
3538 
3539 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3540 {
3541 	return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3542 }
3543 
3544 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3545 {
3546 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3547 					f2fs_hw_should_discard(sbi);
3548 }
3549 
3550 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3551 {
3552 	clear_opt(sbi, ADAPTIVE);
3553 	clear_opt(sbi, LFS);
3554 
3555 	switch (mt) {
3556 	case F2FS_MOUNT_ADAPTIVE:
3557 		set_opt(sbi, ADAPTIVE);
3558 		break;
3559 	case F2FS_MOUNT_LFS:
3560 		set_opt(sbi, LFS);
3561 		break;
3562 	}
3563 }
3564 
3565 static inline bool f2fs_may_encrypt(struct inode *inode)
3566 {
3567 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3568 	umode_t mode = inode->i_mode;
3569 
3570 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3571 #else
3572 	return false;
3573 #endif
3574 }
3575 
3576 static inline int block_unaligned_IO(struct inode *inode,
3577 				struct kiocb *iocb, struct iov_iter *iter)
3578 {
3579 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3580 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3581 	loff_t offset = iocb->ki_pos;
3582 	unsigned long align = offset | iov_iter_alignment(iter);
3583 
3584 	return align & blocksize_mask;
3585 }
3586 
3587 static inline int allow_outplace_dio(struct inode *inode,
3588 				struct kiocb *iocb, struct iov_iter *iter)
3589 {
3590 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3591 	int rw = iov_iter_rw(iter);
3592 
3593 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3594 				!block_unaligned_IO(inode, iocb, iter));
3595 }
3596 
3597 static inline bool f2fs_force_buffered_io(struct inode *inode,
3598 				struct kiocb *iocb, struct iov_iter *iter)
3599 {
3600 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3601 	int rw = iov_iter_rw(iter);
3602 
3603 	if (f2fs_post_read_required(inode))
3604 		return true;
3605 	if (sbi->s_ndevs)
3606 		return true;
3607 	/*
3608 	 * for blkzoned device, fallback direct IO to buffered IO, so
3609 	 * all IOs can be serialized by log-structured write.
3610 	 */
3611 	if (f2fs_sb_has_blkzoned(sbi))
3612 		return true;
3613 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3614 				block_unaligned_IO(inode, iocb, iter))
3615 		return true;
3616 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3617 		return true;
3618 
3619 	return false;
3620 }
3621 
3622 #ifdef CONFIG_F2FS_FAULT_INJECTION
3623 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3624 							unsigned int type);
3625 #else
3626 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3627 #endif
3628 
3629 #endif
3630 
3631 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3632 {
3633 #ifdef CONFIG_QUOTA
3634 	if (f2fs_sb_has_quota_ino(sbi))
3635 		return true;
3636 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3637 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3638 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3639 		return true;
3640 #endif
3641 	return false;
3642 }
3643