xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 4f8219f8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_MAX,
64 };
65 
66 #ifdef CONFIG_F2FS_FAULT_INJECTION
67 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
68 
69 struct f2fs_fault_info {
70 	atomic_t inject_ops;
71 	unsigned int inject_rate;
72 	unsigned int inject_type;
73 };
74 
75 extern const char *f2fs_fault_name[FAULT_MAX];
76 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
77 #endif
78 
79 /*
80  * For mount options
81  */
82 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
83 #define F2FS_MOUNT_DISCARD		0x00000004
84 #define F2FS_MOUNT_NOHEAP		0x00000008
85 #define F2FS_MOUNT_XATTR_USER		0x00000010
86 #define F2FS_MOUNT_POSIX_ACL		0x00000020
87 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
88 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
89 #define F2FS_MOUNT_INLINE_DATA		0x00000100
90 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
91 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
92 #define F2FS_MOUNT_NOBARRIER		0x00000800
93 #define F2FS_MOUNT_FASTBOOT		0x00001000
94 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
95 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
96 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
97 #define F2FS_MOUNT_USRQUOTA		0x00080000
98 #define F2FS_MOUNT_GRPQUOTA		0x00100000
99 #define F2FS_MOUNT_PRJQUOTA		0x00200000
100 #define F2FS_MOUNT_QUOTA		0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
103 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
104 #define F2FS_MOUNT_NORECOVERY		0x04000000
105 #define F2FS_MOUNT_ATGC			0x08000000
106 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
107 #define	F2FS_MOUNT_GC_MERGE		0x20000000
108 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
109 
110 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
111 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
112 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
113 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
114 
115 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
116 		typecheck(unsigned long long, b) &&			\
117 		((long long)((a) - (b)) > 0))
118 
119 typedef u32 block_t;	/*
120 			 * should not change u32, since it is the on-disk block
121 			 * address format, __le32.
122 			 */
123 typedef u32 nid_t;
124 
125 #define COMPRESS_EXT_NUM		16
126 
127 /*
128  * An implementation of an rwsem that is explicitly unfair to readers. This
129  * prevents priority inversion when a low-priority reader acquires the read lock
130  * while sleeping on the write lock but the write lock is needed by
131  * higher-priority clients.
132  */
133 
134 struct f2fs_rwsem {
135         struct rw_semaphore internal_rwsem;
136 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
137         wait_queue_head_t read_waiters;
138 #endif
139 };
140 
141 struct f2fs_mount_info {
142 	unsigned int opt;
143 	int write_io_size_bits;		/* Write IO size bits */
144 	block_t root_reserved_blocks;	/* root reserved blocks */
145 	kuid_t s_resuid;		/* reserved blocks for uid */
146 	kgid_t s_resgid;		/* reserved blocks for gid */
147 	int active_logs;		/* # of active logs */
148 	int inline_xattr_size;		/* inline xattr size */
149 #ifdef CONFIG_F2FS_FAULT_INJECTION
150 	struct f2fs_fault_info fault_info;	/* For fault injection */
151 #endif
152 #ifdef CONFIG_QUOTA
153 	/* Names of quota files with journalled quota */
154 	char *s_qf_names[MAXQUOTAS];
155 	int s_jquota_fmt;			/* Format of quota to use */
156 #endif
157 	/* For which write hints are passed down to block layer */
158 	int alloc_mode;			/* segment allocation policy */
159 	int fsync_mode;			/* fsync policy */
160 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
161 	int bggc_mode;			/* bggc mode: off, on or sync */
162 	int memory_mode;		/* memory mode */
163 	int discard_unit;		/*
164 					 * discard command's offset/size should
165 					 * be aligned to this unit: block,
166 					 * segment or section
167 					 */
168 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
169 	block_t unusable_cap_perc;	/* percentage for cap */
170 	block_t unusable_cap;		/* Amount of space allowed to be
171 					 * unusable when disabling checkpoint
172 					 */
173 
174 	/* For compression */
175 	unsigned char compress_algorithm;	/* algorithm type */
176 	unsigned char compress_log_size;	/* cluster log size */
177 	unsigned char compress_level;		/* compress level */
178 	bool compress_chksum;			/* compressed data chksum */
179 	unsigned char compress_ext_cnt;		/* extension count */
180 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
181 	int compress_mode;			/* compression mode */
182 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
183 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
184 };
185 
186 #define F2FS_FEATURE_ENCRYPT		0x0001
187 #define F2FS_FEATURE_BLKZONED		0x0002
188 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
189 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
190 #define F2FS_FEATURE_PRJQUOTA		0x0010
191 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
192 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
193 #define F2FS_FEATURE_QUOTA_INO		0x0080
194 #define F2FS_FEATURE_INODE_CRTIME	0x0100
195 #define F2FS_FEATURE_LOST_FOUND		0x0200
196 #define F2FS_FEATURE_VERITY		0x0400
197 #define F2FS_FEATURE_SB_CHKSUM		0x0800
198 #define F2FS_FEATURE_CASEFOLD		0x1000
199 #define F2FS_FEATURE_COMPRESSION	0x2000
200 #define F2FS_FEATURE_RO			0x4000
201 
202 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
203 	((raw_super->feature & cpu_to_le32(mask)) != 0)
204 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
205 #define F2FS_SET_FEATURE(sbi, mask)					\
206 	(sbi->raw_super->feature |= cpu_to_le32(mask))
207 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
208 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
209 
210 /*
211  * Default values for user and/or group using reserved blocks
212  */
213 #define	F2FS_DEF_RESUID		0
214 #define	F2FS_DEF_RESGID		0
215 
216 /*
217  * For checkpoint manager
218  */
219 enum {
220 	NAT_BITMAP,
221 	SIT_BITMAP
222 };
223 
224 #define	CP_UMOUNT	0x00000001
225 #define	CP_FASTBOOT	0x00000002
226 #define	CP_SYNC		0x00000004
227 #define	CP_RECOVERY	0x00000008
228 #define	CP_DISCARD	0x00000010
229 #define CP_TRIMMED	0x00000020
230 #define CP_PAUSE	0x00000040
231 #define CP_RESIZE 	0x00000080
232 
233 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
234 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
235 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
236 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
237 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
238 #define DEF_CP_INTERVAL			60	/* 60 secs */
239 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
240 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
241 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
242 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
243 
244 struct cp_control {
245 	int reason;
246 	__u64 trim_start;
247 	__u64 trim_end;
248 	__u64 trim_minlen;
249 };
250 
251 /*
252  * indicate meta/data type
253  */
254 enum {
255 	META_CP,
256 	META_NAT,
257 	META_SIT,
258 	META_SSA,
259 	META_MAX,
260 	META_POR,
261 	DATA_GENERIC,		/* check range only */
262 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
263 	DATA_GENERIC_ENHANCE_READ,	/*
264 					 * strong check on range and segment
265 					 * bitmap but no warning due to race
266 					 * condition of read on truncated area
267 					 * by extent_cache
268 					 */
269 	META_GENERIC,
270 };
271 
272 /* for the list of ino */
273 enum {
274 	ORPHAN_INO,		/* for orphan ino list */
275 	APPEND_INO,		/* for append ino list */
276 	UPDATE_INO,		/* for update ino list */
277 	TRANS_DIR_INO,		/* for trasactions dir ino list */
278 	FLUSH_INO,		/* for multiple device flushing */
279 	MAX_INO_ENTRY,		/* max. list */
280 };
281 
282 struct ino_entry {
283 	struct list_head list;		/* list head */
284 	nid_t ino;			/* inode number */
285 	unsigned int dirty_device;	/* dirty device bitmap */
286 };
287 
288 /* for the list of inodes to be GCed */
289 struct inode_entry {
290 	struct list_head list;	/* list head */
291 	struct inode *inode;	/* vfs inode pointer */
292 };
293 
294 struct fsync_node_entry {
295 	struct list_head list;	/* list head */
296 	struct page *page;	/* warm node page pointer */
297 	unsigned int seq_id;	/* sequence id */
298 };
299 
300 struct ckpt_req {
301 	struct completion wait;		/* completion for checkpoint done */
302 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
303 	int ret;			/* return code of checkpoint */
304 	ktime_t queue_time;		/* request queued time */
305 };
306 
307 struct ckpt_req_control {
308 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
309 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
310 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
311 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
312 	atomic_t total_ckpt;		/* # of total ckpts */
313 	atomic_t queued_ckpt;		/* # of queued ckpts */
314 	struct llist_head issue_list;	/* list for command issue */
315 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
316 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
317 	unsigned int peak_time;		/* peak wait time in msec until now */
318 };
319 
320 /* for the bitmap indicate blocks to be discarded */
321 struct discard_entry {
322 	struct list_head list;	/* list head */
323 	block_t start_blkaddr;	/* start blockaddr of current segment */
324 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
325 };
326 
327 /* default discard granularity of inner discard thread, unit: block count */
328 #define DEFAULT_DISCARD_GRANULARITY		16
329 
330 /* max discard pend list number */
331 #define MAX_PLIST_NUM		512
332 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
333 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
334 
335 enum {
336 	D_PREP,			/* initial */
337 	D_PARTIAL,		/* partially submitted */
338 	D_SUBMIT,		/* all submitted */
339 	D_DONE,			/* finished */
340 };
341 
342 struct discard_info {
343 	block_t lstart;			/* logical start address */
344 	block_t len;			/* length */
345 	block_t start;			/* actual start address in dev */
346 };
347 
348 struct discard_cmd {
349 	struct rb_node rb_node;		/* rb node located in rb-tree */
350 	union {
351 		struct {
352 			block_t lstart;	/* logical start address */
353 			block_t len;	/* length */
354 			block_t start;	/* actual start address in dev */
355 		};
356 		struct discard_info di;	/* discard info */
357 
358 	};
359 	struct list_head list;		/* command list */
360 	struct completion wait;		/* compleation */
361 	struct block_device *bdev;	/* bdev */
362 	unsigned short ref;		/* reference count */
363 	unsigned char state;		/* state */
364 	unsigned char queued;		/* queued discard */
365 	int error;			/* bio error */
366 	spinlock_t lock;		/* for state/bio_ref updating */
367 	unsigned short bio_ref;		/* bio reference count */
368 };
369 
370 enum {
371 	DPOLICY_BG,
372 	DPOLICY_FORCE,
373 	DPOLICY_FSTRIM,
374 	DPOLICY_UMOUNT,
375 	MAX_DPOLICY,
376 };
377 
378 struct discard_policy {
379 	int type;			/* type of discard */
380 	unsigned int min_interval;	/* used for candidates exist */
381 	unsigned int mid_interval;	/* used for device busy */
382 	unsigned int max_interval;	/* used for candidates not exist */
383 	unsigned int max_requests;	/* # of discards issued per round */
384 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
385 	bool io_aware;			/* issue discard in idle time */
386 	bool sync;			/* submit discard with REQ_SYNC flag */
387 	bool ordered;			/* issue discard by lba order */
388 	bool timeout;			/* discard timeout for put_super */
389 	unsigned int granularity;	/* discard granularity */
390 };
391 
392 struct discard_cmd_control {
393 	struct task_struct *f2fs_issue_discard;	/* discard thread */
394 	struct list_head entry_list;		/* 4KB discard entry list */
395 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
396 	struct list_head wait_list;		/* store on-flushing entries */
397 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
398 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
399 	unsigned int discard_wake;		/* to wake up discard thread */
400 	struct mutex cmd_lock;
401 	unsigned int nr_discards;		/* # of discards in the list */
402 	unsigned int max_discards;		/* max. discards to be issued */
403 	unsigned int max_discard_request;	/* max. discard request per round */
404 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
405 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
406 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
407 	unsigned int discard_granularity;	/* discard granularity */
408 	unsigned int undiscard_blks;		/* # of undiscard blocks */
409 	unsigned int next_pos;			/* next discard position */
410 	atomic_t issued_discard;		/* # of issued discard */
411 	atomic_t queued_discard;		/* # of queued discard */
412 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
413 	struct rb_root_cached root;		/* root of discard rb-tree */
414 	bool rbtree_check;			/* config for consistence check */
415 };
416 
417 /* for the list of fsync inodes, used only during recovery */
418 struct fsync_inode_entry {
419 	struct list_head list;	/* list head */
420 	struct inode *inode;	/* vfs inode pointer */
421 	block_t blkaddr;	/* block address locating the last fsync */
422 	block_t last_dentry;	/* block address locating the last dentry */
423 };
424 
425 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
426 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
427 
428 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
429 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
430 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
431 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
432 
433 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
434 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
435 
436 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
437 {
438 	int before = nats_in_cursum(journal);
439 
440 	journal->n_nats = cpu_to_le16(before + i);
441 	return before;
442 }
443 
444 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
445 {
446 	int before = sits_in_cursum(journal);
447 
448 	journal->n_sits = cpu_to_le16(before + i);
449 	return before;
450 }
451 
452 static inline bool __has_cursum_space(struct f2fs_journal *journal,
453 							int size, int type)
454 {
455 	if (type == NAT_JOURNAL)
456 		return size <= MAX_NAT_JENTRIES(journal);
457 	return size <= MAX_SIT_JENTRIES(journal);
458 }
459 
460 /* for inline stuff */
461 #define DEF_INLINE_RESERVED_SIZE	1
462 static inline int get_extra_isize(struct inode *inode);
463 static inline int get_inline_xattr_addrs(struct inode *inode);
464 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
465 				(CUR_ADDRS_PER_INODE(inode) -		\
466 				get_inline_xattr_addrs(inode) -	\
467 				DEF_INLINE_RESERVED_SIZE))
468 
469 /* for inline dir */
470 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
471 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
472 				BITS_PER_BYTE + 1))
473 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
474 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
475 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
476 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
477 				NR_INLINE_DENTRY(inode) + \
478 				INLINE_DENTRY_BITMAP_SIZE(inode)))
479 
480 /*
481  * For INODE and NODE manager
482  */
483 /* for directory operations */
484 
485 struct f2fs_filename {
486 	/*
487 	 * The filename the user specified.  This is NULL for some
488 	 * filesystem-internal operations, e.g. converting an inline directory
489 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
490 	 */
491 	const struct qstr *usr_fname;
492 
493 	/*
494 	 * The on-disk filename.  For encrypted directories, this is encrypted.
495 	 * This may be NULL for lookups in an encrypted dir without the key.
496 	 */
497 	struct fscrypt_str disk_name;
498 
499 	/* The dirhash of this filename */
500 	f2fs_hash_t hash;
501 
502 #ifdef CONFIG_FS_ENCRYPTION
503 	/*
504 	 * For lookups in encrypted directories: either the buffer backing
505 	 * disk_name, or a buffer that holds the decoded no-key name.
506 	 */
507 	struct fscrypt_str crypto_buf;
508 #endif
509 #if IS_ENABLED(CONFIG_UNICODE)
510 	/*
511 	 * For casefolded directories: the casefolded name, but it's left NULL
512 	 * if the original name is not valid Unicode, if the original name is
513 	 * "." or "..", if the directory is both casefolded and encrypted and
514 	 * its encryption key is unavailable, or if the filesystem is doing an
515 	 * internal operation where usr_fname is also NULL.  In all these cases
516 	 * we fall back to treating the name as an opaque byte sequence.
517 	 */
518 	struct fscrypt_str cf_name;
519 #endif
520 };
521 
522 struct f2fs_dentry_ptr {
523 	struct inode *inode;
524 	void *bitmap;
525 	struct f2fs_dir_entry *dentry;
526 	__u8 (*filename)[F2FS_SLOT_LEN];
527 	int max;
528 	int nr_bitmap;
529 };
530 
531 static inline void make_dentry_ptr_block(struct inode *inode,
532 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
533 {
534 	d->inode = inode;
535 	d->max = NR_DENTRY_IN_BLOCK;
536 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
537 	d->bitmap = t->dentry_bitmap;
538 	d->dentry = t->dentry;
539 	d->filename = t->filename;
540 }
541 
542 static inline void make_dentry_ptr_inline(struct inode *inode,
543 					struct f2fs_dentry_ptr *d, void *t)
544 {
545 	int entry_cnt = NR_INLINE_DENTRY(inode);
546 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
547 	int reserved_size = INLINE_RESERVED_SIZE(inode);
548 
549 	d->inode = inode;
550 	d->max = entry_cnt;
551 	d->nr_bitmap = bitmap_size;
552 	d->bitmap = t;
553 	d->dentry = t + bitmap_size + reserved_size;
554 	d->filename = t + bitmap_size + reserved_size +
555 					SIZE_OF_DIR_ENTRY * entry_cnt;
556 }
557 
558 /*
559  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
560  * as its node offset to distinguish from index node blocks.
561  * But some bits are used to mark the node block.
562  */
563 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
564 				>> OFFSET_BIT_SHIFT)
565 enum {
566 	ALLOC_NODE,			/* allocate a new node page if needed */
567 	LOOKUP_NODE,			/* look up a node without readahead */
568 	LOOKUP_NODE_RA,			/*
569 					 * look up a node with readahead called
570 					 * by get_data_block.
571 					 */
572 };
573 
574 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
575 
576 /* congestion wait timeout value, default: 20ms */
577 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
578 
579 /* maximum retry quota flush count */
580 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
581 
582 /* maximum retry of EIO'ed page */
583 #define MAX_RETRY_PAGE_EIO			100
584 
585 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
586 
587 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
588 
589 /* dirty segments threshold for triggering CP */
590 #define DEFAULT_DIRTY_THRESHOLD		4
591 
592 /* for in-memory extent cache entry */
593 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
594 
595 /* number of extent info in extent cache we try to shrink */
596 #define EXTENT_CACHE_SHRINK_NUMBER	128
597 
598 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
599 #define RECOVERY_MIN_RA_BLOCKS		1
600 
601 struct rb_entry {
602 	struct rb_node rb_node;		/* rb node located in rb-tree */
603 	union {
604 		struct {
605 			unsigned int ofs;	/* start offset of the entry */
606 			unsigned int len;	/* length of the entry */
607 		};
608 		unsigned long long key;		/* 64-bits key */
609 	} __packed;
610 };
611 
612 struct extent_info {
613 	unsigned int fofs;		/* start offset in a file */
614 	unsigned int len;		/* length of the extent */
615 	u32 blk;			/* start block address of the extent */
616 #ifdef CONFIG_F2FS_FS_COMPRESSION
617 	unsigned int c_len;		/* physical extent length of compressed blocks */
618 #endif
619 };
620 
621 struct extent_node {
622 	struct rb_node rb_node;		/* rb node located in rb-tree */
623 	struct extent_info ei;		/* extent info */
624 	struct list_head list;		/* node in global extent list of sbi */
625 	struct extent_tree *et;		/* extent tree pointer */
626 };
627 
628 struct extent_tree {
629 	nid_t ino;			/* inode number */
630 	struct rb_root_cached root;	/* root of extent info rb-tree */
631 	struct extent_node *cached_en;	/* recently accessed extent node */
632 	struct extent_info largest;	/* largested extent info */
633 	struct list_head list;		/* to be used by sbi->zombie_list */
634 	rwlock_t lock;			/* protect extent info rb-tree */
635 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
636 	bool largest_updated;		/* largest extent updated */
637 };
638 
639 /*
640  * This structure is taken from ext4_map_blocks.
641  *
642  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
643  */
644 #define F2FS_MAP_NEW		(1 << BH_New)
645 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
646 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
647 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
648 				F2FS_MAP_UNWRITTEN)
649 
650 struct f2fs_map_blocks {
651 	struct block_device *m_bdev;	/* for multi-device dio */
652 	block_t m_pblk;
653 	block_t m_lblk;
654 	unsigned int m_len;
655 	unsigned int m_flags;
656 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
657 	pgoff_t *m_next_extent;		/* point to next possible extent */
658 	int m_seg_type;
659 	bool m_may_create;		/* indicate it is from write path */
660 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
661 };
662 
663 /* for flag in get_data_block */
664 enum {
665 	F2FS_GET_BLOCK_DEFAULT,
666 	F2FS_GET_BLOCK_FIEMAP,
667 	F2FS_GET_BLOCK_BMAP,
668 	F2FS_GET_BLOCK_DIO,
669 	F2FS_GET_BLOCK_PRE_DIO,
670 	F2FS_GET_BLOCK_PRE_AIO,
671 	F2FS_GET_BLOCK_PRECACHE,
672 };
673 
674 /*
675  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
676  */
677 #define FADVISE_COLD_BIT	0x01
678 #define FADVISE_LOST_PINO_BIT	0x02
679 #define FADVISE_ENCRYPT_BIT	0x04
680 #define FADVISE_ENC_NAME_BIT	0x08
681 #define FADVISE_KEEP_SIZE_BIT	0x10
682 #define FADVISE_HOT_BIT		0x20
683 #define FADVISE_VERITY_BIT	0x40
684 #define FADVISE_TRUNC_BIT	0x80
685 
686 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
687 
688 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
689 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
690 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
691 
692 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
693 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
694 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
695 
696 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
697 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
698 
699 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
700 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
701 
702 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
703 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
704 
705 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
706 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
707 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
708 
709 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
710 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
711 
712 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
713 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
714 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
715 
716 #define DEF_DIR_LEVEL		0
717 
718 enum {
719 	GC_FAILURE_PIN,
720 	MAX_GC_FAILURE
721 };
722 
723 /* used for f2fs_inode_info->flags */
724 enum {
725 	FI_NEW_INODE,		/* indicate newly allocated inode */
726 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
727 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
728 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
729 	FI_INC_LINK,		/* need to increment i_nlink */
730 	FI_ACL_MODE,		/* indicate acl mode */
731 	FI_NO_ALLOC,		/* should not allocate any blocks */
732 	FI_FREE_NID,		/* free allocated nide */
733 	FI_NO_EXTENT,		/* not to use the extent cache */
734 	FI_INLINE_XATTR,	/* used for inline xattr */
735 	FI_INLINE_DATA,		/* used for inline data*/
736 	FI_INLINE_DENTRY,	/* used for inline dentry */
737 	FI_APPEND_WRITE,	/* inode has appended data */
738 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
739 	FI_NEED_IPU,		/* used for ipu per file */
740 	FI_ATOMIC_FILE,		/* indicate atomic file */
741 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
742 	FI_DROP_CACHE,		/* drop dirty page cache */
743 	FI_DATA_EXIST,		/* indicate data exists */
744 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
745 	FI_SKIP_WRITES,		/* should skip data page writeback */
746 	FI_OPU_WRITE,		/* used for opu per file */
747 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
748 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
749 	FI_HOT_DATA,		/* indicate file is hot */
750 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
751 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
752 	FI_PIN_FILE,		/* indicate file should not be gced */
753 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
754 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
755 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
756 	FI_MMAP_FILE,		/* indicate file was mmapped */
757 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
758 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
759 	FI_ALIGNED_WRITE,	/* enable aligned write */
760 	FI_COW_FILE,		/* indicate COW file */
761 	FI_MAX,			/* max flag, never be used */
762 };
763 
764 struct f2fs_inode_info {
765 	struct inode vfs_inode;		/* serve a vfs inode */
766 	unsigned long i_flags;		/* keep an inode flags for ioctl */
767 	unsigned char i_advise;		/* use to give file attribute hints */
768 	unsigned char i_dir_level;	/* use for dentry level for large dir */
769 	unsigned int i_current_depth;	/* only for directory depth */
770 	/* for gc failure statistic */
771 	unsigned int i_gc_failures[MAX_GC_FAILURE];
772 	unsigned int i_pino;		/* parent inode number */
773 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
774 
775 	/* Use below internally in f2fs*/
776 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
777 	struct f2fs_rwsem i_sem;	/* protect fi info */
778 	atomic_t dirty_pages;		/* # of dirty pages */
779 	f2fs_hash_t chash;		/* hash value of given file name */
780 	unsigned int clevel;		/* maximum level of given file name */
781 	struct task_struct *task;	/* lookup and create consistency */
782 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
783 	nid_t i_xattr_nid;		/* node id that contains xattrs */
784 	loff_t	last_disk_size;		/* lastly written file size */
785 	spinlock_t i_size_lock;		/* protect last_disk_size */
786 
787 #ifdef CONFIG_QUOTA
788 	struct dquot *i_dquot[MAXQUOTAS];
789 
790 	/* quota space reservation, managed internally by quota code */
791 	qsize_t i_reserved_quota;
792 #endif
793 	struct list_head dirty_list;	/* dirty list for dirs and files */
794 	struct list_head gdirty_list;	/* linked in global dirty list */
795 	struct task_struct *atomic_write_task;	/* store atomic write task */
796 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
797 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
798 
799 	/* avoid racing between foreground op and gc */
800 	struct f2fs_rwsem i_gc_rwsem[2];
801 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
802 
803 	int i_extra_isize;		/* size of extra space located in i_addr */
804 	kprojid_t i_projid;		/* id for project quota */
805 	int i_inline_xattr_size;	/* inline xattr size */
806 	struct timespec64 i_crtime;	/* inode creation time */
807 	struct timespec64 i_disk_time[4];/* inode disk times */
808 
809 	/* for file compress */
810 	atomic_t i_compr_blocks;		/* # of compressed blocks */
811 	unsigned char i_compress_algorithm;	/* algorithm type */
812 	unsigned char i_log_cluster_size;	/* log of cluster size */
813 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
814 	unsigned short i_compress_flag;		/* compress flag */
815 	unsigned int i_cluster_size;		/* cluster size */
816 
817 	unsigned int atomic_write_cnt;
818 };
819 
820 static inline void get_extent_info(struct extent_info *ext,
821 					struct f2fs_extent *i_ext)
822 {
823 	ext->fofs = le32_to_cpu(i_ext->fofs);
824 	ext->blk = le32_to_cpu(i_ext->blk);
825 	ext->len = le32_to_cpu(i_ext->len);
826 }
827 
828 static inline void set_raw_extent(struct extent_info *ext,
829 					struct f2fs_extent *i_ext)
830 {
831 	i_ext->fofs = cpu_to_le32(ext->fofs);
832 	i_ext->blk = cpu_to_le32(ext->blk);
833 	i_ext->len = cpu_to_le32(ext->len);
834 }
835 
836 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
837 						u32 blk, unsigned int len)
838 {
839 	ei->fofs = fofs;
840 	ei->blk = blk;
841 	ei->len = len;
842 #ifdef CONFIG_F2FS_FS_COMPRESSION
843 	ei->c_len = 0;
844 #endif
845 }
846 
847 static inline bool __is_discard_mergeable(struct discard_info *back,
848 			struct discard_info *front, unsigned int max_len)
849 {
850 	return (back->lstart + back->len == front->lstart) &&
851 		(back->len + front->len <= max_len);
852 }
853 
854 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
855 			struct discard_info *back, unsigned int max_len)
856 {
857 	return __is_discard_mergeable(back, cur, max_len);
858 }
859 
860 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
861 			struct discard_info *front, unsigned int max_len)
862 {
863 	return __is_discard_mergeable(cur, front, max_len);
864 }
865 
866 static inline bool __is_extent_mergeable(struct extent_info *back,
867 						struct extent_info *front)
868 {
869 #ifdef CONFIG_F2FS_FS_COMPRESSION
870 	if (back->c_len && back->len != back->c_len)
871 		return false;
872 	if (front->c_len && front->len != front->c_len)
873 		return false;
874 #endif
875 	return (back->fofs + back->len == front->fofs &&
876 			back->blk + back->len == front->blk);
877 }
878 
879 static inline bool __is_back_mergeable(struct extent_info *cur,
880 						struct extent_info *back)
881 {
882 	return __is_extent_mergeable(back, cur);
883 }
884 
885 static inline bool __is_front_mergeable(struct extent_info *cur,
886 						struct extent_info *front)
887 {
888 	return __is_extent_mergeable(cur, front);
889 }
890 
891 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
892 static inline void __try_update_largest_extent(struct extent_tree *et,
893 						struct extent_node *en)
894 {
895 	if (en->ei.len > et->largest.len) {
896 		et->largest = en->ei;
897 		et->largest_updated = true;
898 	}
899 }
900 
901 /*
902  * For free nid management
903  */
904 enum nid_state {
905 	FREE_NID,		/* newly added to free nid list */
906 	PREALLOC_NID,		/* it is preallocated */
907 	MAX_NID_STATE,
908 };
909 
910 enum nat_state {
911 	TOTAL_NAT,
912 	DIRTY_NAT,
913 	RECLAIMABLE_NAT,
914 	MAX_NAT_STATE,
915 };
916 
917 struct f2fs_nm_info {
918 	block_t nat_blkaddr;		/* base disk address of NAT */
919 	nid_t max_nid;			/* maximum possible node ids */
920 	nid_t available_nids;		/* # of available node ids */
921 	nid_t next_scan_nid;		/* the next nid to be scanned */
922 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
923 	unsigned int ram_thresh;	/* control the memory footprint */
924 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
925 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
926 
927 	/* NAT cache management */
928 	struct radix_tree_root nat_root;/* root of the nat entry cache */
929 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
930 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
931 	struct list_head nat_entries;	/* cached nat entry list (clean) */
932 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
933 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
934 	unsigned int nat_blocks;	/* # of nat blocks */
935 
936 	/* free node ids management */
937 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
938 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
939 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
940 	spinlock_t nid_list_lock;	/* protect nid lists ops */
941 	struct mutex build_lock;	/* lock for build free nids */
942 	unsigned char **free_nid_bitmap;
943 	unsigned char *nat_block_bitmap;
944 	unsigned short *free_nid_count;	/* free nid count of NAT block */
945 
946 	/* for checkpoint */
947 	char *nat_bitmap;		/* NAT bitmap pointer */
948 
949 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
950 	unsigned char *nat_bits;	/* NAT bits blocks */
951 	unsigned char *full_nat_bits;	/* full NAT pages */
952 	unsigned char *empty_nat_bits;	/* empty NAT pages */
953 #ifdef CONFIG_F2FS_CHECK_FS
954 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
955 #endif
956 	int bitmap_size;		/* bitmap size */
957 };
958 
959 /*
960  * this structure is used as one of function parameters.
961  * all the information are dedicated to a given direct node block determined
962  * by the data offset in a file.
963  */
964 struct dnode_of_data {
965 	struct inode *inode;		/* vfs inode pointer */
966 	struct page *inode_page;	/* its inode page, NULL is possible */
967 	struct page *node_page;		/* cached direct node page */
968 	nid_t nid;			/* node id of the direct node block */
969 	unsigned int ofs_in_node;	/* data offset in the node page */
970 	bool inode_page_locked;		/* inode page is locked or not */
971 	bool node_changed;		/* is node block changed */
972 	char cur_level;			/* level of hole node page */
973 	char max_level;			/* level of current page located */
974 	block_t	data_blkaddr;		/* block address of the node block */
975 };
976 
977 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
978 		struct page *ipage, struct page *npage, nid_t nid)
979 {
980 	memset(dn, 0, sizeof(*dn));
981 	dn->inode = inode;
982 	dn->inode_page = ipage;
983 	dn->node_page = npage;
984 	dn->nid = nid;
985 }
986 
987 /*
988  * For SIT manager
989  *
990  * By default, there are 6 active log areas across the whole main area.
991  * When considering hot and cold data separation to reduce cleaning overhead,
992  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
993  * respectively.
994  * In the current design, you should not change the numbers intentionally.
995  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
996  * logs individually according to the underlying devices. (default: 6)
997  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
998  * data and 8 for node logs.
999  */
1000 #define	NR_CURSEG_DATA_TYPE	(3)
1001 #define NR_CURSEG_NODE_TYPE	(3)
1002 #define NR_CURSEG_INMEM_TYPE	(2)
1003 #define NR_CURSEG_RO_TYPE	(2)
1004 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1005 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1006 
1007 enum {
1008 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1009 	CURSEG_WARM_DATA,	/* data blocks */
1010 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1011 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1012 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1013 	CURSEG_COLD_NODE,	/* indirect node blocks */
1014 	NR_PERSISTENT_LOG,	/* number of persistent log */
1015 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1016 				/* pinned file that needs consecutive block address */
1017 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1018 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1019 };
1020 
1021 struct flush_cmd {
1022 	struct completion wait;
1023 	struct llist_node llnode;
1024 	nid_t ino;
1025 	int ret;
1026 };
1027 
1028 struct flush_cmd_control {
1029 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1030 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1031 	atomic_t issued_flush;			/* # of issued flushes */
1032 	atomic_t queued_flush;			/* # of queued flushes */
1033 	struct llist_head issue_list;		/* list for command issue */
1034 	struct llist_node *dispatch_list;	/* list for command dispatch */
1035 };
1036 
1037 struct f2fs_sm_info {
1038 	struct sit_info *sit_info;		/* whole segment information */
1039 	struct free_segmap_info *free_info;	/* free segment information */
1040 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1041 	struct curseg_info *curseg_array;	/* active segment information */
1042 
1043 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1044 
1045 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1046 	block_t main_blkaddr;		/* start block address of main area */
1047 	block_t ssa_blkaddr;		/* start block address of SSA area */
1048 
1049 	unsigned int segment_count;	/* total # of segments */
1050 	unsigned int main_segments;	/* # of segments in main area */
1051 	unsigned int reserved_segments;	/* # of reserved segments */
1052 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1053 	unsigned int ovp_segments;	/* # of overprovision segments */
1054 
1055 	/* a threshold to reclaim prefree segments */
1056 	unsigned int rec_prefree_segments;
1057 
1058 	/* for batched trimming */
1059 	unsigned int trim_sections;		/* # of sections to trim */
1060 
1061 	struct list_head sit_entry_set;	/* sit entry set list */
1062 
1063 	unsigned int ipu_policy;	/* in-place-update policy */
1064 	unsigned int min_ipu_util;	/* in-place-update threshold */
1065 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1066 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1067 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1068 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1069 
1070 	/* for flush command control */
1071 	struct flush_cmd_control *fcc_info;
1072 
1073 	/* for discard command control */
1074 	struct discard_cmd_control *dcc_info;
1075 };
1076 
1077 /*
1078  * For superblock
1079  */
1080 /*
1081  * COUNT_TYPE for monitoring
1082  *
1083  * f2fs monitors the number of several block types such as on-writeback,
1084  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1085  */
1086 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1087 enum count_type {
1088 	F2FS_DIRTY_DENTS,
1089 	F2FS_DIRTY_DATA,
1090 	F2FS_DIRTY_QDATA,
1091 	F2FS_DIRTY_NODES,
1092 	F2FS_DIRTY_META,
1093 	F2FS_DIRTY_IMETA,
1094 	F2FS_WB_CP_DATA,
1095 	F2FS_WB_DATA,
1096 	F2FS_RD_DATA,
1097 	F2FS_RD_NODE,
1098 	F2FS_RD_META,
1099 	F2FS_DIO_WRITE,
1100 	F2FS_DIO_READ,
1101 	NR_COUNT_TYPE,
1102 };
1103 
1104 /*
1105  * The below are the page types of bios used in submit_bio().
1106  * The available types are:
1107  * DATA			User data pages. It operates as async mode.
1108  * NODE			Node pages. It operates as async mode.
1109  * META			FS metadata pages such as SIT, NAT, CP.
1110  * NR_PAGE_TYPE		The number of page types.
1111  * META_FLUSH		Make sure the previous pages are written
1112  *			with waiting the bio's completion
1113  * ...			Only can be used with META.
1114  */
1115 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1116 enum page_type {
1117 	DATA = 0,
1118 	NODE = 1,	/* should not change this */
1119 	META,
1120 	NR_PAGE_TYPE,
1121 	META_FLUSH,
1122 	IPU,		/* the below types are used by tracepoints only. */
1123 	OPU,
1124 };
1125 
1126 enum temp_type {
1127 	HOT = 0,	/* must be zero for meta bio */
1128 	WARM,
1129 	COLD,
1130 	NR_TEMP_TYPE,
1131 };
1132 
1133 enum need_lock_type {
1134 	LOCK_REQ = 0,
1135 	LOCK_DONE,
1136 	LOCK_RETRY,
1137 };
1138 
1139 enum cp_reason_type {
1140 	CP_NO_NEEDED,
1141 	CP_NON_REGULAR,
1142 	CP_COMPRESSED,
1143 	CP_HARDLINK,
1144 	CP_SB_NEED_CP,
1145 	CP_WRONG_PINO,
1146 	CP_NO_SPC_ROLL,
1147 	CP_NODE_NEED_CP,
1148 	CP_FASTBOOT_MODE,
1149 	CP_SPEC_LOG_NUM,
1150 	CP_RECOVER_DIR,
1151 };
1152 
1153 enum iostat_type {
1154 	/* WRITE IO */
1155 	APP_DIRECT_IO,			/* app direct write IOs */
1156 	APP_BUFFERED_IO,		/* app buffered write IOs */
1157 	APP_WRITE_IO,			/* app write IOs */
1158 	APP_MAPPED_IO,			/* app mapped IOs */
1159 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1160 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1161 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1162 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1163 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1164 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1165 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1166 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1167 
1168 	/* READ IO */
1169 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1170 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1171 	APP_READ_IO,			/* app read IOs */
1172 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1173 	FS_DATA_READ_IO,		/* data read IOs */
1174 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1175 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1176 	FS_NODE_READ_IO,		/* node read IOs */
1177 	FS_META_READ_IO,		/* meta read IOs */
1178 
1179 	/* other */
1180 	FS_DISCARD,			/* discard */
1181 	NR_IO_TYPE,
1182 };
1183 
1184 struct f2fs_io_info {
1185 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1186 	nid_t ino;		/* inode number */
1187 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1188 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1189 	int op;			/* contains REQ_OP_ */
1190 	int op_flags;		/* req_flag_bits */
1191 	block_t new_blkaddr;	/* new block address to be written */
1192 	block_t old_blkaddr;	/* old block address before Cow */
1193 	struct page *page;	/* page to be written */
1194 	struct page *encrypted_page;	/* encrypted page */
1195 	struct page *compressed_page;	/* compressed page */
1196 	struct list_head list;		/* serialize IOs */
1197 	bool submitted;		/* indicate IO submission */
1198 	int need_lock;		/* indicate we need to lock cp_rwsem */
1199 	bool in_list;		/* indicate fio is in io_list */
1200 	bool is_por;		/* indicate IO is from recovery or not */
1201 	bool retry;		/* need to reallocate block address */
1202 	int compr_blocks;	/* # of compressed block addresses */
1203 	bool encrypted;		/* indicate file is encrypted */
1204 	bool post_read;		/* require post read */
1205 	enum iostat_type io_type;	/* io type */
1206 	struct writeback_control *io_wbc; /* writeback control */
1207 	struct bio **bio;		/* bio for ipu */
1208 	sector_t *last_block;		/* last block number in bio */
1209 	unsigned char version;		/* version of the node */
1210 };
1211 
1212 struct bio_entry {
1213 	struct bio *bio;
1214 	struct list_head list;
1215 };
1216 
1217 #define is_read_io(rw) ((rw) == READ)
1218 struct f2fs_bio_info {
1219 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1220 	struct bio *bio;		/* bios to merge */
1221 	sector_t last_block_in_bio;	/* last block number */
1222 	struct f2fs_io_info fio;	/* store buffered io info. */
1223 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1224 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1225 	struct list_head io_list;	/* track fios */
1226 	struct list_head bio_list;	/* bio entry list head */
1227 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1228 };
1229 
1230 #define FDEV(i)				(sbi->devs[i])
1231 #define RDEV(i)				(raw_super->devs[i])
1232 struct f2fs_dev_info {
1233 	struct block_device *bdev;
1234 	char path[MAX_PATH_LEN];
1235 	unsigned int total_segments;
1236 	block_t start_blk;
1237 	block_t end_blk;
1238 #ifdef CONFIG_BLK_DEV_ZONED
1239 	unsigned int nr_blkz;		/* Total number of zones */
1240 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1241 #endif
1242 };
1243 
1244 enum inode_type {
1245 	DIR_INODE,			/* for dirty dir inode */
1246 	FILE_INODE,			/* for dirty regular/symlink inode */
1247 	DIRTY_META,			/* for all dirtied inode metadata */
1248 	ATOMIC_FILE,			/* for all atomic files */
1249 	NR_INODE_TYPE,
1250 };
1251 
1252 /* for inner inode cache management */
1253 struct inode_management {
1254 	struct radix_tree_root ino_root;	/* ino entry array */
1255 	spinlock_t ino_lock;			/* for ino entry lock */
1256 	struct list_head ino_list;		/* inode list head */
1257 	unsigned long ino_num;			/* number of entries */
1258 };
1259 
1260 /* for GC_AT */
1261 struct atgc_management {
1262 	bool atgc_enabled;			/* ATGC is enabled or not */
1263 	struct rb_root_cached root;		/* root of victim rb-tree */
1264 	struct list_head victim_list;		/* linked with all victim entries */
1265 	unsigned int victim_count;		/* victim count in rb-tree */
1266 	unsigned int candidate_ratio;		/* candidate ratio */
1267 	unsigned int max_candidate_count;	/* max candidate count */
1268 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1269 	unsigned long long age_threshold;	/* age threshold */
1270 };
1271 
1272 struct f2fs_gc_control {
1273 	unsigned int victim_segno;	/* target victim segment number */
1274 	int init_gc_type;		/* FG_GC or BG_GC */
1275 	bool no_bg_gc;			/* check the space and stop bg_gc */
1276 	bool should_migrate_blocks;	/* should migrate blocks */
1277 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1278 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1279 };
1280 
1281 /* For s_flag in struct f2fs_sb_info */
1282 enum {
1283 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1284 	SBI_IS_CLOSE,				/* specify unmounting */
1285 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1286 	SBI_POR_DOING,				/* recovery is doing or not */
1287 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1288 	SBI_NEED_CP,				/* need to checkpoint */
1289 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1290 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1291 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1292 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1293 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1294 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1295 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1296 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1297 	SBI_IS_FREEZING,			/* freezefs is in process */
1298 };
1299 
1300 enum {
1301 	CP_TIME,
1302 	REQ_TIME,
1303 	DISCARD_TIME,
1304 	GC_TIME,
1305 	DISABLE_TIME,
1306 	UMOUNT_DISCARD_TIMEOUT,
1307 	MAX_TIME,
1308 };
1309 
1310 enum {
1311 	GC_NORMAL,
1312 	GC_IDLE_CB,
1313 	GC_IDLE_GREEDY,
1314 	GC_IDLE_AT,
1315 	GC_URGENT_HIGH,
1316 	GC_URGENT_LOW,
1317 	GC_URGENT_MID,
1318 	MAX_GC_MODE,
1319 };
1320 
1321 enum {
1322 	BGGC_MODE_ON,		/* background gc is on */
1323 	BGGC_MODE_OFF,		/* background gc is off */
1324 	BGGC_MODE_SYNC,		/*
1325 				 * background gc is on, migrating blocks
1326 				 * like foreground gc
1327 				 */
1328 };
1329 
1330 enum {
1331 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1332 	FS_MODE_LFS,			/* use lfs allocation only */
1333 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1334 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1335 };
1336 
1337 enum {
1338 	ALLOC_MODE_DEFAULT,	/* stay default */
1339 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1340 };
1341 
1342 enum fsync_mode {
1343 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1344 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1345 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1346 };
1347 
1348 enum {
1349 	COMPR_MODE_FS,		/*
1350 				 * automatically compress compression
1351 				 * enabled files
1352 				 */
1353 	COMPR_MODE_USER,	/*
1354 				 * automatical compression is disabled.
1355 				 * user can control the file compression
1356 				 * using ioctls
1357 				 */
1358 };
1359 
1360 enum {
1361 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1362 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1363 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1364 };
1365 
1366 enum {
1367 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1368 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1369 };
1370 
1371 
1372 
1373 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1374 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1375 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1376 
1377 /*
1378  * Layout of f2fs page.private:
1379  *
1380  * Layout A: lowest bit should be 1
1381  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1382  * bit 0	PAGE_PRIVATE_NOT_POINTER
1383  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1384  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1385  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1386  * bit 4	PAGE_PRIVATE_INLINE_INODE
1387  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1388  * bit 6-	f2fs private data
1389  *
1390  * Layout B: lowest bit should be 0
1391  * page.private is a wrapped pointer.
1392  */
1393 enum {
1394 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1395 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1396 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1397 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1398 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1399 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1400 	PAGE_PRIVATE_MAX
1401 };
1402 
1403 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1404 static inline bool page_private_##name(struct page *page) \
1405 { \
1406 	return PagePrivate(page) && \
1407 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1408 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1409 }
1410 
1411 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1412 static inline void set_page_private_##name(struct page *page) \
1413 { \
1414 	if (!PagePrivate(page)) { \
1415 		get_page(page); \
1416 		SetPagePrivate(page); \
1417 		set_page_private(page, 0); \
1418 	} \
1419 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1420 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1421 }
1422 
1423 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1424 static inline void clear_page_private_##name(struct page *page) \
1425 { \
1426 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1427 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1428 		set_page_private(page, 0); \
1429 		if (PagePrivate(page)) { \
1430 			ClearPagePrivate(page); \
1431 			put_page(page); \
1432 		}\
1433 	} \
1434 }
1435 
1436 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1437 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1438 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1439 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1440 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1441 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1442 
1443 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1444 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1445 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1446 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1447 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1448 
1449 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1450 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1451 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1452 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1453 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1454 
1455 static inline unsigned long get_page_private_data(struct page *page)
1456 {
1457 	unsigned long data = page_private(page);
1458 
1459 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1460 		return 0;
1461 	return data >> PAGE_PRIVATE_MAX;
1462 }
1463 
1464 static inline void set_page_private_data(struct page *page, unsigned long data)
1465 {
1466 	if (!PagePrivate(page)) {
1467 		get_page(page);
1468 		SetPagePrivate(page);
1469 		set_page_private(page, 0);
1470 	}
1471 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1472 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1473 }
1474 
1475 static inline void clear_page_private_data(struct page *page)
1476 {
1477 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1478 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1479 		set_page_private(page, 0);
1480 		if (PagePrivate(page)) {
1481 			ClearPagePrivate(page);
1482 			put_page(page);
1483 		}
1484 	}
1485 }
1486 
1487 /* For compression */
1488 enum compress_algorithm_type {
1489 	COMPRESS_LZO,
1490 	COMPRESS_LZ4,
1491 	COMPRESS_ZSTD,
1492 	COMPRESS_LZORLE,
1493 	COMPRESS_MAX,
1494 };
1495 
1496 enum compress_flag {
1497 	COMPRESS_CHKSUM,
1498 	COMPRESS_MAX_FLAG,
1499 };
1500 
1501 #define	COMPRESS_WATERMARK			20
1502 #define	COMPRESS_PERCENT			20
1503 
1504 #define COMPRESS_DATA_RESERVED_SIZE		4
1505 struct compress_data {
1506 	__le32 clen;			/* compressed data size */
1507 	__le32 chksum;			/* compressed data chksum */
1508 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1509 	u8 cdata[];			/* compressed data */
1510 };
1511 
1512 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1513 
1514 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1515 
1516 #define	COMPRESS_LEVEL_OFFSET	8
1517 
1518 /* compress context */
1519 struct compress_ctx {
1520 	struct inode *inode;		/* inode the context belong to */
1521 	pgoff_t cluster_idx;		/* cluster index number */
1522 	unsigned int cluster_size;	/* page count in cluster */
1523 	unsigned int log_cluster_size;	/* log of cluster size */
1524 	struct page **rpages;		/* pages store raw data in cluster */
1525 	unsigned int nr_rpages;		/* total page number in rpages */
1526 	struct page **cpages;		/* pages store compressed data in cluster */
1527 	unsigned int nr_cpages;		/* total page number in cpages */
1528 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1529 	void *rbuf;			/* virtual mapped address on rpages */
1530 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1531 	size_t rlen;			/* valid data length in rbuf */
1532 	size_t clen;			/* valid data length in cbuf */
1533 	void *private;			/* payload buffer for specified compression algorithm */
1534 	void *private2;			/* extra payload buffer */
1535 };
1536 
1537 /* compress context for write IO path */
1538 struct compress_io_ctx {
1539 	u32 magic;			/* magic number to indicate page is compressed */
1540 	struct inode *inode;		/* inode the context belong to */
1541 	struct page **rpages;		/* pages store raw data in cluster */
1542 	unsigned int nr_rpages;		/* total page number in rpages */
1543 	atomic_t pending_pages;		/* in-flight compressed page count */
1544 };
1545 
1546 /* Context for decompressing one cluster on the read IO path */
1547 struct decompress_io_ctx {
1548 	u32 magic;			/* magic number to indicate page is compressed */
1549 	struct inode *inode;		/* inode the context belong to */
1550 	pgoff_t cluster_idx;		/* cluster index number */
1551 	unsigned int cluster_size;	/* page count in cluster */
1552 	unsigned int log_cluster_size;	/* log of cluster size */
1553 	struct page **rpages;		/* pages store raw data in cluster */
1554 	unsigned int nr_rpages;		/* total page number in rpages */
1555 	struct page **cpages;		/* pages store compressed data in cluster */
1556 	unsigned int nr_cpages;		/* total page number in cpages */
1557 	struct page **tpages;		/* temp pages to pad holes in cluster */
1558 	void *rbuf;			/* virtual mapped address on rpages */
1559 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1560 	size_t rlen;			/* valid data length in rbuf */
1561 	size_t clen;			/* valid data length in cbuf */
1562 
1563 	/*
1564 	 * The number of compressed pages remaining to be read in this cluster.
1565 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1566 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1567 	 * is decompressed (or an error is reported).
1568 	 *
1569 	 * If an error occurs before all the pages have been submitted for I/O,
1570 	 * then this will never reach 0.  In this case the I/O submitter is
1571 	 * responsible for calling f2fs_decompress_end_io() instead.
1572 	 */
1573 	atomic_t remaining_pages;
1574 
1575 	/*
1576 	 * Number of references to this decompress_io_ctx.
1577 	 *
1578 	 * One reference is held for I/O completion.  This reference is dropped
1579 	 * after the pagecache pages are updated and unlocked -- either after
1580 	 * decompression (and verity if enabled), or after an error.
1581 	 *
1582 	 * In addition, each compressed page holds a reference while it is in a
1583 	 * bio.  These references are necessary prevent compressed pages from
1584 	 * being freed while they are still in a bio.
1585 	 */
1586 	refcount_t refcnt;
1587 
1588 	bool failed;			/* IO error occurred before decompression? */
1589 	bool need_verity;		/* need fs-verity verification after decompression? */
1590 	void *private;			/* payload buffer for specified decompression algorithm */
1591 	void *private2;			/* extra payload buffer */
1592 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1593 	struct work_struct free_work;	/* work for late free this structure itself */
1594 };
1595 
1596 #define NULL_CLUSTER			((unsigned int)(~0))
1597 #define MIN_COMPRESS_LOG_SIZE		2
1598 #define MAX_COMPRESS_LOG_SIZE		8
1599 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1600 
1601 struct f2fs_sb_info {
1602 	struct super_block *sb;			/* pointer to VFS super block */
1603 	struct proc_dir_entry *s_proc;		/* proc entry */
1604 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1605 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1606 	int valid_super_block;			/* valid super block no */
1607 	unsigned long s_flag;				/* flags for sbi */
1608 	struct mutex writepages;		/* mutex for writepages() */
1609 
1610 #ifdef CONFIG_BLK_DEV_ZONED
1611 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1612 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1613 #endif
1614 
1615 	/* for node-related operations */
1616 	struct f2fs_nm_info *nm_info;		/* node manager */
1617 	struct inode *node_inode;		/* cache node blocks */
1618 
1619 	/* for segment-related operations */
1620 	struct f2fs_sm_info *sm_info;		/* segment manager */
1621 
1622 	/* for bio operations */
1623 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1624 	/* keep migration IO order for LFS mode */
1625 	struct f2fs_rwsem io_order_lock;
1626 	mempool_t *write_io_dummy;		/* Dummy pages */
1627 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1628 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1629 
1630 	/* for checkpoint */
1631 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1632 	int cur_cp_pack;			/* remain current cp pack */
1633 	spinlock_t cp_lock;			/* for flag in ckpt */
1634 	struct inode *meta_inode;		/* cache meta blocks */
1635 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1636 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1637 	struct f2fs_rwsem node_write;		/* locking node writes */
1638 	struct f2fs_rwsem node_change;	/* locking node change */
1639 	wait_queue_head_t cp_wait;
1640 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1641 	long interval_time[MAX_TIME];		/* to store thresholds */
1642 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1643 
1644 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1645 
1646 	spinlock_t fsync_node_lock;		/* for node entry lock */
1647 	struct list_head fsync_node_list;	/* node list head */
1648 	unsigned int fsync_seg_id;		/* sequence id */
1649 	unsigned int fsync_node_num;		/* number of node entries */
1650 
1651 	/* for orphan inode, use 0'th array */
1652 	unsigned int max_orphans;		/* max orphan inodes */
1653 
1654 	/* for inode management */
1655 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1656 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1657 	struct mutex flush_lock;		/* for flush exclusion */
1658 
1659 	/* for extent tree cache */
1660 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1661 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1662 	struct list_head extent_list;		/* lru list for shrinker */
1663 	spinlock_t extent_lock;			/* locking extent lru list */
1664 	atomic_t total_ext_tree;		/* extent tree count */
1665 	struct list_head zombie_list;		/* extent zombie tree list */
1666 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1667 	atomic_t total_ext_node;		/* extent info count */
1668 
1669 	/* basic filesystem units */
1670 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1671 	unsigned int log_blocksize;		/* log2 block size */
1672 	unsigned int blocksize;			/* block size */
1673 	unsigned int root_ino_num;		/* root inode number*/
1674 	unsigned int node_ino_num;		/* node inode number*/
1675 	unsigned int meta_ino_num;		/* meta inode number*/
1676 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1677 	unsigned int blocks_per_seg;		/* blocks per segment */
1678 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1679 	unsigned int segs_per_sec;		/* segments per section */
1680 	unsigned int secs_per_zone;		/* sections per zone */
1681 	unsigned int total_sections;		/* total section count */
1682 	unsigned int total_node_count;		/* total node block count */
1683 	unsigned int total_valid_node_count;	/* valid node block count */
1684 	int dir_level;				/* directory level */
1685 	int readdir_ra;				/* readahead inode in readdir */
1686 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1687 
1688 	block_t user_block_count;		/* # of user blocks */
1689 	block_t total_valid_block_count;	/* # of valid blocks */
1690 	block_t discard_blks;			/* discard command candidats */
1691 	block_t last_valid_block_count;		/* for recovery */
1692 	block_t reserved_blocks;		/* configurable reserved blocks */
1693 	block_t current_reserved_blocks;	/* current reserved blocks */
1694 
1695 	/* Additional tracking for no checkpoint mode */
1696 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1697 
1698 	unsigned int nquota_files;		/* # of quota sysfile */
1699 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1700 
1701 	/* # of pages, see count_type */
1702 	atomic_t nr_pages[NR_COUNT_TYPE];
1703 	/* # of allocated blocks */
1704 	struct percpu_counter alloc_valid_block_count;
1705 	/* # of node block writes as roll forward recovery */
1706 	struct percpu_counter rf_node_block_count;
1707 
1708 	/* writeback control */
1709 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1710 
1711 	/* valid inode count */
1712 	struct percpu_counter total_valid_inode_count;
1713 
1714 	struct f2fs_mount_info mount_opt;	/* mount options */
1715 
1716 	/* for cleaning operations */
1717 	struct f2fs_rwsem gc_lock;		/*
1718 						 * semaphore for GC, avoid
1719 						 * race between GC and GC or CP
1720 						 */
1721 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1722 	struct atgc_management am;		/* atgc management */
1723 	unsigned int cur_victim_sec;		/* current victim section num */
1724 	unsigned int gc_mode;			/* current GC state */
1725 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1726 	spinlock_t gc_urgent_high_lock;
1727 	bool gc_urgent_high_limited;		/* indicates having limited trial count */
1728 	unsigned int gc_urgent_high_remaining;	/* remaining trial count for GC_URGENT_HIGH */
1729 
1730 	/* for skip statistic */
1731 	unsigned int atomic_files;		/* # of opened atomic file */
1732 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1733 
1734 	/* threshold for gc trials on pinned files */
1735 	u64 gc_pin_file_threshold;
1736 	struct f2fs_rwsem pin_sem;
1737 
1738 	/* maximum # of trials to find a victim segment for SSR and GC */
1739 	unsigned int max_victim_search;
1740 	/* migration granularity of garbage collection, unit: segment */
1741 	unsigned int migration_granularity;
1742 
1743 	/*
1744 	 * for stat information.
1745 	 * one is for the LFS mode, and the other is for the SSR mode.
1746 	 */
1747 #ifdef CONFIG_F2FS_STAT_FS
1748 	struct f2fs_stat_info *stat_info;	/* FS status information */
1749 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1750 	unsigned int segment_count[2];		/* # of allocated segments */
1751 	unsigned int block_count[2];		/* # of allocated blocks */
1752 	atomic_t inplace_count;		/* # of inplace update */
1753 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1754 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1755 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1756 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1757 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1758 	atomic_t inline_inode;			/* # of inline_data inodes */
1759 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1760 	atomic_t compr_inode;			/* # of compressed inodes */
1761 	atomic64_t compr_blocks;		/* # of compressed blocks */
1762 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1763 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1764 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1765 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1766 #endif
1767 	spinlock_t stat_lock;			/* lock for stat operations */
1768 
1769 	/* to attach REQ_META|REQ_FUA flags */
1770 	unsigned int data_io_flag;
1771 	unsigned int node_io_flag;
1772 
1773 	/* For sysfs support */
1774 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1775 	struct completion s_kobj_unregister;
1776 
1777 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1778 	struct completion s_stat_kobj_unregister;
1779 
1780 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1781 	struct completion s_feature_list_kobj_unregister;
1782 
1783 	/* For shrinker support */
1784 	struct list_head s_list;
1785 	struct mutex umount_mutex;
1786 	unsigned int shrinker_run_no;
1787 
1788 	/* For multi devices */
1789 	int s_ndevs;				/* number of devices */
1790 	struct f2fs_dev_info *devs;		/* for device list */
1791 	unsigned int dirty_device;		/* for checkpoint data flush */
1792 	spinlock_t dev_lock;			/* protect dirty_device */
1793 	bool aligned_blksize;			/* all devices has the same logical blksize */
1794 
1795 	/* For write statistics */
1796 	u64 sectors_written_start;
1797 	u64 kbytes_written;
1798 
1799 	/* Reference to checksum algorithm driver via cryptoapi */
1800 	struct crypto_shash *s_chksum_driver;
1801 
1802 	/* Precomputed FS UUID checksum for seeding other checksums */
1803 	__u32 s_chksum_seed;
1804 
1805 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1806 
1807 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1808 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1809 
1810 	/* For reclaimed segs statistics per each GC mode */
1811 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1812 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1813 
1814 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1815 
1816 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1817 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1818 
1819 	/* For atomic write statistics */
1820 	atomic64_t current_atomic_write;
1821 	s64 peak_atomic_write;
1822 	u64 committed_atomic_block;
1823 	u64 revoked_atomic_block;
1824 
1825 #ifdef CONFIG_F2FS_FS_COMPRESSION
1826 	struct kmem_cache *page_array_slab;	/* page array entry */
1827 	unsigned int page_array_slab_size;	/* default page array slab size */
1828 
1829 	/* For runtime compression statistics */
1830 	u64 compr_written_block;
1831 	u64 compr_saved_block;
1832 	u32 compr_new_inode;
1833 
1834 	/* For compressed block cache */
1835 	struct inode *compress_inode;		/* cache compressed blocks */
1836 	unsigned int compress_percent;		/* cache page percentage */
1837 	unsigned int compress_watermark;	/* cache page watermark */
1838 	atomic_t compress_page_hit;		/* cache hit count */
1839 #endif
1840 
1841 #ifdef CONFIG_F2FS_IOSTAT
1842 	/* For app/fs IO statistics */
1843 	spinlock_t iostat_lock;
1844 	unsigned long long rw_iostat[NR_IO_TYPE];
1845 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1846 	bool iostat_enable;
1847 	unsigned long iostat_next_period;
1848 	unsigned int iostat_period_ms;
1849 
1850 	/* For io latency related statistics info in one iostat period */
1851 	spinlock_t iostat_lat_lock;
1852 	struct iostat_lat_info *iostat_io_lat;
1853 #endif
1854 };
1855 
1856 #ifdef CONFIG_F2FS_FAULT_INJECTION
1857 #define f2fs_show_injection_info(sbi, type)					\
1858 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1859 		KERN_INFO, sbi->sb->s_id,				\
1860 		f2fs_fault_name[type],					\
1861 		__func__, __builtin_return_address(0))
1862 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1863 {
1864 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1865 
1866 	if (!ffi->inject_rate)
1867 		return false;
1868 
1869 	if (!IS_FAULT_SET(ffi, type))
1870 		return false;
1871 
1872 	atomic_inc(&ffi->inject_ops);
1873 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1874 		atomic_set(&ffi->inject_ops, 0);
1875 		return true;
1876 	}
1877 	return false;
1878 }
1879 #else
1880 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1881 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1882 {
1883 	return false;
1884 }
1885 #endif
1886 
1887 /*
1888  * Test if the mounted volume is a multi-device volume.
1889  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1890  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1891  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1892  */
1893 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1894 {
1895 	return sbi->s_ndevs > 1;
1896 }
1897 
1898 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1899 {
1900 	unsigned long now = jiffies;
1901 
1902 	sbi->last_time[type] = now;
1903 
1904 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1905 	if (type == REQ_TIME) {
1906 		sbi->last_time[DISCARD_TIME] = now;
1907 		sbi->last_time[GC_TIME] = now;
1908 	}
1909 }
1910 
1911 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1912 {
1913 	unsigned long interval = sbi->interval_time[type] * HZ;
1914 
1915 	return time_after(jiffies, sbi->last_time[type] + interval);
1916 }
1917 
1918 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1919 						int type)
1920 {
1921 	unsigned long interval = sbi->interval_time[type] * HZ;
1922 	unsigned int wait_ms = 0;
1923 	long delta;
1924 
1925 	delta = (sbi->last_time[type] + interval) - jiffies;
1926 	if (delta > 0)
1927 		wait_ms = jiffies_to_msecs(delta);
1928 
1929 	return wait_ms;
1930 }
1931 
1932 /*
1933  * Inline functions
1934  */
1935 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1936 			      const void *address, unsigned int length)
1937 {
1938 	struct {
1939 		struct shash_desc shash;
1940 		char ctx[4];
1941 	} desc;
1942 	int err;
1943 
1944 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1945 
1946 	desc.shash.tfm = sbi->s_chksum_driver;
1947 	*(u32 *)desc.ctx = crc;
1948 
1949 	err = crypto_shash_update(&desc.shash, address, length);
1950 	BUG_ON(err);
1951 
1952 	return *(u32 *)desc.ctx;
1953 }
1954 
1955 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1956 			   unsigned int length)
1957 {
1958 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1959 }
1960 
1961 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1962 				  void *buf, size_t buf_size)
1963 {
1964 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1965 }
1966 
1967 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1968 			      const void *address, unsigned int length)
1969 {
1970 	return __f2fs_crc32(sbi, crc, address, length);
1971 }
1972 
1973 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1974 {
1975 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1976 }
1977 
1978 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1979 {
1980 	return sb->s_fs_info;
1981 }
1982 
1983 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1984 {
1985 	return F2FS_SB(inode->i_sb);
1986 }
1987 
1988 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1989 {
1990 	return F2FS_I_SB(mapping->host);
1991 }
1992 
1993 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1994 {
1995 	return F2FS_M_SB(page_file_mapping(page));
1996 }
1997 
1998 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1999 {
2000 	return (struct f2fs_super_block *)(sbi->raw_super);
2001 }
2002 
2003 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2004 {
2005 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2006 }
2007 
2008 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2009 {
2010 	return (struct f2fs_node *)page_address(page);
2011 }
2012 
2013 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2014 {
2015 	return &((struct f2fs_node *)page_address(page))->i;
2016 }
2017 
2018 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2019 {
2020 	return (struct f2fs_nm_info *)(sbi->nm_info);
2021 }
2022 
2023 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2024 {
2025 	return (struct f2fs_sm_info *)(sbi->sm_info);
2026 }
2027 
2028 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2029 {
2030 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2031 }
2032 
2033 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2034 {
2035 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2036 }
2037 
2038 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2039 {
2040 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2041 }
2042 
2043 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2044 {
2045 	return sbi->meta_inode->i_mapping;
2046 }
2047 
2048 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2049 {
2050 	return sbi->node_inode->i_mapping;
2051 }
2052 
2053 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2054 {
2055 	return test_bit(type, &sbi->s_flag);
2056 }
2057 
2058 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2059 {
2060 	set_bit(type, &sbi->s_flag);
2061 }
2062 
2063 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2064 {
2065 	clear_bit(type, &sbi->s_flag);
2066 }
2067 
2068 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2069 {
2070 	return le64_to_cpu(cp->checkpoint_ver);
2071 }
2072 
2073 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2074 {
2075 	if (type < F2FS_MAX_QUOTAS)
2076 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2077 	return 0;
2078 }
2079 
2080 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2081 {
2082 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2083 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2084 }
2085 
2086 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2087 {
2088 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2089 
2090 	return ckpt_flags & f;
2091 }
2092 
2093 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2094 {
2095 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2096 }
2097 
2098 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2099 {
2100 	unsigned int ckpt_flags;
2101 
2102 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2103 	ckpt_flags |= f;
2104 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2105 }
2106 
2107 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2108 {
2109 	unsigned long flags;
2110 
2111 	spin_lock_irqsave(&sbi->cp_lock, flags);
2112 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2113 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2114 }
2115 
2116 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2117 {
2118 	unsigned int ckpt_flags;
2119 
2120 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2121 	ckpt_flags &= (~f);
2122 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2123 }
2124 
2125 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2126 {
2127 	unsigned long flags;
2128 
2129 	spin_lock_irqsave(&sbi->cp_lock, flags);
2130 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2131 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2132 }
2133 
2134 #define init_f2fs_rwsem(sem)					\
2135 do {								\
2136 	static struct lock_class_key __key;			\
2137 								\
2138 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2139 } while (0)
2140 
2141 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2142 		const char *sem_name, struct lock_class_key *key)
2143 {
2144 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2145 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2146 	init_waitqueue_head(&sem->read_waiters);
2147 #endif
2148 }
2149 
2150 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2151 {
2152 	return rwsem_is_locked(&sem->internal_rwsem);
2153 }
2154 
2155 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2156 {
2157 	return rwsem_is_contended(&sem->internal_rwsem);
2158 }
2159 
2160 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2161 {
2162 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2163 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2164 #else
2165 	down_read(&sem->internal_rwsem);
2166 #endif
2167 }
2168 
2169 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2170 {
2171 	return down_read_trylock(&sem->internal_rwsem);
2172 }
2173 
2174 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2175 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2176 {
2177 	down_read_nested(&sem->internal_rwsem, subclass);
2178 }
2179 #else
2180 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2181 #endif
2182 
2183 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2184 {
2185 	up_read(&sem->internal_rwsem);
2186 }
2187 
2188 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2189 {
2190 	down_write(&sem->internal_rwsem);
2191 }
2192 
2193 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2194 {
2195 	return down_write_trylock(&sem->internal_rwsem);
2196 }
2197 
2198 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2199 {
2200 	up_write(&sem->internal_rwsem);
2201 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2202 	wake_up_all(&sem->read_waiters);
2203 #endif
2204 }
2205 
2206 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2207 {
2208 	f2fs_down_read(&sbi->cp_rwsem);
2209 }
2210 
2211 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2212 {
2213 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2214 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2215 		return 0;
2216 	}
2217 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2218 }
2219 
2220 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2221 {
2222 	f2fs_up_read(&sbi->cp_rwsem);
2223 }
2224 
2225 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2226 {
2227 	f2fs_down_write(&sbi->cp_rwsem);
2228 }
2229 
2230 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2231 {
2232 	f2fs_up_write(&sbi->cp_rwsem);
2233 }
2234 
2235 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2236 {
2237 	int reason = CP_SYNC;
2238 
2239 	if (test_opt(sbi, FASTBOOT))
2240 		reason = CP_FASTBOOT;
2241 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2242 		reason = CP_UMOUNT;
2243 	return reason;
2244 }
2245 
2246 static inline bool __remain_node_summaries(int reason)
2247 {
2248 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2249 }
2250 
2251 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2252 {
2253 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2254 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2255 }
2256 
2257 /*
2258  * Check whether the inode has blocks or not
2259  */
2260 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2261 {
2262 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2263 
2264 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2265 }
2266 
2267 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2268 {
2269 	return ofs == XATTR_NODE_OFFSET;
2270 }
2271 
2272 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2273 					struct inode *inode, bool cap)
2274 {
2275 	if (!inode)
2276 		return true;
2277 	if (!test_opt(sbi, RESERVE_ROOT))
2278 		return false;
2279 	if (IS_NOQUOTA(inode))
2280 		return true;
2281 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2282 		return true;
2283 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2284 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2285 		return true;
2286 	if (cap && capable(CAP_SYS_RESOURCE))
2287 		return true;
2288 	return false;
2289 }
2290 
2291 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2292 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2293 				 struct inode *inode, blkcnt_t *count)
2294 {
2295 	blkcnt_t diff = 0, release = 0;
2296 	block_t avail_user_block_count;
2297 	int ret;
2298 
2299 	ret = dquot_reserve_block(inode, *count);
2300 	if (ret)
2301 		return ret;
2302 
2303 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2304 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2305 		release = *count;
2306 		goto release_quota;
2307 	}
2308 
2309 	/*
2310 	 * let's increase this in prior to actual block count change in order
2311 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2312 	 */
2313 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2314 
2315 	spin_lock(&sbi->stat_lock);
2316 	sbi->total_valid_block_count += (block_t)(*count);
2317 	avail_user_block_count = sbi->user_block_count -
2318 					sbi->current_reserved_blocks;
2319 
2320 	if (!__allow_reserved_blocks(sbi, inode, true))
2321 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2322 
2323 	if (F2FS_IO_ALIGNED(sbi))
2324 		avail_user_block_count -= sbi->blocks_per_seg *
2325 				SM_I(sbi)->additional_reserved_segments;
2326 
2327 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2328 		if (avail_user_block_count > sbi->unusable_block_count)
2329 			avail_user_block_count -= sbi->unusable_block_count;
2330 		else
2331 			avail_user_block_count = 0;
2332 	}
2333 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2334 		diff = sbi->total_valid_block_count - avail_user_block_count;
2335 		if (diff > *count)
2336 			diff = *count;
2337 		*count -= diff;
2338 		release = diff;
2339 		sbi->total_valid_block_count -= diff;
2340 		if (!*count) {
2341 			spin_unlock(&sbi->stat_lock);
2342 			goto enospc;
2343 		}
2344 	}
2345 	spin_unlock(&sbi->stat_lock);
2346 
2347 	if (unlikely(release)) {
2348 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2349 		dquot_release_reservation_block(inode, release);
2350 	}
2351 	f2fs_i_blocks_write(inode, *count, true, true);
2352 	return 0;
2353 
2354 enospc:
2355 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2356 release_quota:
2357 	dquot_release_reservation_block(inode, release);
2358 	return -ENOSPC;
2359 }
2360 
2361 __printf(2, 3)
2362 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2363 
2364 #define f2fs_err(sbi, fmt, ...)						\
2365 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2366 #define f2fs_warn(sbi, fmt, ...)					\
2367 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2368 #define f2fs_notice(sbi, fmt, ...)					\
2369 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2370 #define f2fs_info(sbi, fmt, ...)					\
2371 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2372 #define f2fs_debug(sbi, fmt, ...)					\
2373 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2374 
2375 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2376 						struct inode *inode,
2377 						block_t count)
2378 {
2379 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2380 
2381 	spin_lock(&sbi->stat_lock);
2382 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2383 	sbi->total_valid_block_count -= (block_t)count;
2384 	if (sbi->reserved_blocks &&
2385 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2386 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2387 					sbi->current_reserved_blocks + count);
2388 	spin_unlock(&sbi->stat_lock);
2389 	if (unlikely(inode->i_blocks < sectors)) {
2390 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2391 			  inode->i_ino,
2392 			  (unsigned long long)inode->i_blocks,
2393 			  (unsigned long long)sectors);
2394 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2395 		return;
2396 	}
2397 	f2fs_i_blocks_write(inode, count, false, true);
2398 }
2399 
2400 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2401 {
2402 	atomic_inc(&sbi->nr_pages[count_type]);
2403 
2404 	if (count_type == F2FS_DIRTY_DENTS ||
2405 			count_type == F2FS_DIRTY_NODES ||
2406 			count_type == F2FS_DIRTY_META ||
2407 			count_type == F2FS_DIRTY_QDATA ||
2408 			count_type == F2FS_DIRTY_IMETA)
2409 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2410 }
2411 
2412 static inline void inode_inc_dirty_pages(struct inode *inode)
2413 {
2414 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2415 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2416 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2417 	if (IS_NOQUOTA(inode))
2418 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2419 }
2420 
2421 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2422 {
2423 	atomic_dec(&sbi->nr_pages[count_type]);
2424 }
2425 
2426 static inline void inode_dec_dirty_pages(struct inode *inode)
2427 {
2428 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2429 			!S_ISLNK(inode->i_mode))
2430 		return;
2431 
2432 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2433 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2434 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2435 	if (IS_NOQUOTA(inode))
2436 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2437 }
2438 
2439 static inline void inc_atomic_write_cnt(struct inode *inode)
2440 {
2441 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2442 	struct f2fs_inode_info *fi = F2FS_I(inode);
2443 	u64 current_write;
2444 
2445 	fi->atomic_write_cnt++;
2446 	atomic64_inc(&sbi->current_atomic_write);
2447 	current_write = atomic64_read(&sbi->current_atomic_write);
2448 	if (current_write > sbi->peak_atomic_write)
2449 		sbi->peak_atomic_write = current_write;
2450 }
2451 
2452 static inline void release_atomic_write_cnt(struct inode *inode)
2453 {
2454 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2455 	struct f2fs_inode_info *fi = F2FS_I(inode);
2456 
2457 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2458 	fi->atomic_write_cnt = 0;
2459 }
2460 
2461 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2462 {
2463 	return atomic_read(&sbi->nr_pages[count_type]);
2464 }
2465 
2466 static inline int get_dirty_pages(struct inode *inode)
2467 {
2468 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2469 }
2470 
2471 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2472 {
2473 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2474 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2475 						sbi->log_blocks_per_seg;
2476 
2477 	return segs / sbi->segs_per_sec;
2478 }
2479 
2480 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2481 {
2482 	return sbi->total_valid_block_count;
2483 }
2484 
2485 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2486 {
2487 	return sbi->discard_blks;
2488 }
2489 
2490 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2491 {
2492 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2493 
2494 	/* return NAT or SIT bitmap */
2495 	if (flag == NAT_BITMAP)
2496 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2497 	else if (flag == SIT_BITMAP)
2498 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2499 
2500 	return 0;
2501 }
2502 
2503 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2504 {
2505 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2506 }
2507 
2508 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2509 {
2510 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2511 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2512 	int offset;
2513 
2514 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2515 		offset = (flag == SIT_BITMAP) ?
2516 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2517 		/*
2518 		 * if large_nat_bitmap feature is enabled, leave checksum
2519 		 * protection for all nat/sit bitmaps.
2520 		 */
2521 		return tmp_ptr + offset + sizeof(__le32);
2522 	}
2523 
2524 	if (__cp_payload(sbi) > 0) {
2525 		if (flag == NAT_BITMAP)
2526 			return &ckpt->sit_nat_version_bitmap;
2527 		else
2528 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2529 	} else {
2530 		offset = (flag == NAT_BITMAP) ?
2531 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2532 		return tmp_ptr + offset;
2533 	}
2534 }
2535 
2536 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2537 {
2538 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2539 
2540 	if (sbi->cur_cp_pack == 2)
2541 		start_addr += sbi->blocks_per_seg;
2542 	return start_addr;
2543 }
2544 
2545 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2546 {
2547 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2548 
2549 	if (sbi->cur_cp_pack == 1)
2550 		start_addr += sbi->blocks_per_seg;
2551 	return start_addr;
2552 }
2553 
2554 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2555 {
2556 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2557 }
2558 
2559 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2560 {
2561 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2562 }
2563 
2564 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2565 					struct inode *inode, bool is_inode)
2566 {
2567 	block_t	valid_block_count;
2568 	unsigned int valid_node_count, user_block_count;
2569 	int err;
2570 
2571 	if (is_inode) {
2572 		if (inode) {
2573 			err = dquot_alloc_inode(inode);
2574 			if (err)
2575 				return err;
2576 		}
2577 	} else {
2578 		err = dquot_reserve_block(inode, 1);
2579 		if (err)
2580 			return err;
2581 	}
2582 
2583 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2584 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2585 		goto enospc;
2586 	}
2587 
2588 	spin_lock(&sbi->stat_lock);
2589 
2590 	valid_block_count = sbi->total_valid_block_count +
2591 					sbi->current_reserved_blocks + 1;
2592 
2593 	if (!__allow_reserved_blocks(sbi, inode, false))
2594 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2595 
2596 	if (F2FS_IO_ALIGNED(sbi))
2597 		valid_block_count += sbi->blocks_per_seg *
2598 				SM_I(sbi)->additional_reserved_segments;
2599 
2600 	user_block_count = sbi->user_block_count;
2601 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2602 		user_block_count -= sbi->unusable_block_count;
2603 
2604 	if (unlikely(valid_block_count > user_block_count)) {
2605 		spin_unlock(&sbi->stat_lock);
2606 		goto enospc;
2607 	}
2608 
2609 	valid_node_count = sbi->total_valid_node_count + 1;
2610 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2611 		spin_unlock(&sbi->stat_lock);
2612 		goto enospc;
2613 	}
2614 
2615 	sbi->total_valid_node_count++;
2616 	sbi->total_valid_block_count++;
2617 	spin_unlock(&sbi->stat_lock);
2618 
2619 	if (inode) {
2620 		if (is_inode)
2621 			f2fs_mark_inode_dirty_sync(inode, true);
2622 		else
2623 			f2fs_i_blocks_write(inode, 1, true, true);
2624 	}
2625 
2626 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2627 	return 0;
2628 
2629 enospc:
2630 	if (is_inode) {
2631 		if (inode)
2632 			dquot_free_inode(inode);
2633 	} else {
2634 		dquot_release_reservation_block(inode, 1);
2635 	}
2636 	return -ENOSPC;
2637 }
2638 
2639 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2640 					struct inode *inode, bool is_inode)
2641 {
2642 	spin_lock(&sbi->stat_lock);
2643 
2644 	if (unlikely(!sbi->total_valid_block_count ||
2645 			!sbi->total_valid_node_count)) {
2646 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2647 			  sbi->total_valid_block_count,
2648 			  sbi->total_valid_node_count);
2649 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2650 	} else {
2651 		sbi->total_valid_block_count--;
2652 		sbi->total_valid_node_count--;
2653 	}
2654 
2655 	if (sbi->reserved_blocks &&
2656 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2657 		sbi->current_reserved_blocks++;
2658 
2659 	spin_unlock(&sbi->stat_lock);
2660 
2661 	if (is_inode) {
2662 		dquot_free_inode(inode);
2663 	} else {
2664 		if (unlikely(inode->i_blocks == 0)) {
2665 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2666 				  inode->i_ino,
2667 				  (unsigned long long)inode->i_blocks);
2668 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2669 			return;
2670 		}
2671 		f2fs_i_blocks_write(inode, 1, false, true);
2672 	}
2673 }
2674 
2675 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2676 {
2677 	return sbi->total_valid_node_count;
2678 }
2679 
2680 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2681 {
2682 	percpu_counter_inc(&sbi->total_valid_inode_count);
2683 }
2684 
2685 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2686 {
2687 	percpu_counter_dec(&sbi->total_valid_inode_count);
2688 }
2689 
2690 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2691 {
2692 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2693 }
2694 
2695 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2696 						pgoff_t index, bool for_write)
2697 {
2698 	struct page *page;
2699 	unsigned int flags;
2700 
2701 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2702 		if (!for_write)
2703 			page = find_get_page_flags(mapping, index,
2704 							FGP_LOCK | FGP_ACCESSED);
2705 		else
2706 			page = find_lock_page(mapping, index);
2707 		if (page)
2708 			return page;
2709 
2710 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2711 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2712 							FAULT_PAGE_ALLOC);
2713 			return NULL;
2714 		}
2715 	}
2716 
2717 	if (!for_write)
2718 		return grab_cache_page(mapping, index);
2719 
2720 	flags = memalloc_nofs_save();
2721 	page = grab_cache_page_write_begin(mapping, index);
2722 	memalloc_nofs_restore(flags);
2723 
2724 	return page;
2725 }
2726 
2727 static inline struct page *f2fs_pagecache_get_page(
2728 				struct address_space *mapping, pgoff_t index,
2729 				int fgp_flags, gfp_t gfp_mask)
2730 {
2731 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2732 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2733 		return NULL;
2734 	}
2735 
2736 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2737 }
2738 
2739 static inline void f2fs_put_page(struct page *page, int unlock)
2740 {
2741 	if (!page)
2742 		return;
2743 
2744 	if (unlock) {
2745 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2746 		unlock_page(page);
2747 	}
2748 	put_page(page);
2749 }
2750 
2751 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2752 {
2753 	if (dn->node_page)
2754 		f2fs_put_page(dn->node_page, 1);
2755 	if (dn->inode_page && dn->node_page != dn->inode_page)
2756 		f2fs_put_page(dn->inode_page, 0);
2757 	dn->node_page = NULL;
2758 	dn->inode_page = NULL;
2759 }
2760 
2761 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2762 					size_t size)
2763 {
2764 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2765 }
2766 
2767 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2768 						gfp_t flags)
2769 {
2770 	void *entry;
2771 
2772 	entry = kmem_cache_alloc(cachep, flags);
2773 	if (!entry)
2774 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2775 	return entry;
2776 }
2777 
2778 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2779 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2780 {
2781 	if (nofail)
2782 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2783 
2784 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2785 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2786 		return NULL;
2787 	}
2788 
2789 	return kmem_cache_alloc(cachep, flags);
2790 }
2791 
2792 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2793 {
2794 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2795 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2796 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2797 		get_pages(sbi, F2FS_DIO_READ) ||
2798 		get_pages(sbi, F2FS_DIO_WRITE))
2799 		return true;
2800 
2801 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2802 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2803 		return true;
2804 
2805 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2806 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2807 		return true;
2808 	return false;
2809 }
2810 
2811 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2812 {
2813 	if (sbi->gc_mode == GC_URGENT_HIGH)
2814 		return true;
2815 
2816 	if (is_inflight_io(sbi, type))
2817 		return false;
2818 
2819 	if (sbi->gc_mode == GC_URGENT_MID)
2820 		return true;
2821 
2822 	if (sbi->gc_mode == GC_URGENT_LOW &&
2823 			(type == DISCARD_TIME || type == GC_TIME))
2824 		return true;
2825 
2826 	return f2fs_time_over(sbi, type);
2827 }
2828 
2829 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2830 				unsigned long index, void *item)
2831 {
2832 	while (radix_tree_insert(root, index, item))
2833 		cond_resched();
2834 }
2835 
2836 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2837 
2838 static inline bool IS_INODE(struct page *page)
2839 {
2840 	struct f2fs_node *p = F2FS_NODE(page);
2841 
2842 	return RAW_IS_INODE(p);
2843 }
2844 
2845 static inline int offset_in_addr(struct f2fs_inode *i)
2846 {
2847 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2848 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2849 }
2850 
2851 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2852 {
2853 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2854 }
2855 
2856 static inline int f2fs_has_extra_attr(struct inode *inode);
2857 static inline block_t data_blkaddr(struct inode *inode,
2858 			struct page *node_page, unsigned int offset)
2859 {
2860 	struct f2fs_node *raw_node;
2861 	__le32 *addr_array;
2862 	int base = 0;
2863 	bool is_inode = IS_INODE(node_page);
2864 
2865 	raw_node = F2FS_NODE(node_page);
2866 
2867 	if (is_inode) {
2868 		if (!inode)
2869 			/* from GC path only */
2870 			base = offset_in_addr(&raw_node->i);
2871 		else if (f2fs_has_extra_attr(inode))
2872 			base = get_extra_isize(inode);
2873 	}
2874 
2875 	addr_array = blkaddr_in_node(raw_node);
2876 	return le32_to_cpu(addr_array[base + offset]);
2877 }
2878 
2879 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2880 {
2881 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2882 }
2883 
2884 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2885 {
2886 	int mask;
2887 
2888 	addr += (nr >> 3);
2889 	mask = 1 << (7 - (nr & 0x07));
2890 	return mask & *addr;
2891 }
2892 
2893 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2894 {
2895 	int mask;
2896 
2897 	addr += (nr >> 3);
2898 	mask = 1 << (7 - (nr & 0x07));
2899 	*addr |= mask;
2900 }
2901 
2902 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2903 {
2904 	int mask;
2905 
2906 	addr += (nr >> 3);
2907 	mask = 1 << (7 - (nr & 0x07));
2908 	*addr &= ~mask;
2909 }
2910 
2911 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2912 {
2913 	int mask;
2914 	int ret;
2915 
2916 	addr += (nr >> 3);
2917 	mask = 1 << (7 - (nr & 0x07));
2918 	ret = mask & *addr;
2919 	*addr |= mask;
2920 	return ret;
2921 }
2922 
2923 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2924 {
2925 	int mask;
2926 	int ret;
2927 
2928 	addr += (nr >> 3);
2929 	mask = 1 << (7 - (nr & 0x07));
2930 	ret = mask & *addr;
2931 	*addr &= ~mask;
2932 	return ret;
2933 }
2934 
2935 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2936 {
2937 	int mask;
2938 
2939 	addr += (nr >> 3);
2940 	mask = 1 << (7 - (nr & 0x07));
2941 	*addr ^= mask;
2942 }
2943 
2944 /*
2945  * On-disk inode flags (f2fs_inode::i_flags)
2946  */
2947 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2948 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2949 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2950 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2951 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2952 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2953 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2954 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2955 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2956 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2957 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2958 
2959 /* Flags that should be inherited by new inodes from their parent. */
2960 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2961 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2962 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2963 
2964 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2965 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2966 				F2FS_CASEFOLD_FL))
2967 
2968 /* Flags that are appropriate for non-directories/regular files. */
2969 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2970 
2971 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2972 {
2973 	if (S_ISDIR(mode))
2974 		return flags;
2975 	else if (S_ISREG(mode))
2976 		return flags & F2FS_REG_FLMASK;
2977 	else
2978 		return flags & F2FS_OTHER_FLMASK;
2979 }
2980 
2981 static inline void __mark_inode_dirty_flag(struct inode *inode,
2982 						int flag, bool set)
2983 {
2984 	switch (flag) {
2985 	case FI_INLINE_XATTR:
2986 	case FI_INLINE_DATA:
2987 	case FI_INLINE_DENTRY:
2988 	case FI_NEW_INODE:
2989 		if (set)
2990 			return;
2991 		fallthrough;
2992 	case FI_DATA_EXIST:
2993 	case FI_INLINE_DOTS:
2994 	case FI_PIN_FILE:
2995 	case FI_COMPRESS_RELEASED:
2996 		f2fs_mark_inode_dirty_sync(inode, true);
2997 	}
2998 }
2999 
3000 static inline void set_inode_flag(struct inode *inode, int flag)
3001 {
3002 	set_bit(flag, F2FS_I(inode)->flags);
3003 	__mark_inode_dirty_flag(inode, flag, true);
3004 }
3005 
3006 static inline int is_inode_flag_set(struct inode *inode, int flag)
3007 {
3008 	return test_bit(flag, F2FS_I(inode)->flags);
3009 }
3010 
3011 static inline void clear_inode_flag(struct inode *inode, int flag)
3012 {
3013 	clear_bit(flag, F2FS_I(inode)->flags);
3014 	__mark_inode_dirty_flag(inode, flag, false);
3015 }
3016 
3017 static inline bool f2fs_verity_in_progress(struct inode *inode)
3018 {
3019 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3020 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3021 }
3022 
3023 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3024 {
3025 	F2FS_I(inode)->i_acl_mode = mode;
3026 	set_inode_flag(inode, FI_ACL_MODE);
3027 	f2fs_mark_inode_dirty_sync(inode, false);
3028 }
3029 
3030 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3031 {
3032 	if (inc)
3033 		inc_nlink(inode);
3034 	else
3035 		drop_nlink(inode);
3036 	f2fs_mark_inode_dirty_sync(inode, true);
3037 }
3038 
3039 static inline void f2fs_i_blocks_write(struct inode *inode,
3040 					block_t diff, bool add, bool claim)
3041 {
3042 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3043 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3044 
3045 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3046 	if (add) {
3047 		if (claim)
3048 			dquot_claim_block(inode, diff);
3049 		else
3050 			dquot_alloc_block_nofail(inode, diff);
3051 	} else {
3052 		dquot_free_block(inode, diff);
3053 	}
3054 
3055 	f2fs_mark_inode_dirty_sync(inode, true);
3056 	if (clean || recover)
3057 		set_inode_flag(inode, FI_AUTO_RECOVER);
3058 }
3059 
3060 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3061 {
3062 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3063 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3064 
3065 	if (i_size_read(inode) == i_size)
3066 		return;
3067 
3068 	i_size_write(inode, i_size);
3069 	f2fs_mark_inode_dirty_sync(inode, true);
3070 	if (clean || recover)
3071 		set_inode_flag(inode, FI_AUTO_RECOVER);
3072 }
3073 
3074 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3075 {
3076 	F2FS_I(inode)->i_current_depth = depth;
3077 	f2fs_mark_inode_dirty_sync(inode, true);
3078 }
3079 
3080 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3081 					unsigned int count)
3082 {
3083 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3084 	f2fs_mark_inode_dirty_sync(inode, true);
3085 }
3086 
3087 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3088 {
3089 	F2FS_I(inode)->i_xattr_nid = xnid;
3090 	f2fs_mark_inode_dirty_sync(inode, true);
3091 }
3092 
3093 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3094 {
3095 	F2FS_I(inode)->i_pino = pino;
3096 	f2fs_mark_inode_dirty_sync(inode, true);
3097 }
3098 
3099 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3100 {
3101 	struct f2fs_inode_info *fi = F2FS_I(inode);
3102 
3103 	if (ri->i_inline & F2FS_INLINE_XATTR)
3104 		set_bit(FI_INLINE_XATTR, fi->flags);
3105 	if (ri->i_inline & F2FS_INLINE_DATA)
3106 		set_bit(FI_INLINE_DATA, fi->flags);
3107 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3108 		set_bit(FI_INLINE_DENTRY, fi->flags);
3109 	if (ri->i_inline & F2FS_DATA_EXIST)
3110 		set_bit(FI_DATA_EXIST, fi->flags);
3111 	if (ri->i_inline & F2FS_INLINE_DOTS)
3112 		set_bit(FI_INLINE_DOTS, fi->flags);
3113 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3114 		set_bit(FI_EXTRA_ATTR, fi->flags);
3115 	if (ri->i_inline & F2FS_PIN_FILE)
3116 		set_bit(FI_PIN_FILE, fi->flags);
3117 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3118 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3119 }
3120 
3121 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3122 {
3123 	ri->i_inline = 0;
3124 
3125 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3126 		ri->i_inline |= F2FS_INLINE_XATTR;
3127 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3128 		ri->i_inline |= F2FS_INLINE_DATA;
3129 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3130 		ri->i_inline |= F2FS_INLINE_DENTRY;
3131 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3132 		ri->i_inline |= F2FS_DATA_EXIST;
3133 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3134 		ri->i_inline |= F2FS_INLINE_DOTS;
3135 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3136 		ri->i_inline |= F2FS_EXTRA_ATTR;
3137 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3138 		ri->i_inline |= F2FS_PIN_FILE;
3139 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3140 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3141 }
3142 
3143 static inline int f2fs_has_extra_attr(struct inode *inode)
3144 {
3145 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3146 }
3147 
3148 static inline int f2fs_has_inline_xattr(struct inode *inode)
3149 {
3150 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3151 }
3152 
3153 static inline int f2fs_compressed_file(struct inode *inode)
3154 {
3155 	return S_ISREG(inode->i_mode) &&
3156 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3157 }
3158 
3159 static inline bool f2fs_need_compress_data(struct inode *inode)
3160 {
3161 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3162 
3163 	if (!f2fs_compressed_file(inode))
3164 		return false;
3165 
3166 	if (compress_mode == COMPR_MODE_FS)
3167 		return true;
3168 	else if (compress_mode == COMPR_MODE_USER &&
3169 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3170 		return true;
3171 
3172 	return false;
3173 }
3174 
3175 static inline unsigned int addrs_per_inode(struct inode *inode)
3176 {
3177 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3178 				get_inline_xattr_addrs(inode);
3179 
3180 	if (!f2fs_compressed_file(inode))
3181 		return addrs;
3182 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3183 }
3184 
3185 static inline unsigned int addrs_per_block(struct inode *inode)
3186 {
3187 	if (!f2fs_compressed_file(inode))
3188 		return DEF_ADDRS_PER_BLOCK;
3189 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3190 }
3191 
3192 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3193 {
3194 	struct f2fs_inode *ri = F2FS_INODE(page);
3195 
3196 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3197 					get_inline_xattr_addrs(inode)]);
3198 }
3199 
3200 static inline int inline_xattr_size(struct inode *inode)
3201 {
3202 	if (f2fs_has_inline_xattr(inode))
3203 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3204 	return 0;
3205 }
3206 
3207 /*
3208  * Notice: check inline_data flag without inode page lock is unsafe.
3209  * It could change at any time by f2fs_convert_inline_page().
3210  */
3211 static inline int f2fs_has_inline_data(struct inode *inode)
3212 {
3213 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3214 }
3215 
3216 static inline int f2fs_exist_data(struct inode *inode)
3217 {
3218 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3219 }
3220 
3221 static inline int f2fs_has_inline_dots(struct inode *inode)
3222 {
3223 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3224 }
3225 
3226 static inline int f2fs_is_mmap_file(struct inode *inode)
3227 {
3228 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3229 }
3230 
3231 static inline bool f2fs_is_pinned_file(struct inode *inode)
3232 {
3233 	return is_inode_flag_set(inode, FI_PIN_FILE);
3234 }
3235 
3236 static inline bool f2fs_is_atomic_file(struct inode *inode)
3237 {
3238 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3239 }
3240 
3241 static inline bool f2fs_is_cow_file(struct inode *inode)
3242 {
3243 	return is_inode_flag_set(inode, FI_COW_FILE);
3244 }
3245 
3246 static inline bool f2fs_is_first_block_written(struct inode *inode)
3247 {
3248 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3249 }
3250 
3251 static inline bool f2fs_is_drop_cache(struct inode *inode)
3252 {
3253 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3254 }
3255 
3256 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3257 {
3258 	struct f2fs_inode *ri = F2FS_INODE(page);
3259 	int extra_size = get_extra_isize(inode);
3260 
3261 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3262 }
3263 
3264 static inline int f2fs_has_inline_dentry(struct inode *inode)
3265 {
3266 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3267 }
3268 
3269 static inline int is_file(struct inode *inode, int type)
3270 {
3271 	return F2FS_I(inode)->i_advise & type;
3272 }
3273 
3274 static inline void set_file(struct inode *inode, int type)
3275 {
3276 	if (is_file(inode, type))
3277 		return;
3278 	F2FS_I(inode)->i_advise |= type;
3279 	f2fs_mark_inode_dirty_sync(inode, true);
3280 }
3281 
3282 static inline void clear_file(struct inode *inode, int type)
3283 {
3284 	if (!is_file(inode, type))
3285 		return;
3286 	F2FS_I(inode)->i_advise &= ~type;
3287 	f2fs_mark_inode_dirty_sync(inode, true);
3288 }
3289 
3290 static inline bool f2fs_is_time_consistent(struct inode *inode)
3291 {
3292 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3293 		return false;
3294 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3295 		return false;
3296 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3297 		return false;
3298 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3299 						&F2FS_I(inode)->i_crtime))
3300 		return false;
3301 	return true;
3302 }
3303 
3304 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3305 {
3306 	bool ret;
3307 
3308 	if (dsync) {
3309 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3310 
3311 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3312 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3313 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3314 		return ret;
3315 	}
3316 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3317 			file_keep_isize(inode) ||
3318 			i_size_read(inode) & ~PAGE_MASK)
3319 		return false;
3320 
3321 	if (!f2fs_is_time_consistent(inode))
3322 		return false;
3323 
3324 	spin_lock(&F2FS_I(inode)->i_size_lock);
3325 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3326 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3327 
3328 	return ret;
3329 }
3330 
3331 static inline bool f2fs_readonly(struct super_block *sb)
3332 {
3333 	return sb_rdonly(sb);
3334 }
3335 
3336 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3337 {
3338 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3339 }
3340 
3341 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3342 {
3343 	if (len == 1 && name[0] == '.')
3344 		return true;
3345 
3346 	if (len == 2 && name[0] == '.' && name[1] == '.')
3347 		return true;
3348 
3349 	return false;
3350 }
3351 
3352 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3353 					size_t size, gfp_t flags)
3354 {
3355 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3356 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3357 		return NULL;
3358 	}
3359 
3360 	return kmalloc(size, flags);
3361 }
3362 
3363 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3364 					size_t size, gfp_t flags)
3365 {
3366 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3367 }
3368 
3369 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3370 					size_t size, gfp_t flags)
3371 {
3372 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3373 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3374 		return NULL;
3375 	}
3376 
3377 	return kvmalloc(size, flags);
3378 }
3379 
3380 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3381 					size_t size, gfp_t flags)
3382 {
3383 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3384 }
3385 
3386 static inline int get_extra_isize(struct inode *inode)
3387 {
3388 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3389 }
3390 
3391 static inline int get_inline_xattr_addrs(struct inode *inode)
3392 {
3393 	return F2FS_I(inode)->i_inline_xattr_size;
3394 }
3395 
3396 #define f2fs_get_inode_mode(i) \
3397 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3398 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3399 
3400 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3401 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3402 	offsetof(struct f2fs_inode, i_extra_isize))	\
3403 
3404 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3405 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3406 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3407 		sizeof((f2fs_inode)->field))			\
3408 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3409 
3410 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3411 
3412 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3413 
3414 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3415 					block_t blkaddr, int type);
3416 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3417 					block_t blkaddr, int type)
3418 {
3419 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3420 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3421 			 blkaddr, type);
3422 		f2fs_bug_on(sbi, 1);
3423 	}
3424 }
3425 
3426 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3427 {
3428 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3429 			blkaddr == COMPRESS_ADDR)
3430 		return false;
3431 	return true;
3432 }
3433 
3434 /*
3435  * file.c
3436  */
3437 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3438 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3439 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3440 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3441 int f2fs_truncate(struct inode *inode);
3442 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3443 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3444 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3445 		 struct iattr *attr);
3446 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3447 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3448 int f2fs_precache_extents(struct inode *inode);
3449 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3450 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3451 		      struct dentry *dentry, struct fileattr *fa);
3452 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3453 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3454 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3455 int f2fs_pin_file_control(struct inode *inode, bool inc);
3456 
3457 /*
3458  * inode.c
3459  */
3460 void f2fs_set_inode_flags(struct inode *inode);
3461 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3462 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3463 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3464 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3465 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3466 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3467 void f2fs_update_inode_page(struct inode *inode);
3468 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3469 void f2fs_evict_inode(struct inode *inode);
3470 void f2fs_handle_failed_inode(struct inode *inode);
3471 
3472 /*
3473  * namei.c
3474  */
3475 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3476 							bool hot, bool set);
3477 struct dentry *f2fs_get_parent(struct dentry *child);
3478 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3479 		     struct inode **new_inode);
3480 
3481 /*
3482  * dir.c
3483  */
3484 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3485 int f2fs_init_casefolded_name(const struct inode *dir,
3486 			      struct f2fs_filename *fname);
3487 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3488 			int lookup, struct f2fs_filename *fname);
3489 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3490 			struct f2fs_filename *fname);
3491 void f2fs_free_filename(struct f2fs_filename *fname);
3492 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3493 			const struct f2fs_filename *fname, int *max_slots);
3494 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3495 			unsigned int start_pos, struct fscrypt_str *fstr);
3496 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3497 			struct f2fs_dentry_ptr *d);
3498 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3499 			const struct f2fs_filename *fname, struct page *dpage);
3500 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3501 			unsigned int current_depth);
3502 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3503 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3504 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3505 					 const struct f2fs_filename *fname,
3506 					 struct page **res_page);
3507 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3508 			const struct qstr *child, struct page **res_page);
3509 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3510 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3511 			struct page **page);
3512 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3513 			struct page *page, struct inode *inode);
3514 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3515 			  const struct f2fs_filename *fname);
3516 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3517 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3518 			unsigned int bit_pos);
3519 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3520 			struct inode *inode, nid_t ino, umode_t mode);
3521 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3522 			struct inode *inode, nid_t ino, umode_t mode);
3523 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3524 			struct inode *inode, nid_t ino, umode_t mode);
3525 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3526 			struct inode *dir, struct inode *inode);
3527 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3528 bool f2fs_empty_dir(struct inode *dir);
3529 
3530 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3531 {
3532 	if (fscrypt_is_nokey_name(dentry))
3533 		return -ENOKEY;
3534 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3535 				inode, inode->i_ino, inode->i_mode);
3536 }
3537 
3538 /*
3539  * super.c
3540  */
3541 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3542 void f2fs_inode_synced(struct inode *inode);
3543 int f2fs_dquot_initialize(struct inode *inode);
3544 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3545 int f2fs_quota_sync(struct super_block *sb, int type);
3546 loff_t max_file_blocks(struct inode *inode);
3547 void f2fs_quota_off_umount(struct super_block *sb);
3548 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3549 int f2fs_sync_fs(struct super_block *sb, int sync);
3550 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3551 
3552 /*
3553  * hash.c
3554  */
3555 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3556 
3557 /*
3558  * node.c
3559  */
3560 struct node_info;
3561 
3562 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3563 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3564 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3565 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3566 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3567 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3568 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3569 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3570 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3571 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3572 				struct node_info *ni, bool checkpoint_context);
3573 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3574 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3575 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3576 int f2fs_truncate_xattr_node(struct inode *inode);
3577 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3578 					unsigned int seq_id);
3579 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3580 int f2fs_remove_inode_page(struct inode *inode);
3581 struct page *f2fs_new_inode_page(struct inode *inode);
3582 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3583 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3584 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3585 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3586 int f2fs_move_node_page(struct page *node_page, int gc_type);
3587 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3588 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3589 			struct writeback_control *wbc, bool atomic,
3590 			unsigned int *seq_id);
3591 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3592 			struct writeback_control *wbc,
3593 			bool do_balance, enum iostat_type io_type);
3594 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3595 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3596 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3597 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3598 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3599 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3600 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3601 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3602 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3603 			unsigned int segno, struct f2fs_summary_block *sum);
3604 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3605 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3606 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3607 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3608 int __init f2fs_create_node_manager_caches(void);
3609 void f2fs_destroy_node_manager_caches(void);
3610 
3611 /*
3612  * segment.c
3613  */
3614 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3615 int f2fs_commit_atomic_write(struct inode *inode);
3616 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3617 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3618 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3619 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3620 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3621 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3622 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3623 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3624 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3625 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3626 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3627 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3628 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3629 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3630 					struct cp_control *cpc);
3631 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3632 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3633 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3634 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3635 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3636 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3637 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3638 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3639 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3640 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3641 			unsigned int *newseg, bool new_sec, int dir);
3642 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3643 					unsigned int start, unsigned int end);
3644 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3645 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3646 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3647 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3648 					struct cp_control *cpc);
3649 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3650 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3651 					block_t blk_addr);
3652 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3653 						enum iostat_type io_type);
3654 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3655 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3656 			struct f2fs_io_info *fio);
3657 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3658 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3659 			block_t old_blkaddr, block_t new_blkaddr,
3660 			bool recover_curseg, bool recover_newaddr,
3661 			bool from_gc);
3662 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3663 			block_t old_addr, block_t new_addr,
3664 			unsigned char version, bool recover_curseg,
3665 			bool recover_newaddr);
3666 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3667 			block_t old_blkaddr, block_t *new_blkaddr,
3668 			struct f2fs_summary *sum, int type,
3669 			struct f2fs_io_info *fio);
3670 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3671 					block_t blkaddr, unsigned int blkcnt);
3672 void f2fs_wait_on_page_writeback(struct page *page,
3673 			enum page_type type, bool ordered, bool locked);
3674 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3675 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3676 								block_t len);
3677 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3678 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3679 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3680 			unsigned int val, int alloc);
3681 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3682 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3683 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3684 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3685 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3686 int __init f2fs_create_segment_manager_caches(void);
3687 void f2fs_destroy_segment_manager_caches(void);
3688 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3689 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3690 			unsigned int segno);
3691 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3692 			unsigned int segno);
3693 
3694 #define DEF_FRAGMENT_SIZE	4
3695 #define MIN_FRAGMENT_SIZE	1
3696 #define MAX_FRAGMENT_SIZE	512
3697 
3698 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3699 {
3700 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3701 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3702 }
3703 
3704 /*
3705  * checkpoint.c
3706  */
3707 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3708 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3709 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3710 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3711 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3712 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3713 					block_t blkaddr, int type);
3714 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3715 			int type, bool sync);
3716 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3717 							unsigned int ra_blocks);
3718 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3719 			long nr_to_write, enum iostat_type io_type);
3720 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3721 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3722 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3723 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3724 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3725 					unsigned int devidx, int type);
3726 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3727 					unsigned int devidx, int type);
3728 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3729 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3730 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3731 void f2fs_add_orphan_inode(struct inode *inode);
3732 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3733 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3734 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3735 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3736 void f2fs_remove_dirty_inode(struct inode *inode);
3737 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3738 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3739 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3740 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3741 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3742 int __init f2fs_create_checkpoint_caches(void);
3743 void f2fs_destroy_checkpoint_caches(void);
3744 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3745 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3746 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3747 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3748 
3749 /*
3750  * data.c
3751  */
3752 int __init f2fs_init_bioset(void);
3753 void f2fs_destroy_bioset(void);
3754 int f2fs_init_bio_entry_cache(void);
3755 void f2fs_destroy_bio_entry_cache(void);
3756 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3757 				struct bio *bio, enum page_type type);
3758 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3759 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3760 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3761 				struct inode *inode, struct page *page,
3762 				nid_t ino, enum page_type type);
3763 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3764 					struct bio **bio, struct page *page);
3765 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3766 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3767 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3768 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3769 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3770 		block_t blk_addr, sector_t *sector);
3771 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3772 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3773 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3774 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3775 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3776 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3777 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3778 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3779 			int op_flags, bool for_write);
3780 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3781 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3782 			bool for_write);
3783 struct page *f2fs_get_new_data_page(struct inode *inode,
3784 			struct page *ipage, pgoff_t index, bool new_i_size);
3785 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3786 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3787 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3788 			int create, int flag);
3789 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3790 			u64 start, u64 len);
3791 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3792 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3793 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3794 int f2fs_write_single_data_page(struct page *page, int *submitted,
3795 				struct bio **bio, sector_t *last_block,
3796 				struct writeback_control *wbc,
3797 				enum iostat_type io_type,
3798 				int compr_blocks, bool allow_balance);
3799 void f2fs_write_failed(struct inode *inode, loff_t to);
3800 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3801 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3802 #ifdef CONFIG_MIGRATION
3803 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3804 			struct page *page, enum migrate_mode mode);
3805 #endif
3806 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3807 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3808 int f2fs_init_post_read_processing(void);
3809 void f2fs_destroy_post_read_processing(void);
3810 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3811 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3812 extern const struct iomap_ops f2fs_iomap_ops;
3813 
3814 /*
3815  * gc.c
3816  */
3817 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3818 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3819 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3820 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3821 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3822 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3823 int __init f2fs_create_garbage_collection_cache(void);
3824 void f2fs_destroy_garbage_collection_cache(void);
3825 
3826 /*
3827  * recovery.c
3828  */
3829 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3830 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3831 int __init f2fs_create_recovery_cache(void);
3832 void f2fs_destroy_recovery_cache(void);
3833 
3834 /*
3835  * debug.c
3836  */
3837 #ifdef CONFIG_F2FS_STAT_FS
3838 struct f2fs_stat_info {
3839 	struct list_head stat_list;
3840 	struct f2fs_sb_info *sbi;
3841 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3842 	int main_area_segs, main_area_sections, main_area_zones;
3843 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3844 	unsigned long long hit_total, total_ext;
3845 	int ext_tree, zombie_tree, ext_node;
3846 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3847 	int ndirty_data, ndirty_qdata;
3848 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3849 	int nats, dirty_nats, sits, dirty_sits;
3850 	int free_nids, avail_nids, alloc_nids;
3851 	int total_count, utilization;
3852 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3853 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3854 	int nr_dio_read, nr_dio_write;
3855 	unsigned int io_skip_bggc, other_skip_bggc;
3856 	int nr_flushing, nr_flushed, flush_list_empty;
3857 	int nr_discarding, nr_discarded;
3858 	int nr_discard_cmd;
3859 	unsigned int undiscard_blks;
3860 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3861 	unsigned int cur_ckpt_time, peak_ckpt_time;
3862 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3863 	int compr_inode;
3864 	unsigned long long compr_blocks;
3865 	int aw_cnt, max_aw_cnt;
3866 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3867 	unsigned int bimodal, avg_vblocks;
3868 	int util_free, util_valid, util_invalid;
3869 	int rsvd_segs, overp_segs;
3870 	int dirty_count, node_pages, meta_pages, compress_pages;
3871 	int compress_page_hit;
3872 	int prefree_count, call_count, cp_count, bg_cp_count;
3873 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3874 	int bg_node_segs, bg_data_segs;
3875 	int tot_blks, data_blks, node_blks;
3876 	int bg_data_blks, bg_node_blks;
3877 	int curseg[NR_CURSEG_TYPE];
3878 	int cursec[NR_CURSEG_TYPE];
3879 	int curzone[NR_CURSEG_TYPE];
3880 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3881 	unsigned int full_seg[NR_CURSEG_TYPE];
3882 	unsigned int valid_blks[NR_CURSEG_TYPE];
3883 
3884 	unsigned int meta_count[META_MAX];
3885 	unsigned int segment_count[2];
3886 	unsigned int block_count[2];
3887 	unsigned int inplace_count;
3888 	unsigned long long base_mem, cache_mem, page_mem;
3889 };
3890 
3891 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3892 {
3893 	return (struct f2fs_stat_info *)sbi->stat_info;
3894 }
3895 
3896 #define stat_inc_cp_count(si)		((si)->cp_count++)
3897 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3898 #define stat_inc_call_count(si)		((si)->call_count++)
3899 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3900 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3901 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3902 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3903 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3904 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3905 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3906 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3907 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3908 #define stat_inc_inline_xattr(inode)					\
3909 	do {								\
3910 		if (f2fs_has_inline_xattr(inode))			\
3911 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3912 	} while (0)
3913 #define stat_dec_inline_xattr(inode)					\
3914 	do {								\
3915 		if (f2fs_has_inline_xattr(inode))			\
3916 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3917 	} while (0)
3918 #define stat_inc_inline_inode(inode)					\
3919 	do {								\
3920 		if (f2fs_has_inline_data(inode))			\
3921 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3922 	} while (0)
3923 #define stat_dec_inline_inode(inode)					\
3924 	do {								\
3925 		if (f2fs_has_inline_data(inode))			\
3926 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3927 	} while (0)
3928 #define stat_inc_inline_dir(inode)					\
3929 	do {								\
3930 		if (f2fs_has_inline_dentry(inode))			\
3931 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3932 	} while (0)
3933 #define stat_dec_inline_dir(inode)					\
3934 	do {								\
3935 		if (f2fs_has_inline_dentry(inode))			\
3936 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3937 	} while (0)
3938 #define stat_inc_compr_inode(inode)					\
3939 	do {								\
3940 		if (f2fs_compressed_file(inode))			\
3941 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3942 	} while (0)
3943 #define stat_dec_compr_inode(inode)					\
3944 	do {								\
3945 		if (f2fs_compressed_file(inode))			\
3946 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3947 	} while (0)
3948 #define stat_add_compr_blocks(inode, blocks)				\
3949 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3950 #define stat_sub_compr_blocks(inode, blocks)				\
3951 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3952 #define stat_inc_meta_count(sbi, blkaddr)				\
3953 	do {								\
3954 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3955 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3956 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3957 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3958 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3959 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3960 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3961 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3962 	} while (0)
3963 #define stat_inc_seg_type(sbi, curseg)					\
3964 		((sbi)->segment_count[(curseg)->alloc_type]++)
3965 #define stat_inc_block_count(sbi, curseg)				\
3966 		((sbi)->block_count[(curseg)->alloc_type]++)
3967 #define stat_inc_inplace_blocks(sbi)					\
3968 		(atomic_inc(&(sbi)->inplace_count))
3969 #define stat_update_max_atomic_write(inode)				\
3970 	do {								\
3971 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3972 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3973 		if (cur > max)						\
3974 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3975 	} while (0)
3976 #define stat_inc_seg_count(sbi, type, gc_type)				\
3977 	do {								\
3978 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3979 		si->tot_segs++;						\
3980 		if ((type) == SUM_TYPE_DATA) {				\
3981 			si->data_segs++;				\
3982 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3983 		} else {						\
3984 			si->node_segs++;				\
3985 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3986 		}							\
3987 	} while (0)
3988 
3989 #define stat_inc_tot_blk_count(si, blks)				\
3990 	((si)->tot_blks += (blks))
3991 
3992 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3993 	do {								\
3994 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3995 		stat_inc_tot_blk_count(si, blks);			\
3996 		si->data_blks += (blks);				\
3997 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3998 	} while (0)
3999 
4000 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4001 	do {								\
4002 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4003 		stat_inc_tot_blk_count(si, blks);			\
4004 		si->node_blks += (blks);				\
4005 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4006 	} while (0)
4007 
4008 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4009 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4010 void __init f2fs_create_root_stats(void);
4011 void f2fs_destroy_root_stats(void);
4012 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4013 #else
4014 #define stat_inc_cp_count(si)				do { } while (0)
4015 #define stat_inc_bg_cp_count(si)			do { } while (0)
4016 #define stat_inc_call_count(si)				do { } while (0)
4017 #define stat_inc_bggc_count(si)				do { } while (0)
4018 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4019 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4020 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4021 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4022 #define stat_inc_total_hit(sbi)				do { } while (0)
4023 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
4024 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4025 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
4026 #define stat_inc_inline_xattr(inode)			do { } while (0)
4027 #define stat_dec_inline_xattr(inode)			do { } while (0)
4028 #define stat_inc_inline_inode(inode)			do { } while (0)
4029 #define stat_dec_inline_inode(inode)			do { } while (0)
4030 #define stat_inc_inline_dir(inode)			do { } while (0)
4031 #define stat_dec_inline_dir(inode)			do { } while (0)
4032 #define stat_inc_compr_inode(inode)			do { } while (0)
4033 #define stat_dec_compr_inode(inode)			do { } while (0)
4034 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4035 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4036 #define stat_update_max_atomic_write(inode)		do { } while (0)
4037 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4038 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4039 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4040 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4041 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4042 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4043 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4044 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4045 
4046 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4047 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4048 static inline void __init f2fs_create_root_stats(void) { }
4049 static inline void f2fs_destroy_root_stats(void) { }
4050 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4051 #endif
4052 
4053 extern const struct file_operations f2fs_dir_operations;
4054 extern const struct file_operations f2fs_file_operations;
4055 extern const struct inode_operations f2fs_file_inode_operations;
4056 extern const struct address_space_operations f2fs_dblock_aops;
4057 extern const struct address_space_operations f2fs_node_aops;
4058 extern const struct address_space_operations f2fs_meta_aops;
4059 extern const struct inode_operations f2fs_dir_inode_operations;
4060 extern const struct inode_operations f2fs_symlink_inode_operations;
4061 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4062 extern const struct inode_operations f2fs_special_inode_operations;
4063 extern struct kmem_cache *f2fs_inode_entry_slab;
4064 
4065 /*
4066  * inline.c
4067  */
4068 bool f2fs_may_inline_data(struct inode *inode);
4069 bool f2fs_sanity_check_inline_data(struct inode *inode);
4070 bool f2fs_may_inline_dentry(struct inode *inode);
4071 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4072 void f2fs_truncate_inline_inode(struct inode *inode,
4073 						struct page *ipage, u64 from);
4074 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4075 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4076 int f2fs_convert_inline_inode(struct inode *inode);
4077 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4078 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4079 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4080 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4081 					const struct f2fs_filename *fname,
4082 					struct page **res_page);
4083 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4084 			struct page *ipage);
4085 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4086 			struct inode *inode, nid_t ino, umode_t mode);
4087 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4088 				struct page *page, struct inode *dir,
4089 				struct inode *inode);
4090 bool f2fs_empty_inline_dir(struct inode *dir);
4091 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4092 			struct fscrypt_str *fstr);
4093 int f2fs_inline_data_fiemap(struct inode *inode,
4094 			struct fiemap_extent_info *fieinfo,
4095 			__u64 start, __u64 len);
4096 
4097 /*
4098  * shrinker.c
4099  */
4100 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4101 			struct shrink_control *sc);
4102 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4103 			struct shrink_control *sc);
4104 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4105 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4106 
4107 /*
4108  * extent_cache.c
4109  */
4110 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4111 				struct rb_entry *cached_re, unsigned int ofs);
4112 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4113 				struct rb_root_cached *root,
4114 				struct rb_node **parent,
4115 				unsigned long long key, bool *left_most);
4116 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4117 				struct rb_root_cached *root,
4118 				struct rb_node **parent,
4119 				unsigned int ofs, bool *leftmost);
4120 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4121 		struct rb_entry *cached_re, unsigned int ofs,
4122 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4123 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4124 		bool force, bool *leftmost);
4125 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4126 				struct rb_root_cached *root, bool check_key);
4127 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4128 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4129 void f2fs_drop_extent_tree(struct inode *inode);
4130 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4131 void f2fs_destroy_extent_tree(struct inode *inode);
4132 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4133 			struct extent_info *ei);
4134 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4135 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4136 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4137 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4138 int __init f2fs_create_extent_cache(void);
4139 void f2fs_destroy_extent_cache(void);
4140 
4141 /*
4142  * sysfs.c
4143  */
4144 #define MIN_RA_MUL	2
4145 #define MAX_RA_MUL	256
4146 
4147 int __init f2fs_init_sysfs(void);
4148 void f2fs_exit_sysfs(void);
4149 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4150 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4151 
4152 /* verity.c */
4153 extern const struct fsverity_operations f2fs_verityops;
4154 
4155 /*
4156  * crypto support
4157  */
4158 static inline bool f2fs_encrypted_file(struct inode *inode)
4159 {
4160 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4161 }
4162 
4163 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4164 {
4165 #ifdef CONFIG_FS_ENCRYPTION
4166 	file_set_encrypt(inode);
4167 	f2fs_set_inode_flags(inode);
4168 #endif
4169 }
4170 
4171 /*
4172  * Returns true if the reads of the inode's data need to undergo some
4173  * postprocessing step, like decryption or authenticity verification.
4174  */
4175 static inline bool f2fs_post_read_required(struct inode *inode)
4176 {
4177 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4178 		f2fs_compressed_file(inode);
4179 }
4180 
4181 /*
4182  * compress.c
4183  */
4184 #ifdef CONFIG_F2FS_FS_COMPRESSION
4185 bool f2fs_is_compressed_page(struct page *page);
4186 struct page *f2fs_compress_control_page(struct page *page);
4187 int f2fs_prepare_compress_overwrite(struct inode *inode,
4188 			struct page **pagep, pgoff_t index, void **fsdata);
4189 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4190 					pgoff_t index, unsigned copied);
4191 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4192 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4193 bool f2fs_is_compress_backend_ready(struct inode *inode);
4194 int f2fs_init_compress_mempool(void);
4195 void f2fs_destroy_compress_mempool(void);
4196 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4197 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4198 				block_t blkaddr, bool in_task);
4199 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4200 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4201 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct pagevec *pvec,
4202 				int index, int nr_pages, bool uptodate);
4203 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4204 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4205 int f2fs_write_multi_pages(struct compress_ctx *cc,
4206 						int *submitted,
4207 						struct writeback_control *wbc,
4208 						enum iostat_type io_type);
4209 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4210 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4211 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4212 				unsigned int c_len);
4213 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4214 				unsigned nr_pages, sector_t *last_block_in_bio,
4215 				bool is_readahead, bool for_write);
4216 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4217 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4218 				bool in_task);
4219 void f2fs_put_page_dic(struct page *page, bool in_task);
4220 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4221 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4222 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4223 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4224 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4225 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4226 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4227 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4228 int __init f2fs_init_compress_cache(void);
4229 void f2fs_destroy_compress_cache(void);
4230 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4231 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4232 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4233 						nid_t ino, block_t blkaddr);
4234 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4235 								block_t blkaddr);
4236 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4237 #define inc_compr_inode_stat(inode)					\
4238 	do {								\
4239 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4240 		sbi->compr_new_inode++;					\
4241 	} while (0)
4242 #define add_compr_block_stat(inode, blocks)				\
4243 	do {								\
4244 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4245 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4246 		sbi->compr_written_block += blocks;			\
4247 		sbi->compr_saved_block += diff;				\
4248 	} while (0)
4249 #else
4250 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4251 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4252 {
4253 	if (!f2fs_compressed_file(inode))
4254 		return true;
4255 	/* not support compression */
4256 	return false;
4257 }
4258 static inline struct page *f2fs_compress_control_page(struct page *page)
4259 {
4260 	WARN_ON_ONCE(1);
4261 	return ERR_PTR(-EINVAL);
4262 }
4263 static inline int f2fs_init_compress_mempool(void) { return 0; }
4264 static inline void f2fs_destroy_compress_mempool(void) { }
4265 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4266 				bool in_task) { }
4267 static inline void f2fs_end_read_compressed_page(struct page *page,
4268 				bool failed, block_t blkaddr, bool in_task)
4269 {
4270 	WARN_ON_ONCE(1);
4271 }
4272 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4273 {
4274 	WARN_ON_ONCE(1);
4275 }
4276 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4277 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4278 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4279 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4280 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4281 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4282 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4283 static inline void f2fs_destroy_compress_cache(void) { }
4284 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4285 				block_t blkaddr) { }
4286 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4287 				struct page *page, nid_t ino, block_t blkaddr) { }
4288 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4289 				struct page *page, block_t blkaddr) { return false; }
4290 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4291 							nid_t ino) { }
4292 #define inc_compr_inode_stat(inode)		do { } while (0)
4293 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4294 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4295 				unsigned int c_len) { }
4296 #endif
4297 
4298 static inline int set_compress_context(struct inode *inode)
4299 {
4300 #ifdef CONFIG_F2FS_FS_COMPRESSION
4301 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4302 
4303 	F2FS_I(inode)->i_compress_algorithm =
4304 			F2FS_OPTION(sbi).compress_algorithm;
4305 	F2FS_I(inode)->i_log_cluster_size =
4306 			F2FS_OPTION(sbi).compress_log_size;
4307 	F2FS_I(inode)->i_compress_flag =
4308 			F2FS_OPTION(sbi).compress_chksum ?
4309 				1 << COMPRESS_CHKSUM : 0;
4310 	F2FS_I(inode)->i_cluster_size =
4311 			1 << F2FS_I(inode)->i_log_cluster_size;
4312 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4313 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4314 			F2FS_OPTION(sbi).compress_level)
4315 		F2FS_I(inode)->i_compress_flag |=
4316 				F2FS_OPTION(sbi).compress_level <<
4317 				COMPRESS_LEVEL_OFFSET;
4318 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4319 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4320 	stat_inc_compr_inode(inode);
4321 	inc_compr_inode_stat(inode);
4322 	f2fs_mark_inode_dirty_sync(inode, true);
4323 	return 0;
4324 #else
4325 	return -EOPNOTSUPP;
4326 #endif
4327 }
4328 
4329 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4330 {
4331 	struct f2fs_inode_info *fi = F2FS_I(inode);
4332 
4333 	if (!f2fs_compressed_file(inode))
4334 		return true;
4335 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4336 		return false;
4337 
4338 	fi->i_flags &= ~F2FS_COMPR_FL;
4339 	stat_dec_compr_inode(inode);
4340 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4341 	f2fs_mark_inode_dirty_sync(inode, true);
4342 	return true;
4343 }
4344 
4345 #define F2FS_FEATURE_FUNCS(name, flagname) \
4346 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4347 { \
4348 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4349 }
4350 
4351 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4352 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4353 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4354 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4355 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4356 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4357 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4358 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4359 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4360 F2FS_FEATURE_FUNCS(verity, VERITY);
4361 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4362 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4363 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4364 F2FS_FEATURE_FUNCS(readonly, RO);
4365 
4366 static inline bool f2fs_may_extent_tree(struct inode *inode)
4367 {
4368 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4369 
4370 	if (!test_opt(sbi, EXTENT_CACHE) ||
4371 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4372 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4373 			 !f2fs_sb_has_readonly(sbi)))
4374 		return false;
4375 
4376 	/*
4377 	 * for recovered files during mount do not create extents
4378 	 * if shrinker is not registered.
4379 	 */
4380 	if (list_empty(&sbi->s_list))
4381 		return false;
4382 
4383 	return S_ISREG(inode->i_mode);
4384 }
4385 
4386 #ifdef CONFIG_BLK_DEV_ZONED
4387 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4388 				    block_t blkaddr)
4389 {
4390 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4391 
4392 	return test_bit(zno, FDEV(devi).blkz_seq);
4393 }
4394 #endif
4395 
4396 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4397 {
4398 	return f2fs_sb_has_blkzoned(sbi);
4399 }
4400 
4401 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4402 {
4403 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4404 }
4405 
4406 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4407 {
4408 	int i;
4409 
4410 	if (!f2fs_is_multi_device(sbi))
4411 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4412 
4413 	for (i = 0; i < sbi->s_ndevs; i++)
4414 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4415 			return true;
4416 	return false;
4417 }
4418 
4419 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4420 {
4421 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4422 					f2fs_hw_should_discard(sbi);
4423 }
4424 
4425 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4426 {
4427 	int i;
4428 
4429 	if (!f2fs_is_multi_device(sbi))
4430 		return bdev_read_only(sbi->sb->s_bdev);
4431 
4432 	for (i = 0; i < sbi->s_ndevs; i++)
4433 		if (bdev_read_only(FDEV(i).bdev))
4434 			return true;
4435 	return false;
4436 }
4437 
4438 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4439 {
4440 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4441 }
4442 
4443 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4444 {
4445 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4446 }
4447 
4448 static inline bool f2fs_may_compress(struct inode *inode)
4449 {
4450 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4451 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4452 		return false;
4453 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4454 }
4455 
4456 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4457 						u64 blocks, bool add)
4458 {
4459 	struct f2fs_inode_info *fi = F2FS_I(inode);
4460 	int diff = fi->i_cluster_size - blocks;
4461 
4462 	/* don't update i_compr_blocks if saved blocks were released */
4463 	if (!add && !atomic_read(&fi->i_compr_blocks))
4464 		return;
4465 
4466 	if (add) {
4467 		atomic_add(diff, &fi->i_compr_blocks);
4468 		stat_add_compr_blocks(inode, diff);
4469 	} else {
4470 		atomic_sub(diff, &fi->i_compr_blocks);
4471 		stat_sub_compr_blocks(inode, diff);
4472 	}
4473 	f2fs_mark_inode_dirty_sync(inode, true);
4474 }
4475 
4476 static inline int block_unaligned_IO(struct inode *inode,
4477 				struct kiocb *iocb, struct iov_iter *iter)
4478 {
4479 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4480 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4481 	loff_t offset = iocb->ki_pos;
4482 	unsigned long align = offset | iov_iter_alignment(iter);
4483 
4484 	return align & blocksize_mask;
4485 }
4486 
4487 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4488 								int flag)
4489 {
4490 	if (!f2fs_is_multi_device(sbi))
4491 		return false;
4492 	if (flag != F2FS_GET_BLOCK_DIO)
4493 		return false;
4494 	return sbi->aligned_blksize;
4495 }
4496 
4497 static inline bool f2fs_force_buffered_io(struct inode *inode,
4498 				struct kiocb *iocb, struct iov_iter *iter)
4499 {
4500 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4501 	int rw = iov_iter_rw(iter);
4502 
4503 	if (!fscrypt_dio_supported(iocb, iter))
4504 		return true;
4505 	if (fsverity_active(inode))
4506 		return true;
4507 	if (f2fs_compressed_file(inode))
4508 		return true;
4509 
4510 	/* disallow direct IO if any of devices has unaligned blksize */
4511 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4512 		return true;
4513 
4514 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4515 		if (block_unaligned_IO(inode, iocb, iter))
4516 			return true;
4517 		if (F2FS_IO_ALIGNED(sbi))
4518 			return true;
4519 	}
4520 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4521 		return true;
4522 
4523 	return false;
4524 }
4525 
4526 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4527 {
4528 	return fsverity_active(inode) &&
4529 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4530 }
4531 
4532 #ifdef CONFIG_F2FS_FAULT_INJECTION
4533 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4534 							unsigned int type);
4535 #else
4536 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4537 #endif
4538 
4539 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4540 {
4541 #ifdef CONFIG_QUOTA
4542 	if (f2fs_sb_has_quota_ino(sbi))
4543 		return true;
4544 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4545 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4546 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4547 		return true;
4548 #endif
4549 	return false;
4550 }
4551 
4552 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4553 {
4554 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4555 }
4556 
4557 static inline void f2fs_io_schedule_timeout(long timeout)
4558 {
4559 	set_current_state(TASK_UNINTERRUPTIBLE);
4560 	io_schedule_timeout(timeout);
4561 }
4562 
4563 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4564 					enum page_type type)
4565 {
4566 	if (unlikely(f2fs_cp_error(sbi)))
4567 		return;
4568 
4569 	if (ofs == sbi->page_eio_ofs[type]) {
4570 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4571 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4572 	} else {
4573 		sbi->page_eio_ofs[type] = ofs;
4574 		sbi->page_eio_cnt[type] = 0;
4575 	}
4576 }
4577 
4578 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4579 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4580 
4581 #endif /* _LINUX_F2FS_H */
4582