xref: /openbmc/linux/fs/f2fs/f2fs.h (revision 4d8d45df)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	unsigned int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
78 #endif
79 
80 /*
81  * For mount options
82  */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
84 #define F2FS_MOUNT_DISCARD		0x00000004
85 #define F2FS_MOUNT_NOHEAP		0x00000008
86 #define F2FS_MOUNT_XATTR_USER		0x00000010
87 #define F2FS_MOUNT_POSIX_ACL		0x00000020
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
89 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
90 #define F2FS_MOUNT_INLINE_DATA		0x00000100
91 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
92 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
93 #define F2FS_MOUNT_NOBARRIER		0x00000800
94 #define F2FS_MOUNT_FASTBOOT		0x00001000
95 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
96 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
97 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
98 #define F2FS_MOUNT_USRQUOTA		0x00080000
99 #define F2FS_MOUNT_GRPQUOTA		0x00100000
100 #define F2FS_MOUNT_PRJQUOTA		0x00200000
101 #define F2FS_MOUNT_QUOTA		0x00400000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
103 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
105 #define F2FS_MOUNT_NORECOVERY		0x04000000
106 #define F2FS_MOUNT_ATGC			0x08000000
107 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
108 #define	F2FS_MOUNT_GC_MERGE		0x20000000
109 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
110 
111 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
112 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
113 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
114 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
115 
116 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
117 		typecheck(unsigned long long, b) &&			\
118 		((long long)((a) - (b)) > 0))
119 
120 typedef u32 block_t;	/*
121 			 * should not change u32, since it is the on-disk block
122 			 * address format, __le32.
123 			 */
124 typedef u32 nid_t;
125 
126 #define COMPRESS_EXT_NUM		16
127 
128 /*
129  * An implementation of an rwsem that is explicitly unfair to readers. This
130  * prevents priority inversion when a low-priority reader acquires the read lock
131  * while sleeping on the write lock but the write lock is needed by
132  * higher-priority clients.
133  */
134 
135 struct f2fs_rwsem {
136         struct rw_semaphore internal_rwsem;
137 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
138         wait_queue_head_t read_waiters;
139 #endif
140 };
141 
142 struct f2fs_mount_info {
143 	unsigned int opt;
144 	int write_io_size_bits;		/* Write IO size bits */
145 	block_t root_reserved_blocks;	/* root reserved blocks */
146 	kuid_t s_resuid;		/* reserved blocks for uid */
147 	kgid_t s_resgid;		/* reserved blocks for gid */
148 	int active_logs;		/* # of active logs */
149 	int inline_xattr_size;		/* inline xattr size */
150 #ifdef CONFIG_F2FS_FAULT_INJECTION
151 	struct f2fs_fault_info fault_info;	/* For fault injection */
152 #endif
153 #ifdef CONFIG_QUOTA
154 	/* Names of quota files with journalled quota */
155 	char *s_qf_names[MAXQUOTAS];
156 	int s_jquota_fmt;			/* Format of quota to use */
157 #endif
158 	/* For which write hints are passed down to block layer */
159 	int alloc_mode;			/* segment allocation policy */
160 	int fsync_mode;			/* fsync policy */
161 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
162 	int bggc_mode;			/* bggc mode: off, on or sync */
163 	int memory_mode;		/* memory mode */
164 	int discard_unit;		/*
165 					 * discard command's offset/size should
166 					 * be aligned to this unit: block,
167 					 * segment or section
168 					 */
169 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
170 	block_t unusable_cap_perc;	/* percentage for cap */
171 	block_t unusable_cap;		/* Amount of space allowed to be
172 					 * unusable when disabling checkpoint
173 					 */
174 
175 	/* For compression */
176 	unsigned char compress_algorithm;	/* algorithm type */
177 	unsigned char compress_log_size;	/* cluster log size */
178 	unsigned char compress_level;		/* compress level */
179 	bool compress_chksum;			/* compressed data chksum */
180 	unsigned char compress_ext_cnt;		/* extension count */
181 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
182 	int compress_mode;			/* compression mode */
183 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
184 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
185 };
186 
187 #define F2FS_FEATURE_ENCRYPT		0x0001
188 #define F2FS_FEATURE_BLKZONED		0x0002
189 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
190 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
191 #define F2FS_FEATURE_PRJQUOTA		0x0010
192 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
193 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
194 #define F2FS_FEATURE_QUOTA_INO		0x0080
195 #define F2FS_FEATURE_INODE_CRTIME	0x0100
196 #define F2FS_FEATURE_LOST_FOUND		0x0200
197 #define F2FS_FEATURE_VERITY		0x0400
198 #define F2FS_FEATURE_SB_CHKSUM		0x0800
199 #define F2FS_FEATURE_CASEFOLD		0x1000
200 #define F2FS_FEATURE_COMPRESSION	0x2000
201 #define F2FS_FEATURE_RO			0x4000
202 
203 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
204 	((raw_super->feature & cpu_to_le32(mask)) != 0)
205 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
206 #define F2FS_SET_FEATURE(sbi, mask)					\
207 	(sbi->raw_super->feature |= cpu_to_le32(mask))
208 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
209 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
210 
211 /*
212  * Default values for user and/or group using reserved blocks
213  */
214 #define	F2FS_DEF_RESUID		0
215 #define	F2FS_DEF_RESGID		0
216 
217 /*
218  * For checkpoint manager
219  */
220 enum {
221 	NAT_BITMAP,
222 	SIT_BITMAP
223 };
224 
225 #define	CP_UMOUNT	0x00000001
226 #define	CP_FASTBOOT	0x00000002
227 #define	CP_SYNC		0x00000004
228 #define	CP_RECOVERY	0x00000008
229 #define	CP_DISCARD	0x00000010
230 #define CP_TRIMMED	0x00000020
231 #define CP_PAUSE	0x00000040
232 #define CP_RESIZE 	0x00000080
233 
234 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
235 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
236 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
237 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
238 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
239 #define DEF_CP_INTERVAL			60	/* 60 secs */
240 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
241 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
242 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
243 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
244 
245 struct cp_control {
246 	int reason;
247 	__u64 trim_start;
248 	__u64 trim_end;
249 	__u64 trim_minlen;
250 };
251 
252 /*
253  * indicate meta/data type
254  */
255 enum {
256 	META_CP,
257 	META_NAT,
258 	META_SIT,
259 	META_SSA,
260 	META_MAX,
261 	META_POR,
262 	DATA_GENERIC,		/* check range only */
263 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
264 	DATA_GENERIC_ENHANCE_READ,	/*
265 					 * strong check on range and segment
266 					 * bitmap but no warning due to race
267 					 * condition of read on truncated area
268 					 * by extent_cache
269 					 */
270 	DATA_GENERIC_ENHANCE_UPDATE,	/*
271 					 * strong check on range and segment
272 					 * bitmap for update case
273 					 */
274 	META_GENERIC,
275 };
276 
277 /* for the list of ino */
278 enum {
279 	ORPHAN_INO,		/* for orphan ino list */
280 	APPEND_INO,		/* for append ino list */
281 	UPDATE_INO,		/* for update ino list */
282 	TRANS_DIR_INO,		/* for transactions dir ino list */
283 	FLUSH_INO,		/* for multiple device flushing */
284 	MAX_INO_ENTRY,		/* max. list */
285 };
286 
287 struct ino_entry {
288 	struct list_head list;		/* list head */
289 	nid_t ino;			/* inode number */
290 	unsigned int dirty_device;	/* dirty device bitmap */
291 };
292 
293 /* for the list of inodes to be GCed */
294 struct inode_entry {
295 	struct list_head list;	/* list head */
296 	struct inode *inode;	/* vfs inode pointer */
297 };
298 
299 struct fsync_node_entry {
300 	struct list_head list;	/* list head */
301 	struct page *page;	/* warm node page pointer */
302 	unsigned int seq_id;	/* sequence id */
303 };
304 
305 struct ckpt_req {
306 	struct completion wait;		/* completion for checkpoint done */
307 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
308 	int ret;			/* return code of checkpoint */
309 	ktime_t queue_time;		/* request queued time */
310 };
311 
312 struct ckpt_req_control {
313 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
314 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
315 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
316 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
317 	atomic_t total_ckpt;		/* # of total ckpts */
318 	atomic_t queued_ckpt;		/* # of queued ckpts */
319 	struct llist_head issue_list;	/* list for command issue */
320 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
321 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
322 	unsigned int peak_time;		/* peak wait time in msec until now */
323 };
324 
325 /* for the bitmap indicate blocks to be discarded */
326 struct discard_entry {
327 	struct list_head list;	/* list head */
328 	block_t start_blkaddr;	/* start blockaddr of current segment */
329 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
330 };
331 
332 /* default discard granularity of inner discard thread, unit: block count */
333 #define DEFAULT_DISCARD_GRANULARITY		16
334 /* default maximum discard granularity of ordered discard, unit: block count */
335 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
336 
337 /* max discard pend list number */
338 #define MAX_PLIST_NUM		512
339 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
340 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
341 
342 enum {
343 	D_PREP,			/* initial */
344 	D_PARTIAL,		/* partially submitted */
345 	D_SUBMIT,		/* all submitted */
346 	D_DONE,			/* finished */
347 };
348 
349 struct discard_info {
350 	block_t lstart;			/* logical start address */
351 	block_t len;			/* length */
352 	block_t start;			/* actual start address in dev */
353 };
354 
355 struct discard_cmd {
356 	struct rb_node rb_node;		/* rb node located in rb-tree */
357 	union {
358 		struct {
359 			block_t lstart;	/* logical start address */
360 			block_t len;	/* length */
361 			block_t start;	/* actual start address in dev */
362 		};
363 		struct discard_info di;	/* discard info */
364 
365 	};
366 	struct list_head list;		/* command list */
367 	struct completion wait;		/* compleation */
368 	struct block_device *bdev;	/* bdev */
369 	unsigned short ref;		/* reference count */
370 	unsigned char state;		/* state */
371 	unsigned char queued;		/* queued discard */
372 	int error;			/* bio error */
373 	spinlock_t lock;		/* for state/bio_ref updating */
374 	unsigned short bio_ref;		/* bio reference count */
375 };
376 
377 enum {
378 	DPOLICY_BG,
379 	DPOLICY_FORCE,
380 	DPOLICY_FSTRIM,
381 	DPOLICY_UMOUNT,
382 	MAX_DPOLICY,
383 };
384 
385 struct discard_policy {
386 	int type;			/* type of discard */
387 	unsigned int min_interval;	/* used for candidates exist */
388 	unsigned int mid_interval;	/* used for device busy */
389 	unsigned int max_interval;	/* used for candidates not exist */
390 	unsigned int max_requests;	/* # of discards issued per round */
391 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
392 	bool io_aware;			/* issue discard in idle time */
393 	bool sync;			/* submit discard with REQ_SYNC flag */
394 	bool ordered;			/* issue discard by lba order */
395 	bool timeout;			/* discard timeout for put_super */
396 	unsigned int granularity;	/* discard granularity */
397 };
398 
399 struct discard_cmd_control {
400 	struct task_struct *f2fs_issue_discard;	/* discard thread */
401 	struct list_head entry_list;		/* 4KB discard entry list */
402 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
403 	struct list_head wait_list;		/* store on-flushing entries */
404 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
405 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
406 	unsigned int discard_wake;		/* to wake up discard thread */
407 	struct mutex cmd_lock;
408 	unsigned int nr_discards;		/* # of discards in the list */
409 	unsigned int max_discards;		/* max. discards to be issued */
410 	unsigned int max_discard_request;	/* max. discard request per round */
411 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
412 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
413 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
414 	unsigned int discard_granularity;	/* discard granularity */
415 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
416 	unsigned int undiscard_blks;		/* # of undiscard blocks */
417 	unsigned int next_pos;			/* next discard position */
418 	atomic_t issued_discard;		/* # of issued discard */
419 	atomic_t queued_discard;		/* # of queued discard */
420 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
421 	struct rb_root_cached root;		/* root of discard rb-tree */
422 	bool rbtree_check;			/* config for consistence check */
423 };
424 
425 /* for the list of fsync inodes, used only during recovery */
426 struct fsync_inode_entry {
427 	struct list_head list;	/* list head */
428 	struct inode *inode;	/* vfs inode pointer */
429 	block_t blkaddr;	/* block address locating the last fsync */
430 	block_t last_dentry;	/* block address locating the last dentry */
431 };
432 
433 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
434 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
435 
436 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
437 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
438 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
439 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
440 
441 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
442 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
443 
444 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
445 {
446 	int before = nats_in_cursum(journal);
447 
448 	journal->n_nats = cpu_to_le16(before + i);
449 	return before;
450 }
451 
452 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
453 {
454 	int before = sits_in_cursum(journal);
455 
456 	journal->n_sits = cpu_to_le16(before + i);
457 	return before;
458 }
459 
460 static inline bool __has_cursum_space(struct f2fs_journal *journal,
461 							int size, int type)
462 {
463 	if (type == NAT_JOURNAL)
464 		return size <= MAX_NAT_JENTRIES(journal);
465 	return size <= MAX_SIT_JENTRIES(journal);
466 }
467 
468 /* for inline stuff */
469 #define DEF_INLINE_RESERVED_SIZE	1
470 static inline int get_extra_isize(struct inode *inode);
471 static inline int get_inline_xattr_addrs(struct inode *inode);
472 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
473 				(CUR_ADDRS_PER_INODE(inode) -		\
474 				get_inline_xattr_addrs(inode) -	\
475 				DEF_INLINE_RESERVED_SIZE))
476 
477 /* for inline dir */
478 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
479 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
480 				BITS_PER_BYTE + 1))
481 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
482 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
483 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
484 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
485 				NR_INLINE_DENTRY(inode) + \
486 				INLINE_DENTRY_BITMAP_SIZE(inode)))
487 
488 /*
489  * For INODE and NODE manager
490  */
491 /* for directory operations */
492 
493 struct f2fs_filename {
494 	/*
495 	 * The filename the user specified.  This is NULL for some
496 	 * filesystem-internal operations, e.g. converting an inline directory
497 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
498 	 */
499 	const struct qstr *usr_fname;
500 
501 	/*
502 	 * The on-disk filename.  For encrypted directories, this is encrypted.
503 	 * This may be NULL for lookups in an encrypted dir without the key.
504 	 */
505 	struct fscrypt_str disk_name;
506 
507 	/* The dirhash of this filename */
508 	f2fs_hash_t hash;
509 
510 #ifdef CONFIG_FS_ENCRYPTION
511 	/*
512 	 * For lookups in encrypted directories: either the buffer backing
513 	 * disk_name, or a buffer that holds the decoded no-key name.
514 	 */
515 	struct fscrypt_str crypto_buf;
516 #endif
517 #if IS_ENABLED(CONFIG_UNICODE)
518 	/*
519 	 * For casefolded directories: the casefolded name, but it's left NULL
520 	 * if the original name is not valid Unicode, if the original name is
521 	 * "." or "..", if the directory is both casefolded and encrypted and
522 	 * its encryption key is unavailable, or if the filesystem is doing an
523 	 * internal operation where usr_fname is also NULL.  In all these cases
524 	 * we fall back to treating the name as an opaque byte sequence.
525 	 */
526 	struct fscrypt_str cf_name;
527 #endif
528 };
529 
530 struct f2fs_dentry_ptr {
531 	struct inode *inode;
532 	void *bitmap;
533 	struct f2fs_dir_entry *dentry;
534 	__u8 (*filename)[F2FS_SLOT_LEN];
535 	int max;
536 	int nr_bitmap;
537 };
538 
539 static inline void make_dentry_ptr_block(struct inode *inode,
540 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
541 {
542 	d->inode = inode;
543 	d->max = NR_DENTRY_IN_BLOCK;
544 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
545 	d->bitmap = t->dentry_bitmap;
546 	d->dentry = t->dentry;
547 	d->filename = t->filename;
548 }
549 
550 static inline void make_dentry_ptr_inline(struct inode *inode,
551 					struct f2fs_dentry_ptr *d, void *t)
552 {
553 	int entry_cnt = NR_INLINE_DENTRY(inode);
554 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
555 	int reserved_size = INLINE_RESERVED_SIZE(inode);
556 
557 	d->inode = inode;
558 	d->max = entry_cnt;
559 	d->nr_bitmap = bitmap_size;
560 	d->bitmap = t;
561 	d->dentry = t + bitmap_size + reserved_size;
562 	d->filename = t + bitmap_size + reserved_size +
563 					SIZE_OF_DIR_ENTRY * entry_cnt;
564 }
565 
566 /*
567  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
568  * as its node offset to distinguish from index node blocks.
569  * But some bits are used to mark the node block.
570  */
571 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
572 				>> OFFSET_BIT_SHIFT)
573 enum {
574 	ALLOC_NODE,			/* allocate a new node page if needed */
575 	LOOKUP_NODE,			/* look up a node without readahead */
576 	LOOKUP_NODE_RA,			/*
577 					 * look up a node with readahead called
578 					 * by get_data_block.
579 					 */
580 };
581 
582 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
583 
584 /* congestion wait timeout value, default: 20ms */
585 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
586 
587 /* maximum retry quota flush count */
588 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
589 
590 /* maximum retry of EIO'ed page */
591 #define MAX_RETRY_PAGE_EIO			100
592 
593 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
594 
595 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
596 
597 /* dirty segments threshold for triggering CP */
598 #define DEFAULT_DIRTY_THRESHOLD		4
599 
600 /* for in-memory extent cache entry */
601 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
602 
603 /* number of extent info in extent cache we try to shrink */
604 #define EXTENT_CACHE_SHRINK_NUMBER	128
605 
606 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
607 #define RECOVERY_MIN_RA_BLOCKS		1
608 
609 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
610 
611 struct rb_entry {
612 	struct rb_node rb_node;		/* rb node located in rb-tree */
613 	union {
614 		struct {
615 			unsigned int ofs;	/* start offset of the entry */
616 			unsigned int len;	/* length of the entry */
617 		};
618 		unsigned long long key;		/* 64-bits key */
619 	} __packed;
620 };
621 
622 struct extent_info {
623 	unsigned int fofs;		/* start offset in a file */
624 	unsigned int len;		/* length of the extent */
625 	u32 blk;			/* start block address of the extent */
626 #ifdef CONFIG_F2FS_FS_COMPRESSION
627 	unsigned int c_len;		/* physical extent length of compressed blocks */
628 #endif
629 };
630 
631 struct extent_node {
632 	struct rb_node rb_node;		/* rb node located in rb-tree */
633 	struct extent_info ei;		/* extent info */
634 	struct list_head list;		/* node in global extent list of sbi */
635 	struct extent_tree *et;		/* extent tree pointer */
636 };
637 
638 struct extent_tree {
639 	nid_t ino;			/* inode number */
640 	struct rb_root_cached root;	/* root of extent info rb-tree */
641 	struct extent_node *cached_en;	/* recently accessed extent node */
642 	struct extent_info largest;	/* largested extent info */
643 	struct list_head list;		/* to be used by sbi->zombie_list */
644 	rwlock_t lock;			/* protect extent info rb-tree */
645 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
646 	bool largest_updated;		/* largest extent updated */
647 };
648 
649 /*
650  * This structure is taken from ext4_map_blocks.
651  *
652  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
653  */
654 #define F2FS_MAP_NEW		(1 << BH_New)
655 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
656 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
657 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
658 				F2FS_MAP_UNWRITTEN)
659 
660 struct f2fs_map_blocks {
661 	struct block_device *m_bdev;	/* for multi-device dio */
662 	block_t m_pblk;
663 	block_t m_lblk;
664 	unsigned int m_len;
665 	unsigned int m_flags;
666 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
667 	pgoff_t *m_next_extent;		/* point to next possible extent */
668 	int m_seg_type;
669 	bool m_may_create;		/* indicate it is from write path */
670 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
671 };
672 
673 /* for flag in get_data_block */
674 enum {
675 	F2FS_GET_BLOCK_DEFAULT,
676 	F2FS_GET_BLOCK_FIEMAP,
677 	F2FS_GET_BLOCK_BMAP,
678 	F2FS_GET_BLOCK_DIO,
679 	F2FS_GET_BLOCK_PRE_DIO,
680 	F2FS_GET_BLOCK_PRE_AIO,
681 	F2FS_GET_BLOCK_PRECACHE,
682 };
683 
684 /*
685  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
686  */
687 #define FADVISE_COLD_BIT	0x01
688 #define FADVISE_LOST_PINO_BIT	0x02
689 #define FADVISE_ENCRYPT_BIT	0x04
690 #define FADVISE_ENC_NAME_BIT	0x08
691 #define FADVISE_KEEP_SIZE_BIT	0x10
692 #define FADVISE_HOT_BIT		0x20
693 #define FADVISE_VERITY_BIT	0x40
694 #define FADVISE_TRUNC_BIT	0x80
695 
696 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
697 
698 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
699 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
700 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
701 
702 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
703 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
704 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
705 
706 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
707 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
708 
709 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
710 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
711 
712 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
713 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
714 
715 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
716 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
717 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
718 
719 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
720 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
721 
722 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
723 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
724 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
725 
726 #define DEF_DIR_LEVEL		0
727 
728 enum {
729 	GC_FAILURE_PIN,
730 	MAX_GC_FAILURE
731 };
732 
733 /* used for f2fs_inode_info->flags */
734 enum {
735 	FI_NEW_INODE,		/* indicate newly allocated inode */
736 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
737 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
738 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
739 	FI_INC_LINK,		/* need to increment i_nlink */
740 	FI_ACL_MODE,		/* indicate acl mode */
741 	FI_NO_ALLOC,		/* should not allocate any blocks */
742 	FI_FREE_NID,		/* free allocated nide */
743 	FI_NO_EXTENT,		/* not to use the extent cache */
744 	FI_INLINE_XATTR,	/* used for inline xattr */
745 	FI_INLINE_DATA,		/* used for inline data*/
746 	FI_INLINE_DENTRY,	/* used for inline dentry */
747 	FI_APPEND_WRITE,	/* inode has appended data */
748 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
749 	FI_NEED_IPU,		/* used for ipu per file */
750 	FI_ATOMIC_FILE,		/* indicate atomic file */
751 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
752 	FI_DROP_CACHE,		/* drop dirty page cache */
753 	FI_DATA_EXIST,		/* indicate data exists */
754 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
755 	FI_SKIP_WRITES,		/* should skip data page writeback */
756 	FI_OPU_WRITE,		/* used for opu per file */
757 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
758 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
759 	FI_HOT_DATA,		/* indicate file is hot */
760 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
761 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
762 	FI_PIN_FILE,		/* indicate file should not be gced */
763 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
764 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
765 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
766 	FI_MMAP_FILE,		/* indicate file was mmapped */
767 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
768 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
769 	FI_ALIGNED_WRITE,	/* enable aligned write */
770 	FI_COW_FILE,		/* indicate COW file */
771 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
772 	FI_MAX,			/* max flag, never be used */
773 };
774 
775 struct f2fs_inode_info {
776 	struct inode vfs_inode;		/* serve a vfs inode */
777 	unsigned long i_flags;		/* keep an inode flags for ioctl */
778 	unsigned char i_advise;		/* use to give file attribute hints */
779 	unsigned char i_dir_level;	/* use for dentry level for large dir */
780 	unsigned int i_current_depth;	/* only for directory depth */
781 	/* for gc failure statistic */
782 	unsigned int i_gc_failures[MAX_GC_FAILURE];
783 	unsigned int i_pino;		/* parent inode number */
784 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
785 
786 	/* Use below internally in f2fs*/
787 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
788 	struct f2fs_rwsem i_sem;	/* protect fi info */
789 	atomic_t dirty_pages;		/* # of dirty pages */
790 	f2fs_hash_t chash;		/* hash value of given file name */
791 	unsigned int clevel;		/* maximum level of given file name */
792 	struct task_struct *task;	/* lookup and create consistency */
793 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
794 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
795 	nid_t i_xattr_nid;		/* node id that contains xattrs */
796 	loff_t	last_disk_size;		/* lastly written file size */
797 	spinlock_t i_size_lock;		/* protect last_disk_size */
798 
799 #ifdef CONFIG_QUOTA
800 	struct dquot *i_dquot[MAXQUOTAS];
801 
802 	/* quota space reservation, managed internally by quota code */
803 	qsize_t i_reserved_quota;
804 #endif
805 	struct list_head dirty_list;	/* dirty list for dirs and files */
806 	struct list_head gdirty_list;	/* linked in global dirty list */
807 	struct task_struct *atomic_write_task;	/* store atomic write task */
808 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
809 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
810 
811 	/* avoid racing between foreground op and gc */
812 	struct f2fs_rwsem i_gc_rwsem[2];
813 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
814 
815 	int i_extra_isize;		/* size of extra space located in i_addr */
816 	kprojid_t i_projid;		/* id for project quota */
817 	int i_inline_xattr_size;	/* inline xattr size */
818 	struct timespec64 i_crtime;	/* inode creation time */
819 	struct timespec64 i_disk_time[4];/* inode disk times */
820 
821 	/* for file compress */
822 	atomic_t i_compr_blocks;		/* # of compressed blocks */
823 	unsigned char i_compress_algorithm;	/* algorithm type */
824 	unsigned char i_log_cluster_size;	/* log of cluster size */
825 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
826 	unsigned short i_compress_flag;		/* compress flag */
827 	unsigned int i_cluster_size;		/* cluster size */
828 
829 	unsigned int atomic_write_cnt;
830 	loff_t original_i_size;		/* original i_size before atomic write */
831 };
832 
833 static inline void get_extent_info(struct extent_info *ext,
834 					struct f2fs_extent *i_ext)
835 {
836 	ext->fofs = le32_to_cpu(i_ext->fofs);
837 	ext->blk = le32_to_cpu(i_ext->blk);
838 	ext->len = le32_to_cpu(i_ext->len);
839 }
840 
841 static inline void set_raw_extent(struct extent_info *ext,
842 					struct f2fs_extent *i_ext)
843 {
844 	i_ext->fofs = cpu_to_le32(ext->fofs);
845 	i_ext->blk = cpu_to_le32(ext->blk);
846 	i_ext->len = cpu_to_le32(ext->len);
847 }
848 
849 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
850 						u32 blk, unsigned int len)
851 {
852 	ei->fofs = fofs;
853 	ei->blk = blk;
854 	ei->len = len;
855 #ifdef CONFIG_F2FS_FS_COMPRESSION
856 	ei->c_len = 0;
857 #endif
858 }
859 
860 static inline bool __is_discard_mergeable(struct discard_info *back,
861 			struct discard_info *front, unsigned int max_len)
862 {
863 	return (back->lstart + back->len == front->lstart) &&
864 		(back->len + front->len <= max_len);
865 }
866 
867 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
868 			struct discard_info *back, unsigned int max_len)
869 {
870 	return __is_discard_mergeable(back, cur, max_len);
871 }
872 
873 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
874 			struct discard_info *front, unsigned int max_len)
875 {
876 	return __is_discard_mergeable(cur, front, max_len);
877 }
878 
879 static inline bool __is_extent_mergeable(struct extent_info *back,
880 						struct extent_info *front)
881 {
882 #ifdef CONFIG_F2FS_FS_COMPRESSION
883 	if (back->c_len && back->len != back->c_len)
884 		return false;
885 	if (front->c_len && front->len != front->c_len)
886 		return false;
887 #endif
888 	return (back->fofs + back->len == front->fofs &&
889 			back->blk + back->len == front->blk);
890 }
891 
892 static inline bool __is_back_mergeable(struct extent_info *cur,
893 						struct extent_info *back)
894 {
895 	return __is_extent_mergeable(back, cur);
896 }
897 
898 static inline bool __is_front_mergeable(struct extent_info *cur,
899 						struct extent_info *front)
900 {
901 	return __is_extent_mergeable(cur, front);
902 }
903 
904 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
905 static inline void __try_update_largest_extent(struct extent_tree *et,
906 						struct extent_node *en)
907 {
908 	if (en->ei.len > et->largest.len) {
909 		et->largest = en->ei;
910 		et->largest_updated = true;
911 	}
912 }
913 
914 /*
915  * For free nid management
916  */
917 enum nid_state {
918 	FREE_NID,		/* newly added to free nid list */
919 	PREALLOC_NID,		/* it is preallocated */
920 	MAX_NID_STATE,
921 };
922 
923 enum nat_state {
924 	TOTAL_NAT,
925 	DIRTY_NAT,
926 	RECLAIMABLE_NAT,
927 	MAX_NAT_STATE,
928 };
929 
930 struct f2fs_nm_info {
931 	block_t nat_blkaddr;		/* base disk address of NAT */
932 	nid_t max_nid;			/* maximum possible node ids */
933 	nid_t available_nids;		/* # of available node ids */
934 	nid_t next_scan_nid;		/* the next nid to be scanned */
935 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
936 	unsigned int ram_thresh;	/* control the memory footprint */
937 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
938 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
939 
940 	/* NAT cache management */
941 	struct radix_tree_root nat_root;/* root of the nat entry cache */
942 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
943 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
944 	struct list_head nat_entries;	/* cached nat entry list (clean) */
945 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
946 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
947 	unsigned int nat_blocks;	/* # of nat blocks */
948 
949 	/* free node ids management */
950 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
951 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
952 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
953 	spinlock_t nid_list_lock;	/* protect nid lists ops */
954 	struct mutex build_lock;	/* lock for build free nids */
955 	unsigned char **free_nid_bitmap;
956 	unsigned char *nat_block_bitmap;
957 	unsigned short *free_nid_count;	/* free nid count of NAT block */
958 
959 	/* for checkpoint */
960 	char *nat_bitmap;		/* NAT bitmap pointer */
961 
962 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
963 	unsigned char *nat_bits;	/* NAT bits blocks */
964 	unsigned char *full_nat_bits;	/* full NAT pages */
965 	unsigned char *empty_nat_bits;	/* empty NAT pages */
966 #ifdef CONFIG_F2FS_CHECK_FS
967 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
968 #endif
969 	int bitmap_size;		/* bitmap size */
970 };
971 
972 /*
973  * this structure is used as one of function parameters.
974  * all the information are dedicated to a given direct node block determined
975  * by the data offset in a file.
976  */
977 struct dnode_of_data {
978 	struct inode *inode;		/* vfs inode pointer */
979 	struct page *inode_page;	/* its inode page, NULL is possible */
980 	struct page *node_page;		/* cached direct node page */
981 	nid_t nid;			/* node id of the direct node block */
982 	unsigned int ofs_in_node;	/* data offset in the node page */
983 	bool inode_page_locked;		/* inode page is locked or not */
984 	bool node_changed;		/* is node block changed */
985 	char cur_level;			/* level of hole node page */
986 	char max_level;			/* level of current page located */
987 	block_t	data_blkaddr;		/* block address of the node block */
988 };
989 
990 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
991 		struct page *ipage, struct page *npage, nid_t nid)
992 {
993 	memset(dn, 0, sizeof(*dn));
994 	dn->inode = inode;
995 	dn->inode_page = ipage;
996 	dn->node_page = npage;
997 	dn->nid = nid;
998 }
999 
1000 /*
1001  * For SIT manager
1002  *
1003  * By default, there are 6 active log areas across the whole main area.
1004  * When considering hot and cold data separation to reduce cleaning overhead,
1005  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1006  * respectively.
1007  * In the current design, you should not change the numbers intentionally.
1008  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1009  * logs individually according to the underlying devices. (default: 6)
1010  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1011  * data and 8 for node logs.
1012  */
1013 #define	NR_CURSEG_DATA_TYPE	(3)
1014 #define NR_CURSEG_NODE_TYPE	(3)
1015 #define NR_CURSEG_INMEM_TYPE	(2)
1016 #define NR_CURSEG_RO_TYPE	(2)
1017 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1018 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1019 
1020 enum {
1021 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1022 	CURSEG_WARM_DATA,	/* data blocks */
1023 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1024 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1025 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1026 	CURSEG_COLD_NODE,	/* indirect node blocks */
1027 	NR_PERSISTENT_LOG,	/* number of persistent log */
1028 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1029 				/* pinned file that needs consecutive block address */
1030 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1031 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1032 };
1033 
1034 struct flush_cmd {
1035 	struct completion wait;
1036 	struct llist_node llnode;
1037 	nid_t ino;
1038 	int ret;
1039 };
1040 
1041 struct flush_cmd_control {
1042 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1043 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1044 	atomic_t issued_flush;			/* # of issued flushes */
1045 	atomic_t queued_flush;			/* # of queued flushes */
1046 	struct llist_head issue_list;		/* list for command issue */
1047 	struct llist_node *dispatch_list;	/* list for command dispatch */
1048 };
1049 
1050 struct f2fs_sm_info {
1051 	struct sit_info *sit_info;		/* whole segment information */
1052 	struct free_segmap_info *free_info;	/* free segment information */
1053 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1054 	struct curseg_info *curseg_array;	/* active segment information */
1055 
1056 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1057 
1058 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1059 	block_t main_blkaddr;		/* start block address of main area */
1060 	block_t ssa_blkaddr;		/* start block address of SSA area */
1061 
1062 	unsigned int segment_count;	/* total # of segments */
1063 	unsigned int main_segments;	/* # of segments in main area */
1064 	unsigned int reserved_segments;	/* # of reserved segments */
1065 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1066 	unsigned int ovp_segments;	/* # of overprovision segments */
1067 
1068 	/* a threshold to reclaim prefree segments */
1069 	unsigned int rec_prefree_segments;
1070 
1071 	struct list_head sit_entry_set;	/* sit entry set list */
1072 
1073 	unsigned int ipu_policy;	/* in-place-update policy */
1074 	unsigned int min_ipu_util;	/* in-place-update threshold */
1075 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1076 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1077 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1078 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1079 
1080 	/* for flush command control */
1081 	struct flush_cmd_control *fcc_info;
1082 
1083 	/* for discard command control */
1084 	struct discard_cmd_control *dcc_info;
1085 };
1086 
1087 /*
1088  * For superblock
1089  */
1090 /*
1091  * COUNT_TYPE for monitoring
1092  *
1093  * f2fs monitors the number of several block types such as on-writeback,
1094  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1095  */
1096 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1097 enum count_type {
1098 	F2FS_DIRTY_DENTS,
1099 	F2FS_DIRTY_DATA,
1100 	F2FS_DIRTY_QDATA,
1101 	F2FS_DIRTY_NODES,
1102 	F2FS_DIRTY_META,
1103 	F2FS_DIRTY_IMETA,
1104 	F2FS_WB_CP_DATA,
1105 	F2FS_WB_DATA,
1106 	F2FS_RD_DATA,
1107 	F2FS_RD_NODE,
1108 	F2FS_RD_META,
1109 	F2FS_DIO_WRITE,
1110 	F2FS_DIO_READ,
1111 	NR_COUNT_TYPE,
1112 };
1113 
1114 /*
1115  * The below are the page types of bios used in submit_bio().
1116  * The available types are:
1117  * DATA			User data pages. It operates as async mode.
1118  * NODE			Node pages. It operates as async mode.
1119  * META			FS metadata pages such as SIT, NAT, CP.
1120  * NR_PAGE_TYPE		The number of page types.
1121  * META_FLUSH		Make sure the previous pages are written
1122  *			with waiting the bio's completion
1123  * ...			Only can be used with META.
1124  */
1125 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1126 enum page_type {
1127 	DATA = 0,
1128 	NODE = 1,	/* should not change this */
1129 	META,
1130 	NR_PAGE_TYPE,
1131 	META_FLUSH,
1132 	IPU,		/* the below types are used by tracepoints only. */
1133 	OPU,
1134 };
1135 
1136 enum temp_type {
1137 	HOT = 0,	/* must be zero for meta bio */
1138 	WARM,
1139 	COLD,
1140 	NR_TEMP_TYPE,
1141 };
1142 
1143 enum need_lock_type {
1144 	LOCK_REQ = 0,
1145 	LOCK_DONE,
1146 	LOCK_RETRY,
1147 };
1148 
1149 enum cp_reason_type {
1150 	CP_NO_NEEDED,
1151 	CP_NON_REGULAR,
1152 	CP_COMPRESSED,
1153 	CP_HARDLINK,
1154 	CP_SB_NEED_CP,
1155 	CP_WRONG_PINO,
1156 	CP_NO_SPC_ROLL,
1157 	CP_NODE_NEED_CP,
1158 	CP_FASTBOOT_MODE,
1159 	CP_SPEC_LOG_NUM,
1160 	CP_RECOVER_DIR,
1161 };
1162 
1163 enum iostat_type {
1164 	/* WRITE IO */
1165 	APP_DIRECT_IO,			/* app direct write IOs */
1166 	APP_BUFFERED_IO,		/* app buffered write IOs */
1167 	APP_WRITE_IO,			/* app write IOs */
1168 	APP_MAPPED_IO,			/* app mapped IOs */
1169 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1170 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1171 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1172 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1173 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1174 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1175 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1176 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1177 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1178 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1179 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1180 
1181 	/* READ IO */
1182 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1183 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1184 	APP_READ_IO,			/* app read IOs */
1185 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1186 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1187 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1188 	FS_DATA_READ_IO,		/* data read IOs */
1189 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1190 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1191 	FS_NODE_READ_IO,		/* node read IOs */
1192 	FS_META_READ_IO,		/* meta read IOs */
1193 
1194 	/* other */
1195 	FS_DISCARD,			/* discard */
1196 	NR_IO_TYPE,
1197 };
1198 
1199 struct f2fs_io_info {
1200 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1201 	nid_t ino;		/* inode number */
1202 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1203 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1204 	enum req_op op;		/* contains REQ_OP_ */
1205 	blk_opf_t op_flags;	/* req_flag_bits */
1206 	block_t new_blkaddr;	/* new block address to be written */
1207 	block_t old_blkaddr;	/* old block address before Cow */
1208 	struct page *page;	/* page to be written */
1209 	struct page *encrypted_page;	/* encrypted page */
1210 	struct page *compressed_page;	/* compressed page */
1211 	struct list_head list;		/* serialize IOs */
1212 	bool submitted;		/* indicate IO submission */
1213 	int need_lock;		/* indicate we need to lock cp_rwsem */
1214 	bool in_list;		/* indicate fio is in io_list */
1215 	bool is_por;		/* indicate IO is from recovery or not */
1216 	bool retry;		/* need to reallocate block address */
1217 	int compr_blocks;	/* # of compressed block addresses */
1218 	bool encrypted;		/* indicate file is encrypted */
1219 	bool post_read;		/* require post read */
1220 	enum iostat_type io_type;	/* io type */
1221 	struct writeback_control *io_wbc; /* writeback control */
1222 	struct bio **bio;		/* bio for ipu */
1223 	sector_t *last_block;		/* last block number in bio */
1224 	unsigned char version;		/* version of the node */
1225 };
1226 
1227 struct bio_entry {
1228 	struct bio *bio;
1229 	struct list_head list;
1230 };
1231 
1232 #define is_read_io(rw) ((rw) == READ)
1233 struct f2fs_bio_info {
1234 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1235 	struct bio *bio;		/* bios to merge */
1236 	sector_t last_block_in_bio;	/* last block number */
1237 	struct f2fs_io_info fio;	/* store buffered io info. */
1238 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1239 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1240 	struct list_head io_list;	/* track fios */
1241 	struct list_head bio_list;	/* bio entry list head */
1242 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1243 };
1244 
1245 #define FDEV(i)				(sbi->devs[i])
1246 #define RDEV(i)				(raw_super->devs[i])
1247 struct f2fs_dev_info {
1248 	struct block_device *bdev;
1249 	char path[MAX_PATH_LEN];
1250 	unsigned int total_segments;
1251 	block_t start_blk;
1252 	block_t end_blk;
1253 #ifdef CONFIG_BLK_DEV_ZONED
1254 	unsigned int nr_blkz;		/* Total number of zones */
1255 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1256 #endif
1257 };
1258 
1259 enum inode_type {
1260 	DIR_INODE,			/* for dirty dir inode */
1261 	FILE_INODE,			/* for dirty regular/symlink inode */
1262 	DIRTY_META,			/* for all dirtied inode metadata */
1263 	NR_INODE_TYPE,
1264 };
1265 
1266 /* for inner inode cache management */
1267 struct inode_management {
1268 	struct radix_tree_root ino_root;	/* ino entry array */
1269 	spinlock_t ino_lock;			/* for ino entry lock */
1270 	struct list_head ino_list;		/* inode list head */
1271 	unsigned long ino_num;			/* number of entries */
1272 };
1273 
1274 /* for GC_AT */
1275 struct atgc_management {
1276 	bool atgc_enabled;			/* ATGC is enabled or not */
1277 	struct rb_root_cached root;		/* root of victim rb-tree */
1278 	struct list_head victim_list;		/* linked with all victim entries */
1279 	unsigned int victim_count;		/* victim count in rb-tree */
1280 	unsigned int candidate_ratio;		/* candidate ratio */
1281 	unsigned int max_candidate_count;	/* max candidate count */
1282 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1283 	unsigned long long age_threshold;	/* age threshold */
1284 };
1285 
1286 struct f2fs_gc_control {
1287 	unsigned int victim_segno;	/* target victim segment number */
1288 	int init_gc_type;		/* FG_GC or BG_GC */
1289 	bool no_bg_gc;			/* check the space and stop bg_gc */
1290 	bool should_migrate_blocks;	/* should migrate blocks */
1291 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1292 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1293 };
1294 
1295 /* For s_flag in struct f2fs_sb_info */
1296 enum {
1297 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1298 	SBI_IS_CLOSE,				/* specify unmounting */
1299 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1300 	SBI_POR_DOING,				/* recovery is doing or not */
1301 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1302 	SBI_NEED_CP,				/* need to checkpoint */
1303 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1304 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1305 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1306 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1307 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1308 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1309 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1310 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1311 	SBI_IS_FREEZING,			/* freezefs is in process */
1312 };
1313 
1314 enum {
1315 	CP_TIME,
1316 	REQ_TIME,
1317 	DISCARD_TIME,
1318 	GC_TIME,
1319 	DISABLE_TIME,
1320 	UMOUNT_DISCARD_TIMEOUT,
1321 	MAX_TIME,
1322 };
1323 
1324 /* Note that you need to keep synchronization with this gc_mode_names array */
1325 enum {
1326 	GC_NORMAL,
1327 	GC_IDLE_CB,
1328 	GC_IDLE_GREEDY,
1329 	GC_IDLE_AT,
1330 	GC_URGENT_HIGH,
1331 	GC_URGENT_LOW,
1332 	GC_URGENT_MID,
1333 	MAX_GC_MODE,
1334 };
1335 
1336 enum {
1337 	BGGC_MODE_ON,		/* background gc is on */
1338 	BGGC_MODE_OFF,		/* background gc is off */
1339 	BGGC_MODE_SYNC,		/*
1340 				 * background gc is on, migrating blocks
1341 				 * like foreground gc
1342 				 */
1343 };
1344 
1345 enum {
1346 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1347 	FS_MODE_LFS,			/* use lfs allocation only */
1348 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1349 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1350 };
1351 
1352 enum {
1353 	ALLOC_MODE_DEFAULT,	/* stay default */
1354 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1355 };
1356 
1357 enum fsync_mode {
1358 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1359 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1360 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1361 };
1362 
1363 enum {
1364 	COMPR_MODE_FS,		/*
1365 				 * automatically compress compression
1366 				 * enabled files
1367 				 */
1368 	COMPR_MODE_USER,	/*
1369 				 * automatical compression is disabled.
1370 				 * user can control the file compression
1371 				 * using ioctls
1372 				 */
1373 };
1374 
1375 enum {
1376 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1377 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1378 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1379 };
1380 
1381 enum {
1382 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1383 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1384 };
1385 
1386 
1387 
1388 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1389 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1390 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1391 
1392 /*
1393  * Layout of f2fs page.private:
1394  *
1395  * Layout A: lowest bit should be 1
1396  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1397  * bit 0	PAGE_PRIVATE_NOT_POINTER
1398  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1399  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1400  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1401  * bit 4	PAGE_PRIVATE_INLINE_INODE
1402  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1403  * bit 6-	f2fs private data
1404  *
1405  * Layout B: lowest bit should be 0
1406  * page.private is a wrapped pointer.
1407  */
1408 enum {
1409 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1410 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1411 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1412 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1413 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1414 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1415 	PAGE_PRIVATE_MAX
1416 };
1417 
1418 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1419 static inline bool page_private_##name(struct page *page) \
1420 { \
1421 	return PagePrivate(page) && \
1422 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1423 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1424 }
1425 
1426 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1427 static inline void set_page_private_##name(struct page *page) \
1428 { \
1429 	if (!PagePrivate(page)) { \
1430 		get_page(page); \
1431 		SetPagePrivate(page); \
1432 		set_page_private(page, 0); \
1433 	} \
1434 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1435 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1436 }
1437 
1438 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1439 static inline void clear_page_private_##name(struct page *page) \
1440 { \
1441 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1442 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1443 		set_page_private(page, 0); \
1444 		if (PagePrivate(page)) { \
1445 			ClearPagePrivate(page); \
1446 			put_page(page); \
1447 		}\
1448 	} \
1449 }
1450 
1451 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1452 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1453 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1454 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1455 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1456 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1457 
1458 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1459 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1460 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1461 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1462 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1463 
1464 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1465 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1466 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1467 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1468 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1469 
1470 static inline unsigned long get_page_private_data(struct page *page)
1471 {
1472 	unsigned long data = page_private(page);
1473 
1474 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1475 		return 0;
1476 	return data >> PAGE_PRIVATE_MAX;
1477 }
1478 
1479 static inline void set_page_private_data(struct page *page, unsigned long data)
1480 {
1481 	if (!PagePrivate(page)) {
1482 		get_page(page);
1483 		SetPagePrivate(page);
1484 		set_page_private(page, 0);
1485 	}
1486 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1487 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1488 }
1489 
1490 static inline void clear_page_private_data(struct page *page)
1491 {
1492 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1493 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1494 		set_page_private(page, 0);
1495 		if (PagePrivate(page)) {
1496 			ClearPagePrivate(page);
1497 			put_page(page);
1498 		}
1499 	}
1500 }
1501 
1502 /* For compression */
1503 enum compress_algorithm_type {
1504 	COMPRESS_LZO,
1505 	COMPRESS_LZ4,
1506 	COMPRESS_ZSTD,
1507 	COMPRESS_LZORLE,
1508 	COMPRESS_MAX,
1509 };
1510 
1511 enum compress_flag {
1512 	COMPRESS_CHKSUM,
1513 	COMPRESS_MAX_FLAG,
1514 };
1515 
1516 #define	COMPRESS_WATERMARK			20
1517 #define	COMPRESS_PERCENT			20
1518 
1519 #define COMPRESS_DATA_RESERVED_SIZE		4
1520 struct compress_data {
1521 	__le32 clen;			/* compressed data size */
1522 	__le32 chksum;			/* compressed data chksum */
1523 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1524 	u8 cdata[];			/* compressed data */
1525 };
1526 
1527 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1528 
1529 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1530 
1531 #define	COMPRESS_LEVEL_OFFSET	8
1532 
1533 /* compress context */
1534 struct compress_ctx {
1535 	struct inode *inode;		/* inode the context belong to */
1536 	pgoff_t cluster_idx;		/* cluster index number */
1537 	unsigned int cluster_size;	/* page count in cluster */
1538 	unsigned int log_cluster_size;	/* log of cluster size */
1539 	struct page **rpages;		/* pages store raw data in cluster */
1540 	unsigned int nr_rpages;		/* total page number in rpages */
1541 	struct page **cpages;		/* pages store compressed data in cluster */
1542 	unsigned int nr_cpages;		/* total page number in cpages */
1543 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1544 	void *rbuf;			/* virtual mapped address on rpages */
1545 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1546 	size_t rlen;			/* valid data length in rbuf */
1547 	size_t clen;			/* valid data length in cbuf */
1548 	void *private;			/* payload buffer for specified compression algorithm */
1549 	void *private2;			/* extra payload buffer */
1550 };
1551 
1552 /* compress context for write IO path */
1553 struct compress_io_ctx {
1554 	u32 magic;			/* magic number to indicate page is compressed */
1555 	struct inode *inode;		/* inode the context belong to */
1556 	struct page **rpages;		/* pages store raw data in cluster */
1557 	unsigned int nr_rpages;		/* total page number in rpages */
1558 	atomic_t pending_pages;		/* in-flight compressed page count */
1559 };
1560 
1561 /* Context for decompressing one cluster on the read IO path */
1562 struct decompress_io_ctx {
1563 	u32 magic;			/* magic number to indicate page is compressed */
1564 	struct inode *inode;		/* inode the context belong to */
1565 	pgoff_t cluster_idx;		/* cluster index number */
1566 	unsigned int cluster_size;	/* page count in cluster */
1567 	unsigned int log_cluster_size;	/* log of cluster size */
1568 	struct page **rpages;		/* pages store raw data in cluster */
1569 	unsigned int nr_rpages;		/* total page number in rpages */
1570 	struct page **cpages;		/* pages store compressed data in cluster */
1571 	unsigned int nr_cpages;		/* total page number in cpages */
1572 	struct page **tpages;		/* temp pages to pad holes in cluster */
1573 	void *rbuf;			/* virtual mapped address on rpages */
1574 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1575 	size_t rlen;			/* valid data length in rbuf */
1576 	size_t clen;			/* valid data length in cbuf */
1577 
1578 	/*
1579 	 * The number of compressed pages remaining to be read in this cluster.
1580 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1581 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1582 	 * is decompressed (or an error is reported).
1583 	 *
1584 	 * If an error occurs before all the pages have been submitted for I/O,
1585 	 * then this will never reach 0.  In this case the I/O submitter is
1586 	 * responsible for calling f2fs_decompress_end_io() instead.
1587 	 */
1588 	atomic_t remaining_pages;
1589 
1590 	/*
1591 	 * Number of references to this decompress_io_ctx.
1592 	 *
1593 	 * One reference is held for I/O completion.  This reference is dropped
1594 	 * after the pagecache pages are updated and unlocked -- either after
1595 	 * decompression (and verity if enabled), or after an error.
1596 	 *
1597 	 * In addition, each compressed page holds a reference while it is in a
1598 	 * bio.  These references are necessary prevent compressed pages from
1599 	 * being freed while they are still in a bio.
1600 	 */
1601 	refcount_t refcnt;
1602 
1603 	bool failed;			/* IO error occurred before decompression? */
1604 	bool need_verity;		/* need fs-verity verification after decompression? */
1605 	void *private;			/* payload buffer for specified decompression algorithm */
1606 	void *private2;			/* extra payload buffer */
1607 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1608 	struct work_struct free_work;	/* work for late free this structure itself */
1609 };
1610 
1611 #define NULL_CLUSTER			((unsigned int)(~0))
1612 #define MIN_COMPRESS_LOG_SIZE		2
1613 #define MAX_COMPRESS_LOG_SIZE		8
1614 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1615 
1616 struct f2fs_sb_info {
1617 	struct super_block *sb;			/* pointer to VFS super block */
1618 	struct proc_dir_entry *s_proc;		/* proc entry */
1619 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1620 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1621 	int valid_super_block;			/* valid super block no */
1622 	unsigned long s_flag;				/* flags for sbi */
1623 	struct mutex writepages;		/* mutex for writepages() */
1624 
1625 #ifdef CONFIG_BLK_DEV_ZONED
1626 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1627 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1628 #endif
1629 
1630 	/* for node-related operations */
1631 	struct f2fs_nm_info *nm_info;		/* node manager */
1632 	struct inode *node_inode;		/* cache node blocks */
1633 
1634 	/* for segment-related operations */
1635 	struct f2fs_sm_info *sm_info;		/* segment manager */
1636 
1637 	/* for bio operations */
1638 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1639 	/* keep migration IO order for LFS mode */
1640 	struct f2fs_rwsem io_order_lock;
1641 	mempool_t *write_io_dummy;		/* Dummy pages */
1642 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1643 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1644 
1645 	/* for checkpoint */
1646 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1647 	int cur_cp_pack;			/* remain current cp pack */
1648 	spinlock_t cp_lock;			/* for flag in ckpt */
1649 	struct inode *meta_inode;		/* cache meta blocks */
1650 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1651 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1652 	struct f2fs_rwsem node_write;		/* locking node writes */
1653 	struct f2fs_rwsem node_change;	/* locking node change */
1654 	wait_queue_head_t cp_wait;
1655 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1656 	long interval_time[MAX_TIME];		/* to store thresholds */
1657 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1658 
1659 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1660 
1661 	spinlock_t fsync_node_lock;		/* for node entry lock */
1662 	struct list_head fsync_node_list;	/* node list head */
1663 	unsigned int fsync_seg_id;		/* sequence id */
1664 	unsigned int fsync_node_num;		/* number of node entries */
1665 
1666 	/* for orphan inode, use 0'th array */
1667 	unsigned int max_orphans;		/* max orphan inodes */
1668 
1669 	/* for inode management */
1670 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1671 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1672 	struct mutex flush_lock;		/* for flush exclusion */
1673 
1674 	/* for extent tree cache */
1675 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1676 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1677 	struct list_head extent_list;		/* lru list for shrinker */
1678 	spinlock_t extent_lock;			/* locking extent lru list */
1679 	atomic_t total_ext_tree;		/* extent tree count */
1680 	struct list_head zombie_list;		/* extent zombie tree list */
1681 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1682 	atomic_t total_ext_node;		/* extent info count */
1683 
1684 	/* basic filesystem units */
1685 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1686 	unsigned int log_blocksize;		/* log2 block size */
1687 	unsigned int blocksize;			/* block size */
1688 	unsigned int root_ino_num;		/* root inode number*/
1689 	unsigned int node_ino_num;		/* node inode number*/
1690 	unsigned int meta_ino_num;		/* meta inode number*/
1691 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1692 	unsigned int blocks_per_seg;		/* blocks per segment */
1693 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1694 	unsigned int segs_per_sec;		/* segments per section */
1695 	unsigned int secs_per_zone;		/* sections per zone */
1696 	unsigned int total_sections;		/* total section count */
1697 	unsigned int total_node_count;		/* total node block count */
1698 	unsigned int total_valid_node_count;	/* valid node block count */
1699 	int dir_level;				/* directory level */
1700 	int readdir_ra;				/* readahead inode in readdir */
1701 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1702 
1703 	block_t user_block_count;		/* # of user blocks */
1704 	block_t total_valid_block_count;	/* # of valid blocks */
1705 	block_t discard_blks;			/* discard command candidats */
1706 	block_t last_valid_block_count;		/* for recovery */
1707 	block_t reserved_blocks;		/* configurable reserved blocks */
1708 	block_t current_reserved_blocks;	/* current reserved blocks */
1709 
1710 	/* Additional tracking for no checkpoint mode */
1711 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1712 
1713 	unsigned int nquota_files;		/* # of quota sysfile */
1714 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1715 
1716 	/* # of pages, see count_type */
1717 	atomic_t nr_pages[NR_COUNT_TYPE];
1718 	/* # of allocated blocks */
1719 	struct percpu_counter alloc_valid_block_count;
1720 	/* # of node block writes as roll forward recovery */
1721 	struct percpu_counter rf_node_block_count;
1722 
1723 	/* writeback control */
1724 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1725 
1726 	/* valid inode count */
1727 	struct percpu_counter total_valid_inode_count;
1728 
1729 	struct f2fs_mount_info mount_opt;	/* mount options */
1730 
1731 	/* for cleaning operations */
1732 	struct f2fs_rwsem gc_lock;		/*
1733 						 * semaphore for GC, avoid
1734 						 * race between GC and GC or CP
1735 						 */
1736 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1737 	struct atgc_management am;		/* atgc management */
1738 	unsigned int cur_victim_sec;		/* current victim section num */
1739 	unsigned int gc_mode;			/* current GC state */
1740 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1741 	spinlock_t gc_remaining_trials_lock;
1742 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1743 	unsigned int gc_remaining_trials;
1744 
1745 	/* for skip statistic */
1746 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1747 
1748 	/* threshold for gc trials on pinned files */
1749 	u64 gc_pin_file_threshold;
1750 	struct f2fs_rwsem pin_sem;
1751 
1752 	/* maximum # of trials to find a victim segment for SSR and GC */
1753 	unsigned int max_victim_search;
1754 	/* migration granularity of garbage collection, unit: segment */
1755 	unsigned int migration_granularity;
1756 
1757 	/*
1758 	 * for stat information.
1759 	 * one is for the LFS mode, and the other is for the SSR mode.
1760 	 */
1761 #ifdef CONFIG_F2FS_STAT_FS
1762 	struct f2fs_stat_info *stat_info;	/* FS status information */
1763 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1764 	unsigned int segment_count[2];		/* # of allocated segments */
1765 	unsigned int block_count[2];		/* # of allocated blocks */
1766 	atomic_t inplace_count;		/* # of inplace update */
1767 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1768 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1769 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1770 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1771 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1772 	atomic_t inline_inode;			/* # of inline_data inodes */
1773 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1774 	atomic_t compr_inode;			/* # of compressed inodes */
1775 	atomic64_t compr_blocks;		/* # of compressed blocks */
1776 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1777 	atomic_t atomic_files;			/* # of opened atomic file */
1778 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1779 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1780 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1781 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1782 #endif
1783 	spinlock_t stat_lock;			/* lock for stat operations */
1784 
1785 	/* to attach REQ_META|REQ_FUA flags */
1786 	unsigned int data_io_flag;
1787 	unsigned int node_io_flag;
1788 
1789 	/* For sysfs support */
1790 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1791 	struct completion s_kobj_unregister;
1792 
1793 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1794 	struct completion s_stat_kobj_unregister;
1795 
1796 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1797 	struct completion s_feature_list_kobj_unregister;
1798 
1799 	/* For shrinker support */
1800 	struct list_head s_list;
1801 	struct mutex umount_mutex;
1802 	unsigned int shrinker_run_no;
1803 
1804 	/* For multi devices */
1805 	int s_ndevs;				/* number of devices */
1806 	struct f2fs_dev_info *devs;		/* for device list */
1807 	unsigned int dirty_device;		/* for checkpoint data flush */
1808 	spinlock_t dev_lock;			/* protect dirty_device */
1809 	bool aligned_blksize;			/* all devices has the same logical blksize */
1810 
1811 	/* For write statistics */
1812 	u64 sectors_written_start;
1813 	u64 kbytes_written;
1814 
1815 	/* Reference to checksum algorithm driver via cryptoapi */
1816 	struct crypto_shash *s_chksum_driver;
1817 
1818 	/* Precomputed FS UUID checksum for seeding other checksums */
1819 	__u32 s_chksum_seed;
1820 
1821 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1822 
1823 	unsigned char errors[MAX_F2FS_ERRORS];	/* error flags */
1824 	spinlock_t error_lock;			/* protect errors array */
1825 	bool error_dirty;			/* errors of sb is dirty */
1826 
1827 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1828 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1829 
1830 	/* For reclaimed segs statistics per each GC mode */
1831 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1832 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1833 
1834 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1835 
1836 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1837 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1838 
1839 	/* For atomic write statistics */
1840 	atomic64_t current_atomic_write;
1841 	s64 peak_atomic_write;
1842 	u64 committed_atomic_block;
1843 	u64 revoked_atomic_block;
1844 
1845 #ifdef CONFIG_F2FS_FS_COMPRESSION
1846 	struct kmem_cache *page_array_slab;	/* page array entry */
1847 	unsigned int page_array_slab_size;	/* default page array slab size */
1848 
1849 	/* For runtime compression statistics */
1850 	u64 compr_written_block;
1851 	u64 compr_saved_block;
1852 	u32 compr_new_inode;
1853 
1854 	/* For compressed block cache */
1855 	struct inode *compress_inode;		/* cache compressed blocks */
1856 	unsigned int compress_percent;		/* cache page percentage */
1857 	unsigned int compress_watermark;	/* cache page watermark */
1858 	atomic_t compress_page_hit;		/* cache hit count */
1859 #endif
1860 
1861 #ifdef CONFIG_F2FS_IOSTAT
1862 	/* For app/fs IO statistics */
1863 	spinlock_t iostat_lock;
1864 	unsigned long long rw_iostat[NR_IO_TYPE];
1865 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1866 	bool iostat_enable;
1867 	unsigned long iostat_next_period;
1868 	unsigned int iostat_period_ms;
1869 
1870 	/* For io latency related statistics info in one iostat period */
1871 	spinlock_t iostat_lat_lock;
1872 	struct iostat_lat_info *iostat_io_lat;
1873 #endif
1874 };
1875 
1876 #ifdef CONFIG_F2FS_FAULT_INJECTION
1877 #define f2fs_show_injection_info(sbi, type)					\
1878 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1879 		KERN_INFO, sbi->sb->s_id,				\
1880 		f2fs_fault_name[type],					\
1881 		__func__, __builtin_return_address(0))
1882 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1883 {
1884 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1885 
1886 	if (!ffi->inject_rate)
1887 		return false;
1888 
1889 	if (!IS_FAULT_SET(ffi, type))
1890 		return false;
1891 
1892 	atomic_inc(&ffi->inject_ops);
1893 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1894 		atomic_set(&ffi->inject_ops, 0);
1895 		return true;
1896 	}
1897 	return false;
1898 }
1899 #else
1900 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1901 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1902 {
1903 	return false;
1904 }
1905 #endif
1906 
1907 /*
1908  * Test if the mounted volume is a multi-device volume.
1909  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1910  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1911  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1912  */
1913 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1914 {
1915 	return sbi->s_ndevs > 1;
1916 }
1917 
1918 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1919 {
1920 	unsigned long now = jiffies;
1921 
1922 	sbi->last_time[type] = now;
1923 
1924 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1925 	if (type == REQ_TIME) {
1926 		sbi->last_time[DISCARD_TIME] = now;
1927 		sbi->last_time[GC_TIME] = now;
1928 	}
1929 }
1930 
1931 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1932 {
1933 	unsigned long interval = sbi->interval_time[type] * HZ;
1934 
1935 	return time_after(jiffies, sbi->last_time[type] + interval);
1936 }
1937 
1938 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1939 						int type)
1940 {
1941 	unsigned long interval = sbi->interval_time[type] * HZ;
1942 	unsigned int wait_ms = 0;
1943 	long delta;
1944 
1945 	delta = (sbi->last_time[type] + interval) - jiffies;
1946 	if (delta > 0)
1947 		wait_ms = jiffies_to_msecs(delta);
1948 
1949 	return wait_ms;
1950 }
1951 
1952 /*
1953  * Inline functions
1954  */
1955 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1956 			      const void *address, unsigned int length)
1957 {
1958 	struct {
1959 		struct shash_desc shash;
1960 		char ctx[4];
1961 	} desc;
1962 	int err;
1963 
1964 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1965 
1966 	desc.shash.tfm = sbi->s_chksum_driver;
1967 	*(u32 *)desc.ctx = crc;
1968 
1969 	err = crypto_shash_update(&desc.shash, address, length);
1970 	BUG_ON(err);
1971 
1972 	return *(u32 *)desc.ctx;
1973 }
1974 
1975 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1976 			   unsigned int length)
1977 {
1978 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1979 }
1980 
1981 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1982 				  void *buf, size_t buf_size)
1983 {
1984 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1985 }
1986 
1987 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1988 			      const void *address, unsigned int length)
1989 {
1990 	return __f2fs_crc32(sbi, crc, address, length);
1991 }
1992 
1993 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1994 {
1995 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1996 }
1997 
1998 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1999 {
2000 	return sb->s_fs_info;
2001 }
2002 
2003 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2004 {
2005 	return F2FS_SB(inode->i_sb);
2006 }
2007 
2008 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2009 {
2010 	return F2FS_I_SB(mapping->host);
2011 }
2012 
2013 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2014 {
2015 	return F2FS_M_SB(page_file_mapping(page));
2016 }
2017 
2018 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2019 {
2020 	return (struct f2fs_super_block *)(sbi->raw_super);
2021 }
2022 
2023 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2024 {
2025 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2026 }
2027 
2028 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2029 {
2030 	return (struct f2fs_node *)page_address(page);
2031 }
2032 
2033 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2034 {
2035 	return &((struct f2fs_node *)page_address(page))->i;
2036 }
2037 
2038 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2039 {
2040 	return (struct f2fs_nm_info *)(sbi->nm_info);
2041 }
2042 
2043 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2044 {
2045 	return (struct f2fs_sm_info *)(sbi->sm_info);
2046 }
2047 
2048 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2049 {
2050 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2051 }
2052 
2053 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2054 {
2055 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2056 }
2057 
2058 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2059 {
2060 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2061 }
2062 
2063 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2064 {
2065 	return sbi->meta_inode->i_mapping;
2066 }
2067 
2068 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2069 {
2070 	return sbi->node_inode->i_mapping;
2071 }
2072 
2073 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2074 {
2075 	return test_bit(type, &sbi->s_flag);
2076 }
2077 
2078 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2079 {
2080 	set_bit(type, &sbi->s_flag);
2081 }
2082 
2083 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2084 {
2085 	clear_bit(type, &sbi->s_flag);
2086 }
2087 
2088 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2089 {
2090 	return le64_to_cpu(cp->checkpoint_ver);
2091 }
2092 
2093 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2094 {
2095 	if (type < F2FS_MAX_QUOTAS)
2096 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2097 	return 0;
2098 }
2099 
2100 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2101 {
2102 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2103 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2104 }
2105 
2106 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2107 {
2108 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2109 
2110 	return ckpt_flags & f;
2111 }
2112 
2113 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2114 {
2115 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2116 }
2117 
2118 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2119 {
2120 	unsigned int ckpt_flags;
2121 
2122 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2123 	ckpt_flags |= f;
2124 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2125 }
2126 
2127 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2128 {
2129 	unsigned long flags;
2130 
2131 	spin_lock_irqsave(&sbi->cp_lock, flags);
2132 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2133 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2134 }
2135 
2136 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2137 {
2138 	unsigned int ckpt_flags;
2139 
2140 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2141 	ckpt_flags &= (~f);
2142 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2143 }
2144 
2145 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2146 {
2147 	unsigned long flags;
2148 
2149 	spin_lock_irqsave(&sbi->cp_lock, flags);
2150 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2151 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2152 }
2153 
2154 #define init_f2fs_rwsem(sem)					\
2155 do {								\
2156 	static struct lock_class_key __key;			\
2157 								\
2158 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2159 } while (0)
2160 
2161 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2162 		const char *sem_name, struct lock_class_key *key)
2163 {
2164 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2165 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2166 	init_waitqueue_head(&sem->read_waiters);
2167 #endif
2168 }
2169 
2170 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2171 {
2172 	return rwsem_is_locked(&sem->internal_rwsem);
2173 }
2174 
2175 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2176 {
2177 	return rwsem_is_contended(&sem->internal_rwsem);
2178 }
2179 
2180 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2181 {
2182 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2183 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2184 #else
2185 	down_read(&sem->internal_rwsem);
2186 #endif
2187 }
2188 
2189 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2190 {
2191 	return down_read_trylock(&sem->internal_rwsem);
2192 }
2193 
2194 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2195 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2196 {
2197 	down_read_nested(&sem->internal_rwsem, subclass);
2198 }
2199 #else
2200 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2201 #endif
2202 
2203 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2204 {
2205 	up_read(&sem->internal_rwsem);
2206 }
2207 
2208 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2209 {
2210 	down_write(&sem->internal_rwsem);
2211 }
2212 
2213 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2214 {
2215 	return down_write_trylock(&sem->internal_rwsem);
2216 }
2217 
2218 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2219 {
2220 	up_write(&sem->internal_rwsem);
2221 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2222 	wake_up_all(&sem->read_waiters);
2223 #endif
2224 }
2225 
2226 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2227 {
2228 	f2fs_down_read(&sbi->cp_rwsem);
2229 }
2230 
2231 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2232 {
2233 	if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2234 		f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2235 		return 0;
2236 	}
2237 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2238 }
2239 
2240 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2241 {
2242 	f2fs_up_read(&sbi->cp_rwsem);
2243 }
2244 
2245 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2246 {
2247 	f2fs_down_write(&sbi->cp_rwsem);
2248 }
2249 
2250 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2251 {
2252 	f2fs_up_write(&sbi->cp_rwsem);
2253 }
2254 
2255 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2256 {
2257 	int reason = CP_SYNC;
2258 
2259 	if (test_opt(sbi, FASTBOOT))
2260 		reason = CP_FASTBOOT;
2261 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2262 		reason = CP_UMOUNT;
2263 	return reason;
2264 }
2265 
2266 static inline bool __remain_node_summaries(int reason)
2267 {
2268 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2269 }
2270 
2271 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2272 {
2273 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2274 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2275 }
2276 
2277 /*
2278  * Check whether the inode has blocks or not
2279  */
2280 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2281 {
2282 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2283 
2284 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2285 }
2286 
2287 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2288 {
2289 	return ofs == XATTR_NODE_OFFSET;
2290 }
2291 
2292 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2293 					struct inode *inode, bool cap)
2294 {
2295 	if (!inode)
2296 		return true;
2297 	if (!test_opt(sbi, RESERVE_ROOT))
2298 		return false;
2299 	if (IS_NOQUOTA(inode))
2300 		return true;
2301 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2302 		return true;
2303 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2304 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2305 		return true;
2306 	if (cap && capable(CAP_SYS_RESOURCE))
2307 		return true;
2308 	return false;
2309 }
2310 
2311 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2312 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2313 				 struct inode *inode, blkcnt_t *count)
2314 {
2315 	blkcnt_t diff = 0, release = 0;
2316 	block_t avail_user_block_count;
2317 	int ret;
2318 
2319 	ret = dquot_reserve_block(inode, *count);
2320 	if (ret)
2321 		return ret;
2322 
2323 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2324 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2325 		release = *count;
2326 		goto release_quota;
2327 	}
2328 
2329 	/*
2330 	 * let's increase this in prior to actual block count change in order
2331 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2332 	 */
2333 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2334 
2335 	spin_lock(&sbi->stat_lock);
2336 	sbi->total_valid_block_count += (block_t)(*count);
2337 	avail_user_block_count = sbi->user_block_count -
2338 					sbi->current_reserved_blocks;
2339 
2340 	if (!__allow_reserved_blocks(sbi, inode, true))
2341 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2342 
2343 	if (F2FS_IO_ALIGNED(sbi))
2344 		avail_user_block_count -= sbi->blocks_per_seg *
2345 				SM_I(sbi)->additional_reserved_segments;
2346 
2347 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2348 		if (avail_user_block_count > sbi->unusable_block_count)
2349 			avail_user_block_count -= sbi->unusable_block_count;
2350 		else
2351 			avail_user_block_count = 0;
2352 	}
2353 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2354 		diff = sbi->total_valid_block_count - avail_user_block_count;
2355 		if (diff > *count)
2356 			diff = *count;
2357 		*count -= diff;
2358 		release = diff;
2359 		sbi->total_valid_block_count -= diff;
2360 		if (!*count) {
2361 			spin_unlock(&sbi->stat_lock);
2362 			goto enospc;
2363 		}
2364 	}
2365 	spin_unlock(&sbi->stat_lock);
2366 
2367 	if (unlikely(release)) {
2368 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2369 		dquot_release_reservation_block(inode, release);
2370 	}
2371 	f2fs_i_blocks_write(inode, *count, true, true);
2372 	return 0;
2373 
2374 enospc:
2375 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2376 release_quota:
2377 	dquot_release_reservation_block(inode, release);
2378 	return -ENOSPC;
2379 }
2380 
2381 __printf(2, 3)
2382 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2383 
2384 #define f2fs_err(sbi, fmt, ...)						\
2385 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2386 #define f2fs_warn(sbi, fmt, ...)					\
2387 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2388 #define f2fs_notice(sbi, fmt, ...)					\
2389 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2390 #define f2fs_info(sbi, fmt, ...)					\
2391 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2392 #define f2fs_debug(sbi, fmt, ...)					\
2393 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2394 
2395 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2396 						struct inode *inode,
2397 						block_t count)
2398 {
2399 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2400 
2401 	spin_lock(&sbi->stat_lock);
2402 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2403 	sbi->total_valid_block_count -= (block_t)count;
2404 	if (sbi->reserved_blocks &&
2405 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2406 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2407 					sbi->current_reserved_blocks + count);
2408 	spin_unlock(&sbi->stat_lock);
2409 	if (unlikely(inode->i_blocks < sectors)) {
2410 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2411 			  inode->i_ino,
2412 			  (unsigned long long)inode->i_blocks,
2413 			  (unsigned long long)sectors);
2414 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2415 		return;
2416 	}
2417 	f2fs_i_blocks_write(inode, count, false, true);
2418 }
2419 
2420 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2421 {
2422 	atomic_inc(&sbi->nr_pages[count_type]);
2423 
2424 	if (count_type == F2FS_DIRTY_DENTS ||
2425 			count_type == F2FS_DIRTY_NODES ||
2426 			count_type == F2FS_DIRTY_META ||
2427 			count_type == F2FS_DIRTY_QDATA ||
2428 			count_type == F2FS_DIRTY_IMETA)
2429 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2430 }
2431 
2432 static inline void inode_inc_dirty_pages(struct inode *inode)
2433 {
2434 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2435 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2436 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2437 	if (IS_NOQUOTA(inode))
2438 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2439 }
2440 
2441 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2442 {
2443 	atomic_dec(&sbi->nr_pages[count_type]);
2444 }
2445 
2446 static inline void inode_dec_dirty_pages(struct inode *inode)
2447 {
2448 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2449 			!S_ISLNK(inode->i_mode))
2450 		return;
2451 
2452 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2453 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2454 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2455 	if (IS_NOQUOTA(inode))
2456 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2457 }
2458 
2459 static inline void inc_atomic_write_cnt(struct inode *inode)
2460 {
2461 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2462 	struct f2fs_inode_info *fi = F2FS_I(inode);
2463 	u64 current_write;
2464 
2465 	fi->atomic_write_cnt++;
2466 	atomic64_inc(&sbi->current_atomic_write);
2467 	current_write = atomic64_read(&sbi->current_atomic_write);
2468 	if (current_write > sbi->peak_atomic_write)
2469 		sbi->peak_atomic_write = current_write;
2470 }
2471 
2472 static inline void release_atomic_write_cnt(struct inode *inode)
2473 {
2474 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2475 	struct f2fs_inode_info *fi = F2FS_I(inode);
2476 
2477 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2478 	fi->atomic_write_cnt = 0;
2479 }
2480 
2481 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2482 {
2483 	return atomic_read(&sbi->nr_pages[count_type]);
2484 }
2485 
2486 static inline int get_dirty_pages(struct inode *inode)
2487 {
2488 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2489 }
2490 
2491 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2492 {
2493 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2494 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2495 						sbi->log_blocks_per_seg;
2496 
2497 	return segs / sbi->segs_per_sec;
2498 }
2499 
2500 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2501 {
2502 	return sbi->total_valid_block_count;
2503 }
2504 
2505 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2506 {
2507 	return sbi->discard_blks;
2508 }
2509 
2510 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2511 {
2512 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2513 
2514 	/* return NAT or SIT bitmap */
2515 	if (flag == NAT_BITMAP)
2516 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2517 	else if (flag == SIT_BITMAP)
2518 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2519 
2520 	return 0;
2521 }
2522 
2523 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2524 {
2525 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2526 }
2527 
2528 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2529 {
2530 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2531 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2532 	int offset;
2533 
2534 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2535 		offset = (flag == SIT_BITMAP) ?
2536 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2537 		/*
2538 		 * if large_nat_bitmap feature is enabled, leave checksum
2539 		 * protection for all nat/sit bitmaps.
2540 		 */
2541 		return tmp_ptr + offset + sizeof(__le32);
2542 	}
2543 
2544 	if (__cp_payload(sbi) > 0) {
2545 		if (flag == NAT_BITMAP)
2546 			return tmp_ptr;
2547 		else
2548 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2549 	} else {
2550 		offset = (flag == NAT_BITMAP) ?
2551 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2552 		return tmp_ptr + offset;
2553 	}
2554 }
2555 
2556 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2557 {
2558 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2559 
2560 	if (sbi->cur_cp_pack == 2)
2561 		start_addr += sbi->blocks_per_seg;
2562 	return start_addr;
2563 }
2564 
2565 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2566 {
2567 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2568 
2569 	if (sbi->cur_cp_pack == 1)
2570 		start_addr += sbi->blocks_per_seg;
2571 	return start_addr;
2572 }
2573 
2574 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2575 {
2576 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2577 }
2578 
2579 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2580 {
2581 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2582 }
2583 
2584 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2585 					struct inode *inode, bool is_inode)
2586 {
2587 	block_t	valid_block_count;
2588 	unsigned int valid_node_count, user_block_count;
2589 	int err;
2590 
2591 	if (is_inode) {
2592 		if (inode) {
2593 			err = dquot_alloc_inode(inode);
2594 			if (err)
2595 				return err;
2596 		}
2597 	} else {
2598 		err = dquot_reserve_block(inode, 1);
2599 		if (err)
2600 			return err;
2601 	}
2602 
2603 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2604 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2605 		goto enospc;
2606 	}
2607 
2608 	spin_lock(&sbi->stat_lock);
2609 
2610 	valid_block_count = sbi->total_valid_block_count +
2611 					sbi->current_reserved_blocks + 1;
2612 
2613 	if (!__allow_reserved_blocks(sbi, inode, false))
2614 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2615 
2616 	if (F2FS_IO_ALIGNED(sbi))
2617 		valid_block_count += sbi->blocks_per_seg *
2618 				SM_I(sbi)->additional_reserved_segments;
2619 
2620 	user_block_count = sbi->user_block_count;
2621 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2622 		user_block_count -= sbi->unusable_block_count;
2623 
2624 	if (unlikely(valid_block_count > user_block_count)) {
2625 		spin_unlock(&sbi->stat_lock);
2626 		goto enospc;
2627 	}
2628 
2629 	valid_node_count = sbi->total_valid_node_count + 1;
2630 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2631 		spin_unlock(&sbi->stat_lock);
2632 		goto enospc;
2633 	}
2634 
2635 	sbi->total_valid_node_count++;
2636 	sbi->total_valid_block_count++;
2637 	spin_unlock(&sbi->stat_lock);
2638 
2639 	if (inode) {
2640 		if (is_inode)
2641 			f2fs_mark_inode_dirty_sync(inode, true);
2642 		else
2643 			f2fs_i_blocks_write(inode, 1, true, true);
2644 	}
2645 
2646 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2647 	return 0;
2648 
2649 enospc:
2650 	if (is_inode) {
2651 		if (inode)
2652 			dquot_free_inode(inode);
2653 	} else {
2654 		dquot_release_reservation_block(inode, 1);
2655 	}
2656 	return -ENOSPC;
2657 }
2658 
2659 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2660 					struct inode *inode, bool is_inode)
2661 {
2662 	spin_lock(&sbi->stat_lock);
2663 
2664 	if (unlikely(!sbi->total_valid_block_count ||
2665 			!sbi->total_valid_node_count)) {
2666 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2667 			  sbi->total_valid_block_count,
2668 			  sbi->total_valid_node_count);
2669 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2670 	} else {
2671 		sbi->total_valid_block_count--;
2672 		sbi->total_valid_node_count--;
2673 	}
2674 
2675 	if (sbi->reserved_blocks &&
2676 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2677 		sbi->current_reserved_blocks++;
2678 
2679 	spin_unlock(&sbi->stat_lock);
2680 
2681 	if (is_inode) {
2682 		dquot_free_inode(inode);
2683 	} else {
2684 		if (unlikely(inode->i_blocks == 0)) {
2685 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2686 				  inode->i_ino,
2687 				  (unsigned long long)inode->i_blocks);
2688 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2689 			return;
2690 		}
2691 		f2fs_i_blocks_write(inode, 1, false, true);
2692 	}
2693 }
2694 
2695 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2696 {
2697 	return sbi->total_valid_node_count;
2698 }
2699 
2700 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2701 {
2702 	percpu_counter_inc(&sbi->total_valid_inode_count);
2703 }
2704 
2705 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2706 {
2707 	percpu_counter_dec(&sbi->total_valid_inode_count);
2708 }
2709 
2710 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2711 {
2712 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2713 }
2714 
2715 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2716 						pgoff_t index, bool for_write)
2717 {
2718 	struct page *page;
2719 	unsigned int flags;
2720 
2721 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2722 		if (!for_write)
2723 			page = find_get_page_flags(mapping, index,
2724 							FGP_LOCK | FGP_ACCESSED);
2725 		else
2726 			page = find_lock_page(mapping, index);
2727 		if (page)
2728 			return page;
2729 
2730 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2731 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2732 							FAULT_PAGE_ALLOC);
2733 			return NULL;
2734 		}
2735 	}
2736 
2737 	if (!for_write)
2738 		return grab_cache_page(mapping, index);
2739 
2740 	flags = memalloc_nofs_save();
2741 	page = grab_cache_page_write_begin(mapping, index);
2742 	memalloc_nofs_restore(flags);
2743 
2744 	return page;
2745 }
2746 
2747 static inline struct page *f2fs_pagecache_get_page(
2748 				struct address_space *mapping, pgoff_t index,
2749 				int fgp_flags, gfp_t gfp_mask)
2750 {
2751 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2752 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2753 		return NULL;
2754 	}
2755 
2756 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2757 }
2758 
2759 static inline void f2fs_put_page(struct page *page, int unlock)
2760 {
2761 	if (!page)
2762 		return;
2763 
2764 	if (unlock) {
2765 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2766 		unlock_page(page);
2767 	}
2768 	put_page(page);
2769 }
2770 
2771 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2772 {
2773 	if (dn->node_page)
2774 		f2fs_put_page(dn->node_page, 1);
2775 	if (dn->inode_page && dn->node_page != dn->inode_page)
2776 		f2fs_put_page(dn->inode_page, 0);
2777 	dn->node_page = NULL;
2778 	dn->inode_page = NULL;
2779 }
2780 
2781 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2782 					size_t size)
2783 {
2784 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2785 }
2786 
2787 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2788 						gfp_t flags)
2789 {
2790 	void *entry;
2791 
2792 	entry = kmem_cache_alloc(cachep, flags);
2793 	if (!entry)
2794 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2795 	return entry;
2796 }
2797 
2798 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2799 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2800 {
2801 	if (nofail)
2802 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2803 
2804 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2805 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2806 		return NULL;
2807 	}
2808 
2809 	return kmem_cache_alloc(cachep, flags);
2810 }
2811 
2812 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2813 {
2814 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2815 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2816 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2817 		get_pages(sbi, F2FS_DIO_READ) ||
2818 		get_pages(sbi, F2FS_DIO_WRITE))
2819 		return true;
2820 
2821 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2822 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2823 		return true;
2824 
2825 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2826 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2827 		return true;
2828 	return false;
2829 }
2830 
2831 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2832 {
2833 	if (sbi->gc_mode == GC_URGENT_HIGH)
2834 		return true;
2835 
2836 	if (is_inflight_io(sbi, type))
2837 		return false;
2838 
2839 	if (sbi->gc_mode == GC_URGENT_MID)
2840 		return true;
2841 
2842 	if (sbi->gc_mode == GC_URGENT_LOW &&
2843 			(type == DISCARD_TIME || type == GC_TIME))
2844 		return true;
2845 
2846 	return f2fs_time_over(sbi, type);
2847 }
2848 
2849 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2850 				unsigned long index, void *item)
2851 {
2852 	while (radix_tree_insert(root, index, item))
2853 		cond_resched();
2854 }
2855 
2856 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2857 
2858 static inline bool IS_INODE(struct page *page)
2859 {
2860 	struct f2fs_node *p = F2FS_NODE(page);
2861 
2862 	return RAW_IS_INODE(p);
2863 }
2864 
2865 static inline int offset_in_addr(struct f2fs_inode *i)
2866 {
2867 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2868 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2869 }
2870 
2871 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2872 {
2873 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2874 }
2875 
2876 static inline int f2fs_has_extra_attr(struct inode *inode);
2877 static inline block_t data_blkaddr(struct inode *inode,
2878 			struct page *node_page, unsigned int offset)
2879 {
2880 	struct f2fs_node *raw_node;
2881 	__le32 *addr_array;
2882 	int base = 0;
2883 	bool is_inode = IS_INODE(node_page);
2884 
2885 	raw_node = F2FS_NODE(node_page);
2886 
2887 	if (is_inode) {
2888 		if (!inode)
2889 			/* from GC path only */
2890 			base = offset_in_addr(&raw_node->i);
2891 		else if (f2fs_has_extra_attr(inode))
2892 			base = get_extra_isize(inode);
2893 	}
2894 
2895 	addr_array = blkaddr_in_node(raw_node);
2896 	return le32_to_cpu(addr_array[base + offset]);
2897 }
2898 
2899 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2900 {
2901 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2902 }
2903 
2904 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2905 {
2906 	int mask;
2907 
2908 	addr += (nr >> 3);
2909 	mask = 1 << (7 - (nr & 0x07));
2910 	return mask & *addr;
2911 }
2912 
2913 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2914 {
2915 	int mask;
2916 
2917 	addr += (nr >> 3);
2918 	mask = 1 << (7 - (nr & 0x07));
2919 	*addr |= mask;
2920 }
2921 
2922 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2923 {
2924 	int mask;
2925 
2926 	addr += (nr >> 3);
2927 	mask = 1 << (7 - (nr & 0x07));
2928 	*addr &= ~mask;
2929 }
2930 
2931 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2932 {
2933 	int mask;
2934 	int ret;
2935 
2936 	addr += (nr >> 3);
2937 	mask = 1 << (7 - (nr & 0x07));
2938 	ret = mask & *addr;
2939 	*addr |= mask;
2940 	return ret;
2941 }
2942 
2943 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2944 {
2945 	int mask;
2946 	int ret;
2947 
2948 	addr += (nr >> 3);
2949 	mask = 1 << (7 - (nr & 0x07));
2950 	ret = mask & *addr;
2951 	*addr &= ~mask;
2952 	return ret;
2953 }
2954 
2955 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2956 {
2957 	int mask;
2958 
2959 	addr += (nr >> 3);
2960 	mask = 1 << (7 - (nr & 0x07));
2961 	*addr ^= mask;
2962 }
2963 
2964 /*
2965  * On-disk inode flags (f2fs_inode::i_flags)
2966  */
2967 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2968 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2969 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2970 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2971 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2972 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2973 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2974 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2975 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2976 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2977 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2978 
2979 /* Flags that should be inherited by new inodes from their parent. */
2980 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2981 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2982 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2983 
2984 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2985 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2986 				F2FS_CASEFOLD_FL))
2987 
2988 /* Flags that are appropriate for non-directories/regular files. */
2989 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2990 
2991 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2992 {
2993 	if (S_ISDIR(mode))
2994 		return flags;
2995 	else if (S_ISREG(mode))
2996 		return flags & F2FS_REG_FLMASK;
2997 	else
2998 		return flags & F2FS_OTHER_FLMASK;
2999 }
3000 
3001 static inline void __mark_inode_dirty_flag(struct inode *inode,
3002 						int flag, bool set)
3003 {
3004 	switch (flag) {
3005 	case FI_INLINE_XATTR:
3006 	case FI_INLINE_DATA:
3007 	case FI_INLINE_DENTRY:
3008 	case FI_NEW_INODE:
3009 		if (set)
3010 			return;
3011 		fallthrough;
3012 	case FI_DATA_EXIST:
3013 	case FI_INLINE_DOTS:
3014 	case FI_PIN_FILE:
3015 	case FI_COMPRESS_RELEASED:
3016 		f2fs_mark_inode_dirty_sync(inode, true);
3017 	}
3018 }
3019 
3020 static inline void set_inode_flag(struct inode *inode, int flag)
3021 {
3022 	set_bit(flag, F2FS_I(inode)->flags);
3023 	__mark_inode_dirty_flag(inode, flag, true);
3024 }
3025 
3026 static inline int is_inode_flag_set(struct inode *inode, int flag)
3027 {
3028 	return test_bit(flag, F2FS_I(inode)->flags);
3029 }
3030 
3031 static inline void clear_inode_flag(struct inode *inode, int flag)
3032 {
3033 	clear_bit(flag, F2FS_I(inode)->flags);
3034 	__mark_inode_dirty_flag(inode, flag, false);
3035 }
3036 
3037 static inline bool f2fs_verity_in_progress(struct inode *inode)
3038 {
3039 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3040 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3041 }
3042 
3043 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3044 {
3045 	F2FS_I(inode)->i_acl_mode = mode;
3046 	set_inode_flag(inode, FI_ACL_MODE);
3047 	f2fs_mark_inode_dirty_sync(inode, false);
3048 }
3049 
3050 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3051 {
3052 	if (inc)
3053 		inc_nlink(inode);
3054 	else
3055 		drop_nlink(inode);
3056 	f2fs_mark_inode_dirty_sync(inode, true);
3057 }
3058 
3059 static inline void f2fs_i_blocks_write(struct inode *inode,
3060 					block_t diff, bool add, bool claim)
3061 {
3062 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3063 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3064 
3065 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3066 	if (add) {
3067 		if (claim)
3068 			dquot_claim_block(inode, diff);
3069 		else
3070 			dquot_alloc_block_nofail(inode, diff);
3071 	} else {
3072 		dquot_free_block(inode, diff);
3073 	}
3074 
3075 	f2fs_mark_inode_dirty_sync(inode, true);
3076 	if (clean || recover)
3077 		set_inode_flag(inode, FI_AUTO_RECOVER);
3078 }
3079 
3080 static inline bool f2fs_is_atomic_file(struct inode *inode);
3081 
3082 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3083 {
3084 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3085 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3086 
3087 	if (i_size_read(inode) == i_size)
3088 		return;
3089 
3090 	i_size_write(inode, i_size);
3091 
3092 	if (f2fs_is_atomic_file(inode))
3093 		return;
3094 
3095 	f2fs_mark_inode_dirty_sync(inode, true);
3096 	if (clean || recover)
3097 		set_inode_flag(inode, FI_AUTO_RECOVER);
3098 }
3099 
3100 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3101 {
3102 	F2FS_I(inode)->i_current_depth = depth;
3103 	f2fs_mark_inode_dirty_sync(inode, true);
3104 }
3105 
3106 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3107 					unsigned int count)
3108 {
3109 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3110 	f2fs_mark_inode_dirty_sync(inode, true);
3111 }
3112 
3113 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3114 {
3115 	F2FS_I(inode)->i_xattr_nid = xnid;
3116 	f2fs_mark_inode_dirty_sync(inode, true);
3117 }
3118 
3119 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3120 {
3121 	F2FS_I(inode)->i_pino = pino;
3122 	f2fs_mark_inode_dirty_sync(inode, true);
3123 }
3124 
3125 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3126 {
3127 	struct f2fs_inode_info *fi = F2FS_I(inode);
3128 
3129 	if (ri->i_inline & F2FS_INLINE_XATTR)
3130 		set_bit(FI_INLINE_XATTR, fi->flags);
3131 	if (ri->i_inline & F2FS_INLINE_DATA)
3132 		set_bit(FI_INLINE_DATA, fi->flags);
3133 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3134 		set_bit(FI_INLINE_DENTRY, fi->flags);
3135 	if (ri->i_inline & F2FS_DATA_EXIST)
3136 		set_bit(FI_DATA_EXIST, fi->flags);
3137 	if (ri->i_inline & F2FS_INLINE_DOTS)
3138 		set_bit(FI_INLINE_DOTS, fi->flags);
3139 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3140 		set_bit(FI_EXTRA_ATTR, fi->flags);
3141 	if (ri->i_inline & F2FS_PIN_FILE)
3142 		set_bit(FI_PIN_FILE, fi->flags);
3143 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3144 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3145 }
3146 
3147 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3148 {
3149 	ri->i_inline = 0;
3150 
3151 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3152 		ri->i_inline |= F2FS_INLINE_XATTR;
3153 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3154 		ri->i_inline |= F2FS_INLINE_DATA;
3155 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3156 		ri->i_inline |= F2FS_INLINE_DENTRY;
3157 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3158 		ri->i_inline |= F2FS_DATA_EXIST;
3159 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3160 		ri->i_inline |= F2FS_INLINE_DOTS;
3161 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3162 		ri->i_inline |= F2FS_EXTRA_ATTR;
3163 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3164 		ri->i_inline |= F2FS_PIN_FILE;
3165 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3166 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3167 }
3168 
3169 static inline int f2fs_has_extra_attr(struct inode *inode)
3170 {
3171 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3172 }
3173 
3174 static inline int f2fs_has_inline_xattr(struct inode *inode)
3175 {
3176 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3177 }
3178 
3179 static inline int f2fs_compressed_file(struct inode *inode)
3180 {
3181 	return S_ISREG(inode->i_mode) &&
3182 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3183 }
3184 
3185 static inline bool f2fs_need_compress_data(struct inode *inode)
3186 {
3187 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3188 
3189 	if (!f2fs_compressed_file(inode))
3190 		return false;
3191 
3192 	if (compress_mode == COMPR_MODE_FS)
3193 		return true;
3194 	else if (compress_mode == COMPR_MODE_USER &&
3195 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3196 		return true;
3197 
3198 	return false;
3199 }
3200 
3201 static inline unsigned int addrs_per_inode(struct inode *inode)
3202 {
3203 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3204 				get_inline_xattr_addrs(inode);
3205 
3206 	if (!f2fs_compressed_file(inode))
3207 		return addrs;
3208 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3209 }
3210 
3211 static inline unsigned int addrs_per_block(struct inode *inode)
3212 {
3213 	if (!f2fs_compressed_file(inode))
3214 		return DEF_ADDRS_PER_BLOCK;
3215 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3216 }
3217 
3218 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3219 {
3220 	struct f2fs_inode *ri = F2FS_INODE(page);
3221 
3222 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3223 					get_inline_xattr_addrs(inode)]);
3224 }
3225 
3226 static inline int inline_xattr_size(struct inode *inode)
3227 {
3228 	if (f2fs_has_inline_xattr(inode))
3229 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3230 	return 0;
3231 }
3232 
3233 /*
3234  * Notice: check inline_data flag without inode page lock is unsafe.
3235  * It could change at any time by f2fs_convert_inline_page().
3236  */
3237 static inline int f2fs_has_inline_data(struct inode *inode)
3238 {
3239 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3240 }
3241 
3242 static inline int f2fs_exist_data(struct inode *inode)
3243 {
3244 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3245 }
3246 
3247 static inline int f2fs_has_inline_dots(struct inode *inode)
3248 {
3249 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3250 }
3251 
3252 static inline int f2fs_is_mmap_file(struct inode *inode)
3253 {
3254 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3255 }
3256 
3257 static inline bool f2fs_is_pinned_file(struct inode *inode)
3258 {
3259 	return is_inode_flag_set(inode, FI_PIN_FILE);
3260 }
3261 
3262 static inline bool f2fs_is_atomic_file(struct inode *inode)
3263 {
3264 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3265 }
3266 
3267 static inline bool f2fs_is_cow_file(struct inode *inode)
3268 {
3269 	return is_inode_flag_set(inode, FI_COW_FILE);
3270 }
3271 
3272 static inline bool f2fs_is_first_block_written(struct inode *inode)
3273 {
3274 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3275 }
3276 
3277 static inline bool f2fs_is_drop_cache(struct inode *inode)
3278 {
3279 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3280 }
3281 
3282 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3283 {
3284 	struct f2fs_inode *ri = F2FS_INODE(page);
3285 	int extra_size = get_extra_isize(inode);
3286 
3287 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3288 }
3289 
3290 static inline int f2fs_has_inline_dentry(struct inode *inode)
3291 {
3292 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3293 }
3294 
3295 static inline int is_file(struct inode *inode, int type)
3296 {
3297 	return F2FS_I(inode)->i_advise & type;
3298 }
3299 
3300 static inline void set_file(struct inode *inode, int type)
3301 {
3302 	if (is_file(inode, type))
3303 		return;
3304 	F2FS_I(inode)->i_advise |= type;
3305 	f2fs_mark_inode_dirty_sync(inode, true);
3306 }
3307 
3308 static inline void clear_file(struct inode *inode, int type)
3309 {
3310 	if (!is_file(inode, type))
3311 		return;
3312 	F2FS_I(inode)->i_advise &= ~type;
3313 	f2fs_mark_inode_dirty_sync(inode, true);
3314 }
3315 
3316 static inline bool f2fs_is_time_consistent(struct inode *inode)
3317 {
3318 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3319 		return false;
3320 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3321 		return false;
3322 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3323 		return false;
3324 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3325 						&F2FS_I(inode)->i_crtime))
3326 		return false;
3327 	return true;
3328 }
3329 
3330 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3331 {
3332 	bool ret;
3333 
3334 	if (dsync) {
3335 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3336 
3337 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3338 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3339 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3340 		return ret;
3341 	}
3342 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3343 			file_keep_isize(inode) ||
3344 			i_size_read(inode) & ~PAGE_MASK)
3345 		return false;
3346 
3347 	if (!f2fs_is_time_consistent(inode))
3348 		return false;
3349 
3350 	spin_lock(&F2FS_I(inode)->i_size_lock);
3351 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3352 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3353 
3354 	return ret;
3355 }
3356 
3357 static inline bool f2fs_readonly(struct super_block *sb)
3358 {
3359 	return sb_rdonly(sb);
3360 }
3361 
3362 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3363 {
3364 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3365 }
3366 
3367 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3368 {
3369 	if (len == 1 && name[0] == '.')
3370 		return true;
3371 
3372 	if (len == 2 && name[0] == '.' && name[1] == '.')
3373 		return true;
3374 
3375 	return false;
3376 }
3377 
3378 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3379 					size_t size, gfp_t flags)
3380 {
3381 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3382 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3383 		return NULL;
3384 	}
3385 
3386 	return kmalloc(size, flags);
3387 }
3388 
3389 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3390 					size_t size, gfp_t flags)
3391 {
3392 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3393 }
3394 
3395 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3396 					size_t size, gfp_t flags)
3397 {
3398 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3399 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3400 		return NULL;
3401 	}
3402 
3403 	return kvmalloc(size, flags);
3404 }
3405 
3406 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3407 					size_t size, gfp_t flags)
3408 {
3409 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3410 }
3411 
3412 static inline int get_extra_isize(struct inode *inode)
3413 {
3414 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3415 }
3416 
3417 static inline int get_inline_xattr_addrs(struct inode *inode)
3418 {
3419 	return F2FS_I(inode)->i_inline_xattr_size;
3420 }
3421 
3422 #define f2fs_get_inode_mode(i) \
3423 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3424 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3425 
3426 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3427 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3428 	offsetof(struct f2fs_inode, i_extra_isize))	\
3429 
3430 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3431 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3432 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3433 		sizeof((f2fs_inode)->field))			\
3434 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3435 
3436 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3437 
3438 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3439 
3440 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3441 					block_t blkaddr, int type);
3442 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3443 					block_t blkaddr, int type)
3444 {
3445 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3446 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3447 			 blkaddr, type);
3448 		f2fs_bug_on(sbi, 1);
3449 	}
3450 }
3451 
3452 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3453 {
3454 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3455 			blkaddr == COMPRESS_ADDR)
3456 		return false;
3457 	return true;
3458 }
3459 
3460 /*
3461  * file.c
3462  */
3463 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3464 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3465 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3466 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3467 int f2fs_truncate(struct inode *inode);
3468 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3469 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3470 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3471 		 struct iattr *attr);
3472 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3473 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3474 int f2fs_precache_extents(struct inode *inode);
3475 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3476 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3477 		      struct dentry *dentry, struct fileattr *fa);
3478 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3479 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3480 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3481 int f2fs_pin_file_control(struct inode *inode, bool inc);
3482 
3483 /*
3484  * inode.c
3485  */
3486 void f2fs_set_inode_flags(struct inode *inode);
3487 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3488 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3489 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3490 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3491 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3492 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3493 void f2fs_update_inode_page(struct inode *inode);
3494 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3495 void f2fs_evict_inode(struct inode *inode);
3496 void f2fs_handle_failed_inode(struct inode *inode);
3497 
3498 /*
3499  * namei.c
3500  */
3501 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3502 							bool hot, bool set);
3503 struct dentry *f2fs_get_parent(struct dentry *child);
3504 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3505 		     struct inode **new_inode);
3506 
3507 /*
3508  * dir.c
3509  */
3510 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3511 int f2fs_init_casefolded_name(const struct inode *dir,
3512 			      struct f2fs_filename *fname);
3513 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3514 			int lookup, struct f2fs_filename *fname);
3515 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3516 			struct f2fs_filename *fname);
3517 void f2fs_free_filename(struct f2fs_filename *fname);
3518 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3519 			const struct f2fs_filename *fname, int *max_slots);
3520 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3521 			unsigned int start_pos, struct fscrypt_str *fstr);
3522 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3523 			struct f2fs_dentry_ptr *d);
3524 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3525 			const struct f2fs_filename *fname, struct page *dpage);
3526 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3527 			unsigned int current_depth);
3528 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3529 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3530 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3531 					 const struct f2fs_filename *fname,
3532 					 struct page **res_page);
3533 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3534 			const struct qstr *child, struct page **res_page);
3535 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3536 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3537 			struct page **page);
3538 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3539 			struct page *page, struct inode *inode);
3540 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3541 			  const struct f2fs_filename *fname);
3542 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3543 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3544 			unsigned int bit_pos);
3545 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3546 			struct inode *inode, nid_t ino, umode_t mode);
3547 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3548 			struct inode *inode, nid_t ino, umode_t mode);
3549 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3550 			struct inode *inode, nid_t ino, umode_t mode);
3551 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3552 			struct inode *dir, struct inode *inode);
3553 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3554 bool f2fs_empty_dir(struct inode *dir);
3555 
3556 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3557 {
3558 	if (fscrypt_is_nokey_name(dentry))
3559 		return -ENOKEY;
3560 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3561 				inode, inode->i_ino, inode->i_mode);
3562 }
3563 
3564 /*
3565  * super.c
3566  */
3567 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3568 void f2fs_inode_synced(struct inode *inode);
3569 int f2fs_dquot_initialize(struct inode *inode);
3570 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3571 int f2fs_quota_sync(struct super_block *sb, int type);
3572 loff_t max_file_blocks(struct inode *inode);
3573 void f2fs_quota_off_umount(struct super_block *sb);
3574 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3575 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3576 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3577 int f2fs_sync_fs(struct super_block *sb, int sync);
3578 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3579 
3580 /*
3581  * hash.c
3582  */
3583 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3584 
3585 /*
3586  * node.c
3587  */
3588 struct node_info;
3589 
3590 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3591 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3592 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3593 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3594 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3595 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3596 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3597 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3598 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3599 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3600 				struct node_info *ni, bool checkpoint_context);
3601 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3602 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3603 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3604 int f2fs_truncate_xattr_node(struct inode *inode);
3605 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3606 					unsigned int seq_id);
3607 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3608 int f2fs_remove_inode_page(struct inode *inode);
3609 struct page *f2fs_new_inode_page(struct inode *inode);
3610 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3611 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3612 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3613 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3614 int f2fs_move_node_page(struct page *node_page, int gc_type);
3615 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3616 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3617 			struct writeback_control *wbc, bool atomic,
3618 			unsigned int *seq_id);
3619 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3620 			struct writeback_control *wbc,
3621 			bool do_balance, enum iostat_type io_type);
3622 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3623 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3624 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3625 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3626 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3627 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3628 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3629 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3630 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3631 			unsigned int segno, struct f2fs_summary_block *sum);
3632 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3633 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3634 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3635 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3636 int __init f2fs_create_node_manager_caches(void);
3637 void f2fs_destroy_node_manager_caches(void);
3638 
3639 /*
3640  * segment.c
3641  */
3642 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3643 int f2fs_commit_atomic_write(struct inode *inode);
3644 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3645 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3646 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3647 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3648 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3649 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3650 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3651 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3652 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3653 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3654 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3655 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3656 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3657 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3658 					struct cp_control *cpc);
3659 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3660 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3661 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3662 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3663 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3664 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3665 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3666 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3667 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3668 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3669 			unsigned int *newseg, bool new_sec, int dir);
3670 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3671 					unsigned int start, unsigned int end);
3672 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3673 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3674 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3675 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3676 					struct cp_control *cpc);
3677 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3678 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3679 					block_t blk_addr);
3680 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3681 						enum iostat_type io_type);
3682 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3683 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3684 			struct f2fs_io_info *fio);
3685 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3686 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3687 			block_t old_blkaddr, block_t new_blkaddr,
3688 			bool recover_curseg, bool recover_newaddr,
3689 			bool from_gc);
3690 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3691 			block_t old_addr, block_t new_addr,
3692 			unsigned char version, bool recover_curseg,
3693 			bool recover_newaddr);
3694 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3695 			block_t old_blkaddr, block_t *new_blkaddr,
3696 			struct f2fs_summary *sum, int type,
3697 			struct f2fs_io_info *fio);
3698 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3699 					block_t blkaddr, unsigned int blkcnt);
3700 void f2fs_wait_on_page_writeback(struct page *page,
3701 			enum page_type type, bool ordered, bool locked);
3702 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3703 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3704 								block_t len);
3705 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3706 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3707 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3708 			unsigned int val, int alloc);
3709 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3710 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3711 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3712 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3713 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3714 int __init f2fs_create_segment_manager_caches(void);
3715 void f2fs_destroy_segment_manager_caches(void);
3716 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3717 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3718 			unsigned int segno);
3719 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3720 			unsigned int segno);
3721 
3722 #define DEF_FRAGMENT_SIZE	4
3723 #define MIN_FRAGMENT_SIZE	1
3724 #define MAX_FRAGMENT_SIZE	512
3725 
3726 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3727 {
3728 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3729 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3730 }
3731 
3732 /*
3733  * checkpoint.c
3734  */
3735 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3736 							unsigned char reason);
3737 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3738 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3739 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3740 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3741 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3742 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3743 					block_t blkaddr, int type);
3744 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3745 			int type, bool sync);
3746 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3747 							unsigned int ra_blocks);
3748 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3749 			long nr_to_write, enum iostat_type io_type);
3750 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3751 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3752 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3753 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3754 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3755 					unsigned int devidx, int type);
3756 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3757 					unsigned int devidx, int type);
3758 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3759 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3760 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3761 void f2fs_add_orphan_inode(struct inode *inode);
3762 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3763 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3764 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3765 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3766 void f2fs_remove_dirty_inode(struct inode *inode);
3767 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3768 								bool from_cp);
3769 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3770 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3771 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3772 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3773 int __init f2fs_create_checkpoint_caches(void);
3774 void f2fs_destroy_checkpoint_caches(void);
3775 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3776 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3777 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3778 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3779 
3780 /*
3781  * data.c
3782  */
3783 int __init f2fs_init_bioset(void);
3784 void f2fs_destroy_bioset(void);
3785 int f2fs_init_bio_entry_cache(void);
3786 void f2fs_destroy_bio_entry_cache(void);
3787 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3788 				struct bio *bio, enum page_type type);
3789 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3790 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3791 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3792 				struct inode *inode, struct page *page,
3793 				nid_t ino, enum page_type type);
3794 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3795 					struct bio **bio, struct page *page);
3796 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3797 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3798 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3799 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3800 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3801 		block_t blk_addr, sector_t *sector);
3802 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3803 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3804 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3805 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3806 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3807 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3808 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3809 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3810 			blk_opf_t op_flags, bool for_write);
3811 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3812 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3813 			bool for_write);
3814 struct page *f2fs_get_new_data_page(struct inode *inode,
3815 			struct page *ipage, pgoff_t index, bool new_i_size);
3816 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3817 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3818 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3819 			int create, int flag);
3820 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3821 			u64 start, u64 len);
3822 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3823 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3824 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3825 int f2fs_write_single_data_page(struct page *page, int *submitted,
3826 				struct bio **bio, sector_t *last_block,
3827 				struct writeback_control *wbc,
3828 				enum iostat_type io_type,
3829 				int compr_blocks, bool allow_balance);
3830 void f2fs_write_failed(struct inode *inode, loff_t to);
3831 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3832 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3833 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3834 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3835 int f2fs_init_post_read_processing(void);
3836 void f2fs_destroy_post_read_processing(void);
3837 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3838 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3839 extern const struct iomap_ops f2fs_iomap_ops;
3840 
3841 /*
3842  * gc.c
3843  */
3844 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3845 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3846 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3847 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3848 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3849 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3850 int __init f2fs_create_garbage_collection_cache(void);
3851 void f2fs_destroy_garbage_collection_cache(void);
3852 
3853 /*
3854  * recovery.c
3855  */
3856 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3857 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3858 int __init f2fs_create_recovery_cache(void);
3859 void f2fs_destroy_recovery_cache(void);
3860 
3861 /*
3862  * debug.c
3863  */
3864 #ifdef CONFIG_F2FS_STAT_FS
3865 struct f2fs_stat_info {
3866 	struct list_head stat_list;
3867 	struct f2fs_sb_info *sbi;
3868 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3869 	int main_area_segs, main_area_sections, main_area_zones;
3870 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3871 	unsigned long long hit_total, total_ext;
3872 	int ext_tree, zombie_tree, ext_node;
3873 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3874 	int ndirty_data, ndirty_qdata;
3875 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3876 	int nats, dirty_nats, sits, dirty_sits;
3877 	int free_nids, avail_nids, alloc_nids;
3878 	int total_count, utilization;
3879 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3880 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3881 	int nr_dio_read, nr_dio_write;
3882 	unsigned int io_skip_bggc, other_skip_bggc;
3883 	int nr_flushing, nr_flushed, flush_list_empty;
3884 	int nr_discarding, nr_discarded;
3885 	int nr_discard_cmd;
3886 	unsigned int undiscard_blks;
3887 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3888 	unsigned int cur_ckpt_time, peak_ckpt_time;
3889 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3890 	int compr_inode, swapfile_inode;
3891 	unsigned long long compr_blocks;
3892 	int aw_cnt, max_aw_cnt;
3893 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3894 	unsigned int bimodal, avg_vblocks;
3895 	int util_free, util_valid, util_invalid;
3896 	int rsvd_segs, overp_segs;
3897 	int dirty_count, node_pages, meta_pages, compress_pages;
3898 	int compress_page_hit;
3899 	int prefree_count, call_count, cp_count, bg_cp_count;
3900 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3901 	int bg_node_segs, bg_data_segs;
3902 	int tot_blks, data_blks, node_blks;
3903 	int bg_data_blks, bg_node_blks;
3904 	int curseg[NR_CURSEG_TYPE];
3905 	int cursec[NR_CURSEG_TYPE];
3906 	int curzone[NR_CURSEG_TYPE];
3907 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3908 	unsigned int full_seg[NR_CURSEG_TYPE];
3909 	unsigned int valid_blks[NR_CURSEG_TYPE];
3910 
3911 	unsigned int meta_count[META_MAX];
3912 	unsigned int segment_count[2];
3913 	unsigned int block_count[2];
3914 	unsigned int inplace_count;
3915 	unsigned long long base_mem, cache_mem, page_mem;
3916 };
3917 
3918 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3919 {
3920 	return (struct f2fs_stat_info *)sbi->stat_info;
3921 }
3922 
3923 #define stat_inc_cp_count(si)		((si)->cp_count++)
3924 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3925 #define stat_inc_call_count(si)		((si)->call_count++)
3926 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3927 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3928 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3929 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3930 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3931 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3932 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3933 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3934 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3935 #define stat_inc_inline_xattr(inode)					\
3936 	do {								\
3937 		if (f2fs_has_inline_xattr(inode))			\
3938 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3939 	} while (0)
3940 #define stat_dec_inline_xattr(inode)					\
3941 	do {								\
3942 		if (f2fs_has_inline_xattr(inode))			\
3943 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3944 	} while (0)
3945 #define stat_inc_inline_inode(inode)					\
3946 	do {								\
3947 		if (f2fs_has_inline_data(inode))			\
3948 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3949 	} while (0)
3950 #define stat_dec_inline_inode(inode)					\
3951 	do {								\
3952 		if (f2fs_has_inline_data(inode))			\
3953 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3954 	} while (0)
3955 #define stat_inc_inline_dir(inode)					\
3956 	do {								\
3957 		if (f2fs_has_inline_dentry(inode))			\
3958 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3959 	} while (0)
3960 #define stat_dec_inline_dir(inode)					\
3961 	do {								\
3962 		if (f2fs_has_inline_dentry(inode))			\
3963 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3964 	} while (0)
3965 #define stat_inc_compr_inode(inode)					\
3966 	do {								\
3967 		if (f2fs_compressed_file(inode))			\
3968 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3969 	} while (0)
3970 #define stat_dec_compr_inode(inode)					\
3971 	do {								\
3972 		if (f2fs_compressed_file(inode))			\
3973 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3974 	} while (0)
3975 #define stat_add_compr_blocks(inode, blocks)				\
3976 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3977 #define stat_sub_compr_blocks(inode, blocks)				\
3978 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3979 #define stat_inc_swapfile_inode(inode)					\
3980 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3981 #define stat_dec_swapfile_inode(inode)					\
3982 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3983 #define stat_inc_atomic_inode(inode)					\
3984 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3985 #define stat_dec_atomic_inode(inode)					\
3986 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3987 #define stat_inc_meta_count(sbi, blkaddr)				\
3988 	do {								\
3989 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3990 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3991 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3992 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3993 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3994 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3995 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3996 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3997 	} while (0)
3998 #define stat_inc_seg_type(sbi, curseg)					\
3999 		((sbi)->segment_count[(curseg)->alloc_type]++)
4000 #define stat_inc_block_count(sbi, curseg)				\
4001 		((sbi)->block_count[(curseg)->alloc_type]++)
4002 #define stat_inc_inplace_blocks(sbi)					\
4003 		(atomic_inc(&(sbi)->inplace_count))
4004 #define stat_update_max_atomic_write(inode)				\
4005 	do {								\
4006 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4007 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4008 		if (cur > max)						\
4009 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4010 	} while (0)
4011 #define stat_inc_seg_count(sbi, type, gc_type)				\
4012 	do {								\
4013 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4014 		si->tot_segs++;						\
4015 		if ((type) == SUM_TYPE_DATA) {				\
4016 			si->data_segs++;				\
4017 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
4018 		} else {						\
4019 			si->node_segs++;				\
4020 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
4021 		}							\
4022 	} while (0)
4023 
4024 #define stat_inc_tot_blk_count(si, blks)				\
4025 	((si)->tot_blks += (blks))
4026 
4027 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4028 	do {								\
4029 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4030 		stat_inc_tot_blk_count(si, blks);			\
4031 		si->data_blks += (blks);				\
4032 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4033 	} while (0)
4034 
4035 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4036 	do {								\
4037 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4038 		stat_inc_tot_blk_count(si, blks);			\
4039 		si->node_blks += (blks);				\
4040 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4041 	} while (0)
4042 
4043 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4044 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4045 void __init f2fs_create_root_stats(void);
4046 void f2fs_destroy_root_stats(void);
4047 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4048 #else
4049 #define stat_inc_cp_count(si)				do { } while (0)
4050 #define stat_inc_bg_cp_count(si)			do { } while (0)
4051 #define stat_inc_call_count(si)				do { } while (0)
4052 #define stat_inc_bggc_count(si)				do { } while (0)
4053 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4054 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4055 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4056 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4057 #define stat_inc_total_hit(sbi)				do { } while (0)
4058 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
4059 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4060 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
4061 #define stat_inc_inline_xattr(inode)			do { } while (0)
4062 #define stat_dec_inline_xattr(inode)			do { } while (0)
4063 #define stat_inc_inline_inode(inode)			do { } while (0)
4064 #define stat_dec_inline_inode(inode)			do { } while (0)
4065 #define stat_inc_inline_dir(inode)			do { } while (0)
4066 #define stat_dec_inline_dir(inode)			do { } while (0)
4067 #define stat_inc_compr_inode(inode)			do { } while (0)
4068 #define stat_dec_compr_inode(inode)			do { } while (0)
4069 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4070 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4071 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4072 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4073 #define stat_inc_atomic_inode(inode)			do { } while (0)
4074 #define stat_dec_atomic_inode(inode)			do { } while (0)
4075 #define stat_update_max_atomic_write(inode)		do { } while (0)
4076 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4077 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4078 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4079 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4080 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4081 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4082 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4083 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4084 
4085 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4086 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4087 static inline void __init f2fs_create_root_stats(void) { }
4088 static inline void f2fs_destroy_root_stats(void) { }
4089 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4090 #endif
4091 
4092 extern const struct file_operations f2fs_dir_operations;
4093 extern const struct file_operations f2fs_file_operations;
4094 extern const struct inode_operations f2fs_file_inode_operations;
4095 extern const struct address_space_operations f2fs_dblock_aops;
4096 extern const struct address_space_operations f2fs_node_aops;
4097 extern const struct address_space_operations f2fs_meta_aops;
4098 extern const struct inode_operations f2fs_dir_inode_operations;
4099 extern const struct inode_operations f2fs_symlink_inode_operations;
4100 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4101 extern const struct inode_operations f2fs_special_inode_operations;
4102 extern struct kmem_cache *f2fs_inode_entry_slab;
4103 
4104 /*
4105  * inline.c
4106  */
4107 bool f2fs_may_inline_data(struct inode *inode);
4108 bool f2fs_sanity_check_inline_data(struct inode *inode);
4109 bool f2fs_may_inline_dentry(struct inode *inode);
4110 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4111 void f2fs_truncate_inline_inode(struct inode *inode,
4112 						struct page *ipage, u64 from);
4113 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4114 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4115 int f2fs_convert_inline_inode(struct inode *inode);
4116 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4117 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4118 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4119 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4120 					const struct f2fs_filename *fname,
4121 					struct page **res_page);
4122 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4123 			struct page *ipage);
4124 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4125 			struct inode *inode, nid_t ino, umode_t mode);
4126 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4127 				struct page *page, struct inode *dir,
4128 				struct inode *inode);
4129 bool f2fs_empty_inline_dir(struct inode *dir);
4130 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4131 			struct fscrypt_str *fstr);
4132 int f2fs_inline_data_fiemap(struct inode *inode,
4133 			struct fiemap_extent_info *fieinfo,
4134 			__u64 start, __u64 len);
4135 
4136 /*
4137  * shrinker.c
4138  */
4139 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4140 			struct shrink_control *sc);
4141 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4142 			struct shrink_control *sc);
4143 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4144 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4145 
4146 /*
4147  * extent_cache.c
4148  */
4149 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4150 				struct rb_entry *cached_re, unsigned int ofs);
4151 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4152 				struct rb_root_cached *root,
4153 				struct rb_node **parent,
4154 				unsigned long long key, bool *left_most);
4155 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4156 				struct rb_root_cached *root,
4157 				struct rb_node **parent,
4158 				unsigned int ofs, bool *leftmost);
4159 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4160 		struct rb_entry *cached_re, unsigned int ofs,
4161 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
4162 		struct rb_node ***insert_p, struct rb_node **insert_parent,
4163 		bool force, bool *leftmost);
4164 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4165 				struct rb_root_cached *root, bool check_key);
4166 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4167 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4168 void f2fs_drop_extent_tree(struct inode *inode);
4169 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4170 void f2fs_destroy_extent_tree(struct inode *inode);
4171 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4172 			struct extent_info *ei);
4173 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4174 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4175 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4176 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4177 int __init f2fs_create_extent_cache(void);
4178 void f2fs_destroy_extent_cache(void);
4179 
4180 /*
4181  * sysfs.c
4182  */
4183 #define MIN_RA_MUL	2
4184 #define MAX_RA_MUL	256
4185 
4186 int __init f2fs_init_sysfs(void);
4187 void f2fs_exit_sysfs(void);
4188 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4189 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4190 
4191 /* verity.c */
4192 extern const struct fsverity_operations f2fs_verityops;
4193 
4194 /*
4195  * crypto support
4196  */
4197 static inline bool f2fs_encrypted_file(struct inode *inode)
4198 {
4199 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4200 }
4201 
4202 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4203 {
4204 #ifdef CONFIG_FS_ENCRYPTION
4205 	file_set_encrypt(inode);
4206 	f2fs_set_inode_flags(inode);
4207 #endif
4208 }
4209 
4210 /*
4211  * Returns true if the reads of the inode's data need to undergo some
4212  * postprocessing step, like decryption or authenticity verification.
4213  */
4214 static inline bool f2fs_post_read_required(struct inode *inode)
4215 {
4216 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4217 		f2fs_compressed_file(inode);
4218 }
4219 
4220 /*
4221  * compress.c
4222  */
4223 #ifdef CONFIG_F2FS_FS_COMPRESSION
4224 bool f2fs_is_compressed_page(struct page *page);
4225 struct page *f2fs_compress_control_page(struct page *page);
4226 int f2fs_prepare_compress_overwrite(struct inode *inode,
4227 			struct page **pagep, pgoff_t index, void **fsdata);
4228 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4229 					pgoff_t index, unsigned copied);
4230 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4231 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4232 bool f2fs_is_compress_backend_ready(struct inode *inode);
4233 int f2fs_init_compress_mempool(void);
4234 void f2fs_destroy_compress_mempool(void);
4235 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4236 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4237 				block_t blkaddr, bool in_task);
4238 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4239 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4240 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4241 				int index, int nr_pages, bool uptodate);
4242 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4243 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4244 int f2fs_write_multi_pages(struct compress_ctx *cc,
4245 						int *submitted,
4246 						struct writeback_control *wbc,
4247 						enum iostat_type io_type);
4248 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4249 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4250 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4251 				unsigned int c_len);
4252 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4253 				unsigned nr_pages, sector_t *last_block_in_bio,
4254 				bool is_readahead, bool for_write);
4255 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4256 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4257 				bool in_task);
4258 void f2fs_put_page_dic(struct page *page, bool in_task);
4259 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4260 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4261 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4262 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4263 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4264 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4265 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4266 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4267 int __init f2fs_init_compress_cache(void);
4268 void f2fs_destroy_compress_cache(void);
4269 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4270 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4271 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4272 						nid_t ino, block_t blkaddr);
4273 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4274 								block_t blkaddr);
4275 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4276 #define inc_compr_inode_stat(inode)					\
4277 	do {								\
4278 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4279 		sbi->compr_new_inode++;					\
4280 	} while (0)
4281 #define add_compr_block_stat(inode, blocks)				\
4282 	do {								\
4283 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4284 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4285 		sbi->compr_written_block += blocks;			\
4286 		sbi->compr_saved_block += diff;				\
4287 	} while (0)
4288 #else
4289 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4290 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4291 {
4292 	if (!f2fs_compressed_file(inode))
4293 		return true;
4294 	/* not support compression */
4295 	return false;
4296 }
4297 static inline struct page *f2fs_compress_control_page(struct page *page)
4298 {
4299 	WARN_ON_ONCE(1);
4300 	return ERR_PTR(-EINVAL);
4301 }
4302 static inline int f2fs_init_compress_mempool(void) { return 0; }
4303 static inline void f2fs_destroy_compress_mempool(void) { }
4304 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4305 				bool in_task) { }
4306 static inline void f2fs_end_read_compressed_page(struct page *page,
4307 				bool failed, block_t blkaddr, bool in_task)
4308 {
4309 	WARN_ON_ONCE(1);
4310 }
4311 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4312 {
4313 	WARN_ON_ONCE(1);
4314 }
4315 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4316 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4317 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4318 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4319 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4320 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4321 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4322 static inline void f2fs_destroy_compress_cache(void) { }
4323 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4324 				block_t blkaddr) { }
4325 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4326 				struct page *page, nid_t ino, block_t blkaddr) { }
4327 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4328 				struct page *page, block_t blkaddr) { return false; }
4329 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4330 							nid_t ino) { }
4331 #define inc_compr_inode_stat(inode)		do { } while (0)
4332 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4333 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4334 				unsigned int c_len) { }
4335 #endif
4336 
4337 static inline int set_compress_context(struct inode *inode)
4338 {
4339 #ifdef CONFIG_F2FS_FS_COMPRESSION
4340 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4341 
4342 	F2FS_I(inode)->i_compress_algorithm =
4343 			F2FS_OPTION(sbi).compress_algorithm;
4344 	F2FS_I(inode)->i_log_cluster_size =
4345 			F2FS_OPTION(sbi).compress_log_size;
4346 	F2FS_I(inode)->i_compress_flag =
4347 			F2FS_OPTION(sbi).compress_chksum ?
4348 				1 << COMPRESS_CHKSUM : 0;
4349 	F2FS_I(inode)->i_cluster_size =
4350 			1 << F2FS_I(inode)->i_log_cluster_size;
4351 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4352 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4353 			F2FS_OPTION(sbi).compress_level)
4354 		F2FS_I(inode)->i_compress_flag |=
4355 				F2FS_OPTION(sbi).compress_level <<
4356 				COMPRESS_LEVEL_OFFSET;
4357 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4358 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4359 	stat_inc_compr_inode(inode);
4360 	inc_compr_inode_stat(inode);
4361 	f2fs_mark_inode_dirty_sync(inode, true);
4362 	return 0;
4363 #else
4364 	return -EOPNOTSUPP;
4365 #endif
4366 }
4367 
4368 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4369 {
4370 	struct f2fs_inode_info *fi = F2FS_I(inode);
4371 
4372 	if (!f2fs_compressed_file(inode))
4373 		return true;
4374 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4375 		return false;
4376 
4377 	fi->i_flags &= ~F2FS_COMPR_FL;
4378 	stat_dec_compr_inode(inode);
4379 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4380 	f2fs_mark_inode_dirty_sync(inode, true);
4381 	return true;
4382 }
4383 
4384 #define F2FS_FEATURE_FUNCS(name, flagname) \
4385 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4386 { \
4387 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4388 }
4389 
4390 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4391 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4392 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4393 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4394 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4395 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4396 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4397 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4398 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4399 F2FS_FEATURE_FUNCS(verity, VERITY);
4400 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4401 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4402 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4403 F2FS_FEATURE_FUNCS(readonly, RO);
4404 
4405 static inline bool f2fs_may_extent_tree(struct inode *inode)
4406 {
4407 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4408 
4409 	if (!test_opt(sbi, EXTENT_CACHE) ||
4410 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4411 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4412 			 !f2fs_sb_has_readonly(sbi)))
4413 		return false;
4414 
4415 	/*
4416 	 * for recovered files during mount do not create extents
4417 	 * if shrinker is not registered.
4418 	 */
4419 	if (list_empty(&sbi->s_list))
4420 		return false;
4421 
4422 	return S_ISREG(inode->i_mode);
4423 }
4424 
4425 #ifdef CONFIG_BLK_DEV_ZONED
4426 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4427 				    block_t blkaddr)
4428 {
4429 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4430 
4431 	return test_bit(zno, FDEV(devi).blkz_seq);
4432 }
4433 #endif
4434 
4435 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4436 {
4437 	return f2fs_sb_has_blkzoned(sbi);
4438 }
4439 
4440 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4441 {
4442 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4443 }
4444 
4445 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4446 {
4447 	int i;
4448 
4449 	if (!f2fs_is_multi_device(sbi))
4450 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4451 
4452 	for (i = 0; i < sbi->s_ndevs; i++)
4453 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4454 			return true;
4455 	return false;
4456 }
4457 
4458 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4459 {
4460 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4461 					f2fs_hw_should_discard(sbi);
4462 }
4463 
4464 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4465 {
4466 	int i;
4467 
4468 	if (!f2fs_is_multi_device(sbi))
4469 		return bdev_read_only(sbi->sb->s_bdev);
4470 
4471 	for (i = 0; i < sbi->s_ndevs; i++)
4472 		if (bdev_read_only(FDEV(i).bdev))
4473 			return true;
4474 	return false;
4475 }
4476 
4477 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4478 {
4479 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4480 }
4481 
4482 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4483 {
4484 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4485 }
4486 
4487 static inline bool f2fs_may_compress(struct inode *inode)
4488 {
4489 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4490 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode))
4491 		return false;
4492 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4493 }
4494 
4495 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4496 						u64 blocks, bool add)
4497 {
4498 	struct f2fs_inode_info *fi = F2FS_I(inode);
4499 	int diff = fi->i_cluster_size - blocks;
4500 
4501 	/* don't update i_compr_blocks if saved blocks were released */
4502 	if (!add && !atomic_read(&fi->i_compr_blocks))
4503 		return;
4504 
4505 	if (add) {
4506 		atomic_add(diff, &fi->i_compr_blocks);
4507 		stat_add_compr_blocks(inode, diff);
4508 	} else {
4509 		atomic_sub(diff, &fi->i_compr_blocks);
4510 		stat_sub_compr_blocks(inode, diff);
4511 	}
4512 	f2fs_mark_inode_dirty_sync(inode, true);
4513 }
4514 
4515 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4516 								int flag)
4517 {
4518 	if (!f2fs_is_multi_device(sbi))
4519 		return false;
4520 	if (flag != F2FS_GET_BLOCK_DIO)
4521 		return false;
4522 	return sbi->aligned_blksize;
4523 }
4524 
4525 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4526 {
4527 	return fsverity_active(inode) &&
4528 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4529 }
4530 
4531 #ifdef CONFIG_F2FS_FAULT_INJECTION
4532 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4533 							unsigned int type);
4534 #else
4535 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4536 #endif
4537 
4538 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4539 {
4540 #ifdef CONFIG_QUOTA
4541 	if (f2fs_sb_has_quota_ino(sbi))
4542 		return true;
4543 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4544 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4545 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4546 		return true;
4547 #endif
4548 	return false;
4549 }
4550 
4551 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4552 {
4553 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4554 }
4555 
4556 static inline void f2fs_io_schedule_timeout(long timeout)
4557 {
4558 	set_current_state(TASK_UNINTERRUPTIBLE);
4559 	io_schedule_timeout(timeout);
4560 }
4561 
4562 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4563 					enum page_type type)
4564 {
4565 	if (unlikely(f2fs_cp_error(sbi)))
4566 		return;
4567 
4568 	if (ofs == sbi->page_eio_ofs[type]) {
4569 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4570 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4571 	} else {
4572 		sbi->page_eio_ofs[type] = ofs;
4573 		sbi->page_eio_cnt[type] = 0;
4574 	}
4575 }
4576 
4577 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4578 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4579 
4580 #endif /* _LINUX_F2FS_H */
4581