1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 23 #ifdef CONFIG_F2FS_CHECK_FS 24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y) 26 #else 27 #define f2fs_bug_on(sbi, condition) \ 28 do { \ 29 if (unlikely(condition)) { \ 30 WARN_ON(1); \ 31 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 32 } \ 33 } while (0) 34 #define f2fs_down_write(x, y) down_write(x) 35 #endif 36 37 /* 38 * For mount options 39 */ 40 #define F2FS_MOUNT_BG_GC 0x00000001 41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 42 #define F2FS_MOUNT_DISCARD 0x00000004 43 #define F2FS_MOUNT_NOHEAP 0x00000008 44 #define F2FS_MOUNT_XATTR_USER 0x00000010 45 #define F2FS_MOUNT_POSIX_ACL 0x00000020 46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 48 #define F2FS_MOUNT_INLINE_DATA 0x00000100 49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 51 #define F2FS_MOUNT_NOBARRIER 0x00000800 52 #define F2FS_MOUNT_FASTBOOT 0x00001000 53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 54 55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 58 59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 60 typecheck(unsigned long long, b) && \ 61 ((long long)((a) - (b)) > 0)) 62 63 typedef u32 block_t; /* 64 * should not change u32, since it is the on-disk block 65 * address format, __le32. 66 */ 67 typedef u32 nid_t; 68 69 struct f2fs_mount_info { 70 unsigned int opt; 71 }; 72 73 #define CRCPOLY_LE 0xedb88320 74 75 static inline __u32 f2fs_crc32(void *buf, size_t len) 76 { 77 unsigned char *p = (unsigned char *)buf; 78 __u32 crc = F2FS_SUPER_MAGIC; 79 int i; 80 81 while (len--) { 82 crc ^= *p++; 83 for (i = 0; i < 8; i++) 84 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 85 } 86 return crc; 87 } 88 89 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 90 { 91 return f2fs_crc32(buf, buf_size) == blk_crc; 92 } 93 94 /* 95 * For checkpoint manager 96 */ 97 enum { 98 NAT_BITMAP, 99 SIT_BITMAP 100 }; 101 102 enum { 103 CP_UMOUNT, 104 CP_FASTBOOT, 105 CP_SYNC, 106 CP_RECOVERY, 107 CP_DISCARD, 108 }; 109 110 #define DEF_BATCHED_TRIM_SECTIONS 32 111 #define BATCHED_TRIM_SEGMENTS(sbi) \ 112 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 113 114 struct cp_control { 115 int reason; 116 __u64 trim_start; 117 __u64 trim_end; 118 __u64 trim_minlen; 119 __u64 trimmed; 120 }; 121 122 /* 123 * For CP/NAT/SIT/SSA readahead 124 */ 125 enum { 126 META_CP, 127 META_NAT, 128 META_SIT, 129 META_SSA, 130 META_POR, 131 }; 132 133 /* for the list of ino */ 134 enum { 135 ORPHAN_INO, /* for orphan ino list */ 136 APPEND_INO, /* for append ino list */ 137 UPDATE_INO, /* for update ino list */ 138 MAX_INO_ENTRY, /* max. list */ 139 }; 140 141 struct ino_entry { 142 struct list_head list; /* list head */ 143 nid_t ino; /* inode number */ 144 }; 145 146 /* 147 * for the list of directory inodes or gc inodes. 148 * NOTE: there are two slab users for this structure, if we add/modify/delete 149 * fields in structure for one of slab users, it may affect fields or size of 150 * other one, in this condition, it's better to split both of slab and related 151 * data structure. 152 */ 153 struct inode_entry { 154 struct list_head list; /* list head */ 155 struct inode *inode; /* vfs inode pointer */ 156 }; 157 158 /* for the list of blockaddresses to be discarded */ 159 struct discard_entry { 160 struct list_head list; /* list head */ 161 block_t blkaddr; /* block address to be discarded */ 162 int len; /* # of consecutive blocks of the discard */ 163 }; 164 165 /* for the list of fsync inodes, used only during recovery */ 166 struct fsync_inode_entry { 167 struct list_head list; /* list head */ 168 struct inode *inode; /* vfs inode pointer */ 169 block_t blkaddr; /* block address locating the last fsync */ 170 block_t last_dentry; /* block address locating the last dentry */ 171 block_t last_inode; /* block address locating the last inode */ 172 }; 173 174 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 175 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 176 177 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 178 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 179 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 180 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 181 182 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum)) 183 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum)) 184 185 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 186 { 187 int before = nats_in_cursum(rs); 188 rs->n_nats = cpu_to_le16(before + i); 189 return before; 190 } 191 192 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 193 { 194 int before = sits_in_cursum(rs); 195 rs->n_sits = cpu_to_le16(before + i); 196 return before; 197 } 198 199 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size, 200 int type) 201 { 202 if (type == NAT_JOURNAL) 203 return size <= MAX_NAT_JENTRIES(sum); 204 return size <= MAX_SIT_JENTRIES(sum); 205 } 206 207 /* 208 * ioctl commands 209 */ 210 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 211 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 212 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 213 214 #define F2FS_IOCTL_MAGIC 0xf5 215 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 216 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 217 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 218 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 219 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 220 221 /* 222 * should be same as XFS_IOC_GOINGDOWN. 223 * Flags for going down operation used by FS_IOC_GOINGDOWN 224 */ 225 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 226 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 227 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 228 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 229 230 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 231 /* 232 * ioctl commands in 32 bit emulation 233 */ 234 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 235 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 236 #endif 237 238 /* 239 * For INODE and NODE manager 240 */ 241 /* for directory operations */ 242 struct f2fs_dentry_ptr { 243 const void *bitmap; 244 struct f2fs_dir_entry *dentry; 245 __u8 (*filename)[F2FS_SLOT_LEN]; 246 int max; 247 }; 248 249 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d, 250 void *src, int type) 251 { 252 if (type == 1) { 253 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 254 d->max = NR_DENTRY_IN_BLOCK; 255 d->bitmap = &t->dentry_bitmap; 256 d->dentry = t->dentry; 257 d->filename = t->filename; 258 } else { 259 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 260 d->max = NR_INLINE_DENTRY; 261 d->bitmap = &t->dentry_bitmap; 262 d->dentry = t->dentry; 263 d->filename = t->filename; 264 } 265 } 266 267 /* 268 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 269 * as its node offset to distinguish from index node blocks. 270 * But some bits are used to mark the node block. 271 */ 272 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 273 >> OFFSET_BIT_SHIFT) 274 enum { 275 ALLOC_NODE, /* allocate a new node page if needed */ 276 LOOKUP_NODE, /* look up a node without readahead */ 277 LOOKUP_NODE_RA, /* 278 * look up a node with readahead called 279 * by get_data_block. 280 */ 281 }; 282 283 #define F2FS_LINK_MAX 32000 /* maximum link count per file */ 284 285 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 286 287 /* vector size for gang look-up from extent cache that consists of radix tree */ 288 #define EXT_TREE_VEC_SIZE 64 289 290 /* for in-memory extent cache entry */ 291 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 292 293 /* number of extent info in extent cache we try to shrink */ 294 #define EXTENT_CACHE_SHRINK_NUMBER 128 295 296 struct extent_info { 297 unsigned int fofs; /* start offset in a file */ 298 u32 blk; /* start block address of the extent */ 299 unsigned int len; /* length of the extent */ 300 }; 301 302 struct extent_node { 303 struct rb_node rb_node; /* rb node located in rb-tree */ 304 struct list_head list; /* node in global extent list of sbi */ 305 struct extent_info ei; /* extent info */ 306 }; 307 308 struct extent_tree { 309 nid_t ino; /* inode number */ 310 struct rb_root root; /* root of extent info rb-tree */ 311 struct extent_node *cached_en; /* recently accessed extent node */ 312 rwlock_t lock; /* protect extent info rb-tree */ 313 atomic_t refcount; /* reference count of rb-tree */ 314 unsigned int count; /* # of extent node in rb-tree*/ 315 }; 316 317 /* 318 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 319 */ 320 #define FADVISE_COLD_BIT 0x01 321 #define FADVISE_LOST_PINO_BIT 0x02 322 323 #define DEF_DIR_LEVEL 0 324 325 struct f2fs_inode_info { 326 struct inode vfs_inode; /* serve a vfs inode */ 327 unsigned long i_flags; /* keep an inode flags for ioctl */ 328 unsigned char i_advise; /* use to give file attribute hints */ 329 unsigned char i_dir_level; /* use for dentry level for large dir */ 330 unsigned int i_current_depth; /* use only in directory structure */ 331 unsigned int i_pino; /* parent inode number */ 332 umode_t i_acl_mode; /* keep file acl mode temporarily */ 333 334 /* Use below internally in f2fs*/ 335 unsigned long flags; /* use to pass per-file flags */ 336 struct rw_semaphore i_sem; /* protect fi info */ 337 atomic_t dirty_pages; /* # of dirty pages */ 338 f2fs_hash_t chash; /* hash value of given file name */ 339 unsigned int clevel; /* maximum level of given file name */ 340 nid_t i_xattr_nid; /* node id that contains xattrs */ 341 unsigned long long xattr_ver; /* cp version of xattr modification */ 342 struct extent_info ext; /* in-memory extent cache entry */ 343 rwlock_t ext_lock; /* rwlock for single extent cache */ 344 struct inode_entry *dirty_dir; /* the pointer of dirty dir */ 345 346 struct radix_tree_root inmem_root; /* radix tree for inmem pages */ 347 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 348 struct mutex inmem_lock; /* lock for inmemory pages */ 349 }; 350 351 static inline void get_extent_info(struct extent_info *ext, 352 struct f2fs_extent i_ext) 353 { 354 ext->fofs = le32_to_cpu(i_ext.fofs); 355 ext->blk = le32_to_cpu(i_ext.blk); 356 ext->len = le32_to_cpu(i_ext.len); 357 } 358 359 static inline void set_raw_extent(struct extent_info *ext, 360 struct f2fs_extent *i_ext) 361 { 362 i_ext->fofs = cpu_to_le32(ext->fofs); 363 i_ext->blk = cpu_to_le32(ext->blk); 364 i_ext->len = cpu_to_le32(ext->len); 365 } 366 367 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 368 u32 blk, unsigned int len) 369 { 370 ei->fofs = fofs; 371 ei->blk = blk; 372 ei->len = len; 373 } 374 375 static inline bool __is_extent_same(struct extent_info *ei1, 376 struct extent_info *ei2) 377 { 378 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 379 ei1->len == ei2->len); 380 } 381 382 static inline bool __is_extent_mergeable(struct extent_info *back, 383 struct extent_info *front) 384 { 385 return (back->fofs + back->len == front->fofs && 386 back->blk + back->len == front->blk); 387 } 388 389 static inline bool __is_back_mergeable(struct extent_info *cur, 390 struct extent_info *back) 391 { 392 return __is_extent_mergeable(back, cur); 393 } 394 395 static inline bool __is_front_mergeable(struct extent_info *cur, 396 struct extent_info *front) 397 { 398 return __is_extent_mergeable(cur, front); 399 } 400 401 struct f2fs_nm_info { 402 block_t nat_blkaddr; /* base disk address of NAT */ 403 nid_t max_nid; /* maximum possible node ids */ 404 nid_t available_nids; /* maximum available node ids */ 405 nid_t next_scan_nid; /* the next nid to be scanned */ 406 unsigned int ram_thresh; /* control the memory footprint */ 407 408 /* NAT cache management */ 409 struct radix_tree_root nat_root;/* root of the nat entry cache */ 410 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 411 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 412 struct list_head nat_entries; /* cached nat entry list (clean) */ 413 unsigned int nat_cnt; /* the # of cached nat entries */ 414 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 415 416 /* free node ids management */ 417 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 418 struct list_head free_nid_list; /* a list for free nids */ 419 spinlock_t free_nid_list_lock; /* protect free nid list */ 420 unsigned int fcnt; /* the number of free node id */ 421 struct mutex build_lock; /* lock for build free nids */ 422 423 /* for checkpoint */ 424 char *nat_bitmap; /* NAT bitmap pointer */ 425 int bitmap_size; /* bitmap size */ 426 }; 427 428 /* 429 * this structure is used as one of function parameters. 430 * all the information are dedicated to a given direct node block determined 431 * by the data offset in a file. 432 */ 433 struct dnode_of_data { 434 struct inode *inode; /* vfs inode pointer */ 435 struct page *inode_page; /* its inode page, NULL is possible */ 436 struct page *node_page; /* cached direct node page */ 437 nid_t nid; /* node id of the direct node block */ 438 unsigned int ofs_in_node; /* data offset in the node page */ 439 bool inode_page_locked; /* inode page is locked or not */ 440 block_t data_blkaddr; /* block address of the node block */ 441 }; 442 443 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 444 struct page *ipage, struct page *npage, nid_t nid) 445 { 446 memset(dn, 0, sizeof(*dn)); 447 dn->inode = inode; 448 dn->inode_page = ipage; 449 dn->node_page = npage; 450 dn->nid = nid; 451 } 452 453 /* 454 * For SIT manager 455 * 456 * By default, there are 6 active log areas across the whole main area. 457 * When considering hot and cold data separation to reduce cleaning overhead, 458 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 459 * respectively. 460 * In the current design, you should not change the numbers intentionally. 461 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 462 * logs individually according to the underlying devices. (default: 6) 463 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 464 * data and 8 for node logs. 465 */ 466 #define NR_CURSEG_DATA_TYPE (3) 467 #define NR_CURSEG_NODE_TYPE (3) 468 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 469 470 enum { 471 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 472 CURSEG_WARM_DATA, /* data blocks */ 473 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 474 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 475 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 476 CURSEG_COLD_NODE, /* indirect node blocks */ 477 NO_CHECK_TYPE, 478 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 479 }; 480 481 struct flush_cmd { 482 struct completion wait; 483 struct llist_node llnode; 484 int ret; 485 }; 486 487 struct flush_cmd_control { 488 struct task_struct *f2fs_issue_flush; /* flush thread */ 489 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 490 struct llist_head issue_list; /* list for command issue */ 491 struct llist_node *dispatch_list; /* list for command dispatch */ 492 }; 493 494 struct f2fs_sm_info { 495 struct sit_info *sit_info; /* whole segment information */ 496 struct free_segmap_info *free_info; /* free segment information */ 497 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 498 struct curseg_info *curseg_array; /* active segment information */ 499 500 block_t seg0_blkaddr; /* block address of 0'th segment */ 501 block_t main_blkaddr; /* start block address of main area */ 502 block_t ssa_blkaddr; /* start block address of SSA area */ 503 504 unsigned int segment_count; /* total # of segments */ 505 unsigned int main_segments; /* # of segments in main area */ 506 unsigned int reserved_segments; /* # of reserved segments */ 507 unsigned int ovp_segments; /* # of overprovision segments */ 508 509 /* a threshold to reclaim prefree segments */ 510 unsigned int rec_prefree_segments; 511 512 /* for small discard management */ 513 struct list_head discard_list; /* 4KB discard list */ 514 int nr_discards; /* # of discards in the list */ 515 int max_discards; /* max. discards to be issued */ 516 517 /* for batched trimming */ 518 unsigned int trim_sections; /* # of sections to trim */ 519 520 struct list_head sit_entry_set; /* sit entry set list */ 521 522 unsigned int ipu_policy; /* in-place-update policy */ 523 unsigned int min_ipu_util; /* in-place-update threshold */ 524 unsigned int min_fsync_blocks; /* threshold for fsync */ 525 526 /* for flush command control */ 527 struct flush_cmd_control *cmd_control_info; 528 529 }; 530 531 /* 532 * For superblock 533 */ 534 /* 535 * COUNT_TYPE for monitoring 536 * 537 * f2fs monitors the number of several block types such as on-writeback, 538 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 539 */ 540 enum count_type { 541 F2FS_WRITEBACK, 542 F2FS_DIRTY_DENTS, 543 F2FS_DIRTY_NODES, 544 F2FS_DIRTY_META, 545 F2FS_INMEM_PAGES, 546 NR_COUNT_TYPE, 547 }; 548 549 /* 550 * The below are the page types of bios used in submit_bio(). 551 * The available types are: 552 * DATA User data pages. It operates as async mode. 553 * NODE Node pages. It operates as async mode. 554 * META FS metadata pages such as SIT, NAT, CP. 555 * NR_PAGE_TYPE The number of page types. 556 * META_FLUSH Make sure the previous pages are written 557 * with waiting the bio's completion 558 * ... Only can be used with META. 559 */ 560 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 561 enum page_type { 562 DATA, 563 NODE, 564 META, 565 NR_PAGE_TYPE, 566 META_FLUSH, 567 INMEM, /* the below types are used by tracepoints only. */ 568 INMEM_DROP, 569 IPU, 570 OPU, 571 }; 572 573 struct f2fs_io_info { 574 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 575 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 576 block_t blk_addr; /* block address to be written */ 577 }; 578 579 #define is_read_io(rw) (((rw) & 1) == READ) 580 struct f2fs_bio_info { 581 struct f2fs_sb_info *sbi; /* f2fs superblock */ 582 struct bio *bio; /* bios to merge */ 583 sector_t last_block_in_bio; /* last block number */ 584 struct f2fs_io_info fio; /* store buffered io info. */ 585 struct rw_semaphore io_rwsem; /* blocking op for bio */ 586 }; 587 588 /* for inner inode cache management */ 589 struct inode_management { 590 struct radix_tree_root ino_root; /* ino entry array */ 591 spinlock_t ino_lock; /* for ino entry lock */ 592 struct list_head ino_list; /* inode list head */ 593 unsigned long ino_num; /* number of entries */ 594 }; 595 596 /* For s_flag in struct f2fs_sb_info */ 597 enum { 598 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 599 SBI_IS_CLOSE, /* specify unmounting */ 600 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 601 SBI_POR_DOING, /* recovery is doing or not */ 602 }; 603 604 struct f2fs_sb_info { 605 struct super_block *sb; /* pointer to VFS super block */ 606 struct proc_dir_entry *s_proc; /* proc entry */ 607 struct buffer_head *raw_super_buf; /* buffer head of raw sb */ 608 struct f2fs_super_block *raw_super; /* raw super block pointer */ 609 int s_flag; /* flags for sbi */ 610 611 /* for node-related operations */ 612 struct f2fs_nm_info *nm_info; /* node manager */ 613 struct inode *node_inode; /* cache node blocks */ 614 615 /* for segment-related operations */ 616 struct f2fs_sm_info *sm_info; /* segment manager */ 617 618 /* for bio operations */ 619 struct f2fs_bio_info read_io; /* for read bios */ 620 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 621 622 /* for checkpoint */ 623 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 624 struct inode *meta_inode; /* cache meta blocks */ 625 struct mutex cp_mutex; /* checkpoint procedure lock */ 626 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 627 struct rw_semaphore node_write; /* locking node writes */ 628 wait_queue_head_t cp_wait; 629 630 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 631 632 /* for orphan inode, use 0'th array */ 633 unsigned int max_orphans; /* max orphan inodes */ 634 635 /* for directory inode management */ 636 struct list_head dir_inode_list; /* dir inode list */ 637 spinlock_t dir_inode_lock; /* for dir inode list lock */ 638 639 /* for extent tree cache */ 640 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 641 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 642 struct list_head extent_list; /* lru list for shrinker */ 643 spinlock_t extent_lock; /* locking extent lru list */ 644 int total_ext_tree; /* extent tree count */ 645 atomic_t total_ext_node; /* extent info count */ 646 647 /* basic filesystem units */ 648 unsigned int log_sectors_per_block; /* log2 sectors per block */ 649 unsigned int log_blocksize; /* log2 block size */ 650 unsigned int blocksize; /* block size */ 651 unsigned int root_ino_num; /* root inode number*/ 652 unsigned int node_ino_num; /* node inode number*/ 653 unsigned int meta_ino_num; /* meta inode number*/ 654 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 655 unsigned int blocks_per_seg; /* blocks per segment */ 656 unsigned int segs_per_sec; /* segments per section */ 657 unsigned int secs_per_zone; /* sections per zone */ 658 unsigned int total_sections; /* total section count */ 659 unsigned int total_node_count; /* total node block count */ 660 unsigned int total_valid_node_count; /* valid node block count */ 661 unsigned int total_valid_inode_count; /* valid inode count */ 662 int active_logs; /* # of active logs */ 663 int dir_level; /* directory level */ 664 665 block_t user_block_count; /* # of user blocks */ 666 block_t total_valid_block_count; /* # of valid blocks */ 667 block_t alloc_valid_block_count; /* # of allocated blocks */ 668 block_t last_valid_block_count; /* for recovery */ 669 u32 s_next_generation; /* for NFS support */ 670 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 671 672 struct f2fs_mount_info mount_opt; /* mount options */ 673 674 /* for cleaning operations */ 675 struct mutex gc_mutex; /* mutex for GC */ 676 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 677 unsigned int cur_victim_sec; /* current victim section num */ 678 679 /* maximum # of trials to find a victim segment for SSR and GC */ 680 unsigned int max_victim_search; 681 682 /* 683 * for stat information. 684 * one is for the LFS mode, and the other is for the SSR mode. 685 */ 686 #ifdef CONFIG_F2FS_STAT_FS 687 struct f2fs_stat_info *stat_info; /* FS status information */ 688 unsigned int segment_count[2]; /* # of allocated segments */ 689 unsigned int block_count[2]; /* # of allocated blocks */ 690 atomic_t inplace_count; /* # of inplace update */ 691 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */ 692 atomic_t inline_inode; /* # of inline_data inodes */ 693 atomic_t inline_dir; /* # of inline_dentry inodes */ 694 int bg_gc; /* background gc calls */ 695 unsigned int n_dirty_dirs; /* # of dir inodes */ 696 #endif 697 unsigned int last_victim[2]; /* last victim segment # */ 698 spinlock_t stat_lock; /* lock for stat operations */ 699 700 /* For sysfs suppport */ 701 struct kobject s_kobj; 702 struct completion s_kobj_unregister; 703 }; 704 705 /* 706 * Inline functions 707 */ 708 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 709 { 710 return container_of(inode, struct f2fs_inode_info, vfs_inode); 711 } 712 713 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 714 { 715 return sb->s_fs_info; 716 } 717 718 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 719 { 720 return F2FS_SB(inode->i_sb); 721 } 722 723 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 724 { 725 return F2FS_I_SB(mapping->host); 726 } 727 728 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 729 { 730 return F2FS_M_SB(page->mapping); 731 } 732 733 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 734 { 735 return (struct f2fs_super_block *)(sbi->raw_super); 736 } 737 738 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 739 { 740 return (struct f2fs_checkpoint *)(sbi->ckpt); 741 } 742 743 static inline struct f2fs_node *F2FS_NODE(struct page *page) 744 { 745 return (struct f2fs_node *)page_address(page); 746 } 747 748 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 749 { 750 return &((struct f2fs_node *)page_address(page))->i; 751 } 752 753 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 754 { 755 return (struct f2fs_nm_info *)(sbi->nm_info); 756 } 757 758 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 759 { 760 return (struct f2fs_sm_info *)(sbi->sm_info); 761 } 762 763 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 764 { 765 return (struct sit_info *)(SM_I(sbi)->sit_info); 766 } 767 768 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 769 { 770 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 771 } 772 773 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 774 { 775 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 776 } 777 778 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 779 { 780 return sbi->meta_inode->i_mapping; 781 } 782 783 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 784 { 785 return sbi->node_inode->i_mapping; 786 } 787 788 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 789 { 790 return sbi->s_flag & (0x01 << type); 791 } 792 793 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 794 { 795 sbi->s_flag |= (0x01 << type); 796 } 797 798 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 799 { 800 sbi->s_flag &= ~(0x01 << type); 801 } 802 803 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 804 { 805 return le64_to_cpu(cp->checkpoint_ver); 806 } 807 808 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 809 { 810 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 811 return ckpt_flags & f; 812 } 813 814 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 815 { 816 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 817 ckpt_flags |= f; 818 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 819 } 820 821 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 822 { 823 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 824 ckpt_flags &= (~f); 825 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 826 } 827 828 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 829 { 830 down_read(&sbi->cp_rwsem); 831 } 832 833 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 834 { 835 up_read(&sbi->cp_rwsem); 836 } 837 838 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 839 { 840 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex); 841 } 842 843 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 844 { 845 up_write(&sbi->cp_rwsem); 846 } 847 848 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 849 { 850 int reason = CP_SYNC; 851 852 if (test_opt(sbi, FASTBOOT)) 853 reason = CP_FASTBOOT; 854 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 855 reason = CP_UMOUNT; 856 return reason; 857 } 858 859 static inline bool __remain_node_summaries(int reason) 860 { 861 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 862 } 863 864 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 865 { 866 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 867 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 868 } 869 870 /* 871 * Check whether the given nid is within node id range. 872 */ 873 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 874 { 875 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 876 return -EINVAL; 877 if (unlikely(nid >= NM_I(sbi)->max_nid)) 878 return -EINVAL; 879 return 0; 880 } 881 882 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 883 884 /* 885 * Check whether the inode has blocks or not 886 */ 887 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 888 { 889 if (F2FS_I(inode)->i_xattr_nid) 890 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 891 else 892 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 893 } 894 895 static inline bool f2fs_has_xattr_block(unsigned int ofs) 896 { 897 return ofs == XATTR_NODE_OFFSET; 898 } 899 900 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 901 struct inode *inode, blkcnt_t count) 902 { 903 block_t valid_block_count; 904 905 spin_lock(&sbi->stat_lock); 906 valid_block_count = 907 sbi->total_valid_block_count + (block_t)count; 908 if (unlikely(valid_block_count > sbi->user_block_count)) { 909 spin_unlock(&sbi->stat_lock); 910 return false; 911 } 912 inode->i_blocks += count; 913 sbi->total_valid_block_count = valid_block_count; 914 sbi->alloc_valid_block_count += (block_t)count; 915 spin_unlock(&sbi->stat_lock); 916 return true; 917 } 918 919 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 920 struct inode *inode, 921 blkcnt_t count) 922 { 923 spin_lock(&sbi->stat_lock); 924 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 925 f2fs_bug_on(sbi, inode->i_blocks < count); 926 inode->i_blocks -= count; 927 sbi->total_valid_block_count -= (block_t)count; 928 spin_unlock(&sbi->stat_lock); 929 } 930 931 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 932 { 933 atomic_inc(&sbi->nr_pages[count_type]); 934 set_sbi_flag(sbi, SBI_IS_DIRTY); 935 } 936 937 static inline void inode_inc_dirty_pages(struct inode *inode) 938 { 939 atomic_inc(&F2FS_I(inode)->dirty_pages); 940 if (S_ISDIR(inode->i_mode)) 941 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 942 } 943 944 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 945 { 946 atomic_dec(&sbi->nr_pages[count_type]); 947 } 948 949 static inline void inode_dec_dirty_pages(struct inode *inode) 950 { 951 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode)) 952 return; 953 954 atomic_dec(&F2FS_I(inode)->dirty_pages); 955 956 if (S_ISDIR(inode->i_mode)) 957 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 958 } 959 960 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 961 { 962 return atomic_read(&sbi->nr_pages[count_type]); 963 } 964 965 static inline int get_dirty_pages(struct inode *inode) 966 { 967 return atomic_read(&F2FS_I(inode)->dirty_pages); 968 } 969 970 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 971 { 972 unsigned int pages_per_sec = sbi->segs_per_sec * 973 (1 << sbi->log_blocks_per_seg); 974 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 975 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 976 } 977 978 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 979 { 980 return sbi->total_valid_block_count; 981 } 982 983 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 984 { 985 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 986 987 /* return NAT or SIT bitmap */ 988 if (flag == NAT_BITMAP) 989 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 990 else if (flag == SIT_BITMAP) 991 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 992 993 return 0; 994 } 995 996 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 997 { 998 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 999 } 1000 1001 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1002 { 1003 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1004 int offset; 1005 1006 if (__cp_payload(sbi) > 0) { 1007 if (flag == NAT_BITMAP) 1008 return &ckpt->sit_nat_version_bitmap; 1009 else 1010 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1011 } else { 1012 offset = (flag == NAT_BITMAP) ? 1013 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1014 return &ckpt->sit_nat_version_bitmap + offset; 1015 } 1016 } 1017 1018 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1019 { 1020 block_t start_addr; 1021 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1022 unsigned long long ckpt_version = cur_cp_version(ckpt); 1023 1024 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1025 1026 /* 1027 * odd numbered checkpoint should at cp segment 0 1028 * and even segment must be at cp segment 1 1029 */ 1030 if (!(ckpt_version & 1)) 1031 start_addr += sbi->blocks_per_seg; 1032 1033 return start_addr; 1034 } 1035 1036 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1037 { 1038 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1039 } 1040 1041 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1042 struct inode *inode) 1043 { 1044 block_t valid_block_count; 1045 unsigned int valid_node_count; 1046 1047 spin_lock(&sbi->stat_lock); 1048 1049 valid_block_count = sbi->total_valid_block_count + 1; 1050 if (unlikely(valid_block_count > sbi->user_block_count)) { 1051 spin_unlock(&sbi->stat_lock); 1052 return false; 1053 } 1054 1055 valid_node_count = sbi->total_valid_node_count + 1; 1056 if (unlikely(valid_node_count > sbi->total_node_count)) { 1057 spin_unlock(&sbi->stat_lock); 1058 return false; 1059 } 1060 1061 if (inode) 1062 inode->i_blocks++; 1063 1064 sbi->alloc_valid_block_count++; 1065 sbi->total_valid_node_count++; 1066 sbi->total_valid_block_count++; 1067 spin_unlock(&sbi->stat_lock); 1068 1069 return true; 1070 } 1071 1072 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1073 struct inode *inode) 1074 { 1075 spin_lock(&sbi->stat_lock); 1076 1077 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1078 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1079 f2fs_bug_on(sbi, !inode->i_blocks); 1080 1081 inode->i_blocks--; 1082 sbi->total_valid_node_count--; 1083 sbi->total_valid_block_count--; 1084 1085 spin_unlock(&sbi->stat_lock); 1086 } 1087 1088 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1089 { 1090 return sbi->total_valid_node_count; 1091 } 1092 1093 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1094 { 1095 spin_lock(&sbi->stat_lock); 1096 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count); 1097 sbi->total_valid_inode_count++; 1098 spin_unlock(&sbi->stat_lock); 1099 } 1100 1101 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1102 { 1103 spin_lock(&sbi->stat_lock); 1104 f2fs_bug_on(sbi, !sbi->total_valid_inode_count); 1105 sbi->total_valid_inode_count--; 1106 spin_unlock(&sbi->stat_lock); 1107 } 1108 1109 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 1110 { 1111 return sbi->total_valid_inode_count; 1112 } 1113 1114 static inline void f2fs_put_page(struct page *page, int unlock) 1115 { 1116 if (!page) 1117 return; 1118 1119 if (unlock) { 1120 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1121 unlock_page(page); 1122 } 1123 page_cache_release(page); 1124 } 1125 1126 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1127 { 1128 if (dn->node_page) 1129 f2fs_put_page(dn->node_page, 1); 1130 if (dn->inode_page && dn->node_page != dn->inode_page) 1131 f2fs_put_page(dn->inode_page, 0); 1132 dn->node_page = NULL; 1133 dn->inode_page = NULL; 1134 } 1135 1136 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1137 size_t size) 1138 { 1139 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1140 } 1141 1142 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1143 gfp_t flags) 1144 { 1145 void *entry; 1146 retry: 1147 entry = kmem_cache_alloc(cachep, flags); 1148 if (!entry) { 1149 cond_resched(); 1150 goto retry; 1151 } 1152 1153 return entry; 1154 } 1155 1156 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1157 unsigned long index, void *item) 1158 { 1159 while (radix_tree_insert(root, index, item)) 1160 cond_resched(); 1161 } 1162 1163 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1164 1165 static inline bool IS_INODE(struct page *page) 1166 { 1167 struct f2fs_node *p = F2FS_NODE(page); 1168 return RAW_IS_INODE(p); 1169 } 1170 1171 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1172 { 1173 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1174 } 1175 1176 static inline block_t datablock_addr(struct page *node_page, 1177 unsigned int offset) 1178 { 1179 struct f2fs_node *raw_node; 1180 __le32 *addr_array; 1181 raw_node = F2FS_NODE(node_page); 1182 addr_array = blkaddr_in_node(raw_node); 1183 return le32_to_cpu(addr_array[offset]); 1184 } 1185 1186 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1187 { 1188 int mask; 1189 1190 addr += (nr >> 3); 1191 mask = 1 << (7 - (nr & 0x07)); 1192 return mask & *addr; 1193 } 1194 1195 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1196 { 1197 int mask; 1198 int ret; 1199 1200 addr += (nr >> 3); 1201 mask = 1 << (7 - (nr & 0x07)); 1202 ret = mask & *addr; 1203 *addr |= mask; 1204 return ret; 1205 } 1206 1207 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1208 { 1209 int mask; 1210 int ret; 1211 1212 addr += (nr >> 3); 1213 mask = 1 << (7 - (nr & 0x07)); 1214 ret = mask & *addr; 1215 *addr &= ~mask; 1216 return ret; 1217 } 1218 1219 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1220 { 1221 int mask; 1222 1223 addr += (nr >> 3); 1224 mask = 1 << (7 - (nr & 0x07)); 1225 *addr ^= mask; 1226 } 1227 1228 /* used for f2fs_inode_info->flags */ 1229 enum { 1230 FI_NEW_INODE, /* indicate newly allocated inode */ 1231 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1232 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1233 FI_INC_LINK, /* need to increment i_nlink */ 1234 FI_ACL_MODE, /* indicate acl mode */ 1235 FI_NO_ALLOC, /* should not allocate any blocks */ 1236 FI_UPDATE_DIR, /* should update inode block for consistency */ 1237 FI_DELAY_IPUT, /* used for the recovery */ 1238 FI_NO_EXTENT, /* not to use the extent cache */ 1239 FI_INLINE_XATTR, /* used for inline xattr */ 1240 FI_INLINE_DATA, /* used for inline data*/ 1241 FI_INLINE_DENTRY, /* used for inline dentry */ 1242 FI_APPEND_WRITE, /* inode has appended data */ 1243 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1244 FI_NEED_IPU, /* used for ipu per file */ 1245 FI_ATOMIC_FILE, /* indicate atomic file */ 1246 FI_VOLATILE_FILE, /* indicate volatile file */ 1247 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1248 FI_DROP_CACHE, /* drop dirty page cache */ 1249 FI_DATA_EXIST, /* indicate data exists */ 1250 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1251 }; 1252 1253 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 1254 { 1255 if (!test_bit(flag, &fi->flags)) 1256 set_bit(flag, &fi->flags); 1257 } 1258 1259 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 1260 { 1261 return test_bit(flag, &fi->flags); 1262 } 1263 1264 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1265 { 1266 if (test_bit(flag, &fi->flags)) 1267 clear_bit(flag, &fi->flags); 1268 } 1269 1270 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1271 { 1272 fi->i_acl_mode = mode; 1273 set_inode_flag(fi, FI_ACL_MODE); 1274 } 1275 1276 static inline void get_inline_info(struct f2fs_inode_info *fi, 1277 struct f2fs_inode *ri) 1278 { 1279 if (ri->i_inline & F2FS_INLINE_XATTR) 1280 set_inode_flag(fi, FI_INLINE_XATTR); 1281 if (ri->i_inline & F2FS_INLINE_DATA) 1282 set_inode_flag(fi, FI_INLINE_DATA); 1283 if (ri->i_inline & F2FS_INLINE_DENTRY) 1284 set_inode_flag(fi, FI_INLINE_DENTRY); 1285 if (ri->i_inline & F2FS_DATA_EXIST) 1286 set_inode_flag(fi, FI_DATA_EXIST); 1287 if (ri->i_inline & F2FS_INLINE_DOTS) 1288 set_inode_flag(fi, FI_INLINE_DOTS); 1289 } 1290 1291 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1292 struct f2fs_inode *ri) 1293 { 1294 ri->i_inline = 0; 1295 1296 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1297 ri->i_inline |= F2FS_INLINE_XATTR; 1298 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1299 ri->i_inline |= F2FS_INLINE_DATA; 1300 if (is_inode_flag_set(fi, FI_INLINE_DENTRY)) 1301 ri->i_inline |= F2FS_INLINE_DENTRY; 1302 if (is_inode_flag_set(fi, FI_DATA_EXIST)) 1303 ri->i_inline |= F2FS_DATA_EXIST; 1304 if (is_inode_flag_set(fi, FI_INLINE_DOTS)) 1305 ri->i_inline |= F2FS_INLINE_DOTS; 1306 } 1307 1308 static inline int f2fs_has_inline_xattr(struct inode *inode) 1309 { 1310 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1311 } 1312 1313 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi) 1314 { 1315 if (f2fs_has_inline_xattr(&fi->vfs_inode)) 1316 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1317 return DEF_ADDRS_PER_INODE; 1318 } 1319 1320 static inline void *inline_xattr_addr(struct page *page) 1321 { 1322 struct f2fs_inode *ri = F2FS_INODE(page); 1323 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1324 F2FS_INLINE_XATTR_ADDRS]); 1325 } 1326 1327 static inline int inline_xattr_size(struct inode *inode) 1328 { 1329 if (f2fs_has_inline_xattr(inode)) 1330 return F2FS_INLINE_XATTR_ADDRS << 2; 1331 else 1332 return 0; 1333 } 1334 1335 static inline int f2fs_has_inline_data(struct inode *inode) 1336 { 1337 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1338 } 1339 1340 static inline void f2fs_clear_inline_inode(struct inode *inode) 1341 { 1342 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 1343 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1344 } 1345 1346 static inline int f2fs_exist_data(struct inode *inode) 1347 { 1348 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST); 1349 } 1350 1351 static inline int f2fs_has_inline_dots(struct inode *inode) 1352 { 1353 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS); 1354 } 1355 1356 static inline bool f2fs_is_atomic_file(struct inode *inode) 1357 { 1358 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE); 1359 } 1360 1361 static inline bool f2fs_is_volatile_file(struct inode *inode) 1362 { 1363 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE); 1364 } 1365 1366 static inline bool f2fs_is_first_block_written(struct inode *inode) 1367 { 1368 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 1369 } 1370 1371 static inline bool f2fs_is_drop_cache(struct inode *inode) 1372 { 1373 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE); 1374 } 1375 1376 static inline void *inline_data_addr(struct page *page) 1377 { 1378 struct f2fs_inode *ri = F2FS_INODE(page); 1379 return (void *)&(ri->i_addr[1]); 1380 } 1381 1382 static inline int f2fs_has_inline_dentry(struct inode *inode) 1383 { 1384 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY); 1385 } 1386 1387 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1388 { 1389 if (!f2fs_has_inline_dentry(dir)) 1390 kunmap(page); 1391 } 1392 1393 static inline int f2fs_readonly(struct super_block *sb) 1394 { 1395 return sb->s_flags & MS_RDONLY; 1396 } 1397 1398 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1399 { 1400 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1401 } 1402 1403 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi) 1404 { 1405 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1406 sbi->sb->s_flags |= MS_RDONLY; 1407 } 1408 1409 #define get_inode_mode(i) \ 1410 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1411 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1412 1413 /* get offset of first page in next direct node */ 1414 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \ 1415 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \ 1416 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \ 1417 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi)) 1418 1419 /* 1420 * file.c 1421 */ 1422 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1423 void truncate_data_blocks(struct dnode_of_data *); 1424 int truncate_blocks(struct inode *, u64, bool); 1425 void f2fs_truncate(struct inode *); 1426 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1427 int f2fs_setattr(struct dentry *, struct iattr *); 1428 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1429 int truncate_data_blocks_range(struct dnode_of_data *, int); 1430 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1431 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1432 1433 /* 1434 * inode.c 1435 */ 1436 void f2fs_set_inode_flags(struct inode *); 1437 struct inode *f2fs_iget(struct super_block *, unsigned long); 1438 int try_to_free_nats(struct f2fs_sb_info *, int); 1439 void update_inode(struct inode *, struct page *); 1440 void update_inode_page(struct inode *); 1441 int f2fs_write_inode(struct inode *, struct writeback_control *); 1442 void f2fs_evict_inode(struct inode *); 1443 void handle_failed_inode(struct inode *); 1444 1445 /* 1446 * namei.c 1447 */ 1448 struct dentry *f2fs_get_parent(struct dentry *child); 1449 1450 /* 1451 * dir.c 1452 */ 1453 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX]; 1454 void set_de_type(struct f2fs_dir_entry *, umode_t); 1455 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *, 1456 struct f2fs_dentry_ptr *); 1457 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1458 unsigned int); 1459 void do_make_empty_dir(struct inode *, struct inode *, 1460 struct f2fs_dentry_ptr *); 1461 struct page *init_inode_metadata(struct inode *, struct inode *, 1462 const struct qstr *, struct page *); 1463 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1464 int room_for_filename(const void *, int, int); 1465 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *); 1466 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1467 struct page **); 1468 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1469 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1470 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1471 struct page *, struct inode *); 1472 int update_dent_inode(struct inode *, const struct qstr *); 1473 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1474 const struct qstr *, f2fs_hash_t , unsigned int); 1475 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1476 umode_t); 1477 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1478 struct inode *); 1479 int f2fs_do_tmpfile(struct inode *, struct inode *); 1480 int f2fs_make_empty(struct inode *, struct inode *); 1481 bool f2fs_empty_dir(struct inode *); 1482 1483 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1484 { 1485 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1486 inode, inode->i_ino, inode->i_mode); 1487 } 1488 1489 /* 1490 * super.c 1491 */ 1492 int f2fs_sync_fs(struct super_block *, int); 1493 extern __printf(3, 4) 1494 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1495 1496 /* 1497 * hash.c 1498 */ 1499 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1500 1501 /* 1502 * node.c 1503 */ 1504 struct dnode_of_data; 1505 struct node_info; 1506 1507 bool available_free_memory(struct f2fs_sb_info *, int); 1508 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1509 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t); 1510 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1511 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1512 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1513 int truncate_inode_blocks(struct inode *, pgoff_t); 1514 int truncate_xattr_node(struct inode *, struct page *); 1515 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1516 void remove_inode_page(struct inode *); 1517 struct page *new_inode_page(struct inode *); 1518 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1519 void ra_node_page(struct f2fs_sb_info *, nid_t); 1520 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1521 struct page *get_node_page_ra(struct page *, int); 1522 void sync_inode_page(struct dnode_of_data *); 1523 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1524 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1525 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1526 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1527 void recover_inline_xattr(struct inode *, struct page *); 1528 void recover_xattr_data(struct inode *, struct page *, block_t); 1529 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1530 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1531 struct f2fs_summary_block *); 1532 void flush_nat_entries(struct f2fs_sb_info *); 1533 int build_node_manager(struct f2fs_sb_info *); 1534 void destroy_node_manager(struct f2fs_sb_info *); 1535 int __init create_node_manager_caches(void); 1536 void destroy_node_manager_caches(void); 1537 1538 /* 1539 * segment.c 1540 */ 1541 void register_inmem_page(struct inode *, struct page *); 1542 void commit_inmem_pages(struct inode *, bool); 1543 void f2fs_balance_fs(struct f2fs_sb_info *); 1544 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1545 int f2fs_issue_flush(struct f2fs_sb_info *); 1546 int create_flush_cmd_control(struct f2fs_sb_info *); 1547 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1548 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1549 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1550 void clear_prefree_segments(struct f2fs_sb_info *); 1551 void release_discard_addrs(struct f2fs_sb_info *); 1552 void discard_next_dnode(struct f2fs_sb_info *, block_t); 1553 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 1554 void allocate_new_segments(struct f2fs_sb_info *); 1555 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 1556 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1557 void write_meta_page(struct f2fs_sb_info *, struct page *); 1558 void write_node_page(struct f2fs_sb_info *, struct page *, 1559 unsigned int, struct f2fs_io_info *); 1560 void write_data_page(struct page *, struct dnode_of_data *, 1561 struct f2fs_io_info *); 1562 void rewrite_data_page(struct page *, struct f2fs_io_info *); 1563 void recover_data_page(struct f2fs_sb_info *, struct page *, 1564 struct f2fs_summary *, block_t, block_t); 1565 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1566 block_t, block_t *, struct f2fs_summary *, int); 1567 void f2fs_wait_on_page_writeback(struct page *, enum page_type); 1568 void write_data_summaries(struct f2fs_sb_info *, block_t); 1569 void write_node_summaries(struct f2fs_sb_info *, block_t); 1570 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1571 int, unsigned int, int); 1572 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 1573 int build_segment_manager(struct f2fs_sb_info *); 1574 void destroy_segment_manager(struct f2fs_sb_info *); 1575 int __init create_segment_manager_caches(void); 1576 void destroy_segment_manager_caches(void); 1577 1578 /* 1579 * checkpoint.c 1580 */ 1581 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1582 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1583 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int); 1584 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 1585 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1586 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1587 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1588 void release_dirty_inode(struct f2fs_sb_info *); 1589 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 1590 int acquire_orphan_inode(struct f2fs_sb_info *); 1591 void release_orphan_inode(struct f2fs_sb_info *); 1592 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1593 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1594 void recover_orphan_inodes(struct f2fs_sb_info *); 1595 int get_valid_checkpoint(struct f2fs_sb_info *); 1596 void update_dirty_page(struct inode *, struct page *); 1597 void add_dirty_dir_inode(struct inode *); 1598 void remove_dirty_dir_inode(struct inode *); 1599 void sync_dirty_dir_inodes(struct f2fs_sb_info *); 1600 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 1601 void init_ino_entry_info(struct f2fs_sb_info *); 1602 int __init create_checkpoint_caches(void); 1603 void destroy_checkpoint_caches(void); 1604 1605 /* 1606 * data.c 1607 */ 1608 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1609 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, 1610 struct f2fs_io_info *); 1611 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, 1612 struct f2fs_io_info *); 1613 void set_data_blkaddr(struct dnode_of_data *); 1614 int reserve_new_block(struct dnode_of_data *); 1615 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1616 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 1617 void f2fs_destroy_extent_tree(struct inode *); 1618 void f2fs_init_extent_cache(struct inode *, struct f2fs_extent *); 1619 void f2fs_update_extent_cache(struct dnode_of_data *); 1620 void f2fs_preserve_extent_tree(struct inode *); 1621 struct page *find_data_page(struct inode *, pgoff_t, bool); 1622 struct page *get_lock_data_page(struct inode *, pgoff_t); 1623 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1624 int do_write_data_page(struct page *, struct f2fs_io_info *); 1625 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1626 void init_extent_cache_info(struct f2fs_sb_info *); 1627 int __init create_extent_cache(void); 1628 void destroy_extent_cache(void); 1629 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 1630 int f2fs_release_page(struct page *, gfp_t); 1631 1632 /* 1633 * gc.c 1634 */ 1635 int start_gc_thread(struct f2fs_sb_info *); 1636 void stop_gc_thread(struct f2fs_sb_info *); 1637 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *); 1638 int f2fs_gc(struct f2fs_sb_info *); 1639 void build_gc_manager(struct f2fs_sb_info *); 1640 1641 /* 1642 * recovery.c 1643 */ 1644 int recover_fsync_data(struct f2fs_sb_info *); 1645 bool space_for_roll_forward(struct f2fs_sb_info *); 1646 1647 /* 1648 * debug.c 1649 */ 1650 #ifdef CONFIG_F2FS_STAT_FS 1651 struct f2fs_stat_info { 1652 struct list_head stat_list; 1653 struct f2fs_sb_info *sbi; 1654 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1655 int main_area_segs, main_area_sections, main_area_zones; 1656 int hit_ext, total_ext, ext_tree, ext_node; 1657 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; 1658 int nats, dirty_nats, sits, dirty_sits, fnids; 1659 int total_count, utilization; 1660 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages; 1661 unsigned int valid_count, valid_node_count, valid_inode_count; 1662 unsigned int bimodal, avg_vblocks; 1663 int util_free, util_valid, util_invalid; 1664 int rsvd_segs, overp_segs; 1665 int dirty_count, node_pages, meta_pages; 1666 int prefree_count, call_count, cp_count; 1667 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1668 int bg_node_segs, bg_data_segs; 1669 int tot_blks, data_blks, node_blks; 1670 int bg_data_blks, bg_node_blks; 1671 int curseg[NR_CURSEG_TYPE]; 1672 int cursec[NR_CURSEG_TYPE]; 1673 int curzone[NR_CURSEG_TYPE]; 1674 1675 unsigned int segment_count[2]; 1676 unsigned int block_count[2]; 1677 unsigned int inplace_count; 1678 unsigned base_mem, cache_mem, page_mem; 1679 }; 1680 1681 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1682 { 1683 return (struct f2fs_stat_info *)sbi->stat_info; 1684 } 1685 1686 #define stat_inc_cp_count(si) ((si)->cp_count++) 1687 #define stat_inc_call_count(si) ((si)->call_count++) 1688 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1689 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++) 1690 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--) 1691 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++) 1692 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++) 1693 #define stat_inc_inline_inode(inode) \ 1694 do { \ 1695 if (f2fs_has_inline_data(inode)) \ 1696 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 1697 } while (0) 1698 #define stat_dec_inline_inode(inode) \ 1699 do { \ 1700 if (f2fs_has_inline_data(inode)) \ 1701 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 1702 } while (0) 1703 #define stat_inc_inline_dir(inode) \ 1704 do { \ 1705 if (f2fs_has_inline_dentry(inode)) \ 1706 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 1707 } while (0) 1708 #define stat_dec_inline_dir(inode) \ 1709 do { \ 1710 if (f2fs_has_inline_dentry(inode)) \ 1711 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 1712 } while (0) 1713 #define stat_inc_seg_type(sbi, curseg) \ 1714 ((sbi)->segment_count[(curseg)->alloc_type]++) 1715 #define stat_inc_block_count(sbi, curseg) \ 1716 ((sbi)->block_count[(curseg)->alloc_type]++) 1717 #define stat_inc_inplace_blocks(sbi) \ 1718 (atomic_inc(&(sbi)->inplace_count)) 1719 #define stat_inc_seg_count(sbi, type, gc_type) \ 1720 do { \ 1721 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1722 (si)->tot_segs++; \ 1723 if (type == SUM_TYPE_DATA) { \ 1724 si->data_segs++; \ 1725 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 1726 } else { \ 1727 si->node_segs++; \ 1728 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 1729 } \ 1730 } while (0) 1731 1732 #define stat_inc_tot_blk_count(si, blks) \ 1733 (si->tot_blks += (blks)) 1734 1735 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 1736 do { \ 1737 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1738 stat_inc_tot_blk_count(si, blks); \ 1739 si->data_blks += (blks); \ 1740 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 1741 } while (0) 1742 1743 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 1744 do { \ 1745 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1746 stat_inc_tot_blk_count(si, blks); \ 1747 si->node_blks += (blks); \ 1748 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 1749 } while (0) 1750 1751 int f2fs_build_stats(struct f2fs_sb_info *); 1752 void f2fs_destroy_stats(struct f2fs_sb_info *); 1753 void __init f2fs_create_root_stats(void); 1754 void f2fs_destroy_root_stats(void); 1755 #else 1756 #define stat_inc_cp_count(si) 1757 #define stat_inc_call_count(si) 1758 #define stat_inc_bggc_count(si) 1759 #define stat_inc_dirty_dir(sbi) 1760 #define stat_dec_dirty_dir(sbi) 1761 #define stat_inc_total_hit(sb) 1762 #define stat_inc_read_hit(sb) 1763 #define stat_inc_inline_inode(inode) 1764 #define stat_dec_inline_inode(inode) 1765 #define stat_inc_inline_dir(inode) 1766 #define stat_dec_inline_dir(inode) 1767 #define stat_inc_seg_type(sbi, curseg) 1768 #define stat_inc_block_count(sbi, curseg) 1769 #define stat_inc_inplace_blocks(sbi) 1770 #define stat_inc_seg_count(sbi, type, gc_type) 1771 #define stat_inc_tot_blk_count(si, blks) 1772 #define stat_inc_data_blk_count(sbi, blks, gc_type) 1773 #define stat_inc_node_blk_count(sbi, blks, gc_type) 1774 1775 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 1776 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 1777 static inline void __init f2fs_create_root_stats(void) { } 1778 static inline void f2fs_destroy_root_stats(void) { } 1779 #endif 1780 1781 extern const struct file_operations f2fs_dir_operations; 1782 extern const struct file_operations f2fs_file_operations; 1783 extern const struct inode_operations f2fs_file_inode_operations; 1784 extern const struct address_space_operations f2fs_dblock_aops; 1785 extern const struct address_space_operations f2fs_node_aops; 1786 extern const struct address_space_operations f2fs_meta_aops; 1787 extern const struct inode_operations f2fs_dir_inode_operations; 1788 extern const struct inode_operations f2fs_symlink_inode_operations; 1789 extern const struct inode_operations f2fs_special_inode_operations; 1790 extern struct kmem_cache *inode_entry_slab; 1791 1792 /* 1793 * inline.c 1794 */ 1795 bool f2fs_may_inline(struct inode *); 1796 void read_inline_data(struct page *, struct page *); 1797 bool truncate_inline_inode(struct page *, u64); 1798 int f2fs_read_inline_data(struct inode *, struct page *); 1799 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 1800 int f2fs_convert_inline_inode(struct inode *); 1801 int f2fs_write_inline_data(struct inode *, struct page *); 1802 bool recover_inline_data(struct inode *, struct page *); 1803 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *, 1804 struct page **); 1805 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **); 1806 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 1807 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *, 1808 nid_t, umode_t); 1809 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 1810 struct inode *, struct inode *); 1811 bool f2fs_empty_inline_dir(struct inode *); 1812 int f2fs_read_inline_dir(struct file *, struct dir_context *); 1813 #endif 1814